|  | //===-- CodeGen/AsmPrinter/DwarfException.cpp - Dwarf Exception Impl ------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file contains support for writing DWARF exception info into asm files. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "DwarfException.h" | 
|  | #include "llvm/ADT/SmallString.h" | 
|  | #include "llvm/ADT/StringExtras.h" | 
|  | #include "llvm/ADT/Twine.h" | 
|  | #include "llvm/CodeGen/AsmPrinter.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineModuleInfo.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/MC/MCAsmInfo.h" | 
|  | #include "llvm/MC/MCContext.h" | 
|  | #include "llvm/MC/MCExpr.h" | 
|  | #include "llvm/MC/MCSection.h" | 
|  | #include "llvm/MC/MCStreamer.h" | 
|  | #include "llvm/MC/MCSymbol.h" | 
|  | #include "llvm/Support/Dwarf.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/FormattedStream.h" | 
|  | #include "llvm/Target/Mangler.h" | 
|  | #include "llvm/Target/TargetFrameLowering.h" | 
|  | #include "llvm/Target/TargetLoweringObjectFile.h" | 
|  | #include "llvm/Target/TargetOptions.h" | 
|  | #include "llvm/Target/TargetRegisterInfo.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | DwarfException::DwarfException(AsmPrinter *A) | 
|  | : Asm(A), MMI(Asm->MMI) {} | 
|  |  | 
|  | DwarfException::~DwarfException() {} | 
|  |  | 
|  | /// SharedTypeIds - How many leading type ids two landing pads have in common. | 
|  | unsigned DwarfException::SharedTypeIds(const LandingPadInfo *L, | 
|  | const LandingPadInfo *R) { | 
|  | const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds; | 
|  | unsigned LSize = LIds.size(), RSize = RIds.size(); | 
|  | unsigned MinSize = LSize < RSize ? LSize : RSize; | 
|  | unsigned Count = 0; | 
|  |  | 
|  | for (; Count != MinSize; ++Count) | 
|  | if (LIds[Count] != RIds[Count]) | 
|  | return Count; | 
|  |  | 
|  | return Count; | 
|  | } | 
|  |  | 
|  | /// PadLT - Order landing pads lexicographically by type id. | 
|  | bool DwarfException::PadLT(const LandingPadInfo *L, const LandingPadInfo *R) { | 
|  | const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds; | 
|  | unsigned LSize = LIds.size(), RSize = RIds.size(); | 
|  | unsigned MinSize = LSize < RSize ? LSize : RSize; | 
|  |  | 
|  | for (unsigned i = 0; i != MinSize; ++i) | 
|  | if (LIds[i] != RIds[i]) | 
|  | return LIds[i] < RIds[i]; | 
|  |  | 
|  | return LSize < RSize; | 
|  | } | 
|  |  | 
|  | /// ComputeActionsTable - Compute the actions table and gather the first action | 
|  | /// index for each landing pad site. | 
|  | unsigned DwarfException:: | 
|  | ComputeActionsTable(const SmallVectorImpl<const LandingPadInfo*> &LandingPads, | 
|  | SmallVectorImpl<ActionEntry> &Actions, | 
|  | SmallVectorImpl<unsigned> &FirstActions) { | 
|  |  | 
|  | // The action table follows the call-site table in the LSDA. The individual | 
|  | // records are of two types: | 
|  | // | 
|  | //   * Catch clause | 
|  | //   * Exception specification | 
|  | // | 
|  | // The two record kinds have the same format, with only small differences. | 
|  | // They are distinguished by the "switch value" field: Catch clauses | 
|  | // (TypeInfos) have strictly positive switch values, and exception | 
|  | // specifications (FilterIds) have strictly negative switch values. Value 0 | 
|  | // indicates a catch-all clause. | 
|  | // | 
|  | // Negative type IDs index into FilterIds. Positive type IDs index into | 
|  | // TypeInfos.  The value written for a positive type ID is just the type ID | 
|  | // itself.  For a negative type ID, however, the value written is the | 
|  | // (negative) byte offset of the corresponding FilterIds entry.  The byte | 
|  | // offset is usually equal to the type ID (because the FilterIds entries are | 
|  | // written using a variable width encoding, which outputs one byte per entry | 
|  | // as long as the value written is not too large) but can differ.  This kind | 
|  | // of complication does not occur for positive type IDs because type infos are | 
|  | // output using a fixed width encoding.  FilterOffsets[i] holds the byte | 
|  | // offset corresponding to FilterIds[i]. | 
|  |  | 
|  | const std::vector<unsigned> &FilterIds = MMI->getFilterIds(); | 
|  | SmallVector<int, 16> FilterOffsets; | 
|  | FilterOffsets.reserve(FilterIds.size()); | 
|  | int Offset = -1; | 
|  |  | 
|  | for (std::vector<unsigned>::const_iterator | 
|  | I = FilterIds.begin(), E = FilterIds.end(); I != E; ++I) { | 
|  | FilterOffsets.push_back(Offset); | 
|  | Offset -= MCAsmInfo::getULEB128Size(*I); | 
|  | } | 
|  |  | 
|  | FirstActions.reserve(LandingPads.size()); | 
|  |  | 
|  | int FirstAction = 0; | 
|  | unsigned SizeActions = 0; | 
|  | const LandingPadInfo *PrevLPI = 0; | 
|  |  | 
|  | for (SmallVectorImpl<const LandingPadInfo *>::const_iterator | 
|  | I = LandingPads.begin(), E = LandingPads.end(); I != E; ++I) { | 
|  | const LandingPadInfo *LPI = *I; | 
|  | const std::vector<int> &TypeIds = LPI->TypeIds; | 
|  | unsigned NumShared = PrevLPI ? SharedTypeIds(LPI, PrevLPI) : 0; | 
|  | unsigned SizeSiteActions = 0; | 
|  |  | 
|  | if (NumShared < TypeIds.size()) { | 
|  | unsigned SizeAction = 0; | 
|  | unsigned PrevAction = (unsigned)-1; | 
|  |  | 
|  | if (NumShared) { | 
|  | unsigned SizePrevIds = PrevLPI->TypeIds.size(); | 
|  | assert(Actions.size()); | 
|  | PrevAction = Actions.size() - 1; | 
|  | SizeAction = | 
|  | MCAsmInfo::getSLEB128Size(Actions[PrevAction].NextAction) + | 
|  | MCAsmInfo::getSLEB128Size(Actions[PrevAction].ValueForTypeID); | 
|  |  | 
|  | for (unsigned j = NumShared; j != SizePrevIds; ++j) { | 
|  | assert(PrevAction != (unsigned)-1 && "PrevAction is invalid!"); | 
|  | SizeAction -= | 
|  | MCAsmInfo::getSLEB128Size(Actions[PrevAction].ValueForTypeID); | 
|  | SizeAction += -Actions[PrevAction].NextAction; | 
|  | PrevAction = Actions[PrevAction].Previous; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Compute the actions. | 
|  | for (unsigned J = NumShared, M = TypeIds.size(); J != M; ++J) { | 
|  | int TypeID = TypeIds[J]; | 
|  | assert(-1 - TypeID < (int)FilterOffsets.size() && "Unknown filter id!"); | 
|  | int ValueForTypeID = TypeID < 0 ? FilterOffsets[-1 - TypeID] : TypeID; | 
|  | unsigned SizeTypeID = MCAsmInfo::getSLEB128Size(ValueForTypeID); | 
|  |  | 
|  | int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0; | 
|  | SizeAction = SizeTypeID + MCAsmInfo::getSLEB128Size(NextAction); | 
|  | SizeSiteActions += SizeAction; | 
|  |  | 
|  | ActionEntry Action = { ValueForTypeID, NextAction, PrevAction }; | 
|  | Actions.push_back(Action); | 
|  | PrevAction = Actions.size() - 1; | 
|  | } | 
|  |  | 
|  | // Record the first action of the landing pad site. | 
|  | FirstAction = SizeActions + SizeSiteActions - SizeAction + 1; | 
|  | } // else identical - re-use previous FirstAction | 
|  |  | 
|  | // Information used when created the call-site table. The action record | 
|  | // field of the call site record is the offset of the first associated | 
|  | // action record, relative to the start of the actions table. This value is | 
|  | // biased by 1 (1 indicating the start of the actions table), and 0 | 
|  | // indicates that there are no actions. | 
|  | FirstActions.push_back(FirstAction); | 
|  |  | 
|  | // Compute this sites contribution to size. | 
|  | SizeActions += SizeSiteActions; | 
|  |  | 
|  | PrevLPI = LPI; | 
|  | } | 
|  |  | 
|  | return SizeActions; | 
|  | } | 
|  |  | 
|  | /// CallToNoUnwindFunction - Return `true' if this is a call to a function | 
|  | /// marked `nounwind'. Return `false' otherwise. | 
|  | bool DwarfException::CallToNoUnwindFunction(const MachineInstr *MI) { | 
|  | assert(MI->isCall() && "This should be a call instruction!"); | 
|  |  | 
|  | bool MarkedNoUnwind = false; | 
|  | bool SawFunc = false; | 
|  |  | 
|  | for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) { | 
|  | const MachineOperand &MO = MI->getOperand(I); | 
|  |  | 
|  | if (!MO.isGlobal()) continue; | 
|  |  | 
|  | const Function *F = dyn_cast<Function>(MO.getGlobal()); | 
|  | if (F == 0) continue; | 
|  |  | 
|  | if (SawFunc) { | 
|  | // Be conservative. If we have more than one function operand for this | 
|  | // call, then we can't make the assumption that it's the callee and | 
|  | // not a parameter to the call. | 
|  | // | 
|  | // FIXME: Determine if there's a way to say that `F' is the callee or | 
|  | // parameter. | 
|  | MarkedNoUnwind = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | MarkedNoUnwind = F->doesNotThrow(); | 
|  | SawFunc = true; | 
|  | } | 
|  |  | 
|  | return MarkedNoUnwind; | 
|  | } | 
|  |  | 
|  | /// ComputeCallSiteTable - Compute the call-site table.  The entry for an invoke | 
|  | /// has a try-range containing the call, a non-zero landing pad, and an | 
|  | /// appropriate action.  The entry for an ordinary call has a try-range | 
|  | /// containing the call and zero for the landing pad and the action.  Calls | 
|  | /// marked 'nounwind' have no entry and must not be contained in the try-range | 
|  | /// of any entry - they form gaps in the table.  Entries must be ordered by | 
|  | /// try-range address. | 
|  | void DwarfException:: | 
|  | ComputeCallSiteTable(SmallVectorImpl<CallSiteEntry> &CallSites, | 
|  | const RangeMapType &PadMap, | 
|  | const SmallVectorImpl<const LandingPadInfo *> &LandingPads, | 
|  | const SmallVectorImpl<unsigned> &FirstActions) { | 
|  | // The end label of the previous invoke or nounwind try-range. | 
|  | MCSymbol *LastLabel = 0; | 
|  |  | 
|  | // Whether there is a potentially throwing instruction (currently this means | 
|  | // an ordinary call) between the end of the previous try-range and now. | 
|  | bool SawPotentiallyThrowing = false; | 
|  |  | 
|  | // Whether the last CallSite entry was for an invoke. | 
|  | bool PreviousIsInvoke = false; | 
|  |  | 
|  | // Visit all instructions in order of address. | 
|  | for (MachineFunction::const_iterator I = Asm->MF->begin(), E = Asm->MF->end(); | 
|  | I != E; ++I) { | 
|  | for (MachineBasicBlock::const_iterator MI = I->begin(), E = I->end(); | 
|  | MI != E; ++MI) { | 
|  | if (!MI->isLabel()) { | 
|  | if (MI->isCall()) | 
|  | SawPotentiallyThrowing |= !CallToNoUnwindFunction(MI); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // End of the previous try-range? | 
|  | MCSymbol *BeginLabel = MI->getOperand(0).getMCSymbol(); | 
|  | if (BeginLabel == LastLabel) | 
|  | SawPotentiallyThrowing = false; | 
|  |  | 
|  | // Beginning of a new try-range? | 
|  | RangeMapType::const_iterator L = PadMap.find(BeginLabel); | 
|  | if (L == PadMap.end()) | 
|  | // Nope, it was just some random label. | 
|  | continue; | 
|  |  | 
|  | const PadRange &P = L->second; | 
|  | const LandingPadInfo *LandingPad = LandingPads[P.PadIndex]; | 
|  | assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] && | 
|  | "Inconsistent landing pad map!"); | 
|  |  | 
|  | // For Dwarf exception handling (SjLj handling doesn't use this). If some | 
|  | // instruction between the previous try-range and this one may throw, | 
|  | // create a call-site entry with no landing pad for the region between the | 
|  | // try-ranges. | 
|  | if (SawPotentiallyThrowing && Asm->MAI->isExceptionHandlingDwarf()) { | 
|  | CallSiteEntry Site = { LastLabel, BeginLabel, 0, 0 }; | 
|  | CallSites.push_back(Site); | 
|  | PreviousIsInvoke = false; | 
|  | } | 
|  |  | 
|  | LastLabel = LandingPad->EndLabels[P.RangeIndex]; | 
|  | assert(BeginLabel && LastLabel && "Invalid landing pad!"); | 
|  |  | 
|  | if (!LandingPad->LandingPadLabel) { | 
|  | // Create a gap. | 
|  | PreviousIsInvoke = false; | 
|  | } else { | 
|  | // This try-range is for an invoke. | 
|  | CallSiteEntry Site = { | 
|  | BeginLabel, | 
|  | LastLabel, | 
|  | LandingPad->LandingPadLabel, | 
|  | FirstActions[P.PadIndex] | 
|  | }; | 
|  |  | 
|  | // Try to merge with the previous call-site. SJLJ doesn't do this | 
|  | if (PreviousIsInvoke && Asm->MAI->isExceptionHandlingDwarf()) { | 
|  | CallSiteEntry &Prev = CallSites.back(); | 
|  | if (Site.PadLabel == Prev.PadLabel && Site.Action == Prev.Action) { | 
|  | // Extend the range of the previous entry. | 
|  | Prev.EndLabel = Site.EndLabel; | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise, create a new call-site. | 
|  | if (Asm->MAI->isExceptionHandlingDwarf()) | 
|  | CallSites.push_back(Site); | 
|  | else { | 
|  | // SjLj EH must maintain the call sites in the order assigned | 
|  | // to them by the SjLjPrepare pass. | 
|  | unsigned SiteNo = MMI->getCallSiteBeginLabel(BeginLabel); | 
|  | if (CallSites.size() < SiteNo) | 
|  | CallSites.resize(SiteNo); | 
|  | CallSites[SiteNo - 1] = Site; | 
|  | } | 
|  | PreviousIsInvoke = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If some instruction between the previous try-range and the end of the | 
|  | // function may throw, create a call-site entry with no landing pad for the | 
|  | // region following the try-range. | 
|  | if (SawPotentiallyThrowing && Asm->MAI->isExceptionHandlingDwarf()) { | 
|  | CallSiteEntry Site = { LastLabel, 0, 0, 0 }; | 
|  | CallSites.push_back(Site); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// EmitExceptionTable - Emit landing pads and actions. | 
|  | /// | 
|  | /// The general organization of the table is complex, but the basic concepts are | 
|  | /// easy.  First there is a header which describes the location and organization | 
|  | /// of the three components that follow. | 
|  | /// | 
|  | ///  1. The landing pad site information describes the range of code covered by | 
|  | ///     the try.  In our case it's an accumulation of the ranges covered by the | 
|  | ///     invokes in the try.  There is also a reference to the landing pad that | 
|  | ///     handles the exception once processed.  Finally an index into the actions | 
|  | ///     table. | 
|  | ///  2. The action table, in our case, is composed of pairs of type IDs and next | 
|  | ///     action offset.  Starting with the action index from the landing pad | 
|  | ///     site, each type ID is checked for a match to the current exception.  If | 
|  | ///     it matches then the exception and type id are passed on to the landing | 
|  | ///     pad.  Otherwise the next action is looked up.  This chain is terminated | 
|  | ///     with a next action of zero.  If no type id is found then the frame is | 
|  | ///     unwound and handling continues. | 
|  | ///  3. Type ID table contains references to all the C++ typeinfo for all | 
|  | ///     catches in the function.  This tables is reverse indexed base 1. | 
|  | void DwarfException::EmitExceptionTable() { | 
|  | const std::vector<const GlobalVariable *> &TypeInfos = MMI->getTypeInfos(); | 
|  | const std::vector<unsigned> &FilterIds = MMI->getFilterIds(); | 
|  | const std::vector<LandingPadInfo> &PadInfos = MMI->getLandingPads(); | 
|  |  | 
|  | // Sort the landing pads in order of their type ids.  This is used to fold | 
|  | // duplicate actions. | 
|  | SmallVector<const LandingPadInfo *, 64> LandingPads; | 
|  | LandingPads.reserve(PadInfos.size()); | 
|  |  | 
|  | for (unsigned i = 0, N = PadInfos.size(); i != N; ++i) | 
|  | LandingPads.push_back(&PadInfos[i]); | 
|  |  | 
|  | std::sort(LandingPads.begin(), LandingPads.end(), PadLT); | 
|  |  | 
|  | // Compute the actions table and gather the first action index for each | 
|  | // landing pad site. | 
|  | SmallVector<ActionEntry, 32> Actions; | 
|  | SmallVector<unsigned, 64> FirstActions; | 
|  | unsigned SizeActions=ComputeActionsTable(LandingPads, Actions, FirstActions); | 
|  |  | 
|  | // Invokes and nounwind calls have entries in PadMap (due to being bracketed | 
|  | // by try-range labels when lowered).  Ordinary calls do not, so appropriate | 
|  | // try-ranges for them need be deduced when using DWARF exception handling. | 
|  | RangeMapType PadMap; | 
|  | for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) { | 
|  | const LandingPadInfo *LandingPad = LandingPads[i]; | 
|  | for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) { | 
|  | MCSymbol *BeginLabel = LandingPad->BeginLabels[j]; | 
|  | assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!"); | 
|  | PadRange P = { i, j }; | 
|  | PadMap[BeginLabel] = P; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Compute the call-site table. | 
|  | SmallVector<CallSiteEntry, 64> CallSites; | 
|  | ComputeCallSiteTable(CallSites, PadMap, LandingPads, FirstActions); | 
|  |  | 
|  | // Final tallies. | 
|  |  | 
|  | // Call sites. | 
|  | bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj; | 
|  | bool HaveTTData = IsSJLJ ? (!TypeInfos.empty() || !FilterIds.empty()) : true; | 
|  |  | 
|  | unsigned CallSiteTableLength; | 
|  | if (IsSJLJ) | 
|  | CallSiteTableLength = 0; | 
|  | else { | 
|  | unsigned SiteStartSize  = 4; // dwarf::DW_EH_PE_udata4 | 
|  | unsigned SiteLengthSize = 4; // dwarf::DW_EH_PE_udata4 | 
|  | unsigned LandingPadSize = 4; // dwarf::DW_EH_PE_udata4 | 
|  | CallSiteTableLength = | 
|  | CallSites.size() * (SiteStartSize + SiteLengthSize + LandingPadSize); | 
|  | } | 
|  |  | 
|  | for (unsigned i = 0, e = CallSites.size(); i < e; ++i) { | 
|  | CallSiteTableLength += MCAsmInfo::getULEB128Size(CallSites[i].Action); | 
|  | if (IsSJLJ) | 
|  | CallSiteTableLength += MCAsmInfo::getULEB128Size(i); | 
|  | } | 
|  |  | 
|  | // Type infos. | 
|  | const MCSection *LSDASection = Asm->getObjFileLowering().getLSDASection(); | 
|  | unsigned TTypeEncoding; | 
|  | unsigned TypeFormatSize; | 
|  |  | 
|  | if (!HaveTTData) { | 
|  | // For SjLj exceptions, if there is no TypeInfo, then we just explicitly say | 
|  | // that we're omitting that bit. | 
|  | TTypeEncoding = dwarf::DW_EH_PE_omit; | 
|  | // dwarf::DW_EH_PE_absptr | 
|  | TypeFormatSize = Asm->getDataLayout().getPointerSize(); | 
|  | } else { | 
|  | // Okay, we have actual filters or typeinfos to emit.  As such, we need to | 
|  | // pick a type encoding for them.  We're about to emit a list of pointers to | 
|  | // typeinfo objects at the end of the LSDA.  However, unless we're in static | 
|  | // mode, this reference will require a relocation by the dynamic linker. | 
|  | // | 
|  | // Because of this, we have a couple of options: | 
|  | // | 
|  | //   1) If we are in -static mode, we can always use an absolute reference | 
|  | //      from the LSDA, because the static linker will resolve it. | 
|  | // | 
|  | //   2) Otherwise, if the LSDA section is writable, we can output the direct | 
|  | //      reference to the typeinfo and allow the dynamic linker to relocate | 
|  | //      it.  Since it is in a writable section, the dynamic linker won't | 
|  | //      have a problem. | 
|  | // | 
|  | //   3) Finally, if we're in PIC mode and the LDSA section isn't writable, | 
|  | //      we need to use some form of indirection.  For example, on Darwin, | 
|  | //      we can output a statically-relocatable reference to a dyld stub. The | 
|  | //      offset to the stub is constant, but the contents are in a section | 
|  | //      that is updated by the dynamic linker.  This is easy enough, but we | 
|  | //      need to tell the personality function of the unwinder to indirect | 
|  | //      through the dyld stub. | 
|  | // | 
|  | // FIXME: When (3) is actually implemented, we'll have to emit the stubs | 
|  | // somewhere.  This predicate should be moved to a shared location that is | 
|  | // in target-independent code. | 
|  | // | 
|  | TTypeEncoding = Asm->getObjFileLowering().getTTypeEncoding(); | 
|  | TypeFormatSize = Asm->GetSizeOfEncodedValue(TTypeEncoding); | 
|  | } | 
|  |  | 
|  | // Begin the exception table. | 
|  | // Sometimes we want not to emit the data into separate section (e.g. ARM | 
|  | // EHABI). In this case LSDASection will be NULL. | 
|  | if (LSDASection) | 
|  | Asm->OutStreamer.SwitchSection(LSDASection); | 
|  | Asm->EmitAlignment(2); | 
|  |  | 
|  | // Emit the LSDA. | 
|  | MCSymbol *GCCETSym = | 
|  | Asm->OutContext.GetOrCreateSymbol(Twine("GCC_except_table")+ | 
|  | Twine(Asm->getFunctionNumber())); | 
|  | Asm->OutStreamer.EmitLabel(GCCETSym); | 
|  | Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol("exception", | 
|  | Asm->getFunctionNumber())); | 
|  |  | 
|  | if (IsSJLJ) | 
|  | Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol("_LSDA_", | 
|  | Asm->getFunctionNumber())); | 
|  |  | 
|  | // Emit the LSDA header. | 
|  | Asm->EmitEncodingByte(dwarf::DW_EH_PE_omit, "@LPStart"); | 
|  | Asm->EmitEncodingByte(TTypeEncoding, "@TType"); | 
|  |  | 
|  | // The type infos need to be aligned. GCC does this by inserting padding just | 
|  | // before the type infos. However, this changes the size of the exception | 
|  | // table, so you need to take this into account when you output the exception | 
|  | // table size. However, the size is output using a variable length encoding. | 
|  | // So by increasing the size by inserting padding, you may increase the number | 
|  | // of bytes used for writing the size. If it increases, say by one byte, then | 
|  | // you now need to output one less byte of padding to get the type infos | 
|  | // aligned. However this decreases the size of the exception table. This | 
|  | // changes the value you have to output for the exception table size. Due to | 
|  | // the variable length encoding, the number of bytes used for writing the | 
|  | // length may decrease. If so, you then have to increase the amount of | 
|  | // padding. And so on. If you look carefully at the GCC code you will see that | 
|  | // it indeed does this in a loop, going on and on until the values stabilize. | 
|  | // We chose another solution: don't output padding inside the table like GCC | 
|  | // does, instead output it before the table. | 
|  | unsigned SizeTypes = TypeInfos.size() * TypeFormatSize; | 
|  | unsigned CallSiteTableLengthSize = | 
|  | MCAsmInfo::getULEB128Size(CallSiteTableLength); | 
|  | unsigned TTypeBaseOffset = | 
|  | sizeof(int8_t) +                            // Call site format | 
|  | CallSiteTableLengthSize +                   // Call site table length size | 
|  | CallSiteTableLength +                       // Call site table length | 
|  | SizeActions +                               // Actions size | 
|  | SizeTypes; | 
|  | unsigned TTypeBaseOffsetSize = MCAsmInfo::getULEB128Size(TTypeBaseOffset); | 
|  | unsigned TotalSize = | 
|  | sizeof(int8_t) +                            // LPStart format | 
|  | sizeof(int8_t) +                            // TType format | 
|  | (HaveTTData ? TTypeBaseOffsetSize : 0) +    // TType base offset size | 
|  | TTypeBaseOffset;                            // TType base offset | 
|  | unsigned SizeAlign = (4 - TotalSize) & 3; | 
|  |  | 
|  | if (HaveTTData) { | 
|  | // Account for any extra padding that will be added to the call site table | 
|  | // length. | 
|  | Asm->EmitULEB128(TTypeBaseOffset, "@TType base offset", SizeAlign); | 
|  | SizeAlign = 0; | 
|  | } | 
|  |  | 
|  | bool VerboseAsm = Asm->OutStreamer.isVerboseAsm(); | 
|  |  | 
|  | // SjLj Exception handling | 
|  | if (IsSJLJ) { | 
|  | Asm->EmitEncodingByte(dwarf::DW_EH_PE_udata4, "Call site"); | 
|  |  | 
|  | // Add extra padding if it wasn't added to the TType base offset. | 
|  | Asm->EmitULEB128(CallSiteTableLength, "Call site table length", SizeAlign); | 
|  |  | 
|  | // Emit the landing pad site information. | 
|  | unsigned idx = 0; | 
|  | for (SmallVectorImpl<CallSiteEntry>::const_iterator | 
|  | I = CallSites.begin(), E = CallSites.end(); I != E; ++I, ++idx) { | 
|  | const CallSiteEntry &S = *I; | 
|  |  | 
|  | // Offset of the landing pad, counted in 16-byte bundles relative to the | 
|  | // @LPStart address. | 
|  | if (VerboseAsm) { | 
|  | Asm->OutStreamer.AddComment(">> Call Site " + Twine(idx) + " <<"); | 
|  | Asm->OutStreamer.AddComment("  On exception at call site "+Twine(idx)); | 
|  | } | 
|  | Asm->EmitULEB128(idx); | 
|  |  | 
|  | // Offset of the first associated action record, relative to the start of | 
|  | // the action table. This value is biased by 1 (1 indicates the start of | 
|  | // the action table), and 0 indicates that there are no actions. | 
|  | if (VerboseAsm) { | 
|  | if (S.Action == 0) | 
|  | Asm->OutStreamer.AddComment("  Action: cleanup"); | 
|  | else | 
|  | Asm->OutStreamer.AddComment("  Action: " + | 
|  | Twine((S.Action - 1) / 2 + 1)); | 
|  | } | 
|  | Asm->EmitULEB128(S.Action); | 
|  | } | 
|  | } else { | 
|  | // DWARF Exception handling | 
|  | assert(Asm->MAI->isExceptionHandlingDwarf()); | 
|  |  | 
|  | // The call-site table is a list of all call sites that may throw an | 
|  | // exception (including C++ 'throw' statements) in the procedure | 
|  | // fragment. It immediately follows the LSDA header. Each entry indicates, | 
|  | // for a given call, the first corresponding action record and corresponding | 
|  | // landing pad. | 
|  | // | 
|  | // The table begins with the number of bytes, stored as an LEB128 | 
|  | // compressed, unsigned integer. The records immediately follow the record | 
|  | // count. They are sorted in increasing call-site address. Each record | 
|  | // indicates: | 
|  | // | 
|  | //   * The position of the call-site. | 
|  | //   * The position of the landing pad. | 
|  | //   * The first action record for that call site. | 
|  | // | 
|  | // A missing entry in the call-site table indicates that a call is not | 
|  | // supposed to throw. | 
|  |  | 
|  | // Emit the landing pad call site table. | 
|  | Asm->EmitEncodingByte(dwarf::DW_EH_PE_udata4, "Call site"); | 
|  |  | 
|  | // Add extra padding if it wasn't added to the TType base offset. | 
|  | Asm->EmitULEB128(CallSiteTableLength, "Call site table length", SizeAlign); | 
|  |  | 
|  | unsigned Entry = 0; | 
|  | for (SmallVectorImpl<CallSiteEntry>::const_iterator | 
|  | I = CallSites.begin(), E = CallSites.end(); I != E; ++I) { | 
|  | const CallSiteEntry &S = *I; | 
|  |  | 
|  | MCSymbol *EHFuncBeginSym = | 
|  | Asm->GetTempSymbol("eh_func_begin", Asm->getFunctionNumber()); | 
|  |  | 
|  | MCSymbol *BeginLabel = S.BeginLabel; | 
|  | if (BeginLabel == 0) | 
|  | BeginLabel = EHFuncBeginSym; | 
|  | MCSymbol *EndLabel = S.EndLabel; | 
|  | if (EndLabel == 0) | 
|  | EndLabel = Asm->GetTempSymbol("eh_func_end", Asm->getFunctionNumber()); | 
|  |  | 
|  |  | 
|  | // Offset of the call site relative to the previous call site, counted in | 
|  | // number of 16-byte bundles. The first call site is counted relative to | 
|  | // the start of the procedure fragment. | 
|  | if (VerboseAsm) | 
|  | Asm->OutStreamer.AddComment(">> Call Site " + Twine(++Entry) + " <<"); | 
|  | Asm->EmitLabelDifference(BeginLabel, EHFuncBeginSym, 4); | 
|  | if (VerboseAsm) | 
|  | Asm->OutStreamer.AddComment(Twine("  Call between ") + | 
|  | BeginLabel->getName() + " and " + | 
|  | EndLabel->getName()); | 
|  | Asm->EmitLabelDifference(EndLabel, BeginLabel, 4); | 
|  |  | 
|  | // Offset of the landing pad, counted in 16-byte bundles relative to the | 
|  | // @LPStart address. | 
|  | if (!S.PadLabel) { | 
|  | if (VerboseAsm) | 
|  | Asm->OutStreamer.AddComment("    has no landing pad"); | 
|  | Asm->OutStreamer.EmitIntValue(0, 4/*size*/); | 
|  | } else { | 
|  | if (VerboseAsm) | 
|  | Asm->OutStreamer.AddComment(Twine("    jumps to ") + | 
|  | S.PadLabel->getName()); | 
|  | Asm->EmitLabelDifference(S.PadLabel, EHFuncBeginSym, 4); | 
|  | } | 
|  |  | 
|  | // Offset of the first associated action record, relative to the start of | 
|  | // the action table. This value is biased by 1 (1 indicates the start of | 
|  | // the action table), and 0 indicates that there are no actions. | 
|  | if (VerboseAsm) { | 
|  | if (S.Action == 0) | 
|  | Asm->OutStreamer.AddComment("  On action: cleanup"); | 
|  | else | 
|  | Asm->OutStreamer.AddComment("  On action: " + | 
|  | Twine((S.Action - 1) / 2 + 1)); | 
|  | } | 
|  | Asm->EmitULEB128(S.Action); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Emit the Action Table. | 
|  | int Entry = 0; | 
|  | for (SmallVectorImpl<ActionEntry>::const_iterator | 
|  | I = Actions.begin(), E = Actions.end(); I != E; ++I) { | 
|  | const ActionEntry &Action = *I; | 
|  |  | 
|  | if (VerboseAsm) { | 
|  | // Emit comments that decode the action table. | 
|  | Asm->OutStreamer.AddComment(">> Action Record " + Twine(++Entry) + " <<"); | 
|  | } | 
|  |  | 
|  | // Type Filter | 
|  | // | 
|  | //   Used by the runtime to match the type of the thrown exception to the | 
|  | //   type of the catch clauses or the types in the exception specification. | 
|  | if (VerboseAsm) { | 
|  | if (Action.ValueForTypeID > 0) | 
|  | Asm->OutStreamer.AddComment("  Catch TypeInfo " + | 
|  | Twine(Action.ValueForTypeID)); | 
|  | else if (Action.ValueForTypeID < 0) | 
|  | Asm->OutStreamer.AddComment("  Filter TypeInfo " + | 
|  | Twine(Action.ValueForTypeID)); | 
|  | else | 
|  | Asm->OutStreamer.AddComment("  Cleanup"); | 
|  | } | 
|  | Asm->EmitSLEB128(Action.ValueForTypeID); | 
|  |  | 
|  | // Action Record | 
|  | // | 
|  | //   Self-relative signed displacement in bytes of the next action record, | 
|  | //   or 0 if there is no next action record. | 
|  | if (VerboseAsm) { | 
|  | if (Action.NextAction == 0) { | 
|  | Asm->OutStreamer.AddComment("  No further actions"); | 
|  | } else { | 
|  | unsigned NextAction = Entry + (Action.NextAction + 1) / 2; | 
|  | Asm->OutStreamer.AddComment("  Continue to action "+Twine(NextAction)); | 
|  | } | 
|  | } | 
|  | Asm->EmitSLEB128(Action.NextAction); | 
|  | } | 
|  |  | 
|  | EmitTypeInfos(TTypeEncoding); | 
|  |  | 
|  | Asm->EmitAlignment(2); | 
|  | } | 
|  |  | 
|  | void DwarfException::EmitTypeInfos(unsigned TTypeEncoding) { | 
|  | const std::vector<const GlobalVariable *> &TypeInfos = MMI->getTypeInfos(); | 
|  | const std::vector<unsigned> &FilterIds = MMI->getFilterIds(); | 
|  |  | 
|  | bool VerboseAsm = Asm->OutStreamer.isVerboseAsm(); | 
|  |  | 
|  | int Entry = 0; | 
|  | // Emit the Catch TypeInfos. | 
|  | if (VerboseAsm && !TypeInfos.empty()) { | 
|  | Asm->OutStreamer.AddComment(">> Catch TypeInfos <<"); | 
|  | Asm->OutStreamer.AddBlankLine(); | 
|  | Entry = TypeInfos.size(); | 
|  | } | 
|  |  | 
|  | for (std::vector<const GlobalVariable *>::const_reverse_iterator | 
|  | I = TypeInfos.rbegin(), E = TypeInfos.rend(); I != E; ++I) { | 
|  | const GlobalVariable *GV = *I; | 
|  | if (VerboseAsm) | 
|  | Asm->OutStreamer.AddComment("TypeInfo " + Twine(Entry--)); | 
|  | Asm->EmitTTypeReference(GV, TTypeEncoding); | 
|  | } | 
|  |  | 
|  | // Emit the Exception Specifications. | 
|  | if (VerboseAsm && !FilterIds.empty()) { | 
|  | Asm->OutStreamer.AddComment(">> Filter TypeInfos <<"); | 
|  | Asm->OutStreamer.AddBlankLine(); | 
|  | Entry = 0; | 
|  | } | 
|  | for (std::vector<unsigned>::const_iterator | 
|  | I = FilterIds.begin(), E = FilterIds.end(); I < E; ++I) { | 
|  | unsigned TypeID = *I; | 
|  | if (VerboseAsm) { | 
|  | --Entry; | 
|  | if (TypeID != 0) | 
|  | Asm->OutStreamer.AddComment("FilterInfo " + Twine(Entry)); | 
|  | } | 
|  |  | 
|  | Asm->EmitULEB128(TypeID); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// endModule - Emit all exception information that should come after the | 
|  | /// content. | 
|  | void DwarfException::endModule() { | 
|  | llvm_unreachable("Should be implemented"); | 
|  | } | 
|  |  | 
|  | /// beginFunction - Gather pre-function exception information. Assumes it's | 
|  | /// being emitted immediately after the function entry point. | 
|  | void DwarfException::beginFunction(const MachineFunction *MF) { | 
|  | llvm_unreachable("Should be implemented"); | 
|  | } | 
|  |  | 
|  | /// endFunction - Gather and emit post-function exception information. | 
|  | void DwarfException::endFunction(const MachineFunction *) { | 
|  | llvm_unreachable("Should be implemented"); | 
|  | } |