|  | <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" | 
|  | "http://www.w3.org/TR/html4/strict.dtd"> | 
|  | <html> | 
|  | <head> | 
|  | <title>LLVM Assembly Language Reference Manual</title> | 
|  | <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> | 
|  | <meta name="author" content="Chris Lattner"> | 
|  | <meta name="description" | 
|  | content="LLVM Assembly Language Reference Manual."> | 
|  | <link rel="stylesheet" href="llvm.css" type="text/css"> | 
|  | </head> | 
|  |  | 
|  | <body> | 
|  |  | 
|  | <div class="doc_title"> LLVM Language Reference Manual </div> | 
|  | <ol> | 
|  | <li><a href="#abstract">Abstract</a></li> | 
|  | <li><a href="#introduction">Introduction</a></li> | 
|  | <li><a href="#identifiers">Identifiers</a></li> | 
|  | <li><a href="#highlevel">High Level Structure</a> | 
|  | <ol> | 
|  | <li><a href="#modulestructure">Module Structure</a></li> | 
|  | <li><a href="#linkage">Linkage Types</a></li> | 
|  | <li><a href="#callingconv">Calling Conventions</a></li> | 
|  | <li><a href="#globalvars">Global Variables</a></li> | 
|  | <li><a href="#functionstructure">Functions</a></li> | 
|  | <li><a href="#paramattrs">Parameter Attributes</a></li> | 
|  | <li><a href="#moduleasm">Module-Level Inline Assembly</a></li> | 
|  | <li><a href="#datalayout">Data Layout</a></li> | 
|  | </ol> | 
|  | </li> | 
|  | <li><a href="#typesystem">Type System</a> | 
|  | <ol> | 
|  | <li><a href="#t_primitive">Primitive Types</a> | 
|  | <ol> | 
|  | <li><a href="#t_classifications">Type Classifications</a></li> | 
|  | </ol> | 
|  | </li> | 
|  | <li><a href="#t_derived">Derived Types</a> | 
|  | <ol> | 
|  | <li><a href="#t_array">Array Type</a></li> | 
|  | <li><a href="#t_function">Function Type</a></li> | 
|  | <li><a href="#t_pointer">Pointer Type</a></li> | 
|  | <li><a href="#t_struct">Structure Type</a></li> | 
|  | <li><a href="#t_pstruct">Packed Structure Type</a></li> | 
|  | <li><a href="#t_vector">Vector Type</a></li> | 
|  | <li><a href="#t_opaque">Opaque Type</a></li> | 
|  | </ol> | 
|  | </li> | 
|  | </ol> | 
|  | </li> | 
|  | <li><a href="#constants">Constants</a> | 
|  | <ol> | 
|  | <li><a href="#simpleconstants">Simple Constants</a> | 
|  | <li><a href="#aggregateconstants">Aggregate Constants</a> | 
|  | <li><a href="#globalconstants">Global Variable and Function Addresses</a> | 
|  | <li><a href="#undefvalues">Undefined Values</a> | 
|  | <li><a href="#constantexprs">Constant Expressions</a> | 
|  | </ol> | 
|  | </li> | 
|  | <li><a href="#othervalues">Other Values</a> | 
|  | <ol> | 
|  | <li><a href="#inlineasm">Inline Assembler Expressions</a> | 
|  | </ol> | 
|  | </li> | 
|  | <li><a href="#instref">Instruction Reference</a> | 
|  | <ol> | 
|  | <li><a href="#terminators">Terminator Instructions</a> | 
|  | <ol> | 
|  | <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li> | 
|  | <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li> | 
|  | <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li> | 
|  | <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li> | 
|  | <li><a href="#i_unwind">'<tt>unwind</tt>'  Instruction</a></li> | 
|  | <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li> | 
|  | </ol> | 
|  | </li> | 
|  | <li><a href="#binaryops">Binary Operations</a> | 
|  | <ol> | 
|  | <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li> | 
|  | <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li> | 
|  | <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li> | 
|  | <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li> | 
|  | <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li> | 
|  | <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li> | 
|  | <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li> | 
|  | <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li> | 
|  | <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li> | 
|  | </ol> | 
|  | </li> | 
|  | <li><a href="#bitwiseops">Bitwise Binary Operations</a> | 
|  | <ol> | 
|  | <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li> | 
|  | <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li> | 
|  | <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li> | 
|  | <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li> | 
|  | <li><a href="#i_or">'<tt>or</tt>'  Instruction</a></li> | 
|  | <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li> | 
|  | </ol> | 
|  | </li> | 
|  | <li><a href="#vectorops">Vector Operations</a> | 
|  | <ol> | 
|  | <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li> | 
|  | <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li> | 
|  | <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li> | 
|  | </ol> | 
|  | </li> | 
|  | <li><a href="#memoryops">Memory Access and Addressing Operations</a> | 
|  | <ol> | 
|  | <li><a href="#i_malloc">'<tt>malloc</tt>'   Instruction</a></li> | 
|  | <li><a href="#i_free">'<tt>free</tt>'     Instruction</a></li> | 
|  | <li><a href="#i_alloca">'<tt>alloca</tt>'   Instruction</a></li> | 
|  | <li><a href="#i_load">'<tt>load</tt>'     Instruction</a></li> | 
|  | <li><a href="#i_store">'<tt>store</tt>'    Instruction</a></li> | 
|  | <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li> | 
|  | </ol> | 
|  | </li> | 
|  | <li><a href="#convertops">Conversion Operations</a> | 
|  | <ol> | 
|  | <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li> | 
|  | <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li> | 
|  | <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li> | 
|  | <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li> | 
|  | <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li> | 
|  | <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li> | 
|  | <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li> | 
|  | <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li> | 
|  | <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li> | 
|  | <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li> | 
|  | <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li> | 
|  | <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li> | 
|  | </ol> | 
|  | <li><a href="#otherops">Other Operations</a> | 
|  | <ol> | 
|  | <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li> | 
|  | <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li> | 
|  | <li><a href="#i_phi">'<tt>phi</tt>'   Instruction</a></li> | 
|  | <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li> | 
|  | <li><a href="#i_call">'<tt>call</tt>'  Instruction</a></li> | 
|  | <li><a href="#i_va_arg">'<tt>va_arg</tt>'  Instruction</a></li> | 
|  | </ol> | 
|  | </li> | 
|  | </ol> | 
|  | </li> | 
|  | <li><a href="#intrinsics">Intrinsic Functions</a> | 
|  | <ol> | 
|  | <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a> | 
|  | <ol> | 
|  | <li><a href="#i_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li> | 
|  | <li><a href="#i_va_end">'<tt>llvm.va_end</tt>'   Intrinsic</a></li> | 
|  | <li><a href="#i_va_copy">'<tt>llvm.va_copy</tt>'  Intrinsic</a></li> | 
|  | </ol> | 
|  | </li> | 
|  | <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a> | 
|  | <ol> | 
|  | <li><a href="#i_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li> | 
|  | <li><a href="#i_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li> | 
|  | <li><a href="#i_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li> | 
|  | </ol> | 
|  | </li> | 
|  | <li><a href="#int_codegen">Code Generator Intrinsics</a> | 
|  | <ol> | 
|  | <li><a href="#i_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li> | 
|  | <li><a href="#i_frameaddress">'<tt>llvm.frameaddress</tt>'   Intrinsic</a></li> | 
|  | <li><a href="#i_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li> | 
|  | <li><a href="#i_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li> | 
|  | <li><a href="#i_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li> | 
|  | <li><a href="#i_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li> | 
|  | <li><a href="#i_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li> | 
|  | </ol> | 
|  | </li> | 
|  | <li><a href="#int_libc">Standard C Library Intrinsics</a> | 
|  | <ol> | 
|  | <li><a href="#i_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li> | 
|  | <li><a href="#i_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li> | 
|  | <li><a href="#i_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li> | 
|  | <li><a href="#i_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li> | 
|  | <li><a href="#i_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li> | 
|  | </ol> | 
|  | </li> | 
|  | <li><a href="#int_manip">Bit Manipulation Intrinsics</a> | 
|  | <ol> | 
|  | <li><a href="#i_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li> | 
|  | <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li> | 
|  | <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li> | 
|  | <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li> | 
|  | </ol> | 
|  | </li> | 
|  | <li><a href="#int_debugger">Debugger intrinsics</a></li> | 
|  | <li><a href="#int_eh">Exception Handling intrinsics</a></li> | 
|  | </ol> | 
|  | </li> | 
|  | </ol> | 
|  |  | 
|  | <div class="doc_author"> | 
|  | <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a> | 
|  | and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p> | 
|  | </div> | 
|  |  | 
|  | <!-- *********************************************************************** --> | 
|  | <div class="doc_section"> <a name="abstract">Abstract </a></div> | 
|  | <!-- *********************************************************************** --> | 
|  |  | 
|  | <div class="doc_text"> | 
|  | <p>This document is a reference manual for the LLVM assembly language. | 
|  | LLVM is an SSA based representation that provides type safety, | 
|  | low-level operations, flexibility, and the capability of representing | 
|  | 'all' high-level languages cleanly.  It is the common code | 
|  | representation used throughout all phases of the LLVM compilation | 
|  | strategy.</p> | 
|  | </div> | 
|  |  | 
|  | <!-- *********************************************************************** --> | 
|  | <div class="doc_section"> <a name="introduction">Introduction</a> </div> | 
|  | <!-- *********************************************************************** --> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <p>The LLVM code representation is designed to be used in three | 
|  | different forms: as an in-memory compiler IR, as an on-disk bytecode | 
|  | representation (suitable for fast loading by a Just-In-Time compiler), | 
|  | and as a human readable assembly language representation.  This allows | 
|  | LLVM to provide a powerful intermediate representation for efficient | 
|  | compiler transformations and analysis, while providing a natural means | 
|  | to debug and visualize the transformations.  The three different forms | 
|  | of LLVM are all equivalent.  This document describes the human readable | 
|  | representation and notation.</p> | 
|  |  | 
|  | <p>The LLVM representation aims to be light-weight and low-level | 
|  | while being expressive, typed, and extensible at the same time.  It | 
|  | aims to be a "universal IR" of sorts, by being at a low enough level | 
|  | that high-level ideas may be cleanly mapped to it (similar to how | 
|  | microprocessors are "universal IR's", allowing many source languages to | 
|  | be mapped to them).  By providing type information, LLVM can be used as | 
|  | the target of optimizations: for example, through pointer analysis, it | 
|  | can be proven that a C automatic variable is never accessed outside of | 
|  | the current function... allowing it to be promoted to a simple SSA | 
|  | value instead of a memory location.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <p>It is important to note that this document describes 'well formed' | 
|  | LLVM assembly language.  There is a difference between what the parser | 
|  | accepts and what is considered 'well formed'.  For example, the | 
|  | following instruction is syntactically okay, but not well formed:</p> | 
|  |  | 
|  | <pre> | 
|  | %x = <a href="#i_add">add</a> i32 1, %x | 
|  | </pre> | 
|  |  | 
|  | <p>...because the definition of <tt>%x</tt> does not dominate all of | 
|  | its uses. The LLVM infrastructure provides a verification pass that may | 
|  | be used to verify that an LLVM module is well formed.  This pass is | 
|  | automatically run by the parser after parsing input assembly and by | 
|  | the optimizer before it outputs bytecode.  The violations pointed out | 
|  | by the verifier pass indicate bugs in transformation passes or input to | 
|  | the parser.</p> | 
|  |  | 
|  | <!-- Describe the typesetting conventions here. --> </div> | 
|  |  | 
|  | <!-- *********************************************************************** --> | 
|  | <div class="doc_section"> <a name="identifiers">Identifiers</a> </div> | 
|  | <!-- *********************************************************************** --> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <p>LLVM uses three different forms of identifiers, for different | 
|  | purposes:</p> | 
|  |  | 
|  | <ol> | 
|  | <li>Named values are represented as a string of characters with a '%' prefix. | 
|  | For example, %foo, %DivisionByZero, %a.really.long.identifier.  The actual | 
|  | regular expression used is '<tt>%[a-zA-Z$._][a-zA-Z$._0-9]*</tt>'. | 
|  | Identifiers which require other characters in their names can be surrounded | 
|  | with quotes.  In this way, anything except a <tt>"</tt> character can be used | 
|  | in a name.</li> | 
|  |  | 
|  | <li>Unnamed values are represented as an unsigned numeric value with a '%' | 
|  | prefix.  For example, %12, %2, %44.</li> | 
|  |  | 
|  | <li>Constants, which are described in a <a href="#constants">section about | 
|  | constants</a>, below.</li> | 
|  | </ol> | 
|  |  | 
|  | <p>LLVM requires that values start with a '%' sign for two reasons: Compilers | 
|  | don't need to worry about name clashes with reserved words, and the set of | 
|  | reserved words may be expanded in the future without penalty.  Additionally, | 
|  | unnamed identifiers allow a compiler to quickly come up with a temporary | 
|  | variable without having to avoid symbol table conflicts.</p> | 
|  |  | 
|  | <p>Reserved words in LLVM are very similar to reserved words in other | 
|  | languages. There are keywords for different opcodes | 
|  | ('<tt><a href="#i_add">add</a></tt>', | 
|  | '<tt><a href="#i_bitcast">bitcast</a></tt>', | 
|  | '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a | 
|  | href="#t_void">void</a></tt>', '<tt><a href="#t_primitive">i32</a></tt>', etc...), | 
|  | and others.  These reserved words cannot conflict with variable names, because | 
|  | none of them start with a '%' character.</p> | 
|  |  | 
|  | <p>Here is an example of LLVM code to multiply the integer variable | 
|  | '<tt>%X</tt>' by 8:</p> | 
|  |  | 
|  | <p>The easy way:</p> | 
|  |  | 
|  | <pre> | 
|  | %result = <a href="#i_mul">mul</a> i32 %X, 8 | 
|  | </pre> | 
|  |  | 
|  | <p>After strength reduction:</p> | 
|  |  | 
|  | <pre> | 
|  | %result = <a href="#i_shl">shl</a> i32 %X, i8 3 | 
|  | </pre> | 
|  |  | 
|  | <p>And the hard way:</p> | 
|  |  | 
|  | <pre> | 
|  | <a href="#i_add">add</a> i32 %X, %X           <i>; yields {i32}:%0</i> | 
|  | <a href="#i_add">add</a> i32 %0, %0           <i>; yields {i32}:%1</i> | 
|  | %result = <a href="#i_add">add</a> i32 %1, %1 | 
|  | </pre> | 
|  |  | 
|  | <p>This last way of multiplying <tt>%X</tt> by 8 illustrates several | 
|  | important lexical features of LLVM:</p> | 
|  |  | 
|  | <ol> | 
|  |  | 
|  | <li>Comments are delimited with a '<tt>;</tt>' and go until the end of | 
|  | line.</li> | 
|  |  | 
|  | <li>Unnamed temporaries are created when the result of a computation is not | 
|  | assigned to a named value.</li> | 
|  |  | 
|  | <li>Unnamed temporaries are numbered sequentially</li> | 
|  |  | 
|  | </ol> | 
|  |  | 
|  | <p>...and it also shows a convention that we follow in this document.  When | 
|  | demonstrating instructions, we will follow an instruction with a comment that | 
|  | defines the type and name of value produced.  Comments are shown in italic | 
|  | text.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- *********************************************************************** --> | 
|  | <div class="doc_section"> <a name="highlevel">High Level Structure</a> </div> | 
|  | <!-- *********************************************************************** --> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <div class="doc_subsection"> <a name="modulestructure">Module Structure</a> | 
|  | </div> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <p>LLVM programs are composed of "Module"s, each of which is a | 
|  | translation unit of the input programs.  Each module consists of | 
|  | functions, global variables, and symbol table entries.  Modules may be | 
|  | combined together with the LLVM linker, which merges function (and | 
|  | global variable) definitions, resolves forward declarations, and merges | 
|  | symbol table entries. Here is an example of the "hello world" module:</p> | 
|  |  | 
|  | <pre><i>; Declare the string constant as a global constant...</i> | 
|  | <a href="#identifiers">%.LC0</a> = <a href="#linkage_internal">internal</a> <a | 
|  | href="#globalvars">constant</a> <a href="#t_array">[13 x i8 ]</a> c"hello world\0A\00"          <i>; [13 x i8 ]*</i> | 
|  |  | 
|  | <i>; External declaration of the puts function</i> | 
|  | <a href="#functionstructure">declare</a> i32 %puts(i8 *)                                            <i>; i32(i8 *)* </i> | 
|  |  | 
|  | <i>; Global variable / Function body section separator</i> | 
|  | implementation | 
|  |  | 
|  | <i>; Definition of main function</i> | 
|  | define i32 %main() {                                                 <i>; i32()* </i> | 
|  | <i>; Convert [13x i8 ]* to i8  *...</i> | 
|  | %cast210 = <a | 
|  | href="#i_getelementptr">getelementptr</a> [13 x i8 ]* %.LC0, i64 0, i64 0 <i>; i8 *</i> | 
|  |  | 
|  | <i>; Call puts function to write out the string to stdout...</i> | 
|  | <a | 
|  | href="#i_call">call</a> i32 %puts(i8 * %cast210)                              <i>; i32</i> | 
|  | <a | 
|  | href="#i_ret">ret</a> i32 0<br>}<br></pre> | 
|  |  | 
|  | <p>This example is made up of a <a href="#globalvars">global variable</a> | 
|  | named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>" | 
|  | function, and a <a href="#functionstructure">function definition</a> | 
|  | for "<tt>main</tt>".</p> | 
|  |  | 
|  | <p>In general, a module is made up of a list of global values, | 
|  | where both functions and global variables are global values.  Global values are | 
|  | represented by a pointer to a memory location (in this case, a pointer to an | 
|  | array of char, and a pointer to a function), and have one of the following <a | 
|  | href="#linkage">linkage types</a>.</p> | 
|  |  | 
|  | <p>Due to a limitation in the current LLVM assembly parser (it is limited by | 
|  | one-token lookahead), modules are split into two pieces by the "implementation" | 
|  | keyword.  Global variable prototypes and definitions must occur before the | 
|  | keyword, and function definitions must occur after it.  Function prototypes may | 
|  | occur either before or after it.  In the future, the implementation keyword may | 
|  | become a noop, if the parser gets smarter.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <div class="doc_subsection"> | 
|  | <a name="linkage">Linkage Types</a> | 
|  | </div> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <p> | 
|  | All Global Variables and Functions have one of the following types of linkage: | 
|  | </p> | 
|  |  | 
|  | <dl> | 
|  |  | 
|  | <dt><tt><b><a name="linkage_internal">internal</a></b></tt> </dt> | 
|  |  | 
|  | <dd>Global values with internal linkage are only directly accessible by | 
|  | objects in the current module.  In particular, linking code into a module with | 
|  | an internal global value may cause the internal to be renamed as necessary to | 
|  | avoid collisions.  Because the symbol is internal to the module, all | 
|  | references can be updated.  This corresponds to the notion of the | 
|  | '<tt>static</tt>' keyword in C. | 
|  | </dd> | 
|  |  | 
|  | <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt> | 
|  |  | 
|  | <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of | 
|  | the same name when linkage occurs.  This is typically used to implement | 
|  | inline functions, templates, or other code which must be generated in each | 
|  | translation unit that uses it.  Unreferenced <tt>linkonce</tt> globals are | 
|  | allowed to be discarded. | 
|  | </dd> | 
|  |  | 
|  | <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt> | 
|  |  | 
|  | <dd>"<tt>weak</tt>" linkage is exactly the same as <tt>linkonce</tt> linkage, | 
|  | except that unreferenced <tt>weak</tt> globals may not be discarded.  This is | 
|  | used for globals that may be emitted in multiple translation units, but that | 
|  | are not guaranteed to be emitted into every translation unit that uses them. | 
|  | One example of this are common globals in C, such as "<tt>int X;</tt>" at | 
|  | global scope. | 
|  | </dd> | 
|  |  | 
|  | <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt> | 
|  |  | 
|  | <dd>"<tt>appending</tt>" linkage may only be applied to global variables of | 
|  | pointer to array type.  When two global variables with appending linkage are | 
|  | linked together, the two global arrays are appended together.  This is the | 
|  | LLVM, typesafe, equivalent of having the system linker append together | 
|  | "sections" with identical names when .o files are linked. | 
|  | </dd> | 
|  |  | 
|  | <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt> | 
|  | <dd>The semantics of this linkage follow the ELF model: the symbol is weak | 
|  | until linked, if not linked, the symbol becomes null instead of being an | 
|  | undefined reference. | 
|  | </dd> | 
|  | </dl> | 
|  |  | 
|  | <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt> | 
|  |  | 
|  | <dd>If none of the above identifiers are used, the global is externally | 
|  | visible, meaning that it participates in linkage and can be used to resolve | 
|  | external symbol references. | 
|  | </dd> | 
|  |  | 
|  | <p> | 
|  | The next two types of linkage are targeted for Microsoft Windows platform | 
|  | only. They are designed to support importing (exporting) symbols from (to) | 
|  | DLLs. | 
|  | </p> | 
|  |  | 
|  | <dl> | 
|  | <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt> | 
|  |  | 
|  | <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function | 
|  | or variable via a global pointer to a pointer that is set up by the DLL | 
|  | exporting the symbol. On Microsoft Windows targets, the pointer name is | 
|  | formed by combining <code>_imp__</code> and the function or variable name. | 
|  | </dd> | 
|  |  | 
|  | <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt> | 
|  |  | 
|  | <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global | 
|  | pointer to a pointer in a DLL, so that it can be referenced with the | 
|  | <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer | 
|  | name is formed by combining <code>_imp__</code> and the function or variable | 
|  | name. | 
|  | </dd> | 
|  |  | 
|  | </dl> | 
|  |  | 
|  | <p><a name="linkage_external"></a>For example, since the "<tt>.LC0</tt>" | 
|  | variable is defined to be internal, if another module defined a "<tt>.LC0</tt>" | 
|  | variable and was linked with this one, one of the two would be renamed, | 
|  | preventing a collision.  Since "<tt>main</tt>" and "<tt>puts</tt>" are | 
|  | external (i.e., lacking any linkage declarations), they are accessible | 
|  | outside of the current module.</p> | 
|  | <p>It is illegal for a function <i>declaration</i> | 
|  | to have any linkage type other than "externally visible", <tt>dllimport</tt>, | 
|  | or <tt>extern_weak</tt>.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <div class="doc_subsection"> | 
|  | <a name="callingconv">Calling Conventions</a> | 
|  | </div> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a> | 
|  | and <a href="#i_invoke">invokes</a> can all have an optional calling convention | 
|  | specified for the call.  The calling convention of any pair of dynamic | 
|  | caller/callee must match, or the behavior of the program is undefined.  The | 
|  | following calling conventions are supported by LLVM, and more may be added in | 
|  | the future:</p> | 
|  |  | 
|  | <dl> | 
|  | <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt> | 
|  |  | 
|  | <dd>This calling convention (the default if no other calling convention is | 
|  | specified) matches the target C calling conventions.  This calling convention | 
|  | supports varargs function calls and tolerates some mismatch in the declared | 
|  | prototype and implemented declaration of the function (as does normal C). | 
|  | </dd> | 
|  |  | 
|  | <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt> | 
|  |  | 
|  | <dd>This calling convention attempts to make calls as fast as possible | 
|  | (e.g. by passing things in registers).  This calling convention allows the | 
|  | target to use whatever tricks it wants to produce fast code for the target, | 
|  | without having to conform to an externally specified ABI.  Implementations of | 
|  | this convention should allow arbitrary tail call optimization to be supported. | 
|  | This calling convention does not support varargs and requires the prototype of | 
|  | all callees to exactly match the prototype of the function definition. | 
|  | </dd> | 
|  |  | 
|  | <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt> | 
|  |  | 
|  | <dd>This calling convention attempts to make code in the caller as efficient | 
|  | as possible under the assumption that the call is not commonly executed.  As | 
|  | such, these calls often preserve all registers so that the call does not break | 
|  | any live ranges in the caller side.  This calling convention does not support | 
|  | varargs and requires the prototype of all callees to exactly match the | 
|  | prototype of the function definition. | 
|  | </dd> | 
|  |  | 
|  | <dt><b>"<tt>cc <<em>n</em>></tt>" - Numbered convention</b>:</dt> | 
|  |  | 
|  | <dd>Any calling convention may be specified by number, allowing | 
|  | target-specific calling conventions to be used.  Target specific calling | 
|  | conventions start at 64. | 
|  | </dd> | 
|  | </dl> | 
|  |  | 
|  | <p>More calling conventions can be added/defined on an as-needed basis, to | 
|  | support pascal conventions or any other well-known target-independent | 
|  | convention.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <div class="doc_subsection"> | 
|  | <a name="visibility">Visibility Styles</a> | 
|  | </div> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <p> | 
|  | All Global Variables and Functions have one of the following visibility styles: | 
|  | </p> | 
|  |  | 
|  | <dl> | 
|  | <dt><b>"<tt>default</tt>" - Default style</b>:</dt> | 
|  |  | 
|  | <dd>On ELF, default visibility means that the declaration is visible to other | 
|  | modules and, in shared libraries, means that the declared entity may be | 
|  | overridden. On Darwin, default visibility means that the declaration is | 
|  | visible to other modules. Default visibility corresponds to "external | 
|  | linkage" in the language. | 
|  | </dd> | 
|  |  | 
|  | <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt> | 
|  |  | 
|  | <dd>Two declarations of an object with hidden visibility refer to the same | 
|  | object if they are in the same shared object. Usually, hidden visibility | 
|  | indicates that the symbol will not be placed into the dynamic symbol table, | 
|  | so no other module (executable or shared library) can reference it | 
|  | directly. | 
|  | </dd> | 
|  |  | 
|  | </dl> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <div class="doc_subsection"> | 
|  | <a name="globalvars">Global Variables</a> | 
|  | </div> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <p>Global variables define regions of memory allocated at compilation time | 
|  | instead of run-time.  Global variables may optionally be initialized, may have | 
|  | an explicit section to be placed in, and may | 
|  | have an optional explicit alignment specified.  A | 
|  | variable may be defined as a global "constant," which indicates that the | 
|  | contents of the variable will <b>never</b> be modified (enabling better | 
|  | optimization, allowing the global data to be placed in the read-only section of | 
|  | an executable, etc).  Note that variables that need runtime initialization | 
|  | cannot be marked "constant" as there is a store to the variable.</p> | 
|  |  | 
|  | <p> | 
|  | LLVM explicitly allows <em>declarations</em> of global variables to be marked | 
|  | constant, even if the final definition of the global is not.  This capability | 
|  | can be used to enable slightly better optimization of the program, but requires | 
|  | the language definition to guarantee that optimizations based on the | 
|  | 'constantness' are valid for the translation units that do not include the | 
|  | definition. | 
|  | </p> | 
|  |  | 
|  | <p>As SSA values, global variables define pointer values that are in | 
|  | scope (i.e. they dominate) all basic blocks in the program.  Global | 
|  | variables always define a pointer to their "content" type because they | 
|  | describe a region of memory, and all memory objects in LLVM are | 
|  | accessed through pointers.</p> | 
|  |  | 
|  | <p>LLVM allows an explicit section to be specified for globals.  If the target | 
|  | supports it, it will emit globals to the section specified.</p> | 
|  |  | 
|  | <p>An explicit alignment may be specified for a global.  If not present, or if | 
|  | the alignment is set to zero, the alignment of the global is set by the target | 
|  | to whatever it feels convenient.  If an explicit alignment is specified, the | 
|  | global is forced to have at least that much alignment.  All alignments must be | 
|  | a power of 2.</p> | 
|  |  | 
|  | <p>For example, the following defines a global with an initializer, section, | 
|  | and alignment:</p> | 
|  |  | 
|  | <pre> | 
|  | %G = constant float 1.0, section "foo", align 4 | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  |  | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <div class="doc_subsection"> | 
|  | <a name="functionstructure">Functions</a> | 
|  | </div> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <p>LLVM function definitions consist of the "<tt>define</tt>" keyord, | 
|  | an optional <a href="#linkage">linkage type</a>, an optional | 
|  | <a href="#visibility">visibility style</a>, an optional | 
|  | <a href="#callingconv">calling convention</a>, a return type, an optional | 
|  | <a href="#paramattrs">parameter attribute</a> for the return type, a function | 
|  | name, a (possibly empty) argument list (each with optional | 
|  | <a href="#paramattrs">parameter attributes</a>), an optional section, an | 
|  | optional alignment, an opening curly brace, a list of basic blocks, and a | 
|  | closing curly brace. | 
|  |  | 
|  | LLVM function declarations consist of the "<tt>declare</tt>" keyword, an | 
|  | optional <a href="#linkage">linkage type</a>, an optional | 
|  | <a href="#visibility">visibility style</a>, an optional | 
|  | <a href="#callingconv">calling convention</a>, a return type, an optional | 
|  | <a href="#paramattrs">parameter attribute</a> for the return type, a function | 
|  | name, a possibly empty list of arguments, and an optional alignment.</p> | 
|  |  | 
|  | <p>A function definition contains a list of basic blocks, forming the CFG for | 
|  | the function.  Each basic block may optionally start with a label (giving the | 
|  | basic block a symbol table entry), contains a list of instructions, and ends | 
|  | with a <a href="#terminators">terminator</a> instruction (such as a branch or | 
|  | function return).</p> | 
|  |  | 
|  | <p>The first basic block in a program is special in two ways: it is immediately | 
|  | executed on entrance to the function, and it is not allowed to have predecessor | 
|  | basic blocks (i.e. there can not be any branches to the entry block of a | 
|  | function).  Because the block can have no predecessors, it also cannot have any | 
|  | <a href="#i_phi">PHI nodes</a>.</p> | 
|  |  | 
|  | <p>LLVM functions are identified by their name and type signature.  Hence, two | 
|  | functions with the same name but different parameter lists or return values are | 
|  | considered different functions, and LLVM will resolve references to each | 
|  | appropriately.</p> | 
|  |  | 
|  | <p>LLVM allows an explicit section to be specified for functions.  If the target | 
|  | supports it, it will emit functions to the section specified.</p> | 
|  |  | 
|  | <p>An explicit alignment may be specified for a function.  If not present, or if | 
|  | the alignment is set to zero, the alignment of the function is set by the target | 
|  | to whatever it feels convenient.  If an explicit alignment is specified, the | 
|  | function is forced to have at least that much alignment.  All alignments must be | 
|  | a power of 2.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div> | 
|  | <div class="doc_text"> | 
|  | <p>The return type and each parameter of a function type may have a set of | 
|  | <i>parameter attributes</i> associated with them. Parameter attributes are | 
|  | used to communicate additional information about the result or parameters of | 
|  | a function. Parameter attributes are considered to be part of the function | 
|  | type so two functions types that differ only by the parameter attributes | 
|  | are different function types.</p> | 
|  |  | 
|  | <p>Parameter attributes are simple keywords that follow the type specified. If | 
|  | multiple parameter attributes are needed, they are space separated. For | 
|  | example:</p><pre> | 
|  | %someFunc = i16 (i8 sext %someParam) zext | 
|  | %someFunc = i16 (i8 zext %someParam) zext</pre> | 
|  | <p>Note that the two function types above are unique because the parameter has | 
|  | a different attribute (sext in the first one, zext in the second). Also note | 
|  | that the attribute for the function result (zext) comes immediately after the | 
|  | argument list.</p> | 
|  |  | 
|  | <p>Currently, only the following parameter attributes are defined:</p> | 
|  | <dl> | 
|  | <dt><tt>zext</tt></dt> | 
|  | <dd>This indicates that the parameter should be zero extended just before | 
|  | a call to this function.</dd> | 
|  | <dt><tt>sext</tt></dt> | 
|  | <dd>This indicates that the parameter should be sign extended just before | 
|  | a call to this function.</dd> | 
|  | <dt><tt>inreg</tt></dt> | 
|  | <dd>This indicates that the parameter should be placed in register (if | 
|  | possible) during assembling function call. Support for this attribute is | 
|  | target-specific</dd> | 
|  | <dt><tt>sret</tt></dt> | 
|  | <dd>This indicates that the parameter specifies the address of a structure | 
|  | that is the return value of the function in the source program. | 
|  | </dd> | 
|  | </dl> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <div class="doc_subsection"> | 
|  | <a name="moduleasm">Module-Level Inline Assembly</a> | 
|  | </div> | 
|  |  | 
|  | <div class="doc_text"> | 
|  | <p> | 
|  | Modules may contain "module-level inline asm" blocks, which corresponds to the | 
|  | GCC "file scope inline asm" blocks.  These blocks are internally concatenated by | 
|  | LLVM and treated as a single unit, but may be separated in the .ll file if | 
|  | desired.  The syntax is very simple: | 
|  | </p> | 
|  |  | 
|  | <div class="doc_code"><pre> | 
|  | module asm "inline asm code goes here" | 
|  | module asm "more can go here" | 
|  | </pre></div> | 
|  |  | 
|  | <p>The strings can contain any character by escaping non-printable characters. | 
|  | The escape sequence used is simply "\xx" where "xx" is the two digit hex code | 
|  | for the number. | 
|  | </p> | 
|  |  | 
|  | <p> | 
|  | The inline asm code is simply printed to the machine code .s file when | 
|  | assembly code is generated. | 
|  | </p> | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <div class="doc_subsection"> | 
|  | <a name="datalayout">Data Layout</a> | 
|  | </div> | 
|  |  | 
|  | <div class="doc_text"> | 
|  | <p>A module may specify a target specific data layout string that specifies how | 
|  | data is to be laid out in memory. The syntax for the data layout is simply:<br/> | 
|  | <pre>    target datalayout = "<i>layout specification</i>" | 
|  | </pre> | 
|  | The <i>layout specification</i> consists of a list of specifications separated | 
|  | by the minus sign character ('-').  Each specification starts with a letter | 
|  | and may include other information after the letter to define some aspect of the | 
|  | data layout.  The specifications accepted are as follows: </p> | 
|  | <dl> | 
|  | <dt><tt>E</tt></dt> | 
|  | <dd>Specifies that the target lays out data in big-endian form. That is, the | 
|  | bits with the most significance have the lowest address location.</dd> | 
|  | <dt><tt>e</tt></dt> | 
|  | <dd>Specifies that hte target lays out data in little-endian form. That is, | 
|  | the bits with the least significance have the lowest address location.</dd> | 
|  | <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt> | 
|  | <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and | 
|  | <i>preferred</i> alignments. All sizes are in bits. Specifying the <i>pref</i> | 
|  | alignment is optional. If omitted, the preceding <tt>:</tt> should be omitted | 
|  | too.</dd> | 
|  | <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt> | 
|  | <dd>This specifies the alignment for an integer type of a given bit | 
|  | <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd> | 
|  | <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt> | 
|  | <dd>This specifies the alignment for a vector type of a given bit | 
|  | <i>size</i>.</dd> | 
|  | <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt> | 
|  | <dd>This specifies the alignment for a floating point type of a given bit | 
|  | <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64 | 
|  | (double).</dd> | 
|  | <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt> | 
|  | <dd>This specifies the alignment for an aggregate type of a given bit | 
|  | <i>size</i>.</dd> | 
|  | </dl> | 
|  | <p>When constructing the data layout for a given target, LLVM starts with a | 
|  | default set of specifications which are then (possibly) overriden by the | 
|  | specifications in the <tt>datalayout</tt> keyword. The default specifications | 
|  | are given in this list:</p> | 
|  | <ul> | 
|  | <li><tt>E</tt> - big endian</li> | 
|  | <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li> | 
|  | <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li> | 
|  | <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li> | 
|  | <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li> | 
|  | <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li> | 
|  | <li><tt>i64:32:64</tt> - i64 has abi alignment of 32-bits but preferred | 
|  | alignment of 64-bits</li> | 
|  | <li><tt>f32:32:32</tt> - float is 32-bit aligned</li> | 
|  | <li><tt>f64:64:64</tt> - double is 64-bit aligned</li> | 
|  | <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li> | 
|  | <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li> | 
|  | <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li> | 
|  | </ul> | 
|  | <p>When llvm is determining the alignment for a given type, it uses the | 
|  | following rules: | 
|  | <ol> | 
|  | <li>If the type sought is an exact match for one of the specifications, that | 
|  | specification is used.</li> | 
|  | <li>If no match is found, and the type sought is an integer type, then the | 
|  | smallest integer type that is larger than the bitwidth of the sought type is | 
|  | used. If none of the specifications are larger than the bitwidth then the the | 
|  | largest integer type is used. For example, given the default specifications | 
|  | above, the i7 type will use the alignment of i8 (next largest) while both | 
|  | i65 and i256 will use the alignment of i64 (largest specified).</li> | 
|  | <li>If no match is found, and the type sought is a vector type, then the | 
|  | largest vector type that is smaller than the sought vector type will be used | 
|  | as a fall back.  This happens because <128 x double> can be implemented in | 
|  | terms of 64 <2 x double>, for example.</li> | 
|  | </ol> | 
|  | </div> | 
|  |  | 
|  | <!-- *********************************************************************** --> | 
|  | <div class="doc_section"> <a name="typesystem">Type System</a> </div> | 
|  | <!-- *********************************************************************** --> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <p>The LLVM type system is one of the most important features of the | 
|  | intermediate representation.  Being typed enables a number of | 
|  | optimizations to be performed on the IR directly, without having to do | 
|  | extra analyses on the side before the transformation.  A strong type | 
|  | system makes it easier to read the generated code and enables novel | 
|  | analyses and transformations that are not feasible to perform on normal | 
|  | three address code representations.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div> | 
|  | <div class="doc_text"> | 
|  | <p>The primitive types are the fundamental building blocks of the LLVM | 
|  | system. The current set of primitive types is as follows:</p> | 
|  |  | 
|  | <table class="layout"> | 
|  | <tr class="layout"> | 
|  | <td class="left"> | 
|  | <table> | 
|  | <tbody> | 
|  | <tr><th>Type</th><th>Description</th></tr> | 
|  | <tr><td><tt>void</tt></td><td>No value</td></tr> | 
|  | <tr><td><tt>i8</tt></td><td>8-bit value</td></tr> | 
|  | <tr><td><tt>i32</tt></td><td>32-bit value</td></tr> | 
|  | <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr> | 
|  | <tr><td><tt>label</tt></td><td>Branch destination</td></tr> | 
|  | </tbody> | 
|  | </table> | 
|  | </td> | 
|  | <td class="right"> | 
|  | <table> | 
|  | <tbody> | 
|  | <tr><th>Type</th><th>Description</th></tr> | 
|  | <tr><td><tt>i1</tt></td><td>True or False value</td></tr> | 
|  | <tr><td><tt>i16</tt></td><td>16-bit value</td></tr> | 
|  | <tr><td><tt>i64</tt></td><td>64-bit value</td></tr> | 
|  | <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr> | 
|  | </tbody> | 
|  | </table> | 
|  | </td> | 
|  | </tr> | 
|  | </table> | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> <a name="t_classifications">Type | 
|  | Classifications</a> </div> | 
|  | <div class="doc_text"> | 
|  | <p>These different primitive types fall into a few useful | 
|  | classifications:</p> | 
|  |  | 
|  | <table border="1" cellspacing="0" cellpadding="4"> | 
|  | <tbody> | 
|  | <tr><th>Classification</th><th>Types</th></tr> | 
|  | <tr> | 
|  | <td><a name="t_integer">integer</a></td> | 
|  | <td><tt>i1, i8, i16, i32, i64</tt></td> | 
|  | </tr> | 
|  | <tr> | 
|  | <td><a name="t_floating">floating point</a></td> | 
|  | <td><tt>float, double</tt></td> | 
|  | </tr> | 
|  | <tr> | 
|  | <td><a name="t_firstclass">first class</a></td> | 
|  | <td><tt>i1, i8, i16, i32, i64, float, double, <br/> | 
|  | <a href="#t_pointer">pointer</a>,<a href="#t_vector">vector</a></tt> | 
|  | </td> | 
|  | </tr> | 
|  | </tbody> | 
|  | </table> | 
|  |  | 
|  | <p>The <a href="#t_firstclass">first class</a> types are perhaps the | 
|  | most important.  Values of these types are the only ones which can be | 
|  | produced by instructions, passed as arguments, or used as operands to | 
|  | instructions.  This means that all structures and arrays must be | 
|  | manipulated either by pointer or by component.</p> | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <p>The real power in LLVM comes from the derived types in the system. | 
|  | This is what allows a programmer to represent arrays, functions, | 
|  | pointers, and other useful types.  Note that these derived types may be | 
|  | recursive: For example, it is possible to have a two dimensional array.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  |  | 
|  | <p>The array type is a very simple derived type that arranges elements | 
|  | sequentially in memory.  The array type requires a size (number of | 
|  | elements) and an underlying data type.</p> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  |  | 
|  | <pre> | 
|  | [<# elements> x <elementtype>] | 
|  | </pre> | 
|  |  | 
|  | <p>The number of elements is a constant integer value; elementtype may | 
|  | be any type with a size.</p> | 
|  |  | 
|  | <h5>Examples:</h5> | 
|  | <table class="layout"> | 
|  | <tr class="layout"> | 
|  | <td class="left"> | 
|  | <tt>[40 x i32 ]</tt><br/> | 
|  | <tt>[41 x i32 ]</tt><br/> | 
|  | <tt>[40 x i8]</tt><br/> | 
|  | </td> | 
|  | <td class="left"> | 
|  | Array of 40 32-bit integer values.<br/> | 
|  | Array of 41 32-bit integer values.<br/> | 
|  | Array of 40 8-bit integer values.<br/> | 
|  | </td> | 
|  | </tr> | 
|  | </table> | 
|  | <p>Here are some examples of multidimensional arrays:</p> | 
|  | <table class="layout"> | 
|  | <tr class="layout"> | 
|  | <td class="left"> | 
|  | <tt>[3 x [4 x i32]]</tt><br/> | 
|  | <tt>[12 x [10 x float]]</tt><br/> | 
|  | <tt>[2 x [3 x [4 x i16]]]</tt><br/> | 
|  | </td> | 
|  | <td class="left"> | 
|  | 3x4 array of 32-bit integer values.<br/> | 
|  | 12x10 array of single precision floating point values.<br/> | 
|  | 2x3x4 array of 16-bit integer  values.<br/> | 
|  | </td> | 
|  | </tr> | 
|  | </table> | 
|  |  | 
|  | <p>Note that 'variable sized arrays' can be implemented in LLVM with a zero | 
|  | length array.  Normally, accesses past the end of an array are undefined in | 
|  | LLVM (e.g. it is illegal to access the 5th element of a 3 element array). | 
|  | As a special case, however, zero length arrays are recognized to be variable | 
|  | length.  This allows implementation of 'pascal style arrays' with the  LLVM | 
|  | type "{ i32, [0 x float]}", for example.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div> | 
|  | <div class="doc_text"> | 
|  | <h5>Overview:</h5> | 
|  | <p>The function type can be thought of as a function signature.  It | 
|  | consists of a return type and a list of formal parameter types. | 
|  | Function types are usually used to build virtual function tables | 
|  | (which are structures of pointers to functions), for indirect function | 
|  | calls, and when defining a function.</p> | 
|  | <p> | 
|  | The return type of a function type cannot be an aggregate type. | 
|  | </p> | 
|  | <h5>Syntax:</h5> | 
|  | <pre>  <returntype> (<parameter list>)<br></pre> | 
|  | <p>...where '<tt><parameter list></tt>' is a comma-separated list of type | 
|  | specifiers.  Optionally, the parameter list may include a type <tt>...</tt>, | 
|  | which indicates that the function takes a variable number of arguments. | 
|  | Variable argument functions can access their arguments with the <a | 
|  | href="#int_varargs">variable argument handling intrinsic</a> functions.</p> | 
|  | <h5>Examples:</h5> | 
|  | <table class="layout"> | 
|  | <tr class="layout"> | 
|  | <td class="left"><tt>i32 (i32)</tt></td> | 
|  | <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt> | 
|  | </td> | 
|  | </tr><tr class="layout"> | 
|  | <td class="left"><tt>float (i16 sext, i32 *) * | 
|  | </tt></td> | 
|  | <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes | 
|  | an <tt>i16</tt> that should be sign extended and a | 
|  | <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning | 
|  | <tt>float</tt>. | 
|  | </td> | 
|  | </tr><tr class="layout"> | 
|  | <td class="left"><tt>i32 (i8*, ...)</tt></td> | 
|  | <td class="left">A vararg function that takes at least one | 
|  | <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C), | 
|  | which returns an integer.  This is the signature for <tt>printf</tt> in | 
|  | LLVM. | 
|  | </td> | 
|  | </tr> | 
|  | </table> | 
|  |  | 
|  | </div> | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div> | 
|  | <div class="doc_text"> | 
|  | <h5>Overview:</h5> | 
|  | <p>The structure type is used to represent a collection of data members | 
|  | together in memory.  The packing of the field types is defined to match | 
|  | the ABI of the underlying processor.  The elements of a structure may | 
|  | be any type that has a size.</p> | 
|  | <p>Structures are accessed using '<tt><a href="#i_load">load</a></tt> | 
|  | and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a | 
|  | field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' | 
|  | instruction.</p> | 
|  | <h5>Syntax:</h5> | 
|  | <pre>  { <type list> }<br></pre> | 
|  | <h5>Examples:</h5> | 
|  | <table class="layout"> | 
|  | <tr class="layout"> | 
|  | <td class="left"> | 
|  | <tt>{ i32, i32, i32 }</tt><br/> | 
|  | <tt>{ float, i32 (i32) * }</tt><br/> | 
|  | </td> | 
|  | <td class="left"> | 
|  | a triple of three <tt>i32</tt> values<br/> | 
|  | A pair, where the first element is a <tt>float</tt> and the second element | 
|  | is a <a href="#t_pointer">pointer</a> to a <a href="#t_function">function</a> | 
|  | that takes an <tt>i32</tt>, returning an <tt>i32</tt>.<br/> | 
|  | </td> | 
|  | </tr> | 
|  | </table> | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a> | 
|  | </div> | 
|  | <div class="doc_text"> | 
|  | <h5>Overview:</h5> | 
|  | <p>The packed structure type is used to represent a collection of data members | 
|  | together in memory.  There is no padding between fields.  Further, the alignment | 
|  | of a packed structure is 1 byte.  The elements of a packed structure may | 
|  | be any type that has a size.</p> | 
|  | <p>Structures are accessed using '<tt><a href="#i_load">load</a></tt> | 
|  | and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a | 
|  | field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' | 
|  | instruction.</p> | 
|  | <h5>Syntax:</h5> | 
|  | <pre>  < { <type list> } > <br></pre> | 
|  | <h5>Examples:</h5> | 
|  | <table class="layout"> | 
|  | <tr class="layout"> | 
|  | <td class="left"> | 
|  | <tt> < { i32, i32, i32 } > </tt><br/> | 
|  | <tt> < { float, i32 (i32) * } > </tt><br/> | 
|  | </td> | 
|  | <td class="left"> | 
|  | a triple of three <tt>i32</tt> values<br/> | 
|  | A pair, where the first element is a <tt>float</tt> and the second element | 
|  | is a <a href="#t_pointer">pointer</a> to a <a href="#t_function">function</a> | 
|  | that takes an <tt>i32</tt>, returning an <tt>i32</tt>.<br/> | 
|  | </td> | 
|  | </tr> | 
|  | </table> | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div> | 
|  | <div class="doc_text"> | 
|  | <h5>Overview:</h5> | 
|  | <p>As in many languages, the pointer type represents a pointer or | 
|  | reference to another object, which must live in memory.</p> | 
|  | <h5>Syntax:</h5> | 
|  | <pre>  <type> *<br></pre> | 
|  | <h5>Examples:</h5> | 
|  | <table class="layout"> | 
|  | <tr class="layout"> | 
|  | <td class="left"> | 
|  | <tt>[4x i32]*</tt><br/> | 
|  | <tt>i32 (i32 *) *</tt><br/> | 
|  | </td> | 
|  | <td class="left"> | 
|  | A <a href="#t_pointer">pointer</a> to <a href="#t_array">array</a> of | 
|  | four <tt>i32</tt> values<br/> | 
|  | A <a href="#t_pointer">pointer</a> to a <a | 
|  | href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an | 
|  | <tt>i32</tt>.<br/> | 
|  | </td> | 
|  | </tr> | 
|  | </table> | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div> | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  |  | 
|  | <p>A vector type is a simple derived type that represents a vector | 
|  | of elements.  Vector types are used when multiple primitive data | 
|  | are operated in parallel using a single instruction (SIMD). | 
|  | A vector type requires a size (number of | 
|  | elements) and an underlying primitive data type.  Vectors must have a power | 
|  | of two length (1, 2, 4, 8, 16 ...).  Vector types are | 
|  | considered <a href="#t_firstclass">first class</a>.</p> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  |  | 
|  | <pre> | 
|  | < <# elements> x <elementtype> > | 
|  | </pre> | 
|  |  | 
|  | <p>The number of elements is a constant integer value; elementtype may | 
|  | be any integer or floating point type.</p> | 
|  |  | 
|  | <h5>Examples:</h5> | 
|  |  | 
|  | <table class="layout"> | 
|  | <tr class="layout"> | 
|  | <td class="left"> | 
|  | <tt><4 x i32></tt><br/> | 
|  | <tt><8 x float></tt><br/> | 
|  | <tt><2 x i64></tt><br/> | 
|  | </td> | 
|  | <td class="left"> | 
|  | Vector of 4 32-bit integer values.<br/> | 
|  | Vector of 8 floating-point values.<br/> | 
|  | Vector of 2 64-bit integer values.<br/> | 
|  | </td> | 
|  | </tr> | 
|  | </table> | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div> | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  |  | 
|  | <p>Opaque types are used to represent unknown types in the system.  This | 
|  | corresponds (for example) to the C notion of a foward declared structure type. | 
|  | In LLVM, opaque types can eventually be resolved to any type (not just a | 
|  | structure type).</p> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  |  | 
|  | <pre> | 
|  | opaque | 
|  | </pre> | 
|  |  | 
|  | <h5>Examples:</h5> | 
|  |  | 
|  | <table class="layout"> | 
|  | <tr class="layout"> | 
|  | <td class="left"> | 
|  | <tt>opaque</tt> | 
|  | </td> | 
|  | <td class="left"> | 
|  | An opaque type.<br/> | 
|  | </td> | 
|  | </tr> | 
|  | </table> | 
|  | </div> | 
|  |  | 
|  |  | 
|  | <!-- *********************************************************************** --> | 
|  | <div class="doc_section"> <a name="constants">Constants</a> </div> | 
|  | <!-- *********************************************************************** --> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <p>LLVM has several different basic types of constants.  This section describes | 
|  | them all and their syntax.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <dl> | 
|  | <dt><b>Boolean constants</b></dt> | 
|  |  | 
|  | <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid | 
|  | constants of the <tt><a href="#t_primitive">i1</a></tt> type. | 
|  | </dd> | 
|  |  | 
|  | <dt><b>Integer constants</b></dt> | 
|  |  | 
|  | <dd>Standard integers (such as '4') are constants of the <a | 
|  | href="#t_integer">integer</a> type.  Negative numbers may be used with | 
|  | integer types. | 
|  | </dd> | 
|  |  | 
|  | <dt><b>Floating point constants</b></dt> | 
|  |  | 
|  | <dd>Floating point constants use standard decimal notation (e.g. 123.421), | 
|  | exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal | 
|  | notation (see below).  Floating point constants must have a <a | 
|  | href="#t_floating">floating point</a> type. </dd> | 
|  |  | 
|  | <dt><b>Null pointer constants</b></dt> | 
|  |  | 
|  | <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant | 
|  | and must be of <a href="#t_pointer">pointer type</a>.</dd> | 
|  |  | 
|  | </dl> | 
|  |  | 
|  | <p>The one non-intuitive notation for constants is the optional hexadecimal form | 
|  | of floating point constants.  For example, the form '<tt>double | 
|  | 0x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double | 
|  | 4.5e+15</tt>'.  The only time hexadecimal floating point constants are required | 
|  | (and the only time that they are generated by the disassembler) is when a | 
|  | floating point constant must be emitted but it cannot be represented as a | 
|  | decimal floating point number.  For example, NaN's, infinities, and other | 
|  | special values are represented in their IEEE hexadecimal format so that | 
|  | assembly and disassembly do not cause any bits to change in the constants.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <div class="doc_subsection"><a name="aggregateconstants">Aggregate Constants</a> | 
|  | </div> | 
|  |  | 
|  | <div class="doc_text"> | 
|  | <p>Aggregate constants arise from aggregation of simple constants | 
|  | and smaller aggregate constants.</p> | 
|  |  | 
|  | <dl> | 
|  | <dt><b>Structure constants</b></dt> | 
|  |  | 
|  | <dd>Structure constants are represented with notation similar to structure | 
|  | type definitions (a comma separated list of elements, surrounded by braces | 
|  | (<tt>{}</tt>)).  For example: "<tt>{ i32 4, float 17.0, i32* %G }</tt>", | 
|  | where "<tt>%G</tt>" is declared as "<tt>%G = external global i32</tt>".  Structure constants | 
|  | must have <a href="#t_struct">structure type</a>, and the number and | 
|  | types of elements must match those specified by the type. | 
|  | </dd> | 
|  |  | 
|  | <dt><b>Array constants</b></dt> | 
|  |  | 
|  | <dd>Array constants are represented with notation similar to array type | 
|  | definitions (a comma separated list of elements, surrounded by square brackets | 
|  | (<tt>[]</tt>)).  For example: "<tt>[ i32 42, i32 11, i32 74 ]</tt>".  Array | 
|  | constants must have <a href="#t_array">array type</a>, and the number and | 
|  | types of elements must match those specified by the type. | 
|  | </dd> | 
|  |  | 
|  | <dt><b>Vector constants</b></dt> | 
|  |  | 
|  | <dd>Vector constants are represented with notation similar to vector type | 
|  | definitions (a comma separated list of elements, surrounded by | 
|  | less-than/greater-than's (<tt><></tt>)).  For example: "<tt>< i32 42, | 
|  | i32 11, i32 74, i32 100 ></tt>".  VEctor constants must have <a | 
|  | href="#t_vector">vector type</a>, and the number and types of elements must | 
|  | match those specified by the type. | 
|  | </dd> | 
|  |  | 
|  | <dt><b>Zero initialization</b></dt> | 
|  |  | 
|  | <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a | 
|  | value to zero of <em>any</em> type, including scalar and aggregate types. | 
|  | This is often used to avoid having to print large zero initializers (e.g. for | 
|  | large arrays) and is always exactly equivalent to using explicit zero | 
|  | initializers. | 
|  | </dd> | 
|  | </dl> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <div class="doc_subsection"> | 
|  | <a name="globalconstants">Global Variable and Function Addresses</a> | 
|  | </div> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <p>The addresses of <a href="#globalvars">global variables</a> and <a | 
|  | href="#functionstructure">functions</a> are always implicitly valid (link-time) | 
|  | constants.  These constants are explicitly referenced when the <a | 
|  | href="#identifiers">identifier for the global</a> is used and always have <a | 
|  | href="#t_pointer">pointer</a> type. For example, the following is a legal LLVM | 
|  | file:</p> | 
|  |  | 
|  | <pre> | 
|  | %X = global i32 17 | 
|  | %Y = global i32 42 | 
|  | %Z = global [2 x i32*] [ i32* %X, i32* %Y ] | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div> | 
|  | <div class="doc_text"> | 
|  | <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has | 
|  | no specific value.  Undefined values may be of any type and be used anywhere | 
|  | a constant is permitted.</p> | 
|  |  | 
|  | <p>Undefined values indicate to the compiler that the program is well defined | 
|  | no matter what value is used, giving the compiler more freedom to optimize. | 
|  | </p> | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <div class="doc_subsection"><a name="constantexprs">Constant Expressions</a> | 
|  | </div> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <p>Constant expressions are used to allow expressions involving other constants | 
|  | to be used as constants.  Constant expressions may be of any <a | 
|  | href="#t_firstclass">first class</a> type and may involve any LLVM operation | 
|  | that does not have side effects (e.g. load and call are not supported).  The | 
|  | following is the syntax for constant expressions:</p> | 
|  |  | 
|  | <dl> | 
|  | <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt> | 
|  | <dd>Truncate a constant to another type. The bit size of CST must be larger | 
|  | than the bit size of TYPE. Both types must be integers.</dd> | 
|  |  | 
|  | <dt><b><tt>zext ( CST to TYPE )</tt></b></dt> | 
|  | <dd>Zero extend a constant to another type. The bit size of CST must be | 
|  | smaller or equal to the bit size of TYPE.  Both types must be integers.</dd> | 
|  |  | 
|  | <dt><b><tt>sext ( CST to TYPE )</tt></b></dt> | 
|  | <dd>Sign extend a constant to another type. The bit size of CST must be | 
|  | smaller or equal to the bit size of TYPE.  Both types must be integers.</dd> | 
|  |  | 
|  | <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt> | 
|  | <dd>Truncate a floating point constant to another floating point type. The | 
|  | size of CST must be larger than the size of TYPE. Both types must be | 
|  | floating point.</dd> | 
|  |  | 
|  | <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt> | 
|  | <dd>Floating point extend a constant to another type. The size of CST must be | 
|  | smaller or equal to the size of TYPE. Both types must be floating point.</dd> | 
|  |  | 
|  | <dt><b><tt>fp2uint ( CST to TYPE )</tt></b></dt> | 
|  | <dd>Convert a floating point constant to the corresponding unsigned integer | 
|  | constant. TYPE must be an integer type. CST must be floating point. If the | 
|  | value won't fit in the integer type, the results are undefined.</dd> | 
|  |  | 
|  | <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt> | 
|  | <dd>Convert a floating point constant to the corresponding signed integer | 
|  | constant. TYPE must be an integer type. CST must be floating point. If the | 
|  | value won't fit in the integer type, the results are undefined.</dd> | 
|  |  | 
|  | <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt> | 
|  | <dd>Convert an unsigned integer constant to the corresponding floating point | 
|  | constant. TYPE must be floating point. CST must be of integer type. If the | 
|  | value won't fit in the floating point type, the results are undefined.</dd> | 
|  |  | 
|  | <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt> | 
|  | <dd>Convert a signed integer constant to the corresponding floating point | 
|  | constant. TYPE must be floating point. CST must be of integer type. If the | 
|  | value won't fit in the floating point type, the results are undefined.</dd> | 
|  |  | 
|  | <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt> | 
|  | <dd>Convert a pointer typed constant to the corresponding integer constant | 
|  | TYPE must be an integer type. CST must be of pointer type. The CST value is | 
|  | zero extended, truncated, or unchanged to make it fit in TYPE.</dd> | 
|  |  | 
|  | <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt> | 
|  | <dd>Convert a integer constant to a pointer constant.  TYPE must be a | 
|  | pointer type.  CST must be of integer type. The CST value is zero extended, | 
|  | truncated, or unchanged to make it fit in a pointer size. This one is | 
|  | <i>really</i> dangerous!</dd> | 
|  |  | 
|  | <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt> | 
|  | <dd>Convert a constant, CST, to another TYPE. The size of CST and TYPE must be | 
|  | identical (same number of bits). The conversion is done as if the CST value | 
|  | was stored to memory and read back as TYPE. In other words, no bits change | 
|  | with this operator, just the type.  This can be used for conversion of | 
|  | vector types to any other type, as long as they have the same bit width. For | 
|  | pointers it is only valid to cast to another pointer type. | 
|  | </dd> | 
|  |  | 
|  | <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt> | 
|  |  | 
|  | <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on | 
|  | constants.  As with the <a href="#i_getelementptr">getelementptr</a> | 
|  | instruction, the index list may have zero or more indexes, which are required | 
|  | to make sense for the type of "CSTPTR".</dd> | 
|  |  | 
|  | <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt> | 
|  |  | 
|  | <dd>Perform the <a href="#i_select">select operation</a> on | 
|  | constants.</dd> | 
|  |  | 
|  | <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt> | 
|  | <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd> | 
|  |  | 
|  | <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt> | 
|  | <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd> | 
|  |  | 
|  | <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt> | 
|  |  | 
|  | <dd>Perform the <a href="#i_extractelement">extractelement | 
|  | operation</a> on constants. | 
|  |  | 
|  | <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt> | 
|  |  | 
|  | <dd>Perform the <a href="#i_insertelement">insertelement | 
|  | operation</a> on constants.</dd> | 
|  |  | 
|  |  | 
|  | <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt> | 
|  |  | 
|  | <dd>Perform the <a href="#i_shufflevector">shufflevector | 
|  | operation</a> on constants.</dd> | 
|  |  | 
|  | <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt> | 
|  |  | 
|  | <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may | 
|  | be any of the <a href="#binaryops">binary</a> or <a href="#bitwiseops">bitwise | 
|  | binary</a> operations.  The constraints on operands are the same as those for | 
|  | the corresponding instruction (e.g. no bitwise operations on floating point | 
|  | values are allowed).</dd> | 
|  | </dl> | 
|  | </div> | 
|  |  | 
|  | <!-- *********************************************************************** --> | 
|  | <div class="doc_section"> <a name="othervalues">Other Values</a> </div> | 
|  | <!-- *********************************************************************** --> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <div class="doc_subsection"> | 
|  | <a name="inlineasm">Inline Assembler Expressions</a> | 
|  | </div> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <p> | 
|  | LLVM supports inline assembler expressions (as opposed to <a href="#moduleasm"> | 
|  | Module-Level Inline Assembly</a>) through the use of a special value.  This | 
|  | value represents the inline assembler as a string (containing the instructions | 
|  | to emit), a list of operand constraints (stored as a string), and a flag that | 
|  | indicates whether or not the inline asm expression has side effects.  An example | 
|  | inline assembler expression is: | 
|  | </p> | 
|  |  | 
|  | <pre> | 
|  | i32 (i32) asm "bswap $0", "=r,r" | 
|  | </pre> | 
|  |  | 
|  | <p> | 
|  | Inline assembler expressions may <b>only</b> be used as the callee operand of | 
|  | a <a href="#i_call"><tt>call</tt> instruction</a>.  Thus, typically we have: | 
|  | </p> | 
|  |  | 
|  | <pre> | 
|  | %X = call i32 asm "<a href="#i_bswap">bswap</a> $0", "=r,r"(i32 %Y) | 
|  | </pre> | 
|  |  | 
|  | <p> | 
|  | Inline asms with side effects not visible in the constraint list must be marked | 
|  | as having side effects.  This is done through the use of the | 
|  | '<tt>sideeffect</tt>' keyword, like so: | 
|  | </p> | 
|  |  | 
|  | <pre> | 
|  | call void asm sideeffect "eieio", ""() | 
|  | </pre> | 
|  |  | 
|  | <p>TODO: The format of the asm and constraints string still need to be | 
|  | documented here.  Constraints on what can be done (e.g. duplication, moving, etc | 
|  | need to be documented). | 
|  | </p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- *********************************************************************** --> | 
|  | <div class="doc_section"> <a name="instref">Instruction Reference</a> </div> | 
|  | <!-- *********************************************************************** --> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <p>The LLVM instruction set consists of several different | 
|  | classifications of instructions: <a href="#terminators">terminator | 
|  | instructions</a>, <a href="#binaryops">binary instructions</a>, | 
|  | <a href="#bitwiseops">bitwise binary instructions</a>, <a | 
|  | href="#memoryops">memory instructions</a>, and <a href="#otherops">other | 
|  | instructions</a>.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <div class="doc_subsection"> <a name="terminators">Terminator | 
|  | Instructions</a> </div> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <p>As mentioned <a href="#functionstructure">previously</a>, every | 
|  | basic block in a program ends with a "Terminator" instruction, which | 
|  | indicates which block should be executed after the current block is | 
|  | finished. These terminator instructions typically yield a '<tt>void</tt>' | 
|  | value: they produce control flow, not values (the one exception being | 
|  | the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p> | 
|  | <p>There are six different terminator instructions: the '<a | 
|  | href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>' | 
|  | instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction, | 
|  | the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the '<a | 
|  | href="#i_unwind"><tt>unwind</tt></a>' instruction, and the '<a | 
|  | href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>' | 
|  | Instruction</a> </div> | 
|  | <div class="doc_text"> | 
|  | <h5>Syntax:</h5> | 
|  | <pre>  ret <type> <value>       <i>; Return a value from a non-void function</i> | 
|  | ret void                 <i>; Return from void function</i> | 
|  | </pre> | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>ret</tt>' instruction is used to return control flow (and a | 
|  | value) from a function back to the caller.</p> | 
|  | <p>There are two forms of the '<tt>ret</tt>' instruction: one that | 
|  | returns a value and then causes control flow, and one that just causes | 
|  | control flow to occur.</p> | 
|  | <h5>Arguments:</h5> | 
|  | <p>The '<tt>ret</tt>' instruction may return any '<a | 
|  | href="#t_firstclass">first class</a>' type.  Notice that a function is | 
|  | not <a href="#wellformed">well formed</a> if there exists a '<tt>ret</tt>' | 
|  | instruction inside of the function that returns a value that does not | 
|  | match the return type of the function.</p> | 
|  | <h5>Semantics:</h5> | 
|  | <p>When the '<tt>ret</tt>' instruction is executed, control flow | 
|  | returns back to the calling function's context.  If the caller is a "<a | 
|  | href="#i_call"><tt>call</tt></a>" instruction, execution continues at | 
|  | the instruction after the call.  If the caller was an "<a | 
|  | href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues | 
|  | at the beginning of the "normal" destination block.  If the instruction | 
|  | returns a value, that value shall set the call or invoke instruction's | 
|  | return value.</p> | 
|  | <h5>Example:</h5> | 
|  | <pre>  ret i32 5                       <i>; Return an integer value of 5</i> | 
|  | ret void                        <i>; Return from a void function</i> | 
|  | </pre> | 
|  | </div> | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div> | 
|  | <div class="doc_text"> | 
|  | <h5>Syntax:</h5> | 
|  | <pre>  br i1 <cond>, label <iftrue>, label <iffalse><br>  br label <dest>          <i>; Unconditional branch</i> | 
|  | </pre> | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>br</tt>' instruction is used to cause control flow to | 
|  | transfer to a different basic block in the current function.  There are | 
|  | two forms of this instruction, corresponding to a conditional branch | 
|  | and an unconditional branch.</p> | 
|  | <h5>Arguments:</h5> | 
|  | <p>The conditional branch form of the '<tt>br</tt>' instruction takes a | 
|  | single '<tt>i1</tt>' value and two '<tt>label</tt>' values.  The | 
|  | unconditional form of the '<tt>br</tt>' instruction takes a single | 
|  | '<tt>label</tt>' value as a target.</p> | 
|  | <h5>Semantics:</h5> | 
|  | <p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>' | 
|  | argument is evaluated.  If the value is <tt>true</tt>, control flows | 
|  | to the '<tt>iftrue</tt>' <tt>label</tt> argument.  If "cond" is <tt>false</tt>, | 
|  | control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p> | 
|  | <h5>Example:</h5> | 
|  | <pre>Test:<br>  %cond = <a href="#i_icmp">icmp</a> eq, i32 %a, %b<br>  br i1 %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br>  <a | 
|  | href="#i_ret">ret</a> i32 1<br>IfUnequal:<br>  <a href="#i_ret">ret</a> i32 0<br></pre> | 
|  | </div> | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> | 
|  | <a name="i_switch">'<tt>switch</tt>' Instruction</a> | 
|  | </div> | 
|  |  | 
|  | <div class="doc_text"> | 
|  | <h5>Syntax:</h5> | 
|  |  | 
|  | <pre> | 
|  | switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ] | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  |  | 
|  | <p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of | 
|  | several different places.  It is a generalization of the '<tt>br</tt>' | 
|  | instruction, allowing a branch to occur to one of many possible | 
|  | destinations.</p> | 
|  |  | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  |  | 
|  | <p>The '<tt>switch</tt>' instruction uses three parameters: an integer | 
|  | comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and | 
|  | an array of pairs of comparison value constants and '<tt>label</tt>'s.  The | 
|  | table is not allowed to contain duplicate constant entries.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  |  | 
|  | <p>The <tt>switch</tt> instruction specifies a table of values and | 
|  | destinations. When the '<tt>switch</tt>' instruction is executed, this | 
|  | table is searched for the given value.  If the value is found, control flow is | 
|  | transfered to the corresponding destination; otherwise, control flow is | 
|  | transfered to the default destination.</p> | 
|  |  | 
|  | <h5>Implementation:</h5> | 
|  |  | 
|  | <p>Depending on properties of the target machine and the particular | 
|  | <tt>switch</tt> instruction, this instruction may be code generated in different | 
|  | ways.  For example, it could be generated as a series of chained conditional | 
|  | branches or with a lookup table.</p> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  |  | 
|  | <pre> | 
|  | <i>; Emulate a conditional br instruction</i> | 
|  | %Val = <a href="#i_zext">zext</a> i1 %value to i32 | 
|  | switch i32 %Val, label %truedest [i32 0, label %falsedest ] | 
|  |  | 
|  | <i>; Emulate an unconditional br instruction</i> | 
|  | switch i32 0, label %dest [ ] | 
|  |  | 
|  | <i>; Implement a jump table:</i> | 
|  | switch i32 %val, label %otherwise [ i32 0, label %onzero | 
|  | i32 1, label %onone | 
|  | i32 2, label %ontwo ] | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> | 
|  | <a name="i_invoke">'<tt>invoke</tt>' Instruction</a> | 
|  | </div> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  |  | 
|  | <pre> | 
|  | <result> = invoke [<a href="#callingconv">cconv</a>] <ptr to function ty> %<function ptr val>(<function args>) | 
|  | to label <normal label> unwind label <exception label> | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  |  | 
|  | <p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified | 
|  | function, with the possibility of control flow transfer to either the | 
|  | '<tt>normal</tt>' label or the | 
|  | '<tt>exception</tt>' label.  If the callee function returns with the | 
|  | "<tt><a href="#i_ret">ret</a></tt>" instruction, control flow will return to the | 
|  | "normal" label.  If the callee (or any indirect callees) returns with the "<a | 
|  | href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted and | 
|  | continued at the dynamically nearest "exception" label.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  |  | 
|  | <p>This instruction requires several arguments:</p> | 
|  |  | 
|  | <ol> | 
|  | <li> | 
|  | The optional "cconv" marker indicates which <a href="callingconv">calling | 
|  | convention</a> the call should use.  If none is specified, the call defaults | 
|  | to using C calling conventions. | 
|  | </li> | 
|  | <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to | 
|  | function value being invoked.  In most cases, this is a direct function | 
|  | invocation, but indirect <tt>invoke</tt>s are just as possible, branching off | 
|  | an arbitrary pointer to function value. | 
|  | </li> | 
|  |  | 
|  | <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a | 
|  | function to be invoked. </li> | 
|  |  | 
|  | <li>'<tt>function args</tt>': argument list whose types match the function | 
|  | signature argument types.  If the function signature indicates the function | 
|  | accepts a variable number of arguments, the extra arguments can be | 
|  | specified. </li> | 
|  |  | 
|  | <li>'<tt>normal label</tt>': the label reached when the called function | 
|  | executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li> | 
|  |  | 
|  | <li>'<tt>exception label</tt>': the label reached when a callee returns with | 
|  | the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li> | 
|  |  | 
|  | </ol> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  |  | 
|  | <p>This instruction is designed to operate as a standard '<tt><a | 
|  | href="#i_call">call</a></tt>' instruction in most regards.  The primary | 
|  | difference is that it establishes an association with a label, which is used by | 
|  | the runtime library to unwind the stack.</p> | 
|  |  | 
|  | <p>This instruction is used in languages with destructors to ensure that proper | 
|  | cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown | 
|  | exception.  Additionally, this is important for implementation of | 
|  | '<tt>catch</tt>' clauses in high-level languages that support them.</p> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  | <pre> | 
|  | %retval = invoke i32 %Test(i32 15)             to label %Continue | 
|  | unwind label %TestCleanup     <i>; {i32}:retval set</i> | 
|  | %retval = invoke <a href="#callingconv">coldcc</a> i32 %Test(i32 15)             to label %Continue | 
|  | unwind label %TestCleanup     <i>; {i32}:retval set</i> | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  |  | 
|  | <div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>' | 
|  | Instruction</a> </div> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | unwind | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  |  | 
|  | <p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow | 
|  | at the first callee in the dynamic call stack which used an <a | 
|  | href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call.  This is | 
|  | primarily used to implement exception handling.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  |  | 
|  | <p>The '<tt>unwind</tt>' intrinsic causes execution of the current function to | 
|  | immediately halt.  The dynamic call stack is then searched for the first <a | 
|  | href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack.  Once found, | 
|  | execution continues at the "exceptional" destination block specified by the | 
|  | <tt>invoke</tt> instruction.  If there is no <tt>invoke</tt> instruction in the | 
|  | dynamic call chain, undefined behavior results.</p> | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  |  | 
|  | <div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>' | 
|  | Instruction</a> </div> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | unreachable | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  |  | 
|  | <p>The '<tt>unreachable</tt>' instruction has no defined semantics.  This | 
|  | instruction is used to inform the optimizer that a particular portion of the | 
|  | code is not reachable.  This can be used to indicate that the code after a | 
|  | no-return function cannot be reached, and other facts.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  |  | 
|  | <p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p> | 
|  | </div> | 
|  |  | 
|  |  | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div> | 
|  | <div class="doc_text"> | 
|  | <p>Binary operators are used to do most of the computation in a | 
|  | program.  They require two operands, execute an operation on them, and | 
|  | produce a single value.  The operands might represent | 
|  | multiple data, as is the case with the <a href="#t_vector">vector</a> data type. | 
|  | The result value of a binary operator is not | 
|  | necessarily the same type as its operands.</p> | 
|  | <p>There are several different binary operators:</p> | 
|  | </div> | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> <a name="i_add">'<tt>add</tt>' | 
|  | Instruction</a> </div> | 
|  | <div class="doc_text"> | 
|  | <h5>Syntax:</h5> | 
|  | <pre>  <result> = add <ty> <var1>, <var2>   <i>; yields {ty}:result</i> | 
|  | </pre> | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p> | 
|  | <h5>Arguments:</h5> | 
|  | <p>The two arguments to the '<tt>add</tt>' instruction must be either <a | 
|  | href="#t_integer">integer</a> or <a href="#t_floating">floating point</a> values. | 
|  | This instruction can also take <a href="#t_vector">vector</a> versions of the values. | 
|  | Both arguments must have identical types.</p> | 
|  | <h5>Semantics:</h5> | 
|  | <p>The value produced is the integer or floating point sum of the two | 
|  | operands.</p> | 
|  | <h5>Example:</h5> | 
|  | <pre>  <result> = add i32 4, %var          <i>; yields {i32}:result = 4 + %var</i> | 
|  | </pre> | 
|  | </div> | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> <a name="i_sub">'<tt>sub</tt>' | 
|  | Instruction</a> </div> | 
|  | <div class="doc_text"> | 
|  | <h5>Syntax:</h5> | 
|  | <pre>  <result> = sub <ty> <var1>, <var2>   <i>; yields {ty}:result</i> | 
|  | </pre> | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>sub</tt>' instruction returns the difference of its two | 
|  | operands.</p> | 
|  | <p>Note that the '<tt>sub</tt>' instruction is used to represent the '<tt>neg</tt>' | 
|  | instruction present in most other intermediate representations.</p> | 
|  | <h5>Arguments:</h5> | 
|  | <p>The two arguments to the '<tt>sub</tt>' instruction must be either <a | 
|  | href="#t_integer">integer</a> or <a href="#t_floating">floating point</a> | 
|  | values. | 
|  | This instruction can also take <a href="#t_vector">vector</a> versions of the values. | 
|  | Both arguments must have identical types.</p> | 
|  | <h5>Semantics:</h5> | 
|  | <p>The value produced is the integer or floating point difference of | 
|  | the two operands.</p> | 
|  | <h5>Example:</h5> | 
|  | <pre>  <result> = sub i32 4, %var          <i>; yields {i32}:result = 4 - %var</i> | 
|  | <result> = sub i32 0, %val          <i>; yields {i32}:result = -%var</i> | 
|  | </pre> | 
|  | </div> | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> <a name="i_mul">'<tt>mul</tt>' | 
|  | Instruction</a> </div> | 
|  | <div class="doc_text"> | 
|  | <h5>Syntax:</h5> | 
|  | <pre>  <result> = mul <ty> <var1>, <var2>   <i>; yields {ty}:result</i> | 
|  | </pre> | 
|  | <h5>Overview:</h5> | 
|  | <p>The  '<tt>mul</tt>' instruction returns the product of its two | 
|  | operands.</p> | 
|  | <h5>Arguments:</h5> | 
|  | <p>The two arguments to the '<tt>mul</tt>' instruction must be either <a | 
|  | href="#t_integer">integer</a> or <a href="#t_floating">floating point</a> | 
|  | values. | 
|  | This instruction can also take <a href="#t_vector">vector</a> versions of the values. | 
|  | Both arguments must have identical types.</p> | 
|  | <h5>Semantics:</h5> | 
|  | <p>The value produced is the integer or floating point product of the | 
|  | two operands.</p> | 
|  | <p>Because the operands are the same width, the result of an integer | 
|  | multiplication is the same whether the operands should be deemed unsigned or | 
|  | signed.</p> | 
|  | <h5>Example:</h5> | 
|  | <pre>  <result> = mul i32 4, %var          <i>; yields {i32}:result = 4 * %var</i> | 
|  | </pre> | 
|  | </div> | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction | 
|  | </a></div> | 
|  | <div class="doc_text"> | 
|  | <h5>Syntax:</h5> | 
|  | <pre>  <result> = udiv <ty> <var1>, <var2>   <i>; yields {ty}:result</i> | 
|  | </pre> | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>udiv</tt>' instruction returns the quotient of its two | 
|  | operands.</p> | 
|  | <h5>Arguments:</h5> | 
|  | <p>The two arguments to the '<tt>udiv</tt>' instruction must be | 
|  | <a href="#t_integer">integer</a> values. Both arguments must have identical | 
|  | types. This instruction can also take <a href="#t_vector">vector</a> versions | 
|  | of the values in which case the elements must be integers.</p> | 
|  | <h5>Semantics:</h5> | 
|  | <p>The value produced is the unsigned integer quotient of the two operands. This | 
|  | instruction always performs an unsigned division operation, regardless of | 
|  | whether the arguments are unsigned or not.</p> | 
|  | <h5>Example:</h5> | 
|  | <pre>  <result> = udiv i32 4, %var          <i>; yields {i32}:result = 4 / %var</i> | 
|  | </pre> | 
|  | </div> | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction | 
|  | </a> </div> | 
|  | <div class="doc_text"> | 
|  | <h5>Syntax:</h5> | 
|  | <pre>  <result> = sdiv <ty> <var1>, <var2>   <i>; yields {ty}:result</i> | 
|  | </pre> | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>sdiv</tt>' instruction returns the quotient of its two | 
|  | operands.</p> | 
|  | <h5>Arguments:</h5> | 
|  | <p>The two arguments to the '<tt>sdiv</tt>' instruction must be | 
|  | <a href="#t_integer">integer</a> values.  Both arguments must have identical | 
|  | types. This instruction can also take <a href="#t_vector">vector</a> versions | 
|  | of the values in which case the elements must be integers.</p> | 
|  | <h5>Semantics:</h5> | 
|  | <p>The value produced is the signed integer quotient of the two operands. This | 
|  | instruction always performs a signed division operation, regardless of whether | 
|  | the arguments are signed or not.</p> | 
|  | <h5>Example:</h5> | 
|  | <pre>  <result> = sdiv i32 4, %var          <i>; yields {i32}:result = 4 / %var</i> | 
|  | </pre> | 
|  | </div> | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>' | 
|  | Instruction</a> </div> | 
|  | <div class="doc_text"> | 
|  | <h5>Syntax:</h5> | 
|  | <pre>  <result> = fdiv <ty> <var1>, <var2>   <i>; yields {ty}:result</i> | 
|  | </pre> | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>fdiv</tt>' instruction returns the quotient of its two | 
|  | operands.</p> | 
|  | <h5>Arguments:</h5> | 
|  | <p>The two arguments to the '<tt>div</tt>' instruction must be | 
|  | <a href="#t_floating">floating point</a> values.  Both arguments must have | 
|  | identical types.  This instruction can also take <a href="#t_vector">vector</a> | 
|  | versions of the values in which case the elements must be floating point.</p> | 
|  | <h5>Semantics:</h5> | 
|  | <p>The value produced is the floating point quotient of the two operands.</p> | 
|  | <h5>Example:</h5> | 
|  | <pre>  <result> = fdiv float 4.0, %var          <i>; yields {float}:result = 4.0 / %var</i> | 
|  | </pre> | 
|  | </div> | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a> | 
|  | </div> | 
|  | <div class="doc_text"> | 
|  | <h5>Syntax:</h5> | 
|  | <pre>  <result> = urem <ty> <var1>, <var2>   <i>; yields {ty}:result</i> | 
|  | </pre> | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>urem</tt>' instruction returns the remainder from the | 
|  | unsigned division of its two arguments.</p> | 
|  | <h5>Arguments:</h5> | 
|  | <p>The two arguments to the '<tt>urem</tt>' instruction must be | 
|  | <a href="#t_integer">integer</a> values. Both arguments must have identical | 
|  | types.</p> | 
|  | <h5>Semantics:</h5> | 
|  | <p>This instruction returns the unsigned integer <i>remainder</i> of a division. | 
|  | This instruction always performs an unsigned division to get the remainder, | 
|  | regardless of whether the arguments are unsigned or not.</p> | 
|  | <h5>Example:</h5> | 
|  | <pre>  <result> = urem i32 4, %var          <i>; yields {i32}:result = 4 % %var</i> | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> <a name="i_srem">'<tt>srem</tt>' | 
|  | Instruction</a> </div> | 
|  | <div class="doc_text"> | 
|  | <h5>Syntax:</h5> | 
|  | <pre>  <result> = srem <ty> <var1>, <var2>   <i>; yields {ty}:result</i> | 
|  | </pre> | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>srem</tt>' instruction returns the remainder from the | 
|  | signed division of its two operands.</p> | 
|  | <h5>Arguments:</h5> | 
|  | <p>The two arguments to the '<tt>srem</tt>' instruction must be | 
|  | <a href="#t_integer">integer</a> values.  Both arguments must have identical | 
|  | types.</p> | 
|  | <h5>Semantics:</h5> | 
|  | <p>This instruction returns the <i>remainder</i> of a division (where the result | 
|  | has the same sign as the divisor), not the <i>modulus</i> (where the | 
|  | result has the same sign as the dividend) of a value.  For more | 
|  | information about the difference, see <a | 
|  | href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The | 
|  | Math Forum</a>.</p> | 
|  | <h5>Example:</h5> | 
|  | <pre>  <result> = srem i32 4, %var          <i>; yields {i32}:result = 4 % %var</i> | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> <a name="i_frem">'<tt>frem</tt>' | 
|  | Instruction</a> </div> | 
|  | <div class="doc_text"> | 
|  | <h5>Syntax:</h5> | 
|  | <pre>  <result> = frem <ty> <var1>, <var2>   <i>; yields {ty}:result</i> | 
|  | </pre> | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>frem</tt>' instruction returns the remainder from the | 
|  | division of its two operands.</p> | 
|  | <h5>Arguments:</h5> | 
|  | <p>The two arguments to the '<tt>frem</tt>' instruction must be | 
|  | <a href="#t_floating">floating point</a> values.  Both arguments must have | 
|  | identical types.</p> | 
|  | <h5>Semantics:</h5> | 
|  | <p>This instruction returns the <i>remainder</i> of a division.</p> | 
|  | <h5>Example:</h5> | 
|  | <pre>  <result> = frem float 4.0, %var          <i>; yields {float}:result = 4.0 % %var</i> | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary | 
|  | Operations</a> </div> | 
|  | <div class="doc_text"> | 
|  | <p>Bitwise binary operators are used to do various forms of | 
|  | bit-twiddling in a program.  They are generally very efficient | 
|  | instructions and can commonly be strength reduced from other | 
|  | instructions.  They require two operands, execute an operation on them, | 
|  | and produce a single value.  The resulting value of the bitwise binary | 
|  | operators is always the same type as its first operand.</p> | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>' | 
|  | Instruction</a> </div> | 
|  | <div class="doc_text"> | 
|  | <h5>Syntax:</h5> | 
|  | <pre>  <result> = shl <ty> <var1>, <var2>   <i>; yields {ty}:result</i> | 
|  | </pre> | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>shl</tt>' instruction returns the first operand shifted to | 
|  | the left a specified number of bits.</p> | 
|  | <h5>Arguments:</h5> | 
|  | <p>Both arguments to the '<tt>shl</tt>' instruction must be the same <a | 
|  | href="#t_integer">integer</a> type.</p> | 
|  | <h5>Semantics:</h5> | 
|  | <p>The value produced is <tt>var1</tt> * 2<sup><tt>var2</tt></sup>.</p> | 
|  | <h5>Example:</h5><pre> | 
|  | <result> = shl i32 4, %var   <i>; yields {i32}: 4 << %var</i> | 
|  | <result> = shl i32 4, 2      <i>; yields {i32}: 16</i> | 
|  | <result> = shl i32 1, 10     <i>; yields {i32}: 1024</i> | 
|  | </pre> | 
|  | </div> | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>' | 
|  | Instruction</a> </div> | 
|  | <div class="doc_text"> | 
|  | <h5>Syntax:</h5> | 
|  | <pre>  <result> = lshr <ty> <var1>, <var2>   <i>; yields {ty}:result</i> | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first | 
|  | operand shifted to the right a specified number of bits.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>Both arguments to the '<tt>lshr</tt>' instruction must be the same | 
|  | <a href="#t_integer">integer</a> type.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>This instruction always performs a logical shift right operation. The most | 
|  | significant bits of the result will be filled with zero bits after the | 
|  | shift.</p> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  | <pre> | 
|  | <result> = lshr i32 4, 1   <i>; yields {i32}:result = 2</i> | 
|  | <result> = lshr i32 4, 2   <i>; yields {i32}:result = 1</i> | 
|  | <result> = lshr i8  4, 3   <i>; yields {i8}:result = 0</i> | 
|  | <result> = lshr i8 -2, 1   <i>; yields {i8}:result = 0x7FFFFFFF </i> | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>' | 
|  | Instruction</a> </div> | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre>  <result> = ashr <ty> <var1>, <var2>   <i>; yields {ty}:result</i> | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first | 
|  | operand shifted to the right a specified number of bits.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>Both arguments to the '<tt>ashr</tt>' instruction must be the same | 
|  | <a href="#t_integer">integer</a> type.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>This instruction always performs an arithmetic shift right operation, | 
|  | The most significant bits of the result will be filled with the sign bit | 
|  | of <tt>var1</tt>.</p> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  | <pre> | 
|  | <result> = ashr i32 4, 1   <i>; yields {i32}:result = 2</i> | 
|  | <result> = ashr i32 4, 2   <i>; yields {i32}:result = 1</i> | 
|  | <result> = ashr i8  4, 3   <i>; yields {i8}:result = 0</i> | 
|  | <result> = ashr i8 -2, 1   <i>; yields {i8}:result = -1</i> | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>' | 
|  | Instruction</a> </div> | 
|  | <div class="doc_text"> | 
|  | <h5>Syntax:</h5> | 
|  | <pre>  <result> = and <ty> <var1>, <var2>   <i>; yields {ty}:result</i> | 
|  | </pre> | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>and</tt>' instruction returns the bitwise logical and of | 
|  | its two operands.</p> | 
|  | <h5>Arguments:</h5> | 
|  | <p>The two arguments to the '<tt>and</tt>' instruction must be <a | 
|  | href="#t_integer">integer</a> values.  Both arguments must have | 
|  | identical types.</p> | 
|  | <h5>Semantics:</h5> | 
|  | <p>The truth table used for the '<tt>and</tt>' instruction is:</p> | 
|  | <p> </p> | 
|  | <div style="align: center"> | 
|  | <table border="1" cellspacing="0" cellpadding="4"> | 
|  | <tbody> | 
|  | <tr> | 
|  | <td>In0</td> | 
|  | <td>In1</td> | 
|  | <td>Out</td> | 
|  | </tr> | 
|  | <tr> | 
|  | <td>0</td> | 
|  | <td>0</td> | 
|  | <td>0</td> | 
|  | </tr> | 
|  | <tr> | 
|  | <td>0</td> | 
|  | <td>1</td> | 
|  | <td>0</td> | 
|  | </tr> | 
|  | <tr> | 
|  | <td>1</td> | 
|  | <td>0</td> | 
|  | <td>0</td> | 
|  | </tr> | 
|  | <tr> | 
|  | <td>1</td> | 
|  | <td>1</td> | 
|  | <td>1</td> | 
|  | </tr> | 
|  | </tbody> | 
|  | </table> | 
|  | </div> | 
|  | <h5>Example:</h5> | 
|  | <pre>  <result> = and i32 4, %var         <i>; yields {i32}:result = 4 & %var</i> | 
|  | <result> = and i32 15, 40          <i>; yields {i32}:result = 8</i> | 
|  | <result> = and i32 4, 8            <i>; yields {i32}:result = 0</i> | 
|  | </pre> | 
|  | </div> | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div> | 
|  | <div class="doc_text"> | 
|  | <h5>Syntax:</h5> | 
|  | <pre>  <result> = or <ty> <var1>, <var2>   <i>; yields {ty}:result</i> | 
|  | </pre> | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive | 
|  | or of its two operands.</p> | 
|  | <h5>Arguments:</h5> | 
|  | <p>The two arguments to the '<tt>or</tt>' instruction must be <a | 
|  | href="#t_integer">integer</a> values.  Both arguments must have | 
|  | identical types.</p> | 
|  | <h5>Semantics:</h5> | 
|  | <p>The truth table used for the '<tt>or</tt>' instruction is:</p> | 
|  | <p> </p> | 
|  | <div style="align: center"> | 
|  | <table border="1" cellspacing="0" cellpadding="4"> | 
|  | <tbody> | 
|  | <tr> | 
|  | <td>In0</td> | 
|  | <td>In1</td> | 
|  | <td>Out</td> | 
|  | </tr> | 
|  | <tr> | 
|  | <td>0</td> | 
|  | <td>0</td> | 
|  | <td>0</td> | 
|  | </tr> | 
|  | <tr> | 
|  | <td>0</td> | 
|  | <td>1</td> | 
|  | <td>1</td> | 
|  | </tr> | 
|  | <tr> | 
|  | <td>1</td> | 
|  | <td>0</td> | 
|  | <td>1</td> | 
|  | </tr> | 
|  | <tr> | 
|  | <td>1</td> | 
|  | <td>1</td> | 
|  | <td>1</td> | 
|  | </tr> | 
|  | </tbody> | 
|  | </table> | 
|  | </div> | 
|  | <h5>Example:</h5> | 
|  | <pre>  <result> = or i32 4, %var         <i>; yields {i32}:result = 4 | %var</i> | 
|  | <result> = or i32 15, 40          <i>; yields {i32}:result = 47</i> | 
|  | <result> = or i32 4, 8            <i>; yields {i32}:result = 12</i> | 
|  | </pre> | 
|  | </div> | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>' | 
|  | Instruction</a> </div> | 
|  | <div class="doc_text"> | 
|  | <h5>Syntax:</h5> | 
|  | <pre>  <result> = xor <ty> <var1>, <var2>   <i>; yields {ty}:result</i> | 
|  | </pre> | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive | 
|  | or of its two operands.  The <tt>xor</tt> is used to implement the | 
|  | "one's complement" operation, which is the "~" operator in C.</p> | 
|  | <h5>Arguments:</h5> | 
|  | <p>The two arguments to the '<tt>xor</tt>' instruction must be <a | 
|  | href="#t_integer">integer</a> values.  Both arguments must have | 
|  | identical types.</p> | 
|  | <h5>Semantics:</h5> | 
|  | <p>The truth table used for the '<tt>xor</tt>' instruction is:</p> | 
|  | <p> </p> | 
|  | <div style="align: center"> | 
|  | <table border="1" cellspacing="0" cellpadding="4"> | 
|  | <tbody> | 
|  | <tr> | 
|  | <td>In0</td> | 
|  | <td>In1</td> | 
|  | <td>Out</td> | 
|  | </tr> | 
|  | <tr> | 
|  | <td>0</td> | 
|  | <td>0</td> | 
|  | <td>0</td> | 
|  | </tr> | 
|  | <tr> | 
|  | <td>0</td> | 
|  | <td>1</td> | 
|  | <td>1</td> | 
|  | </tr> | 
|  | <tr> | 
|  | <td>1</td> | 
|  | <td>0</td> | 
|  | <td>1</td> | 
|  | </tr> | 
|  | <tr> | 
|  | <td>1</td> | 
|  | <td>1</td> | 
|  | <td>0</td> | 
|  | </tr> | 
|  | </tbody> | 
|  | </table> | 
|  | </div> | 
|  | <p> </p> | 
|  | <h5>Example:</h5> | 
|  | <pre>  <result> = xor i32 4, %var         <i>; yields {i32}:result = 4 ^ %var</i> | 
|  | <result> = xor i32 15, 40          <i>; yields {i32}:result = 39</i> | 
|  | <result> = xor i32 4, 8            <i>; yields {i32}:result = 12</i> | 
|  | <result> = xor i32 %V, -1          <i>; yields {i32}:result = ~%V</i> | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <div class="doc_subsection"> | 
|  | <a name="vectorops">Vector Operations</a> | 
|  | </div> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <p>LLVM supports several instructions to represent vector operations in a | 
|  | target-independent manner.  This instructions cover the element-access and | 
|  | vector-specific operations needed to process vectors effectively.  While LLVM | 
|  | does directly support these vector operations, many sophisticated algorithms | 
|  | will want to use target-specific intrinsics to take full advantage of a specific | 
|  | target.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> | 
|  | <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a> | 
|  | </div> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  |  | 
|  | <pre> | 
|  | <result> = extractelement <n x <ty>> <val>, i32 <idx>    <i>; yields <ty></i> | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  |  | 
|  | <p> | 
|  | The '<tt>extractelement</tt>' instruction extracts a single scalar | 
|  | element from a vector at a specified index. | 
|  | </p> | 
|  |  | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  |  | 
|  | <p> | 
|  | The first operand of an '<tt>extractelement</tt>' instruction is a | 
|  | value of <a href="#t_vector">vector</a> type.  The second operand is | 
|  | an index indicating the position from which to extract the element. | 
|  | The index may be a variable.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  |  | 
|  | <p> | 
|  | The result is a scalar of the same type as the element type of | 
|  | <tt>val</tt>.  Its value is the value at position <tt>idx</tt> of | 
|  | <tt>val</tt>.  If <tt>idx</tt> exceeds the length of <tt>val</tt>, the | 
|  | results are undefined. | 
|  | </p> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  |  | 
|  | <pre> | 
|  | %result = extractelement <4 x i32> %vec, i32 0    <i>; yields i32</i> | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> | 
|  | <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a> | 
|  | </div> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  |  | 
|  | <pre> | 
|  | <result> = insertelement <n x <ty>> <val>, <ty> <elt>, i32 <idx>    <i>; yields <n x <ty>></i> | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  |  | 
|  | <p> | 
|  | The '<tt>insertelement</tt>' instruction inserts a scalar | 
|  | element into a vector at a specified index. | 
|  | </p> | 
|  |  | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  |  | 
|  | <p> | 
|  | The first operand of an '<tt>insertelement</tt>' instruction is a | 
|  | value of <a href="#t_vector">vector</a> type.  The second operand is a | 
|  | scalar value whose type must equal the element type of the first | 
|  | operand.  The third operand is an index indicating the position at | 
|  | which to insert the value.  The index may be a variable.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  |  | 
|  | <p> | 
|  | The result is a vector of the same type as <tt>val</tt>.  Its | 
|  | element values are those of <tt>val</tt> except at position | 
|  | <tt>idx</tt>, where it gets the value <tt>elt</tt>.  If <tt>idx</tt> | 
|  | exceeds the length of <tt>val</tt>, the results are undefined. | 
|  | </p> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  |  | 
|  | <pre> | 
|  | %result = insertelement <4 x i32> %vec, i32 1, i32 0    <i>; yields <4 x i32></i> | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> | 
|  | <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a> | 
|  | </div> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  |  | 
|  | <pre> | 
|  | <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <n x i32> <mask>    <i>; yields <n x <ty>></i> | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  |  | 
|  | <p> | 
|  | The '<tt>shufflevector</tt>' instruction constructs a permutation of elements | 
|  | from two input vectors, returning a vector of the same type. | 
|  | </p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  |  | 
|  | <p> | 
|  | The first two operands of a '<tt>shufflevector</tt>' instruction are vectors | 
|  | with types that match each other and types that match the result of the | 
|  | instruction.  The third argument is a shuffle mask, which has the same number | 
|  | of elements as the other vector type, but whose element type is always 'i32'. | 
|  | </p> | 
|  |  | 
|  | <p> | 
|  | The shuffle mask operand is required to be a constant vector with either | 
|  | constant integer or undef values. | 
|  | </p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  |  | 
|  | <p> | 
|  | The elements of the two input vectors are numbered from left to right across | 
|  | both of the vectors.  The shuffle mask operand specifies, for each element of | 
|  | the result vector, which element of the two input registers the result element | 
|  | gets.  The element selector may be undef (meaning "don't care") and the second | 
|  | operand may be undef if performing a shuffle from only one vector. | 
|  | </p> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  |  | 
|  | <pre> | 
|  | %result = shufflevector <4 x i32> %v1, <4 x i32> %v2, | 
|  | <4 x i32> <i32 0, i32 4, i32 1, i32 5>    <i>; yields <4 x i32></i> | 
|  | %result = shufflevector <4 x i32> %v1, <4 x i32> undef, | 
|  | <4 x i32> <i32 0, i32 1, i32 2, i32 3>  <i>; yields <4 x i32></i> - Identity shuffle. | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <div class="doc_subsection"> | 
|  | <a name="memoryops">Memory Access and Addressing Operations</a> | 
|  | </div> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <p>A key design point of an SSA-based representation is how it | 
|  | represents memory.  In LLVM, no memory locations are in SSA form, which | 
|  | makes things very simple.  This section describes how to read, write, | 
|  | allocate, and free memory in LLVM.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> | 
|  | <a name="i_malloc">'<tt>malloc</tt>' Instruction</a> | 
|  | </div> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  |  | 
|  | <pre> | 
|  | <result> = malloc <type>[, i32 <NumElements>][, align <alignment>]     <i>; yields {type*}:result</i> | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  |  | 
|  | <p>The '<tt>malloc</tt>' instruction allocates memory from the system | 
|  | heap and returns a pointer to it.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  |  | 
|  | <p>The '<tt>malloc</tt>' instruction allocates | 
|  | <tt>sizeof(<type>)*NumElements</tt> | 
|  | bytes of memory from the operating system and returns a pointer of the | 
|  | appropriate type to the program.  If "NumElements" is specified, it is the | 
|  | number of elements allocated.  If an alignment is specified, the value result | 
|  | of the allocation is guaranteed to be aligned to at least that boundary.  If | 
|  | not specified, or if zero, the target can choose to align the allocation on any | 
|  | convenient boundary.</p> | 
|  |  | 
|  | <p>'<tt>type</tt>' must be a sized type.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  |  | 
|  | <p>Memory is allocated using the system "<tt>malloc</tt>" function, and | 
|  | a pointer is returned.</p> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  |  | 
|  | <pre> | 
|  | %array  = malloc [4 x i8 ]                    <i>; yields {[%4 x i8]*}:array</i> | 
|  |  | 
|  | %size   = <a href="#i_add">add</a> i32 2, 2                          <i>; yields {i32}:size = i32 4</i> | 
|  | %array1 = malloc i8, i32 4                   <i>; yields {i8*}:array1</i> | 
|  | %array2 = malloc [12 x i8], i32 %size        <i>; yields {[12 x i8]*}:array2</i> | 
|  | %array3 = malloc i32, i32 4, align 1024         <i>; yields {i32*}:array3</i> | 
|  | %array4 = malloc i32, align 1024                 <i>; yields {i32*}:array4</i> | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> | 
|  | <a name="i_free">'<tt>free</tt>' Instruction</a> | 
|  | </div> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  |  | 
|  | <pre> | 
|  | free <type> <value>                              <i>; yields {void}</i> | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  |  | 
|  | <p>The '<tt>free</tt>' instruction returns memory back to the unused | 
|  | memory heap to be reallocated in the future.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  |  | 
|  | <p>'<tt>value</tt>' shall be a pointer value that points to a value | 
|  | that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>' | 
|  | instruction.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  |  | 
|  | <p>Access to the memory pointed to by the pointer is no longer defined | 
|  | after this instruction executes.</p> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  |  | 
|  | <pre> | 
|  | %array  = <a href="#i_malloc">malloc</a> [4 x i8]                    <i>; yields {[4 x i8]*}:array</i> | 
|  | free   [4 x i8]* %array | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> | 
|  | <a name="i_alloca">'<tt>alloca</tt>' Instruction</a> | 
|  | </div> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  |  | 
|  | <pre> | 
|  | <result> = alloca <type>[, i32 <NumElements>][, align <alignment>]     <i>; yields {type*}:result</i> | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  |  | 
|  | <p>The '<tt>alloca</tt>' instruction allocates memory on the current | 
|  | stack frame of the procedure that is live until the current function | 
|  | returns to its caller.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  |  | 
|  | <p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(<type>)*NumElements</tt> | 
|  | bytes of memory on the runtime stack, returning a pointer of the | 
|  | appropriate type to the program.    If "NumElements" is specified, it is the | 
|  | number of elements allocated.  If an alignment is specified, the value result | 
|  | of the allocation is guaranteed to be aligned to at least that boundary.  If | 
|  | not specified, or if zero, the target can choose to align the allocation on any | 
|  | convenient boundary.</p> | 
|  |  | 
|  | <p>'<tt>type</tt>' may be any sized type.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  |  | 
|  | <p>Memory is allocated; a pointer is returned.  '<tt>alloca</tt>'d | 
|  | memory is automatically released when the function returns.  The '<tt>alloca</tt>' | 
|  | instruction is commonly used to represent automatic variables that must | 
|  | have an address available.  When the function returns (either with the <tt><a | 
|  | href="#i_ret">ret</a></tt> or <tt><a href="#i_unwind">unwind</a></tt> | 
|  | instructions), the memory is reclaimed.</p> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  |  | 
|  | <pre> | 
|  | %ptr = alloca i32                              <i>; yields {i32*}:ptr</i> | 
|  | %ptr = alloca i32, i32 4                      <i>; yields {i32*}:ptr</i> | 
|  | %ptr = alloca i32, i32 4, align 1024          <i>; yields {i32*}:ptr</i> | 
|  | %ptr = alloca i32, align 1024                  <i>; yields {i32*}:ptr</i> | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>' | 
|  | Instruction</a> </div> | 
|  | <div class="doc_text"> | 
|  | <h5>Syntax:</h5> | 
|  | <pre>  <result> = load <ty>* <pointer><br>  <result> = volatile load <ty>* <pointer><br></pre> | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>load</tt>' instruction is used to read from memory.</p> | 
|  | <h5>Arguments:</h5> | 
|  | <p>The argument to the '<tt>load</tt>' instruction specifies the memory | 
|  | address from which to load.  The pointer must point to a <a | 
|  | href="#t_firstclass">first class</a> type.  If the <tt>load</tt> is | 
|  | marked as <tt>volatile</tt>, then the optimizer is not allowed to modify | 
|  | the number or order of execution of this <tt>load</tt> with other | 
|  | volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt> | 
|  | instructions. </p> | 
|  | <h5>Semantics:</h5> | 
|  | <p>The location of memory pointed to is loaded.</p> | 
|  | <h5>Examples:</h5> | 
|  | <pre>  %ptr = <a href="#i_alloca">alloca</a> i32                               <i>; yields {i32*}:ptr</i> | 
|  | <a | 
|  | href="#i_store">store</a> i32 3, i32* %ptr                          <i>; yields {void}</i> | 
|  | %val = load i32* %ptr                           <i>; yields {i32}:val = i32 3</i> | 
|  | </pre> | 
|  | </div> | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>' | 
|  | Instruction</a> </div> | 
|  | <div class="doc_text"> | 
|  | <h5>Syntax:</h5> | 
|  | <pre>  store <ty> <value>, <ty>* <pointer>                   <i>; yields {void}</i> | 
|  | volatile store <ty> <value>, <ty>* <pointer>                   <i>; yields {void}</i> | 
|  | </pre> | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>store</tt>' instruction is used to write to memory.</p> | 
|  | <h5>Arguments:</h5> | 
|  | <p>There are two arguments to the '<tt>store</tt>' instruction: a value | 
|  | to store and an address in which to store it.  The type of the '<tt><pointer></tt>' | 
|  | operand must be a pointer to the type of the '<tt><value></tt>' | 
|  | operand. If the <tt>store</tt> is marked as <tt>volatile</tt>, then the | 
|  | optimizer is not allowed to modify the number or order of execution of | 
|  | this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a | 
|  | href="#i_store">store</a></tt> instructions.</p> | 
|  | <h5>Semantics:</h5> | 
|  | <p>The contents of memory are updated to contain '<tt><value></tt>' | 
|  | at the location specified by the '<tt><pointer></tt>' operand.</p> | 
|  | <h5>Example:</h5> | 
|  | <pre>  %ptr = <a href="#i_alloca">alloca</a> i32                               <i>; yields {i32*}:ptr</i> | 
|  | <a | 
|  | href="#i_store">store</a> i32 3, i32* %ptr                          <i>; yields {void}</i> | 
|  | %val = load i32* %ptr                           <i>; yields {i32}:val = i32 3</i> | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> | 
|  | <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a> | 
|  | </div> | 
|  |  | 
|  | <div class="doc_text"> | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | <result> = getelementptr <ty>* <ptrval>{, <ty> <idx>}* | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  |  | 
|  | <p> | 
|  | The '<tt>getelementptr</tt>' instruction is used to get the address of a | 
|  | subelement of an aggregate data structure.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  |  | 
|  | <p>This instruction takes a list of integer operands that indicate what | 
|  | elements of the aggregate object to index to.  The actual types of the arguments | 
|  | provided depend on the type of the first pointer argument.  The | 
|  | '<tt>getelementptr</tt>' instruction is used to index down through the type | 
|  | levels of a structure or to a specific index in an array.  When indexing into a | 
|  | structure, only <tt>i32</tt> integer constants are allowed.  When indexing | 
|  | into an array or pointer, only integers of 32 or 64 bits are allowed, and will | 
|  | be sign extended to 64-bit values.</p> | 
|  |  | 
|  | <p>For example, let's consider a C code fragment and how it gets | 
|  | compiled to LLVM:</p> | 
|  |  | 
|  | <pre> | 
|  | struct RT { | 
|  | char A; | 
|  | i32 B[10][20]; | 
|  | char C; | 
|  | }; | 
|  | struct ST { | 
|  | i32 X; | 
|  | double Y; | 
|  | struct RT Z; | 
|  | }; | 
|  |  | 
|  | define i32 *foo(struct ST *s) { | 
|  | return &s[1].Z.B[5][13]; | 
|  | } | 
|  | </pre> | 
|  |  | 
|  | <p>The LLVM code generated by the GCC frontend is:</p> | 
|  |  | 
|  | <pre> | 
|  | %RT = type { i8 , [10 x [20 x i32]], i8  } | 
|  | %ST = type { i32, double, %RT } | 
|  |  | 
|  | implementation | 
|  |  | 
|  | define i32* %foo(%ST* %s) { | 
|  | entry: | 
|  | %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13 | 
|  | ret i32* %reg | 
|  | } | 
|  | </pre> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  |  | 
|  | <p>The index types specified for the '<tt>getelementptr</tt>' instruction depend | 
|  | on the pointer type that is being indexed into. <a href="#t_pointer">Pointer</a> | 
|  | and <a href="#t_array">array</a> types can use a 32-bit or 64-bit | 
|  | <a href="#t_integer">integer</a> type but the value will always be sign extended | 
|  | to 64-bits.  <a href="#t_struct">Structure</a> types, require <tt>i32</tt> | 
|  | <b>constants</b>.</p> | 
|  |  | 
|  | <p>In the example above, the first index is indexing into the '<tt>%ST*</tt>' | 
|  | type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT | 
|  | }</tt>' type, a structure.  The second index indexes into the third element of | 
|  | the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]], | 
|  | i8  }</tt>' type, another structure.  The third index indexes into the second | 
|  | element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an | 
|  | array.  The two dimensions of the array are subscripted into, yielding an | 
|  | '<tt>i32</tt>' type.  The '<tt>getelementptr</tt>' instruction returns a pointer | 
|  | to this element, thus computing a value of '<tt>i32*</tt>' type.</p> | 
|  |  | 
|  | <p>Note that it is perfectly legal to index partially through a | 
|  | structure, returning a pointer to an inner element.  Because of this, | 
|  | the LLVM code for the given testcase is equivalent to:</p> | 
|  |  | 
|  | <pre> | 
|  | define i32* %foo(%ST* %s) { | 
|  | %t1 = getelementptr %ST* %s, i32 1                        <i>; yields %ST*:%t1</i> | 
|  | %t2 = getelementptr %ST* %t1, i32 0, i32 2               <i>; yields %RT*:%t2</i> | 
|  | %t3 = getelementptr %RT* %t2, i32 0, i32 1               <i>; yields [10 x [20 x i32]]*:%t3</i> | 
|  | %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5  <i>; yields [20 x i32]*:%t4</i> | 
|  | %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13        <i>; yields i32*:%t5</i> | 
|  | ret i32* %t5 | 
|  | } | 
|  | </pre> | 
|  |  | 
|  | <p>Note that it is undefined to access an array out of bounds: array and | 
|  | pointer indexes must always be within the defined bounds of the array type. | 
|  | The one exception for this rules is zero length arrays.  These arrays are | 
|  | defined to be accessible as variable length arrays, which requires access | 
|  | beyond the zero'th element.</p> | 
|  |  | 
|  | <p>The getelementptr instruction is often confusing.  For some more insight | 
|  | into how it works, see <a href="GetElementPtr.html">the getelementptr | 
|  | FAQ</a>.</p> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  |  | 
|  | <pre> | 
|  | <i>; yields [12 x i8]*:aptr</i> | 
|  | %aptr = getelementptr {i32, [12 x i8]}* %sptr, i64 0, i32 1 | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <div class="doc_subsection"> <a name="convertops">Conversion Operations</a> | 
|  | </div> | 
|  | <div class="doc_text"> | 
|  | <p>The instructions in this category are the conversion instructions (casting) | 
|  | which all take a single operand and a type. They perform various bit conversions | 
|  | on the operand.</p> | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> | 
|  | <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a> | 
|  | </div> | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | <result> = trunc <ty> <value> to <ty2>             <i>; yields ty2</i> | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p> | 
|  | The '<tt>trunc</tt>' instruction truncates its operand to the type <tt>ty2</tt>. | 
|  | </p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p> | 
|  | The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must | 
|  | be an <a href="#t_integer">integer</a> type, and a type that specifies the size | 
|  | and type of the result, which must be an <a href="#t_integer">integer</a> | 
|  | type. The bit size of <tt>value</tt> must be larger than the bit size of | 
|  | <tt>ty2</tt>. Equal sized types are not allowed.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p> | 
|  | The '<tt>trunc</tt>' instruction truncates the high order bits in <tt>value</tt> | 
|  | and converts the remaining bits to <tt>ty2</tt>. Since the source size must be | 
|  | larger than the destination size, <tt>trunc</tt> cannot be a <i>no-op cast</i>. | 
|  | It will always truncate bits.</p> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  | <pre> | 
|  | %X = trunc i32 257 to i8              <i>; yields i8:1</i> | 
|  | %Y = trunc i32 123 to i1              <i>; yields i1:true</i> | 
|  | %Y = trunc i32 122 to i1              <i>; yields i1:false</i> | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> | 
|  | <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a> | 
|  | </div> | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | <result> = zext <ty> <value> to <ty2>             <i>; yields ty2</i> | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>zext</tt>' instruction zero extends its operand to type | 
|  | <tt>ty2</tt>.</p> | 
|  |  | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of | 
|  | <a href="#t_integer">integer</a> type, and a type to cast it to, which must | 
|  | also be of <a href="#t_integer">integer</a> type. The bit size of the | 
|  | <tt>value</tt> must be smaller than the bit size of the destination type, | 
|  | <tt>ty2</tt>.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero | 
|  | bits until it reaches the size of the destination type, <tt>ty2</tt>. When the | 
|  | the operand and the type are the same size, no bit filling is done and the | 
|  | cast is considered a <i>no-op cast</i> because no bits change (only the type | 
|  | changes).</p> | 
|  |  | 
|  | <p>When zero extending from i1, the result will always be either 0 or 1.</p> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  | <pre> | 
|  | %X = zext i32 257 to i64              <i>; yields i64:257</i> | 
|  | %Y = zext i1 true to i32              <i>; yields i32:1</i> | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> | 
|  | <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a> | 
|  | </div> | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | <result> = sext <ty> <value> to <ty2>             <i>; yields ty2</i> | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p> | 
|  | The '<tt>sext</tt>' instruction takes a value to cast, which must be of | 
|  | <a href="#t_integer">integer</a> type, and a type to cast it to, which must | 
|  | also be of <a href="#t_integer">integer</a> type.  The bit size of the | 
|  | <tt>value</tt> must be smaller than the bit size of the destination type, | 
|  | <tt>ty2</tt>.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p> | 
|  | The '<tt>sext</tt>' instruction performs a sign extension by copying the sign | 
|  | bit (highest order bit) of the <tt>value</tt> until it reaches the bit size of | 
|  | the type <tt>ty2</tt>.  When the the operand and the type are the same size, | 
|  | no bit filling is done and the cast is considered a <i>no-op cast</i> because | 
|  | no bits change (only the type changes).</p> | 
|  |  | 
|  | <p>When sign extending from i1, the extension always results in -1 or 0.</p> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  | <pre> | 
|  | %X = sext i8  -1 to i16              <i>; yields i16   :65535</i> | 
|  | %Y = sext i1 true to i32             <i>; yields i32:-1</i> | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> | 
|  | <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a> | 
|  | </div> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  |  | 
|  | <pre> | 
|  | <result> = fptrunc <ty> <value> to <ty2>             <i>; yields ty2</i> | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type | 
|  | <tt>ty2</tt>.</p> | 
|  |  | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating | 
|  | point</a> value to cast and a <a href="#t_floating">floating point</a> type to | 
|  | cast it to. The size of <tt>value</tt> must be larger than the size of | 
|  | <tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a | 
|  | <i>no-op cast</i>.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p> The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger | 
|  | <a href="#t_floating">floating point</a> type to a smaller | 
|  | <a href="#t_floating">floating point</a> type.  If the value cannot fit within | 
|  | the destination type, <tt>ty2</tt>, then the results are undefined.</p> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  | <pre> | 
|  | %X = fptrunc double 123.0 to float         <i>; yields float:123.0</i> | 
|  | %Y = fptrunc double 1.0E+300 to float      <i>; yields undefined</i> | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> | 
|  | <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a> | 
|  | </div> | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | <result> = fpext <ty> <value> to <ty2>             <i>; yields ty2</i> | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger | 
|  | floating point value.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The '<tt>fpext</tt>' instruction takes a | 
|  | <a href="#t_floating">floating point</a> <tt>value</tt> to cast, | 
|  | and a <a href="#t_floating">floating point</a> type to cast it to. The source | 
|  | type must be smaller than the destination type.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller | 
|  | <a href="t_floating">floating point</a> type to a larger | 
|  | <a href="t_floating">floating point</a> type. The <tt>fpext</tt> cannot be | 
|  | used to make a <i>no-op cast</i> because it always changes bits. Use | 
|  | <tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  | <pre> | 
|  | %X = fpext float 3.1415 to double        <i>; yields double:3.1415</i> | 
|  | %Y = fpext float 1.0 to float            <i>; yields float:1.0 (no-op)</i> | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> | 
|  | <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a> | 
|  | </div> | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | <result> = fp2uint <ty> <value> to <ty2>             <i>; yields ty2</i> | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>fp2uint</tt>' converts a floating point <tt>value</tt> to its | 
|  | unsigned integer equivalent of type <tt>ty2</tt>. | 
|  | </p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The '<tt>fp2uint</tt>' instruction takes a value to cast, which must be a | 
|  | <a href="#t_floating">floating point</a> value, and a type to cast it to, which | 
|  | must be an <a href="#t_integer">integer</a> type.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p> The '<tt>fp2uint</tt>' instruction converts its | 
|  | <a href="#t_floating">floating point</a> operand into the nearest (rounding | 
|  | towards zero) unsigned integer value. If the value cannot fit in <tt>ty2</tt>, | 
|  | the results are undefined.</p> | 
|  |  | 
|  | <p>When converting to i1, the conversion is done as a comparison against | 
|  | zero. If the <tt>value</tt> was zero, the i1 result will be <tt>false</tt>. | 
|  | If the <tt>value</tt> was non-zero, the i1 result will be <tt>true</tt>.</p> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  | <pre> | 
|  | %X = fp2uint double 123.0 to i32      <i>; yields i32:123</i> | 
|  | %Y = fp2uint float 1.0E+300 to i1     <i>; yields i1:true</i> | 
|  | %X = fp2uint float 1.04E+17 to i8     <i>; yields undefined:1</i> | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> | 
|  | <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a> | 
|  | </div> | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | <result> = fptosi <ty> <value> to <ty2>             <i>; yields ty2</i> | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>fptosi</tt>' instruction converts | 
|  | <a href="#t_floating">floating point</a> <tt>value</tt> to type <tt>ty2</tt>. | 
|  | </p> | 
|  |  | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p> The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a | 
|  | <a href="#t_floating">floating point</a> value, and a type to cast it to, which | 
|  | must also be an <a href="#t_integer">integer</a> type.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The '<tt>fptosi</tt>' instruction converts its | 
|  | <a href="#t_floating">floating point</a> operand into the nearest (rounding | 
|  | towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>, | 
|  | the results are undefined.</p> | 
|  |  | 
|  | <p>When converting to i1, the conversion is done as a comparison against | 
|  | zero. If the <tt>value</tt> was zero, the i1 result will be <tt>false</tt>. | 
|  | If the <tt>value</tt> was non-zero, the i1 result will be <tt>true</tt>.</p> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  | <pre> | 
|  | %X = fptosi double -123.0 to i32      <i>; yields i32:-123</i> | 
|  | %Y = fptosi float 1.0E-247 to i1      <i>; yields i1:true</i> | 
|  | %X = fptosi float 1.04E+17 to i8      <i>; yields undefined:1</i> | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> | 
|  | <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a> | 
|  | </div> | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | <result> = uitofp <ty> <value> to <ty2>             <i>; yields ty2</i> | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned | 
|  | integer and converts that value to the <tt>ty2</tt> type.</p> | 
|  |  | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be an | 
|  | <a href="#t_integer">integer</a> value, and a type to cast it to, which must | 
|  | be a <a href="#t_floating">floating point</a> type.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned | 
|  | integer quantity and converts it to the corresponding floating point value. If | 
|  | the value cannot fit in the floating point value, the results are undefined.</p> | 
|  |  | 
|  |  | 
|  | <h5>Example:</h5> | 
|  | <pre> | 
|  | %X = uitofp i32 257 to float         <i>; yields float:257.0</i> | 
|  | %Y = uitofp i8  -1 to double       <i>; yields double:255.0</i> | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> | 
|  | <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a> | 
|  | </div> | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | <result> = sitofp <ty> <value> to <ty2>             <i>; yields ty2</i> | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed | 
|  | integer and converts that value to the <tt>ty2</tt> type.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be an | 
|  | <a href="#t_integer">integer</a> value, and a type to cast it to, which must be | 
|  | a <a href="#t_floating">floating point</a> type.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed | 
|  | integer quantity and converts it to the corresponding floating point value. If | 
|  | the value cannot fit in the floating point value, the results are undefined.</p> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  | <pre> | 
|  | %X = sitofp i32 257 to float         <i>; yields float:257.0</i> | 
|  | %Y = sitofp i8  -1 to double       <i>; yields double:-1.0</i> | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> | 
|  | <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a> | 
|  | </div> | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | <result> = ptrtoint <ty> <value> to <ty2>             <i>; yields ty2</i> | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to | 
|  | the integer type <tt>ty2</tt>.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which | 
|  | must be a <a href="t_pointer">pointer</a> value, and a type to cast it to | 
|  | <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type. | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type | 
|  | <tt>ty2</tt> by interpreting the pointer value as an integer and either | 
|  | truncating or zero extending that value to the size of the integer type. If | 
|  | <tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If | 
|  | <tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they | 
|  | are the same size, then nothing is done (<i>no-op cast</i>).</p> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  | <pre> | 
|  | %X = ptrtoint i32* %X to i8           <i>; yields truncation on 32-bit</i> | 
|  | %Y = ptrtoint i32* %x to i64          <i>; yields zero extend on 32-bit</i> | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> | 
|  | <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a> | 
|  | </div> | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | <result> = inttoptr <ty> <value> to <ty2>             <i>; yields ty2</i> | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to | 
|  | a pointer type, <tt>ty2</tt>.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The '<tt>inttoptr</tt>' instruction takes an <a href="i_integer">integer</a> | 
|  | value to cast, and a type to cast it to, which must be a | 
|  | <a href="#t_pointer">pointer</a> type. | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type | 
|  | <tt>ty2</tt> by applying either a zero extension or a truncation depending on | 
|  | the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the | 
|  | size of a pointer then a truncation is done. If <tt>value</tt> is smaller than | 
|  | the size of a pointer then a zero extension is done. If they are the same size, | 
|  | nothing is done (<i>no-op cast</i>).</p> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  | <pre> | 
|  | %X = inttoptr i32 255 to i32*            <i>; yields zero extend on 64-bit</i> | 
|  | %X = inttoptr i32 255 to i32*            <i>; yields no-op on 32-bit </i> | 
|  | %Y = inttoptr i16 0 to i32*            <i>; yields zero extend on 32-bit</i> | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> | 
|  | <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a> | 
|  | </div> | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | <result> = bitcast <ty> <value> to <ty2>             <i>; yields ty2</i> | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type | 
|  | <tt>ty2</tt> without changing any bits.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be | 
|  | a first class value, and a type to cast it to, which must also be a <a | 
|  | href="#t_firstclass">first class</a> type. The bit sizes of <tt>value</tt> | 
|  | and the destination type, <tt>ty2</tt>, must be identical. If the source | 
|  | type is a pointer, the destination type must also be a pointer.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type | 
|  | <tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with | 
|  | this conversion.  The conversion is done as if the <tt>value</tt> had been | 
|  | stored to memory and read back as type <tt>ty2</tt>. Pointer types may only be | 
|  | converted to other pointer types with this instruction. To convert pointers to | 
|  | other types, use the <a href="#i_inttoptr">inttoptr</a> or | 
|  | <a href="#i_ptrtoint">ptrtoint</a> instructions first.</p> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  | <pre> | 
|  | %X = bitcast i8 255 to i8          <i>; yields i8 :-1</i> | 
|  | %Y = bitcast i32* %x to sint*          <i>; yields sint*:%x</i> | 
|  | %Z = bitcast <2xint> %V to i64;        <i>; yields i64: %V</i> | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <div class="doc_subsection"> <a name="otherops">Other Operations</a> </div> | 
|  | <div class="doc_text"> | 
|  | <p>The instructions in this category are the "miscellaneous" | 
|  | instructions, which defy better classification.</p> | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a> | 
|  | </div> | 
|  | <div class="doc_text"> | 
|  | <h5>Syntax:</h5> | 
|  | <pre>  <result> = icmp <cond> <ty> <var1>, <var2> | 
|  | <i>; yields {i1}:result</i> | 
|  | </pre> | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>icmp</tt>' instruction returns a boolean value based on comparison | 
|  | of its two integer operands.</p> | 
|  | <h5>Arguments:</h5> | 
|  | <p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is | 
|  | the condition code which indicates the kind of comparison to perform. It is not | 
|  | a value, just a keyword. The possibilities for the condition code are: | 
|  | <ol> | 
|  | <li><tt>eq</tt>: equal</li> | 
|  | <li><tt>ne</tt>: not equal </li> | 
|  | <li><tt>ugt</tt>: unsigned greater than</li> | 
|  | <li><tt>uge</tt>: unsigned greater or equal</li> | 
|  | <li><tt>ult</tt>: unsigned less than</li> | 
|  | <li><tt>ule</tt>: unsigned less or equal</li> | 
|  | <li><tt>sgt</tt>: signed greater than</li> | 
|  | <li><tt>sge</tt>: signed greater or equal</li> | 
|  | <li><tt>slt</tt>: signed less than</li> | 
|  | <li><tt>sle</tt>: signed less or equal</li> | 
|  | </ol> | 
|  | <p>The remaining two arguments must be <a href="#t_integer">integer</a> or | 
|  | <a href="#t_pointer">pointer</a> typed. They must also be identical types.</p> | 
|  | <h5>Semantics:</h5> | 
|  | <p>The '<tt>icmp</tt>' compares <tt>var1</tt> and <tt>var2</tt> according to | 
|  | the condition code given as <tt>cond</tt>. The comparison performed always | 
|  | yields a <a href="#t_primitive">i1</a> result, as follows: | 
|  | <ol> | 
|  | <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal, | 
|  | <tt>false</tt> otherwise. No sign interpretation is necessary or performed. | 
|  | </li> | 
|  | <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal, | 
|  | <tt>false</tt> otherwise. No sign interpretation is necessary or performed. | 
|  | <li><tt>ugt</tt>: interprets the operands as unsigned values and yields | 
|  | <tt>true</tt> if <tt>var1</tt> is greater than <tt>var2</tt>.</li> | 
|  | <li><tt>uge</tt>: interprets the operands as unsigned values and yields | 
|  | <tt>true</tt> if <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li> | 
|  | <li><tt>ult</tt>: interprets the operands as unsigned values and yields | 
|  | <tt>true</tt> if <tt>var1</tt> is less than <tt>var2</tt>.</li> | 
|  | <li><tt>ule</tt>: interprets the operands as unsigned values and yields | 
|  | <tt>true</tt> if <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li> | 
|  | <li><tt>sgt</tt>: interprets the operands as signed values and yields | 
|  | <tt>true</tt> if <tt>var1</tt> is greater than <tt>var2</tt>.</li> | 
|  | <li><tt>sge</tt>: interprets the operands as signed values and yields | 
|  | <tt>true</tt> if <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li> | 
|  | <li><tt>slt</tt>: interprets the operands as signed values and yields | 
|  | <tt>true</tt> if <tt>var1</tt> is less than <tt>var2</tt>.</li> | 
|  | <li><tt>sle</tt>: interprets the operands as signed values and yields | 
|  | <tt>true</tt> if <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li> | 
|  | </ol> | 
|  | <p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer | 
|  | values are treated as integers and then compared.</p> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  | <pre>  <result> = icmp eq i32 4, 5          <i>; yields: result=false</i> | 
|  | <result> = icmp ne float* %X, %X     <i>; yields: result=false</i> | 
|  | <result> = icmp ult i16  4, 5        <i>; yields: result=true</i> | 
|  | <result> = icmp sgt i16  4, 5        <i>; yields: result=false</i> | 
|  | <result> = icmp ule i16 -4, 5        <i>; yields: result=false</i> | 
|  | <result> = icmp sge i16  4, 5        <i>; yields: result=false</i> | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a> | 
|  | </div> | 
|  | <div class="doc_text"> | 
|  | <h5>Syntax:</h5> | 
|  | <pre>  <result> = fcmp <cond> <ty> <var1>, <var2> | 
|  | <i>; yields {i1}:result</i> | 
|  | </pre> | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>fcmp</tt>' instruction returns a boolean value based on comparison | 
|  | of its floating point operands.</p> | 
|  | <h5>Arguments:</h5> | 
|  | <p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is | 
|  | the condition code which indicates the kind of comparison to perform. It is not | 
|  | a value, just a keyword. The possibilities for the condition code are: | 
|  | <ol> | 
|  | <li><tt>false</tt>: no comparison, always returns false</li> | 
|  | <li><tt>oeq</tt>: ordered and equal</li> | 
|  | <li><tt>ogt</tt>: ordered and greater than </li> | 
|  | <li><tt>oge</tt>: ordered and greater than or equal</li> | 
|  | <li><tt>olt</tt>: ordered and less than </li> | 
|  | <li><tt>ole</tt>: ordered and less than or equal</li> | 
|  | <li><tt>one</tt>: ordered and not equal</li> | 
|  | <li><tt>ord</tt>: ordered (no nans)</li> | 
|  | <li><tt>ueq</tt>: unordered or equal</li> | 
|  | <li><tt>ugt</tt>: unordered or greater than </li> | 
|  | <li><tt>uge</tt>: unordered or greater than or equal</li> | 
|  | <li><tt>ult</tt>: unordered or less than </li> | 
|  | <li><tt>ule</tt>: unordered or less than or equal</li> | 
|  | <li><tt>une</tt>: unordered or not equal</li> | 
|  | <li><tt>uno</tt>: unordered (either nans)</li> | 
|  | <li><tt>true</tt>: no comparison, always returns true</li> | 
|  | </ol> | 
|  | <p>In the preceding, <i>ordered</i> means that neither operand is a QNAN while | 
|  | <i>unordered</i> means that either operand may be a QNAN.</p> | 
|  | <p>The <tt>val1</tt> and <tt>val2</tt> arguments must be | 
|  | <a href="#t_floating">floating point</a> typed.  They must have identical | 
|  | types.</p> | 
|  | <p>In the foregoing, <i>ordered</i> means that neither operand is a QNAN and | 
|  | <i>unordered</i> means that either operand is a QNAN.</p> | 
|  | <h5>Semantics:</h5> | 
|  | <p>The '<tt>fcmp</tt>' compares <tt>var1</tt> and <tt>var2</tt> according to | 
|  | the condition code given as <tt>cond</tt>. The comparison performed always | 
|  | yields a <a href="#t_primitive">i1</a> result, as follows: | 
|  | <ol> | 
|  | <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li> | 
|  | <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and | 
|  | <tt>var1</tt> is equal to <tt>var2</tt>.</li> | 
|  | <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and | 
|  | <tt>var1</tt> is greather than <tt>var2</tt>.</li> | 
|  | <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and | 
|  | <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li> | 
|  | <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and | 
|  | <tt>var1</tt> is less than <tt>var2</tt>.</li> | 
|  | <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and | 
|  | <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li> | 
|  | <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and | 
|  | <tt>var1</tt> is not equal to <tt>var2</tt>.</li> | 
|  | <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li> | 
|  | <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or | 
|  | <tt>var1</tt> is equal to <tt>var2</tt>.</li> | 
|  | <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or | 
|  | <tt>var1</tt> is greater than <tt>var2</tt>.</li> | 
|  | <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or | 
|  | <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li> | 
|  | <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or | 
|  | <tt>var1</tt> is less than <tt>var2</tt>.</li> | 
|  | <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or | 
|  | <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li> | 
|  | <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or | 
|  | <tt>var1</tt> is not equal to <tt>var2</tt>.</li> | 
|  | <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li> | 
|  | <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li> | 
|  | </ol> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  | <pre>  <result> = fcmp oeq float 4.0, 5.0    <i>; yields: result=false</i> | 
|  | <result> = icmp one float 4.0, 5.0    <i>; yields: result=true</i> | 
|  | <result> = icmp olt float 4.0, 5.0    <i>; yields: result=true</i> | 
|  | <result> = icmp ueq double 1.0, 2.0   <i>; yields: result=false</i> | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> <a name="i_phi">'<tt>phi</tt>' | 
|  | Instruction</a> </div> | 
|  | <div class="doc_text"> | 
|  | <h5>Syntax:</h5> | 
|  | <pre>  <result> = phi <ty> [ <val0>, <label0>], ...<br></pre> | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>phi</tt>' instruction is used to implement the φ node in | 
|  | the SSA graph representing the function.</p> | 
|  | <h5>Arguments:</h5> | 
|  | <p>The type of the incoming values are specified with the first type | 
|  | field. After this, the '<tt>phi</tt>' instruction takes a list of pairs | 
|  | as arguments, with one pair for each predecessor basic block of the | 
|  | current block.  Only values of <a href="#t_firstclass">first class</a> | 
|  | type may be used as the value arguments to the PHI node.  Only labels | 
|  | may be used as the label arguments.</p> | 
|  | <p>There must be no non-phi instructions between the start of a basic | 
|  | block and the PHI instructions: i.e. PHI instructions must be first in | 
|  | a basic block.</p> | 
|  | <h5>Semantics:</h5> | 
|  | <p>At runtime, the '<tt>phi</tt>' instruction logically takes on the | 
|  | value specified by the parameter, depending on which basic block we | 
|  | came from in the last <a href="#terminators">terminator</a> instruction.</p> | 
|  | <h5>Example:</h5> | 
|  | <pre>Loop:       ; Infinite loop that counts from 0 on up...<br>  %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]<br>  %nextindvar = add i32 %indvar, 1<br>  br label %Loop<br></pre> | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> | 
|  | <a name="i_select">'<tt>select</tt>' Instruction</a> | 
|  | </div> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  |  | 
|  | <pre> | 
|  | <result> = select i1 <cond>, <ty> <val1>, <ty> <val2>             <i>; yields ty</i> | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  |  | 
|  | <p> | 
|  | The '<tt>select</tt>' instruction is used to choose one value based on a | 
|  | condition, without branching. | 
|  | </p> | 
|  |  | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  |  | 
|  | <p> | 
|  | The '<tt>select</tt>' instruction requires a boolean value indicating the condition, and two values of the same <a href="#t_firstclass">first class</a> type. | 
|  | </p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  |  | 
|  | <p> | 
|  | If the boolean condition evaluates to true, the instruction returns the first | 
|  | value argument; otherwise, it returns the second value argument. | 
|  | </p> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  |  | 
|  | <pre> | 
|  | %X = select i1 true, i8 17, i8 42          <i>; yields i8:17</i> | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> | 
|  | <a name="i_call">'<tt>call</tt>' Instruction</a> | 
|  | </div> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | <result> = [tail] call [<a href="#callingconv">cconv</a>] <ty>* <fnptrval>(<param list>) | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  |  | 
|  | <p>The '<tt>call</tt>' instruction represents a simple function call.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  |  | 
|  | <p>This instruction requires several arguments:</p> | 
|  |  | 
|  | <ol> | 
|  | <li> | 
|  | <p>The optional "tail" marker indicates whether the callee function accesses | 
|  | any allocas or varargs in the caller.  If the "tail" marker is present, the | 
|  | function call is eligible for tail call optimization.  Note that calls may | 
|  | be marked "tail" even if they do not occur before a <a | 
|  | href="#i_ret"><tt>ret</tt></a> instruction. | 
|  | </li> | 
|  | <li> | 
|  | <p>The optional "cconv" marker indicates which <a href="callingconv">calling | 
|  | convention</a> the call should use.  If none is specified, the call defaults | 
|  | to using C calling conventions. | 
|  | </li> | 
|  | <li> | 
|  | <p>'<tt>ty</tt>': shall be the signature of the pointer to function value | 
|  | being invoked.  The argument types must match the types implied by this | 
|  | signature.  This type can be omitted if the function is not varargs and | 
|  | if the function type does not return a pointer to a function.</p> | 
|  | </li> | 
|  | <li> | 
|  | <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to | 
|  | be invoked. In most cases, this is a direct function invocation, but | 
|  | indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer | 
|  | to function value.</p> | 
|  | </li> | 
|  | <li> | 
|  | <p>'<tt>function args</tt>': argument list whose types match the | 
|  | function signature argument types. All arguments must be of | 
|  | <a href="#t_firstclass">first class</a> type. If the function signature | 
|  | indicates the function accepts a variable number of arguments, the extra | 
|  | arguments can be specified.</p> | 
|  | </li> | 
|  | </ol> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  |  | 
|  | <p>The '<tt>call</tt>' instruction is used to cause control flow to | 
|  | transfer to a specified function, with its incoming arguments bound to | 
|  | the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>' | 
|  | instruction in the called function, control flow continues with the | 
|  | instruction after the function call, and the return value of the | 
|  | function is bound to the result argument.  This is a simpler case of | 
|  | the <a href="#i_invoke">invoke</a> instruction.</p> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  |  | 
|  | <pre> | 
|  | %retval = call i32 %test(i32 %argc) | 
|  | call i32(i8 *, ...) *%printf(i8 * %msg, i32 12, i8  42); | 
|  | %X = tail call i32 %foo() | 
|  | %Y = tail call <a href="#callingconv">fastcc</a> i32 %foo() | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> | 
|  | <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a> | 
|  | </div> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  |  | 
|  | <pre> | 
|  | <resultval> = va_arg <va_list*> <arglist>, <argty> | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  |  | 
|  | <p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through | 
|  | the "variable argument" area of a function call.  It is used to implement the | 
|  | <tt>va_arg</tt> macro in C.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  |  | 
|  | <p>This instruction takes a <tt>va_list*</tt> value and the type of | 
|  | the argument. It returns a value of the specified argument type and | 
|  | increments the <tt>va_list</tt> to point to the next argument.  Again, the | 
|  | actual type of <tt>va_list</tt> is target specific.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  |  | 
|  | <p>The '<tt>va_arg</tt>' instruction loads an argument of the specified | 
|  | type from the specified <tt>va_list</tt> and causes the | 
|  | <tt>va_list</tt> to point to the next argument.  For more information, | 
|  | see the variable argument handling <a href="#int_varargs">Intrinsic | 
|  | Functions</a>.</p> | 
|  |  | 
|  | <p>It is legal for this instruction to be called in a function which does not | 
|  | take a variable number of arguments, for example, the <tt>vfprintf</tt> | 
|  | function.</p> | 
|  |  | 
|  | <p><tt>va_arg</tt> is an LLVM instruction instead of an <a | 
|  | href="#intrinsics">intrinsic function</a> because it takes a type as an | 
|  | argument.</p> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  |  | 
|  | <p>See the <a href="#int_varargs">variable argument processing</a> section.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- *********************************************************************** --> | 
|  | <div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div> | 
|  | <!-- *********************************************************************** --> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <p>LLVM supports the notion of an "intrinsic function".  These functions have | 
|  | well known names and semantics and are required to follow certain | 
|  | restrictions. Overall, these instructions represent an extension mechanism for | 
|  | the LLVM language that does not require changing all of the transformations in | 
|  | LLVM to add to the language (or the bytecode reader/writer, the parser, | 
|  | etc...).</p> | 
|  |  | 
|  | <p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This | 
|  | prefix is reserved in LLVM for intrinsic names; thus, functions may not be named | 
|  | this.  Intrinsic functions must always be external functions: you cannot define | 
|  | the body of intrinsic functions.  Intrinsic functions may only be used in call | 
|  | or invoke instructions: it is illegal to take the address of an intrinsic | 
|  | function.  Additionally, because intrinsic functions are part of the LLVM | 
|  | language, it is required that they all be documented here if any are added.</p> | 
|  |  | 
|  |  | 
|  | <p>To learn how to add an intrinsic function, please see the <a | 
|  | href="ExtendingLLVM.html">Extending LLVM Guide</a>. | 
|  | </p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <div class="doc_subsection"> | 
|  | <a name="int_varargs">Variable Argument Handling Intrinsics</a> | 
|  | </div> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <p>Variable argument support is defined in LLVM with the <a | 
|  | href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three | 
|  | intrinsic functions.  These functions are related to the similarly | 
|  | named macros defined in the <tt><stdarg.h></tt> header file.</p> | 
|  |  | 
|  | <p>All of these functions operate on arguments that use a | 
|  | target-specific value type "<tt>va_list</tt>".  The LLVM assembly | 
|  | language reference manual does not define what this type is, so all | 
|  | transformations should be prepared to handle intrinsics with any type | 
|  | used.</p> | 
|  |  | 
|  | <p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a> | 
|  | instruction and the variable argument handling intrinsic functions are | 
|  | used.</p> | 
|  |  | 
|  | <pre> | 
|  | define i32 %test(i32 %X, ...) { | 
|  | ; Initialize variable argument processing | 
|  | %ap = alloca i8 * | 
|  | %ap2 = bitcast i8** %ap to i8* | 
|  | call void %<a href="#i_va_start">llvm.va_start</a>(i8* %ap2) | 
|  |  | 
|  | ; Read a single integer argument | 
|  | %tmp = va_arg i8 ** %ap, i32 | 
|  |  | 
|  | ; Demonstrate usage of llvm.va_copy and llvm.va_end | 
|  | %aq = alloca i8 * | 
|  | %aq2 = bitcast i8** %aq to i8* | 
|  | call void %<a href="#i_va_copy">llvm.va_copy</a>(i8 *%aq2, i8* %ap2) | 
|  | call void %<a href="#i_va_end">llvm.va_end</a>(i8* %aq2) | 
|  |  | 
|  | ; Stop processing of arguments. | 
|  | call void %<a href="#i_va_end">llvm.va_end</a>(i8* %ap2) | 
|  | ret i32 %tmp | 
|  | } | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> | 
|  | <a name="i_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a> | 
|  | </div> | 
|  |  | 
|  |  | 
|  | <div class="doc_text"> | 
|  | <h5>Syntax:</h5> | 
|  | <pre>  declare void %llvm.va_start(i8* <arglist>)<br></pre> | 
|  | <h5>Overview:</h5> | 
|  | <P>The '<tt>llvm.va_start</tt>' intrinsic initializes | 
|  | <tt>*<arglist></tt> for subsequent use by <tt><a | 
|  | href="#i_va_arg">va_arg</a></tt>.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  |  | 
|  | <P>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  |  | 
|  | <P>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt> | 
|  | macro available in C.  In a target-dependent way, it initializes the | 
|  | <tt>va_list</tt> element the argument points to, so that the next call to | 
|  | <tt>va_arg</tt> will produce the first variable argument passed to the function. | 
|  | Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the | 
|  | last argument of the function, the compiler can figure that out.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> | 
|  | <a name="i_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a> | 
|  | </div> | 
|  |  | 
|  | <div class="doc_text"> | 
|  | <h5>Syntax:</h5> | 
|  | <pre>  declare void %llvm.va_end(i8* <arglist>)<br></pre> | 
|  | <h5>Overview:</h5> | 
|  |  | 
|  | <p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt><arglist></tt> | 
|  | which has been initialized previously with <tt><a href="#i_va_start">llvm.va_start</a></tt> | 
|  | or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  |  | 
|  | <p>The argument is a <tt>va_list</tt> to destroy.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  |  | 
|  | <p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt> | 
|  | macro available in C.  In a target-dependent way, it destroys the <tt>va_list</tt>. | 
|  | Calls to <a href="#i_va_start"><tt>llvm.va_start</tt></a> and <a | 
|  | href="#i_va_copy"><tt>llvm.va_copy</tt></a> must be matched exactly | 
|  | with calls to <tt>llvm.va_end</tt>.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> | 
|  | <a name="i_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a> | 
|  | </div> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  |  | 
|  | <pre> | 
|  | declare void %llvm.va_copy(i8* <destarglist>, i8* <srcarglist>) | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  |  | 
|  | <p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position from | 
|  | the source argument list to the destination argument list.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  |  | 
|  | <p>The first argument is a pointer to a <tt>va_list</tt> element to initialize. | 
|  | The second argument is a pointer to a <tt>va_list</tt> element to copy from.</p> | 
|  |  | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  |  | 
|  | <p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt> macro | 
|  | available in C.  In a target-dependent way, it copies the source | 
|  | <tt>va_list</tt> element into the destination list.  This intrinsic is necessary | 
|  | because the <tt><a href="i_va_begin">llvm.va_begin</a></tt> intrinsic may be | 
|  | arbitrarily complex and require memory allocation, for example.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <div class="doc_subsection"> | 
|  | <a name="int_gc">Accurate Garbage Collection Intrinsics</a> | 
|  | </div> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <p> | 
|  | LLVM support for <a href="GarbageCollection.html">Accurate Garbage | 
|  | Collection</a> requires the implementation and generation of these intrinsics. | 
|  | These intrinsics allow identification of <a href="#i_gcroot">GC roots on the | 
|  | stack</a>, as well as garbage collector implementations that require <a | 
|  | href="#i_gcread">read</a> and <a href="#i_gcwrite">write</a> barriers. | 
|  | Front-ends for type-safe garbage collected languages should generate these | 
|  | intrinsics to make use of the LLVM garbage collectors.  For more details, see <a | 
|  | href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>. | 
|  | </p> | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> | 
|  | <a name="i_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a> | 
|  | </div> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  |  | 
|  | <pre> | 
|  | declare void %llvm.gcroot(<ty>** %ptrloc, <ty2>* %metadata) | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  |  | 
|  | <p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to | 
|  | the code generator, and allows some metadata to be associated with it.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  |  | 
|  | <p>The first argument specifies the address of a stack object that contains the | 
|  | root pointer.  The second pointer (which must be either a constant or a global | 
|  | value address) contains the meta-data to be associated with the root.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  |  | 
|  | <p>At runtime, a call to this intrinsics stores a null pointer into the "ptrloc" | 
|  | location.  At compile-time, the code generator generates information to allow | 
|  | the runtime to find the pointer at GC safe points. | 
|  | </p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> | 
|  | <a name="i_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a> | 
|  | </div> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  |  | 
|  | <pre> | 
|  | declare i8 * %llvm.gcread(i8 * %ObjPtr, i8 ** %Ptr) | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  |  | 
|  | <p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap | 
|  | locations, allowing garbage collector implementations that require read | 
|  | barriers.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  |  | 
|  | <p>The second argument is the address to read from, which should be an address | 
|  | allocated from the garbage collector.  The first object is a pointer to the | 
|  | start of the referenced object, if needed by the language runtime (otherwise | 
|  | null).</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  |  | 
|  | <p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load | 
|  | instruction, but may be replaced with substantially more complex code by the | 
|  | garbage collector runtime, as needed.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> | 
|  | <a name="i_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a> | 
|  | </div> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  |  | 
|  | <pre> | 
|  | declare void %llvm.gcwrite(i8 * %P1, i8 * %Obj, i8 ** %P2) | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  |  | 
|  | <p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap | 
|  | locations, allowing garbage collector implementations that require write | 
|  | barriers (such as generational or reference counting collectors).</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  |  | 
|  | <p>The first argument is the reference to store, the second is the start of the | 
|  | object to store it to, and the third is the address of the field of Obj to | 
|  | store to.  If the runtime does not require a pointer to the object, Obj may be | 
|  | null.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  |  | 
|  | <p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store | 
|  | instruction, but may be replaced with substantially more complex code by the | 
|  | garbage collector runtime, as needed.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  |  | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <div class="doc_subsection"> | 
|  | <a name="int_codegen">Code Generator Intrinsics</a> | 
|  | </div> | 
|  |  | 
|  | <div class="doc_text"> | 
|  | <p> | 
|  | These intrinsics are provided by LLVM to expose special features that may only | 
|  | be implemented with code generator support. | 
|  | </p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> | 
|  | <a name="i_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a> | 
|  | </div> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | declare i8  *%llvm.returnaddress(i32 <level>) | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  |  | 
|  | <p> | 
|  | The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a | 
|  | target-specific value indicating the return address of the current function | 
|  | or one of its callers. | 
|  | </p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  |  | 
|  | <p> | 
|  | The argument to this intrinsic indicates which function to return the address | 
|  | for.  Zero indicates the calling function, one indicates its caller, etc.  The | 
|  | argument is <b>required</b> to be a constant integer value. | 
|  | </p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  |  | 
|  | <p> | 
|  | The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating | 
|  | the return address of the specified call frame, or zero if it cannot be | 
|  | identified.  The value returned by this intrinsic is likely to be incorrect or 0 | 
|  | for arguments other than zero, so it should only be used for debugging purposes. | 
|  | </p> | 
|  |  | 
|  | <p> | 
|  | Note that calling this intrinsic does not prevent function inlining or other | 
|  | aggressive transformations, so the value returned may not be that of the obvious | 
|  | source-language caller. | 
|  | </p> | 
|  | </div> | 
|  |  | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> | 
|  | <a name="i_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a> | 
|  | </div> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | declare i8  *%llvm.frameaddress(i32 <level>) | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  |  | 
|  | <p> | 
|  | The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the | 
|  | target-specific frame pointer value for the specified stack frame. | 
|  | </p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  |  | 
|  | <p> | 
|  | The argument to this intrinsic indicates which function to return the frame | 
|  | pointer for.  Zero indicates the calling function, one indicates its caller, | 
|  | etc.  The argument is <b>required</b> to be a constant integer value. | 
|  | </p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  |  | 
|  | <p> | 
|  | The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating | 
|  | the frame address of the specified call frame, or zero if it cannot be | 
|  | identified.  The value returned by this intrinsic is likely to be incorrect or 0 | 
|  | for arguments other than zero, so it should only be used for debugging purposes. | 
|  | </p> | 
|  |  | 
|  | <p> | 
|  | Note that calling this intrinsic does not prevent function inlining or other | 
|  | aggressive transformations, so the value returned may not be that of the obvious | 
|  | source-language caller. | 
|  | </p> | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> | 
|  | <a name="i_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a> | 
|  | </div> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | declare i8  *%llvm.stacksave() | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  |  | 
|  | <p> | 
|  | The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state of | 
|  | the function stack, for use with <a href="#i_stackrestore"> | 
|  | <tt>llvm.stackrestore</tt></a>.  This is useful for implementing language | 
|  | features like scoped automatic variable sized arrays in C99. | 
|  | </p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  |  | 
|  | <p> | 
|  | This intrinsic returns a opaque pointer value that can be passed to <a | 
|  | href="#i_stackrestore"><tt>llvm.stackrestore</tt></a>.  When an | 
|  | <tt>llvm.stackrestore</tt> intrinsic is executed with a value saved from | 
|  | <tt>llvm.stacksave</tt>, it effectively restores the state of the stack to the | 
|  | state it was in when the <tt>llvm.stacksave</tt> intrinsic executed.  In | 
|  | practice, this pops any <a href="#i_alloca">alloca</a> blocks from the stack | 
|  | that were allocated after the <tt>llvm.stacksave</tt> was executed. | 
|  | </p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> | 
|  | <a name="i_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a> | 
|  | </div> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | declare void %llvm.stackrestore(i8 * %ptr) | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  |  | 
|  | <p> | 
|  | The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of | 
|  | the function stack to the state it was in when the corresponding <a | 
|  | href="#llvm.stacksave"><tt>llvm.stacksave</tt></a> intrinsic executed.  This is | 
|  | useful for implementing language features like scoped automatic variable sized | 
|  | arrays in C99. | 
|  | </p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  |  | 
|  | <p> | 
|  | See the description for <a href="#i_stacksave"><tt>llvm.stacksave</tt></a>. | 
|  | </p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> | 
|  | <a name="i_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a> | 
|  | </div> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | declare void %llvm.prefetch(i8  * <address>, | 
|  | i32 <rw>, i32 <locality>) | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  |  | 
|  |  | 
|  | <p> | 
|  | The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to insert | 
|  | a prefetch instruction if supported; otherwise, it is a noop.  Prefetches have | 
|  | no | 
|  | effect on the behavior of the program but can change its performance | 
|  | characteristics. | 
|  | </p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  |  | 
|  | <p> | 
|  | <tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the specifier | 
|  | determining if the fetch should be for a read (0) or write (1), and | 
|  | <tt>locality</tt> is a temporal locality specifier ranging from (0) - no | 
|  | locality, to (3) - extremely local keep in cache.  The <tt>rw</tt> and | 
|  | <tt>locality</tt> arguments must be constant integers. | 
|  | </p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  |  | 
|  | <p> | 
|  | This intrinsic does not modify the behavior of the program.  In particular, | 
|  | prefetches cannot trap and do not produce a value.  On targets that support this | 
|  | intrinsic, the prefetch can provide hints to the processor cache for better | 
|  | performance. | 
|  | </p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> | 
|  | <a name="i_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a> | 
|  | </div> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | declare void %llvm.pcmarker( i32 <id> ) | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  |  | 
|  |  | 
|  | <p> | 
|  | The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program Counter | 
|  | (PC) in a region of | 
|  | code to simulators and other tools.  The method is target specific, but it is | 
|  | expected that the marker will use exported symbols to transmit the PC of the marker. | 
|  | The marker makes no guarantees that it will remain with any specific instruction | 
|  | after optimizations.  It is possible that the presence of a marker will inhibit | 
|  | optimizations.  The intended use is to be inserted after optimizations to allow | 
|  | correlations of simulation runs. | 
|  | </p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  |  | 
|  | <p> | 
|  | <tt>id</tt> is a numerical id identifying the marker. | 
|  | </p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  |  | 
|  | <p> | 
|  | This intrinsic does not modify the behavior of the program.  Backends that do not | 
|  | support this intrinisic may ignore it. | 
|  | </p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> | 
|  | <a name="i_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a> | 
|  | </div> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | declare i64 %llvm.readcyclecounter( ) | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  |  | 
|  |  | 
|  | <p> | 
|  | The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle | 
|  | counter register (or similar low latency, high accuracy clocks) on those targets | 
|  | that support it.  On X86, it should map to RDTSC.  On Alpha, it should map to RPCC. | 
|  | As the backing counters overflow quickly (on the order of 9 seconds on alpha), this | 
|  | should only be used for small timings. | 
|  | </p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  |  | 
|  | <p> | 
|  | When directly supported, reading the cycle counter should not modify any memory. | 
|  | Implementations are allowed to either return a application specific value or a | 
|  | system wide value.  On backends without support, this is lowered to a constant 0. | 
|  | </p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <div class="doc_subsection"> | 
|  | <a name="int_libc">Standard C Library Intrinsics</a> | 
|  | </div> | 
|  |  | 
|  | <div class="doc_text"> | 
|  | <p> | 
|  | LLVM provides intrinsics for a few important standard C library functions. | 
|  | These intrinsics allow source-language front-ends to pass information about the | 
|  | alignment of the pointer arguments to the code generator, providing opportunity | 
|  | for more efficient code generation. | 
|  | </p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> | 
|  | <a name="i_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a> | 
|  | </div> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | declare void %llvm.memcpy.i32(i8 * <dest>, i8 * <src>, | 
|  | i32 <len>, i32 <align>) | 
|  | declare void %llvm.memcpy.i64(i8 * <dest>, i8 * <src>, | 
|  | i64 <len>, i32 <align>) | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  |  | 
|  | <p> | 
|  | The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source | 
|  | location to the destination location. | 
|  | </p> | 
|  |  | 
|  | <p> | 
|  | Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt> | 
|  | intrinsics do not return a value, and takes an extra alignment argument. | 
|  | </p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  |  | 
|  | <p> | 
|  | The first argument is a pointer to the destination, the second is a pointer to | 
|  | the source.  The third argument is an integer argument | 
|  | specifying the number of bytes to copy, and the fourth argument is the alignment | 
|  | of the source and destination locations. | 
|  | </p> | 
|  |  | 
|  | <p> | 
|  | If the call to this intrinisic has an alignment value that is not 0 or 1, then | 
|  | the caller guarantees that both the source and destination pointers are aligned | 
|  | to that boundary. | 
|  | </p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  |  | 
|  | <p> | 
|  | The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source | 
|  | location to the destination location, which are not allowed to overlap.  It | 
|  | copies "len" bytes of memory over.  If the argument is known to be aligned to | 
|  | some boundary, this can be specified as the fourth argument, otherwise it should | 
|  | be set to 0 or 1. | 
|  | </p> | 
|  | </div> | 
|  |  | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> | 
|  | <a name="i_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a> | 
|  | </div> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | declare void %llvm.memmove.i32(i8 * <dest>, i8 * <src>, | 
|  | i32 <len>, i32 <align>) | 
|  | declare void %llvm.memmove.i64(i8 * <dest>, i8 * <src>, | 
|  | i64 <len>, i32 <align>) | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  |  | 
|  | <p> | 
|  | The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the source | 
|  | location to the destination location. It is similar to the | 
|  | '<tt>llvm.memcmp</tt>' intrinsic but allows the two memory locations to overlap. | 
|  | </p> | 
|  |  | 
|  | <p> | 
|  | Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt> | 
|  | intrinsics do not return a value, and takes an extra alignment argument. | 
|  | </p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  |  | 
|  | <p> | 
|  | The first argument is a pointer to the destination, the second is a pointer to | 
|  | the source.  The third argument is an integer argument | 
|  | specifying the number of bytes to copy, and the fourth argument is the alignment | 
|  | of the source and destination locations. | 
|  | </p> | 
|  |  | 
|  | <p> | 
|  | If the call to this intrinisic has an alignment value that is not 0 or 1, then | 
|  | the caller guarantees that the source and destination pointers are aligned to | 
|  | that boundary. | 
|  | </p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  |  | 
|  | <p> | 
|  | The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the source | 
|  | location to the destination location, which may overlap.  It | 
|  | copies "len" bytes of memory over.  If the argument is known to be aligned to | 
|  | some boundary, this can be specified as the fourth argument, otherwise it should | 
|  | be set to 0 or 1. | 
|  | </p> | 
|  | </div> | 
|  |  | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> | 
|  | <a name="i_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a> | 
|  | </div> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | declare void %llvm.memset.i32(i8 * <dest>, i8 <val>, | 
|  | i32 <len>, i32 <align>) | 
|  | declare void %llvm.memset.i64(i8 * <dest>, i8 <val>, | 
|  | i64 <len>, i32 <align>) | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  |  | 
|  | <p> | 
|  | The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a particular | 
|  | byte value. | 
|  | </p> | 
|  |  | 
|  | <p> | 
|  | Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic | 
|  | does not return a value, and takes an extra alignment argument. | 
|  | </p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  |  | 
|  | <p> | 
|  | The first argument is a pointer to the destination to fill, the second is the | 
|  | byte value to fill it with, the third argument is an integer | 
|  | argument specifying the number of bytes to fill, and the fourth argument is the | 
|  | known alignment of destination location. | 
|  | </p> | 
|  |  | 
|  | <p> | 
|  | If the call to this intrinisic has an alignment value that is not 0 or 1, then | 
|  | the caller guarantees that the destination pointer is aligned to that boundary. | 
|  | </p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  |  | 
|  | <p> | 
|  | The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting at | 
|  | the | 
|  | destination location.  If the argument is known to be aligned to some boundary, | 
|  | this can be specified as the fourth argument, otherwise it should be set to 0 or | 
|  | 1. | 
|  | </p> | 
|  | </div> | 
|  |  | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> | 
|  | <a name="i_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a> | 
|  | </div> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | declare float %llvm.sqrt.f32(float %Val) | 
|  | declare double %llvm.sqrt.f64(double %Val) | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  |  | 
|  | <p> | 
|  | The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand, | 
|  | returning the same value as the libm '<tt>sqrt</tt>' function would.  Unlike | 
|  | <tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for | 
|  | negative numbers (which allows for better optimization). | 
|  | </p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  |  | 
|  | <p> | 
|  | The argument and return value are floating point numbers of the same type. | 
|  | </p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  |  | 
|  | <p> | 
|  | This function returns the sqrt of the specified operand if it is a positive | 
|  | floating point number. | 
|  | </p> | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> | 
|  | <a name="i_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a> | 
|  | </div> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | declare float  %llvm.powi.f32(float  %Val, i32 %power) | 
|  | declare double %llvm.powi.f64(double %Val, i32 %power) | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  |  | 
|  | <p> | 
|  | The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the | 
|  | specified (positive or negative) power.  The order of evaluation of | 
|  | multiplications is not defined. | 
|  | </p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  |  | 
|  | <p> | 
|  | The second argument is an integer power, and the first is a value to raise to | 
|  | that power. | 
|  | </p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  |  | 
|  | <p> | 
|  | This function returns the first value raised to the second power with an | 
|  | unspecified sequence of rounding operations.</p> | 
|  | </div> | 
|  |  | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <div class="doc_subsection"> | 
|  | <a name="int_manip">Bit Manipulation Intrinsics</a> | 
|  | </div> | 
|  |  | 
|  | <div class="doc_text"> | 
|  | <p> | 
|  | LLVM provides intrinsics for a few important bit manipulation operations. | 
|  | These allow efficient code generation for some algorithms. | 
|  | </p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> | 
|  | <a name="i_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a> | 
|  | </div> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | declare i16 %llvm.bswap.i16(i16 <id>) | 
|  | declare i32 %llvm.bswap.i32(i32 <id>) | 
|  | declare i64 %llvm.bswap.i64(i64 <id>) | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  |  | 
|  | <p> | 
|  | The '<tt>llvm.bwsap</tt>' family of intrinsics is used to byteswap a 16, 32 or | 
|  | 64 bit quantity.  These are useful for performing operations on data that is not | 
|  | in the target's  native byte order. | 
|  | </p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  |  | 
|  | <p> | 
|  | The <tt>llvm.bswap.16</tt> intrinsic returns an i16 value that has the high | 
|  | and low byte of the input i16 swapped.  Similarly, the <tt>llvm.bswap.i32</tt> | 
|  | intrinsic returns an i32 value that has the four bytes of the input i32 | 
|  | swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the returned | 
|  | i32 will have its bytes in 3, 2, 1, 0 order.  The <tt>llvm.bswap.i64</tt> | 
|  | intrinsic extends this concept to 64 bits. | 
|  | </p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> | 
|  | <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a> | 
|  | </div> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | declare i8  %llvm.ctpop.i8 (i8  <src>) | 
|  | declare i16 %llvm.ctpop.i16(i16 <src>) | 
|  | declare i32 %llvm.ctpop.i32(i32 <src>) | 
|  | declare i64 %llvm.ctpop.i64(i64 <src>) | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  |  | 
|  | <p> | 
|  | The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set in a | 
|  | value. | 
|  | </p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  |  | 
|  | <p> | 
|  | The only argument is the value to be counted.  The argument may be of any | 
|  | integer type.  The return type must match the argument type. | 
|  | </p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  |  | 
|  | <p> | 
|  | The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable. | 
|  | </p> | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> | 
|  | <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a> | 
|  | </div> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | declare i8  %llvm.ctlz.i8 (i8  <src>) | 
|  | declare i16 %llvm.ctlz.i16(i16 <src>) | 
|  | declare i32 %llvm.ctlz.i32(i32 <src>) | 
|  | declare i64 %llvm.ctlz.i64(i64 <src>) | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  |  | 
|  | <p> | 
|  | The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of | 
|  | leading zeros in a variable. | 
|  | </p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  |  | 
|  | <p> | 
|  | The only argument is the value to be counted.  The argument may be of any | 
|  | integer type. The return type must match the argument type. | 
|  | </p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  |  | 
|  | <p> | 
|  | The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) zeros | 
|  | in a variable.  If the src == 0 then the result is the size in bits of the type | 
|  | of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>. | 
|  | </p> | 
|  | </div> | 
|  |  | 
|  |  | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <div class="doc_subsubsection"> | 
|  | <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a> | 
|  | </div> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | declare i8  %llvm.cttz.i8 (i8  <src>) | 
|  | declare i16 %llvm.cttz.i16(i16 <src>) | 
|  | declare i32 %llvm.cttz.i32(i32 <src>) | 
|  | declare i64 %llvm.cttz.i64(i64 <src>) | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  |  | 
|  | <p> | 
|  | The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of | 
|  | trailing zeros. | 
|  | </p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  |  | 
|  | <p> | 
|  | The only argument is the value to be counted.  The argument may be of any | 
|  | integer type.  The return type must match the argument type. | 
|  | </p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  |  | 
|  | <p> | 
|  | The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) zeros | 
|  | in a variable.  If the src == 0 then the result is the size in bits of the type | 
|  | of src.  For example, <tt>llvm.cttz(2) = 1</tt>. | 
|  | </p> | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <div class="doc_subsection"> | 
|  | <a name="int_debugger">Debugger Intrinsics</a> | 
|  | </div> | 
|  |  | 
|  | <div class="doc_text"> | 
|  | <p> | 
|  | The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix), | 
|  | are described in the <a | 
|  | href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level | 
|  | Debugging</a> document. | 
|  | </p> | 
|  | </div> | 
|  |  | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <div class="doc_subsection"> | 
|  | <a name="int_eh">Exception Handling Intrinsics</a> | 
|  | </div> | 
|  |  | 
|  | <div class="doc_text"> | 
|  | <p> The LLVM exception handling intrinsics (which all start with | 
|  | <tt>llvm.eh.</tt> prefix), are described in the <a | 
|  | href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception | 
|  | Handling</a> document. </p> | 
|  | </div> | 
|  |  | 
|  |  | 
|  | <!-- *********************************************************************** --> | 
|  | <hr> | 
|  | <address> | 
|  | <a href="http://jigsaw.w3.org/css-validator/check/referer"><img | 
|  | src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a> | 
|  | <a href="http://validator.w3.org/check/referer"><img | 
|  | src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!" /></a> | 
|  |  | 
|  | <a href="mailto:sabre@nondot.org">Chris Lattner</a><br> | 
|  | <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br> | 
|  | Last modified: $Date$ | 
|  | </address> | 
|  | </body> | 
|  | </html> |