|  | //===- DominatorSet.cpp - Dominator Set Calculation --------------*- C++ -*--=// | 
|  | // | 
|  | // This file provides a simple class to calculate the dominator set of a method. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Analysis/Dominators.h" | 
|  | #include "llvm/Transforms/UnifyMethodExitNodes.h" | 
|  | #include "llvm/Method.h" | 
|  | #include "Support/DepthFirstIterator.h" | 
|  | #include "Support/STLExtras.h" | 
|  | #include <algorithm> | 
|  | using std::set; | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  Helper Template | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // set_intersect - Identical to set_intersection, except that it works on | 
|  | // set<>'s and is nicer to use.  Functionally, this iterates through S1, | 
|  | // removing elements that are not contained in S2. | 
|  | // | 
|  | template <class Ty, class Ty2> | 
|  | void set_intersect(set<Ty> &S1, const set<Ty2> &S2) { | 
|  | for (typename set<Ty>::iterator I = S1.begin(); I != S1.end();) { | 
|  | const Ty &E = *I; | 
|  | ++I; | 
|  | if (!S2.count(E)) S1.erase(E);   // Erase element if not in S2 | 
|  | } | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  DominatorSet Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | AnalysisID cfg::DominatorSet::ID(AnalysisID::create<cfg::DominatorSet>()); | 
|  | AnalysisID cfg::DominatorSet::PostDomID(AnalysisID::create<cfg::DominatorSet>()); | 
|  |  | 
|  | bool cfg::DominatorSet::runOnMethod(Method *M) { | 
|  | Doms.clear();   // Reset from the last time we were run... | 
|  |  | 
|  | if (isPostDominator()) | 
|  | calcPostDominatorSet(M); | 
|  | else | 
|  | calcForwardDominatorSet(M); | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | // calcForwardDominatorSet - This method calculates the forward dominator sets | 
|  | // for the specified method. | 
|  | // | 
|  | void cfg::DominatorSet::calcForwardDominatorSet(Method *M) { | 
|  | Root = M->getEntryNode(); | 
|  | assert(Root->pred_begin() == Root->pred_end() && | 
|  | "Root node has predecessors in method!"); | 
|  |  | 
|  | bool Changed; | 
|  | do { | 
|  | Changed = false; | 
|  |  | 
|  | DomSetType WorkingSet; | 
|  | df_iterator<Method*> It = df_begin(M), End = df_end(M); | 
|  | for ( ; It != End; ++It) { | 
|  | const BasicBlock *BB = *It; | 
|  | BasicBlock::pred_const_iterator PI = BB->pred_begin(), | 
|  | PEnd = BB->pred_end(); | 
|  | if (PI != PEnd) {                // Is there SOME predecessor? | 
|  | // Loop until we get to a predecessor that has had it's dom set filled | 
|  | // in at least once.  We are guaranteed to have this because we are | 
|  | // traversing the graph in DFO and have handled start nodes specially. | 
|  | // | 
|  | while (Doms[*PI].size() == 0) ++PI; | 
|  | WorkingSet = Doms[*PI]; | 
|  |  | 
|  | for (++PI; PI != PEnd; ++PI) { // Intersect all of the predecessor sets | 
|  | DomSetType &PredSet = Doms[*PI]; | 
|  | if (PredSet.size()) | 
|  | set_intersect(WorkingSet, PredSet); | 
|  | } | 
|  | } | 
|  |  | 
|  | WorkingSet.insert(BB);           // A block always dominates itself | 
|  | DomSetType &BBSet = Doms[BB]; | 
|  | if (BBSet != WorkingSet) { | 
|  | BBSet.swap(WorkingSet);        // Constant time operation! | 
|  | Changed = true;                // The sets changed. | 
|  | } | 
|  | WorkingSet.clear();              // Clear out the set for next iteration | 
|  | } | 
|  | } while (Changed); | 
|  | } | 
|  |  | 
|  | // Postdominator set constructor.  This ctor converts the specified method to | 
|  | // only have a single exit node (return stmt), then calculates the post | 
|  | // dominance sets for the method. | 
|  | // | 
|  | void cfg::DominatorSet::calcPostDominatorSet(Method *M) { | 
|  | // Since we require that the unify all exit nodes pass has been run, we know | 
|  | // that there can be at most one return instruction in the method left. | 
|  | // Get it. | 
|  | // | 
|  | Root = getAnalysis<UnifyMethodExitNodes>().getExitNode(); | 
|  |  | 
|  | if (Root == 0) {  // No exit node for the method?  Postdomsets are all empty | 
|  | for (Method::const_iterator MI = M->begin(), ME = M->end(); MI != ME; ++MI) | 
|  | Doms[*MI] = DomSetType(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | bool Changed; | 
|  | do { | 
|  | Changed = false; | 
|  |  | 
|  | set<const BasicBlock*> Visited; | 
|  | DomSetType WorkingSet; | 
|  | idf_iterator<BasicBlock*> It = idf_begin(Root), End = idf_end(Root); | 
|  | for ( ; It != End; ++It) { | 
|  | const BasicBlock *BB = *It; | 
|  | BasicBlock::succ_const_iterator PI = BB->succ_begin(), | 
|  | PEnd = BB->succ_end(); | 
|  | if (PI != PEnd) {                // Is there SOME predecessor? | 
|  | // Loop until we get to a successor that has had it's dom set filled | 
|  | // in at least once.  We are guaranteed to have this because we are | 
|  | // traversing the graph in DFO and have handled start nodes specially. | 
|  | // | 
|  | while (Doms[*PI].size() == 0) ++PI; | 
|  | WorkingSet = Doms[*PI]; | 
|  |  | 
|  | for (++PI; PI != PEnd; ++PI) { // Intersect all of the successor sets | 
|  | DomSetType &PredSet = Doms[*PI]; | 
|  | if (PredSet.size()) | 
|  | set_intersect(WorkingSet, PredSet); | 
|  | } | 
|  | } | 
|  |  | 
|  | WorkingSet.insert(BB);           // A block always dominates itself | 
|  | DomSetType &BBSet = Doms[BB]; | 
|  | if (BBSet != WorkingSet) { | 
|  | BBSet.swap(WorkingSet);        // Constant time operation! | 
|  | Changed = true;                // The sets changed. | 
|  | } | 
|  | WorkingSet.clear();              // Clear out the set for next iteration | 
|  | } | 
|  | } while (Changed); | 
|  | } | 
|  |  | 
|  | // getAnalysisUsageInfo - This obviously provides a dominator set, but it also | 
|  | // uses the UnifyMethodExitNodes pass if building post-dominators | 
|  | // | 
|  | void cfg::DominatorSet::getAnalysisUsageInfo(Pass::AnalysisSet &Requires, | 
|  | Pass::AnalysisSet &Destroyed, | 
|  | Pass::AnalysisSet &Provided) { | 
|  | if (isPostDominator()) | 
|  | Requires.push_back(UnifyMethodExitNodes::ID); | 
|  |  | 
|  | Provided.push_back(ID); | 
|  | } | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  ImmediateDominators Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | AnalysisID cfg::ImmediateDominators::ID(AnalysisID::create<cfg::ImmediateDominators>()); | 
|  | AnalysisID cfg::ImmediateDominators::PostDomID(AnalysisID::create<cfg::ImmediateDominators>()); | 
|  |  | 
|  | // calcIDoms - Calculate the immediate dominator mapping, given a set of | 
|  | // dominators for every basic block. | 
|  | void cfg::ImmediateDominators::calcIDoms(const DominatorSet &DS) { | 
|  | // Loop over all of the nodes that have dominators... figuring out the IDOM | 
|  | // for each node... | 
|  | // | 
|  | for (DominatorSet::const_iterator DI = DS.begin(), DEnd = DS.end(); | 
|  | DI != DEnd; ++DI) { | 
|  | const BasicBlock *BB = DI->first; | 
|  | const DominatorSet::DomSetType &Dominators = DI->second; | 
|  | unsigned DomSetSize = Dominators.size(); | 
|  | if (DomSetSize == 1) continue;  // Root node... IDom = null | 
|  |  | 
|  | // Loop over all dominators of this node.  This corresponds to looping over | 
|  | // nodes in the dominator chain, looking for a node whose dominator set is | 
|  | // equal to the current nodes, except that the current node does not exist | 
|  | // in it.  This means that it is one level higher in the dom chain than the | 
|  | // current node, and it is our idom! | 
|  | // | 
|  | DominatorSet::DomSetType::const_iterator I = Dominators.begin(); | 
|  | DominatorSet::DomSetType::const_iterator End = Dominators.end(); | 
|  | for (; I != End; ++I) {   // Iterate over dominators... | 
|  | // All of our dominators should form a chain, where the number of elements | 
|  | // in the dominator set indicates what level the node is at in the chain. | 
|  | // We want the node immediately above us, so it will have an identical | 
|  | // dominator set, except that BB will not dominate it... therefore it's | 
|  | // dominator set size will be one less than BB's... | 
|  | // | 
|  | if (DS.getDominators(*I).size() == DomSetSize - 1) { | 
|  | IDoms[BB] = *I; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  DominatorTree Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | AnalysisID cfg::DominatorTree::ID(AnalysisID::create<cfg::DominatorTree>()); | 
|  | AnalysisID cfg::DominatorTree::PostDomID(AnalysisID::create<cfg::DominatorTree>()); | 
|  |  | 
|  | // DominatorTree::reset - Free all of the tree node memory. | 
|  | // | 
|  | void cfg::DominatorTree::reset() { | 
|  | for (NodeMapType::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) | 
|  | delete I->second; | 
|  | Nodes.clear(); | 
|  | } | 
|  |  | 
|  |  | 
|  | #if 0 | 
|  | // Given immediate dominators, we can also calculate the dominator tree | 
|  | cfg::DominatorTree::DominatorTree(const ImmediateDominators &IDoms) | 
|  | : DominatorBase(IDoms.getRoot()) { | 
|  | const Method *M = Root->getParent(); | 
|  |  | 
|  | Nodes[Root] = new Node(Root, 0);   // Add a node for the root... | 
|  |  | 
|  | // Iterate over all nodes in depth first order... | 
|  | for (df_iterator<const Method*> I = df_begin(M), E = df_end(M); I != E; ++I) { | 
|  | const BasicBlock *BB = *I, *IDom = IDoms[*I]; | 
|  |  | 
|  | if (IDom != 0) {   // Ignore the root node and other nasty nodes | 
|  | // We know that the immediate dominator should already have a node, | 
|  | // because we are traversing the CFG in depth first order! | 
|  | // | 
|  | assert(Nodes[IDom] && "No node for IDOM?"); | 
|  | Node *IDomNode = Nodes[IDom]; | 
|  |  | 
|  | // Add a new tree node for this BasicBlock, and link it as a child of | 
|  | // IDomNode | 
|  | Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode)); | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void cfg::DominatorTree::calculate(const DominatorSet &DS) { | 
|  | Nodes[Root] = new Node(Root, 0);   // Add a node for the root... | 
|  |  | 
|  | if (!isPostDominator()) { | 
|  | // Iterate over all nodes in depth first order... | 
|  | for (df_iterator<BasicBlock*> I = df_begin(Root), E = df_end(Root); | 
|  | I != E; ++I) { | 
|  | const BasicBlock *BB = *I; | 
|  | const DominatorSet::DomSetType &Dominators = DS.getDominators(BB); | 
|  | unsigned DomSetSize = Dominators.size(); | 
|  | if (DomSetSize == 1) continue;  // Root node... IDom = null | 
|  |  | 
|  | // Loop over all dominators of this node. This corresponds to looping over | 
|  | // nodes in the dominator chain, looking for a node whose dominator set is | 
|  | // equal to the current nodes, except that the current node does not exist | 
|  | // in it. This means that it is one level higher in the dom chain than the | 
|  | // current node, and it is our idom!  We know that we have already added | 
|  | // a DominatorTree node for our idom, because the idom must be a | 
|  | // predecessor in the depth first order that we are iterating through the | 
|  | // method. | 
|  | // | 
|  | DominatorSet::DomSetType::const_iterator I = Dominators.begin(); | 
|  | DominatorSet::DomSetType::const_iterator End = Dominators.end(); | 
|  | for (; I != End; ++I) {   // Iterate over dominators... | 
|  | // All of our dominators should form a chain, where the number of | 
|  | // elements in the dominator set indicates what level the node is at in | 
|  | // the chain.  We want the node immediately above us, so it will have | 
|  | // an identical dominator set, except that BB will not dominate it... | 
|  | // therefore it's dominator set size will be one less than BB's... | 
|  | // | 
|  | if (DS.getDominators(*I).size() == DomSetSize - 1) { | 
|  | // We know that the immediate dominator should already have a node, | 
|  | // because we are traversing the CFG in depth first order! | 
|  | // | 
|  | Node *IDomNode = Nodes[*I]; | 
|  | assert(IDomNode && "No node for IDOM?"); | 
|  |  | 
|  | // Add a new tree node for this BasicBlock, and link it as a child of | 
|  | // IDomNode | 
|  | Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode)); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } else if (Root) { | 
|  | // Iterate over all nodes in depth first order... | 
|  | for (idf_iterator<BasicBlock*> I = idf_begin(Root), E = idf_end(Root); | 
|  | I != E; ++I) { | 
|  | const BasicBlock *BB = *I; | 
|  | const DominatorSet::DomSetType &Dominators = DS.getDominators(BB); | 
|  | unsigned DomSetSize = Dominators.size(); | 
|  | if (DomSetSize == 1) continue;  // Root node... IDom = null | 
|  |  | 
|  | // Loop over all dominators of this node.  This corresponds to looping | 
|  | // over nodes in the dominator chain, looking for a node whose dominator | 
|  | // set is equal to the current nodes, except that the current node does | 
|  | // not exist in it.  This means that it is one level higher in the dom | 
|  | // chain than the current node, and it is our idom!  We know that we have | 
|  | // already added a DominatorTree node for our idom, because the idom must | 
|  | // be a predecessor in the depth first order that we are iterating through | 
|  | // the method. | 
|  | // | 
|  | DominatorSet::DomSetType::const_iterator I = Dominators.begin(); | 
|  | DominatorSet::DomSetType::const_iterator End = Dominators.end(); | 
|  | for (; I != End; ++I) {   // Iterate over dominators... | 
|  | // All of our dominators should form a chain, where the number | 
|  | // of elements in the dominator set indicates what level the | 
|  | // node is at in the chain.  We want the node immediately | 
|  | // above us, so it will have an identical dominator set, | 
|  | // except that BB will not dominate it... therefore it's | 
|  | // dominator set size will be one less than BB's... | 
|  | // | 
|  | if (DS.getDominators(*I).size() == DomSetSize - 1) { | 
|  | // We know that the immediate dominator should already have a node, | 
|  | // because we are traversing the CFG in depth first order! | 
|  | // | 
|  | Node *IDomNode = Nodes[*I]; | 
|  | assert(IDomNode && "No node for IDOM?"); | 
|  |  | 
|  | // Add a new tree node for this BasicBlock, and link it as a child of | 
|  | // IDomNode | 
|  | Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode)); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  DominanceFrontier Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | AnalysisID cfg::DominanceFrontier::ID(AnalysisID::create<cfg::DominanceFrontier>()); | 
|  | AnalysisID cfg::DominanceFrontier::PostDomID(AnalysisID::create<cfg::DominanceFrontier>()); | 
|  |  | 
|  | const cfg::DominanceFrontier::DomSetType & | 
|  | cfg::DominanceFrontier::calcDomFrontier(const DominatorTree &DT, | 
|  | const DominatorTree::Node *Node) { | 
|  | // Loop over CFG successors to calculate DFlocal[Node] | 
|  | const BasicBlock *BB = Node->getNode(); | 
|  | DomSetType &S = Frontiers[BB];       // The new set to fill in... | 
|  |  | 
|  | for (BasicBlock::succ_const_iterator SI = BB->succ_begin(), | 
|  | SE = BB->succ_end(); SI != SE; ++SI) { | 
|  | // Does Node immediately dominate this successor? | 
|  | if (DT[*SI]->getIDom() != Node) | 
|  | S.insert(*SI); | 
|  | } | 
|  |  | 
|  | // At this point, S is DFlocal.  Now we union in DFup's of our children... | 
|  | // Loop through and visit the nodes that Node immediately dominates (Node's | 
|  | // children in the IDomTree) | 
|  | // | 
|  | for (DominatorTree::Node::const_iterator NI = Node->begin(), NE = Node->end(); | 
|  | NI != NE; ++NI) { | 
|  | DominatorTree::Node *IDominee = *NI; | 
|  | const DomSetType &ChildDF = calcDomFrontier(DT, IDominee); | 
|  |  | 
|  | DomSetType::const_iterator CDFI = ChildDF.begin(), CDFE = ChildDF.end(); | 
|  | for (; CDFI != CDFE; ++CDFI) { | 
|  | if (!Node->dominates(DT[*CDFI])) | 
|  | S.insert(*CDFI); | 
|  | } | 
|  | } | 
|  |  | 
|  | return S; | 
|  | } | 
|  |  | 
|  | const cfg::DominanceFrontier::DomSetType & | 
|  | cfg::DominanceFrontier::calcPostDomFrontier(const DominatorTree &DT, | 
|  | const DominatorTree::Node *Node) { | 
|  | // Loop over CFG successors to calculate DFlocal[Node] | 
|  | const BasicBlock *BB = Node->getNode(); | 
|  | DomSetType &S = Frontiers[BB];       // The new set to fill in... | 
|  | if (!Root) return S; | 
|  |  | 
|  | for (BasicBlock::pred_const_iterator SI = BB->pred_begin(), | 
|  | SE = BB->pred_end(); SI != SE; ++SI) { | 
|  | // Does Node immediately dominate this predeccessor? | 
|  | if (DT[*SI]->getIDom() != Node) | 
|  | S.insert(*SI); | 
|  | } | 
|  |  | 
|  | // At this point, S is DFlocal.  Now we union in DFup's of our children... | 
|  | // Loop through and visit the nodes that Node immediately dominates (Node's | 
|  | // children in the IDomTree) | 
|  | // | 
|  | for (DominatorTree::Node::const_iterator NI = Node->begin(), NE = Node->end(); | 
|  | NI != NE; ++NI) { | 
|  | DominatorTree::Node *IDominee = *NI; | 
|  | const DomSetType &ChildDF = calcPostDomFrontier(DT, IDominee); | 
|  |  | 
|  | DomSetType::const_iterator CDFI = ChildDF.begin(), CDFE = ChildDF.end(); | 
|  | for (; CDFI != CDFE; ++CDFI) { | 
|  | if (!Node->dominates(DT[*CDFI])) | 
|  | S.insert(*CDFI); | 
|  | } | 
|  | } | 
|  |  | 
|  | return S; | 
|  | } |