| //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by Chris Lattner and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements semantic analysis for declarations. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "Sema.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/Builtins.h" |
| #include "clang/AST/Decl.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/Type.h" |
| #include "clang/Parse/DeclSpec.h" |
| #include "clang/Parse/Scope.h" |
| #include "clang/Lex/IdentifierTable.h" |
| #include "clang/Basic/LangOptions.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "llvm/ADT/SmallSet.h" |
| using namespace llvm; |
| using namespace clang; |
| |
| |
| Sema::DeclTy *Sema::isTypeName(const IdentifierInfo &II, Scope *S) const { |
| return dyn_cast_or_null<TypedefDecl>(II.getFETokenInfo<Decl>()); |
| } |
| |
| void Sema::PopScope(SourceLocation Loc, Scope *S) { |
| for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end(); |
| I != E; ++I) { |
| Decl *D = static_cast<Decl*>(*I); |
| assert(D && "This decl didn't get pushed??"); |
| IdentifierInfo *II = D->getIdentifier(); |
| if (!II) continue; |
| |
| // Unlink this decl from the identifier. Because the scope contains decls |
| // in an unordered collection, and because we have multiple identifier |
| // namespaces (e.g. tag, normal, label),the decl may not be the first entry. |
| if (II->getFETokenInfo<Decl>() == D) { |
| // Normal case, no multiple decls in different namespaces. |
| II->setFETokenInfo(D->getNext()); |
| } else { |
| // Scan ahead. There are only three namespaces in C, so this loop can |
| // never execute more than 3 times. |
| Decl *SomeDecl = II->getFETokenInfo<Decl>(); |
| while (SomeDecl->getNext() != D) { |
| SomeDecl = SomeDecl->getNext(); |
| assert(SomeDecl && "Didn't find this decl on its identifier's chain!"); |
| } |
| SomeDecl->setNext(D->getNext()); |
| } |
| |
| // This will have to be revisited for C++: there we want to nest stuff in |
| // namespace decls etc. Even for C, we might want a top-level translation |
| // unit decl or something. |
| if (!CurFunctionDecl) |
| continue; |
| |
| // Chain this decl to the containing function, it now owns the memory for |
| // the decl. |
| D->setNext(CurFunctionDecl->getDeclChain()); |
| CurFunctionDecl->setDeclChain(D); |
| } |
| } |
| |
| /// LookupScopedDecl - Look up the inner-most declaration in the specified |
| /// namespace. |
| Decl *Sema::LookupScopedDecl(IdentifierInfo *II, unsigned NSI, |
| SourceLocation IdLoc, Scope *S) { |
| if (II == 0) return 0; |
| Decl::IdentifierNamespace NS = (Decl::IdentifierNamespace)NSI; |
| |
| // Scan up the scope chain looking for a decl that matches this identifier |
| // that is in the appropriate namespace. This search should not take long, as |
| // shadowing of names is uncommon, and deep shadowing is extremely uncommon. |
| for (Decl *D = II->getFETokenInfo<Decl>(); D; D = D->getNext()) |
| if (D->getIdentifierNamespace() == NS) |
| return D; |
| |
| // If we didn't find a use of this identifier, and if the identifier |
| // corresponds to a compiler builtin, create the decl object for the builtin |
| // now, injecting it into translation unit scope, and return it. |
| if (NS == Decl::IDNS_Ordinary) { |
| // If this is a builtin on some other target, or if this builtin varies |
| // across targets (e.g. in type), emit a diagnostic and mark the translation |
| // unit non-portable for using it. |
| if (II->isNonPortableBuiltin()) { |
| // Only emit this diagnostic once for this builtin. |
| II->setNonPortableBuiltin(false); |
| Context.Target.DiagnoseNonPortability(IdLoc, |
| diag::port_target_builtin_use); |
| } |
| // If this is a builtin on this (or all) targets, create the decl. |
| if (unsigned BuiltinID = II->getBuiltinID()) |
| return LazilyCreateBuiltin(II, BuiltinID, S); |
| } |
| return 0; |
| } |
| |
| /// LazilyCreateBuiltin - The specified Builtin-ID was first used at file scope. |
| /// lazily create a decl for it. |
| Decl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid, Scope *S) { |
| Builtin::ID BID = (Builtin::ID)bid; |
| |
| TypeRef R = Context.BuiltinInfo.GetBuiltinType(BID, Context); |
| FunctionDecl *New = new FunctionDecl(SourceLocation(), II, R); |
| |
| // Find translation-unit scope to insert this function into. |
| while (S->getParent()) |
| S = S->getParent(); |
| S->AddDecl(New); |
| |
| // Add this decl to the end of the identifier info. |
| if (Decl *LastDecl = II->getFETokenInfo<Decl>()) { |
| // Scan until we find the last (outermost) decl in the id chain. |
| while (LastDecl->getNext()) |
| LastDecl = LastDecl->getNext(); |
| // Insert before (outside) it. |
| LastDecl->setNext(New); |
| } else { |
| II->setFETokenInfo(New); |
| } |
| // Make sure clients iterating over decls see this. |
| LastInGroupList.push_back(New); |
| |
| return New; |
| } |
| |
| /// MergeTypeDefDecl - We just parsed a typedef 'New' which has the same name |
| /// and scope as a previous declaration 'Old'. Figure out how to resolve this |
| /// situation, merging decls or emitting diagnostics as appropriate. |
| /// |
| TypedefDecl *Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) { |
| // Verify the old decl was also a typedef. |
| TypedefDecl *Old = dyn_cast<TypedefDecl>(OldD); |
| if (!Old) { |
| Diag(New->getLocation(), diag::err_redefinition_different_kind, |
| New->getName()); |
| Diag(OldD->getLocation(), diag::err_previous_definition); |
| return New; |
| } |
| |
| // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope. |
| // TODO: This is totally simplistic. It should handle merging functions |
| // together etc, merging extern int X; int X; ... |
| Diag(New->getLocation(), diag::err_redefinition, New->getName()); |
| Diag(Old->getLocation(), diag::err_previous_definition); |
| return New; |
| } |
| |
| /// MergeFunctionDecl - We just parsed a function 'New' which has the same name |
| /// and scope as a previous declaration 'Old'. Figure out how to resolve this |
| /// situation, merging decls or emitting diagnostics as appropriate. |
| /// |
| FunctionDecl *Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) { |
| // Verify the old decl was also a function. |
| FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD); |
| if (!Old) { |
| Diag(New->getLocation(), diag::err_redefinition_different_kind, |
| New->getName()); |
| Diag(OldD->getLocation(), diag::err_previous_definition); |
| return New; |
| } |
| |
| // This is not right, but it's a start. If 'Old' is a function prototype with |
| // the same type as 'New', silently allow this. FIXME: We should link up decl |
| // objects here. |
| if (Old->getBody() == 0 && |
| Old->getCanonicalType() == New->getCanonicalType()) { |
| return New; |
| } |
| |
| // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope. |
| // TODO: This is totally simplistic. It should handle merging functions |
| // together etc, merging extern int X; int X; ... |
| Diag(New->getLocation(), diag::err_redefinition, New->getName()); |
| Diag(Old->getLocation(), diag::err_previous_definition); |
| return New; |
| } |
| |
| /// MergeVarDecl - We just parsed a variable 'New' which has the same name |
| /// and scope as a previous declaration 'Old'. Figure out how to resolve this |
| /// situation, merging decls or emitting diagnostics as appropriate. |
| /// |
| VarDecl *Sema::MergeVarDecl(VarDecl *New, Decl *OldD) { |
| // Verify the old decl was also a variable. |
| VarDecl *Old = dyn_cast<VarDecl>(OldD); |
| if (!Old) { |
| Diag(New->getLocation(), diag::err_redefinition_different_kind, |
| New->getName()); |
| Diag(OldD->getLocation(), diag::err_previous_definition); |
| return New; |
| } |
| // Verify the types match. |
| if (Old->getCanonicalType() != New->getCanonicalType()) { |
| Diag(New->getLocation(), diag::err_redefinition, New->getName()); |
| Diag(Old->getLocation(), diag::err_previous_definition); |
| return New; |
| } |
| // We've verified the types match, now check if Old is "extern". |
| if (Old->getStorageClass() != ObjectDecl::Extern) { |
| Diag(New->getLocation(), diag::err_redefinition, New->getName()); |
| Diag(Old->getLocation(), diag::err_previous_definition); |
| } |
| return New; |
| } |
| |
| /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with |
| /// no declarator (e.g. "struct foo;") is parsed. |
| Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) { |
| // TODO: emit error on 'int;' or 'const enum foo;'. |
| // TODO: emit error on 'typedef int;' |
| // if (!DS.isMissingDeclaratorOk()) Diag(...); |
| |
| return 0; |
| } |
| |
| |
| Action::DeclTy * |
| Sema::ParseDeclarator(Scope *S, Declarator &D, ExprTy *Init, |
| DeclTy *LastInGroup) { |
| IdentifierInfo *II = D.getIdentifier(); |
| |
| // See if this is a redefinition of a variable in the same scope. |
| Decl *PrevDecl = LookupScopedDecl(II, Decl::IDNS_Ordinary, |
| D.getIdentifierLoc(), S); |
| if (!S->isDeclScope(PrevDecl)) |
| PrevDecl = 0; // If in outer scope, it isn't the same thing. |
| |
| Decl *New; |
| if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { |
| TypedefDecl *NewTD = ParseTypedefDecl(S, D); |
| if (!NewTD) return 0; |
| |
| // Merge the decl with the existing one if appropriate. |
| if (PrevDecl) { |
| NewTD = MergeTypeDefDecl(NewTD, PrevDecl); |
| if (NewTD == 0) return 0; |
| } |
| New = NewTD; |
| } else if (D.isFunctionDeclarator()) { |
| TypeRef R = GetTypeForDeclarator(D, S); |
| if (R.isNull()) return 0; |
| |
| FunctionDecl *NewFD = new FunctionDecl(D.getIdentifierLoc(), II, R); |
| |
| // Merge the decl with the existing one if appropriate. |
| if (PrevDecl) { |
| NewFD = MergeFunctionDecl(NewFD, PrevDecl); |
| if (NewFD == 0) return 0; |
| } |
| New = NewFD; |
| } else { |
| TypeRef R = GetTypeForDeclarator(D, S); |
| if (R.isNull()) return 0; |
| |
| ObjectDecl::StorageClass S; |
| switch (D.getDeclSpec().getStorageClassSpec()) { |
| default: assert(0 && "Unknown storage class!"); |
| case 0: S = ObjectDecl::None; |
| case DeclSpec::SCS_extern: S = ObjectDecl::Extern; break; |
| case DeclSpec::SCS_static: S = ObjectDecl::Static; break; |
| // The following 2 should never be seen in this context. |
| case DeclSpec::SCS_auto: S = ObjectDecl::Auto; break; |
| case DeclSpec::SCS_register: S = ObjectDecl::Register; break; |
| } |
| VarDecl *NewVD = new VarDecl(D.getIdentifierLoc(), II, R, S); |
| |
| // Merge the decl with the existing one if appropriate. |
| if (PrevDecl) { |
| NewVD = MergeVarDecl(NewVD, PrevDecl); |
| if (NewVD == 0) return 0; |
| } |
| New = NewVD; |
| } |
| |
| |
| // If this has an identifier, add it to the scope stack. |
| if (II) { |
| New->setNext(II->getFETokenInfo<Decl>()); |
| II->setFETokenInfo(New); |
| S->AddDecl(New); |
| } |
| |
| if (S->getParent() == 0) |
| AddTopLevelDecl(New, (Decl *)LastInGroup); |
| |
| return New; |
| } |
| |
| VarDecl * |
| Sema::ParseParamDeclarator(DeclaratorChunk &FTI, unsigned ArgNo, |
| Scope *FnScope) { |
| const DeclaratorChunk::ParamInfo &PI = FTI.Fun.ArgInfo[ArgNo]; |
| |
| IdentifierInfo *II = PI.Ident; |
| // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope. |
| // Can this happen for params? We already checked that they don't conflict |
| // among each other. Here they can only shadow globals, which is ok. |
| if (Decl *PrevDecl = LookupScopedDecl(II, Decl::IDNS_Ordinary, |
| PI.IdentLoc, FnScope)) { |
| |
| } |
| |
| // FIXME: Handle storage class (auto, register). No declarator? |
| VarDecl *New = new VarDecl(PI.IdentLoc, II, |
| TypeRef::getFromOpaquePtr(PI.TypeInfo), |
| ObjectDecl::None); |
| |
| // If this has an identifier, add it to the scope stack. |
| if (II) { |
| New->setNext(II->getFETokenInfo<Decl>()); |
| II->setFETokenInfo(New); |
| FnScope->AddDecl(New); |
| } |
| |
| return New; |
| } |
| |
| |
| Sema::DeclTy *Sema::ParseStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) { |
| assert(CurFunctionDecl == 0 && "Function parsing confused"); |
| assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function && |
| "Not a function declarator!"); |
| DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun; |
| |
| // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared' |
| // for a K&R function. |
| if (!FTI.hasPrototype) { |
| for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) { |
| if (FTI.ArgInfo[i].TypeInfo == 0) { |
| Diag(FTI.ArgInfo[i].IdentLoc, diag::err_param_not_declared, |
| FTI.ArgInfo[i].Ident->getName()); |
| // Implicitly declare the argument as type 'int' for lack of a better |
| // type. |
| FTI.ArgInfo[i].TypeInfo = Context.IntTy.getAsOpaquePtr(); |
| } |
| } |
| |
| // Since this is a function definition, act as though we have information |
| // about the arguments. |
| FTI.hasPrototype = true; |
| } else { |
| // FIXME: Diagnose arguments without names in C. |
| |
| } |
| |
| Scope *GlobalScope = FnBodyScope->getParent(); |
| |
| FunctionDecl *FD = |
| static_cast<FunctionDecl*>(ParseDeclarator(GlobalScope, D, 0, 0)); |
| CurFunctionDecl = FD; |
| |
| // Create Decl objects for each parameter, adding them to the FunctionDecl. |
| SmallVector<VarDecl*, 16> Params; |
| |
| // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes |
| // no arguments, not a function that takes a single void argument. |
| if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 && |
| FTI.ArgInfo[0].TypeInfo == Context.VoidTy.getAsOpaquePtr()) { |
| // empty arg list, don't push any params. |
| } else { |
| for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) |
| Params.push_back(ParseParamDeclarator(D.getTypeObject(0), i,FnBodyScope)); |
| } |
| |
| FD->setParams(&Params[0], Params.size()); |
| |
| return FD; |
| } |
| |
| Sema::DeclTy *Sema::ParseFunctionDefBody(DeclTy *D, StmtTy *Body) { |
| FunctionDecl *FD = static_cast<FunctionDecl*>(D); |
| FD->setBody((Stmt*)Body); |
| |
| assert(FD == CurFunctionDecl && "Function parsing confused"); |
| CurFunctionDecl = 0; |
| return FD; |
| } |
| |
| |
| /// ImplicitlyDefineFunction - An undeclared identifier was used in a function |
| /// call, forming a call to an implicitly defined function (per C99 6.5.1p2). |
| Decl *Sema::ImplicitlyDefineFunction(SourceLocation Loc, IdentifierInfo &II, |
| Scope *S) { |
| if (getLangOptions().C99) // Extension in C99. |
| Diag(Loc, diag::ext_implicit_function_decl, II.getName()); |
| else // Legal in C90, but warn about it. |
| Diag(Loc, diag::warn_implicit_function_decl, II.getName()); |
| |
| // FIXME: handle stuff like: |
| // void foo() { extern float X(); } |
| // void bar() { X(); } <-- implicit decl for X in another scope. |
| |
| // Set a Declarator for the implicit definition: int foo(); |
| const char *Dummy; |
| DeclSpec DS; |
| bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy); |
| Error = Error; // Silence warning. |
| assert(!Error && "Error setting up implicit decl!"); |
| Declarator D(DS, Declarator::BlockContext); |
| D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, Loc)); |
| D.SetIdentifier(&II, Loc); |
| |
| // Find translation-unit scope to insert this function into. |
| while (S->getParent()) |
| S = S->getParent(); |
| |
| return static_cast<Decl*>(ParseDeclarator(S, D, 0, 0)); |
| } |
| |
| |
| TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D) { |
| assert(D.getIdentifier() && "Wrong callback for declspec withotu declarator"); |
| |
| TypeRef T = GetTypeForDeclarator(D, S); |
| if (T.isNull()) return 0; |
| |
| // Scope manipulation handled by caller. |
| return new TypedefDecl(D.getIdentifierLoc(), D.getIdentifier(), T); |
| } |
| |
| |
| /// ParseTag - This is invoked when we see 'struct foo' or 'struct {'. In the |
| /// former case, Name will be non-null. In the later case, Name will be null. |
| /// TagType indicates what kind of tag this is. TK indicates whether this is a |
| /// reference/declaration/definition of a tag. |
| Sema::DeclTy *Sema::ParseTag(Scope *S, unsigned TagType, TagKind TK, |
| SourceLocation KWLoc, IdentifierInfo *Name, |
| SourceLocation NameLoc) { |
| // If this is a use of an existing tag, it must have a name. |
| assert((Name != 0 || TK == TK_Definition) && |
| "Nameless record must be a definition!"); |
| |
| Decl::Kind Kind; |
| switch (TagType) { |
| default: assert(0 && "Unknown tag type!"); |
| case DeclSpec::TST_struct: Kind = Decl::Struct; break; |
| case DeclSpec::TST_union: Kind = Decl::Union; break; |
| //case DeclSpec::TST_class: Kind = Decl::Class; break; |
| case DeclSpec::TST_enum: Kind = Decl::Enum; break; |
| } |
| |
| // If this is a named struct, check to see if there was a previous forward |
| // declaration or definition. |
| if (TagDecl *PrevDecl = |
| dyn_cast_or_null<TagDecl>(LookupScopedDecl(Name, Decl::IDNS_Tag, |
| NameLoc, S))) { |
| |
| // If this is a use of a previous tag, or if the tag is already declared in |
| // the same scope (so that the definition/declaration completes or |
| // rementions the tag), reuse the decl. |
| if (TK == TK_Reference || S->isDeclScope(PrevDecl)) { |
| // Make sure that this wasn't declared as an enum and now used as a struct |
| // or something similar. |
| if (PrevDecl->getKind() != Kind) { |
| Diag(KWLoc, diag::err_use_with_wrong_tag, Name->getName()); |
| Diag(PrevDecl->getLocation(), diag::err_previous_use); |
| } |
| |
| // If this is a use or a forward declaration, we're good. |
| if (TK != TK_Definition) |
| return PrevDecl; |
| |
| // Diagnose attempts to redefine a tag. |
| if (PrevDecl->isDefinition()) { |
| Diag(NameLoc, diag::err_redefinition, Name->getName()); |
| Diag(PrevDecl->getLocation(), diag::err_previous_definition); |
| // If this is a redefinition, recover by making this struct be |
| // anonymous, which will make any later references get the previous |
| // definition. |
| Name = 0; |
| } else { |
| // Okay, this is definition of a previously declared or referenced tag. |
| // Move the location of the decl to be the definition site. |
| PrevDecl->setLocation(NameLoc); |
| return PrevDecl; |
| } |
| } |
| // If we get here, this is a definition of a new struct type in a nested |
| // scope, e.g. "struct foo; void bar() { struct foo; }", just create a new |
| // type. |
| } |
| |
| // If there is an identifier, use the location of the identifier as the |
| // location of the decl, otherwise use the location of the struct/union |
| // keyword. |
| SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc; |
| |
| // Otherwise, if this is the first time we've seen this tag, create the decl. |
| TagDecl *New; |
| switch (Kind) { |
| default: assert(0 && "Unknown tag kind!"); |
| case Decl::Enum: |
| New = new EnumDecl(Loc, Name); |
| // If this is an undefined enum, warn. |
| if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum); |
| break; |
| case Decl::Union: |
| case Decl::Struct: |
| case Decl::Class: |
| New = new RecordDecl(Kind, Loc, Name); |
| break; |
| } |
| |
| // If this has an identifier, add it to the scope stack. |
| if (Name) { |
| New->setNext(Name->getFETokenInfo<Decl>()); |
| Name->setFETokenInfo(New); |
| S->AddDecl(New); |
| } |
| |
| return New; |
| } |
| |
| /// ParseField - Each field of a struct/union/class is passed into this in order |
| /// to create a FieldDecl object for it. |
| Sema::DeclTy *Sema::ParseField(Scope *S, DeclTy *TagDecl, |
| SourceLocation DeclStart, |
| Declarator &D, ExprTy *BitfieldWidth) { |
| IdentifierInfo *II = D.getIdentifier(); |
| Expr *BitWidth = (Expr*)BitfieldWidth; |
| |
| SourceLocation Loc = DeclStart; |
| if (II) Loc = D.getIdentifierLoc(); |
| |
| // FIXME: Unnamed fields can be handled in various different ways, for |
| // example, unnamed unions inject all members into the struct namespace! |
| |
| |
| if (BitWidth) { |
| // TODO: Validate. |
| printf("WARNING: BITFIELDS IGNORED!\n"); |
| |
| // 6.7.2.1p3 |
| // 6.7.2.1p4 |
| |
| } else { |
| // Not a bitfield. |
| |
| // validate II. |
| |
| } |
| |
| TypeRef T = GetTypeForDeclarator(D, S); |
| if (T.isNull()) return 0; |
| |
| return new FieldDecl(Loc, II, T); |
| } |
| |
| void Sema::ParseRecordBody(SourceLocation RecLoc, DeclTy *RecDecl, |
| DeclTy **Fields, unsigned NumFields) { |
| RecordDecl *Record = cast<RecordDecl>(static_cast<Decl*>(RecDecl)); |
| if (Record->isDefinition()) { |
| // Diagnose code like: |
| // struct S { struct S {} X; }; |
| // We discover this when we complete the outer S. Reject and ignore the |
| // outer S. |
| Diag(Record->getLocation(), diag::err_nested_redefinition, |
| Record->getKindName()); |
| Diag(RecLoc, diag::err_previous_definition); |
| return; |
| } |
| |
| // Verify that all the fields are okay. |
| unsigned NumNamedMembers = 0; |
| SmallVector<Decl*, 32> RecFields; |
| SmallSet<const IdentifierInfo*, 32> FieldIDs; |
| |
| for (unsigned i = 0; i != NumFields; ++i) { |
| FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i])); |
| if (!FD) continue; // Already issued a diagnostic. |
| |
| // Get the type for the field. |
| Type *FDTy = FD->getType()->getCanonicalType(); |
| |
| // C99 6.7.2.1p2 - A field may not be a function type. |
| if (isa<FunctionType>(FDTy)) { |
| Diag(FD->getLocation(), diag::err_field_declared_as_function, |
| FD->getName()); |
| delete FD; |
| continue; |
| } |
| |
| // C99 6.7.2.1p2 - A field may not be an incomplete type except... |
| if (FDTy->isIncompleteType()) { |
| if (i != NumFields-1 || // ... that the last member ... |
| Record->getKind() != Decl::Struct || // ... of a structure ... |
| !isa<ArrayType>(FDTy)) { //... may have incomplete array type. |
| Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName()); |
| delete FD; |
| continue; |
| } |
| if (NumNamedMembers < 1) { //... must have more than named member ... |
| Diag(FD->getLocation(), diag::err_flexible_array_empty_struct, |
| FD->getName()); |
| delete FD; |
| continue; |
| } |
| |
| // Okay, we have a legal flexible array member at the end of the struct. |
| Record->setHasFlexibleArrayMember(true); |
| } |
| |
| |
| /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the |
| /// field of another structure or the element of an array. |
| if (RecordType *FDTTy = dyn_cast<RecordType>(FDTy)) { |
| if (FDTTy->getDecl()->hasFlexibleArrayMember()) { |
| // If this is a member of a union, then entire union becomes "flexible". |
| if (Record->getKind() == Decl::Union) { |
| Record->setHasFlexibleArrayMember(true); |
| } else { |
| // If this is a struct/class and this is not the last element, reject |
| // it. Note that GCC supports variable sized arrays in the middle of |
| // structures. |
| if (i != NumFields-1) { |
| Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct, |
| FD->getName()); |
| delete FD; |
| continue; |
| } |
| |
| // We support flexible arrays at the end of structs in other structs |
| // as an extension. |
| Diag(FD->getLocation(), diag::ext_flexible_array_in_struct, |
| FD->getName()); |
| Record->setHasFlexibleArrayMember(true); |
| } |
| } |
| } |
| |
| // Keep track of the number of named members. |
| if (IdentifierInfo *II = FD->getIdentifier()) { |
| // Detect duplicate member names. |
| if (!FieldIDs.insert(II)) { |
| Diag(FD->getLocation(), diag::err_duplicate_member, II->getName()); |
| // Find the previous decl. |
| SourceLocation PrevLoc; |
| for (unsigned i = 0, e = RecFields.size(); ; ++i) { |
| assert(i != e && "Didn't find previous def!"); |
| if (RecFields[i]->getIdentifier() == II) { |
| PrevLoc = RecFields[i]->getLocation(); |
| break; |
| } |
| } |
| Diag(PrevLoc, diag::err_previous_definition); |
| delete FD; |
| continue; |
| } |
| ++NumNamedMembers; |
| } |
| |
| // Remember good fields. |
| RecFields.push_back(FD); |
| } |
| |
| |
| // Okay, we successfully defined 'Record'. |
| Record->defineBody(&RecFields[0], RecFields.size()); |
| } |
| |
| Sema::DeclTy *Sema::ParseEnumConstant(Scope *S, DeclTy *EnumDeclX, |
| SourceLocation IdLoc, IdentifierInfo *Id, |
| SourceLocation EqualLoc, ExprTy *Val) { |
| EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX)); |
| |
| // Verify that there isn't already something declared with this name in this |
| // scope. |
| if (Decl *PrevDecl = LookupScopedDecl(Id, Decl::IDNS_Ordinary, IdLoc, S)) { |
| if (S->isDeclScope(PrevDecl)) { |
| if (isa<EnumConstantDecl>(PrevDecl)) |
| Diag(IdLoc, diag::err_redefinition_of_enumerator, Id->getName()); |
| else |
| Diag(IdLoc, diag::err_redefinition, Id->getName()); |
| Diag(PrevDecl->getLocation(), diag::err_previous_definition); |
| return 0; |
| } |
| } |
| |
| TypeRef Ty = Context.getTagDeclType(TheEnumDecl); |
| EnumConstantDecl *New = new EnumConstantDecl(IdLoc, Id, Ty); |
| |
| // Register this decl in the current scope stack. |
| New->setNext(Id->getFETokenInfo<Decl>()); |
| Id->setFETokenInfo(New); |
| S->AddDecl(New); |
| return New; |
| } |
| |
| void Sema::ParseEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX, |
| DeclTy **Elements, unsigned NumElements) { |
| EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX)); |
| assert(!Enum->isDefinition() && "Enum redefinitions can't reach here"); |
| |
| // Verify that all the values are okay. |
| SmallVector<EnumConstantDecl*, 32> Values; |
| for (unsigned i = 0; i != NumElements; ++i) { |
| EnumConstantDecl *ECD = |
| cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i])); |
| if (!ECD) continue; // Already issued a diagnostic. |
| |
| Values.push_back(ECD); |
| } |
| |
| Enum->defineElements(&Values[0], Values.size()); |
| } |
| |
| void Sema::AddTopLevelDecl(Decl *current, Decl *last) { |
| if (!current) return; |
| |
| // If this is a top-level decl that is chained to some other (e.g. int A,B,C;) |
| // remember this in the LastInGroupList list. |
| if (last) { |
| LastInGroupList.push_back((Decl*)last); |
| } |
| } |