| //===-- LoopUtils.cpp - Loop Utility functions -------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines common loop utility functions. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/Utils/LoopUtils.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/BasicAliasAnalysis.h" |
| #include "llvm/Analysis/GlobalsModRef.h" |
| #include "llvm/Analysis/GlobalsModRef.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/LoopPass.h" |
| #include "llvm/Analysis/ScalarEvolution.h" |
| #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" |
| #include "llvm/Analysis/ScalarEvolutionExpander.h" |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/PatternMatch.h" |
| #include "llvm/IR/ValueHandle.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/Debug.h" |
| |
| using namespace llvm; |
| using namespace llvm::PatternMatch; |
| |
| #define DEBUG_TYPE "loop-utils" |
| |
| bool RecurrenceDescriptor::areAllUsesIn(Instruction *I, |
| SmallPtrSetImpl<Instruction *> &Set) { |
| for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) |
| if (!Set.count(dyn_cast<Instruction>(*Use))) |
| return false; |
| return true; |
| } |
| |
| bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurrenceKind Kind) { |
| switch (Kind) { |
| default: |
| break; |
| case RK_IntegerAdd: |
| case RK_IntegerMult: |
| case RK_IntegerOr: |
| case RK_IntegerAnd: |
| case RK_IntegerXor: |
| case RK_IntegerMinMax: |
| return true; |
| } |
| return false; |
| } |
| |
| bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurrenceKind Kind) { |
| return (Kind != RK_NoRecurrence) && !isIntegerRecurrenceKind(Kind); |
| } |
| |
| bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurrenceKind Kind) { |
| switch (Kind) { |
| default: |
| break; |
| case RK_IntegerAdd: |
| case RK_IntegerMult: |
| case RK_FloatAdd: |
| case RK_FloatMult: |
| return true; |
| } |
| return false; |
| } |
| |
| Instruction * |
| RecurrenceDescriptor::lookThroughAnd(PHINode *Phi, Type *&RT, |
| SmallPtrSetImpl<Instruction *> &Visited, |
| SmallPtrSetImpl<Instruction *> &CI) { |
| if (!Phi->hasOneUse()) |
| return Phi; |
| |
| const APInt *M = nullptr; |
| Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser()); |
| |
| // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT |
| // with a new integer type of the corresponding bit width. |
| if (match(J, m_CombineOr(m_And(m_Instruction(I), m_APInt(M)), |
| m_And(m_APInt(M), m_Instruction(I))))) { |
| int32_t Bits = (*M + 1).exactLogBase2(); |
| if (Bits > 0) { |
| RT = IntegerType::get(Phi->getContext(), Bits); |
| Visited.insert(Phi); |
| CI.insert(J); |
| return J; |
| } |
| } |
| return Phi; |
| } |
| |
| bool RecurrenceDescriptor::getSourceExtensionKind( |
| Instruction *Start, Instruction *Exit, Type *RT, bool &IsSigned, |
| SmallPtrSetImpl<Instruction *> &Visited, |
| SmallPtrSetImpl<Instruction *> &CI) { |
| |
| SmallVector<Instruction *, 8> Worklist; |
| bool FoundOneOperand = false; |
| unsigned DstSize = RT->getPrimitiveSizeInBits(); |
| Worklist.push_back(Exit); |
| |
| // Traverse the instructions in the reduction expression, beginning with the |
| // exit value. |
| while (!Worklist.empty()) { |
| Instruction *I = Worklist.pop_back_val(); |
| for (Use &U : I->operands()) { |
| |
| // Terminate the traversal if the operand is not an instruction, or we |
| // reach the starting value. |
| Instruction *J = dyn_cast<Instruction>(U.get()); |
| if (!J || J == Start) |
| continue; |
| |
| // Otherwise, investigate the operation if it is also in the expression. |
| if (Visited.count(J)) { |
| Worklist.push_back(J); |
| continue; |
| } |
| |
| // If the operand is not in Visited, it is not a reduction operation, but |
| // it does feed into one. Make sure it is either a single-use sign- or |
| // zero-extend instruction. |
| CastInst *Cast = dyn_cast<CastInst>(J); |
| bool IsSExtInst = isa<SExtInst>(J); |
| if (!Cast || !Cast->hasOneUse() || !(isa<ZExtInst>(J) || IsSExtInst)) |
| return false; |
| |
| // Ensure the source type of the extend is no larger than the reduction |
| // type. It is not necessary for the types to be identical. |
| unsigned SrcSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); |
| if (SrcSize > DstSize) |
| return false; |
| |
| // Furthermore, ensure that all such extends are of the same kind. |
| if (FoundOneOperand) { |
| if (IsSigned != IsSExtInst) |
| return false; |
| } else { |
| FoundOneOperand = true; |
| IsSigned = IsSExtInst; |
| } |
| |
| // Lastly, if the source type of the extend matches the reduction type, |
| // add the extend to CI so that we can avoid accounting for it in the |
| // cost model. |
| if (SrcSize == DstSize) |
| CI.insert(Cast); |
| } |
| } |
| return true; |
| } |
| |
| bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurrenceKind Kind, |
| Loop *TheLoop, bool HasFunNoNaNAttr, |
| RecurrenceDescriptor &RedDes) { |
| if (Phi->getNumIncomingValues() != 2) |
| return false; |
| |
| // Reduction variables are only found in the loop header block. |
| if (Phi->getParent() != TheLoop->getHeader()) |
| return false; |
| |
| // Obtain the reduction start value from the value that comes from the loop |
| // preheader. |
| Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader()); |
| |
| // ExitInstruction is the single value which is used outside the loop. |
| // We only allow for a single reduction value to be used outside the loop. |
| // This includes users of the reduction, variables (which form a cycle |
| // which ends in the phi node). |
| Instruction *ExitInstruction = nullptr; |
| // Indicates that we found a reduction operation in our scan. |
| bool FoundReduxOp = false; |
| |
| // We start with the PHI node and scan for all of the users of this |
| // instruction. All users must be instructions that can be used as reduction |
| // variables (such as ADD). We must have a single out-of-block user. The cycle |
| // must include the original PHI. |
| bool FoundStartPHI = false; |
| |
| // To recognize min/max patterns formed by a icmp select sequence, we store |
| // the number of instruction we saw from the recognized min/max pattern, |
| // to make sure we only see exactly the two instructions. |
| unsigned NumCmpSelectPatternInst = 0; |
| InstDesc ReduxDesc(false, nullptr); |
| |
| // Data used for determining if the recurrence has been type-promoted. |
| Type *RecurrenceType = Phi->getType(); |
| SmallPtrSet<Instruction *, 4> CastInsts; |
| Instruction *Start = Phi; |
| bool IsSigned = false; |
| |
| SmallPtrSet<Instruction *, 8> VisitedInsts; |
| SmallVector<Instruction *, 8> Worklist; |
| |
| // Return early if the recurrence kind does not match the type of Phi. If the |
| // recurrence kind is arithmetic, we attempt to look through AND operations |
| // resulting from the type promotion performed by InstCombine. Vector |
| // operations are not limited to the legal integer widths, so we may be able |
| // to evaluate the reduction in the narrower width. |
| if (RecurrenceType->isFloatingPointTy()) { |
| if (!isFloatingPointRecurrenceKind(Kind)) |
| return false; |
| } else { |
| if (!isIntegerRecurrenceKind(Kind)) |
| return false; |
| if (isArithmeticRecurrenceKind(Kind)) |
| Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts); |
| } |
| |
| Worklist.push_back(Start); |
| VisitedInsts.insert(Start); |
| |
| // A value in the reduction can be used: |
| // - By the reduction: |
| // - Reduction operation: |
| // - One use of reduction value (safe). |
| // - Multiple use of reduction value (not safe). |
| // - PHI: |
| // - All uses of the PHI must be the reduction (safe). |
| // - Otherwise, not safe. |
| // - By one instruction outside of the loop (safe). |
| // - By further instructions outside of the loop (not safe). |
| // - By an instruction that is not part of the reduction (not safe). |
| // This is either: |
| // * An instruction type other than PHI or the reduction operation. |
| // * A PHI in the header other than the initial PHI. |
| while (!Worklist.empty()) { |
| Instruction *Cur = Worklist.back(); |
| Worklist.pop_back(); |
| |
| // No Users. |
| // If the instruction has no users then this is a broken chain and can't be |
| // a reduction variable. |
| if (Cur->use_empty()) |
| return false; |
| |
| bool IsAPhi = isa<PHINode>(Cur); |
| |
| // A header PHI use other than the original PHI. |
| if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent()) |
| return false; |
| |
| // Reductions of instructions such as Div, and Sub is only possible if the |
| // LHS is the reduction variable. |
| if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) && |
| !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) && |
| !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0)))) |
| return false; |
| |
| // Any reduction instruction must be of one of the allowed kinds. We ignore |
| // the starting value (the Phi or an AND instruction if the Phi has been |
| // type-promoted). |
| if (Cur != Start) { |
| ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr); |
| if (!ReduxDesc.isRecurrence()) |
| return false; |
| } |
| |
| // A reduction operation must only have one use of the reduction value. |
| if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax && |
| hasMultipleUsesOf(Cur, VisitedInsts)) |
| return false; |
| |
| // All inputs to a PHI node must be a reduction value. |
| if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts)) |
| return false; |
| |
| if (Kind == RK_IntegerMinMax && |
| (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur))) |
| ++NumCmpSelectPatternInst; |
| if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur))) |
| ++NumCmpSelectPatternInst; |
| |
| // Check whether we found a reduction operator. |
| FoundReduxOp |= !IsAPhi && Cur != Start; |
| |
| // Process users of current instruction. Push non-PHI nodes after PHI nodes |
| // onto the stack. This way we are going to have seen all inputs to PHI |
| // nodes once we get to them. |
| SmallVector<Instruction *, 8> NonPHIs; |
| SmallVector<Instruction *, 8> PHIs; |
| for (User *U : Cur->users()) { |
| Instruction *UI = cast<Instruction>(U); |
| |
| // Check if we found the exit user. |
| BasicBlock *Parent = UI->getParent(); |
| if (!TheLoop->contains(Parent)) { |
| // Exit if you find multiple outside users or if the header phi node is |
| // being used. In this case the user uses the value of the previous |
| // iteration, in which case we would loose "VF-1" iterations of the |
| // reduction operation if we vectorize. |
| if (ExitInstruction != nullptr || Cur == Phi) |
| return false; |
| |
| // The instruction used by an outside user must be the last instruction |
| // before we feed back to the reduction phi. Otherwise, we loose VF-1 |
| // operations on the value. |
| if (!is_contained(Phi->operands(), Cur)) |
| return false; |
| |
| ExitInstruction = Cur; |
| continue; |
| } |
| |
| // Process instructions only once (termination). Each reduction cycle |
| // value must only be used once, except by phi nodes and min/max |
| // reductions which are represented as a cmp followed by a select. |
| InstDesc IgnoredVal(false, nullptr); |
| if (VisitedInsts.insert(UI).second) { |
| if (isa<PHINode>(UI)) |
| PHIs.push_back(UI); |
| else |
| NonPHIs.push_back(UI); |
| } else if (!isa<PHINode>(UI) && |
| ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) && |
| !isa<SelectInst>(UI)) || |
| !isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence())) |
| return false; |
| |
| // Remember that we completed the cycle. |
| if (UI == Phi) |
| FoundStartPHI = true; |
| } |
| Worklist.append(PHIs.begin(), PHIs.end()); |
| Worklist.append(NonPHIs.begin(), NonPHIs.end()); |
| } |
| |
| // This means we have seen one but not the other instruction of the |
| // pattern or more than just a select and cmp. |
| if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) && |
| NumCmpSelectPatternInst != 2) |
| return false; |
| |
| if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction) |
| return false; |
| |
| // If we think Phi may have been type-promoted, we also need to ensure that |
| // all source operands of the reduction are either SExtInsts or ZEstInsts. If |
| // so, we will be able to evaluate the reduction in the narrower bit width. |
| if (Start != Phi) |
| if (!getSourceExtensionKind(Start, ExitInstruction, RecurrenceType, |
| IsSigned, VisitedInsts, CastInsts)) |
| return false; |
| |
| // We found a reduction var if we have reached the original phi node and we |
| // only have a single instruction with out-of-loop users. |
| |
| // The ExitInstruction(Instruction which is allowed to have out-of-loop users) |
| // is saved as part of the RecurrenceDescriptor. |
| |
| // Save the description of this reduction variable. |
| RecurrenceDescriptor RD( |
| RdxStart, ExitInstruction, Kind, ReduxDesc.getMinMaxKind(), |
| ReduxDesc.getUnsafeAlgebraInst(), RecurrenceType, IsSigned, CastInsts); |
| RedDes = RD; |
| |
| return true; |
| } |
| |
| /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction |
| /// pattern corresponding to a min(X, Y) or max(X, Y). |
| RecurrenceDescriptor::InstDesc |
| RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev) { |
| |
| assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) && |
| "Expect a select instruction"); |
| Instruction *Cmp = nullptr; |
| SelectInst *Select = nullptr; |
| |
| // We must handle the select(cmp()) as a single instruction. Advance to the |
| // select. |
| if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) { |
| if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin()))) |
| return InstDesc(false, I); |
| return InstDesc(Select, Prev.getMinMaxKind()); |
| } |
| |
| // Only handle single use cases for now. |
| if (!(Select = dyn_cast<SelectInst>(I))) |
| return InstDesc(false, I); |
| if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) && |
| !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0)))) |
| return InstDesc(false, I); |
| if (!Cmp->hasOneUse()) |
| return InstDesc(false, I); |
| |
| Value *CmpLeft; |
| Value *CmpRight; |
| |
| // Look for a min/max pattern. |
| if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) |
| return InstDesc(Select, MRK_UIntMin); |
| else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) |
| return InstDesc(Select, MRK_UIntMax); |
| else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) |
| return InstDesc(Select, MRK_SIntMax); |
| else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) |
| return InstDesc(Select, MRK_SIntMin); |
| else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) |
| return InstDesc(Select, MRK_FloatMin); |
| else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) |
| return InstDesc(Select, MRK_FloatMax); |
| else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) |
| return InstDesc(Select, MRK_FloatMin); |
| else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) |
| return InstDesc(Select, MRK_FloatMax); |
| |
| return InstDesc(false, I); |
| } |
| |
| RecurrenceDescriptor::InstDesc |
| RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurrenceKind Kind, |
| InstDesc &Prev, bool HasFunNoNaNAttr) { |
| bool FP = I->getType()->isFloatingPointTy(); |
| Instruction *UAI = Prev.getUnsafeAlgebraInst(); |
| if (!UAI && FP && !I->hasUnsafeAlgebra()) |
| UAI = I; // Found an unsafe (unvectorizable) algebra instruction. |
| |
| switch (I->getOpcode()) { |
| default: |
| return InstDesc(false, I); |
| case Instruction::PHI: |
| return InstDesc(I, Prev.getMinMaxKind(), Prev.getUnsafeAlgebraInst()); |
| case Instruction::Sub: |
| case Instruction::Add: |
| return InstDesc(Kind == RK_IntegerAdd, I); |
| case Instruction::Mul: |
| return InstDesc(Kind == RK_IntegerMult, I); |
| case Instruction::And: |
| return InstDesc(Kind == RK_IntegerAnd, I); |
| case Instruction::Or: |
| return InstDesc(Kind == RK_IntegerOr, I); |
| case Instruction::Xor: |
| return InstDesc(Kind == RK_IntegerXor, I); |
| case Instruction::FMul: |
| return InstDesc(Kind == RK_FloatMult, I, UAI); |
| case Instruction::FSub: |
| case Instruction::FAdd: |
| return InstDesc(Kind == RK_FloatAdd, I, UAI); |
| case Instruction::FCmp: |
| case Instruction::ICmp: |
| case Instruction::Select: |
| if (Kind != RK_IntegerMinMax && |
| (!HasFunNoNaNAttr || Kind != RK_FloatMinMax)) |
| return InstDesc(false, I); |
| return isMinMaxSelectCmpPattern(I, Prev); |
| } |
| } |
| |
| bool RecurrenceDescriptor::hasMultipleUsesOf( |
| Instruction *I, SmallPtrSetImpl<Instruction *> &Insts) { |
| unsigned NumUses = 0; |
| for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; |
| ++Use) { |
| if (Insts.count(dyn_cast<Instruction>(*Use))) |
| ++NumUses; |
| if (NumUses > 1) |
| return true; |
| } |
| |
| return false; |
| } |
| bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop, |
| RecurrenceDescriptor &RedDes) { |
| |
| BasicBlock *Header = TheLoop->getHeader(); |
| Function &F = *Header->getParent(); |
| bool HasFunNoNaNAttr = |
| F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; |
| |
| if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes)) { |
| DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n"); |
| return true; |
| } |
| if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes)) { |
| DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n"); |
| return true; |
| } |
| if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes)) { |
| DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n"); |
| return true; |
| } |
| if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes)) { |
| DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n"); |
| return true; |
| } |
| if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes)) { |
| DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n"); |
| return true; |
| } |
| if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr, |
| RedDes)) { |
| DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n"); |
| return true; |
| } |
| if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes)) { |
| DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n"); |
| return true; |
| } |
| if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes)) { |
| DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n"); |
| return true; |
| } |
| if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes)) { |
| DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi << "\n"); |
| return true; |
| } |
| // Not a reduction of known type. |
| return false; |
| } |
| |
| bool RecurrenceDescriptor::isFirstOrderRecurrence(PHINode *Phi, Loop *TheLoop, |
| DominatorTree *DT) { |
| |
| // Ensure the phi node is in the loop header and has two incoming values. |
| if (Phi->getParent() != TheLoop->getHeader() || |
| Phi->getNumIncomingValues() != 2) |
| return false; |
| |
| // Ensure the loop has a preheader and a single latch block. The loop |
| // vectorizer will need the latch to set up the next iteration of the loop. |
| auto *Preheader = TheLoop->getLoopPreheader(); |
| auto *Latch = TheLoop->getLoopLatch(); |
| if (!Preheader || !Latch) |
| return false; |
| |
| // Ensure the phi node's incoming blocks are the loop preheader and latch. |
| if (Phi->getBasicBlockIndex(Preheader) < 0 || |
| Phi->getBasicBlockIndex(Latch) < 0) |
| return false; |
| |
| // Get the previous value. The previous value comes from the latch edge while |
| // the initial value comes form the preheader edge. |
| auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch)); |
| if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous)) |
| return false; |
| |
| // Ensure every user of the phi node is dominated by the previous value. The |
| // dominance requirement ensures the loop vectorizer will not need to |
| // vectorize the initial value prior to the first iteration of the loop. |
| for (User *U : Phi->users()) |
| if (auto *I = dyn_cast<Instruction>(U)) |
| if (!DT->dominates(Previous, I)) |
| return false; |
| |
| return true; |
| } |
| |
| /// This function returns the identity element (or neutral element) for |
| /// the operation K. |
| Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurrenceKind K, |
| Type *Tp) { |
| switch (K) { |
| case RK_IntegerXor: |
| case RK_IntegerAdd: |
| case RK_IntegerOr: |
| // Adding, Xoring, Oring zero to a number does not change it. |
| return ConstantInt::get(Tp, 0); |
| case RK_IntegerMult: |
| // Multiplying a number by 1 does not change it. |
| return ConstantInt::get(Tp, 1); |
| case RK_IntegerAnd: |
| // AND-ing a number with an all-1 value does not change it. |
| return ConstantInt::get(Tp, -1, true); |
| case RK_FloatMult: |
| // Multiplying a number by 1 does not change it. |
| return ConstantFP::get(Tp, 1.0L); |
| case RK_FloatAdd: |
| // Adding zero to a number does not change it. |
| return ConstantFP::get(Tp, 0.0L); |
| default: |
| llvm_unreachable("Unknown recurrence kind"); |
| } |
| } |
| |
| /// This function translates the recurrence kind to an LLVM binary operator. |
| unsigned RecurrenceDescriptor::getRecurrenceBinOp(RecurrenceKind Kind) { |
| switch (Kind) { |
| case RK_IntegerAdd: |
| return Instruction::Add; |
| case RK_IntegerMult: |
| return Instruction::Mul; |
| case RK_IntegerOr: |
| return Instruction::Or; |
| case RK_IntegerAnd: |
| return Instruction::And; |
| case RK_IntegerXor: |
| return Instruction::Xor; |
| case RK_FloatMult: |
| return Instruction::FMul; |
| case RK_FloatAdd: |
| return Instruction::FAdd; |
| case RK_IntegerMinMax: |
| return Instruction::ICmp; |
| case RK_FloatMinMax: |
| return Instruction::FCmp; |
| default: |
| llvm_unreachable("Unknown recurrence operation"); |
| } |
| } |
| |
| Value *RecurrenceDescriptor::createMinMaxOp(IRBuilder<> &Builder, |
| MinMaxRecurrenceKind RK, |
| Value *Left, Value *Right) { |
| CmpInst::Predicate P = CmpInst::ICMP_NE; |
| switch (RK) { |
| default: |
| llvm_unreachable("Unknown min/max recurrence kind"); |
| case MRK_UIntMin: |
| P = CmpInst::ICMP_ULT; |
| break; |
| case MRK_UIntMax: |
| P = CmpInst::ICMP_UGT; |
| break; |
| case MRK_SIntMin: |
| P = CmpInst::ICMP_SLT; |
| break; |
| case MRK_SIntMax: |
| P = CmpInst::ICMP_SGT; |
| break; |
| case MRK_FloatMin: |
| P = CmpInst::FCMP_OLT; |
| break; |
| case MRK_FloatMax: |
| P = CmpInst::FCMP_OGT; |
| break; |
| } |
| |
| // We only match FP sequences with unsafe algebra, so we can unconditionally |
| // set it on any generated instructions. |
| IRBuilder<>::FastMathFlagGuard FMFG(Builder); |
| FastMathFlags FMF; |
| FMF.setUnsafeAlgebra(); |
| Builder.setFastMathFlags(FMF); |
| |
| Value *Cmp; |
| if (RK == MRK_FloatMin || RK == MRK_FloatMax) |
| Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp"); |
| else |
| Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp"); |
| |
| Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); |
| return Select; |
| } |
| |
| InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K, |
| const SCEV *Step, BinaryOperator *BOp) |
| : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp) { |
| assert(IK != IK_NoInduction && "Not an induction"); |
| |
| // Start value type should match the induction kind and the value |
| // itself should not be null. |
| assert(StartValue && "StartValue is null"); |
| assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) && |
| "StartValue is not a pointer for pointer induction"); |
| assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) && |
| "StartValue is not an integer for integer induction"); |
| |
| // Check the Step Value. It should be non-zero integer value. |
| assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) && |
| "Step value is zero"); |
| |
| assert((IK != IK_PtrInduction || getConstIntStepValue()) && |
| "Step value should be constant for pointer induction"); |
| assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) && |
| "StepValue is not an integer"); |
| |
| assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) && |
| "StepValue is not FP for FpInduction"); |
| assert((IK != IK_FpInduction || (InductionBinOp && |
| (InductionBinOp->getOpcode() == Instruction::FAdd || |
| InductionBinOp->getOpcode() == Instruction::FSub))) && |
| "Binary opcode should be specified for FP induction"); |
| } |
| |
| int InductionDescriptor::getConsecutiveDirection() const { |
| ConstantInt *ConstStep = getConstIntStepValue(); |
| if (ConstStep && (ConstStep->isOne() || ConstStep->isMinusOne())) |
| return ConstStep->getSExtValue(); |
| return 0; |
| } |
| |
| ConstantInt *InductionDescriptor::getConstIntStepValue() const { |
| if (isa<SCEVConstant>(Step)) |
| return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue()); |
| return nullptr; |
| } |
| |
| Value *InductionDescriptor::transform(IRBuilder<> &B, Value *Index, |
| ScalarEvolution *SE, |
| const DataLayout& DL) const { |
| |
| SCEVExpander Exp(*SE, DL, "induction"); |
| assert(Index->getType() == Step->getType() && |
| "Index type does not match StepValue type"); |
| switch (IK) { |
| case IK_IntInduction: { |
| assert(Index->getType() == StartValue->getType() && |
| "Index type does not match StartValue type"); |
| |
| // FIXME: Theoretically, we can call getAddExpr() of ScalarEvolution |
| // and calculate (Start + Index * Step) for all cases, without |
| // special handling for "isOne" and "isMinusOne". |
| // But in the real life the result code getting worse. We mix SCEV |
| // expressions and ADD/SUB operations and receive redundant |
| // intermediate values being calculated in different ways and |
| // Instcombine is unable to reduce them all. |
| |
| if (getConstIntStepValue() && |
| getConstIntStepValue()->isMinusOne()) |
| return B.CreateSub(StartValue, Index); |
| if (getConstIntStepValue() && |
| getConstIntStepValue()->isOne()) |
| return B.CreateAdd(StartValue, Index); |
| const SCEV *S = SE->getAddExpr(SE->getSCEV(StartValue), |
| SE->getMulExpr(Step, SE->getSCEV(Index))); |
| return Exp.expandCodeFor(S, StartValue->getType(), &*B.GetInsertPoint()); |
| } |
| case IK_PtrInduction: { |
| assert(isa<SCEVConstant>(Step) && |
| "Expected constant step for pointer induction"); |
| const SCEV *S = SE->getMulExpr(SE->getSCEV(Index), Step); |
| Index = Exp.expandCodeFor(S, Index->getType(), &*B.GetInsertPoint()); |
| return B.CreateGEP(nullptr, StartValue, Index); |
| } |
| case IK_FpInduction: { |
| assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); |
| assert(InductionBinOp && |
| (InductionBinOp->getOpcode() == Instruction::FAdd || |
| InductionBinOp->getOpcode() == Instruction::FSub) && |
| "Original bin op should be defined for FP induction"); |
| |
| Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); |
| |
| // Floating point operations had to be 'fast' to enable the induction. |
| FastMathFlags Flags; |
| Flags.setUnsafeAlgebra(); |
| |
| Value *MulExp = B.CreateFMul(StepValue, Index); |
| if (isa<Instruction>(MulExp)) |
| // We have to check, the MulExp may be a constant. |
| cast<Instruction>(MulExp)->setFastMathFlags(Flags); |
| |
| Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode() , StartValue, |
| MulExp, "induction"); |
| if (isa<Instruction>(BOp)) |
| cast<Instruction>(BOp)->setFastMathFlags(Flags); |
| |
| return BOp; |
| } |
| case IK_NoInduction: |
| return nullptr; |
| } |
| llvm_unreachable("invalid enum"); |
| } |
| |
| bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop, |
| ScalarEvolution *SE, |
| InductionDescriptor &D) { |
| |
| // Here we only handle FP induction variables. |
| assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type"); |
| |
| if (TheLoop->getHeader() != Phi->getParent()) |
| return false; |
| |
| // The loop may have multiple entrances or multiple exits; we can analyze |
| // this phi if it has a unique entry value and a unique backedge value. |
| if (Phi->getNumIncomingValues() != 2) |
| return false; |
| Value *BEValue = nullptr, *StartValue = nullptr; |
| if (TheLoop->contains(Phi->getIncomingBlock(0))) { |
| BEValue = Phi->getIncomingValue(0); |
| StartValue = Phi->getIncomingValue(1); |
| } else { |
| assert(TheLoop->contains(Phi->getIncomingBlock(1)) && |
| "Unexpected Phi node in the loop"); |
| BEValue = Phi->getIncomingValue(1); |
| StartValue = Phi->getIncomingValue(0); |
| } |
| |
| BinaryOperator *BOp = dyn_cast<BinaryOperator>(BEValue); |
| if (!BOp) |
| return false; |
| |
| Value *Addend = nullptr; |
| if (BOp->getOpcode() == Instruction::FAdd) { |
| if (BOp->getOperand(0) == Phi) |
| Addend = BOp->getOperand(1); |
| else if (BOp->getOperand(1) == Phi) |
| Addend = BOp->getOperand(0); |
| } else if (BOp->getOpcode() == Instruction::FSub) |
| if (BOp->getOperand(0) == Phi) |
| Addend = BOp->getOperand(1); |
| |
| if (!Addend) |
| return false; |
| |
| // The addend should be loop invariant |
| if (auto *I = dyn_cast<Instruction>(Addend)) |
| if (TheLoop->contains(I)) |
| return false; |
| |
| // FP Step has unknown SCEV |
| const SCEV *Step = SE->getUnknown(Addend); |
| D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp); |
| return true; |
| } |
| |
| bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop, |
| PredicatedScalarEvolution &PSE, |
| InductionDescriptor &D, |
| bool Assume) { |
| Type *PhiTy = Phi->getType(); |
| |
| // Handle integer and pointer inductions variables. |
| // Now we handle also FP induction but not trying to make a |
| // recurrent expression from the PHI node in-place. |
| |
| if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() && |
| !PhiTy->isFloatTy() && !PhiTy->isDoubleTy() && !PhiTy->isHalfTy()) |
| return false; |
| |
| if (PhiTy->isFloatingPointTy()) |
| return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D); |
| |
| const SCEV *PhiScev = PSE.getSCEV(Phi); |
| const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); |
| |
| // We need this expression to be an AddRecExpr. |
| if (Assume && !AR) |
| AR = PSE.getAsAddRec(Phi); |
| |
| if (!AR) { |
| DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); |
| return false; |
| } |
| |
| return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR); |
| } |
| |
| bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop, |
| ScalarEvolution *SE, |
| InductionDescriptor &D, |
| const SCEV *Expr) { |
| Type *PhiTy = Phi->getType(); |
| // We only handle integer and pointer inductions variables. |
| if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy()) |
| return false; |
| |
| // Check that the PHI is consecutive. |
| const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi); |
| const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); |
| |
| if (!AR) { |
| DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); |
| return false; |
| } |
| |
| if (AR->getLoop() != TheLoop) { |
| // FIXME: We should treat this as a uniform. Unfortunately, we |
| // don't currently know how to handled uniform PHIs. |
| DEBUG(dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n"); |
| return false; |
| } |
| |
| Value *StartValue = |
| Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader()); |
| const SCEV *Step = AR->getStepRecurrence(*SE); |
| // Calculate the pointer stride and check if it is consecutive. |
| // The stride may be a constant or a loop invariant integer value. |
| const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step); |
| if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop)) |
| return false; |
| |
| if (PhiTy->isIntegerTy()) { |
| D = InductionDescriptor(StartValue, IK_IntInduction, Step); |
| return true; |
| } |
| |
| assert(PhiTy->isPointerTy() && "The PHI must be a pointer"); |
| // Pointer induction should be a constant. |
| if (!ConstStep) |
| return false; |
| |
| ConstantInt *CV = ConstStep->getValue(); |
| Type *PointerElementType = PhiTy->getPointerElementType(); |
| // The pointer stride cannot be determined if the pointer element type is not |
| // sized. |
| if (!PointerElementType->isSized()) |
| return false; |
| |
| const DataLayout &DL = Phi->getModule()->getDataLayout(); |
| int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType)); |
| if (!Size) |
| return false; |
| |
| int64_t CVSize = CV->getSExtValue(); |
| if (CVSize % Size) |
| return false; |
| auto *StepValue = SE->getConstant(CV->getType(), CVSize / Size, |
| true /* signed */); |
| D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue); |
| return true; |
| } |
| |
| /// \brief Returns the instructions that use values defined in the loop. |
| SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) { |
| SmallVector<Instruction *, 8> UsedOutside; |
| |
| for (auto *Block : L->getBlocks()) |
| // FIXME: I believe that this could use copy_if if the Inst reference could |
| // be adapted into a pointer. |
| for (auto &Inst : *Block) { |
| auto Users = Inst.users(); |
| if (any_of(Users, [&](User *U) { |
| auto *Use = cast<Instruction>(U); |
| return !L->contains(Use->getParent()); |
| })) |
| UsedOutside.push_back(&Inst); |
| } |
| |
| return UsedOutside; |
| } |
| |
| void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) { |
| // By definition, all loop passes need the LoopInfo analysis and the |
| // Dominator tree it depends on. Because they all participate in the loop |
| // pass manager, they must also preserve these. |
| AU.addRequired<DominatorTreeWrapperPass>(); |
| AU.addPreserved<DominatorTreeWrapperPass>(); |
| AU.addRequired<LoopInfoWrapperPass>(); |
| AU.addPreserved<LoopInfoWrapperPass>(); |
| |
| // We must also preserve LoopSimplify and LCSSA. We locally access their IDs |
| // here because users shouldn't directly get them from this header. |
| extern char &LoopSimplifyID; |
| extern char &LCSSAID; |
| AU.addRequiredID(LoopSimplifyID); |
| AU.addPreservedID(LoopSimplifyID); |
| AU.addRequiredID(LCSSAID); |
| AU.addPreservedID(LCSSAID); |
| // This is used in the LPPassManager to perform LCSSA verification on passes |
| // which preserve lcssa form |
| AU.addRequired<LCSSAVerificationPass>(); |
| AU.addPreserved<LCSSAVerificationPass>(); |
| |
| // Loop passes are designed to run inside of a loop pass manager which means |
| // that any function analyses they require must be required by the first loop |
| // pass in the manager (so that it is computed before the loop pass manager |
| // runs) and preserved by all loop pasess in the manager. To make this |
| // reasonably robust, the set needed for most loop passes is maintained here. |
| // If your loop pass requires an analysis not listed here, you will need to |
| // carefully audit the loop pass manager nesting structure that results. |
| AU.addRequired<AAResultsWrapperPass>(); |
| AU.addPreserved<AAResultsWrapperPass>(); |
| AU.addPreserved<BasicAAWrapperPass>(); |
| AU.addPreserved<GlobalsAAWrapperPass>(); |
| AU.addPreserved<SCEVAAWrapperPass>(); |
| AU.addRequired<ScalarEvolutionWrapperPass>(); |
| AU.addPreserved<ScalarEvolutionWrapperPass>(); |
| } |
| |
| /// Manually defined generic "LoopPass" dependency initialization. This is used |
| /// to initialize the exact set of passes from above in \c |
| /// getLoopAnalysisUsage. It can be used within a loop pass's initialization |
| /// with: |
| /// |
| /// INITIALIZE_PASS_DEPENDENCY(LoopPass) |
| /// |
| /// As-if "LoopPass" were a pass. |
| void llvm::initializeLoopPassPass(PassRegistry &Registry) { |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(LoopSimplify) |
| INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) |
| } |
| |
| /// \brief Find string metadata for loop |
| /// |
| /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an |
| /// operand or null otherwise. If the string metadata is not found return |
| /// Optional's not-a-value. |
| Optional<const MDOperand *> llvm::findStringMetadataForLoop(Loop *TheLoop, |
| StringRef Name) { |
| MDNode *LoopID = TheLoop->getLoopID(); |
| // Return none if LoopID is false. |
| if (!LoopID) |
| return None; |
| |
| // First operand should refer to the loop id itself. |
| assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); |
| assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); |
| |
| // Iterate over LoopID operands and look for MDString Metadata |
| for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { |
| MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); |
| if (!MD) |
| continue; |
| MDString *S = dyn_cast<MDString>(MD->getOperand(0)); |
| if (!S) |
| continue; |
| // Return true if MDString holds expected MetaData. |
| if (Name.equals(S->getString())) |
| switch (MD->getNumOperands()) { |
| case 1: |
| return nullptr; |
| case 2: |
| return &MD->getOperand(1); |
| default: |
| llvm_unreachable("loop metadata has 0 or 1 operand"); |
| } |
| } |
| return None; |
| } |
| |
| /// Returns true if the instruction in a loop is guaranteed to execute at least |
| /// once. |
| bool llvm::isGuaranteedToExecute(const Instruction &Inst, |
| const DominatorTree *DT, const Loop *CurLoop, |
| const LoopSafetyInfo *SafetyInfo) { |
| // We have to check to make sure that the instruction dominates all |
| // of the exit blocks. If it doesn't, then there is a path out of the loop |
| // which does not execute this instruction, so we can't hoist it. |
| |
| // If the instruction is in the header block for the loop (which is very |
| // common), it is always guaranteed to dominate the exit blocks. Since this |
| // is a common case, and can save some work, check it now. |
| if (Inst.getParent() == CurLoop->getHeader()) |
| // If there's a throw in the header block, we can't guarantee we'll reach |
| // Inst. |
| return !SafetyInfo->HeaderMayThrow; |
| |
| // Somewhere in this loop there is an instruction which may throw and make us |
| // exit the loop. |
| if (SafetyInfo->MayThrow) |
| return false; |
| |
| // Get the exit blocks for the current loop. |
| SmallVector<BasicBlock *, 8> ExitBlocks; |
| CurLoop->getExitBlocks(ExitBlocks); |
| |
| // Verify that the block dominates each of the exit blocks of the loop. |
| for (BasicBlock *ExitBlock : ExitBlocks) |
| if (!DT->dominates(Inst.getParent(), ExitBlock)) |
| return false; |
| |
| // As a degenerate case, if the loop is statically infinite then we haven't |
| // proven anything since there are no exit blocks. |
| if (ExitBlocks.empty()) |
| return false; |
| |
| // FIXME: In general, we have to prove that the loop isn't an infinite loop. |
| // See http::llvm.org/PR24078 . (The "ExitBlocks.empty()" check above is |
| // just a special case of this.) |
| return true; |
| } |
| |
| Optional<unsigned> llvm::getLoopEstimatedTripCount(Loop *L) { |
| // Only support loops with a unique exiting block, and a latch. |
| if (!L->getExitingBlock()) |
| return None; |
| |
| // Get the branch weights for the the loop's backedge. |
| BranchInst *LatchBR = |
| dyn_cast<BranchInst>(L->getLoopLatch()->getTerminator()); |
| if (!LatchBR || LatchBR->getNumSuccessors() != 2) |
| return None; |
| |
| assert((LatchBR->getSuccessor(0) == L->getHeader() || |
| LatchBR->getSuccessor(1) == L->getHeader()) && |
| "At least one edge out of the latch must go to the header"); |
| |
| // To estimate the number of times the loop body was executed, we want to |
| // know the number of times the backedge was taken, vs. the number of times |
| // we exited the loop. |
| uint64_t TrueVal, FalseVal; |
| if (!LatchBR->extractProfMetadata(TrueVal, FalseVal)) |
| return None; |
| |
| if (!TrueVal || !FalseVal) |
| return 0; |
| |
| // Divide the count of the backedge by the count of the edge exiting the loop, |
| // rounding to nearest. |
| if (LatchBR->getSuccessor(0) == L->getHeader()) |
| return (TrueVal + (FalseVal / 2)) / FalseVal; |
| else |
| return (FalseVal + (TrueVal / 2)) / TrueVal; |
| } |