| //===- ModuloSchedule.cpp - Software pipeline schedule expansion ----------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/CodeGen/ModuloSchedule.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/CodeGen/LiveIntervals.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/TargetInstrInfo.h" |
| #include "llvm/MC/MCContext.h" |
| #include "llvm/Support/Debug.h" |
| |
| #define DEBUG_TYPE "pipeliner" |
| using namespace llvm; |
| |
| //===----------------------------------------------------------------------===// |
| // ModuloScheduleExpander implementation |
| //===----------------------------------------------------------------------===// |
| |
| /// Return the register values for the operands of a Phi instruction. |
| /// This function assume the instruction is a Phi. |
| static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, |
| unsigned &InitVal, unsigned &LoopVal) { |
| assert(Phi.isPHI() && "Expecting a Phi."); |
| |
| InitVal = 0; |
| LoopVal = 0; |
| for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) |
| if (Phi.getOperand(i + 1).getMBB() != Loop) |
| InitVal = Phi.getOperand(i).getReg(); |
| else |
| LoopVal = Phi.getOperand(i).getReg(); |
| |
| assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); |
| } |
| |
| /// Return the Phi register value that comes from the incoming block. |
| static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { |
| for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) |
| if (Phi.getOperand(i + 1).getMBB() != LoopBB) |
| return Phi.getOperand(i).getReg(); |
| return 0; |
| } |
| |
| /// Return the Phi register value that comes the loop block. |
| static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { |
| for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) |
| if (Phi.getOperand(i + 1).getMBB() == LoopBB) |
| return Phi.getOperand(i).getReg(); |
| return 0; |
| } |
| |
| void ModuloScheduleExpander::expand() { |
| BB = Schedule.getLoop()->getTopBlock(); |
| Preheader = *BB->pred_begin(); |
| if (Preheader == BB) |
| Preheader = *std::next(BB->pred_begin()); |
| |
| // Iterate over the definitions in each instruction, and compute the |
| // stage difference for each use. Keep the maximum value. |
| for (MachineInstr *MI : Schedule.getInstructions()) { |
| int DefStage = Schedule.getStage(MI); |
| for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { |
| MachineOperand &Op = MI->getOperand(i); |
| if (!Op.isReg() || !Op.isDef()) |
| continue; |
| |
| Register Reg = Op.getReg(); |
| unsigned MaxDiff = 0; |
| bool PhiIsSwapped = false; |
| for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg), |
| EI = MRI.use_end(); |
| UI != EI; ++UI) { |
| MachineOperand &UseOp = *UI; |
| MachineInstr *UseMI = UseOp.getParent(); |
| int UseStage = Schedule.getStage(UseMI); |
| unsigned Diff = 0; |
| if (UseStage != -1 && UseStage >= DefStage) |
| Diff = UseStage - DefStage; |
| if (MI->isPHI()) { |
| if (isLoopCarried(*MI)) |
| ++Diff; |
| else |
| PhiIsSwapped = true; |
| } |
| MaxDiff = std::max(Diff, MaxDiff); |
| } |
| RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped); |
| } |
| } |
| |
| generatePipelinedLoop(); |
| } |
| |
| void ModuloScheduleExpander::generatePipelinedLoop() { |
| // Create a new basic block for the kernel and add it to the CFG. |
| MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); |
| |
| unsigned MaxStageCount = Schedule.getNumStages() - 1; |
| |
| // Remember the registers that are used in different stages. The index is |
| // the iteration, or stage, that the instruction is scheduled in. This is |
| // a map between register names in the original block and the names created |
| // in each stage of the pipelined loop. |
| ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2]; |
| InstrMapTy InstrMap; |
| |
| SmallVector<MachineBasicBlock *, 4> PrologBBs; |
| |
| // Generate the prolog instructions that set up the pipeline. |
| generateProlog(MaxStageCount, KernelBB, VRMap, PrologBBs); |
| MF.insert(BB->getIterator(), KernelBB); |
| |
| // Rearrange the instructions to generate the new, pipelined loop, |
| // and update register names as needed. |
| for (MachineInstr *CI : Schedule.getInstructions()) { |
| if (CI->isPHI()) |
| continue; |
| unsigned StageNum = Schedule.getStage(CI); |
| MachineInstr *NewMI = cloneInstr(CI, MaxStageCount, StageNum); |
| updateInstruction(NewMI, false, MaxStageCount, StageNum, VRMap); |
| KernelBB->push_back(NewMI); |
| InstrMap[NewMI] = CI; |
| } |
| |
| // Copy any terminator instructions to the new kernel, and update |
| // names as needed. |
| for (MachineBasicBlock::iterator I = BB->getFirstTerminator(), |
| E = BB->instr_end(); |
| I != E; ++I) { |
| MachineInstr *NewMI = MF.CloneMachineInstr(&*I); |
| updateInstruction(NewMI, false, MaxStageCount, 0, VRMap); |
| KernelBB->push_back(NewMI); |
| InstrMap[NewMI] = &*I; |
| } |
| |
| KernelBB->transferSuccessors(BB); |
| KernelBB->replaceSuccessor(BB, KernelBB); |
| |
| generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap, |
| InstrMap, MaxStageCount, MaxStageCount, false); |
| generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap, InstrMap, |
| MaxStageCount, MaxStageCount, false); |
| |
| LLVM_DEBUG(dbgs() << "New block\n"; KernelBB->dump();); |
| |
| SmallVector<MachineBasicBlock *, 4> EpilogBBs; |
| // Generate the epilog instructions to complete the pipeline. |
| generateEpilog(MaxStageCount, KernelBB, VRMap, EpilogBBs, PrologBBs); |
| |
| // We need this step because the register allocation doesn't handle some |
| // situations well, so we insert copies to help out. |
| splitLifetimes(KernelBB, EpilogBBs); |
| |
| // Remove dead instructions due to loop induction variables. |
| removeDeadInstructions(KernelBB, EpilogBBs); |
| |
| // Add branches between prolog and epilog blocks. |
| addBranches(*Preheader, PrologBBs, KernelBB, EpilogBBs, VRMap); |
| |
| // Remove the original loop since it's no longer referenced. |
| for (auto &I : *BB) |
| LIS.RemoveMachineInstrFromMaps(I); |
| BB->clear(); |
| BB->eraseFromParent(); |
| |
| delete[] VRMap; |
| } |
| |
| /// Generate the pipeline prolog code. |
| void ModuloScheduleExpander::generateProlog(unsigned LastStage, |
| MachineBasicBlock *KernelBB, |
| ValueMapTy *VRMap, |
| MBBVectorTy &PrologBBs) { |
| MachineBasicBlock *PredBB = Preheader; |
| InstrMapTy InstrMap; |
| |
| // Generate a basic block for each stage, not including the last stage, |
| // which will be generated in the kernel. Each basic block may contain |
| // instructions from multiple stages/iterations. |
| for (unsigned i = 0; i < LastStage; ++i) { |
| // Create and insert the prolog basic block prior to the original loop |
| // basic block. The original loop is removed later. |
| MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); |
| PrologBBs.push_back(NewBB); |
| MF.insert(BB->getIterator(), NewBB); |
| NewBB->transferSuccessors(PredBB); |
| PredBB->addSuccessor(NewBB); |
| PredBB = NewBB; |
| |
| // Generate instructions for each appropriate stage. Process instructions |
| // in original program order. |
| for (int StageNum = i; StageNum >= 0; --StageNum) { |
| for (MachineBasicBlock::iterator BBI = BB->instr_begin(), |
| BBE = BB->getFirstTerminator(); |
| BBI != BBE; ++BBI) { |
| if (Schedule.getStage(&*BBI) == StageNum) { |
| if (BBI->isPHI()) |
| continue; |
| MachineInstr *NewMI = |
| cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum); |
| updateInstruction(NewMI, false, i, (unsigned)StageNum, VRMap); |
| NewBB->push_back(NewMI); |
| InstrMap[NewMI] = &*BBI; |
| } |
| } |
| } |
| rewritePhiValues(NewBB, i, VRMap, InstrMap); |
| LLVM_DEBUG({ |
| dbgs() << "prolog:\n"; |
| NewBB->dump(); |
| }); |
| } |
| |
| PredBB->replaceSuccessor(BB, KernelBB); |
| |
| // Check if we need to remove the branch from the preheader to the original |
| // loop, and replace it with a branch to the new loop. |
| unsigned numBranches = TII->removeBranch(*Preheader); |
| if (numBranches) { |
| SmallVector<MachineOperand, 0> Cond; |
| TII->insertBranch(*Preheader, PrologBBs[0], nullptr, Cond, DebugLoc()); |
| } |
| } |
| |
| /// Generate the pipeline epilog code. The epilog code finishes the iterations |
| /// that were started in either the prolog or the kernel. We create a basic |
| /// block for each stage that needs to complete. |
| void ModuloScheduleExpander::generateEpilog(unsigned LastStage, |
| MachineBasicBlock *KernelBB, |
| ValueMapTy *VRMap, |
| MBBVectorTy &EpilogBBs, |
| MBBVectorTy &PrologBBs) { |
| // We need to change the branch from the kernel to the first epilog block, so |
| // this call to analyze branch uses the kernel rather than the original BB. |
| MachineBasicBlock *TBB = nullptr, *FBB = nullptr; |
| SmallVector<MachineOperand, 4> Cond; |
| bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond); |
| assert(!checkBranch && "generateEpilog must be able to analyze the branch"); |
| if (checkBranch) |
| return; |
| |
| MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin(); |
| if (*LoopExitI == KernelBB) |
| ++LoopExitI; |
| assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor"); |
| MachineBasicBlock *LoopExitBB = *LoopExitI; |
| |
| MachineBasicBlock *PredBB = KernelBB; |
| MachineBasicBlock *EpilogStart = LoopExitBB; |
| InstrMapTy InstrMap; |
| |
| // Generate a basic block for each stage, not including the last stage, |
| // which was generated for the kernel. Each basic block may contain |
| // instructions from multiple stages/iterations. |
| int EpilogStage = LastStage + 1; |
| for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) { |
| MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(); |
| EpilogBBs.push_back(NewBB); |
| MF.insert(BB->getIterator(), NewBB); |
| |
| PredBB->replaceSuccessor(LoopExitBB, NewBB); |
| NewBB->addSuccessor(LoopExitBB); |
| |
| if (EpilogStart == LoopExitBB) |
| EpilogStart = NewBB; |
| |
| // Add instructions to the epilog depending on the current block. |
| // Process instructions in original program order. |
| for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) { |
| for (auto &BBI : *BB) { |
| if (BBI.isPHI()) |
| continue; |
| MachineInstr *In = &BBI; |
| if ((unsigned)Schedule.getStage(In) == StageNum) { |
| // Instructions with memoperands in the epilog are updated with |
| // conservative values. |
| MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0); |
| updateInstruction(NewMI, i == 1, EpilogStage, 0, VRMap); |
| NewBB->push_back(NewMI); |
| InstrMap[NewMI] = In; |
| } |
| } |
| } |
| generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap, |
| InstrMap, LastStage, EpilogStage, i == 1); |
| generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap, InstrMap, |
| LastStage, EpilogStage, i == 1); |
| PredBB = NewBB; |
| |
| LLVM_DEBUG({ |
| dbgs() << "epilog:\n"; |
| NewBB->dump(); |
| }); |
| } |
| |
| // Fix any Phi nodes in the loop exit block. |
| LoopExitBB->replacePhiUsesWith(BB, PredBB); |
| |
| // Create a branch to the new epilog from the kernel. |
| // Remove the original branch and add a new branch to the epilog. |
| TII->removeBranch(*KernelBB); |
| TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc()); |
| // Add a branch to the loop exit. |
| if (EpilogBBs.size() > 0) { |
| MachineBasicBlock *LastEpilogBB = EpilogBBs.back(); |
| SmallVector<MachineOperand, 4> Cond1; |
| TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc()); |
| } |
| } |
| |
| /// Replace all uses of FromReg that appear outside the specified |
| /// basic block with ToReg. |
| static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg, |
| MachineBasicBlock *MBB, |
| MachineRegisterInfo &MRI, |
| LiveIntervals &LIS) { |
| for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg), |
| E = MRI.use_end(); |
| I != E;) { |
| MachineOperand &O = *I; |
| ++I; |
| if (O.getParent()->getParent() != MBB) |
| O.setReg(ToReg); |
| } |
| if (!LIS.hasInterval(ToReg)) |
| LIS.createEmptyInterval(ToReg); |
| } |
| |
| /// Return true if the register has a use that occurs outside the |
| /// specified loop. |
| static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB, |
| MachineRegisterInfo &MRI) { |
| for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg), |
| E = MRI.use_end(); |
| I != E; ++I) |
| if (I->getParent()->getParent() != BB) |
| return true; |
| return false; |
| } |
| |
| /// Generate Phis for the specific block in the generated pipelined code. |
| /// This function looks at the Phis from the original code to guide the |
| /// creation of new Phis. |
| void ModuloScheduleExpander::generateExistingPhis( |
| MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, |
| MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap, |
| unsigned LastStageNum, unsigned CurStageNum, bool IsLast) { |
| // Compute the stage number for the initial value of the Phi, which |
| // comes from the prolog. The prolog to use depends on to which kernel/ |
| // epilog that we're adding the Phi. |
| unsigned PrologStage = 0; |
| unsigned PrevStage = 0; |
| bool InKernel = (LastStageNum == CurStageNum); |
| if (InKernel) { |
| PrologStage = LastStageNum - 1; |
| PrevStage = CurStageNum; |
| } else { |
| PrologStage = LastStageNum - (CurStageNum - LastStageNum); |
| PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1; |
| } |
| |
| for (MachineBasicBlock::iterator BBI = BB->instr_begin(), |
| BBE = BB->getFirstNonPHI(); |
| BBI != BBE; ++BBI) { |
| Register Def = BBI->getOperand(0).getReg(); |
| |
| unsigned InitVal = 0; |
| unsigned LoopVal = 0; |
| getPhiRegs(*BBI, BB, InitVal, LoopVal); |
| |
| unsigned PhiOp1 = 0; |
| // The Phi value from the loop body typically is defined in the loop, but |
| // not always. So, we need to check if the value is defined in the loop. |
| unsigned PhiOp2 = LoopVal; |
| if (VRMap[LastStageNum].count(LoopVal)) |
| PhiOp2 = VRMap[LastStageNum][LoopVal]; |
| |
| int StageScheduled = Schedule.getStage(&*BBI); |
| int LoopValStage = Schedule.getStage(MRI.getVRegDef(LoopVal)); |
| unsigned NumStages = getStagesForReg(Def, CurStageNum); |
| if (NumStages == 0) { |
| // We don't need to generate a Phi anymore, but we need to rename any uses |
| // of the Phi value. |
| unsigned NewReg = VRMap[PrevStage][LoopVal]; |
| rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, 0, &*BBI, Def, |
| InitVal, NewReg); |
| if (VRMap[CurStageNum].count(LoopVal)) |
| VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal]; |
| } |
| // Adjust the number of Phis needed depending on the number of prologs left, |
| // and the distance from where the Phi is first scheduled. The number of |
| // Phis cannot exceed the number of prolog stages. Each stage can |
| // potentially define two values. |
| unsigned MaxPhis = PrologStage + 2; |
| if (!InKernel && (int)PrologStage <= LoopValStage) |
| MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1); |
| unsigned NumPhis = std::min(NumStages, MaxPhis); |
| |
| unsigned NewReg = 0; |
| unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled; |
| // In the epilog, we may need to look back one stage to get the correct |
| // Phi name because the epilog and prolog blocks execute the same stage. |
| // The correct name is from the previous block only when the Phi has |
| // been completely scheduled prior to the epilog, and Phi value is not |
| // needed in multiple stages. |
| int StageDiff = 0; |
| if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 && |
| NumPhis == 1) |
| StageDiff = 1; |
| // Adjust the computations below when the phi and the loop definition |
| // are scheduled in different stages. |
| if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage) |
| StageDiff = StageScheduled - LoopValStage; |
| for (unsigned np = 0; np < NumPhis; ++np) { |
| // If the Phi hasn't been scheduled, then use the initial Phi operand |
| // value. Otherwise, use the scheduled version of the instruction. This |
| // is a little complicated when a Phi references another Phi. |
| if (np > PrologStage || StageScheduled >= (int)LastStageNum) |
| PhiOp1 = InitVal; |
| // Check if the Phi has already been scheduled in a prolog stage. |
| else if (PrologStage >= AccessStage + StageDiff + np && |
| VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0) |
| PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal]; |
| // Check if the Phi has already been scheduled, but the loop instruction |
| // is either another Phi, or doesn't occur in the loop. |
| else if (PrologStage >= AccessStage + StageDiff + np) { |
| // If the Phi references another Phi, we need to examine the other |
| // Phi to get the correct value. |
| PhiOp1 = LoopVal; |
| MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1); |
| int Indirects = 1; |
| while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) { |
| int PhiStage = Schedule.getStage(InstOp1); |
| if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects) |
| PhiOp1 = getInitPhiReg(*InstOp1, BB); |
| else |
| PhiOp1 = getLoopPhiReg(*InstOp1, BB); |
| InstOp1 = MRI.getVRegDef(PhiOp1); |
| int PhiOpStage = Schedule.getStage(InstOp1); |
| int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0); |
| if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np && |
| VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) { |
| PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1]; |
| break; |
| } |
| ++Indirects; |
| } |
| } else |
| PhiOp1 = InitVal; |
| // If this references a generated Phi in the kernel, get the Phi operand |
| // from the incoming block. |
| if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) |
| if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) |
| PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); |
| |
| MachineInstr *PhiInst = MRI.getVRegDef(LoopVal); |
| bool LoopDefIsPhi = PhiInst && PhiInst->isPHI(); |
| // In the epilog, a map lookup is needed to get the value from the kernel, |
| // or previous epilog block. How is does this depends on if the |
| // instruction is scheduled in the previous block. |
| if (!InKernel) { |
| int StageDiffAdj = 0; |
| if (LoopValStage != -1 && StageScheduled > LoopValStage) |
| StageDiffAdj = StageScheduled - LoopValStage; |
| // Use the loop value defined in the kernel, unless the kernel |
| // contains the last definition of the Phi. |
| if (np == 0 && PrevStage == LastStageNum && |
| (StageScheduled != 0 || LoopValStage != 0) && |
| VRMap[PrevStage - StageDiffAdj].count(LoopVal)) |
| PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal]; |
| // Use the value defined by the Phi. We add one because we switch |
| // from looking at the loop value to the Phi definition. |
| else if (np > 0 && PrevStage == LastStageNum && |
| VRMap[PrevStage - np + 1].count(Def)) |
| PhiOp2 = VRMap[PrevStage - np + 1][Def]; |
| // Use the loop value defined in the kernel. |
| else if (static_cast<unsigned>(LoopValStage) > PrologStage + 1 && |
| VRMap[PrevStage - StageDiffAdj - np].count(LoopVal)) |
| PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal]; |
| // Use the value defined by the Phi, unless we're generating the first |
| // epilog and the Phi refers to a Phi in a different stage. |
| else if (VRMap[PrevStage - np].count(Def) && |
| (!LoopDefIsPhi || (PrevStage != LastStageNum) || |
| (LoopValStage == StageScheduled))) |
| PhiOp2 = VRMap[PrevStage - np][Def]; |
| } |
| |
| // Check if we can reuse an existing Phi. This occurs when a Phi |
| // references another Phi, and the other Phi is scheduled in an |
| // earlier stage. We can try to reuse an existing Phi up until the last |
| // stage of the current Phi. |
| if (LoopDefIsPhi) { |
| if (static_cast<int>(PrologStage - np) >= StageScheduled) { |
| int LVNumStages = getStagesForPhi(LoopVal); |
| int StageDiff = (StageScheduled - LoopValStage); |
| LVNumStages -= StageDiff; |
| // Make sure the loop value Phi has been processed already. |
| if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) { |
| NewReg = PhiOp2; |
| unsigned ReuseStage = CurStageNum; |
| if (isLoopCarried(*PhiInst)) |
| ReuseStage -= LVNumStages; |
| // Check if the Phi to reuse has been generated yet. If not, then |
| // there is nothing to reuse. |
| if (VRMap[ReuseStage - np].count(LoopVal)) { |
| NewReg = VRMap[ReuseStage - np][LoopVal]; |
| |
| rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, |
| Def, NewReg); |
| // Update the map with the new Phi name. |
| VRMap[CurStageNum - np][Def] = NewReg; |
| PhiOp2 = NewReg; |
| if (VRMap[LastStageNum - np - 1].count(LoopVal)) |
| PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal]; |
| |
| if (IsLast && np == NumPhis - 1) |
| replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); |
| continue; |
| } |
| } |
| } |
| if (InKernel && StageDiff > 0 && |
| VRMap[CurStageNum - StageDiff - np].count(LoopVal)) |
| PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal]; |
| } |
| |
| const TargetRegisterClass *RC = MRI.getRegClass(Def); |
| NewReg = MRI.createVirtualRegister(RC); |
| |
| MachineInstrBuilder NewPhi = |
| BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), |
| TII->get(TargetOpcode::PHI), NewReg); |
| NewPhi.addReg(PhiOp1).addMBB(BB1); |
| NewPhi.addReg(PhiOp2).addMBB(BB2); |
| if (np == 0) |
| InstrMap[NewPhi] = &*BBI; |
| |
| // We define the Phis after creating the new pipelined code, so |
| // we need to rename the Phi values in scheduled instructions. |
| |
| unsigned PrevReg = 0; |
| if (InKernel && VRMap[PrevStage - np].count(LoopVal)) |
| PrevReg = VRMap[PrevStage - np][LoopVal]; |
| rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def, |
| NewReg, PrevReg); |
| // If the Phi has been scheduled, use the new name for rewriting. |
| if (VRMap[CurStageNum - np].count(Def)) { |
| unsigned R = VRMap[CurStageNum - np][Def]; |
| rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, R, |
| NewReg); |
| } |
| |
| // Check if we need to rename any uses that occurs after the loop. The |
| // register to replace depends on whether the Phi is scheduled in the |
| // epilog. |
| if (IsLast && np == NumPhis - 1) |
| replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); |
| |
| // In the kernel, a dependent Phi uses the value from this Phi. |
| if (InKernel) |
| PhiOp2 = NewReg; |
| |
| // Update the map with the new Phi name. |
| VRMap[CurStageNum - np][Def] = NewReg; |
| } |
| |
| while (NumPhis++ < NumStages) { |
| rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, NumPhis, &*BBI, Def, |
| NewReg, 0); |
| } |
| |
| // Check if we need to rename a Phi that has been eliminated due to |
| // scheduling. |
| if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal)) |
| replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS); |
| } |
| } |
| |
| /// Generate Phis for the specified block in the generated pipelined code. |
| /// These are new Phis needed because the definition is scheduled after the |
| /// use in the pipelined sequence. |
| void ModuloScheduleExpander::generatePhis( |
| MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, |
| MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap, |
| unsigned LastStageNum, unsigned CurStageNum, bool IsLast) { |
| // Compute the stage number that contains the initial Phi value, and |
| // the Phi from the previous stage. |
| unsigned PrologStage = 0; |
| unsigned PrevStage = 0; |
| unsigned StageDiff = CurStageNum - LastStageNum; |
| bool InKernel = (StageDiff == 0); |
| if (InKernel) { |
| PrologStage = LastStageNum - 1; |
| PrevStage = CurStageNum; |
| } else { |
| PrologStage = LastStageNum - StageDiff; |
| PrevStage = LastStageNum + StageDiff - 1; |
| } |
| |
| for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(), |
| BBE = BB->instr_end(); |
| BBI != BBE; ++BBI) { |
| for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = BBI->getOperand(i); |
| if (!MO.isReg() || !MO.isDef() || |
| !Register::isVirtualRegister(MO.getReg())) |
| continue; |
| |
| int StageScheduled = Schedule.getStage(&*BBI); |
| assert(StageScheduled != -1 && "Expecting scheduled instruction."); |
| Register Def = MO.getReg(); |
| unsigned NumPhis = getStagesForReg(Def, CurStageNum); |
| // An instruction scheduled in stage 0 and is used after the loop |
| // requires a phi in the epilog for the last definition from either |
| // the kernel or prolog. |
| if (!InKernel && NumPhis == 0 && StageScheduled == 0 && |
| hasUseAfterLoop(Def, BB, MRI)) |
| NumPhis = 1; |
| if (!InKernel && (unsigned)StageScheduled > PrologStage) |
| continue; |
| |
| unsigned PhiOp2 = VRMap[PrevStage][Def]; |
| if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2)) |
| if (InstOp2->isPHI() && InstOp2->getParent() == NewBB) |
| PhiOp2 = getLoopPhiReg(*InstOp2, BB2); |
| // The number of Phis can't exceed the number of prolog stages. The |
| // prolog stage number is zero based. |
| if (NumPhis > PrologStage + 1 - StageScheduled) |
| NumPhis = PrologStage + 1 - StageScheduled; |
| for (unsigned np = 0; np < NumPhis; ++np) { |
| unsigned PhiOp1 = VRMap[PrologStage][Def]; |
| if (np <= PrologStage) |
| PhiOp1 = VRMap[PrologStage - np][Def]; |
| if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) { |
| if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) |
| PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); |
| if (InstOp1->isPHI() && InstOp1->getParent() == NewBB) |
| PhiOp1 = getInitPhiReg(*InstOp1, NewBB); |
| } |
| if (!InKernel) |
| PhiOp2 = VRMap[PrevStage - np][Def]; |
| |
| const TargetRegisterClass *RC = MRI.getRegClass(Def); |
| Register NewReg = MRI.createVirtualRegister(RC); |
| |
| MachineInstrBuilder NewPhi = |
| BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), |
| TII->get(TargetOpcode::PHI), NewReg); |
| NewPhi.addReg(PhiOp1).addMBB(BB1); |
| NewPhi.addReg(PhiOp2).addMBB(BB2); |
| if (np == 0) |
| InstrMap[NewPhi] = &*BBI; |
| |
| // Rewrite uses and update the map. The actions depend upon whether |
| // we generating code for the kernel or epilog blocks. |
| if (InKernel) { |
| rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp1, |
| NewReg); |
| rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp2, |
| NewReg); |
| |
| PhiOp2 = NewReg; |
| VRMap[PrevStage - np - 1][Def] = NewReg; |
| } else { |
| VRMap[CurStageNum - np][Def] = NewReg; |
| if (np == NumPhis - 1) |
| rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def, |
| NewReg); |
| } |
| if (IsLast && np == NumPhis - 1) |
| replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); |
| } |
| } |
| } |
| } |
| |
| /// Remove instructions that generate values with no uses. |
| /// Typically, these are induction variable operations that generate values |
| /// used in the loop itself. A dead instruction has a definition with |
| /// no uses, or uses that occur in the original loop only. |
| void ModuloScheduleExpander::removeDeadInstructions(MachineBasicBlock *KernelBB, |
| MBBVectorTy &EpilogBBs) { |
| // For each epilog block, check that the value defined by each instruction |
| // is used. If not, delete it. |
| for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(), |
| MBE = EpilogBBs.rend(); |
| MBB != MBE; ++MBB) |
| for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(), |
| ME = (*MBB)->instr_rend(); |
| MI != ME;) { |
| // From DeadMachineInstructionElem. Don't delete inline assembly. |
| if (MI->isInlineAsm()) { |
| ++MI; |
| continue; |
| } |
| bool SawStore = false; |
| // Check if it's safe to remove the instruction due to side effects. |
| // We can, and want to, remove Phis here. |
| if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) { |
| ++MI; |
| continue; |
| } |
| bool used = true; |
| for (MachineInstr::mop_iterator MOI = MI->operands_begin(), |
| MOE = MI->operands_end(); |
| MOI != MOE; ++MOI) { |
| if (!MOI->isReg() || !MOI->isDef()) |
| continue; |
| Register reg = MOI->getReg(); |
| // Assume physical registers are used, unless they are marked dead. |
| if (Register::isPhysicalRegister(reg)) { |
| used = !MOI->isDead(); |
| if (used) |
| break; |
| continue; |
| } |
| unsigned realUses = 0; |
| for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg), |
| EI = MRI.use_end(); |
| UI != EI; ++UI) { |
| // Check if there are any uses that occur only in the original |
| // loop. If so, that's not a real use. |
| if (UI->getParent()->getParent() != BB) { |
| realUses++; |
| used = true; |
| break; |
| } |
| } |
| if (realUses > 0) |
| break; |
| used = false; |
| } |
| if (!used) { |
| LIS.RemoveMachineInstrFromMaps(*MI); |
| MI++->eraseFromParent(); |
| continue; |
| } |
| ++MI; |
| } |
| // In the kernel block, check if we can remove a Phi that generates a value |
| // used in an instruction removed in the epilog block. |
| for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(), |
| BBE = KernelBB->getFirstNonPHI(); |
| BBI != BBE;) { |
| MachineInstr *MI = &*BBI; |
| ++BBI; |
| Register reg = MI->getOperand(0).getReg(); |
| if (MRI.use_begin(reg) == MRI.use_end()) { |
| LIS.RemoveMachineInstrFromMaps(*MI); |
| MI->eraseFromParent(); |
| } |
| } |
| } |
| |
| /// For loop carried definitions, we split the lifetime of a virtual register |
| /// that has uses past the definition in the next iteration. A copy with a new |
| /// virtual register is inserted before the definition, which helps with |
| /// generating a better register assignment. |
| /// |
| /// v1 = phi(a, v2) v1 = phi(a, v2) |
| /// v2 = phi(b, v3) v2 = phi(b, v3) |
| /// v3 = .. v4 = copy v1 |
| /// .. = V1 v3 = .. |
| /// .. = v4 |
| void ModuloScheduleExpander::splitLifetimes(MachineBasicBlock *KernelBB, |
| MBBVectorTy &EpilogBBs) { |
| const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); |
| for (auto &PHI : KernelBB->phis()) { |
| Register Def = PHI.getOperand(0).getReg(); |
| // Check for any Phi definition that used as an operand of another Phi |
| // in the same block. |
| for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def), |
| E = MRI.use_instr_end(); |
| I != E; ++I) { |
| if (I->isPHI() && I->getParent() == KernelBB) { |
| // Get the loop carried definition. |
| unsigned LCDef = getLoopPhiReg(PHI, KernelBB); |
| if (!LCDef) |
| continue; |
| MachineInstr *MI = MRI.getVRegDef(LCDef); |
| if (!MI || MI->getParent() != KernelBB || MI->isPHI()) |
| continue; |
| // Search through the rest of the block looking for uses of the Phi |
| // definition. If one occurs, then split the lifetime. |
| unsigned SplitReg = 0; |
| for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI), |
| KernelBB->instr_end())) |
| if (BBJ.readsRegister(Def)) { |
| // We split the lifetime when we find the first use. |
| if (SplitReg == 0) { |
| SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def)); |
| BuildMI(*KernelBB, MI, MI->getDebugLoc(), |
| TII->get(TargetOpcode::COPY), SplitReg) |
| .addReg(Def); |
| } |
| BBJ.substituteRegister(Def, SplitReg, 0, *TRI); |
| } |
| if (!SplitReg) |
| continue; |
| // Search through each of the epilog blocks for any uses to be renamed. |
| for (auto &Epilog : EpilogBBs) |
| for (auto &I : *Epilog) |
| if (I.readsRegister(Def)) |
| I.substituteRegister(Def, SplitReg, 0, *TRI); |
| break; |
| } |
| } |
| } |
| } |
| |
| /// Remove the incoming block from the Phis in a basic block. |
| static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) { |
| for (MachineInstr &MI : *BB) { |
| if (!MI.isPHI()) |
| break; |
| for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) |
| if (MI.getOperand(i + 1).getMBB() == Incoming) { |
| MI.RemoveOperand(i + 1); |
| MI.RemoveOperand(i); |
| break; |
| } |
| } |
| } |
| |
| /// Create branches from each prolog basic block to the appropriate epilog |
| /// block. These edges are needed if the loop ends before reaching the |
| /// kernel. |
| void ModuloScheduleExpander::addBranches(MachineBasicBlock &PreheaderBB, |
| MBBVectorTy &PrologBBs, |
| MachineBasicBlock *KernelBB, |
| MBBVectorTy &EpilogBBs, |
| ValueMapTy *VRMap) { |
| assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch"); |
| MachineInstr *IndVar; |
| MachineInstr *Cmp; |
| if (TII->analyzeLoop(*Schedule.getLoop(), IndVar, Cmp)) |
| llvm_unreachable("Must be able to analyze loop!"); |
| MachineBasicBlock *LastPro = KernelBB; |
| MachineBasicBlock *LastEpi = KernelBB; |
| |
| // Start from the blocks connected to the kernel and work "out" |
| // to the first prolog and the last epilog blocks. |
| SmallVector<MachineInstr *, 4> PrevInsts; |
| unsigned MaxIter = PrologBBs.size() - 1; |
| unsigned LC = UINT_MAX; |
| unsigned LCMin = UINT_MAX; |
| for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) { |
| // Add branches to the prolog that go to the corresponding |
| // epilog, and the fall-thru prolog/kernel block. |
| MachineBasicBlock *Prolog = PrologBBs[j]; |
| MachineBasicBlock *Epilog = EpilogBBs[i]; |
| // We've executed one iteration, so decrement the loop count and check for |
| // the loop end. |
| SmallVector<MachineOperand, 4> Cond; |
| // Check if the LOOP0 has already been removed. If so, then there is no need |
| // to reduce the trip count. |
| if (LC != 0) |
| LC = TII->reduceLoopCount(*Prolog, PreheaderBB, IndVar, *Cmp, Cond, |
| PrevInsts, j, MaxIter); |
| |
| // Record the value of the first trip count, which is used to determine if |
| // branches and blocks can be removed for constant trip counts. |
| if (LCMin == UINT_MAX) |
| LCMin = LC; |
| |
| unsigned numAdded = 0; |
| if (Register::isVirtualRegister(LC)) { |
| Prolog->addSuccessor(Epilog); |
| numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc()); |
| } else if (j >= LCMin) { |
| Prolog->addSuccessor(Epilog); |
| Prolog->removeSuccessor(LastPro); |
| LastEpi->removeSuccessor(Epilog); |
| numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc()); |
| removePhis(Epilog, LastEpi); |
| // Remove the blocks that are no longer referenced. |
| if (LastPro != LastEpi) { |
| LastEpi->clear(); |
| LastEpi->eraseFromParent(); |
| } |
| LastPro->clear(); |
| LastPro->eraseFromParent(); |
| } else { |
| numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc()); |
| removePhis(Epilog, Prolog); |
| } |
| LastPro = Prolog; |
| LastEpi = Epilog; |
| for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(), |
| E = Prolog->instr_rend(); |
| I != E && numAdded > 0; ++I, --numAdded) |
| updateInstruction(&*I, false, j, 0, VRMap); |
| } |
| } |
| |
| /// Return true if we can compute the amount the instruction changes |
| /// during each iteration. Set Delta to the amount of the change. |
| bool ModuloScheduleExpander::computeDelta(MachineInstr &MI, unsigned &Delta) { |
| const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); |
| const MachineOperand *BaseOp; |
| int64_t Offset; |
| if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, TRI)) |
| return false; |
| |
| if (!BaseOp->isReg()) |
| return false; |
| |
| Register BaseReg = BaseOp->getReg(); |
| |
| MachineRegisterInfo &MRI = MF.getRegInfo(); |
| // Check if there is a Phi. If so, get the definition in the loop. |
| MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); |
| if (BaseDef && BaseDef->isPHI()) { |
| BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); |
| BaseDef = MRI.getVRegDef(BaseReg); |
| } |
| if (!BaseDef) |
| return false; |
| |
| int D = 0; |
| if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) |
| return false; |
| |
| Delta = D; |
| return true; |
| } |
| |
| /// Update the memory operand with a new offset when the pipeliner |
| /// generates a new copy of the instruction that refers to a |
| /// different memory location. |
| void ModuloScheduleExpander::updateMemOperands(MachineInstr &NewMI, |
| MachineInstr &OldMI, |
| unsigned Num) { |
| if (Num == 0) |
| return; |
| // If the instruction has memory operands, then adjust the offset |
| // when the instruction appears in different stages. |
| if (NewMI.memoperands_empty()) |
| return; |
| SmallVector<MachineMemOperand *, 2> NewMMOs; |
| for (MachineMemOperand *MMO : NewMI.memoperands()) { |
| // TODO: Figure out whether isAtomic is really necessary (see D57601). |
| if (MMO->isVolatile() || MMO->isAtomic() || |
| (MMO->isInvariant() && MMO->isDereferenceable()) || |
| (!MMO->getValue())) { |
| NewMMOs.push_back(MMO); |
| continue; |
| } |
| unsigned Delta; |
| if (Num != UINT_MAX && computeDelta(OldMI, Delta)) { |
| int64_t AdjOffset = Delta * Num; |
| NewMMOs.push_back( |
| MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize())); |
| } else { |
| NewMMOs.push_back( |
| MF.getMachineMemOperand(MMO, 0, MemoryLocation::UnknownSize)); |
| } |
| } |
| NewMI.setMemRefs(MF, NewMMOs); |
| } |
| |
| /// Clone the instruction for the new pipelined loop and update the |
| /// memory operands, if needed. |
| MachineInstr *ModuloScheduleExpander::cloneInstr(MachineInstr *OldMI, |
| unsigned CurStageNum, |
| unsigned InstStageNum) { |
| MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); |
| // Check for tied operands in inline asm instructions. This should be handled |
| // elsewhere, but I'm not sure of the best solution. |
| if (OldMI->isInlineAsm()) |
| for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) { |
| const auto &MO = OldMI->getOperand(i); |
| if (MO.isReg() && MO.isUse()) |
| break; |
| unsigned UseIdx; |
| if (OldMI->isRegTiedToUseOperand(i, &UseIdx)) |
| NewMI->tieOperands(i, UseIdx); |
| } |
| updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); |
| return NewMI; |
| } |
| |
| /// Clone the instruction for the new pipelined loop. If needed, this |
| /// function updates the instruction using the values saved in the |
| /// InstrChanges structure. |
| MachineInstr *ModuloScheduleExpander::cloneAndChangeInstr( |
| MachineInstr *OldMI, unsigned CurStageNum, unsigned InstStageNum) { |
| MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); |
| auto It = InstrChanges.find(OldMI); |
| if (It != InstrChanges.end()) { |
| std::pair<unsigned, int64_t> RegAndOffset = It->second; |
| unsigned BasePos, OffsetPos; |
| if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos)) |
| return nullptr; |
| int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm(); |
| MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first); |
| if (Schedule.getStage(LoopDef) > (signed)InstStageNum) |
| NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum); |
| NewMI->getOperand(OffsetPos).setImm(NewOffset); |
| } |
| updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); |
| return NewMI; |
| } |
| |
| /// Update the machine instruction with new virtual registers. This |
| /// function may change the defintions and/or uses. |
| void ModuloScheduleExpander::updateInstruction(MachineInstr *NewMI, |
| bool LastDef, |
| unsigned CurStageNum, |
| unsigned InstrStageNum, |
| ValueMapTy *VRMap) { |
| for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = NewMI->getOperand(i); |
| if (!MO.isReg() || !Register::isVirtualRegister(MO.getReg())) |
| continue; |
| Register reg = MO.getReg(); |
| if (MO.isDef()) { |
| // Create a new virtual register for the definition. |
| const TargetRegisterClass *RC = MRI.getRegClass(reg); |
| Register NewReg = MRI.createVirtualRegister(RC); |
| MO.setReg(NewReg); |
| VRMap[CurStageNum][reg] = NewReg; |
| if (LastDef) |
| replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS); |
| } else if (MO.isUse()) { |
| MachineInstr *Def = MRI.getVRegDef(reg); |
| // Compute the stage that contains the last definition for instruction. |
| int DefStageNum = Schedule.getStage(Def); |
| unsigned StageNum = CurStageNum; |
| if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) { |
| // Compute the difference in stages between the defintion and the use. |
| unsigned StageDiff = (InstrStageNum - DefStageNum); |
| // Make an adjustment to get the last definition. |
| StageNum -= StageDiff; |
| } |
| if (VRMap[StageNum].count(reg)) |
| MO.setReg(VRMap[StageNum][reg]); |
| } |
| } |
| } |
| |
| /// Return the instruction in the loop that defines the register. |
| /// If the definition is a Phi, then follow the Phi operand to |
| /// the instruction in the loop. |
| MachineInstr *ModuloScheduleExpander::findDefInLoop(unsigned Reg) { |
| SmallPtrSet<MachineInstr *, 8> Visited; |
| MachineInstr *Def = MRI.getVRegDef(Reg); |
| while (Def->isPHI()) { |
| if (!Visited.insert(Def).second) |
| break; |
| for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) |
| if (Def->getOperand(i + 1).getMBB() == BB) { |
| Def = MRI.getVRegDef(Def->getOperand(i).getReg()); |
| break; |
| } |
| } |
| return Def; |
| } |
| |
| /// Return the new name for the value from the previous stage. |
| unsigned ModuloScheduleExpander::getPrevMapVal( |
| unsigned StageNum, unsigned PhiStage, unsigned LoopVal, unsigned LoopStage, |
| ValueMapTy *VRMap, MachineBasicBlock *BB) { |
| unsigned PrevVal = 0; |
| if (StageNum > PhiStage) { |
| MachineInstr *LoopInst = MRI.getVRegDef(LoopVal); |
| if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal)) |
| // The name is defined in the previous stage. |
| PrevVal = VRMap[StageNum - 1][LoopVal]; |
| else if (VRMap[StageNum].count(LoopVal)) |
| // The previous name is defined in the current stage when the instruction |
| // order is swapped. |
| PrevVal = VRMap[StageNum][LoopVal]; |
| else if (!LoopInst->isPHI() || LoopInst->getParent() != BB) |
| // The loop value hasn't yet been scheduled. |
| PrevVal = LoopVal; |
| else if (StageNum == PhiStage + 1) |
| // The loop value is another phi, which has not been scheduled. |
| PrevVal = getInitPhiReg(*LoopInst, BB); |
| else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB) |
| // The loop value is another phi, which has been scheduled. |
| PrevVal = |
| getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB), |
| LoopStage, VRMap, BB); |
| } |
| return PrevVal; |
| } |
| |
| /// Rewrite the Phi values in the specified block to use the mappings |
| /// from the initial operand. Once the Phi is scheduled, we switch |
| /// to using the loop value instead of the Phi value, so those names |
| /// do not need to be rewritten. |
| void ModuloScheduleExpander::rewritePhiValues(MachineBasicBlock *NewBB, |
| unsigned StageNum, |
| ValueMapTy *VRMap, |
| InstrMapTy &InstrMap) { |
| for (auto &PHI : BB->phis()) { |
| unsigned InitVal = 0; |
| unsigned LoopVal = 0; |
| getPhiRegs(PHI, BB, InitVal, LoopVal); |
| Register PhiDef = PHI.getOperand(0).getReg(); |
| |
| unsigned PhiStage = (unsigned)Schedule.getStage(MRI.getVRegDef(PhiDef)); |
| unsigned LoopStage = (unsigned)Schedule.getStage(MRI.getVRegDef(LoopVal)); |
| unsigned NumPhis = getStagesForPhi(PhiDef); |
| if (NumPhis > StageNum) |
| NumPhis = StageNum; |
| for (unsigned np = 0; np <= NumPhis; ++np) { |
| unsigned NewVal = |
| getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB); |
| if (!NewVal) |
| NewVal = InitVal; |
| rewriteScheduledInstr(NewBB, InstrMap, StageNum - np, np, &PHI, PhiDef, |
| NewVal); |
| } |
| } |
| } |
| |
| /// Rewrite a previously scheduled instruction to use the register value |
| /// from the new instruction. Make sure the instruction occurs in the |
| /// basic block, and we don't change the uses in the new instruction. |
| void ModuloScheduleExpander::rewriteScheduledInstr( |
| MachineBasicBlock *BB, InstrMapTy &InstrMap, unsigned CurStageNum, |
| unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, unsigned NewReg, |
| unsigned PrevReg) { |
| bool InProlog = (CurStageNum < (unsigned)Schedule.getNumStages() - 1); |
| int StagePhi = Schedule.getStage(Phi) + PhiNum; |
| // Rewrite uses that have been scheduled already to use the new |
| // Phi register. |
| for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg), |
| EI = MRI.use_end(); |
| UI != EI;) { |
| MachineOperand &UseOp = *UI; |
| MachineInstr *UseMI = UseOp.getParent(); |
| ++UI; |
| if (UseMI->getParent() != BB) |
| continue; |
| if (UseMI->isPHI()) { |
| if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg) |
| continue; |
| if (getLoopPhiReg(*UseMI, BB) != OldReg) |
| continue; |
| } |
| InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI); |
| assert(OrigInstr != InstrMap.end() && "Instruction not scheduled."); |
| MachineInstr *OrigMI = OrigInstr->second; |
| int StageSched = Schedule.getStage(OrigMI); |
| int CycleSched = Schedule.getCycle(OrigMI); |
| unsigned ReplaceReg = 0; |
| // This is the stage for the scheduled instruction. |
| if (StagePhi == StageSched && Phi->isPHI()) { |
| int CyclePhi = Schedule.getCycle(Phi); |
| if (PrevReg && InProlog) |
| ReplaceReg = PrevReg; |
| else if (PrevReg && !isLoopCarried(*Phi) && |
| (CyclePhi <= CycleSched || OrigMI->isPHI())) |
| ReplaceReg = PrevReg; |
| else |
| ReplaceReg = NewReg; |
| } |
| // The scheduled instruction occurs before the scheduled Phi, and the |
| // Phi is not loop carried. |
| if (!InProlog && StagePhi + 1 == StageSched && !isLoopCarried(*Phi)) |
| ReplaceReg = NewReg; |
| if (StagePhi > StageSched && Phi->isPHI()) |
| ReplaceReg = NewReg; |
| if (!InProlog && !Phi->isPHI() && StagePhi < StageSched) |
| ReplaceReg = NewReg; |
| if (ReplaceReg) { |
| MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg)); |
| UseOp.setReg(ReplaceReg); |
| } |
| } |
| } |
| |
| bool ModuloScheduleExpander::isLoopCarried(MachineInstr &Phi) { |
| if (!Phi.isPHI()) |
| return false; |
| unsigned DefCycle = Schedule.getCycle(&Phi); |
| int DefStage = Schedule.getStage(&Phi); |
| |
| unsigned InitVal = 0; |
| unsigned LoopVal = 0; |
| getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); |
| MachineInstr *Use = MRI.getVRegDef(LoopVal); |
| if (!Use || Use->isPHI()) |
| return true; |
| unsigned LoopCycle = Schedule.getCycle(Use); |
| int LoopStage = Schedule.getStage(Use); |
| return (LoopCycle > DefCycle) || (LoopStage <= DefStage); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ModuloScheduleTestPass implementation |
| //===----------------------------------------------------------------------===// |
| // This pass constructs a ModuloSchedule from its module and runs |
| // ModuloScheduleExpander. |
| // |
| // The module is expected to contain a single-block analyzable loop. |
| // The total order of instructions is taken from the loop as-is. |
| // Instructions are expected to be annotated with a PostInstrSymbol. |
| // This PostInstrSymbol must have the following format: |
| // "Stage=%d Cycle=%d". |
| //===----------------------------------------------------------------------===// |
| |
| class ModuloScheduleTest : public MachineFunctionPass { |
| public: |
| static char ID; |
| |
| ModuloScheduleTest() : MachineFunctionPass(ID) { |
| initializeModuloScheduleTestPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| bool runOnMachineFunction(MachineFunction &MF) override; |
| void runOnLoop(MachineFunction &MF, MachineLoop &L); |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.addRequired<MachineLoopInfo>(); |
| AU.addRequired<LiveIntervals>(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| }; |
| |
| char ModuloScheduleTest::ID = 0; |
| |
| INITIALIZE_PASS_BEGIN(ModuloScheduleTest, "modulo-schedule-test", |
| "Modulo Schedule test pass", false, false) |
| INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) |
| INITIALIZE_PASS_DEPENDENCY(LiveIntervals) |
| INITIALIZE_PASS_END(ModuloScheduleTest, "modulo-schedule-test", |
| "Modulo Schedule test pass", false, false) |
| |
| bool ModuloScheduleTest::runOnMachineFunction(MachineFunction &MF) { |
| MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>(); |
| for (auto *L : MLI) { |
| if (L->getTopBlock() != L->getBottomBlock()) |
| continue; |
| runOnLoop(MF, *L); |
| return false; |
| } |
| return false; |
| } |
| |
| static void parseSymbolString(StringRef S, int &Cycle, int &Stage) { |
| std::pair<StringRef, StringRef> StageAndCycle = getToken(S, "_"); |
| std::pair<StringRef, StringRef> StageTokenAndValue = |
| getToken(StageAndCycle.first, "-"); |
| std::pair<StringRef, StringRef> CycleTokenAndValue = |
| getToken(StageAndCycle.second, "-"); |
| if (StageTokenAndValue.first != "Stage" || |
| CycleTokenAndValue.first != "_Cycle") { |
| llvm_unreachable( |
| "Bad post-instr symbol syntax: see comment in ModuloScheduleTest"); |
| return; |
| } |
| |
| StageTokenAndValue.second.drop_front().getAsInteger(10, Stage); |
| CycleTokenAndValue.second.drop_front().getAsInteger(10, Cycle); |
| |
| dbgs() << " Stage=" << Stage << ", Cycle=" << Cycle << "\n"; |
| } |
| |
| void ModuloScheduleTest::runOnLoop(MachineFunction &MF, MachineLoop &L) { |
| LiveIntervals &LIS = getAnalysis<LiveIntervals>(); |
| MachineBasicBlock *BB = L.getTopBlock(); |
| dbgs() << "--- ModuloScheduleTest running on BB#" << BB->getNumber() << "\n"; |
| |
| DenseMap<MachineInstr *, int> Cycle, Stage; |
| std::vector<MachineInstr *> Instrs; |
| for (MachineInstr &MI : *BB) { |
| if (MI.isTerminator()) |
| continue; |
| Instrs.push_back(&MI); |
| if (MCSymbol *Sym = MI.getPostInstrSymbol()) { |
| dbgs() << "Parsing post-instr symbol for " << MI; |
| parseSymbolString(Sym->getName(), Cycle[&MI], Stage[&MI]); |
| } |
| } |
| |
| ModuloSchedule MS(MF, &L, std::move(Instrs), std::move(Cycle), std::move(Stage)); |
| ModuloScheduleExpander MSE( |
| MF, MS, LIS, /*InstrChanges=*/ModuloScheduleExpander::InstrChangesTy()); |
| MSE.expand(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ModuloScheduleTestAnnotater implementation |
| //===----------------------------------------------------------------------===// |
| |
| void ModuloScheduleTestAnnotater::annotate() { |
| for (MachineInstr *MI : S.getInstructions()) { |
| SmallVector<char, 16> SV; |
| raw_svector_ostream OS(SV); |
| OS << "Stage-" << S.getStage(MI) << "_Cycle-" << S.getCycle(MI); |
| MCSymbol *Sym = MF.getContext().getOrCreateSymbol(OS.str()); |
| MI->setPostInstrSymbol(MF, Sym); |
| } |
| } |