|  | //===- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions -------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "ARMFeatures.h" | 
|  | #include "Utils/ARMBaseInfo.h" | 
|  | #include "MCTargetDesc/ARMAddressingModes.h" | 
|  | #include "MCTargetDesc/ARMBaseInfo.h" | 
|  | #include "MCTargetDesc/ARMMCExpr.h" | 
|  | #include "MCTargetDesc/ARMMCTargetDesc.h" | 
|  | #include "llvm/ADT/APFloat.h" | 
|  | #include "llvm/ADT/APInt.h" | 
|  | #include "llvm/ADT/None.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SmallSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/StringMap.h" | 
|  | #include "llvm/ADT/StringRef.h" | 
|  | #include "llvm/ADT/StringSwitch.h" | 
|  | #include "llvm/ADT/Triple.h" | 
|  | #include "llvm/ADT/Twine.h" | 
|  | #include "llvm/MC/MCContext.h" | 
|  | #include "llvm/MC/MCExpr.h" | 
|  | #include "llvm/MC/MCInst.h" | 
|  | #include "llvm/MC/MCInstrDesc.h" | 
|  | #include "llvm/MC/MCInstrInfo.h" | 
|  | #include "llvm/MC/MCObjectFileInfo.h" | 
|  | #include "llvm/MC/MCParser/MCAsmLexer.h" | 
|  | #include "llvm/MC/MCParser/MCAsmParser.h" | 
|  | #include "llvm/MC/MCParser/MCAsmParserExtension.h" | 
|  | #include "llvm/MC/MCParser/MCAsmParserUtils.h" | 
|  | #include "llvm/MC/MCParser/MCParsedAsmOperand.h" | 
|  | #include "llvm/MC/MCParser/MCTargetAsmParser.h" | 
|  | #include "llvm/MC/MCRegisterInfo.h" | 
|  | #include "llvm/MC/MCSection.h" | 
|  | #include "llvm/MC/MCStreamer.h" | 
|  | #include "llvm/MC/MCSubtargetInfo.h" | 
|  | #include "llvm/MC/MCSymbol.h" | 
|  | #include "llvm/MC/SubtargetFeature.h" | 
|  | #include "llvm/Support/ARMBuildAttributes.h" | 
|  | #include "llvm/Support/ARMEHABI.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/SMLoc.h" | 
|  | #include "llvm/Support/TargetParser.h" | 
|  | #include "llvm/Support/TargetRegistry.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <cstddef> | 
|  | #include <cstdint> | 
|  | #include <iterator> | 
|  | #include <limits> | 
|  | #include <memory> | 
|  | #include <string> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | #define DEBUG_TYPE "asm-parser" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | enum class ImplicitItModeTy { Always, Never, ARMOnly, ThumbOnly }; | 
|  |  | 
|  | static cl::opt<ImplicitItModeTy> ImplicitItMode( | 
|  | "arm-implicit-it", cl::init(ImplicitItModeTy::ARMOnly), | 
|  | cl::desc("Allow conditional instructions outdside of an IT block"), | 
|  | cl::values(clEnumValN(ImplicitItModeTy::Always, "always", | 
|  | "Accept in both ISAs, emit implicit ITs in Thumb"), | 
|  | clEnumValN(ImplicitItModeTy::Never, "never", | 
|  | "Warn in ARM, reject in Thumb"), | 
|  | clEnumValN(ImplicitItModeTy::ARMOnly, "arm", | 
|  | "Accept in ARM, reject in Thumb"), | 
|  | clEnumValN(ImplicitItModeTy::ThumbOnly, "thumb", | 
|  | "Warn in ARM, emit implicit ITs in Thumb"))); | 
|  |  | 
|  | static cl::opt<bool> AddBuildAttributes("arm-add-build-attributes", | 
|  | cl::init(false)); | 
|  |  | 
|  | enum VectorLaneTy { NoLanes, AllLanes, IndexedLane }; | 
|  |  | 
|  | class UnwindContext { | 
|  | using Locs = SmallVector<SMLoc, 4>; | 
|  |  | 
|  | MCAsmParser &Parser; | 
|  | Locs FnStartLocs; | 
|  | Locs CantUnwindLocs; | 
|  | Locs PersonalityLocs; | 
|  | Locs PersonalityIndexLocs; | 
|  | Locs HandlerDataLocs; | 
|  | int FPReg; | 
|  |  | 
|  | public: | 
|  | UnwindContext(MCAsmParser &P) : Parser(P), FPReg(ARM::SP) {} | 
|  |  | 
|  | bool hasFnStart() const { return !FnStartLocs.empty(); } | 
|  | bool cantUnwind() const { return !CantUnwindLocs.empty(); } | 
|  | bool hasHandlerData() const { return !HandlerDataLocs.empty(); } | 
|  |  | 
|  | bool hasPersonality() const { | 
|  | return !(PersonalityLocs.empty() && PersonalityIndexLocs.empty()); | 
|  | } | 
|  |  | 
|  | void recordFnStart(SMLoc L) { FnStartLocs.push_back(L); } | 
|  | void recordCantUnwind(SMLoc L) { CantUnwindLocs.push_back(L); } | 
|  | void recordPersonality(SMLoc L) { PersonalityLocs.push_back(L); } | 
|  | void recordHandlerData(SMLoc L) { HandlerDataLocs.push_back(L); } | 
|  | void recordPersonalityIndex(SMLoc L) { PersonalityIndexLocs.push_back(L); } | 
|  |  | 
|  | void saveFPReg(int Reg) { FPReg = Reg; } | 
|  | int getFPReg() const { return FPReg; } | 
|  |  | 
|  | void emitFnStartLocNotes() const { | 
|  | for (Locs::const_iterator FI = FnStartLocs.begin(), FE = FnStartLocs.end(); | 
|  | FI != FE; ++FI) | 
|  | Parser.Note(*FI, ".fnstart was specified here"); | 
|  | } | 
|  |  | 
|  | void emitCantUnwindLocNotes() const { | 
|  | for (Locs::const_iterator UI = CantUnwindLocs.begin(), | 
|  | UE = CantUnwindLocs.end(); UI != UE; ++UI) | 
|  | Parser.Note(*UI, ".cantunwind was specified here"); | 
|  | } | 
|  |  | 
|  | void emitHandlerDataLocNotes() const { | 
|  | for (Locs::const_iterator HI = HandlerDataLocs.begin(), | 
|  | HE = HandlerDataLocs.end(); HI != HE; ++HI) | 
|  | Parser.Note(*HI, ".handlerdata was specified here"); | 
|  | } | 
|  |  | 
|  | void emitPersonalityLocNotes() const { | 
|  | for (Locs::const_iterator PI = PersonalityLocs.begin(), | 
|  | PE = PersonalityLocs.end(), | 
|  | PII = PersonalityIndexLocs.begin(), | 
|  | PIE = PersonalityIndexLocs.end(); | 
|  | PI != PE || PII != PIE;) { | 
|  | if (PI != PE && (PII == PIE || PI->getPointer() < PII->getPointer())) | 
|  | Parser.Note(*PI++, ".personality was specified here"); | 
|  | else if (PII != PIE && (PI == PE || PII->getPointer() < PI->getPointer())) | 
|  | Parser.Note(*PII++, ".personalityindex was specified here"); | 
|  | else | 
|  | llvm_unreachable(".personality and .personalityindex cannot be " | 
|  | "at the same location"); | 
|  | } | 
|  | } | 
|  |  | 
|  | void reset() { | 
|  | FnStartLocs = Locs(); | 
|  | CantUnwindLocs = Locs(); | 
|  | PersonalityLocs = Locs(); | 
|  | HandlerDataLocs = Locs(); | 
|  | PersonalityIndexLocs = Locs(); | 
|  | FPReg = ARM::SP; | 
|  | } | 
|  | }; | 
|  |  | 
|  | class ARMAsmParser : public MCTargetAsmParser { | 
|  | const MCRegisterInfo *MRI; | 
|  | UnwindContext UC; | 
|  |  | 
|  | ARMTargetStreamer &getTargetStreamer() { | 
|  | assert(getParser().getStreamer().getTargetStreamer() && | 
|  | "do not have a target streamer"); | 
|  | MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer(); | 
|  | return static_cast<ARMTargetStreamer &>(TS); | 
|  | } | 
|  |  | 
|  | // Map of register aliases registers via the .req directive. | 
|  | StringMap<unsigned> RegisterReqs; | 
|  |  | 
|  | bool NextSymbolIsThumb; | 
|  |  | 
|  | bool useImplicitITThumb() const { | 
|  | return ImplicitItMode == ImplicitItModeTy::Always || | 
|  | ImplicitItMode == ImplicitItModeTy::ThumbOnly; | 
|  | } | 
|  |  | 
|  | bool useImplicitITARM() const { | 
|  | return ImplicitItMode == ImplicitItModeTy::Always || | 
|  | ImplicitItMode == ImplicitItModeTy::ARMOnly; | 
|  | } | 
|  |  | 
|  | struct { | 
|  | ARMCC::CondCodes Cond;    // Condition for IT block. | 
|  | unsigned Mask:4;          // Condition mask for instructions. | 
|  | // Starting at first 1 (from lsb). | 
|  | //   '1'  condition as indicated in IT. | 
|  | //   '0'  inverse of condition (else). | 
|  | // Count of instructions in IT block is | 
|  | // 4 - trailingzeroes(mask) | 
|  | // Note that this does not have the same encoding | 
|  | // as in the IT instruction, which also depends | 
|  | // on the low bit of the condition code. | 
|  |  | 
|  | unsigned CurPosition;     // Current position in parsing of IT | 
|  | // block. In range [0,4], with 0 being the IT | 
|  | // instruction itself. Initialized according to | 
|  | // count of instructions in block.  ~0U if no | 
|  | // active IT block. | 
|  |  | 
|  | bool IsExplicit;          // true  - The IT instruction was present in the | 
|  | //         input, we should not modify it. | 
|  | // false - The IT instruction was added | 
|  | //         implicitly, we can extend it if that | 
|  | //         would be legal. | 
|  | } ITState; | 
|  |  | 
|  | SmallVector<MCInst, 4> PendingConditionalInsts; | 
|  |  | 
|  | void flushPendingInstructions(MCStreamer &Out) override { | 
|  | if (!inImplicitITBlock()) { | 
|  | assert(PendingConditionalInsts.size() == 0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Emit the IT instruction | 
|  | unsigned Mask = getITMaskEncoding(); | 
|  | MCInst ITInst; | 
|  | ITInst.setOpcode(ARM::t2IT); | 
|  | ITInst.addOperand(MCOperand::createImm(ITState.Cond)); | 
|  | ITInst.addOperand(MCOperand::createImm(Mask)); | 
|  | Out.EmitInstruction(ITInst, getSTI()); | 
|  |  | 
|  | // Emit the conditonal instructions | 
|  | assert(PendingConditionalInsts.size() <= 4); | 
|  | for (const MCInst &Inst : PendingConditionalInsts) { | 
|  | Out.EmitInstruction(Inst, getSTI()); | 
|  | } | 
|  | PendingConditionalInsts.clear(); | 
|  |  | 
|  | // Clear the IT state | 
|  | ITState.Mask = 0; | 
|  | ITState.CurPosition = ~0U; | 
|  | } | 
|  |  | 
|  | bool inITBlock() { return ITState.CurPosition != ~0U; } | 
|  | bool inExplicitITBlock() { return inITBlock() && ITState.IsExplicit; } | 
|  | bool inImplicitITBlock() { return inITBlock() && !ITState.IsExplicit; } | 
|  |  | 
|  | bool lastInITBlock() { | 
|  | return ITState.CurPosition == 4 - countTrailingZeros(ITState.Mask); | 
|  | } | 
|  |  | 
|  | void forwardITPosition() { | 
|  | if (!inITBlock()) return; | 
|  | // Move to the next instruction in the IT block, if there is one. If not, | 
|  | // mark the block as done, except for implicit IT blocks, which we leave | 
|  | // open until we find an instruction that can't be added to it. | 
|  | unsigned TZ = countTrailingZeros(ITState.Mask); | 
|  | if (++ITState.CurPosition == 5 - TZ && ITState.IsExplicit) | 
|  | ITState.CurPosition = ~0U; // Done with the IT block after this. | 
|  | } | 
|  |  | 
|  | // Rewind the state of the current IT block, removing the last slot from it. | 
|  | void rewindImplicitITPosition() { | 
|  | assert(inImplicitITBlock()); | 
|  | assert(ITState.CurPosition > 1); | 
|  | ITState.CurPosition--; | 
|  | unsigned TZ = countTrailingZeros(ITState.Mask); | 
|  | unsigned NewMask = 0; | 
|  | NewMask |= ITState.Mask & (0xC << TZ); | 
|  | NewMask |= 0x2 << TZ; | 
|  | ITState.Mask = NewMask; | 
|  | } | 
|  |  | 
|  | // Rewind the state of the current IT block, removing the last slot from it. | 
|  | // If we were at the first slot, this closes the IT block. | 
|  | void discardImplicitITBlock() { | 
|  | assert(inImplicitITBlock()); | 
|  | assert(ITState.CurPosition == 1); | 
|  | ITState.CurPosition = ~0U; | 
|  | } | 
|  |  | 
|  | // Return the low-subreg of a given Q register. | 
|  | unsigned getDRegFromQReg(unsigned QReg) const { | 
|  | return MRI->getSubReg(QReg, ARM::dsub_0); | 
|  | } | 
|  |  | 
|  | // Get the encoding of the IT mask, as it will appear in an IT instruction. | 
|  | unsigned getITMaskEncoding() { | 
|  | assert(inITBlock()); | 
|  | unsigned Mask = ITState.Mask; | 
|  | unsigned TZ = countTrailingZeros(Mask); | 
|  | if ((ITState.Cond & 1) == 0) { | 
|  | assert(Mask && TZ <= 3 && "illegal IT mask value!"); | 
|  | Mask ^= (0xE << TZ) & 0xF; | 
|  | } | 
|  | return Mask; | 
|  | } | 
|  |  | 
|  | // Get the condition code corresponding to the current IT block slot. | 
|  | ARMCC::CondCodes currentITCond() { | 
|  | unsigned MaskBit; | 
|  | if (ITState.CurPosition == 1) | 
|  | MaskBit = 1; | 
|  | else | 
|  | MaskBit = (ITState.Mask >> (5 - ITState.CurPosition)) & 1; | 
|  |  | 
|  | return MaskBit ? ITState.Cond : ARMCC::getOppositeCondition(ITState.Cond); | 
|  | } | 
|  |  | 
|  | // Invert the condition of the current IT block slot without changing any | 
|  | // other slots in the same block. | 
|  | void invertCurrentITCondition() { | 
|  | if (ITState.CurPosition == 1) { | 
|  | ITState.Cond = ARMCC::getOppositeCondition(ITState.Cond); | 
|  | } else { | 
|  | ITState.Mask ^= 1 << (5 - ITState.CurPosition); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Returns true if the current IT block is full (all 4 slots used). | 
|  | bool isITBlockFull() { | 
|  | return inITBlock() && (ITState.Mask & 1); | 
|  | } | 
|  |  | 
|  | // Extend the current implicit IT block to have one more slot with the given | 
|  | // condition code. | 
|  | void extendImplicitITBlock(ARMCC::CondCodes Cond) { | 
|  | assert(inImplicitITBlock()); | 
|  | assert(!isITBlockFull()); | 
|  | assert(Cond == ITState.Cond || | 
|  | Cond == ARMCC::getOppositeCondition(ITState.Cond)); | 
|  | unsigned TZ = countTrailingZeros(ITState.Mask); | 
|  | unsigned NewMask = 0; | 
|  | // Keep any existing condition bits. | 
|  | NewMask |= ITState.Mask & (0xE << TZ); | 
|  | // Insert the new condition bit. | 
|  | NewMask |= (Cond == ITState.Cond) << TZ; | 
|  | // Move the trailing 1 down one bit. | 
|  | NewMask |= 1 << (TZ - 1); | 
|  | ITState.Mask = NewMask; | 
|  | } | 
|  |  | 
|  | // Create a new implicit IT block with a dummy condition code. | 
|  | void startImplicitITBlock() { | 
|  | assert(!inITBlock()); | 
|  | ITState.Cond = ARMCC::AL; | 
|  | ITState.Mask = 8; | 
|  | ITState.CurPosition = 1; | 
|  | ITState.IsExplicit = false; | 
|  | } | 
|  |  | 
|  | // Create a new explicit IT block with the given condition and mask. The mask | 
|  | // should be in the parsed format, with a 1 implying 't', regardless of the | 
|  | // low bit of the condition. | 
|  | void startExplicitITBlock(ARMCC::CondCodes Cond, unsigned Mask) { | 
|  | assert(!inITBlock()); | 
|  | ITState.Cond = Cond; | 
|  | ITState.Mask = Mask; | 
|  | ITState.CurPosition = 0; | 
|  | ITState.IsExplicit = true; | 
|  | } | 
|  |  | 
|  | void Note(SMLoc L, const Twine &Msg, SMRange Range = None) { | 
|  | return getParser().Note(L, Msg, Range); | 
|  | } | 
|  |  | 
|  | bool Warning(SMLoc L, const Twine &Msg, SMRange Range = None) { | 
|  | return getParser().Warning(L, Msg, Range); | 
|  | } | 
|  |  | 
|  | bool Error(SMLoc L, const Twine &Msg, SMRange Range = None) { | 
|  | return getParser().Error(L, Msg, Range); | 
|  | } | 
|  |  | 
|  | bool validatetLDMRegList(const MCInst &Inst, const OperandVector &Operands, | 
|  | unsigned ListNo, bool IsARPop = false); | 
|  | bool validatetSTMRegList(const MCInst &Inst, const OperandVector &Operands, | 
|  | unsigned ListNo); | 
|  |  | 
|  | int tryParseRegister(); | 
|  | bool tryParseRegisterWithWriteBack(OperandVector &); | 
|  | int tryParseShiftRegister(OperandVector &); | 
|  | bool parseRegisterList(OperandVector &); | 
|  | bool parseMemory(OperandVector &); | 
|  | bool parseOperand(OperandVector &, StringRef Mnemonic); | 
|  | bool parsePrefix(ARMMCExpr::VariantKind &RefKind); | 
|  | bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType, | 
|  | unsigned &ShiftAmount); | 
|  | bool parseLiteralValues(unsigned Size, SMLoc L); | 
|  | bool parseDirectiveThumb(SMLoc L); | 
|  | bool parseDirectiveARM(SMLoc L); | 
|  | bool parseDirectiveThumbFunc(SMLoc L); | 
|  | bool parseDirectiveCode(SMLoc L); | 
|  | bool parseDirectiveSyntax(SMLoc L); | 
|  | bool parseDirectiveReq(StringRef Name, SMLoc L); | 
|  | bool parseDirectiveUnreq(SMLoc L); | 
|  | bool parseDirectiveArch(SMLoc L); | 
|  | bool parseDirectiveEabiAttr(SMLoc L); | 
|  | bool parseDirectiveCPU(SMLoc L); | 
|  | bool parseDirectiveFPU(SMLoc L); | 
|  | bool parseDirectiveFnStart(SMLoc L); | 
|  | bool parseDirectiveFnEnd(SMLoc L); | 
|  | bool parseDirectiveCantUnwind(SMLoc L); | 
|  | bool parseDirectivePersonality(SMLoc L); | 
|  | bool parseDirectiveHandlerData(SMLoc L); | 
|  | bool parseDirectiveSetFP(SMLoc L); | 
|  | bool parseDirectivePad(SMLoc L); | 
|  | bool parseDirectiveRegSave(SMLoc L, bool IsVector); | 
|  | bool parseDirectiveInst(SMLoc L, char Suffix = '\0'); | 
|  | bool parseDirectiveLtorg(SMLoc L); | 
|  | bool parseDirectiveEven(SMLoc L); | 
|  | bool parseDirectivePersonalityIndex(SMLoc L); | 
|  | bool parseDirectiveUnwindRaw(SMLoc L); | 
|  | bool parseDirectiveTLSDescSeq(SMLoc L); | 
|  | bool parseDirectiveMovSP(SMLoc L); | 
|  | bool parseDirectiveObjectArch(SMLoc L); | 
|  | bool parseDirectiveArchExtension(SMLoc L); | 
|  | bool parseDirectiveAlign(SMLoc L); | 
|  | bool parseDirectiveThumbSet(SMLoc L); | 
|  |  | 
|  | StringRef splitMnemonic(StringRef Mnemonic, unsigned &PredicationCode, | 
|  | bool &CarrySetting, unsigned &ProcessorIMod, | 
|  | StringRef &ITMask); | 
|  | void getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst, | 
|  | bool &CanAcceptCarrySet, | 
|  | bool &CanAcceptPredicationCode); | 
|  |  | 
|  | void tryConvertingToTwoOperandForm(StringRef Mnemonic, bool CarrySetting, | 
|  | OperandVector &Operands); | 
|  | bool isThumb() const { | 
|  | // FIXME: Can tablegen auto-generate this? | 
|  | return getSTI().getFeatureBits()[ARM::ModeThumb]; | 
|  | } | 
|  |  | 
|  | bool isThumbOne() const { | 
|  | return isThumb() && !getSTI().getFeatureBits()[ARM::FeatureThumb2]; | 
|  | } | 
|  |  | 
|  | bool isThumbTwo() const { | 
|  | return isThumb() && getSTI().getFeatureBits()[ARM::FeatureThumb2]; | 
|  | } | 
|  |  | 
|  | bool hasThumb() const { | 
|  | return getSTI().getFeatureBits()[ARM::HasV4TOps]; | 
|  | } | 
|  |  | 
|  | bool hasThumb2() const { | 
|  | return getSTI().getFeatureBits()[ARM::FeatureThumb2]; | 
|  | } | 
|  |  | 
|  | bool hasV6Ops() const { | 
|  | return getSTI().getFeatureBits()[ARM::HasV6Ops]; | 
|  | } | 
|  |  | 
|  | bool hasV6T2Ops() const { | 
|  | return getSTI().getFeatureBits()[ARM::HasV6T2Ops]; | 
|  | } | 
|  |  | 
|  | bool hasV6MOps() const { | 
|  | return getSTI().getFeatureBits()[ARM::HasV6MOps]; | 
|  | } | 
|  |  | 
|  | bool hasV7Ops() const { | 
|  | return getSTI().getFeatureBits()[ARM::HasV7Ops]; | 
|  | } | 
|  |  | 
|  | bool hasV8Ops() const { | 
|  | return getSTI().getFeatureBits()[ARM::HasV8Ops]; | 
|  | } | 
|  |  | 
|  | bool hasV8MBaseline() const { | 
|  | return getSTI().getFeatureBits()[ARM::HasV8MBaselineOps]; | 
|  | } | 
|  |  | 
|  | bool hasV8MMainline() const { | 
|  | return getSTI().getFeatureBits()[ARM::HasV8MMainlineOps]; | 
|  | } | 
|  |  | 
|  | bool has8MSecExt() const { | 
|  | return getSTI().getFeatureBits()[ARM::Feature8MSecExt]; | 
|  | } | 
|  |  | 
|  | bool hasARM() const { | 
|  | return !getSTI().getFeatureBits()[ARM::FeatureNoARM]; | 
|  | } | 
|  |  | 
|  | bool hasDSP() const { | 
|  | return getSTI().getFeatureBits()[ARM::FeatureDSP]; | 
|  | } | 
|  |  | 
|  | bool hasD16() const { | 
|  | return getSTI().getFeatureBits()[ARM::FeatureD16]; | 
|  | } | 
|  |  | 
|  | bool hasV8_1aOps() const { | 
|  | return getSTI().getFeatureBits()[ARM::HasV8_1aOps]; | 
|  | } | 
|  |  | 
|  | bool hasRAS() const { | 
|  | return getSTI().getFeatureBits()[ARM::FeatureRAS]; | 
|  | } | 
|  |  | 
|  | void SwitchMode() { | 
|  | MCSubtargetInfo &STI = copySTI(); | 
|  | uint64_t FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb)); | 
|  | setAvailableFeatures(FB); | 
|  | } | 
|  |  | 
|  | void FixModeAfterArchChange(bool WasThumb, SMLoc Loc); | 
|  |  | 
|  | bool isMClass() const { | 
|  | return getSTI().getFeatureBits()[ARM::FeatureMClass]; | 
|  | } | 
|  |  | 
|  | /// @name Auto-generated Match Functions | 
|  | /// { | 
|  |  | 
|  | #define GET_ASSEMBLER_HEADER | 
|  | #include "ARMGenAsmMatcher.inc" | 
|  |  | 
|  | /// } | 
|  |  | 
|  | OperandMatchResultTy parseITCondCode(OperandVector &); | 
|  | OperandMatchResultTy parseCoprocNumOperand(OperandVector &); | 
|  | OperandMatchResultTy parseCoprocRegOperand(OperandVector &); | 
|  | OperandMatchResultTy parseCoprocOptionOperand(OperandVector &); | 
|  | OperandMatchResultTy parseMemBarrierOptOperand(OperandVector &); | 
|  | OperandMatchResultTy parseInstSyncBarrierOptOperand(OperandVector &); | 
|  | OperandMatchResultTy parseProcIFlagsOperand(OperandVector &); | 
|  | OperandMatchResultTy parseMSRMaskOperand(OperandVector &); | 
|  | OperandMatchResultTy parseBankedRegOperand(OperandVector &); | 
|  | OperandMatchResultTy parsePKHImm(OperandVector &O, StringRef Op, int Low, | 
|  | int High); | 
|  | OperandMatchResultTy parsePKHLSLImm(OperandVector &O) { | 
|  | return parsePKHImm(O, "lsl", 0, 31); | 
|  | } | 
|  | OperandMatchResultTy parsePKHASRImm(OperandVector &O) { | 
|  | return parsePKHImm(O, "asr", 1, 32); | 
|  | } | 
|  | OperandMatchResultTy parseSetEndImm(OperandVector &); | 
|  | OperandMatchResultTy parseShifterImm(OperandVector &); | 
|  | OperandMatchResultTy parseRotImm(OperandVector &); | 
|  | OperandMatchResultTy parseModImm(OperandVector &); | 
|  | OperandMatchResultTy parseBitfield(OperandVector &); | 
|  | OperandMatchResultTy parsePostIdxReg(OperandVector &); | 
|  | OperandMatchResultTy parseAM3Offset(OperandVector &); | 
|  | OperandMatchResultTy parseFPImm(OperandVector &); | 
|  | OperandMatchResultTy parseVectorList(OperandVector &); | 
|  | OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, | 
|  | SMLoc &EndLoc); | 
|  |  | 
|  | // Asm Match Converter Methods | 
|  | void cvtThumbMultiply(MCInst &Inst, const OperandVector &); | 
|  | void cvtThumbBranches(MCInst &Inst, const OperandVector &); | 
|  |  | 
|  | bool validateInstruction(MCInst &Inst, const OperandVector &Ops); | 
|  | bool processInstruction(MCInst &Inst, const OperandVector &Ops, MCStreamer &Out); | 
|  | bool shouldOmitCCOutOperand(StringRef Mnemonic, OperandVector &Operands); | 
|  | bool shouldOmitPredicateOperand(StringRef Mnemonic, OperandVector &Operands); | 
|  | bool isITBlockTerminator(MCInst &Inst) const; | 
|  | void fixupGNULDRDAlias(StringRef Mnemonic, OperandVector &Operands); | 
|  |  | 
|  | public: | 
|  | enum ARMMatchResultTy { | 
|  | Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY, | 
|  | Match_RequiresNotITBlock, | 
|  | Match_RequiresV6, | 
|  | Match_RequiresThumb2, | 
|  | Match_RequiresV8, | 
|  | Match_RequiresFlagSetting, | 
|  | #define GET_OPERAND_DIAGNOSTIC_TYPES | 
|  | #include "ARMGenAsmMatcher.inc" | 
|  |  | 
|  | }; | 
|  |  | 
|  | ARMAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser, | 
|  | const MCInstrInfo &MII, const MCTargetOptions &Options) | 
|  | : MCTargetAsmParser(Options, STI, MII), UC(Parser) { | 
|  | MCAsmParserExtension::Initialize(Parser); | 
|  |  | 
|  | // Cache the MCRegisterInfo. | 
|  | MRI = getContext().getRegisterInfo(); | 
|  |  | 
|  | // Initialize the set of available features. | 
|  | setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); | 
|  |  | 
|  | // Add build attributes based on the selected target. | 
|  | if (AddBuildAttributes) | 
|  | getTargetStreamer().emitTargetAttributes(STI); | 
|  |  | 
|  | // Not in an ITBlock to start with. | 
|  | ITState.CurPosition = ~0U; | 
|  |  | 
|  | NextSymbolIsThumb = false; | 
|  | } | 
|  |  | 
|  | // Implementation of the MCTargetAsmParser interface: | 
|  | bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; | 
|  | bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, | 
|  | SMLoc NameLoc, OperandVector &Operands) override; | 
|  | bool ParseDirective(AsmToken DirectiveID) override; | 
|  |  | 
|  | unsigned validateTargetOperandClass(MCParsedAsmOperand &Op, | 
|  | unsigned Kind) override; | 
|  | unsigned checkTargetMatchPredicate(MCInst &Inst) override; | 
|  |  | 
|  | bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, | 
|  | OperandVector &Operands, MCStreamer &Out, | 
|  | uint64_t &ErrorInfo, | 
|  | bool MatchingInlineAsm) override; | 
|  | unsigned MatchInstruction(OperandVector &Operands, MCInst &Inst, | 
|  | SmallVectorImpl<NearMissInfo> &NearMisses, | 
|  | bool MatchingInlineAsm, bool &EmitInITBlock, | 
|  | MCStreamer &Out); | 
|  |  | 
|  | struct NearMissMessage { | 
|  | SMLoc Loc; | 
|  | SmallString<128> Message; | 
|  | }; | 
|  |  | 
|  | const char *getCustomOperandDiag(ARMMatchResultTy MatchError); | 
|  |  | 
|  | void FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn, | 
|  | SmallVectorImpl<NearMissMessage> &NearMissesOut, | 
|  | SMLoc IDLoc, OperandVector &Operands); | 
|  | void ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses, SMLoc IDLoc, | 
|  | OperandVector &Operands); | 
|  |  | 
|  | void onLabelParsed(MCSymbol *Symbol) override; | 
|  | }; | 
|  |  | 
|  | /// ARMOperand - Instances of this class represent a parsed ARM machine | 
|  | /// operand. | 
|  | class ARMOperand : public MCParsedAsmOperand { | 
|  | enum KindTy { | 
|  | k_CondCode, | 
|  | k_CCOut, | 
|  | k_ITCondMask, | 
|  | k_CoprocNum, | 
|  | k_CoprocReg, | 
|  | k_CoprocOption, | 
|  | k_Immediate, | 
|  | k_MemBarrierOpt, | 
|  | k_InstSyncBarrierOpt, | 
|  | k_Memory, | 
|  | k_PostIndexRegister, | 
|  | k_MSRMask, | 
|  | k_BankedReg, | 
|  | k_ProcIFlags, | 
|  | k_VectorIndex, | 
|  | k_Register, | 
|  | k_RegisterList, | 
|  | k_DPRRegisterList, | 
|  | k_SPRRegisterList, | 
|  | k_VectorList, | 
|  | k_VectorListAllLanes, | 
|  | k_VectorListIndexed, | 
|  | k_ShiftedRegister, | 
|  | k_ShiftedImmediate, | 
|  | k_ShifterImmediate, | 
|  | k_RotateImmediate, | 
|  | k_ModifiedImmediate, | 
|  | k_ConstantPoolImmediate, | 
|  | k_BitfieldDescriptor, | 
|  | k_Token, | 
|  | } Kind; | 
|  |  | 
|  | SMLoc StartLoc, EndLoc, AlignmentLoc; | 
|  | SmallVector<unsigned, 8> Registers; | 
|  |  | 
|  | struct CCOp { | 
|  | ARMCC::CondCodes Val; | 
|  | }; | 
|  |  | 
|  | struct CopOp { | 
|  | unsigned Val; | 
|  | }; | 
|  |  | 
|  | struct CoprocOptionOp { | 
|  | unsigned Val; | 
|  | }; | 
|  |  | 
|  | struct ITMaskOp { | 
|  | unsigned Mask:4; | 
|  | }; | 
|  |  | 
|  | struct MBOptOp { | 
|  | ARM_MB::MemBOpt Val; | 
|  | }; | 
|  |  | 
|  | struct ISBOptOp { | 
|  | ARM_ISB::InstSyncBOpt Val; | 
|  | }; | 
|  |  | 
|  | struct IFlagsOp { | 
|  | ARM_PROC::IFlags Val; | 
|  | }; | 
|  |  | 
|  | struct MMaskOp { | 
|  | unsigned Val; | 
|  | }; | 
|  |  | 
|  | struct BankedRegOp { | 
|  | unsigned Val; | 
|  | }; | 
|  |  | 
|  | struct TokOp { | 
|  | const char *Data; | 
|  | unsigned Length; | 
|  | }; | 
|  |  | 
|  | struct RegOp { | 
|  | unsigned RegNum; | 
|  | }; | 
|  |  | 
|  | // A vector register list is a sequential list of 1 to 4 registers. | 
|  | struct VectorListOp { | 
|  | unsigned RegNum; | 
|  | unsigned Count; | 
|  | unsigned LaneIndex; | 
|  | bool isDoubleSpaced; | 
|  | }; | 
|  |  | 
|  | struct VectorIndexOp { | 
|  | unsigned Val; | 
|  | }; | 
|  |  | 
|  | struct ImmOp { | 
|  | const MCExpr *Val; | 
|  | }; | 
|  |  | 
|  | /// Combined record for all forms of ARM address expressions. | 
|  | struct MemoryOp { | 
|  | unsigned BaseRegNum; | 
|  | // Offset is in OffsetReg or OffsetImm. If both are zero, no offset | 
|  | // was specified. | 
|  | const MCConstantExpr *OffsetImm;  // Offset immediate value | 
|  | unsigned OffsetRegNum;    // Offset register num, when OffsetImm == NULL | 
|  | ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg | 
|  | unsigned ShiftImm;        // shift for OffsetReg. | 
|  | unsigned Alignment;       // 0 = no alignment specified | 
|  | // n = alignment in bytes (2, 4, 8, 16, or 32) | 
|  | unsigned isNegative : 1;  // Negated OffsetReg? (~'U' bit) | 
|  | }; | 
|  |  | 
|  | struct PostIdxRegOp { | 
|  | unsigned RegNum; | 
|  | bool isAdd; | 
|  | ARM_AM::ShiftOpc ShiftTy; | 
|  | unsigned ShiftImm; | 
|  | }; | 
|  |  | 
|  | struct ShifterImmOp { | 
|  | bool isASR; | 
|  | unsigned Imm; | 
|  | }; | 
|  |  | 
|  | struct RegShiftedRegOp { | 
|  | ARM_AM::ShiftOpc ShiftTy; | 
|  | unsigned SrcReg; | 
|  | unsigned ShiftReg; | 
|  | unsigned ShiftImm; | 
|  | }; | 
|  |  | 
|  | struct RegShiftedImmOp { | 
|  | ARM_AM::ShiftOpc ShiftTy; | 
|  | unsigned SrcReg; | 
|  | unsigned ShiftImm; | 
|  | }; | 
|  |  | 
|  | struct RotImmOp { | 
|  | unsigned Imm; | 
|  | }; | 
|  |  | 
|  | struct ModImmOp { | 
|  | unsigned Bits; | 
|  | unsigned Rot; | 
|  | }; | 
|  |  | 
|  | struct BitfieldOp { | 
|  | unsigned LSB; | 
|  | unsigned Width; | 
|  | }; | 
|  |  | 
|  | union { | 
|  | struct CCOp CC; | 
|  | struct CopOp Cop; | 
|  | struct CoprocOptionOp CoprocOption; | 
|  | struct MBOptOp MBOpt; | 
|  | struct ISBOptOp ISBOpt; | 
|  | struct ITMaskOp ITMask; | 
|  | struct IFlagsOp IFlags; | 
|  | struct MMaskOp MMask; | 
|  | struct BankedRegOp BankedReg; | 
|  | struct TokOp Tok; | 
|  | struct RegOp Reg; | 
|  | struct VectorListOp VectorList; | 
|  | struct VectorIndexOp VectorIndex; | 
|  | struct ImmOp Imm; | 
|  | struct MemoryOp Memory; | 
|  | struct PostIdxRegOp PostIdxReg; | 
|  | struct ShifterImmOp ShifterImm; | 
|  | struct RegShiftedRegOp RegShiftedReg; | 
|  | struct RegShiftedImmOp RegShiftedImm; | 
|  | struct RotImmOp RotImm; | 
|  | struct ModImmOp ModImm; | 
|  | struct BitfieldOp Bitfield; | 
|  | }; | 
|  |  | 
|  | public: | 
|  | ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {} | 
|  |  | 
|  | /// getStartLoc - Get the location of the first token of this operand. | 
|  | SMLoc getStartLoc() const override { return StartLoc; } | 
|  |  | 
|  | /// getEndLoc - Get the location of the last token of this operand. | 
|  | SMLoc getEndLoc() const override { return EndLoc; } | 
|  |  | 
|  | /// getLocRange - Get the range between the first and last token of this | 
|  | /// operand. | 
|  | SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } | 
|  |  | 
|  | /// getAlignmentLoc - Get the location of the Alignment token of this operand. | 
|  | SMLoc getAlignmentLoc() const { | 
|  | assert(Kind == k_Memory && "Invalid access!"); | 
|  | return AlignmentLoc; | 
|  | } | 
|  |  | 
|  | ARMCC::CondCodes getCondCode() const { | 
|  | assert(Kind == k_CondCode && "Invalid access!"); | 
|  | return CC.Val; | 
|  | } | 
|  |  | 
|  | unsigned getCoproc() const { | 
|  | assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!"); | 
|  | return Cop.Val; | 
|  | } | 
|  |  | 
|  | StringRef getToken() const { | 
|  | assert(Kind == k_Token && "Invalid access!"); | 
|  | return StringRef(Tok.Data, Tok.Length); | 
|  | } | 
|  |  | 
|  | unsigned getReg() const override { | 
|  | assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!"); | 
|  | return Reg.RegNum; | 
|  | } | 
|  |  | 
|  | const SmallVectorImpl<unsigned> &getRegList() const { | 
|  | assert((Kind == k_RegisterList || Kind == k_DPRRegisterList || | 
|  | Kind == k_SPRRegisterList) && "Invalid access!"); | 
|  | return Registers; | 
|  | } | 
|  |  | 
|  | const MCExpr *getImm() const { | 
|  | assert(isImm() && "Invalid access!"); | 
|  | return Imm.Val; | 
|  | } | 
|  |  | 
|  | const MCExpr *getConstantPoolImm() const { | 
|  | assert(isConstantPoolImm() && "Invalid access!"); | 
|  | return Imm.Val; | 
|  | } | 
|  |  | 
|  | unsigned getVectorIndex() const { | 
|  | assert(Kind == k_VectorIndex && "Invalid access!"); | 
|  | return VectorIndex.Val; | 
|  | } | 
|  |  | 
|  | ARM_MB::MemBOpt getMemBarrierOpt() const { | 
|  | assert(Kind == k_MemBarrierOpt && "Invalid access!"); | 
|  | return MBOpt.Val; | 
|  | } | 
|  |  | 
|  | ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const { | 
|  | assert(Kind == k_InstSyncBarrierOpt && "Invalid access!"); | 
|  | return ISBOpt.Val; | 
|  | } | 
|  |  | 
|  | ARM_PROC::IFlags getProcIFlags() const { | 
|  | assert(Kind == k_ProcIFlags && "Invalid access!"); | 
|  | return IFlags.Val; | 
|  | } | 
|  |  | 
|  | unsigned getMSRMask() const { | 
|  | assert(Kind == k_MSRMask && "Invalid access!"); | 
|  | return MMask.Val; | 
|  | } | 
|  |  | 
|  | unsigned getBankedReg() const { | 
|  | assert(Kind == k_BankedReg && "Invalid access!"); | 
|  | return BankedReg.Val; | 
|  | } | 
|  |  | 
|  | bool isCoprocNum() const { return Kind == k_CoprocNum; } | 
|  | bool isCoprocReg() const { return Kind == k_CoprocReg; } | 
|  | bool isCoprocOption() const { return Kind == k_CoprocOption; } | 
|  | bool isCondCode() const { return Kind == k_CondCode; } | 
|  | bool isCCOut() const { return Kind == k_CCOut; } | 
|  | bool isITMask() const { return Kind == k_ITCondMask; } | 
|  | bool isITCondCode() const { return Kind == k_CondCode; } | 
|  | bool isImm() const override { | 
|  | return Kind == k_Immediate; | 
|  | } | 
|  |  | 
|  | bool isARMBranchTarget() const { | 
|  | if (!isImm()) return false; | 
|  |  | 
|  | if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) | 
|  | return CE->getValue() % 4 == 0; | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | bool isThumbBranchTarget() const { | 
|  | if (!isImm()) return false; | 
|  |  | 
|  | if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) | 
|  | return CE->getValue() % 2 == 0; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // checks whether this operand is an unsigned offset which fits is a field | 
|  | // of specified width and scaled by a specific number of bits | 
|  | template<unsigned width, unsigned scale> | 
|  | bool isUnsignedOffset() const { | 
|  | if (!isImm()) return false; | 
|  | if (isa<MCSymbolRefExpr>(Imm.Val)) return true; | 
|  | if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { | 
|  | int64_t Val = CE->getValue(); | 
|  | int64_t Align = 1LL << scale; | 
|  | int64_t Max = Align * ((1LL << width) - 1); | 
|  | return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // checks whether this operand is an signed offset which fits is a field | 
|  | // of specified width and scaled by a specific number of bits | 
|  | template<unsigned width, unsigned scale> | 
|  | bool isSignedOffset() const { | 
|  | if (!isImm()) return false; | 
|  | if (isa<MCSymbolRefExpr>(Imm.Val)) return true; | 
|  | if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { | 
|  | int64_t Val = CE->getValue(); | 
|  | int64_t Align = 1LL << scale; | 
|  | int64_t Max = Align * ((1LL << (width-1)) - 1); | 
|  | int64_t Min = -Align * (1LL << (width-1)); | 
|  | return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // checks whether this operand is a memory operand computed as an offset | 
|  | // applied to PC. the offset may have 8 bits of magnitude and is represented | 
|  | // with two bits of shift. textually it may be either [pc, #imm], #imm or | 
|  | // relocable expression... | 
|  | bool isThumbMemPC() const { | 
|  | int64_t Val = 0; | 
|  | if (isImm()) { | 
|  | if (isa<MCSymbolRefExpr>(Imm.Val)) return true; | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val); | 
|  | if (!CE) return false; | 
|  | Val = CE->getValue(); | 
|  | } | 
|  | else if (isMem()) { | 
|  | if(!Memory.OffsetImm || Memory.OffsetRegNum) return false; | 
|  | if(Memory.BaseRegNum != ARM::PC) return false; | 
|  | Val = Memory.OffsetImm->getValue(); | 
|  | } | 
|  | else return false; | 
|  | return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020); | 
|  | } | 
|  |  | 
|  | bool isFPImm() const { | 
|  | if (!isImm()) return false; | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); | 
|  | if (!CE) return false; | 
|  | int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); | 
|  | return Val != -1; | 
|  | } | 
|  |  | 
|  | template<int64_t N, int64_t M> | 
|  | bool isImmediate() const { | 
|  | if (!isImm()) return false; | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); | 
|  | if (!CE) return false; | 
|  | int64_t Value = CE->getValue(); | 
|  | return Value >= N && Value <= M; | 
|  | } | 
|  |  | 
|  | template<int64_t N, int64_t M> | 
|  | bool isImmediateS4() const { | 
|  | if (!isImm()) return false; | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); | 
|  | if (!CE) return false; | 
|  | int64_t Value = CE->getValue(); | 
|  | return ((Value & 3) == 0) && Value >= N && Value <= M; | 
|  | } | 
|  |  | 
|  | bool isFBits16() const { | 
|  | return isImmediate<0, 17>(); | 
|  | } | 
|  | bool isFBits32() const { | 
|  | return isImmediate<1, 33>(); | 
|  | } | 
|  | bool isImm8s4() const { | 
|  | return isImmediateS4<-1020, 1020>(); | 
|  | } | 
|  | bool isImm0_1020s4() const { | 
|  | return isImmediateS4<0, 1020>(); | 
|  | } | 
|  | bool isImm0_508s4() const { | 
|  | return isImmediateS4<0, 508>(); | 
|  | } | 
|  | bool isImm0_508s4Neg() const { | 
|  | if (!isImm()) return false; | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); | 
|  | if (!CE) return false; | 
|  | int64_t Value = -CE->getValue(); | 
|  | // explicitly exclude zero. we want that to use the normal 0_508 version. | 
|  | return ((Value & 3) == 0) && Value > 0 && Value <= 508; | 
|  | } | 
|  |  | 
|  | bool isImm0_4095Neg() const { | 
|  | if (!isImm()) return false; | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); | 
|  | if (!CE) return false; | 
|  | int64_t Value = -CE->getValue(); | 
|  | return Value > 0 && Value < 4096; | 
|  | } | 
|  |  | 
|  | bool isImm0_7() const { | 
|  | return isImmediate<0, 7>(); | 
|  | } | 
|  |  | 
|  | bool isImm1_16() const { | 
|  | return isImmediate<1, 16>(); | 
|  | } | 
|  |  | 
|  | bool isImm1_32() const { | 
|  | return isImmediate<1, 32>(); | 
|  | } | 
|  |  | 
|  | bool isImm8_255() const { | 
|  | return isImmediate<8, 255>(); | 
|  | } | 
|  |  | 
|  | bool isImm256_65535Expr() const { | 
|  | if (!isImm()) return false; | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); | 
|  | // If it's not a constant expression, it'll generate a fixup and be | 
|  | // handled later. | 
|  | if (!CE) return true; | 
|  | int64_t Value = CE->getValue(); | 
|  | return Value >= 256 && Value < 65536; | 
|  | } | 
|  |  | 
|  | bool isImm0_65535Expr() const { | 
|  | if (!isImm()) return false; | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); | 
|  | // If it's not a constant expression, it'll generate a fixup and be | 
|  | // handled later. | 
|  | if (!CE) return true; | 
|  | int64_t Value = CE->getValue(); | 
|  | return Value >= 0 && Value < 65536; | 
|  | } | 
|  |  | 
|  | bool isImm24bit() const { | 
|  | return isImmediate<0, 0xffffff + 1>(); | 
|  | } | 
|  |  | 
|  | bool isImmThumbSR() const { | 
|  | return isImmediate<1, 33>(); | 
|  | } | 
|  |  | 
|  | bool isPKHLSLImm() const { | 
|  | return isImmediate<0, 32>(); | 
|  | } | 
|  |  | 
|  | bool isPKHASRImm() const { | 
|  | return isImmediate<0, 33>(); | 
|  | } | 
|  |  | 
|  | bool isAdrLabel() const { | 
|  | // If we have an immediate that's not a constant, treat it as a label | 
|  | // reference needing a fixup. | 
|  | if (isImm() && !isa<MCConstantExpr>(getImm())) | 
|  | return true; | 
|  |  | 
|  | // If it is a constant, it must fit into a modified immediate encoding. | 
|  | if (!isImm()) return false; | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); | 
|  | if (!CE) return false; | 
|  | int64_t Value = CE->getValue(); | 
|  | return (ARM_AM::getSOImmVal(Value) != -1 || | 
|  | ARM_AM::getSOImmVal(-Value) != -1); | 
|  | } | 
|  |  | 
|  | bool isT2SOImm() const { | 
|  | // If we have an immediate that's not a constant, treat it as an expression | 
|  | // needing a fixup. | 
|  | if (isImm() && !isa<MCConstantExpr>(getImm())) { | 
|  | // We want to avoid matching :upper16: and :lower16: as we want these | 
|  | // expressions to match in isImm0_65535Expr() | 
|  | const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(getImm()); | 
|  | return (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 && | 
|  | ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16)); | 
|  | } | 
|  | if (!isImm()) return false; | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); | 
|  | if (!CE) return false; | 
|  | int64_t Value = CE->getValue(); | 
|  | return ARM_AM::getT2SOImmVal(Value) != -1; | 
|  | } | 
|  |  | 
|  | bool isT2SOImmNot() const { | 
|  | if (!isImm()) return false; | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); | 
|  | if (!CE) return false; | 
|  | int64_t Value = CE->getValue(); | 
|  | return ARM_AM::getT2SOImmVal(Value) == -1 && | 
|  | ARM_AM::getT2SOImmVal(~Value) != -1; | 
|  | } | 
|  |  | 
|  | bool isT2SOImmNeg() const { | 
|  | if (!isImm()) return false; | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); | 
|  | if (!CE) return false; | 
|  | int64_t Value = CE->getValue(); | 
|  | // Only use this when not representable as a plain so_imm. | 
|  | return ARM_AM::getT2SOImmVal(Value) == -1 && | 
|  | ARM_AM::getT2SOImmVal(-Value) != -1; | 
|  | } | 
|  |  | 
|  | bool isSetEndImm() const { | 
|  | if (!isImm()) return false; | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); | 
|  | if (!CE) return false; | 
|  | int64_t Value = CE->getValue(); | 
|  | return Value == 1 || Value == 0; | 
|  | } | 
|  |  | 
|  | bool isReg() const override { return Kind == k_Register; } | 
|  | bool isRegList() const { return Kind == k_RegisterList; } | 
|  | bool isDPRRegList() const { return Kind == k_DPRRegisterList; } | 
|  | bool isSPRRegList() const { return Kind == k_SPRRegisterList; } | 
|  | bool isToken() const override { return Kind == k_Token; } | 
|  | bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; } | 
|  | bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; } | 
|  | bool isMem() const override { | 
|  | if (Kind != k_Memory) | 
|  | return false; | 
|  | if (Memory.BaseRegNum && | 
|  | !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.BaseRegNum)) | 
|  | return false; | 
|  | if (Memory.OffsetRegNum && | 
|  | !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.OffsetRegNum)) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  | bool isShifterImm() const { return Kind == k_ShifterImmediate; } | 
|  | bool isRegShiftedReg() const { | 
|  | return Kind == k_ShiftedRegister && | 
|  | ARMMCRegisterClasses[ARM::GPRRegClassID].contains( | 
|  | RegShiftedReg.SrcReg) && | 
|  | ARMMCRegisterClasses[ARM::GPRRegClassID].contains( | 
|  | RegShiftedReg.ShiftReg); | 
|  | } | 
|  | bool isRegShiftedImm() const { | 
|  | return Kind == k_ShiftedImmediate && | 
|  | ARMMCRegisterClasses[ARM::GPRRegClassID].contains( | 
|  | RegShiftedImm.SrcReg); | 
|  | } | 
|  | bool isRotImm() const { return Kind == k_RotateImmediate; } | 
|  | bool isModImm() const { return Kind == k_ModifiedImmediate; } | 
|  |  | 
|  | bool isModImmNot() const { | 
|  | if (!isImm()) return false; | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); | 
|  | if (!CE) return false; | 
|  | int64_t Value = CE->getValue(); | 
|  | return ARM_AM::getSOImmVal(~Value) != -1; | 
|  | } | 
|  |  | 
|  | bool isModImmNeg() const { | 
|  | if (!isImm()) return false; | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); | 
|  | if (!CE) return false; | 
|  | int64_t Value = CE->getValue(); | 
|  | return ARM_AM::getSOImmVal(Value) == -1 && | 
|  | ARM_AM::getSOImmVal(-Value) != -1; | 
|  | } | 
|  |  | 
|  | bool isThumbModImmNeg1_7() const { | 
|  | if (!isImm()) return false; | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); | 
|  | if (!CE) return false; | 
|  | int32_t Value = -(int32_t)CE->getValue(); | 
|  | return 0 < Value && Value < 8; | 
|  | } | 
|  |  | 
|  | bool isThumbModImmNeg8_255() const { | 
|  | if (!isImm()) return false; | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); | 
|  | if (!CE) return false; | 
|  | int32_t Value = -(int32_t)CE->getValue(); | 
|  | return 7 < Value && Value < 256; | 
|  | } | 
|  |  | 
|  | bool isConstantPoolImm() const { return Kind == k_ConstantPoolImmediate; } | 
|  | bool isBitfield() const { return Kind == k_BitfieldDescriptor; } | 
|  | bool isPostIdxRegShifted() const { | 
|  | return Kind == k_PostIndexRegister && | 
|  | ARMMCRegisterClasses[ARM::GPRRegClassID].contains(PostIdxReg.RegNum); | 
|  | } | 
|  | bool isPostIdxReg() const { | 
|  | return isPostIdxRegShifted() && PostIdxReg.ShiftTy == ARM_AM::no_shift; | 
|  | } | 
|  | bool isMemNoOffset(bool alignOK = false, unsigned Alignment = 0) const { | 
|  | if (!isMem()) | 
|  | return false; | 
|  | // No offset of any kind. | 
|  | return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && | 
|  | (alignOK || Memory.Alignment == Alignment); | 
|  | } | 
|  | bool isMemPCRelImm12() const { | 
|  | if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) | 
|  | return false; | 
|  | // Base register must be PC. | 
|  | if (Memory.BaseRegNum != ARM::PC) | 
|  | return false; | 
|  | // Immediate offset in range [-4095, 4095]. | 
|  | if (!Memory.OffsetImm) return true; | 
|  | int64_t Val = Memory.OffsetImm->getValue(); | 
|  | return (Val > -4096 && Val < 4096) || | 
|  | (Val == std::numeric_limits<int32_t>::min()); | 
|  | } | 
|  |  | 
|  | bool isAlignedMemory() const { | 
|  | return isMemNoOffset(true); | 
|  | } | 
|  |  | 
|  | bool isAlignedMemoryNone() const { | 
|  | return isMemNoOffset(false, 0); | 
|  | } | 
|  |  | 
|  | bool isDupAlignedMemoryNone() const { | 
|  | return isMemNoOffset(false, 0); | 
|  | } | 
|  |  | 
|  | bool isAlignedMemory16() const { | 
|  | if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. | 
|  | return true; | 
|  | return isMemNoOffset(false, 0); | 
|  | } | 
|  |  | 
|  | bool isDupAlignedMemory16() const { | 
|  | if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. | 
|  | return true; | 
|  | return isMemNoOffset(false, 0); | 
|  | } | 
|  |  | 
|  | bool isAlignedMemory32() const { | 
|  | if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. | 
|  | return true; | 
|  | return isMemNoOffset(false, 0); | 
|  | } | 
|  |  | 
|  | bool isDupAlignedMemory32() const { | 
|  | if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. | 
|  | return true; | 
|  | return isMemNoOffset(false, 0); | 
|  | } | 
|  |  | 
|  | bool isAlignedMemory64() const { | 
|  | if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. | 
|  | return true; | 
|  | return isMemNoOffset(false, 0); | 
|  | } | 
|  |  | 
|  | bool isDupAlignedMemory64() const { | 
|  | if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. | 
|  | return true; | 
|  | return isMemNoOffset(false, 0); | 
|  | } | 
|  |  | 
|  | bool isAlignedMemory64or128() const { | 
|  | if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. | 
|  | return true; | 
|  | if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. | 
|  | return true; | 
|  | return isMemNoOffset(false, 0); | 
|  | } | 
|  |  | 
|  | bool isDupAlignedMemory64or128() const { | 
|  | if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. | 
|  | return true; | 
|  | if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. | 
|  | return true; | 
|  | return isMemNoOffset(false, 0); | 
|  | } | 
|  |  | 
|  | bool isAlignedMemory64or128or256() const { | 
|  | if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. | 
|  | return true; | 
|  | if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. | 
|  | return true; | 
|  | if (isMemNoOffset(false, 32)) // alignment in bytes for 256-bits is 32. | 
|  | return true; | 
|  | return isMemNoOffset(false, 0); | 
|  | } | 
|  |  | 
|  | bool isAddrMode2() const { | 
|  | if (!isMem() || Memory.Alignment != 0) return false; | 
|  | // Check for register offset. | 
|  | if (Memory.OffsetRegNum) return true; | 
|  | // Immediate offset in range [-4095, 4095]. | 
|  | if (!Memory.OffsetImm) return true; | 
|  | int64_t Val = Memory.OffsetImm->getValue(); | 
|  | return Val > -4096 && Val < 4096; | 
|  | } | 
|  |  | 
|  | bool isAM2OffsetImm() const { | 
|  | if (!isImm()) return false; | 
|  | // Immediate offset in range [-4095, 4095]. | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); | 
|  | if (!CE) return false; | 
|  | int64_t Val = CE->getValue(); | 
|  | return (Val == std::numeric_limits<int32_t>::min()) || | 
|  | (Val > -4096 && Val < 4096); | 
|  | } | 
|  |  | 
|  | bool isAddrMode3() const { | 
|  | // If we have an immediate that's not a constant, treat it as a label | 
|  | // reference needing a fixup. If it is a constant, it's something else | 
|  | // and we reject it. | 
|  | if (isImm() && !isa<MCConstantExpr>(getImm())) | 
|  | return true; | 
|  | if (!isMem() || Memory.Alignment != 0) return false; | 
|  | // No shifts are legal for AM3. | 
|  | if (Memory.ShiftType != ARM_AM::no_shift) return false; | 
|  | // Check for register offset. | 
|  | if (Memory.OffsetRegNum) return true; | 
|  | // Immediate offset in range [-255, 255]. | 
|  | if (!Memory.OffsetImm) return true; | 
|  | int64_t Val = Memory.OffsetImm->getValue(); | 
|  | // The #-0 offset is encoded as std::numeric_limits<int32_t>::min(), and we | 
|  | // have to check for this too. | 
|  | return (Val > -256 && Val < 256) || | 
|  | Val == std::numeric_limits<int32_t>::min(); | 
|  | } | 
|  |  | 
|  | bool isAM3Offset() const { | 
|  | if (isPostIdxReg()) | 
|  | return true; | 
|  | if (!isImm()) | 
|  | return false; | 
|  | // Immediate offset in range [-255, 255]. | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); | 
|  | if (!CE) return false; | 
|  | int64_t Val = CE->getValue(); | 
|  | // Special case, #-0 is std::numeric_limits<int32_t>::min(). | 
|  | return (Val > -256 && Val < 256) || | 
|  | Val == std::numeric_limits<int32_t>::min(); | 
|  | } | 
|  |  | 
|  | bool isAddrMode5() const { | 
|  | // If we have an immediate that's not a constant, treat it as a label | 
|  | // reference needing a fixup. If it is a constant, it's something else | 
|  | // and we reject it. | 
|  | if (isImm() && !isa<MCConstantExpr>(getImm())) | 
|  | return true; | 
|  | if (!isMem() || Memory.Alignment != 0) return false; | 
|  | // Check for register offset. | 
|  | if (Memory.OffsetRegNum) return false; | 
|  | // Immediate offset in range [-1020, 1020] and a multiple of 4. | 
|  | if (!Memory.OffsetImm) return true; | 
|  | int64_t Val = Memory.OffsetImm->getValue(); | 
|  | return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) || | 
|  | Val == std::numeric_limits<int32_t>::min(); | 
|  | } | 
|  |  | 
|  | bool isAddrMode5FP16() const { | 
|  | // If we have an immediate that's not a constant, treat it as a label | 
|  | // reference needing a fixup. If it is a constant, it's something else | 
|  | // and we reject it. | 
|  | if (isImm() && !isa<MCConstantExpr>(getImm())) | 
|  | return true; | 
|  | if (!isMem() || Memory.Alignment != 0) return false; | 
|  | // Check for register offset. | 
|  | if (Memory.OffsetRegNum) return false; | 
|  | // Immediate offset in range [-510, 510] and a multiple of 2. | 
|  | if (!Memory.OffsetImm) return true; | 
|  | int64_t Val = Memory.OffsetImm->getValue(); | 
|  | return (Val >= -510 && Val <= 510 && ((Val & 1) == 0)) || | 
|  | Val == std::numeric_limits<int32_t>::min(); | 
|  | } | 
|  |  | 
|  | bool isMemTBB() const { | 
|  | if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || | 
|  | Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool isMemTBH() const { | 
|  | if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || | 
|  | Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 || | 
|  | Memory.Alignment != 0 ) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool isMemRegOffset() const { | 
|  | if (!isMem() || !Memory.OffsetRegNum || Memory.Alignment != 0) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool isT2MemRegOffset() const { | 
|  | if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || | 
|  | Memory.Alignment != 0 || Memory.BaseRegNum == ARM::PC) | 
|  | return false; | 
|  | // Only lsl #{0, 1, 2, 3} allowed. | 
|  | if (Memory.ShiftType == ARM_AM::no_shift) | 
|  | return true; | 
|  | if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool isMemThumbRR() const { | 
|  | // Thumb reg+reg addressing is simple. Just two registers, a base and | 
|  | // an offset. No shifts, negations or any other complicating factors. | 
|  | if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || | 
|  | Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) | 
|  | return false; | 
|  | return isARMLowRegister(Memory.BaseRegNum) && | 
|  | (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum)); | 
|  | } | 
|  |  | 
|  | bool isMemThumbRIs4() const { | 
|  | if (!isMem() || Memory.OffsetRegNum != 0 || | 
|  | !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) | 
|  | return false; | 
|  | // Immediate offset, multiple of 4 in range [0, 124]. | 
|  | if (!Memory.OffsetImm) return true; | 
|  | int64_t Val = Memory.OffsetImm->getValue(); | 
|  | return Val >= 0 && Val <= 124 && (Val % 4) == 0; | 
|  | } | 
|  |  | 
|  | bool isMemThumbRIs2() const { | 
|  | if (!isMem() || Memory.OffsetRegNum != 0 || | 
|  | !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) | 
|  | return false; | 
|  | // Immediate offset, multiple of 4 in range [0, 62]. | 
|  | if (!Memory.OffsetImm) return true; | 
|  | int64_t Val = Memory.OffsetImm->getValue(); | 
|  | return Val >= 0 && Val <= 62 && (Val % 2) == 0; | 
|  | } | 
|  |  | 
|  | bool isMemThumbRIs1() const { | 
|  | if (!isMem() || Memory.OffsetRegNum != 0 || | 
|  | !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) | 
|  | return false; | 
|  | // Immediate offset in range [0, 31]. | 
|  | if (!Memory.OffsetImm) return true; | 
|  | int64_t Val = Memory.OffsetImm->getValue(); | 
|  | return Val >= 0 && Val <= 31; | 
|  | } | 
|  |  | 
|  | bool isMemThumbSPI() const { | 
|  | if (!isMem() || Memory.OffsetRegNum != 0 || | 
|  | Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0) | 
|  | return false; | 
|  | // Immediate offset, multiple of 4 in range [0, 1020]. | 
|  | if (!Memory.OffsetImm) return true; | 
|  | int64_t Val = Memory.OffsetImm->getValue(); | 
|  | return Val >= 0 && Val <= 1020 && (Val % 4) == 0; | 
|  | } | 
|  |  | 
|  | bool isMemImm8s4Offset() const { | 
|  | // If we have an immediate that's not a constant, treat it as a label | 
|  | // reference needing a fixup. If it is a constant, it's something else | 
|  | // and we reject it. | 
|  | if (isImm() && !isa<MCConstantExpr>(getImm())) | 
|  | return true; | 
|  | if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) | 
|  | return false; | 
|  | // Immediate offset a multiple of 4 in range [-1020, 1020]. | 
|  | if (!Memory.OffsetImm) return true; | 
|  | int64_t Val = Memory.OffsetImm->getValue(); | 
|  | // Special case, #-0 is std::numeric_limits<int32_t>::min(). | 
|  | return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) || | 
|  | Val == std::numeric_limits<int32_t>::min(); | 
|  | } | 
|  |  | 
|  | bool isMemImm0_1020s4Offset() const { | 
|  | if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) | 
|  | return false; | 
|  | // Immediate offset a multiple of 4 in range [0, 1020]. | 
|  | if (!Memory.OffsetImm) return true; | 
|  | int64_t Val = Memory.OffsetImm->getValue(); | 
|  | return Val >= 0 && Val <= 1020 && (Val & 3) == 0; | 
|  | } | 
|  |  | 
|  | bool isMemImm8Offset() const { | 
|  | if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) | 
|  | return false; | 
|  | // Base reg of PC isn't allowed for these encodings. | 
|  | if (Memory.BaseRegNum == ARM::PC) return false; | 
|  | // Immediate offset in range [-255, 255]. | 
|  | if (!Memory.OffsetImm) return true; | 
|  | int64_t Val = Memory.OffsetImm->getValue(); | 
|  | return (Val == std::numeric_limits<int32_t>::min()) || | 
|  | (Val > -256 && Val < 256); | 
|  | } | 
|  |  | 
|  | bool isMemPosImm8Offset() const { | 
|  | if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) | 
|  | return false; | 
|  | // Immediate offset in range [0, 255]. | 
|  | if (!Memory.OffsetImm) return true; | 
|  | int64_t Val = Memory.OffsetImm->getValue(); | 
|  | return Val >= 0 && Val < 256; | 
|  | } | 
|  |  | 
|  | bool isMemNegImm8Offset() const { | 
|  | if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) | 
|  | return false; | 
|  | // Base reg of PC isn't allowed for these encodings. | 
|  | if (Memory.BaseRegNum == ARM::PC) return false; | 
|  | // Immediate offset in range [-255, -1]. | 
|  | if (!Memory.OffsetImm) return false; | 
|  | int64_t Val = Memory.OffsetImm->getValue(); | 
|  | return (Val == std::numeric_limits<int32_t>::min()) || | 
|  | (Val > -256 && Val < 0); | 
|  | } | 
|  |  | 
|  | bool isMemUImm12Offset() const { | 
|  | if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) | 
|  | return false; | 
|  | // Immediate offset in range [0, 4095]. | 
|  | if (!Memory.OffsetImm) return true; | 
|  | int64_t Val = Memory.OffsetImm->getValue(); | 
|  | return (Val >= 0 && Val < 4096); | 
|  | } | 
|  |  | 
|  | bool isMemImm12Offset() const { | 
|  | // If we have an immediate that's not a constant, treat it as a label | 
|  | // reference needing a fixup. If it is a constant, it's something else | 
|  | // and we reject it. | 
|  |  | 
|  | if (isImm() && !isa<MCConstantExpr>(getImm())) | 
|  | return true; | 
|  |  | 
|  | if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) | 
|  | return false; | 
|  | // Immediate offset in range [-4095, 4095]. | 
|  | if (!Memory.OffsetImm) return true; | 
|  | int64_t Val = Memory.OffsetImm->getValue(); | 
|  | return (Val > -4096 && Val < 4096) || | 
|  | (Val == std::numeric_limits<int32_t>::min()); | 
|  | } | 
|  |  | 
|  | bool isConstPoolAsmImm() const { | 
|  | // Delay processing of Constant Pool Immediate, this will turn into | 
|  | // a constant. Match no other operand | 
|  | return (isConstantPoolImm()); | 
|  | } | 
|  |  | 
|  | bool isPostIdxImm8() const { | 
|  | if (!isImm()) return false; | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); | 
|  | if (!CE) return false; | 
|  | int64_t Val = CE->getValue(); | 
|  | return (Val > -256 && Val < 256) || | 
|  | (Val == std::numeric_limits<int32_t>::min()); | 
|  | } | 
|  |  | 
|  | bool isPostIdxImm8s4() const { | 
|  | if (!isImm()) return false; | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); | 
|  | if (!CE) return false; | 
|  | int64_t Val = CE->getValue(); | 
|  | return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) || | 
|  | (Val == std::numeric_limits<int32_t>::min()); | 
|  | } | 
|  |  | 
|  | bool isMSRMask() const { return Kind == k_MSRMask; } | 
|  | bool isBankedReg() const { return Kind == k_BankedReg; } | 
|  | bool isProcIFlags() const { return Kind == k_ProcIFlags; } | 
|  |  | 
|  | // NEON operands. | 
|  | bool isSingleSpacedVectorList() const { | 
|  | return Kind == k_VectorList && !VectorList.isDoubleSpaced; | 
|  | } | 
|  |  | 
|  | bool isDoubleSpacedVectorList() const { | 
|  | return Kind == k_VectorList && VectorList.isDoubleSpaced; | 
|  | } | 
|  |  | 
|  | bool isVecListOneD() const { | 
|  | if (!isSingleSpacedVectorList()) return false; | 
|  | return VectorList.Count == 1; | 
|  | } | 
|  |  | 
|  | bool isVecListDPair() const { | 
|  | if (!isSingleSpacedVectorList()) return false; | 
|  | return (ARMMCRegisterClasses[ARM::DPairRegClassID] | 
|  | .contains(VectorList.RegNum)); | 
|  | } | 
|  |  | 
|  | bool isVecListThreeD() const { | 
|  | if (!isSingleSpacedVectorList()) return false; | 
|  | return VectorList.Count == 3; | 
|  | } | 
|  |  | 
|  | bool isVecListFourD() const { | 
|  | if (!isSingleSpacedVectorList()) return false; | 
|  | return VectorList.Count == 4; | 
|  | } | 
|  |  | 
|  | bool isVecListDPairSpaced() const { | 
|  | if (Kind != k_VectorList) return false; | 
|  | if (isSingleSpacedVectorList()) return false; | 
|  | return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID] | 
|  | .contains(VectorList.RegNum)); | 
|  | } | 
|  |  | 
|  | bool isVecListThreeQ() const { | 
|  | if (!isDoubleSpacedVectorList()) return false; | 
|  | return VectorList.Count == 3; | 
|  | } | 
|  |  | 
|  | bool isVecListFourQ() const { | 
|  | if (!isDoubleSpacedVectorList()) return false; | 
|  | return VectorList.Count == 4; | 
|  | } | 
|  |  | 
|  | bool isSingleSpacedVectorAllLanes() const { | 
|  | return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced; | 
|  | } | 
|  |  | 
|  | bool isDoubleSpacedVectorAllLanes() const { | 
|  | return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced; | 
|  | } | 
|  |  | 
|  | bool isVecListOneDAllLanes() const { | 
|  | if (!isSingleSpacedVectorAllLanes()) return false; | 
|  | return VectorList.Count == 1; | 
|  | } | 
|  |  | 
|  | bool isVecListDPairAllLanes() const { | 
|  | if (!isSingleSpacedVectorAllLanes()) return false; | 
|  | return (ARMMCRegisterClasses[ARM::DPairRegClassID] | 
|  | .contains(VectorList.RegNum)); | 
|  | } | 
|  |  | 
|  | bool isVecListDPairSpacedAllLanes() const { | 
|  | if (!isDoubleSpacedVectorAllLanes()) return false; | 
|  | return VectorList.Count == 2; | 
|  | } | 
|  |  | 
|  | bool isVecListThreeDAllLanes() const { | 
|  | if (!isSingleSpacedVectorAllLanes()) return false; | 
|  | return VectorList.Count == 3; | 
|  | } | 
|  |  | 
|  | bool isVecListThreeQAllLanes() const { | 
|  | if (!isDoubleSpacedVectorAllLanes()) return false; | 
|  | return VectorList.Count == 3; | 
|  | } | 
|  |  | 
|  | bool isVecListFourDAllLanes() const { | 
|  | if (!isSingleSpacedVectorAllLanes()) return false; | 
|  | return VectorList.Count == 4; | 
|  | } | 
|  |  | 
|  | bool isVecListFourQAllLanes() const { | 
|  | if (!isDoubleSpacedVectorAllLanes()) return false; | 
|  | return VectorList.Count == 4; | 
|  | } | 
|  |  | 
|  | bool isSingleSpacedVectorIndexed() const { | 
|  | return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced; | 
|  | } | 
|  |  | 
|  | bool isDoubleSpacedVectorIndexed() const { | 
|  | return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced; | 
|  | } | 
|  |  | 
|  | bool isVecListOneDByteIndexed() const { | 
|  | if (!isSingleSpacedVectorIndexed()) return false; | 
|  | return VectorList.Count == 1 && VectorList.LaneIndex <= 7; | 
|  | } | 
|  |  | 
|  | bool isVecListOneDHWordIndexed() const { | 
|  | if (!isSingleSpacedVectorIndexed()) return false; | 
|  | return VectorList.Count == 1 && VectorList.LaneIndex <= 3; | 
|  | } | 
|  |  | 
|  | bool isVecListOneDWordIndexed() const { | 
|  | if (!isSingleSpacedVectorIndexed()) return false; | 
|  | return VectorList.Count == 1 && VectorList.LaneIndex <= 1; | 
|  | } | 
|  |  | 
|  | bool isVecListTwoDByteIndexed() const { | 
|  | if (!isSingleSpacedVectorIndexed()) return false; | 
|  | return VectorList.Count == 2 && VectorList.LaneIndex <= 7; | 
|  | } | 
|  |  | 
|  | bool isVecListTwoDHWordIndexed() const { | 
|  | if (!isSingleSpacedVectorIndexed()) return false; | 
|  | return VectorList.Count == 2 && VectorList.LaneIndex <= 3; | 
|  | } | 
|  |  | 
|  | bool isVecListTwoQWordIndexed() const { | 
|  | if (!isDoubleSpacedVectorIndexed()) return false; | 
|  | return VectorList.Count == 2 && VectorList.LaneIndex <= 1; | 
|  | } | 
|  |  | 
|  | bool isVecListTwoQHWordIndexed() const { | 
|  | if (!isDoubleSpacedVectorIndexed()) return false; | 
|  | return VectorList.Count == 2 && VectorList.LaneIndex <= 3; | 
|  | } | 
|  |  | 
|  | bool isVecListTwoDWordIndexed() const { | 
|  | if (!isSingleSpacedVectorIndexed()) return false; | 
|  | return VectorList.Count == 2 && VectorList.LaneIndex <= 1; | 
|  | } | 
|  |  | 
|  | bool isVecListThreeDByteIndexed() const { | 
|  | if (!isSingleSpacedVectorIndexed()) return false; | 
|  | return VectorList.Count == 3 && VectorList.LaneIndex <= 7; | 
|  | } | 
|  |  | 
|  | bool isVecListThreeDHWordIndexed() const { | 
|  | if (!isSingleSpacedVectorIndexed()) return false; | 
|  | return VectorList.Count == 3 && VectorList.LaneIndex <= 3; | 
|  | } | 
|  |  | 
|  | bool isVecListThreeQWordIndexed() const { | 
|  | if (!isDoubleSpacedVectorIndexed()) return false; | 
|  | return VectorList.Count == 3 && VectorList.LaneIndex <= 1; | 
|  | } | 
|  |  | 
|  | bool isVecListThreeQHWordIndexed() const { | 
|  | if (!isDoubleSpacedVectorIndexed()) return false; | 
|  | return VectorList.Count == 3 && VectorList.LaneIndex <= 3; | 
|  | } | 
|  |  | 
|  | bool isVecListThreeDWordIndexed() const { | 
|  | if (!isSingleSpacedVectorIndexed()) return false; | 
|  | return VectorList.Count == 3 && VectorList.LaneIndex <= 1; | 
|  | } | 
|  |  | 
|  | bool isVecListFourDByteIndexed() const { | 
|  | if (!isSingleSpacedVectorIndexed()) return false; | 
|  | return VectorList.Count == 4 && VectorList.LaneIndex <= 7; | 
|  | } | 
|  |  | 
|  | bool isVecListFourDHWordIndexed() const { | 
|  | if (!isSingleSpacedVectorIndexed()) return false; | 
|  | return VectorList.Count == 4 && VectorList.LaneIndex <= 3; | 
|  | } | 
|  |  | 
|  | bool isVecListFourQWordIndexed() const { | 
|  | if (!isDoubleSpacedVectorIndexed()) return false; | 
|  | return VectorList.Count == 4 && VectorList.LaneIndex <= 1; | 
|  | } | 
|  |  | 
|  | bool isVecListFourQHWordIndexed() const { | 
|  | if (!isDoubleSpacedVectorIndexed()) return false; | 
|  | return VectorList.Count == 4 && VectorList.LaneIndex <= 3; | 
|  | } | 
|  |  | 
|  | bool isVecListFourDWordIndexed() const { | 
|  | if (!isSingleSpacedVectorIndexed()) return false; | 
|  | return VectorList.Count == 4 && VectorList.LaneIndex <= 1; | 
|  | } | 
|  |  | 
|  | bool isVectorIndex8() const { | 
|  | if (Kind != k_VectorIndex) return false; | 
|  | return VectorIndex.Val < 8; | 
|  | } | 
|  |  | 
|  | bool isVectorIndex16() const { | 
|  | if (Kind != k_VectorIndex) return false; | 
|  | return VectorIndex.Val < 4; | 
|  | } | 
|  |  | 
|  | bool isVectorIndex32() const { | 
|  | if (Kind != k_VectorIndex) return false; | 
|  | return VectorIndex.Val < 2; | 
|  | } | 
|  | bool isVectorIndex64() const { | 
|  | if (Kind != k_VectorIndex) return false; | 
|  | return VectorIndex.Val < 1; | 
|  | } | 
|  |  | 
|  | bool isNEONi8splat() const { | 
|  | if (!isImm()) return false; | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); | 
|  | // Must be a constant. | 
|  | if (!CE) return false; | 
|  | int64_t Value = CE->getValue(); | 
|  | // i8 value splatted across 8 bytes. The immediate is just the 8 byte | 
|  | // value. | 
|  | return Value >= 0 && Value < 256; | 
|  | } | 
|  |  | 
|  | bool isNEONi16splat() const { | 
|  | if (isNEONByteReplicate(2)) | 
|  | return false; // Leave that for bytes replication and forbid by default. | 
|  | if (!isImm()) | 
|  | return false; | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); | 
|  | // Must be a constant. | 
|  | if (!CE) return false; | 
|  | unsigned Value = CE->getValue(); | 
|  | return ARM_AM::isNEONi16splat(Value); | 
|  | } | 
|  |  | 
|  | bool isNEONi16splatNot() const { | 
|  | if (!isImm()) | 
|  | return false; | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); | 
|  | // Must be a constant. | 
|  | if (!CE) return false; | 
|  | unsigned Value = CE->getValue(); | 
|  | return ARM_AM::isNEONi16splat(~Value & 0xffff); | 
|  | } | 
|  |  | 
|  | bool isNEONi32splat() const { | 
|  | if (isNEONByteReplicate(4)) | 
|  | return false; // Leave that for bytes replication and forbid by default. | 
|  | if (!isImm()) | 
|  | return false; | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); | 
|  | // Must be a constant. | 
|  | if (!CE) return false; | 
|  | unsigned Value = CE->getValue(); | 
|  | return ARM_AM::isNEONi32splat(Value); | 
|  | } | 
|  |  | 
|  | bool isNEONi32splatNot() const { | 
|  | if (!isImm()) | 
|  | return false; | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); | 
|  | // Must be a constant. | 
|  | if (!CE) return false; | 
|  | unsigned Value = CE->getValue(); | 
|  | return ARM_AM::isNEONi32splat(~Value); | 
|  | } | 
|  |  | 
|  | bool isNEONByteReplicate(unsigned NumBytes) const { | 
|  | if (!isImm()) | 
|  | return false; | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); | 
|  | // Must be a constant. | 
|  | if (!CE) | 
|  | return false; | 
|  | int64_t Value = CE->getValue(); | 
|  | if (!Value) | 
|  | return false; // Don't bother with zero. | 
|  |  | 
|  | unsigned char B = Value & 0xff; | 
|  | for (unsigned i = 1; i < NumBytes; ++i) { | 
|  | Value >>= 8; | 
|  | if ((Value & 0xff) != B) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool isNEONi16ByteReplicate() const { return isNEONByteReplicate(2); } | 
|  | bool isNEONi32ByteReplicate() const { return isNEONByteReplicate(4); } | 
|  |  | 
|  | static bool isValidNEONi32vmovImm(int64_t Value) { | 
|  | // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X, | 
|  | // for VMOV/VMVN only, 00Xf or 0Xff are also accepted. | 
|  | return ((Value & 0xffffffffffffff00) == 0) || | 
|  | ((Value & 0xffffffffffff00ff) == 0) || | 
|  | ((Value & 0xffffffffff00ffff) == 0) || | 
|  | ((Value & 0xffffffff00ffffff) == 0) || | 
|  | ((Value & 0xffffffffffff00ff) == 0xff) || | 
|  | ((Value & 0xffffffffff00ffff) == 0xffff); | 
|  | } | 
|  |  | 
|  | bool isNEONi32vmov() const { | 
|  | if (isNEONByteReplicate(4)) | 
|  | return false; // Let it to be classified as byte-replicate case. | 
|  | if (!isImm()) | 
|  | return false; | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); | 
|  | // Must be a constant. | 
|  | if (!CE) | 
|  | return false; | 
|  | return isValidNEONi32vmovImm(CE->getValue()); | 
|  | } | 
|  |  | 
|  | bool isNEONi32vmovNeg() const { | 
|  | if (!isImm()) return false; | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); | 
|  | // Must be a constant. | 
|  | if (!CE) return false; | 
|  | return isValidNEONi32vmovImm(~CE->getValue()); | 
|  | } | 
|  |  | 
|  | bool isNEONi64splat() const { | 
|  | if (!isImm()) return false; | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); | 
|  | // Must be a constant. | 
|  | if (!CE) return false; | 
|  | uint64_t Value = CE->getValue(); | 
|  | // i64 value with each byte being either 0 or 0xff. | 
|  | for (unsigned i = 0; i < 8; ++i, Value >>= 8) | 
|  | if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | template<int64_t Angle, int64_t Remainder> | 
|  | bool isComplexRotation() const { | 
|  | if (!isImm()) return false; | 
|  |  | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); | 
|  | if (!CE) return false; | 
|  | uint64_t Value = CE->getValue(); | 
|  |  | 
|  | return (Value % Angle == Remainder && Value <= 270); | 
|  | } | 
|  |  | 
|  | void addExpr(MCInst &Inst, const MCExpr *Expr) const { | 
|  | // Add as immediates when possible.  Null MCExpr = 0. | 
|  | if (!Expr) | 
|  | Inst.addOperand(MCOperand::createImm(0)); | 
|  | else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr)) | 
|  | Inst.addOperand(MCOperand::createImm(CE->getValue())); | 
|  | else | 
|  | Inst.addOperand(MCOperand::createExpr(Expr)); | 
|  | } | 
|  |  | 
|  | void addARMBranchTargetOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 1 && "Invalid number of operands!"); | 
|  | addExpr(Inst, getImm()); | 
|  | } | 
|  |  | 
|  | void addThumbBranchTargetOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 1 && "Invalid number of operands!"); | 
|  | addExpr(Inst, getImm()); | 
|  | } | 
|  |  | 
|  | void addCondCodeOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 2 && "Invalid number of operands!"); | 
|  | Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); | 
|  | unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR; | 
|  | Inst.addOperand(MCOperand::createReg(RegNum)); | 
|  | } | 
|  |  | 
|  | void addCoprocNumOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 1 && "Invalid number of operands!"); | 
|  | Inst.addOperand(MCOperand::createImm(getCoproc())); | 
|  | } | 
|  |  | 
|  | void addCoprocRegOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 1 && "Invalid number of operands!"); | 
|  | Inst.addOperand(MCOperand::createImm(getCoproc())); | 
|  | } | 
|  |  | 
|  | void addCoprocOptionOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 1 && "Invalid number of operands!"); | 
|  | Inst.addOperand(MCOperand::createImm(CoprocOption.Val)); | 
|  | } | 
|  |  | 
|  | void addITMaskOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 1 && "Invalid number of operands!"); | 
|  | Inst.addOperand(MCOperand::createImm(ITMask.Mask)); | 
|  | } | 
|  |  | 
|  | void addITCondCodeOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 1 && "Invalid number of operands!"); | 
|  | Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); | 
|  | } | 
|  |  | 
|  | void addCCOutOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 1 && "Invalid number of operands!"); | 
|  | Inst.addOperand(MCOperand::createReg(getReg())); | 
|  | } | 
|  |  | 
|  | void addRegOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 1 && "Invalid number of operands!"); | 
|  | Inst.addOperand(MCOperand::createReg(getReg())); | 
|  | } | 
|  |  | 
|  | void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 3 && "Invalid number of operands!"); | 
|  | assert(isRegShiftedReg() && | 
|  | "addRegShiftedRegOperands() on non-RegShiftedReg!"); | 
|  | Inst.addOperand(MCOperand::createReg(RegShiftedReg.SrcReg)); | 
|  | Inst.addOperand(MCOperand::createReg(RegShiftedReg.ShiftReg)); | 
|  | Inst.addOperand(MCOperand::createImm( | 
|  | ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm))); | 
|  | } | 
|  |  | 
|  | void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 2 && "Invalid number of operands!"); | 
|  | assert(isRegShiftedImm() && | 
|  | "addRegShiftedImmOperands() on non-RegShiftedImm!"); | 
|  | Inst.addOperand(MCOperand::createReg(RegShiftedImm.SrcReg)); | 
|  | // Shift of #32 is encoded as 0 where permitted | 
|  | unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm); | 
|  | Inst.addOperand(MCOperand::createImm( | 
|  | ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm))); | 
|  | } | 
|  |  | 
|  | void addShifterImmOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 1 && "Invalid number of operands!"); | 
|  | Inst.addOperand(MCOperand::createImm((ShifterImm.isASR << 5) | | 
|  | ShifterImm.Imm)); | 
|  | } | 
|  |  | 
|  | void addRegListOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 1 && "Invalid number of operands!"); | 
|  | const SmallVectorImpl<unsigned> &RegList = getRegList(); | 
|  | for (SmallVectorImpl<unsigned>::const_iterator | 
|  | I = RegList.begin(), E = RegList.end(); I != E; ++I) | 
|  | Inst.addOperand(MCOperand::createReg(*I)); | 
|  | } | 
|  |  | 
|  | void addDPRRegListOperands(MCInst &Inst, unsigned N) const { | 
|  | addRegListOperands(Inst, N); | 
|  | } | 
|  |  | 
|  | void addSPRRegListOperands(MCInst &Inst, unsigned N) const { | 
|  | addRegListOperands(Inst, N); | 
|  | } | 
|  |  | 
|  | void addRotImmOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 1 && "Invalid number of operands!"); | 
|  | // Encoded as val>>3. The printer handles display as 8, 16, 24. | 
|  | Inst.addOperand(MCOperand::createImm(RotImm.Imm >> 3)); | 
|  | } | 
|  |  | 
|  | void addModImmOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 1 && "Invalid number of operands!"); | 
|  |  | 
|  | // Support for fixups (MCFixup) | 
|  | if (isImm()) | 
|  | return addImmOperands(Inst, N); | 
|  |  | 
|  | Inst.addOperand(MCOperand::createImm(ModImm.Bits | (ModImm.Rot << 7))); | 
|  | } | 
|  |  | 
|  | void addModImmNotOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 1 && "Invalid number of operands!"); | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); | 
|  | uint32_t Enc = ARM_AM::getSOImmVal(~CE->getValue()); | 
|  | Inst.addOperand(MCOperand::createImm(Enc)); | 
|  | } | 
|  |  | 
|  | void addModImmNegOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 1 && "Invalid number of operands!"); | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); | 
|  | uint32_t Enc = ARM_AM::getSOImmVal(-CE->getValue()); | 
|  | Inst.addOperand(MCOperand::createImm(Enc)); | 
|  | } | 
|  |  | 
|  | void addThumbModImmNeg8_255Operands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 1 && "Invalid number of operands!"); | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); | 
|  | uint32_t Val = -CE->getValue(); | 
|  | Inst.addOperand(MCOperand::createImm(Val)); | 
|  | } | 
|  |  | 
|  | void addThumbModImmNeg1_7Operands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 1 && "Invalid number of operands!"); | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); | 
|  | uint32_t Val = -CE->getValue(); | 
|  | Inst.addOperand(MCOperand::createImm(Val)); | 
|  | } | 
|  |  | 
|  | void addBitfieldOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 1 && "Invalid number of operands!"); | 
|  | // Munge the lsb/width into a bitfield mask. | 
|  | unsigned lsb = Bitfield.LSB; | 
|  | unsigned width = Bitfield.Width; | 
|  | // Make a 32-bit mask w/ the referenced bits clear and all other bits set. | 
|  | uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >> | 
|  | (32 - (lsb + width))); | 
|  | Inst.addOperand(MCOperand::createImm(Mask)); | 
|  | } | 
|  |  | 
|  | void addImmOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 1 && "Invalid number of operands!"); | 
|  | addExpr(Inst, getImm()); | 
|  | } | 
|  |  | 
|  | void addFBits16Operands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 1 && "Invalid number of operands!"); | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); | 
|  | Inst.addOperand(MCOperand::createImm(16 - CE->getValue())); | 
|  | } | 
|  |  | 
|  | void addFBits32Operands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 1 && "Invalid number of operands!"); | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); | 
|  | Inst.addOperand(MCOperand::createImm(32 - CE->getValue())); | 
|  | } | 
|  |  | 
|  | void addFPImmOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 1 && "Invalid number of operands!"); | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); | 
|  | int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); | 
|  | Inst.addOperand(MCOperand::createImm(Val)); | 
|  | } | 
|  |  | 
|  | void addImm8s4Operands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 1 && "Invalid number of operands!"); | 
|  | // FIXME: We really want to scale the value here, but the LDRD/STRD | 
|  | // instruction don't encode operands that way yet. | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); | 
|  | Inst.addOperand(MCOperand::createImm(CE->getValue())); | 
|  | } | 
|  |  | 
|  | void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 1 && "Invalid number of operands!"); | 
|  | // The immediate is scaled by four in the encoding and is stored | 
|  | // in the MCInst as such. Lop off the low two bits here. | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); | 
|  | Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); | 
|  | } | 
|  |  | 
|  | void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 1 && "Invalid number of operands!"); | 
|  | // The immediate is scaled by four in the encoding and is stored | 
|  | // in the MCInst as such. Lop off the low two bits here. | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); | 
|  | Inst.addOperand(MCOperand::createImm(-(CE->getValue() / 4))); | 
|  | } | 
|  |  | 
|  | void addImm0_508s4Operands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 1 && "Invalid number of operands!"); | 
|  | // The immediate is scaled by four in the encoding and is stored | 
|  | // in the MCInst as such. Lop off the low two bits here. | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); | 
|  | Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); | 
|  | } | 
|  |  | 
|  | void addImm1_16Operands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 1 && "Invalid number of operands!"); | 
|  | // The constant encodes as the immediate-1, and we store in the instruction | 
|  | // the bits as encoded, so subtract off one here. | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); | 
|  | Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); | 
|  | } | 
|  |  | 
|  | void addImm1_32Operands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 1 && "Invalid number of operands!"); | 
|  | // The constant encodes as the immediate-1, and we store in the instruction | 
|  | // the bits as encoded, so subtract off one here. | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); | 
|  | Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); | 
|  | } | 
|  |  | 
|  | void addImmThumbSROperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 1 && "Invalid number of operands!"); | 
|  | // The constant encodes as the immediate, except for 32, which encodes as | 
|  | // zero. | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); | 
|  | unsigned Imm = CE->getValue(); | 
|  | Inst.addOperand(MCOperand::createImm((Imm == 32 ? 0 : Imm))); | 
|  | } | 
|  |  | 
|  | void addPKHASRImmOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 1 && "Invalid number of operands!"); | 
|  | // An ASR value of 32 encodes as 0, so that's how we want to add it to | 
|  | // the instruction as well. | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); | 
|  | int Val = CE->getValue(); | 
|  | Inst.addOperand(MCOperand::createImm(Val == 32 ? 0 : Val)); | 
|  | } | 
|  |  | 
|  | void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 1 && "Invalid number of operands!"); | 
|  | // The operand is actually a t2_so_imm, but we have its bitwise | 
|  | // negation in the assembly source, so twiddle it here. | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); | 
|  | Inst.addOperand(MCOperand::createImm(~(uint32_t)CE->getValue())); | 
|  | } | 
|  |  | 
|  | void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 1 && "Invalid number of operands!"); | 
|  | // The operand is actually a t2_so_imm, but we have its | 
|  | // negation in the assembly source, so twiddle it here. | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); | 
|  | Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue())); | 
|  | } | 
|  |  | 
|  | void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 1 && "Invalid number of operands!"); | 
|  | // The operand is actually an imm0_4095, but we have its | 
|  | // negation in the assembly source, so twiddle it here. | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); | 
|  | Inst.addOperand(MCOperand::createImm(-CE->getValue())); | 
|  | } | 
|  |  | 
|  | void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const { | 
|  | if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) { | 
|  | Inst.addOperand(MCOperand::createImm(CE->getValue() >> 2)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val); | 
|  | assert(SR && "Unknown value type!"); | 
|  | Inst.addOperand(MCOperand::createExpr(SR)); | 
|  | } | 
|  |  | 
|  | void addThumbMemPCOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 1 && "Invalid number of operands!"); | 
|  | if (isImm()) { | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); | 
|  | if (CE) { | 
|  | Inst.addOperand(MCOperand::createImm(CE->getValue())); | 
|  | return; | 
|  | } | 
|  |  | 
|  | const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val); | 
|  |  | 
|  | assert(SR && "Unknown value type!"); | 
|  | Inst.addOperand(MCOperand::createExpr(SR)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | assert(isMem()  && "Unknown value type!"); | 
|  | assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!"); | 
|  | Inst.addOperand(MCOperand::createImm(Memory.OffsetImm->getValue())); | 
|  | } | 
|  |  | 
|  | void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 1 && "Invalid number of operands!"); | 
|  | Inst.addOperand(MCOperand::createImm(unsigned(getMemBarrierOpt()))); | 
|  | } | 
|  |  | 
|  | void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 1 && "Invalid number of operands!"); | 
|  | Inst.addOperand(MCOperand::createImm(unsigned(getInstSyncBarrierOpt()))); | 
|  | } | 
|  |  | 
|  | void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 1 && "Invalid number of operands!"); | 
|  | Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); | 
|  | } | 
|  |  | 
|  | void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 1 && "Invalid number of operands!"); | 
|  | int32_t Imm = Memory.OffsetImm->getValue(); | 
|  | Inst.addOperand(MCOperand::createImm(Imm)); | 
|  | } | 
|  |  | 
|  | void addAdrLabelOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 1 && "Invalid number of operands!"); | 
|  | assert(isImm() && "Not an immediate!"); | 
|  |  | 
|  | // If we have an immediate that's not a constant, treat it as a label | 
|  | // reference needing a fixup. | 
|  | if (!isa<MCConstantExpr>(getImm())) { | 
|  | Inst.addOperand(MCOperand::createExpr(getImm())); | 
|  | return; | 
|  | } | 
|  |  | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); | 
|  | int Val = CE->getValue(); | 
|  | Inst.addOperand(MCOperand::createImm(Val)); | 
|  | } | 
|  |  | 
|  | void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 2 && "Invalid number of operands!"); | 
|  | Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); | 
|  | Inst.addOperand(MCOperand::createImm(Memory.Alignment)); | 
|  | } | 
|  |  | 
|  | void addDupAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { | 
|  | addAlignedMemoryOperands(Inst, N); | 
|  | } | 
|  |  | 
|  | void addAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { | 
|  | addAlignedMemoryOperands(Inst, N); | 
|  | } | 
|  |  | 
|  | void addAlignedMemory16Operands(MCInst &Inst, unsigned N) const { | 
|  | addAlignedMemoryOperands(Inst, N); | 
|  | } | 
|  |  | 
|  | void addDupAlignedMemory16Operands(MCInst &Inst, unsigned N) const { | 
|  | addAlignedMemoryOperands(Inst, N); | 
|  | } | 
|  |  | 
|  | void addAlignedMemory32Operands(MCInst &Inst, unsigned N) const { | 
|  | addAlignedMemoryOperands(Inst, N); | 
|  | } | 
|  |  | 
|  | void addDupAlignedMemory32Operands(MCInst &Inst, unsigned N) const { | 
|  | addAlignedMemoryOperands(Inst, N); | 
|  | } | 
|  |  | 
|  | void addAlignedMemory64Operands(MCInst &Inst, unsigned N) const { | 
|  | addAlignedMemoryOperands(Inst, N); | 
|  | } | 
|  |  | 
|  | void addDupAlignedMemory64Operands(MCInst &Inst, unsigned N) const { | 
|  | addAlignedMemoryOperands(Inst, N); | 
|  | } | 
|  |  | 
|  | void addAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { | 
|  | addAlignedMemoryOperands(Inst, N); | 
|  | } | 
|  |  | 
|  | void addDupAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { | 
|  | addAlignedMemoryOperands(Inst, N); | 
|  | } | 
|  |  | 
|  | void addAlignedMemory64or128or256Operands(MCInst &Inst, unsigned N) const { | 
|  | addAlignedMemoryOperands(Inst, N); | 
|  | } | 
|  |  | 
|  | void addAddrMode2Operands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 3 && "Invalid number of operands!"); | 
|  | int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; | 
|  | if (!Memory.OffsetRegNum) { | 
|  | ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; | 
|  | // Special case for #-0 | 
|  | if (Val == std::numeric_limits<int32_t>::min()) Val = 0; | 
|  | if (Val < 0) Val = -Val; | 
|  | Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); | 
|  | } else { | 
|  | // For register offset, we encode the shift type and negation flag | 
|  | // here. | 
|  | Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, | 
|  | Memory.ShiftImm, Memory.ShiftType); | 
|  | } | 
|  | Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); | 
|  | Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); | 
|  | Inst.addOperand(MCOperand::createImm(Val)); | 
|  | } | 
|  |  | 
|  | void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 2 && "Invalid number of operands!"); | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); | 
|  | assert(CE && "non-constant AM2OffsetImm operand!"); | 
|  | int32_t Val = CE->getValue(); | 
|  | ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; | 
|  | // Special case for #-0 | 
|  | if (Val == std::numeric_limits<int32_t>::min()) Val = 0; | 
|  | if (Val < 0) Val = -Val; | 
|  | Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); | 
|  | Inst.addOperand(MCOperand::createReg(0)); | 
|  | Inst.addOperand(MCOperand::createImm(Val)); | 
|  | } | 
|  |  | 
|  | void addAddrMode3Operands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 3 && "Invalid number of operands!"); | 
|  | // If we have an immediate that's not a constant, treat it as a label | 
|  | // reference needing a fixup. If it is a constant, it's something else | 
|  | // and we reject it. | 
|  | if (isImm()) { | 
|  | Inst.addOperand(MCOperand::createExpr(getImm())); | 
|  | Inst.addOperand(MCOperand::createReg(0)); | 
|  | Inst.addOperand(MCOperand::createImm(0)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; | 
|  | if (!Memory.OffsetRegNum) { | 
|  | ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; | 
|  | // Special case for #-0 | 
|  | if (Val == std::numeric_limits<int32_t>::min()) Val = 0; | 
|  | if (Val < 0) Val = -Val; | 
|  | Val = ARM_AM::getAM3Opc(AddSub, Val); | 
|  | } else { | 
|  | // For register offset, we encode the shift type and negation flag | 
|  | // here. | 
|  | Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0); | 
|  | } | 
|  | Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); | 
|  | Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); | 
|  | Inst.addOperand(MCOperand::createImm(Val)); | 
|  | } | 
|  |  | 
|  | void addAM3OffsetOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 2 && "Invalid number of operands!"); | 
|  | if (Kind == k_PostIndexRegister) { | 
|  | int32_t Val = | 
|  | ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0); | 
|  | Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); | 
|  | Inst.addOperand(MCOperand::createImm(Val)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Constant offset. | 
|  | const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm()); | 
|  | int32_t Val = CE->getValue(); | 
|  | ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; | 
|  | // Special case for #-0 | 
|  | if (Val == std::numeric_limits<int32_t>::min()) Val = 0; | 
|  | if (Val < 0) Val = -Val; | 
|  | Val = ARM_AM::getAM3Opc(AddSub, Val); | 
|  | Inst.addOperand(MCOperand::createReg(0)); | 
|  | Inst.addOperand(MCOperand::createImm(Val)); | 
|  | } | 
|  |  | 
|  | void addAddrMode5Operands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 2 && "Invalid number of operands!"); | 
|  | // If we have an immediate that's not a constant, treat it as a label | 
|  | // reference needing a fixup. If it is a constant, it's something else | 
|  | // and we reject it. | 
|  | if (isImm()) { | 
|  | Inst.addOperand(MCOperand::createExpr(getImm())); | 
|  | Inst.addOperand(MCOperand::createImm(0)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // The lower two bits are always zero and as such are not encoded. | 
|  | int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; | 
|  | ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; | 
|  | // Special case for #-0 | 
|  | if (Val == std::numeric_limits<int32_t>::min()) Val = 0; | 
|  | if (Val < 0) Val = -Val; | 
|  | Val = ARM_AM::getAM5Opc(AddSub, Val); | 
|  | Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); | 
|  | Inst.addOperand(MCOperand::createImm(Val)); | 
|  | } | 
|  |  | 
|  | void addAddrMode5FP16Operands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 2 && "Invalid number of operands!"); | 
|  | // If we have an immediate that's not a constant, treat it as a label | 
|  | // reference needing a fixup. If it is a constant, it's something else | 
|  | // and we reject it. | 
|  | if (isImm()) { | 
|  | Inst.addOperand(MCOperand::createExpr(getImm())); | 
|  | Inst.addOperand(MCOperand::createImm(0)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // The lower bit is always zero and as such is not encoded. | 
|  | int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 2 : 0; | 
|  | ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; | 
|  | // Special case for #-0 | 
|  | if (Val == std::numeric_limits<int32_t>::min()) Val = 0; | 
|  | if (Val < 0) Val = -Val; | 
|  | Val = ARM_AM::getAM5FP16Opc(AddSub, Val); | 
|  | Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); | 
|  | Inst.addOperand(MCOperand::createImm(Val)); | 
|  | } | 
|  |  | 
|  | void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 2 && "Invalid number of operands!"); | 
|  | // If we have an immediate that's not a constant, treat it as a label | 
|  | // reference needing a fixup. If it is a constant, it's something else | 
|  | // and we reject it. | 
|  | if (isImm()) { | 
|  | Inst.addOperand(MCOperand::createExpr(getImm())); | 
|  | Inst.addOperand(MCOperand::createImm(0)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; | 
|  | Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); | 
|  | Inst.addOperand(MCOperand::createImm(Val)); | 
|  | } | 
|  |  | 
|  | void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 2 && "Invalid number of operands!"); | 
|  | // The lower two bits are always zero and as such are not encoded. | 
|  | int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; | 
|  | Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); | 
|  | Inst.addOperand(MCOperand::createImm(Val)); | 
|  | } | 
|  |  | 
|  | void addMemImm8OffsetOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 2 && "Invalid number of operands!"); | 
|  | int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; | 
|  | Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); | 
|  | Inst.addOperand(MCOperand::createImm(Val)); | 
|  | } | 
|  |  | 
|  | void addMemPosImm8OffsetOperands(MCInst &Inst, unsigned N) const { | 
|  | addMemImm8OffsetOperands(Inst, N); | 
|  | } | 
|  |  | 
|  | void addMemNegImm8OffsetOperands(MCInst &Inst, unsigned N) const { | 
|  | addMemImm8OffsetOperands(Inst, N); | 
|  | } | 
|  |  | 
|  | void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 2 && "Invalid number of operands!"); | 
|  | // If this is an immediate, it's a label reference. | 
|  | if (isImm()) { | 
|  | addExpr(Inst, getImm()); | 
|  | Inst.addOperand(MCOperand::createImm(0)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Otherwise, it's a normal memory reg+offset. | 
|  | int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; | 
|  | Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); | 
|  | Inst.addOperand(MCOperand::createImm(Val)); | 
|  | } | 
|  |  | 
|  | void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 2 && "Invalid number of operands!"); | 
|  | // If this is an immediate, it's a label reference. | 
|  | if (isImm()) { | 
|  | addExpr(Inst, getImm()); | 
|  | Inst.addOperand(MCOperand::createImm(0)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Otherwise, it's a normal memory reg+offset. | 
|  | int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; | 
|  | Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); | 
|  | Inst.addOperand(MCOperand::createImm(Val)); | 
|  | } | 
|  |  | 
|  | void addConstPoolAsmImmOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 1 && "Invalid number of operands!"); | 
|  | // This is container for the immediate that we will create the constant | 
|  | // pool from | 
|  | addExpr(Inst, getConstantPoolImm()); | 
|  | return; | 
|  | } | 
|  |  | 
|  | void addMemTBBOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 2 && "Invalid number of operands!"); | 
|  | Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); | 
|  | Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); | 
|  | } | 
|  |  | 
|  | void addMemTBHOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 2 && "Invalid number of operands!"); | 
|  | Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); | 
|  | Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); | 
|  | } | 
|  |  | 
|  | void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 3 && "Invalid number of operands!"); | 
|  | unsigned Val = | 
|  | ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, | 
|  | Memory.ShiftImm, Memory.ShiftType); | 
|  | Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); | 
|  | Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); | 
|  | Inst.addOperand(MCOperand::createImm(Val)); | 
|  | } | 
|  |  | 
|  | void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 3 && "Invalid number of operands!"); | 
|  | Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); | 
|  | Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); | 
|  | Inst.addOperand(MCOperand::createImm(Memory.ShiftImm)); | 
|  | } | 
|  |  | 
|  | void addMemThumbRROperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 2 && "Invalid number of operands!"); | 
|  | Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); | 
|  | Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); | 
|  | } | 
|  |  | 
|  | void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 2 && "Invalid number of operands!"); | 
|  | int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; | 
|  | Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); | 
|  | Inst.addOperand(MCOperand::createImm(Val)); | 
|  | } | 
|  |  | 
|  | void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 2 && "Invalid number of operands!"); | 
|  | int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 2) : 0; | 
|  | Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); | 
|  | Inst.addOperand(MCOperand::createImm(Val)); | 
|  | } | 
|  |  | 
|  | void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 2 && "Invalid number of operands!"); | 
|  | int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue()) : 0; | 
|  | Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); | 
|  | Inst.addOperand(MCOperand::createImm(Val)); | 
|  | } | 
|  |  | 
|  | void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 2 && "Invalid number of operands!"); | 
|  | int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; | 
|  | Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); | 
|  | Inst.addOperand(MCOperand::createImm(Val)); | 
|  | } | 
|  |  | 
|  | void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 1 && "Invalid number of operands!"); | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); | 
|  | assert(CE && "non-constant post-idx-imm8 operand!"); | 
|  | int Imm = CE->getValue(); | 
|  | bool isAdd = Imm >= 0; | 
|  | if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0; | 
|  | Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8; | 
|  | Inst.addOperand(MCOperand::createImm(Imm)); | 
|  | } | 
|  |  | 
|  | void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 1 && "Invalid number of operands!"); | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); | 
|  | assert(CE && "non-constant post-idx-imm8s4 operand!"); | 
|  | int Imm = CE->getValue(); | 
|  | bool isAdd = Imm >= 0; | 
|  | if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0; | 
|  | // Immediate is scaled by 4. | 
|  | Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8; | 
|  | Inst.addOperand(MCOperand::createImm(Imm)); | 
|  | } | 
|  |  | 
|  | void addPostIdxRegOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 2 && "Invalid number of operands!"); | 
|  | Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); | 
|  | Inst.addOperand(MCOperand::createImm(PostIdxReg.isAdd)); | 
|  | } | 
|  |  | 
|  | void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 2 && "Invalid number of operands!"); | 
|  | Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); | 
|  | // The sign, shift type, and shift amount are encoded in a single operand | 
|  | // using the AM2 encoding helpers. | 
|  | ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub; | 
|  | unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm, | 
|  | PostIdxReg.ShiftTy); | 
|  | Inst.addOperand(MCOperand::createImm(Imm)); | 
|  | } | 
|  |  | 
|  | void addMSRMaskOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 1 && "Invalid number of operands!"); | 
|  | Inst.addOperand(MCOperand::createImm(unsigned(getMSRMask()))); | 
|  | } | 
|  |  | 
|  | void addBankedRegOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 1 && "Invalid number of operands!"); | 
|  | Inst.addOperand(MCOperand::createImm(unsigned(getBankedReg()))); | 
|  | } | 
|  |  | 
|  | void addProcIFlagsOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 1 && "Invalid number of operands!"); | 
|  | Inst.addOperand(MCOperand::createImm(unsigned(getProcIFlags()))); | 
|  | } | 
|  |  | 
|  | void addVecListOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 1 && "Invalid number of operands!"); | 
|  | Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); | 
|  | } | 
|  |  | 
|  | void addVecListIndexedOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 2 && "Invalid number of operands!"); | 
|  | Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); | 
|  | Inst.addOperand(MCOperand::createImm(VectorList.LaneIndex)); | 
|  | } | 
|  |  | 
|  | void addVectorIndex8Operands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 1 && "Invalid number of operands!"); | 
|  | Inst.addOperand(MCOperand::createImm(getVectorIndex())); | 
|  | } | 
|  |  | 
|  | void addVectorIndex16Operands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 1 && "Invalid number of operands!"); | 
|  | Inst.addOperand(MCOperand::createImm(getVectorIndex())); | 
|  | } | 
|  |  | 
|  | void addVectorIndex32Operands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 1 && "Invalid number of operands!"); | 
|  | Inst.addOperand(MCOperand::createImm(getVectorIndex())); | 
|  | } | 
|  |  | 
|  | void addVectorIndex64Operands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 1 && "Invalid number of operands!"); | 
|  | Inst.addOperand(MCOperand::createImm(getVectorIndex())); | 
|  | } | 
|  |  | 
|  | void addNEONi8splatOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 1 && "Invalid number of operands!"); | 
|  | // The immediate encodes the type of constant as well as the value. | 
|  | // Mask in that this is an i8 splat. | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); | 
|  | Inst.addOperand(MCOperand::createImm(CE->getValue() | 0xe00)); | 
|  | } | 
|  |  | 
|  | void addNEONi16splatOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 1 && "Invalid number of operands!"); | 
|  | // The immediate encodes the type of constant as well as the value. | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); | 
|  | unsigned Value = CE->getValue(); | 
|  | Value = ARM_AM::encodeNEONi16splat(Value); | 
|  | Inst.addOperand(MCOperand::createImm(Value)); | 
|  | } | 
|  |  | 
|  | void addNEONi16splatNotOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 1 && "Invalid number of operands!"); | 
|  | // The immediate encodes the type of constant as well as the value. | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); | 
|  | unsigned Value = CE->getValue(); | 
|  | Value = ARM_AM::encodeNEONi16splat(~Value & 0xffff); | 
|  | Inst.addOperand(MCOperand::createImm(Value)); | 
|  | } | 
|  |  | 
|  | void addNEONi32splatOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 1 && "Invalid number of operands!"); | 
|  | // The immediate encodes the type of constant as well as the value. | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); | 
|  | unsigned Value = CE->getValue(); | 
|  | Value = ARM_AM::encodeNEONi32splat(Value); | 
|  | Inst.addOperand(MCOperand::createImm(Value)); | 
|  | } | 
|  |  | 
|  | void addNEONi32splatNotOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 1 && "Invalid number of operands!"); | 
|  | // The immediate encodes the type of constant as well as the value. | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); | 
|  | unsigned Value = CE->getValue(); | 
|  | Value = ARM_AM::encodeNEONi32splat(~Value); | 
|  | Inst.addOperand(MCOperand::createImm(Value)); | 
|  | } | 
|  |  | 
|  | void addNEONinvByteReplicateOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 1 && "Invalid number of operands!"); | 
|  | // The immediate encodes the type of constant as well as the value. | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); | 
|  | unsigned Value = CE->getValue(); | 
|  | assert((Inst.getOpcode() == ARM::VMOVv8i8 || | 
|  | Inst.getOpcode() == ARM::VMOVv16i8) && | 
|  | "All vmvn instructions that wants to replicate non-zero byte " | 
|  | "always must be replaced with VMOVv8i8 or VMOVv16i8."); | 
|  | unsigned B = ((~Value) & 0xff); | 
|  | B |= 0xe00; // cmode = 0b1110 | 
|  | Inst.addOperand(MCOperand::createImm(B)); | 
|  | } | 
|  |  | 
|  | void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 1 && "Invalid number of operands!"); | 
|  | // The immediate encodes the type of constant as well as the value. | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); | 
|  | unsigned Value = CE->getValue(); | 
|  | if (Value >= 256 && Value <= 0xffff) | 
|  | Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200); | 
|  | else if (Value > 0xffff && Value <= 0xffffff) | 
|  | Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400); | 
|  | else if (Value > 0xffffff) | 
|  | Value = (Value >> 24) | 0x600; | 
|  | Inst.addOperand(MCOperand::createImm(Value)); | 
|  | } | 
|  |  | 
|  | void addNEONvmovByteReplicateOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 1 && "Invalid number of operands!"); | 
|  | // The immediate encodes the type of constant as well as the value. | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); | 
|  | unsigned Value = CE->getValue(); | 
|  | assert((Inst.getOpcode() == ARM::VMOVv8i8 || | 
|  | Inst.getOpcode() == ARM::VMOVv16i8) && | 
|  | "All instructions that wants to replicate non-zero byte " | 
|  | "always must be replaced with VMOVv8i8 or VMOVv16i8."); | 
|  | unsigned B = Value & 0xff; | 
|  | B |= 0xe00; // cmode = 0b1110 | 
|  | Inst.addOperand(MCOperand::createImm(B)); | 
|  | } | 
|  |  | 
|  | void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 1 && "Invalid number of operands!"); | 
|  | // The immediate encodes the type of constant as well as the value. | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); | 
|  | unsigned Value = ~CE->getValue(); | 
|  | if (Value >= 256 && Value <= 0xffff) | 
|  | Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200); | 
|  | else if (Value > 0xffff && Value <= 0xffffff) | 
|  | Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400); | 
|  | else if (Value > 0xffffff) | 
|  | Value = (Value >> 24) | 0x600; | 
|  | Inst.addOperand(MCOperand::createImm(Value)); | 
|  | } | 
|  |  | 
|  | void addNEONi64splatOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 1 && "Invalid number of operands!"); | 
|  | // The immediate encodes the type of constant as well as the value. | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); | 
|  | uint64_t Value = CE->getValue(); | 
|  | unsigned Imm = 0; | 
|  | for (unsigned i = 0; i < 8; ++i, Value >>= 8) { | 
|  | Imm |= (Value & 1) << i; | 
|  | } | 
|  | Inst.addOperand(MCOperand::createImm(Imm | 0x1e00)); | 
|  | } | 
|  |  | 
|  | void addComplexRotationEvenOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 1 && "Invalid number of operands!"); | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); | 
|  | Inst.addOperand(MCOperand::createImm(CE->getValue() / 90)); | 
|  | } | 
|  |  | 
|  | void addComplexRotationOddOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 1 && "Invalid number of operands!"); | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); | 
|  | Inst.addOperand(MCOperand::createImm((CE->getValue() - 90) / 180)); | 
|  | } | 
|  |  | 
|  | void print(raw_ostream &OS) const override; | 
|  |  | 
|  | static std::unique_ptr<ARMOperand> CreateITMask(unsigned Mask, SMLoc S) { | 
|  | auto Op = make_unique<ARMOperand>(k_ITCondMask); | 
|  | Op->ITMask.Mask = Mask; | 
|  | Op->StartLoc = S; | 
|  | Op->EndLoc = S; | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | static std::unique_ptr<ARMOperand> CreateCondCode(ARMCC::CondCodes CC, | 
|  | SMLoc S) { | 
|  | auto Op = make_unique<ARMOperand>(k_CondCode); | 
|  | Op->CC.Val = CC; | 
|  | Op->StartLoc = S; | 
|  | Op->EndLoc = S; | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | static std::unique_ptr<ARMOperand> CreateCoprocNum(unsigned CopVal, SMLoc S) { | 
|  | auto Op = make_unique<ARMOperand>(k_CoprocNum); | 
|  | Op->Cop.Val = CopVal; | 
|  | Op->StartLoc = S; | 
|  | Op->EndLoc = S; | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | static std::unique_ptr<ARMOperand> CreateCoprocReg(unsigned CopVal, SMLoc S) { | 
|  | auto Op = make_unique<ARMOperand>(k_CoprocReg); | 
|  | Op->Cop.Val = CopVal; | 
|  | Op->StartLoc = S; | 
|  | Op->EndLoc = S; | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | static std::unique_ptr<ARMOperand> CreateCoprocOption(unsigned Val, SMLoc S, | 
|  | SMLoc E) { | 
|  | auto Op = make_unique<ARMOperand>(k_CoprocOption); | 
|  | Op->Cop.Val = Val; | 
|  | Op->StartLoc = S; | 
|  | Op->EndLoc = E; | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | static std::unique_ptr<ARMOperand> CreateCCOut(unsigned RegNum, SMLoc S) { | 
|  | auto Op = make_unique<ARMOperand>(k_CCOut); | 
|  | Op->Reg.RegNum = RegNum; | 
|  | Op->StartLoc = S; | 
|  | Op->EndLoc = S; | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | static std::unique_ptr<ARMOperand> CreateToken(StringRef Str, SMLoc S) { | 
|  | auto Op = make_unique<ARMOperand>(k_Token); | 
|  | Op->Tok.Data = Str.data(); | 
|  | Op->Tok.Length = Str.size(); | 
|  | Op->StartLoc = S; | 
|  | Op->EndLoc = S; | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | static std::unique_ptr<ARMOperand> CreateReg(unsigned RegNum, SMLoc S, | 
|  | SMLoc E) { | 
|  | auto Op = make_unique<ARMOperand>(k_Register); | 
|  | Op->Reg.RegNum = RegNum; | 
|  | Op->StartLoc = S; | 
|  | Op->EndLoc = E; | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | static std::unique_ptr<ARMOperand> | 
|  | CreateShiftedRegister(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, | 
|  | unsigned ShiftReg, unsigned ShiftImm, SMLoc S, | 
|  | SMLoc E) { | 
|  | auto Op = make_unique<ARMOperand>(k_ShiftedRegister); | 
|  | Op->RegShiftedReg.ShiftTy = ShTy; | 
|  | Op->RegShiftedReg.SrcReg = SrcReg; | 
|  | Op->RegShiftedReg.ShiftReg = ShiftReg; | 
|  | Op->RegShiftedReg.ShiftImm = ShiftImm; | 
|  | Op->StartLoc = S; | 
|  | Op->EndLoc = E; | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | static std::unique_ptr<ARMOperand> | 
|  | CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, | 
|  | unsigned ShiftImm, SMLoc S, SMLoc E) { | 
|  | auto Op = make_unique<ARMOperand>(k_ShiftedImmediate); | 
|  | Op->RegShiftedImm.ShiftTy = ShTy; | 
|  | Op->RegShiftedImm.SrcReg = SrcReg; | 
|  | Op->RegShiftedImm.ShiftImm = ShiftImm; | 
|  | Op->StartLoc = S; | 
|  | Op->EndLoc = E; | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | static std::unique_ptr<ARMOperand> CreateShifterImm(bool isASR, unsigned Imm, | 
|  | SMLoc S, SMLoc E) { | 
|  | auto Op = make_unique<ARMOperand>(k_ShifterImmediate); | 
|  | Op->ShifterImm.isASR = isASR; | 
|  | Op->ShifterImm.Imm = Imm; | 
|  | Op->StartLoc = S; | 
|  | Op->EndLoc = E; | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | static std::unique_ptr<ARMOperand> CreateRotImm(unsigned Imm, SMLoc S, | 
|  | SMLoc E) { | 
|  | auto Op = make_unique<ARMOperand>(k_RotateImmediate); | 
|  | Op->RotImm.Imm = Imm; | 
|  | Op->StartLoc = S; | 
|  | Op->EndLoc = E; | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | static std::unique_ptr<ARMOperand> CreateModImm(unsigned Bits, unsigned Rot, | 
|  | SMLoc S, SMLoc E) { | 
|  | auto Op = make_unique<ARMOperand>(k_ModifiedImmediate); | 
|  | Op->ModImm.Bits = Bits; | 
|  | Op->ModImm.Rot = Rot; | 
|  | Op->StartLoc = S; | 
|  | Op->EndLoc = E; | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | static std::unique_ptr<ARMOperand> | 
|  | CreateConstantPoolImm(const MCExpr *Val, SMLoc S, SMLoc E) { | 
|  | auto Op = make_unique<ARMOperand>(k_ConstantPoolImmediate); | 
|  | Op->Imm.Val = Val; | 
|  | Op->StartLoc = S; | 
|  | Op->EndLoc = E; | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | static std::unique_ptr<ARMOperand> | 
|  | CreateBitfield(unsigned LSB, unsigned Width, SMLoc S, SMLoc E) { | 
|  | auto Op = make_unique<ARMOperand>(k_BitfieldDescriptor); | 
|  | Op->Bitfield.LSB = LSB; | 
|  | Op->Bitfield.Width = Width; | 
|  | Op->StartLoc = S; | 
|  | Op->EndLoc = E; | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | static std::unique_ptr<ARMOperand> | 
|  | CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, | 
|  | SMLoc StartLoc, SMLoc EndLoc) { | 
|  | assert(Regs.size() > 0 && "RegList contains no registers?"); | 
|  | KindTy Kind = k_RegisterList; | 
|  |  | 
|  | if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Regs.front().second)) | 
|  | Kind = k_DPRRegisterList; | 
|  | else if (ARMMCRegisterClasses[ARM::SPRRegClassID]. | 
|  | contains(Regs.front().second)) | 
|  | Kind = k_SPRRegisterList; | 
|  |  | 
|  | // Sort based on the register encoding values. | 
|  | array_pod_sort(Regs.begin(), Regs.end()); | 
|  |  | 
|  | auto Op = make_unique<ARMOperand>(Kind); | 
|  | for (SmallVectorImpl<std::pair<unsigned, unsigned>>::const_iterator | 
|  | I = Regs.begin(), E = Regs.end(); I != E; ++I) | 
|  | Op->Registers.push_back(I->second); | 
|  | Op->StartLoc = StartLoc; | 
|  | Op->EndLoc = EndLoc; | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | static std::unique_ptr<ARMOperand> CreateVectorList(unsigned RegNum, | 
|  | unsigned Count, | 
|  | bool isDoubleSpaced, | 
|  | SMLoc S, SMLoc E) { | 
|  | auto Op = make_unique<ARMOperand>(k_VectorList); | 
|  | Op->VectorList.RegNum = RegNum; | 
|  | Op->VectorList.Count = Count; | 
|  | Op->VectorList.isDoubleSpaced = isDoubleSpaced; | 
|  | Op->StartLoc = S; | 
|  | Op->EndLoc = E; | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | static std::unique_ptr<ARMOperand> | 
|  | CreateVectorListAllLanes(unsigned RegNum, unsigned Count, bool isDoubleSpaced, | 
|  | SMLoc S, SMLoc E) { | 
|  | auto Op = make_unique<ARMOperand>(k_VectorListAllLanes); | 
|  | Op->VectorList.RegNum = RegNum; | 
|  | Op->VectorList.Count = Count; | 
|  | Op->VectorList.isDoubleSpaced = isDoubleSpaced; | 
|  | Op->StartLoc = S; | 
|  | Op->EndLoc = E; | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | static std::unique_ptr<ARMOperand> | 
|  | CreateVectorListIndexed(unsigned RegNum, unsigned Count, unsigned Index, | 
|  | bool isDoubleSpaced, SMLoc S, SMLoc E) { | 
|  | auto Op = make_unique<ARMOperand>(k_VectorListIndexed); | 
|  | Op->VectorList.RegNum = RegNum; | 
|  | Op->VectorList.Count = Count; | 
|  | Op->VectorList.LaneIndex = Index; | 
|  | Op->VectorList.isDoubleSpaced = isDoubleSpaced; | 
|  | Op->StartLoc = S; | 
|  | Op->EndLoc = E; | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | static std::unique_ptr<ARMOperand> | 
|  | CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) { | 
|  | auto Op = make_unique<ARMOperand>(k_VectorIndex); | 
|  | Op->VectorIndex.Val = Idx; | 
|  | Op->StartLoc = S; | 
|  | Op->EndLoc = E; | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | static std::unique_ptr<ARMOperand> CreateImm(const MCExpr *Val, SMLoc S, | 
|  | SMLoc E) { | 
|  | auto Op = make_unique<ARMOperand>(k_Immediate); | 
|  | Op->Imm.Val = Val; | 
|  | Op->StartLoc = S; | 
|  | Op->EndLoc = E; | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | static std::unique_ptr<ARMOperand> | 
|  | CreateMem(unsigned BaseRegNum, const MCConstantExpr *OffsetImm, | 
|  | unsigned OffsetRegNum, ARM_AM::ShiftOpc ShiftType, | 
|  | unsigned ShiftImm, unsigned Alignment, bool isNegative, SMLoc S, | 
|  | SMLoc E, SMLoc AlignmentLoc = SMLoc()) { | 
|  | auto Op = make_unique<ARMOperand>(k_Memory); | 
|  | Op->Memory.BaseRegNum = BaseRegNum; | 
|  | Op->Memory.OffsetImm = OffsetImm; | 
|  | Op->Memory.OffsetRegNum = OffsetRegNum; | 
|  | Op->Memory.ShiftType = ShiftType; | 
|  | Op->Memory.ShiftImm = ShiftImm; | 
|  | Op->Memory.Alignment = Alignment; | 
|  | Op->Memory.isNegative = isNegative; | 
|  | Op->StartLoc = S; | 
|  | Op->EndLoc = E; | 
|  | Op->AlignmentLoc = AlignmentLoc; | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | static std::unique_ptr<ARMOperand> | 
|  | CreatePostIdxReg(unsigned RegNum, bool isAdd, ARM_AM::ShiftOpc ShiftTy, | 
|  | unsigned ShiftImm, SMLoc S, SMLoc E) { | 
|  | auto Op = make_unique<ARMOperand>(k_PostIndexRegister); | 
|  | Op->PostIdxReg.RegNum = RegNum; | 
|  | Op->PostIdxReg.isAdd = isAdd; | 
|  | Op->PostIdxReg.ShiftTy = ShiftTy; | 
|  | Op->PostIdxReg.ShiftImm = ShiftImm; | 
|  | Op->StartLoc = S; | 
|  | Op->EndLoc = E; | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | static std::unique_ptr<ARMOperand> CreateMemBarrierOpt(ARM_MB::MemBOpt Opt, | 
|  | SMLoc S) { | 
|  | auto Op = make_unique<ARMOperand>(k_MemBarrierOpt); | 
|  | Op->MBOpt.Val = Opt; | 
|  | Op->StartLoc = S; | 
|  | Op->EndLoc = S; | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | static std::unique_ptr<ARMOperand> | 
|  | CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt, SMLoc S) { | 
|  | auto Op = make_unique<ARMOperand>(k_InstSyncBarrierOpt); | 
|  | Op->ISBOpt.Val = Opt; | 
|  | Op->StartLoc = S; | 
|  | Op->EndLoc = S; | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | static std::unique_ptr<ARMOperand> CreateProcIFlags(ARM_PROC::IFlags IFlags, | 
|  | SMLoc S) { | 
|  | auto Op = make_unique<ARMOperand>(k_ProcIFlags); | 
|  | Op->IFlags.Val = IFlags; | 
|  | Op->StartLoc = S; | 
|  | Op->EndLoc = S; | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | static std::unique_ptr<ARMOperand> CreateMSRMask(unsigned MMask, SMLoc S) { | 
|  | auto Op = make_unique<ARMOperand>(k_MSRMask); | 
|  | Op->MMask.Val = MMask; | 
|  | Op->StartLoc = S; | 
|  | Op->EndLoc = S; | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | static std::unique_ptr<ARMOperand> CreateBankedReg(unsigned Reg, SMLoc S) { | 
|  | auto Op = make_unique<ARMOperand>(k_BankedReg); | 
|  | Op->BankedReg.Val = Reg; | 
|  | Op->StartLoc = S; | 
|  | Op->EndLoc = S; | 
|  | return Op; | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace. | 
|  |  | 
|  | void ARMOperand::print(raw_ostream &OS) const { | 
|  | switch (Kind) { | 
|  | case k_CondCode: | 
|  | OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">"; | 
|  | break; | 
|  | case k_CCOut: | 
|  | OS << "<ccout " << getReg() << ">"; | 
|  | break; | 
|  | case k_ITCondMask: { | 
|  | static const char *const MaskStr[] = { | 
|  | "()", "(t)", "(e)", "(tt)", "(et)", "(te)", "(ee)", "(ttt)", "(ett)", | 
|  | "(tet)", "(eet)", "(tte)", "(ete)", "(tee)", "(eee)" | 
|  | }; | 
|  | assert((ITMask.Mask & 0xf) == ITMask.Mask); | 
|  | OS << "<it-mask " << MaskStr[ITMask.Mask] << ">"; | 
|  | break; | 
|  | } | 
|  | case k_CoprocNum: | 
|  | OS << "<coprocessor number: " << getCoproc() << ">"; | 
|  | break; | 
|  | case k_CoprocReg: | 
|  | OS << "<coprocessor register: " << getCoproc() << ">"; | 
|  | break; | 
|  | case k_CoprocOption: | 
|  | OS << "<coprocessor option: " << CoprocOption.Val << ">"; | 
|  | break; | 
|  | case k_MSRMask: | 
|  | OS << "<mask: " << getMSRMask() << ">"; | 
|  | break; | 
|  | case k_BankedReg: | 
|  | OS << "<banked reg: " << getBankedReg() << ">"; | 
|  | break; | 
|  | case k_Immediate: | 
|  | OS << *getImm(); | 
|  | break; | 
|  | case k_MemBarrierOpt: | 
|  | OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">"; | 
|  | break; | 
|  | case k_InstSyncBarrierOpt: | 
|  | OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">"; | 
|  | break; | 
|  | case k_Memory: | 
|  | OS << "<memory " | 
|  | << " base:" << Memory.BaseRegNum; | 
|  | OS << ">"; | 
|  | break; | 
|  | case k_PostIndexRegister: | 
|  | OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-") | 
|  | << PostIdxReg.RegNum; | 
|  | if (PostIdxReg.ShiftTy != ARM_AM::no_shift) | 
|  | OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " " | 
|  | << PostIdxReg.ShiftImm; | 
|  | OS << ">"; | 
|  | break; | 
|  | case k_ProcIFlags: { | 
|  | OS << "<ARM_PROC::"; | 
|  | unsigned IFlags = getProcIFlags(); | 
|  | for (int i=2; i >= 0; --i) | 
|  | if (IFlags & (1 << i)) | 
|  | OS << ARM_PROC::IFlagsToString(1 << i); | 
|  | OS << ">"; | 
|  | break; | 
|  | } | 
|  | case k_Register: | 
|  | OS << "<register " << getReg() << ">"; | 
|  | break; | 
|  | case k_ShifterImmediate: | 
|  | OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl") | 
|  | << " #" << ShifterImm.Imm << ">"; | 
|  | break; | 
|  | case k_ShiftedRegister: | 
|  | OS << "<so_reg_reg " | 
|  | << RegShiftedReg.SrcReg << " " | 
|  | << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy) | 
|  | << " " << RegShiftedReg.ShiftReg << ">"; | 
|  | break; | 
|  | case k_ShiftedImmediate: | 
|  | OS << "<so_reg_imm " | 
|  | << RegShiftedImm.SrcReg << " " | 
|  | << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy) | 
|  | << " #" << RegShiftedImm.ShiftImm << ">"; | 
|  | break; | 
|  | case k_RotateImmediate: | 
|  | OS << "<ror " << " #" << (RotImm.Imm * 8) << ">"; | 
|  | break; | 
|  | case k_ModifiedImmediate: | 
|  | OS << "<mod_imm #" << ModImm.Bits << ", #" | 
|  | <<  ModImm.Rot << ")>"; | 
|  | break; | 
|  | case k_ConstantPoolImmediate: | 
|  | OS << "<constant_pool_imm #" << *getConstantPoolImm(); | 
|  | break; | 
|  | case k_BitfieldDescriptor: | 
|  | OS << "<bitfield " << "lsb: " << Bitfield.LSB | 
|  | << ", width: " << Bitfield.Width << ">"; | 
|  | break; | 
|  | case k_RegisterList: | 
|  | case k_DPRRegisterList: | 
|  | case k_SPRRegisterList: { | 
|  | OS << "<register_list "; | 
|  |  | 
|  | const SmallVectorImpl<unsigned> &RegList = getRegList(); | 
|  | for (SmallVectorImpl<unsigned>::const_iterator | 
|  | I = RegList.begin(), E = RegList.end(); I != E; ) { | 
|  | OS << *I; | 
|  | if (++I < E) OS << ", "; | 
|  | } | 
|  |  | 
|  | OS << ">"; | 
|  | break; | 
|  | } | 
|  | case k_VectorList: | 
|  | OS << "<vector_list " << VectorList.Count << " * " | 
|  | << VectorList.RegNum << ">"; | 
|  | break; | 
|  | case k_VectorListAllLanes: | 
|  | OS << "<vector_list(all lanes) " << VectorList.Count << " * " | 
|  | << VectorList.RegNum << ">"; | 
|  | break; | 
|  | case k_VectorListIndexed: | 
|  | OS << "<vector_list(lane " << VectorList.LaneIndex << ") " | 
|  | << VectorList.Count << " * " << VectorList.RegNum << ">"; | 
|  | break; | 
|  | case k_Token: | 
|  | OS << "'" << getToken() << "'"; | 
|  | break; | 
|  | case k_VectorIndex: | 
|  | OS << "<vectorindex " << getVectorIndex() << ">"; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// @name Auto-generated Match Functions | 
|  | /// { | 
|  |  | 
|  | static unsigned MatchRegisterName(StringRef Name); | 
|  |  | 
|  | /// } | 
|  |  | 
|  | bool ARMAsmParser::ParseRegister(unsigned &RegNo, | 
|  | SMLoc &StartLoc, SMLoc &EndLoc) { | 
|  | const AsmToken &Tok = getParser().getTok(); | 
|  | StartLoc = Tok.getLoc(); | 
|  | EndLoc = Tok.getEndLoc(); | 
|  | RegNo = tryParseRegister(); | 
|  |  | 
|  | return (RegNo == (unsigned)-1); | 
|  | } | 
|  |  | 
|  | /// Try to parse a register name.  The token must be an Identifier when called, | 
|  | /// and if it is a register name the token is eaten and the register number is | 
|  | /// returned.  Otherwise return -1. | 
|  | int ARMAsmParser::tryParseRegister() { | 
|  | MCAsmParser &Parser = getParser(); | 
|  | const AsmToken &Tok = Parser.getTok(); | 
|  | if (Tok.isNot(AsmToken::Identifier)) return -1; | 
|  |  | 
|  | std::string lowerCase = Tok.getString().lower(); | 
|  | unsigned RegNum = MatchRegisterName(lowerCase); | 
|  | if (!RegNum) { | 
|  | RegNum = StringSwitch<unsigned>(lowerCase) | 
|  | .Case("r13", ARM::SP) | 
|  | .Case("r14", ARM::LR) | 
|  | .Case("r15", ARM::PC) | 
|  | .Case("ip", ARM::R12) | 
|  | // Additional register name aliases for 'gas' compatibility. | 
|  | .Case("a1", ARM::R0) | 
|  | .Case("a2", ARM::R1) | 
|  | .Case("a3", ARM::R2) | 
|  | .Case("a4", ARM::R3) | 
|  | .Case("v1", ARM::R4) | 
|  | .Case("v2", ARM::R5) | 
|  | .Case("v3", ARM::R6) | 
|  | .Case("v4", ARM::R7) | 
|  | .Case("v5", ARM::R8) | 
|  | .Case("v6", ARM::R9) | 
|  | .Case("v7", ARM::R10) | 
|  | .Case("v8", ARM::R11) | 
|  | .Case("sb", ARM::R9) | 
|  | .Case("sl", ARM::R10) | 
|  | .Case("fp", ARM::R11) | 
|  | .Default(0); | 
|  | } | 
|  | if (!RegNum) { | 
|  | // Check for aliases registered via .req. Canonicalize to lower case. | 
|  | // That's more consistent since register names are case insensitive, and | 
|  | // it's how the original entry was passed in from MC/MCParser/AsmParser. | 
|  | StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase); | 
|  | // If no match, return failure. | 
|  | if (Entry == RegisterReqs.end()) | 
|  | return -1; | 
|  | Parser.Lex(); // Eat identifier token. | 
|  | return Entry->getValue(); | 
|  | } | 
|  |  | 
|  | // Some FPUs only have 16 D registers, so D16-D31 are invalid | 
|  | if (hasD16() && RegNum >= ARM::D16 && RegNum <= ARM::D31) | 
|  | return -1; | 
|  |  | 
|  | Parser.Lex(); // Eat identifier token. | 
|  |  | 
|  | return RegNum; | 
|  | } | 
|  |  | 
|  | // Try to parse a shifter  (e.g., "lsl <amt>"). On success, return 0. | 
|  | // If a recoverable error occurs, return 1. If an irrecoverable error | 
|  | // occurs, return -1. An irrecoverable error is one where tokens have been | 
|  | // consumed in the process of trying to parse the shifter (i.e., when it is | 
|  | // indeed a shifter operand, but malformed). | 
|  | int ARMAsmParser::tryParseShiftRegister(OperandVector &Operands) { | 
|  | MCAsmParser &Parser = getParser(); | 
|  | SMLoc S = Parser.getTok().getLoc(); | 
|  | const AsmToken &Tok = Parser.getTok(); | 
|  | if (Tok.isNot(AsmToken::Identifier)) | 
|  | return -1; | 
|  |  | 
|  | std::string lowerCase = Tok.getString().lower(); | 
|  | ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase) | 
|  | .Case("asl", ARM_AM::lsl) | 
|  | .Case("lsl", ARM_AM::lsl) | 
|  | .Case("lsr", ARM_AM::lsr) | 
|  | .Case("asr", ARM_AM::asr) | 
|  | .Case("ror", ARM_AM::ror) | 
|  | .Case("rrx", ARM_AM::rrx) | 
|  | .Default(ARM_AM::no_shift); | 
|  |  | 
|  | if (ShiftTy == ARM_AM::no_shift) | 
|  | return 1; | 
|  |  | 
|  | Parser.Lex(); // Eat the operator. | 
|  |  | 
|  | // The source register for the shift has already been added to the | 
|  | // operand list, so we need to pop it off and combine it into the shifted | 
|  | // register operand instead. | 
|  | std::unique_ptr<ARMOperand> PrevOp( | 
|  | (ARMOperand *)Operands.pop_back_val().release()); | 
|  | if (!PrevOp->isReg()) | 
|  | return Error(PrevOp->getStartLoc(), "shift must be of a register"); | 
|  | int SrcReg = PrevOp->getReg(); | 
|  |  | 
|  | SMLoc EndLoc; | 
|  | int64_t Imm = 0; | 
|  | int ShiftReg = 0; | 
|  | if (ShiftTy == ARM_AM::rrx) { | 
|  | // RRX Doesn't have an explicit shift amount. The encoder expects | 
|  | // the shift register to be the same as the source register. Seems odd, | 
|  | // but OK. | 
|  | ShiftReg = SrcReg; | 
|  | } else { | 
|  | // Figure out if this is shifted by a constant or a register (for non-RRX). | 
|  | if (Parser.getTok().is(AsmToken::Hash) || | 
|  | Parser.getTok().is(AsmToken::Dollar)) { | 
|  | Parser.Lex(); // Eat hash. | 
|  | SMLoc ImmLoc = Parser.getTok().getLoc(); | 
|  | const MCExpr *ShiftExpr = nullptr; | 
|  | if (getParser().parseExpression(ShiftExpr, EndLoc)) { | 
|  | Error(ImmLoc, "invalid immediate shift value"); | 
|  | return -1; | 
|  | } | 
|  | // The expression must be evaluatable as an immediate. | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr); | 
|  | if (!CE) { | 
|  | Error(ImmLoc, "invalid immediate shift value"); | 
|  | return -1; | 
|  | } | 
|  | // Range check the immediate. | 
|  | // lsl, ror: 0 <= imm <= 31 | 
|  | // lsr, asr: 0 <= imm <= 32 | 
|  | Imm = CE->getValue(); | 
|  | if (Imm < 0 || | 
|  | ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) || | 
|  | ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) { | 
|  | Error(ImmLoc, "immediate shift value out of range"); | 
|  | return -1; | 
|  | } | 
|  | // shift by zero is a nop. Always send it through as lsl. | 
|  | // ('as' compatibility) | 
|  | if (Imm == 0) | 
|  | ShiftTy = ARM_AM::lsl; | 
|  | } else if (Parser.getTok().is(AsmToken::Identifier)) { | 
|  | SMLoc L = Parser.getTok().getLoc(); | 
|  | EndLoc = Parser.getTok().getEndLoc(); | 
|  | ShiftReg = tryParseRegister(); | 
|  | if (ShiftReg == -1) { | 
|  | Error(L, "expected immediate or register in shift operand"); | 
|  | return -1; | 
|  | } | 
|  | } else { | 
|  | Error(Parser.getTok().getLoc(), | 
|  | "expected immediate or register in shift operand"); | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ShiftReg && ShiftTy != ARM_AM::rrx) | 
|  | Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg, | 
|  | ShiftReg, Imm, | 
|  | S, EndLoc)); | 
|  | else | 
|  | Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm, | 
|  | S, EndLoc)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// Try to parse a register name.  The token must be an Identifier when called. | 
|  | /// If it's a register, an AsmOperand is created. Another AsmOperand is created | 
|  | /// if there is a "writeback". 'true' if it's not a register. | 
|  | /// | 
|  | /// TODO this is likely to change to allow different register types and or to | 
|  | /// parse for a specific register type. | 
|  | bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector &Operands) { | 
|  | MCAsmParser &Parser = getParser(); | 
|  | SMLoc RegStartLoc = Parser.getTok().getLoc(); | 
|  | SMLoc RegEndLoc = Parser.getTok().getEndLoc(); | 
|  | int RegNo = tryParseRegister(); | 
|  | if (RegNo == -1) | 
|  | return true; | 
|  |  | 
|  | Operands.push_back(ARMOperand::CreateReg(RegNo, RegStartLoc, RegEndLoc)); | 
|  |  | 
|  | const AsmToken &ExclaimTok = Parser.getTok(); | 
|  | if (ExclaimTok.is(AsmToken::Exclaim)) { | 
|  | Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(), | 
|  | ExclaimTok.getLoc())); | 
|  | Parser.Lex(); // Eat exclaim token | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Also check for an index operand. This is only legal for vector registers, | 
|  | // but that'll get caught OK in operand matching, so we don't need to | 
|  | // explicitly filter everything else out here. | 
|  | if (Parser.getTok().is(AsmToken::LBrac)) { | 
|  | SMLoc SIdx = Parser.getTok().getLoc(); | 
|  | Parser.Lex(); // Eat left bracket token. | 
|  |  | 
|  | const MCExpr *ImmVal; | 
|  | if (getParser().parseExpression(ImmVal)) | 
|  | return true; | 
|  | const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal); | 
|  | if (!MCE) | 
|  | return TokError("immediate value expected for vector index"); | 
|  |  | 
|  | if (Parser.getTok().isNot(AsmToken::RBrac)) | 
|  | return Error(Parser.getTok().getLoc(), "']' expected"); | 
|  |  | 
|  | SMLoc E = Parser.getTok().getEndLoc(); | 
|  | Parser.Lex(); // Eat right bracket token. | 
|  |  | 
|  | Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(), | 
|  | SIdx, E, | 
|  | getContext())); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// MatchCoprocessorOperandName - Try to parse an coprocessor related | 
|  | /// instruction with a symbolic operand name. | 
|  | /// We accept "crN" syntax for GAS compatibility. | 
|  | /// <operand-name> ::= <prefix><number> | 
|  | /// If CoprocOp is 'c', then: | 
|  | ///   <prefix> ::= c | cr | 
|  | /// If CoprocOp is 'p', then : | 
|  | ///   <prefix> ::= p | 
|  | /// <number> ::= integer in range [0, 15] | 
|  | static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) { | 
|  | // Use the same layout as the tablegen'erated register name matcher. Ugly, | 
|  | // but efficient. | 
|  | if (Name.size() < 2 || Name[0] != CoprocOp) | 
|  | return -1; | 
|  | Name = (Name[1] == 'r') ? Name.drop_front(2) : Name.drop_front(); | 
|  |  | 
|  | switch (Name.size()) { | 
|  | default: return -1; | 
|  | case 1: | 
|  | switch (Name[0]) { | 
|  | default:  return -1; | 
|  | case '0': return 0; | 
|  | case '1': return 1; | 
|  | case '2': return 2; | 
|  | case '3': return 3; | 
|  | case '4': return 4; | 
|  | case '5': return 5; | 
|  | case '6': return 6; | 
|  | case '7': return 7; | 
|  | case '8': return 8; | 
|  | case '9': return 9; | 
|  | } | 
|  | case 2: | 
|  | if (Name[0] != '1') | 
|  | return -1; | 
|  | switch (Name[1]) { | 
|  | default:  return -1; | 
|  | // CP10 and CP11 are VFP/NEON and so vector instructions should be used. | 
|  | // However, old cores (v5/v6) did use them in that way. | 
|  | case '0': return 10; | 
|  | case '1': return 11; | 
|  | case '2': return 12; | 
|  | case '3': return 13; | 
|  | case '4': return 14; | 
|  | case '5': return 15; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// parseITCondCode - Try to parse a condition code for an IT instruction. | 
|  | OperandMatchResultTy | 
|  | ARMAsmParser::parseITCondCode(OperandVector &Operands) { | 
|  | MCAsmParser &Parser = getParser(); | 
|  | SMLoc S = Parser.getTok().getLoc(); | 
|  | const AsmToken &Tok = Parser.getTok(); | 
|  | if (!Tok.is(AsmToken::Identifier)) | 
|  | return MatchOperand_NoMatch; | 
|  | unsigned CC = ARMCondCodeFromString(Tok.getString()); | 
|  | if (CC == ~0U) | 
|  | return MatchOperand_NoMatch; | 
|  | Parser.Lex(); // Eat the token. | 
|  |  | 
|  | Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S)); | 
|  |  | 
|  | return MatchOperand_Success; | 
|  | } | 
|  |  | 
|  | /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The | 
|  | /// token must be an Identifier when called, and if it is a coprocessor | 
|  | /// number, the token is eaten and the operand is added to the operand list. | 
|  | OperandMatchResultTy | 
|  | ARMAsmParser::parseCoprocNumOperand(OperandVector &Operands) { | 
|  | MCAsmParser &Parser = getParser(); | 
|  | SMLoc S = Parser.getTok().getLoc(); | 
|  | const AsmToken &Tok = Parser.getTok(); | 
|  | if (Tok.isNot(AsmToken::Identifier)) | 
|  | return MatchOperand_NoMatch; | 
|  |  | 
|  | int Num = MatchCoprocessorOperandName(Tok.getString(), 'p'); | 
|  | if (Num == -1) | 
|  | return MatchOperand_NoMatch; | 
|  | // ARMv7 and v8 don't allow cp10/cp11 due to VFP/NEON specific instructions | 
|  | if ((hasV7Ops() || hasV8Ops()) && (Num == 10 || Num == 11)) | 
|  | return MatchOperand_NoMatch; | 
|  |  | 
|  | Parser.Lex(); // Eat identifier token. | 
|  | Operands.push_back(ARMOperand::CreateCoprocNum(Num, S)); | 
|  | return MatchOperand_Success; | 
|  | } | 
|  |  | 
|  | /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The | 
|  | /// token must be an Identifier when called, and if it is a coprocessor | 
|  | /// number, the token is eaten and the operand is added to the operand list. | 
|  | OperandMatchResultTy | 
|  | ARMAsmParser::parseCoprocRegOperand(OperandVector &Operands) { | 
|  | MCAsmParser &Parser = getParser(); | 
|  | SMLoc S = Parser.getTok().getLoc(); | 
|  | const AsmToken &Tok = Parser.getTok(); | 
|  | if (Tok.isNot(AsmToken::Identifier)) | 
|  | return MatchOperand_NoMatch; | 
|  |  | 
|  | int Reg = MatchCoprocessorOperandName(Tok.getString(), 'c'); | 
|  | if (Reg == -1) | 
|  | return MatchOperand_NoMatch; | 
|  |  | 
|  | Parser.Lex(); // Eat identifier token. | 
|  | Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S)); | 
|  | return MatchOperand_Success; | 
|  | } | 
|  |  | 
|  | /// parseCoprocOptionOperand - Try to parse an coprocessor option operand. | 
|  | /// coproc_option : '{' imm0_255 '}' | 
|  | OperandMatchResultTy | 
|  | ARMAsmParser::parseCoprocOptionOperand(OperandVector &Operands) { | 
|  | MCAsmParser &Parser = getParser(); | 
|  | SMLoc S = Parser.getTok().getLoc(); | 
|  |  | 
|  | // If this isn't a '{', this isn't a coprocessor immediate operand. | 
|  | if (Parser.getTok().isNot(AsmToken::LCurly)) | 
|  | return MatchOperand_NoMatch; | 
|  | Parser.Lex(); // Eat the '{' | 
|  |  | 
|  | const MCExpr *Expr; | 
|  | SMLoc Loc = Parser.getTok().getLoc(); | 
|  | if (getParser().parseExpression(Expr)) { | 
|  | Error(Loc, "illegal expression"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); | 
|  | if (!CE || CE->getValue() < 0 || CE->getValue() > 255) { | 
|  | Error(Loc, "coprocessor option must be an immediate in range [0, 255]"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  | int Val = CE->getValue(); | 
|  |  | 
|  | // Check for and consume the closing '}' | 
|  | if (Parser.getTok().isNot(AsmToken::RCurly)) | 
|  | return MatchOperand_ParseFail; | 
|  | SMLoc E = Parser.getTok().getEndLoc(); | 
|  | Parser.Lex(); // Eat the '}' | 
|  |  | 
|  | Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E)); | 
|  | return MatchOperand_Success; | 
|  | } | 
|  |  | 
|  | // For register list parsing, we need to map from raw GPR register numbering | 
|  | // to the enumeration values. The enumeration values aren't sorted by | 
|  | // register number due to our using "sp", "lr" and "pc" as canonical names. | 
|  | static unsigned getNextRegister(unsigned Reg) { | 
|  | // If this is a GPR, we need to do it manually, otherwise we can rely | 
|  | // on the sort ordering of the enumeration since the other reg-classes | 
|  | // are sane. | 
|  | if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) | 
|  | return Reg + 1; | 
|  | switch(Reg) { | 
|  | default: llvm_unreachable("Invalid GPR number!"); | 
|  | case ARM::R0:  return ARM::R1;  case ARM::R1:  return ARM::R2; | 
|  | case ARM::R2:  return ARM::R3;  case ARM::R3:  return ARM::R4; | 
|  | case ARM::R4:  return ARM::R5;  case ARM::R5:  return ARM::R6; | 
|  | case ARM::R6:  return ARM::R7;  case ARM::R7:  return ARM::R8; | 
|  | case ARM::R8:  return ARM::R9;  case ARM::R9:  return ARM::R10; | 
|  | case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12; | 
|  | case ARM::R12: return ARM::SP;  case ARM::SP:  return ARM::LR; | 
|  | case ARM::LR:  return ARM::PC;  case ARM::PC:  return ARM::R0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Parse a register list. | 
|  | bool ARMAsmParser::parseRegisterList(OperandVector &Operands) { | 
|  | MCAsmParser &Parser = getParser(); | 
|  | if (Parser.getTok().isNot(AsmToken::LCurly)) | 
|  | return TokError("Token is not a Left Curly Brace"); | 
|  | SMLoc S = Parser.getTok().getLoc(); | 
|  | Parser.Lex(); // Eat '{' token. | 
|  | SMLoc RegLoc = Parser.getTok().getLoc(); | 
|  |  | 
|  | // Check the first register in the list to see what register class | 
|  | // this is a list of. | 
|  | int Reg = tryParseRegister(); | 
|  | if (Reg == -1) | 
|  | return Error(RegLoc, "register expected"); | 
|  |  | 
|  | // The reglist instructions have at most 16 registers, so reserve | 
|  | // space for that many. | 
|  | int EReg = 0; | 
|  | SmallVector<std::pair<unsigned, unsigned>, 16> Registers; | 
|  |  | 
|  | // Allow Q regs and just interpret them as the two D sub-registers. | 
|  | if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { | 
|  | Reg = getDRegFromQReg(Reg); | 
|  | EReg = MRI->getEncodingValue(Reg); | 
|  | Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); | 
|  | ++Reg; | 
|  | } | 
|  | const MCRegisterClass *RC; | 
|  | if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) | 
|  | RC = &ARMMCRegisterClasses[ARM::GPRRegClassID]; | 
|  | else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) | 
|  | RC = &ARMMCRegisterClasses[ARM::DPRRegClassID]; | 
|  | else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg)) | 
|  | RC = &ARMMCRegisterClasses[ARM::SPRRegClassID]; | 
|  | else | 
|  | return Error(RegLoc, "invalid register in register list"); | 
|  |  | 
|  | // Store the register. | 
|  | EReg = MRI->getEncodingValue(Reg); | 
|  | Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); | 
|  |  | 
|  | // This starts immediately after the first register token in the list, | 
|  | // so we can see either a comma or a minus (range separator) as a legal | 
|  | // next token. | 
|  | while (Parser.getTok().is(AsmToken::Comma) || | 
|  | Parser.getTok().is(AsmToken::Minus)) { | 
|  | if (Parser.getTok().is(AsmToken::Minus)) { | 
|  | Parser.Lex(); // Eat the minus. | 
|  | SMLoc AfterMinusLoc = Parser.getTok().getLoc(); | 
|  | int EndReg = tryParseRegister(); | 
|  | if (EndReg == -1) | 
|  | return Error(AfterMinusLoc, "register expected"); | 
|  | // Allow Q regs and just interpret them as the two D sub-registers. | 
|  | if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) | 
|  | EndReg = getDRegFromQReg(EndReg) + 1; | 
|  | // If the register is the same as the start reg, there's nothing | 
|  | // more to do. | 
|  | if (Reg == EndReg) | 
|  | continue; | 
|  | // The register must be in the same register class as the first. | 
|  | if (!RC->contains(EndReg)) | 
|  | return Error(AfterMinusLoc, "invalid register in register list"); | 
|  | // Ranges must go from low to high. | 
|  | if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg)) | 
|  | return Error(AfterMinusLoc, "bad range in register list"); | 
|  |  | 
|  | // Add all the registers in the range to the register list. | 
|  | while (Reg != EndReg) { | 
|  | Reg = getNextRegister(Reg); | 
|  | EReg = MRI->getEncodingValue(Reg); | 
|  | Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); | 
|  | } | 
|  | continue; | 
|  | } | 
|  | Parser.Lex(); // Eat the comma. | 
|  | RegLoc = Parser.getTok().getLoc(); | 
|  | int OldReg = Reg; | 
|  | const AsmToken RegTok = Parser.getTok(); | 
|  | Reg = tryParseRegister(); | 
|  | if (Reg == -1) | 
|  | return Error(RegLoc, "register expected"); | 
|  | // Allow Q regs and just interpret them as the two D sub-registers. | 
|  | bool isQReg = false; | 
|  | if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { | 
|  | Reg = getDRegFromQReg(Reg); | 
|  | isQReg = true; | 
|  | } | 
|  | // The register must be in the same register class as the first. | 
|  | if (!RC->contains(Reg)) | 
|  | return Error(RegLoc, "invalid register in register list"); | 
|  | // List must be monotonically increasing. | 
|  | if (MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) { | 
|  | if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) | 
|  | Warning(RegLoc, "register list not in ascending order"); | 
|  | else | 
|  | return Error(RegLoc, "register list not in ascending order"); | 
|  | } | 
|  | if (MRI->getEncodingValue(Reg) == MRI->getEncodingValue(OldReg)) { | 
|  | Warning(RegLoc, "duplicated register (" + RegTok.getString() + | 
|  | ") in register list"); | 
|  | continue; | 
|  | } | 
|  | // VFP register lists must also be contiguous. | 
|  | if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] && | 
|  | Reg != OldReg + 1) | 
|  | return Error(RegLoc, "non-contiguous register range"); | 
|  | EReg = MRI->getEncodingValue(Reg); | 
|  | Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); | 
|  | if (isQReg) { | 
|  | EReg = MRI->getEncodingValue(++Reg); | 
|  | Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Parser.getTok().isNot(AsmToken::RCurly)) | 
|  | return Error(Parser.getTok().getLoc(), "'}' expected"); | 
|  | SMLoc E = Parser.getTok().getEndLoc(); | 
|  | Parser.Lex(); // Eat '}' token. | 
|  |  | 
|  | // Push the register list operand. | 
|  | Operands.push_back(ARMOperand::CreateRegList(Registers, S, E)); | 
|  |  | 
|  | // The ARM system instruction variants for LDM/STM have a '^' token here. | 
|  | if (Parser.getTok().is(AsmToken::Caret)) { | 
|  | Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc())); | 
|  | Parser.Lex(); // Eat '^' token. | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Helper function to parse the lane index for vector lists. | 
|  | OperandMatchResultTy ARMAsmParser:: | 
|  | parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) { | 
|  | MCAsmParser &Parser = getParser(); | 
|  | Index = 0; // Always return a defined index value. | 
|  | if (Parser.getTok().is(AsmToken::LBrac)) { | 
|  | Parser.Lex(); // Eat the '['. | 
|  | if (Parser.getTok().is(AsmToken::RBrac)) { | 
|  | // "Dn[]" is the 'all lanes' syntax. | 
|  | LaneKind = AllLanes; | 
|  | EndLoc = Parser.getTok().getEndLoc(); | 
|  | Parser.Lex(); // Eat the ']'. | 
|  | return MatchOperand_Success; | 
|  | } | 
|  |  | 
|  | // There's an optional '#' token here. Normally there wouldn't be, but | 
|  | // inline assemble puts one in, and it's friendly to accept that. | 
|  | if (Parser.getTok().is(AsmToken::Hash)) | 
|  | Parser.Lex(); // Eat '#' or '$'. | 
|  |  | 
|  | const MCExpr *LaneIndex; | 
|  | SMLoc Loc = Parser.getTok().getLoc(); | 
|  | if (getParser().parseExpression(LaneIndex)) { | 
|  | Error(Loc, "illegal expression"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex); | 
|  | if (!CE) { | 
|  | Error(Loc, "lane index must be empty or an integer"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  | if (Parser.getTok().isNot(AsmToken::RBrac)) { | 
|  | Error(Parser.getTok().getLoc(), "']' expected"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  | EndLoc = Parser.getTok().getEndLoc(); | 
|  | Parser.Lex(); // Eat the ']'. | 
|  | int64_t Val = CE->getValue(); | 
|  |  | 
|  | // FIXME: Make this range check context sensitive for .8, .16, .32. | 
|  | if (Val < 0 || Val > 7) { | 
|  | Error(Parser.getTok().getLoc(), "lane index out of range"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  | Index = Val; | 
|  | LaneKind = IndexedLane; | 
|  | return MatchOperand_Success; | 
|  | } | 
|  | LaneKind = NoLanes; | 
|  | return MatchOperand_Success; | 
|  | } | 
|  |  | 
|  | // parse a vector register list | 
|  | OperandMatchResultTy | 
|  | ARMAsmParser::parseVectorList(OperandVector &Operands) { | 
|  | MCAsmParser &Parser = getParser(); | 
|  | VectorLaneTy LaneKind; | 
|  | unsigned LaneIndex; | 
|  | SMLoc S = Parser.getTok().getLoc(); | 
|  | // As an extension (to match gas), support a plain D register or Q register | 
|  | // (without encosing curly braces) as a single or double entry list, | 
|  | // respectively. | 
|  | if (Parser.getTok().is(AsmToken::Identifier)) { | 
|  | SMLoc E = Parser.getTok().getEndLoc(); | 
|  | int Reg = tryParseRegister(); | 
|  | if (Reg == -1) | 
|  | return MatchOperand_NoMatch; | 
|  | if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) { | 
|  | OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); | 
|  | if (Res != MatchOperand_Success) | 
|  | return Res; | 
|  | switch (LaneKind) { | 
|  | case NoLanes: | 
|  | Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E)); | 
|  | break; | 
|  | case AllLanes: | 
|  | Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false, | 
|  | S, E)); | 
|  | break; | 
|  | case IndexedLane: | 
|  | Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1, | 
|  | LaneIndex, | 
|  | false, S, E)); | 
|  | break; | 
|  | } | 
|  | return MatchOperand_Success; | 
|  | } | 
|  | if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { | 
|  | Reg = getDRegFromQReg(Reg); | 
|  | OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); | 
|  | if (Res != MatchOperand_Success) | 
|  | return Res; | 
|  | switch (LaneKind) { | 
|  | case NoLanes: | 
|  | Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, | 
|  | &ARMMCRegisterClasses[ARM::DPairRegClassID]); | 
|  | Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E)); | 
|  | break; | 
|  | case AllLanes: | 
|  | Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, | 
|  | &ARMMCRegisterClasses[ARM::DPairRegClassID]); | 
|  | Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false, | 
|  | S, E)); | 
|  | break; | 
|  | case IndexedLane: | 
|  | Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2, | 
|  | LaneIndex, | 
|  | false, S, E)); | 
|  | break; | 
|  | } | 
|  | return MatchOperand_Success; | 
|  | } | 
|  | Error(S, "vector register expected"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  |  | 
|  | if (Parser.getTok().isNot(AsmToken::LCurly)) | 
|  | return MatchOperand_NoMatch; | 
|  |  | 
|  | Parser.Lex(); // Eat '{' token. | 
|  | SMLoc RegLoc = Parser.getTok().getLoc(); | 
|  |  | 
|  | int Reg = tryParseRegister(); | 
|  | if (Reg == -1) { | 
|  | Error(RegLoc, "register expected"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  | unsigned Count = 1; | 
|  | int Spacing = 0; | 
|  | unsigned FirstReg = Reg; | 
|  | // The list is of D registers, but we also allow Q regs and just interpret | 
|  | // them as the two D sub-registers. | 
|  | if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { | 
|  | FirstReg = Reg = getDRegFromQReg(Reg); | 
|  | Spacing = 1; // double-spacing requires explicit D registers, otherwise | 
|  | // it's ambiguous with four-register single spaced. | 
|  | ++Reg; | 
|  | ++Count; | 
|  | } | 
|  |  | 
|  | SMLoc E; | 
|  | if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success) | 
|  | return MatchOperand_ParseFail; | 
|  |  | 
|  | while (Parser.getTok().is(AsmToken::Comma) || | 
|  | Parser.getTok().is(AsmToken::Minus)) { | 
|  | if (Parser.getTok().is(AsmToken::Minus)) { | 
|  | if (!Spacing) | 
|  | Spacing = 1; // Register range implies a single spaced list. | 
|  | else if (Spacing == 2) { | 
|  | Error(Parser.getTok().getLoc(), | 
|  | "sequential registers in double spaced list"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  | Parser.Lex(); // Eat the minus. | 
|  | SMLoc AfterMinusLoc = Parser.getTok().getLoc(); | 
|  | int EndReg = tryParseRegister(); | 
|  | if (EndReg == -1) { | 
|  | Error(AfterMinusLoc, "register expected"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  | // Allow Q regs and just interpret them as the two D sub-registers. | 
|  | if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) | 
|  | EndReg = getDRegFromQReg(EndReg) + 1; | 
|  | // If the register is the same as the start reg, there's nothing | 
|  | // more to do. | 
|  | if (Reg == EndReg) | 
|  | continue; | 
|  | // The register must be in the same register class as the first. | 
|  | if (!ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg)) { | 
|  | Error(AfterMinusLoc, "invalid register in register list"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  | // Ranges must go from low to high. | 
|  | if (Reg > EndReg) { | 
|  | Error(AfterMinusLoc, "bad range in register list"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  | // Parse the lane specifier if present. | 
|  | VectorLaneTy NextLaneKind; | 
|  | unsigned NextLaneIndex; | 
|  | if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != | 
|  | MatchOperand_Success) | 
|  | return MatchOperand_ParseFail; | 
|  | if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { | 
|  | Error(AfterMinusLoc, "mismatched lane index in register list"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  |  | 
|  | // Add all the registers in the range to the register list. | 
|  | Count += EndReg - Reg; | 
|  | Reg = EndReg; | 
|  | continue; | 
|  | } | 
|  | Parser.Lex(); // Eat the comma. | 
|  | RegLoc = Parser.getTok().getLoc(); | 
|  | int OldReg = Reg; | 
|  | Reg = tryParseRegister(); | 
|  | if (Reg == -1) { | 
|  | Error(RegLoc, "register expected"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  | // vector register lists must be contiguous. | 
|  | // It's OK to use the enumeration values directly here rather, as the | 
|  | // VFP register classes have the enum sorted properly. | 
|  | // | 
|  | // The list is of D registers, but we also allow Q regs and just interpret | 
|  | // them as the two D sub-registers. | 
|  | if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { | 
|  | if (!Spacing) | 
|  | Spacing = 1; // Register range implies a single spaced list. | 
|  | else if (Spacing == 2) { | 
|  | Error(RegLoc, | 
|  | "invalid register in double-spaced list (must be 'D' register')"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  | Reg = getDRegFromQReg(Reg); | 
|  | if (Reg != OldReg + 1) { | 
|  | Error(RegLoc, "non-contiguous register range"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  | ++Reg; | 
|  | Count += 2; | 
|  | // Parse the lane specifier if present. | 
|  | VectorLaneTy NextLaneKind; | 
|  | unsigned NextLaneIndex; | 
|  | SMLoc LaneLoc = Parser.getTok().getLoc(); | 
|  | if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != | 
|  | MatchOperand_Success) | 
|  | return MatchOperand_ParseFail; | 
|  | if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { | 
|  | Error(LaneLoc, "mismatched lane index in register list"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  | continue; | 
|  | } | 
|  | // Normal D register. | 
|  | // Figure out the register spacing (single or double) of the list if | 
|  | // we don't know it already. | 
|  | if (!Spacing) | 
|  | Spacing = 1 + (Reg == OldReg + 2); | 
|  |  | 
|  | // Just check that it's contiguous and keep going. | 
|  | if (Reg != OldReg + Spacing) { | 
|  | Error(RegLoc, "non-contiguous register range"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  | ++Count; | 
|  | // Parse the lane specifier if present. | 
|  | VectorLaneTy NextLaneKind; | 
|  | unsigned NextLaneIndex; | 
|  | SMLoc EndLoc = Parser.getTok().getLoc(); | 
|  | if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success) | 
|  | return MatchOperand_ParseFail; | 
|  | if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { | 
|  | Error(EndLoc, "mismatched lane index in register list"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Parser.getTok().isNot(AsmToken::RCurly)) { | 
|  | Error(Parser.getTok().getLoc(), "'}' expected"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  | E = Parser.getTok().getEndLoc(); | 
|  | Parser.Lex(); // Eat '}' token. | 
|  |  | 
|  | switch (LaneKind) { | 
|  | case NoLanes: | 
|  | // Two-register operands have been converted to the | 
|  | // composite register classes. | 
|  | if (Count == 2) { | 
|  | const MCRegisterClass *RC = (Spacing == 1) ? | 
|  | &ARMMCRegisterClasses[ARM::DPairRegClassID] : | 
|  | &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; | 
|  | FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); | 
|  | } | 
|  | Operands.push_back(ARMOperand::CreateVectorList(FirstReg, Count, | 
|  | (Spacing == 2), S, E)); | 
|  | break; | 
|  | case AllLanes: | 
|  | // Two-register operands have been converted to the | 
|  | // composite register classes. | 
|  | if (Count == 2) { | 
|  | const MCRegisterClass *RC = (Spacing == 1) ? | 
|  | &ARMMCRegisterClasses[ARM::DPairRegClassID] : | 
|  | &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; | 
|  | FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); | 
|  | } | 
|  | Operands.push_back(ARMOperand::CreateVectorListAllLanes(FirstReg, Count, | 
|  | (Spacing == 2), | 
|  | S, E)); | 
|  | break; | 
|  | case IndexedLane: | 
|  | Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count, | 
|  | LaneIndex, | 
|  | (Spacing == 2), | 
|  | S, E)); | 
|  | break; | 
|  | } | 
|  | return MatchOperand_Success; | 
|  | } | 
|  |  | 
|  | /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options. | 
|  | OperandMatchResultTy | 
|  | ARMAsmParser::parseMemBarrierOptOperand(OperandVector &Operands) { | 
|  | MCAsmParser &Parser = getParser(); | 
|  | SMLoc S = Parser.getTok().getLoc(); | 
|  | const AsmToken &Tok = Parser.getTok(); | 
|  | unsigned Opt; | 
|  |  | 
|  | if (Tok.is(AsmToken::Identifier)) { | 
|  | StringRef OptStr = Tok.getString(); | 
|  |  | 
|  | Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower()) | 
|  | .Case("sy",    ARM_MB::SY) | 
|  | .Case("st",    ARM_MB::ST) | 
|  | .Case("ld",    ARM_MB::LD) | 
|  | .Case("sh",    ARM_MB::ISH) | 
|  | .Case("ish",   ARM_MB::ISH) | 
|  | .Case("shst",  ARM_MB::ISHST) | 
|  | .Case("ishst", ARM_MB::ISHST) | 
|  | .Case("ishld", ARM_MB::ISHLD) | 
|  | .Case("nsh",   ARM_MB::NSH) | 
|  | .Case("un",    ARM_MB::NSH) | 
|  | .Case("nshst", ARM_MB::NSHST) | 
|  | .Case("nshld", ARM_MB::NSHLD) | 
|  | .Case("unst",  ARM_MB::NSHST) | 
|  | .Case("osh",   ARM_MB::OSH) | 
|  | .Case("oshst", ARM_MB::OSHST) | 
|  | .Case("oshld", ARM_MB::OSHLD) | 
|  | .Default(~0U); | 
|  |  | 
|  | // ishld, oshld, nshld and ld are only available from ARMv8. | 
|  | if (!hasV8Ops() && (Opt == ARM_MB::ISHLD || Opt == ARM_MB::OSHLD || | 
|  | Opt == ARM_MB::NSHLD || Opt == ARM_MB::LD)) | 
|  | Opt = ~0U; | 
|  |  | 
|  | if (Opt == ~0U) | 
|  | return MatchOperand_NoMatch; | 
|  |  | 
|  | Parser.Lex(); // Eat identifier token. | 
|  | } else if (Tok.is(AsmToken::Hash) || | 
|  | Tok.is(AsmToken::Dollar) || | 
|  | Tok.is(AsmToken::Integer)) { | 
|  | if (Parser.getTok().isNot(AsmToken::Integer)) | 
|  | Parser.Lex(); // Eat '#' or '$'. | 
|  | SMLoc Loc = Parser.getTok().getLoc(); | 
|  |  | 
|  | const MCExpr *MemBarrierID; | 
|  | if (getParser().parseExpression(MemBarrierID)) { | 
|  | Error(Loc, "illegal expression"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  |  | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID); | 
|  | if (!CE) { | 
|  | Error(Loc, "constant expression expected"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  |  | 
|  | int Val = CE->getValue(); | 
|  | if (Val & ~0xf) { | 
|  | Error(Loc, "immediate value out of range"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  |  | 
|  | Opt = ARM_MB::RESERVED_0 + Val; | 
|  | } else | 
|  | return MatchOperand_ParseFail; | 
|  |  | 
|  | Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S)); | 
|  | return MatchOperand_Success; | 
|  | } | 
|  |  | 
|  | /// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options. | 
|  | OperandMatchResultTy | 
|  | ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector &Operands) { | 
|  | MCAsmParser &Parser = getParser(); | 
|  | SMLoc S = Parser.getTok().getLoc(); | 
|  | const AsmToken &Tok = Parser.getTok(); | 
|  | unsigned Opt; | 
|  |  | 
|  | if (Tok.is(AsmToken::Identifier)) { | 
|  | StringRef OptStr = Tok.getString(); | 
|  |  | 
|  | if (OptStr.equals_lower("sy")) | 
|  | Opt = ARM_ISB::SY; | 
|  | else | 
|  | return MatchOperand_NoMatch; | 
|  |  | 
|  | Parser.Lex(); // Eat identifier token. | 
|  | } else if (Tok.is(AsmToken::Hash) || | 
|  | Tok.is(AsmToken::Dollar) || | 
|  | Tok.is(AsmToken::Integer)) { | 
|  | if (Parser.getTok().isNot(AsmToken::Integer)) | 
|  | Parser.Lex(); // Eat '#' or '$'. | 
|  | SMLoc Loc = Parser.getTok().getLoc(); | 
|  |  | 
|  | const MCExpr *ISBarrierID; | 
|  | if (getParser().parseExpression(ISBarrierID)) { | 
|  | Error(Loc, "illegal expression"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  |  | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID); | 
|  | if (!CE) { | 
|  | Error(Loc, "constant expression expected"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  |  | 
|  | int Val = CE->getValue(); | 
|  | if (Val & ~0xf) { | 
|  | Error(Loc, "immediate value out of range"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  |  | 
|  | Opt = ARM_ISB::RESERVED_0 + Val; | 
|  | } else | 
|  | return MatchOperand_ParseFail; | 
|  |  | 
|  | Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt( | 
|  | (ARM_ISB::InstSyncBOpt)Opt, S)); | 
|  | return MatchOperand_Success; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction. | 
|  | OperandMatchResultTy | 
|  | ARMAsmParser::parseProcIFlagsOperand(OperandVector &Operands) { | 
|  | MCAsmParser &Parser = getParser(); | 
|  | SMLoc S = Parser.getTok().getLoc(); | 
|  | const AsmToken &Tok = Parser.getTok(); | 
|  | if (!Tok.is(AsmToken::Identifier)) | 
|  | return MatchOperand_NoMatch; | 
|  | StringRef IFlagsStr = Tok.getString(); | 
|  |  | 
|  | // An iflags string of "none" is interpreted to mean that none of the AIF | 
|  | // bits are set.  Not a terribly useful instruction, but a valid encoding. | 
|  | unsigned IFlags = 0; | 
|  | if (IFlagsStr != "none") { | 
|  | for (int i = 0, e = IFlagsStr.size(); i != e; ++i) { | 
|  | unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1).lower()) | 
|  | .Case("a", ARM_PROC::A) | 
|  | .Case("i", ARM_PROC::I) | 
|  | .Case("f", ARM_PROC::F) | 
|  | .Default(~0U); | 
|  |  | 
|  | // If some specific iflag is already set, it means that some letter is | 
|  | // present more than once, this is not acceptable. | 
|  | if (Flag == ~0U || (IFlags & Flag)) | 
|  | return MatchOperand_NoMatch; | 
|  |  | 
|  | IFlags |= Flag; | 
|  | } | 
|  | } | 
|  |  | 
|  | Parser.Lex(); // Eat identifier token. | 
|  | Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S)); | 
|  | return MatchOperand_Success; | 
|  | } | 
|  |  | 
|  | /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction. | 
|  | OperandMatchResultTy | 
|  | ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) { | 
|  | MCAsmParser &Parser = getParser(); | 
|  | SMLoc S = Parser.getTok().getLoc(); | 
|  | const AsmToken &Tok = Parser.getTok(); | 
|  |  | 
|  | if (Tok.is(AsmToken::Integer)) { | 
|  | int64_t Val = Tok.getIntVal(); | 
|  | if (Val > 255 || Val < 0) { | 
|  | return MatchOperand_NoMatch; | 
|  | } | 
|  | unsigned SYSmvalue = Val & 0xFF; | 
|  | Parser.Lex(); | 
|  | Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S)); | 
|  | return MatchOperand_Success; | 
|  | } | 
|  |  | 
|  | if (!Tok.is(AsmToken::Identifier)) | 
|  | return MatchOperand_NoMatch; | 
|  | StringRef Mask = Tok.getString(); | 
|  |  | 
|  | if (isMClass()) { | 
|  | auto TheReg = ARMSysReg::lookupMClassSysRegByName(Mask.lower()); | 
|  | if (!TheReg || !TheReg->hasRequiredFeatures(getSTI().getFeatureBits())) | 
|  | return MatchOperand_NoMatch; | 
|  |  | 
|  | unsigned SYSmvalue = TheReg->Encoding & 0xFFF; | 
|  |  | 
|  | Parser.Lex(); // Eat identifier token. | 
|  | Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S)); | 
|  | return MatchOperand_Success; | 
|  | } | 
|  |  | 
|  | // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf" | 
|  | size_t Start = 0, Next = Mask.find('_'); | 
|  | StringRef Flags = ""; | 
|  | std::string SpecReg = Mask.slice(Start, Next).lower(); | 
|  | if (Next != StringRef::npos) | 
|  | Flags = Mask.slice(Next+1, Mask.size()); | 
|  |  | 
|  | // FlagsVal contains the complete mask: | 
|  | // 3-0: Mask | 
|  | // 4: Special Reg (cpsr, apsr => 0; spsr => 1) | 
|  | unsigned FlagsVal = 0; | 
|  |  | 
|  | if (SpecReg == "apsr") { | 
|  | FlagsVal = StringSwitch<unsigned>(Flags) | 
|  | .Case("nzcvq",  0x8) // same as CPSR_f | 
|  | .Case("g",      0x4) // same as CPSR_s | 
|  | .Case("nzcvqg", 0xc) // same as CPSR_fs | 
|  | .Default(~0U); | 
|  |  | 
|  | if (FlagsVal == ~0U) { | 
|  | if (!Flags.empty()) | 
|  | return MatchOperand_NoMatch; | 
|  | else | 
|  | FlagsVal = 8; // No flag | 
|  | } | 
|  | } else if (SpecReg == "cpsr" || SpecReg == "spsr") { | 
|  | // cpsr_all is an alias for cpsr_fc, as is plain cpsr. | 
|  | if (Flags == "all" || Flags == "") | 
|  | Flags = "fc"; | 
|  | for (int i = 0, e = Flags.size(); i != e; ++i) { | 
|  | unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1)) | 
|  | .Case("c", 1) | 
|  | .Case("x", 2) | 
|  | .Case("s", 4) | 
|  | .Case("f", 8) | 
|  | .Default(~0U); | 
|  |  | 
|  | // If some specific flag is already set, it means that some letter is | 
|  | // present more than once, this is not acceptable. | 
|  | if (Flag == ~0U || (FlagsVal & Flag)) | 
|  | return MatchOperand_NoMatch; | 
|  | FlagsVal |= Flag; | 
|  | } | 
|  | } else // No match for special register. | 
|  | return MatchOperand_NoMatch; | 
|  |  | 
|  | // Special register without flags is NOT equivalent to "fc" flags. | 
|  | // NOTE: This is a divergence from gas' behavior.  Uncommenting the following | 
|  | // two lines would enable gas compatibility at the expense of breaking | 
|  | // round-tripping. | 
|  | // | 
|  | // if (!FlagsVal) | 
|  | //  FlagsVal = 0x9; | 
|  |  | 
|  | // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1) | 
|  | if (SpecReg == "spsr") | 
|  | FlagsVal |= 16; | 
|  |  | 
|  | Parser.Lex(); // Eat identifier token. | 
|  | Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S)); | 
|  | return MatchOperand_Success; | 
|  | } | 
|  |  | 
|  | /// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for | 
|  | /// use in the MRS/MSR instructions added to support virtualization. | 
|  | OperandMatchResultTy | 
|  | ARMAsmParser::parseBankedRegOperand(OperandVector &Operands) { | 
|  | MCAsmParser &Parser = getParser(); | 
|  | SMLoc S = Parser.getTok().getLoc(); | 
|  | const AsmToken &Tok = Parser.getTok(); | 
|  | if (!Tok.is(AsmToken::Identifier)) | 
|  | return MatchOperand_NoMatch; | 
|  | StringRef RegName = Tok.getString(); | 
|  |  | 
|  | auto TheReg = ARMBankedReg::lookupBankedRegByName(RegName.lower()); | 
|  | if (!TheReg) | 
|  | return MatchOperand_NoMatch; | 
|  | unsigned Encoding = TheReg->Encoding; | 
|  |  | 
|  | Parser.Lex(); // Eat identifier token. | 
|  | Operands.push_back(ARMOperand::CreateBankedReg(Encoding, S)); | 
|  | return MatchOperand_Success; | 
|  | } | 
|  |  | 
|  | OperandMatchResultTy | 
|  | ARMAsmParser::parsePKHImm(OperandVector &Operands, StringRef Op, int Low, | 
|  | int High) { | 
|  | MCAsmParser &Parser = getParser(); | 
|  | const AsmToken &Tok = Parser.getTok(); | 
|  | if (Tok.isNot(AsmToken::Identifier)) { | 
|  | Error(Parser.getTok().getLoc(), Op + " operand expected."); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  | StringRef ShiftName = Tok.getString(); | 
|  | std::string LowerOp = Op.lower(); | 
|  | std::string UpperOp = Op.upper(); | 
|  | if (ShiftName != LowerOp && ShiftName != UpperOp) { | 
|  | Error(Parser.getTok().getLoc(), Op + " operand expected."); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  | Parser.Lex(); // Eat shift type token. | 
|  |  | 
|  | // There must be a '#' and a shift amount. | 
|  | if (Parser.getTok().isNot(AsmToken::Hash) && | 
|  | Parser.getTok().isNot(AsmToken::Dollar)) { | 
|  | Error(Parser.getTok().getLoc(), "'#' expected"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  | Parser.Lex(); // Eat hash token. | 
|  |  | 
|  | const MCExpr *ShiftAmount; | 
|  | SMLoc Loc = Parser.getTok().getLoc(); | 
|  | SMLoc EndLoc; | 
|  | if (getParser().parseExpression(ShiftAmount, EndLoc)) { | 
|  | Error(Loc, "illegal expression"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); | 
|  | if (!CE) { | 
|  | Error(Loc, "constant expression expected"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  | int Val = CE->getValue(); | 
|  | if (Val < Low || Val > High) { | 
|  | Error(Loc, "immediate value out of range"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  |  | 
|  | Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc)); | 
|  |  | 
|  | return MatchOperand_Success; | 
|  | } | 
|  |  | 
|  | OperandMatchResultTy | 
|  | ARMAsmParser::parseSetEndImm(OperandVector &Operands) { | 
|  | MCAsmParser &Parser = getParser(); | 
|  | const AsmToken &Tok = Parser.getTok(); | 
|  | SMLoc S = Tok.getLoc(); | 
|  | if (Tok.isNot(AsmToken::Identifier)) { | 
|  | Error(S, "'be' or 'le' operand expected"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  | int Val = StringSwitch<int>(Tok.getString().lower()) | 
|  | .Case("be", 1) | 
|  | .Case("le", 0) | 
|  | .Default(-1); | 
|  | Parser.Lex(); // Eat the token. | 
|  |  | 
|  | if (Val == -1) { | 
|  | Error(S, "'be' or 'le' operand expected"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  | Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::create(Val, | 
|  | getContext()), | 
|  | S, Tok.getEndLoc())); | 
|  | return MatchOperand_Success; | 
|  | } | 
|  |  | 
|  | /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT | 
|  | /// instructions. Legal values are: | 
|  | ///     lsl #n  'n' in [0,31] | 
|  | ///     asr #n  'n' in [1,32] | 
|  | ///             n == 32 encoded as n == 0. | 
|  | OperandMatchResultTy | 
|  | ARMAsmParser::parseShifterImm(OperandVector &Operands) { | 
|  | MCAsmParser &Parser = getParser(); | 
|  | const AsmToken &Tok = Parser.getTok(); | 
|  | SMLoc S = Tok.getLoc(); | 
|  | if (Tok.isNot(AsmToken::Identifier)) { | 
|  | Error(S, "shift operator 'asr' or 'lsl' expected"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  | StringRef ShiftName = Tok.getString(); | 
|  | bool isASR; | 
|  | if (ShiftName == "lsl" || ShiftName == "LSL") | 
|  | isASR = false; | 
|  | else if (ShiftName == "asr" || ShiftName == "ASR") | 
|  | isASR = true; | 
|  | else { | 
|  | Error(S, "shift operator 'asr' or 'lsl' expected"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  | Parser.Lex(); // Eat the operator. | 
|  |  | 
|  | // A '#' and a shift amount. | 
|  | if (Parser.getTok().isNot(AsmToken::Hash) && | 
|  | Parser.getTok().isNot(AsmToken::Dollar)) { | 
|  | Error(Parser.getTok().getLoc(), "'#' expected"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  | Parser.Lex(); // Eat hash token. | 
|  | SMLoc ExLoc = Parser.getTok().getLoc(); | 
|  |  | 
|  | const MCExpr *ShiftAmount; | 
|  | SMLoc EndLoc; | 
|  | if (getParser().parseExpression(ShiftAmount, EndLoc)) { | 
|  | Error(ExLoc, "malformed shift expression"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); | 
|  | if (!CE) { | 
|  | Error(ExLoc, "shift amount must be an immediate"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  |  | 
|  | int64_t Val = CE->getValue(); | 
|  | if (isASR) { | 
|  | // Shift amount must be in [1,32] | 
|  | if (Val < 1 || Val > 32) { | 
|  | Error(ExLoc, "'asr' shift amount must be in range [1,32]"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  | // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode. | 
|  | if (isThumb() && Val == 32) { | 
|  | Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  | if (Val == 32) Val = 0; | 
|  | } else { | 
|  | // Shift amount must be in [1,32] | 
|  | if (Val < 0 || Val > 31) { | 
|  | Error(ExLoc, "'lsr' shift amount must be in range [0,31]"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  | } | 
|  |  | 
|  | Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc)); | 
|  |  | 
|  | return MatchOperand_Success; | 
|  | } | 
|  |  | 
|  | /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family | 
|  | /// of instructions. Legal values are: | 
|  | ///     ror #n  'n' in {0, 8, 16, 24} | 
|  | OperandMatchResultTy | 
|  | ARMAsmParser::parseRotImm(OperandVector &Operands) { | 
|  | MCAsmParser &Parser = getParser(); | 
|  | const AsmToken &Tok = Parser.getTok(); | 
|  | SMLoc S = Tok.getLoc(); | 
|  | if (Tok.isNot(AsmToken::Identifier)) | 
|  | return MatchOperand_NoMatch; | 
|  | StringRef ShiftName = Tok.getString(); | 
|  | if (ShiftName != "ror" && ShiftName != "ROR") | 
|  | return MatchOperand_NoMatch; | 
|  | Parser.Lex(); // Eat the operator. | 
|  |  | 
|  | // A '#' and a rotate amount. | 
|  | if (Parser.getTok().isNot(AsmToken::Hash) && | 
|  | Parser.getTok().isNot(AsmToken::Dollar)) { | 
|  | Error(Parser.getTok().getLoc(), "'#' expected"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  | Parser.Lex(); // Eat hash token. | 
|  | SMLoc ExLoc = Parser.getTok().getLoc(); | 
|  |  | 
|  | const MCExpr *ShiftAmount; | 
|  | SMLoc EndLoc; | 
|  | if (getParser().parseExpression(ShiftAmount, EndLoc)) { | 
|  | Error(ExLoc, "malformed rotate expression"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); | 
|  | if (!CE) { | 
|  | Error(ExLoc, "rotate amount must be an immediate"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  |  | 
|  | int64_t Val = CE->getValue(); | 
|  | // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension) | 
|  | // normally, zero is represented in asm by omitting the rotate operand | 
|  | // entirely. | 
|  | if (Val != 8 && Val != 16 && Val != 24 && Val != 0) { | 
|  | Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  |  | 
|  | Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc)); | 
|  |  | 
|  | return MatchOperand_Success; | 
|  | } | 
|  |  | 
|  | OperandMatchResultTy | 
|  | ARMAsmParser::parseModImm(OperandVector &Operands) { | 
|  | MCAsmParser &Parser = getParser(); | 
|  | MCAsmLexer &Lexer = getLexer(); | 
|  | int64_t Imm1, Imm2; | 
|  |  | 
|  | SMLoc S = Parser.getTok().getLoc(); | 
|  |  | 
|  | // 1) A mod_imm operand can appear in the place of a register name: | 
|  | //   add r0, #mod_imm | 
|  | //   add r0, r0, #mod_imm | 
|  | // to correctly handle the latter, we bail out as soon as we see an | 
|  | // identifier. | 
|  | // | 
|  | // 2) Similarly, we do not want to parse into complex operands: | 
|  | //   mov r0, #mod_imm | 
|  | //   mov r0, :lower16:(_foo) | 
|  | if (Parser.getTok().is(AsmToken::Identifier) || | 
|  | Parser.getTok().is(AsmToken::Colon)) | 
|  | return MatchOperand_NoMatch; | 
|  |  | 
|  | // Hash (dollar) is optional as per the ARMARM | 
|  | if (Parser.getTok().is(AsmToken::Hash) || | 
|  | Parser.getTok().is(AsmToken::Dollar)) { | 
|  | // Avoid parsing into complex operands (#:) | 
|  | if (Lexer.peekTok().is(AsmToken::Colon)) | 
|  | return MatchOperand_NoMatch; | 
|  |  | 
|  | // Eat the hash (dollar) | 
|  | Parser.Lex(); | 
|  | } | 
|  |  | 
|  | SMLoc Sx1, Ex1; | 
|  | Sx1 = Parser.getTok().getLoc(); | 
|  | const MCExpr *Imm1Exp; | 
|  | if (getParser().parseExpression(Imm1Exp, Ex1)) { | 
|  | Error(Sx1, "malformed expression"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  |  | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm1Exp); | 
|  |  | 
|  | if (CE) { | 
|  | // Immediate must fit within 32-bits | 
|  | Imm1 = CE->getValue(); | 
|  | int Enc = ARM_AM::getSOImmVal(Imm1); | 
|  | if (Enc != -1 && Parser.getTok().is(AsmToken::EndOfStatement)) { | 
|  | // We have a match! | 
|  | Operands.push_back(ARMOperand::CreateModImm((Enc & 0xFF), | 
|  | (Enc & 0xF00) >> 7, | 
|  | Sx1, Ex1)); | 
|  | return MatchOperand_Success; | 
|  | } | 
|  |  | 
|  | // We have parsed an immediate which is not for us, fallback to a plain | 
|  | // immediate. This can happen for instruction aliases. For an example, | 
|  | // ARMInstrInfo.td defines the alias [mov <-> mvn] which can transform | 
|  | // a mov (mvn) with a mod_imm_neg/mod_imm_not operand into the opposite | 
|  | // instruction with a mod_imm operand. The alias is defined such that the | 
|  | // parser method is shared, that's why we have to do this here. | 
|  | if (Parser.getTok().is(AsmToken::EndOfStatement)) { | 
|  | Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); | 
|  | return MatchOperand_Success; | 
|  | } | 
|  | } else { | 
|  | // Operands like #(l1 - l2) can only be evaluated at a later stage (via an | 
|  | // MCFixup). Fallback to a plain immediate. | 
|  | Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); | 
|  | return MatchOperand_Success; | 
|  | } | 
|  |  | 
|  | // From this point onward, we expect the input to be a (#bits, #rot) pair | 
|  | if (Parser.getTok().isNot(AsmToken::Comma)) { | 
|  | Error(Sx1, "expected modified immediate operand: #[0, 255], #even[0-30]"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  |  | 
|  | if (Imm1 & ~0xFF) { | 
|  | Error(Sx1, "immediate operand must a number in the range [0, 255]"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  |  | 
|  | // Eat the comma | 
|  | Parser.Lex(); | 
|  |  | 
|  | // Repeat for #rot | 
|  | SMLoc Sx2, Ex2; | 
|  | Sx2 = Parser.getTok().getLoc(); | 
|  |  | 
|  | // Eat the optional hash (dollar) | 
|  | if (Parser.getTok().is(AsmToken::Hash) || | 
|  | Parser.getTok().is(AsmToken::Dollar)) | 
|  | Parser.Lex(); | 
|  |  | 
|  | const MCExpr *Imm2Exp; | 
|  | if (getParser().parseExpression(Imm2Exp, Ex2)) { | 
|  | Error(Sx2, "malformed expression"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  |  | 
|  | CE = dyn_cast<MCConstantExpr>(Imm2Exp); | 
|  |  | 
|  | if (CE) { | 
|  | Imm2 = CE->getValue(); | 
|  | if (!(Imm2 & ~0x1E)) { | 
|  | // We have a match! | 
|  | Operands.push_back(ARMOperand::CreateModImm(Imm1, Imm2, S, Ex2)); | 
|  | return MatchOperand_Success; | 
|  | } | 
|  | Error(Sx2, "immediate operand must an even number in the range [0, 30]"); | 
|  | return MatchOperand_ParseFail; | 
|  | } else { | 
|  | Error(Sx2, "constant expression expected"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  | } | 
|  |  | 
|  | OperandMatchResultTy | 
|  | ARMAsmParser::parseBitfield(OperandVector &Operands) { | 
|  | MCAsmParser &Parser = getParser(); | 
|  | SMLoc S = Parser.getTok().getLoc(); | 
|  | // The bitfield descriptor is really two operands, the LSB and the width. | 
|  | if (Parser.getTok().isNot(AsmToken::Hash) && | 
|  | Parser.getTok().isNot(AsmToken::Dollar)) { | 
|  | Error(Parser.getTok().getLoc(), "'#' expected"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  | Parser.Lex(); // Eat hash token. | 
|  |  | 
|  | const MCExpr *LSBExpr; | 
|  | SMLoc E = Parser.getTok().getLoc(); | 
|  | if (getParser().parseExpression(LSBExpr)) { | 
|  | Error(E, "malformed immediate expression"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr); | 
|  | if (!CE) { | 
|  | Error(E, "'lsb' operand must be an immediate"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  |  | 
|  | int64_t LSB = CE->getValue(); | 
|  | // The LSB must be in the range [0,31] | 
|  | if (LSB < 0 || LSB > 31) { | 
|  | Error(E, "'lsb' operand must be in the range [0,31]"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  | E = Parser.getTok().getLoc(); | 
|  |  | 
|  | // Expect another immediate operand. | 
|  | if (Parser.getTok().isNot(AsmToken::Comma)) { | 
|  | Error(Parser.getTok().getLoc(), "too few operands"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  | Parser.Lex(); // Eat hash token. | 
|  | if (Parser.getTok().isNot(AsmToken::Hash) && | 
|  | Parser.getTok().isNot(AsmToken::Dollar)) { | 
|  | Error(Parser.getTok().getLoc(), "'#' expected"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  | Parser.Lex(); // Eat hash token. | 
|  |  | 
|  | const MCExpr *WidthExpr; | 
|  | SMLoc EndLoc; | 
|  | if (getParser().parseExpression(WidthExpr, EndLoc)) { | 
|  | Error(E, "malformed immediate expression"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  | CE = dyn_cast<MCConstantExpr>(WidthExpr); | 
|  | if (!CE) { | 
|  | Error(E, "'width' operand must be an immediate"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  |  | 
|  | int64_t Width = CE->getValue(); | 
|  | // The LSB must be in the range [1,32-lsb] | 
|  | if (Width < 1 || Width > 32 - LSB) { | 
|  | Error(E, "'width' operand must be in the range [1,32-lsb]"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  |  | 
|  | Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc)); | 
|  |  | 
|  | return MatchOperand_Success; | 
|  | } | 
|  |  | 
|  | OperandMatchResultTy | 
|  | ARMAsmParser::parsePostIdxReg(OperandVector &Operands) { | 
|  | // Check for a post-index addressing register operand. Specifically: | 
|  | // postidx_reg := '+' register {, shift} | 
|  | //              | '-' register {, shift} | 
|  | //              | register {, shift} | 
|  |  | 
|  | // This method must return MatchOperand_NoMatch without consuming any tokens | 
|  | // in the case where there is no match, as other alternatives take other | 
|  | // parse methods. | 
|  | MCAsmParser &Parser = getParser(); | 
|  | AsmToken Tok = Parser.getTok(); | 
|  | SMLoc S = Tok.getLoc(); | 
|  | bool haveEaten = false; | 
|  | bool isAdd = true; | 
|  | if (Tok.is(AsmToken::Plus)) { | 
|  | Parser.Lex(); // Eat the '+' token. | 
|  | haveEaten = true; | 
|  | } else if (Tok.is(AsmToken::Minus)) { | 
|  | Parser.Lex(); // Eat the '-' token. | 
|  | isAdd = false; | 
|  | haveEaten = true; | 
|  | } | 
|  |  | 
|  | SMLoc E = Parser.getTok().getEndLoc(); | 
|  | int Reg = tryParseRegister(); | 
|  | if (Reg == -1) { | 
|  | if (!haveEaten) | 
|  | return MatchOperand_NoMatch; | 
|  | Error(Parser.getTok().getLoc(), "register expected"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  |  | 
|  | ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift; | 
|  | unsigned ShiftImm = 0; | 
|  | if (Parser.getTok().is(AsmToken::Comma)) { | 
|  | Parser.Lex(); // Eat the ','. | 
|  | if (parseMemRegOffsetShift(ShiftTy, ShiftImm)) | 
|  | return MatchOperand_ParseFail; | 
|  |  | 
|  | // FIXME: Only approximates end...may include intervening whitespace. | 
|  | E = Parser.getTok().getLoc(); | 
|  | } | 
|  |  | 
|  | Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy, | 
|  | ShiftImm, S, E)); | 
|  |  | 
|  | return MatchOperand_Success; | 
|  | } | 
|  |  | 
|  | OperandMatchResultTy | 
|  | ARMAsmParser::parseAM3Offset(OperandVector &Operands) { | 
|  | // Check for a post-index addressing register operand. Specifically: | 
|  | // am3offset := '+' register | 
|  | //              | '-' register | 
|  | //              | register | 
|  | //              | # imm | 
|  | //              | # + imm | 
|  | //              | # - imm | 
|  |  | 
|  | // This method must return MatchOperand_NoMatch without consuming any tokens | 
|  | // in the case where there is no match, as other alternatives take other | 
|  | // parse methods. | 
|  | MCAsmParser &Parser = getParser(); | 
|  | AsmToken Tok = Parser.getTok(); | 
|  | SMLoc S = Tok.getLoc(); | 
|  |  | 
|  | // Do immediates first, as we always parse those if we have a '#'. | 
|  | if (Parser.getTok().is(AsmToken::Hash) || | 
|  | Parser.getTok().is(AsmToken::Dollar)) { | 
|  | Parser.Lex(); // Eat '#' or '$'. | 
|  | // Explicitly look for a '-', as we need to encode negative zero | 
|  | // differently. | 
|  | bool isNegative = Parser.getTok().is(AsmToken::Minus); | 
|  | const MCExpr *Offset; | 
|  | SMLoc E; | 
|  | if (getParser().parseExpression(Offset, E)) | 
|  | return MatchOperand_ParseFail; | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); | 
|  | if (!CE) { | 
|  | Error(S, "constant expression expected"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  | // Negative zero is encoded as the flag value | 
|  | // std::numeric_limits<int32_t>::min(). | 
|  | int32_t Val = CE->getValue(); | 
|  | if (isNegative && Val == 0) | 
|  | Val = std::numeric_limits<int32_t>::min(); | 
|  |  | 
|  | Operands.push_back( | 
|  | ARMOperand::CreateImm(MCConstantExpr::create(Val, getContext()), S, E)); | 
|  |  | 
|  | return MatchOperand_Success; | 
|  | } | 
|  |  | 
|  | bool haveEaten = false; | 
|  | bool isAdd = true; | 
|  | if (Tok.is(AsmToken::Plus)) { | 
|  | Parser.Lex(); // Eat the '+' token. | 
|  | haveEaten = true; | 
|  | } else if (Tok.is(AsmToken::Minus)) { | 
|  | Parser.Lex(); // Eat the '-' token. | 
|  | isAdd = false; | 
|  | haveEaten = true; | 
|  | } | 
|  |  | 
|  | Tok = Parser.getTok(); | 
|  | int Reg = tryParseRegister(); | 
|  | if (Reg == -1) { | 
|  | if (!haveEaten) | 
|  | return MatchOperand_NoMatch; | 
|  | Error(Tok.getLoc(), "register expected"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  |  | 
|  | Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift, | 
|  | 0, S, Tok.getEndLoc())); | 
|  |  | 
|  | return MatchOperand_Success; | 
|  | } | 
|  |  | 
|  | /// Convert parsed operands to MCInst.  Needed here because this instruction | 
|  | /// only has two register operands, but multiplication is commutative so | 
|  | /// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN". | 
|  | void ARMAsmParser::cvtThumbMultiply(MCInst &Inst, | 
|  | const OperandVector &Operands) { | 
|  | ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1); | 
|  | ((ARMOperand &)*Operands[1]).addCCOutOperands(Inst, 1); | 
|  | // If we have a three-operand form, make sure to set Rn to be the operand | 
|  | // that isn't the same as Rd. | 
|  | unsigned RegOp = 4; | 
|  | if (Operands.size() == 6 && | 
|  | ((ARMOperand &)*Operands[4]).getReg() == | 
|  | ((ARMOperand &)*Operands[3]).getReg()) | 
|  | RegOp = 5; | 
|  | ((ARMOperand &)*Operands[RegOp]).addRegOperands(Inst, 1); | 
|  | Inst.addOperand(Inst.getOperand(0)); | 
|  | ((ARMOperand &)*Operands[2]).addCondCodeOperands(Inst, 2); | 
|  | } | 
|  |  | 
|  | void ARMAsmParser::cvtThumbBranches(MCInst &Inst, | 
|  | const OperandVector &Operands) { | 
|  | int CondOp = -1, ImmOp = -1; | 
|  | switch(Inst.getOpcode()) { | 
|  | case ARM::tB: | 
|  | case ARM::tBcc:  CondOp = 1; ImmOp = 2; break; | 
|  |  | 
|  | case ARM::t2B: | 
|  | case ARM::t2Bcc: CondOp = 1; ImmOp = 3; break; | 
|  |  | 
|  | default: llvm_unreachable("Unexpected instruction in cvtThumbBranches"); | 
|  | } | 
|  | // first decide whether or not the branch should be conditional | 
|  | // by looking at it's location relative to an IT block | 
|  | if(inITBlock()) { | 
|  | // inside an IT block we cannot have any conditional branches. any | 
|  | // such instructions needs to be converted to unconditional form | 
|  | switch(Inst.getOpcode()) { | 
|  | case ARM::tBcc: Inst.setOpcode(ARM::tB); break; | 
|  | case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break; | 
|  | } | 
|  | } else { | 
|  | // outside IT blocks we can only have unconditional branches with AL | 
|  | // condition code or conditional branches with non-AL condition code | 
|  | unsigned Cond = static_cast<ARMOperand &>(*Operands[CondOp]).getCondCode(); | 
|  | switch(Inst.getOpcode()) { | 
|  | case ARM::tB: | 
|  | case ARM::tBcc: | 
|  | Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc); | 
|  | break; | 
|  | case ARM::t2B: | 
|  | case ARM::t2Bcc: | 
|  | Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // now decide on encoding size based on branch target range | 
|  | switch(Inst.getOpcode()) { | 
|  | // classify tB as either t2B or t1B based on range of immediate operand | 
|  | case ARM::tB: { | 
|  | ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); | 
|  | if (!op.isSignedOffset<11, 1>() && isThumb() && hasV8MBaseline()) | 
|  | Inst.setOpcode(ARM::t2B); | 
|  | break; | 
|  | } | 
|  | // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand | 
|  | case ARM::tBcc: { | 
|  | ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); | 
|  | if (!op.isSignedOffset<8, 1>() && isThumb() && hasV8MBaseline()) | 
|  | Inst.setOpcode(ARM::t2Bcc); | 
|  | break; | 
|  | } | 
|  | } | 
|  | ((ARMOperand &)*Operands[ImmOp]).addImmOperands(Inst, 1); | 
|  | ((ARMOperand &)*Operands[CondOp]).addCondCodeOperands(Inst, 2); | 
|  | } | 
|  |  | 
|  | /// Parse an ARM memory expression, return false if successful else return true | 
|  | /// or an error.  The first token must be a '[' when called. | 
|  | bool ARMAsmParser::parseMemory(OperandVector &Operands) { | 
|  | MCAsmParser &Parser = getParser(); | 
|  | SMLoc S, E; | 
|  | if (Parser.getTok().isNot(AsmToken::LBrac)) | 
|  | return TokError("Token is not a Left Bracket"); | 
|  | S = Parser.getTok().getLoc(); | 
|  | Parser.Lex(); // Eat left bracket token. | 
|  |  | 
|  | const AsmToken &BaseRegTok = Parser.getTok(); | 
|  | int BaseRegNum = tryParseRegister(); | 
|  | if (BaseRegNum == -1) | 
|  | return Error(BaseRegTok.getLoc(), "register expected"); | 
|  |  | 
|  | // The next token must either be a comma, a colon or a closing bracket. | 
|  | const AsmToken &Tok = Parser.getTok(); | 
|  | if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) && | 
|  | !Tok.is(AsmToken::RBrac)) | 
|  | return Error(Tok.getLoc(), "malformed memory operand"); | 
|  |  | 
|  | if (Tok.is(AsmToken::RBrac)) { | 
|  | E = Tok.getEndLoc(); | 
|  | Parser.Lex(); // Eat right bracket token. | 
|  |  | 
|  | Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, | 
|  | ARM_AM::no_shift, 0, 0, false, | 
|  | S, E)); | 
|  |  | 
|  | // If there's a pre-indexing writeback marker, '!', just add it as a token | 
|  | // operand. It's rather odd, but syntactically valid. | 
|  | if (Parser.getTok().is(AsmToken::Exclaim)) { | 
|  | Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); | 
|  | Parser.Lex(); // Eat the '!'. | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) && | 
|  | "Lost colon or comma in memory operand?!"); | 
|  | if (Tok.is(AsmToken::Comma)) { | 
|  | Parser.Lex(); // Eat the comma. | 
|  | } | 
|  |  | 
|  | // If we have a ':', it's an alignment specifier. | 
|  | if (Parser.getTok().is(AsmToken::Colon)) { | 
|  | Parser.Lex(); // Eat the ':'. | 
|  | E = Parser.getTok().getLoc(); | 
|  | SMLoc AlignmentLoc = Tok.getLoc(); | 
|  |  | 
|  | const MCExpr *Expr; | 
|  | if (getParser().parseExpression(Expr)) | 
|  | return true; | 
|  |  | 
|  | // The expression has to be a constant. Memory references with relocations | 
|  | // don't come through here, as they use the <label> forms of the relevant | 
|  | // instructions. | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); | 
|  | if (!CE) | 
|  | return Error (E, "constant expression expected"); | 
|  |  | 
|  | unsigned Align = 0; | 
|  | switch (CE->getValue()) { | 
|  | default: | 
|  | return Error(E, | 
|  | "alignment specifier must be 16, 32, 64, 128, or 256 bits"); | 
|  | case 16:  Align = 2; break; | 
|  | case 32:  Align = 4; break; | 
|  | case 64:  Align = 8; break; | 
|  | case 128: Align = 16; break; | 
|  | case 256: Align = 32; break; | 
|  | } | 
|  |  | 
|  | // Now we should have the closing ']' | 
|  | if (Parser.getTok().isNot(AsmToken::RBrac)) | 
|  | return Error(Parser.getTok().getLoc(), "']' expected"); | 
|  | E = Parser.getTok().getEndLoc(); | 
|  | Parser.Lex(); // Eat right bracket token. | 
|  |  | 
|  | // Don't worry about range checking the value here. That's handled by | 
|  | // the is*() predicates. | 
|  | Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, | 
|  | ARM_AM::no_shift, 0, Align, | 
|  | false, S, E, AlignmentLoc)); | 
|  |  | 
|  | // If there's a pre-indexing writeback marker, '!', just add it as a token | 
|  | // operand. | 
|  | if (Parser.getTok().is(AsmToken::Exclaim)) { | 
|  | Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); | 
|  | Parser.Lex(); // Eat the '!'. | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If we have a '#', it's an immediate offset, else assume it's a register | 
|  | // offset. Be friendly and also accept a plain integer (without a leading | 
|  | // hash) for gas compatibility. | 
|  | if (Parser.getTok().is(AsmToken::Hash) || | 
|  | Parser.getTok().is(AsmToken::Dollar) || | 
|  | Parser.getTok().is(AsmToken::Integer)) { | 
|  | if (Parser.getTok().isNot(AsmToken::Integer)) | 
|  | Parser.Lex(); // Eat '#' or '$'. | 
|  | E = Parser.getTok().getLoc(); | 
|  |  | 
|  | bool isNegative = getParser().getTok().is(AsmToken::Minus); | 
|  | const MCExpr *Offset; | 
|  | if (getParser().parseExpression(Offset)) | 
|  | return true; | 
|  |  | 
|  | // The expression has to be a constant. Memory references with relocations | 
|  | // don't come through here, as they use the <label> forms of the relevant | 
|  | // instructions. | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); | 
|  | if (!CE) | 
|  | return Error (E, "constant expression expected"); | 
|  |  | 
|  | // If the constant was #-0, represent it as | 
|  | // std::numeric_limits<int32_t>::min(). | 
|  | int32_t Val = CE->getValue(); | 
|  | if (isNegative && Val == 0) | 
|  | CE = MCConstantExpr::create(std::numeric_limits<int32_t>::min(), | 
|  | getContext()); | 
|  |  | 
|  | // Now we should have the closing ']' | 
|  | if (Parser.getTok().isNot(AsmToken::RBrac)) | 
|  | return Error(Parser.getTok().getLoc(), "']' expected"); | 
|  | E = Parser.getTok().getEndLoc(); | 
|  | Parser.Lex(); // Eat right bracket token. | 
|  |  | 
|  | // Don't worry about range checking the value here. That's handled by | 
|  | // the is*() predicates. | 
|  | Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0, | 
|  | ARM_AM::no_shift, 0, 0, | 
|  | false, S, E)); | 
|  |  | 
|  | // If there's a pre-indexing writeback marker, '!', just add it as a token | 
|  | // operand. | 
|  | if (Parser.getTok().is(AsmToken::Exclaim)) { | 
|  | Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); | 
|  | Parser.Lex(); // Eat the '!'. | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // The register offset is optionally preceded by a '+' or '-' | 
|  | bool isNegative = false; | 
|  | if (Parser.getTok().is(AsmToken::Minus)) { | 
|  | isNegative = true; | 
|  | Parser.Lex(); // Eat the '-'. | 
|  | } else if (Parser.getTok().is(AsmToken::Plus)) { | 
|  | // Nothing to do. | 
|  | Parser.Lex(); // Eat the '+'. | 
|  | } | 
|  |  | 
|  | E = Parser.getTok().getLoc(); | 
|  | int OffsetRegNum = tryParseRegister(); | 
|  | if (OffsetRegNum == -1) | 
|  | return Error(E, "register expected"); | 
|  |  | 
|  | // If there's a shift operator, handle it. | 
|  | ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift; | 
|  | unsigned ShiftImm = 0; | 
|  | if (Parser.getTok().is(AsmToken::Comma)) { | 
|  | Parser.Lex(); // Eat the ','. | 
|  | if (parseMemRegOffsetShift(ShiftType, ShiftImm)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Now we should have the closing ']' | 
|  | if (Parser.getTok().isNot(AsmToken::RBrac)) | 
|  | return Error(Parser.getTok().getLoc(), "']' expected"); | 
|  | E = Parser.getTok().getEndLoc(); | 
|  | Parser.Lex(); // Eat right bracket token. | 
|  |  | 
|  | Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, OffsetRegNum, | 
|  | ShiftType, ShiftImm, 0, isNegative, | 
|  | S, E)); | 
|  |  | 
|  | // If there's a pre-indexing writeback marker, '!', just add it as a token | 
|  | // operand. | 
|  | if (Parser.getTok().is(AsmToken::Exclaim)) { | 
|  | Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); | 
|  | Parser.Lex(); // Eat the '!'. | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// parseMemRegOffsetShift - one of these two: | 
|  | ///   ( lsl | lsr | asr | ror ) , # shift_amount | 
|  | ///   rrx | 
|  | /// return true if it parses a shift otherwise it returns false. | 
|  | bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St, | 
|  | unsigned &Amount) { | 
|  | MCAsmParser &Parser = getParser(); | 
|  | SMLoc Loc = Parser.getTok().getLoc(); | 
|  | const AsmToken &Tok = Parser.getTok(); | 
|  | if (Tok.isNot(AsmToken::Identifier)) | 
|  | return Error(Loc, "illegal shift operator"); | 
|  | StringRef ShiftName = Tok.getString(); | 
|  | if (ShiftName == "lsl" || ShiftName == "LSL" || | 
|  | ShiftName == "asl" || ShiftName == "ASL") | 
|  | St = ARM_AM::lsl; | 
|  | else if (ShiftName == "lsr" || ShiftName == "LSR") | 
|  | St = ARM_AM::lsr; | 
|  | else if (ShiftName == "asr" || ShiftName == "ASR") | 
|  | St = ARM_AM::asr; | 
|  | else if (ShiftName == "ror" || ShiftName == "ROR") | 
|  | St = ARM_AM::ror; | 
|  | else if (ShiftName == "rrx" || ShiftName == "RRX") | 
|  | St = ARM_AM::rrx; | 
|  | else | 
|  | return Error(Loc, "illegal shift operator"); | 
|  | Parser.Lex(); // Eat shift type token. | 
|  |  | 
|  | // rrx stands alone. | 
|  | Amount = 0; | 
|  | if (St != ARM_AM::rrx) { | 
|  | Loc = Parser.getTok().getLoc(); | 
|  | // A '#' and a shift amount. | 
|  | const AsmToken &HashTok = Parser.getTok(); | 
|  | if (HashTok.isNot(AsmToken::Hash) && | 
|  | HashTok.isNot(AsmToken::Dollar)) | 
|  | return Error(HashTok.getLoc(), "'#' expected"); | 
|  | Parser.Lex(); // Eat hash token. | 
|  |  | 
|  | const MCExpr *Expr; | 
|  | if (getParser().parseExpression(Expr)) | 
|  | return true; | 
|  | // Range check the immediate. | 
|  | // lsl, ror: 0 <= imm <= 31 | 
|  | // lsr, asr: 0 <= imm <= 32 | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); | 
|  | if (!CE) | 
|  | return Error(Loc, "shift amount must be an immediate"); | 
|  | int64_t Imm = CE->getValue(); | 
|  | if (Imm < 0 || | 
|  | ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) || | 
|  | ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32)) | 
|  | return Error(Loc, "immediate shift value out of range"); | 
|  | // If <ShiftTy> #0, turn it into a no_shift. | 
|  | if (Imm == 0) | 
|  | St = ARM_AM::lsl; | 
|  | // For consistency, treat lsr #32 and asr #32 as having immediate value 0. | 
|  | if (Imm == 32) | 
|  | Imm = 0; | 
|  | Amount = Imm; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// parseFPImm - A floating point immediate expression operand. | 
|  | OperandMatchResultTy | 
|  | ARMAsmParser::parseFPImm(OperandVector &Operands) { | 
|  | MCAsmParser &Parser = getParser(); | 
|  | // Anything that can accept a floating point constant as an operand | 
|  | // needs to go through here, as the regular parseExpression is | 
|  | // integer only. | 
|  | // | 
|  | // This routine still creates a generic Immediate operand, containing | 
|  | // a bitcast of the 64-bit floating point value. The various operands | 
|  | // that accept floats can check whether the value is valid for them | 
|  | // via the standard is*() predicates. | 
|  |  | 
|  | SMLoc S = Parser.getTok().getLoc(); | 
|  |  | 
|  | if (Parser.getTok().isNot(AsmToken::Hash) && | 
|  | Parser.getTok().isNot(AsmToken::Dollar)) | 
|  | return MatchOperand_NoMatch; | 
|  |  | 
|  | // Disambiguate the VMOV forms that can accept an FP immediate. | 
|  | // vmov.f32 <sreg>, #imm | 
|  | // vmov.f64 <dreg>, #imm | 
|  | // vmov.f32 <dreg>, #imm  @ vector f32x2 | 
|  | // vmov.f32 <qreg>, #imm  @ vector f32x4 | 
|  | // | 
|  | // There are also the NEON VMOV instructions which expect an | 
|  | // integer constant. Make sure we don't try to parse an FPImm | 
|  | // for these: | 
|  | // vmov.i{8|16|32|64} <dreg|qreg>, #imm | 
|  | ARMOperand &TyOp = static_cast<ARMOperand &>(*Operands[2]); | 
|  | bool isVmovf = TyOp.isToken() && | 
|  | (TyOp.getToken() == ".f32" || TyOp.getToken() == ".f64" || | 
|  | TyOp.getToken() == ".f16"); | 
|  | ARMOperand &Mnemonic = static_cast<ARMOperand &>(*Operands[0]); | 
|  | bool isFconst = Mnemonic.isToken() && (Mnemonic.getToken() == "fconstd" || | 
|  | Mnemonic.getToken() == "fconsts"); | 
|  | if (!(isVmovf || isFconst)) | 
|  | return MatchOperand_NoMatch; | 
|  |  | 
|  | Parser.Lex(); // Eat '#' or '$'. | 
|  |  | 
|  | // Handle negation, as that still comes through as a separate token. | 
|  | bool isNegative = false; | 
|  | if (Parser.getTok().is(AsmToken::Minus)) { | 
|  | isNegative = true; | 
|  | Parser.Lex(); | 
|  | } | 
|  | const AsmToken &Tok = Parser.getTok(); | 
|  | SMLoc Loc = Tok.getLoc(); | 
|  | if (Tok.is(AsmToken::Real) && isVmovf) { | 
|  | APFloat RealVal(APFloat::IEEEsingle(), Tok.getString()); | 
|  | uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue(); | 
|  | // If we had a '-' in front, toggle the sign bit. | 
|  | IntVal ^= (uint64_t)isNegative << 31; | 
|  | Parser.Lex(); // Eat the token. | 
|  | Operands.push_back(ARMOperand::CreateImm( | 
|  | MCConstantExpr::create(IntVal, getContext()), | 
|  | S, Parser.getTok().getLoc())); | 
|  | return MatchOperand_Success; | 
|  | } | 
|  | // Also handle plain integers. Instructions which allow floating point | 
|  | // immediates also allow a raw encoded 8-bit value. | 
|  | if (Tok.is(AsmToken::Integer) && isFconst) { | 
|  | int64_t Val = Tok.getIntVal(); | 
|  | Parser.Lex(); // Eat the token. | 
|  | if (Val > 255 || Val < 0) { | 
|  | Error(Loc, "encoded floating point value out of range"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  | float RealVal = ARM_AM::getFPImmFloat(Val); | 
|  | Val = APFloat(RealVal).bitcastToAPInt().getZExtValue(); | 
|  |  | 
|  | Operands.push_back(ARMOperand::CreateImm( | 
|  | MCConstantExpr::create(Val, getContext()), S, | 
|  | Parser.getTok().getLoc())); | 
|  | return MatchOperand_Success; | 
|  | } | 
|  |  | 
|  | Error(Loc, "invalid floating point immediate"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  |  | 
|  | /// Parse a arm instruction operand.  For now this parses the operand regardless | 
|  | /// of the mnemonic. | 
|  | bool ARMAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) { | 
|  | MCAsmParser &Parser = getParser(); | 
|  | SMLoc S, E; | 
|  |  | 
|  | // Check if the current operand has a custom associated parser, if so, try to | 
|  | // custom parse the operand, or fallback to the general approach. | 
|  | OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic); | 
|  | if (ResTy == MatchOperand_Success) | 
|  | return false; | 
|  | // If there wasn't a custom match, try the generic matcher below. Otherwise, | 
|  | // there was a match, but an error occurred, in which case, just return that | 
|  | // the operand parsing failed. | 
|  | if (ResTy == MatchOperand_ParseFail) | 
|  | return true; | 
|  |  | 
|  | switch (getLexer().getKind()) { | 
|  | default: | 
|  | Error(Parser.getTok().getLoc(), "unexpected token in operand"); | 
|  | return true; | 
|  | case AsmToken::Identifier: { | 
|  | // If we've seen a branch mnemonic, the next operand must be a label.  This | 
|  | // is true even if the label is a register name.  So "br r1" means branch to | 
|  | // label "r1". | 
|  | bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl"; | 
|  | if (!ExpectLabel) { | 
|  | if (!tryParseRegisterWithWriteBack(Operands)) | 
|  | return false; | 
|  | int Res = tryParseShiftRegister(Operands); | 
|  | if (Res == 0) // success | 
|  | return false; | 
|  | else if (Res == -1) // irrecoverable error | 
|  | return true; | 
|  | // If this is VMRS, check for the apsr_nzcv operand. | 
|  | if (Mnemonic == "vmrs" && | 
|  | Parser.getTok().getString().equals_lower("apsr_nzcv")) { | 
|  | S = Parser.getTok().getLoc(); | 
|  | Parser.Lex(); | 
|  | Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S)); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Fall though for the Identifier case that is not a register or a | 
|  | // special name. | 
|  | LLVM_FALLTHROUGH; | 
|  | } | 
|  | case AsmToken::LParen:  // parenthesized expressions like (_strcmp-4) | 
|  | case AsmToken::Integer: // things like 1f and 2b as a branch targets | 
|  | case AsmToken::String:  // quoted label names. | 
|  | case AsmToken::Dot: {   // . as a branch target | 
|  | // This was not a register so parse other operands that start with an | 
|  | // identifier (like labels) as expressions and create them as immediates. | 
|  | const MCExpr *IdVal; | 
|  | S = Parser.getTok().getLoc(); | 
|  | if (getParser().parseExpression(IdVal)) | 
|  | return true; | 
|  | E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); | 
|  | Operands.push_back(ARMOperand::CreateImm(IdVal, S, E)); | 
|  | return false; | 
|  | } | 
|  | case AsmToken::LBrac: | 
|  | return parseMemory(Operands); | 
|  | case AsmToken::LCurly: | 
|  | return parseRegisterList(Operands); | 
|  | case AsmToken::Dollar: | 
|  | case AsmToken::Hash: | 
|  | // #42 -> immediate. | 
|  | S = Parser.getTok().getLoc(); | 
|  | Parser.Lex(); | 
|  |  | 
|  | if (Parser.getTok().isNot(AsmToken::Colon)) { | 
|  | bool isNegative = Parser.getTok().is(AsmToken::Minus); | 
|  | const MCExpr *ImmVal; | 
|  | if (getParser().parseExpression(ImmVal)) | 
|  | return true; | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal); | 
|  | if (CE) { | 
|  | int32_t Val = CE->getValue(); | 
|  | if (isNegative && Val == 0) | 
|  | ImmVal = MCConstantExpr::create(std::numeric_limits<int32_t>::min(), | 
|  | getContext()); | 
|  | } | 
|  | E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); | 
|  | Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E)); | 
|  |  | 
|  | // There can be a trailing '!' on operands that we want as a separate | 
|  | // '!' Token operand. Handle that here. For example, the compatibility | 
|  | // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'. | 
|  | if (Parser.getTok().is(AsmToken::Exclaim)) { | 
|  | Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(), | 
|  | Parser.getTok().getLoc())); | 
|  | Parser.Lex(); // Eat exclaim token | 
|  | } | 
|  | return false; | 
|  | } | 
|  | // w/ a ':' after the '#', it's just like a plain ':'. | 
|  | LLVM_FALLTHROUGH; | 
|  |  | 
|  | case AsmToken::Colon: { | 
|  | S = Parser.getTok().getLoc(); | 
|  | // ":lower16:" and ":upper16:" expression prefixes | 
|  | // FIXME: Check it's an expression prefix, | 
|  | // e.g. (FOO - :lower16:BAR) isn't legal. | 
|  | ARMMCExpr::VariantKind RefKind; | 
|  | if (parsePrefix(RefKind)) | 
|  | return true; | 
|  |  | 
|  | const MCExpr *SubExprVal; | 
|  | if (getParser().parseExpression(SubExprVal)) | 
|  | return true; | 
|  |  | 
|  | const MCExpr *ExprVal = ARMMCExpr::create(RefKind, SubExprVal, | 
|  | getContext()); | 
|  | E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); | 
|  | Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E)); | 
|  | return false; | 
|  | } | 
|  | case AsmToken::Equal: { | 
|  | S = Parser.getTok().getLoc(); | 
|  | if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val) | 
|  | return Error(S, "unexpected token in operand"); | 
|  | Parser.Lex(); // Eat '=' | 
|  | const MCExpr *SubExprVal; | 
|  | if (getParser().parseExpression(SubExprVal)) | 
|  | return true; | 
|  | E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); | 
|  |  | 
|  | // execute-only: we assume that assembly programmers know what they are | 
|  | // doing and allow literal pool creation here | 
|  | Operands.push_back(ARMOperand::CreateConstantPoolImm(SubExprVal, S, E)); | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e. | 
|  | //  :lower16: and :upper16:. | 
|  | bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) { | 
|  | MCAsmParser &Parser = getParser(); | 
|  | RefKind = ARMMCExpr::VK_ARM_None; | 
|  |  | 
|  | // consume an optional '#' (GNU compatibility) | 
|  | if (getLexer().is(AsmToken::Hash)) | 
|  | Parser.Lex(); | 
|  |  | 
|  | // :lower16: and :upper16: modifiers | 
|  | assert(getLexer().is(AsmToken::Colon) && "expected a :"); | 
|  | Parser.Lex(); // Eat ':' | 
|  |  | 
|  | if (getLexer().isNot(AsmToken::Identifier)) { | 
|  | Error(Parser.getTok().getLoc(), "expected prefix identifier in operand"); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | enum { | 
|  | COFF = (1 << MCObjectFileInfo::IsCOFF), | 
|  | ELF = (1 << MCObjectFileInfo::IsELF), | 
|  | MACHO = (1 << MCObjectFileInfo::IsMachO), | 
|  | WASM = (1 << MCObjectFileInfo::IsWasm), | 
|  | }; | 
|  | static const struct PrefixEntry { | 
|  | const char *Spelling; | 
|  | ARMMCExpr::VariantKind VariantKind; | 
|  | uint8_t SupportedFormats; | 
|  | } PrefixEntries[] = { | 
|  | { "lower16", ARMMCExpr::VK_ARM_LO16, COFF | ELF | MACHO }, | 
|  | { "upper16", ARMMCExpr::VK_ARM_HI16, COFF | ELF | MACHO }, | 
|  | }; | 
|  |  | 
|  | StringRef IDVal = Parser.getTok().getIdentifier(); | 
|  |  | 
|  | const auto &Prefix = | 
|  | std::find_if(std::begin(PrefixEntries), std::end(PrefixEntries), | 
|  | [&IDVal](const PrefixEntry &PE) { | 
|  | return PE.Spelling == IDVal; | 
|  | }); | 
|  | if (Prefix == std::end(PrefixEntries)) { | 
|  | Error(Parser.getTok().getLoc(), "unexpected prefix in operand"); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | uint8_t CurrentFormat; | 
|  | switch (getContext().getObjectFileInfo()->getObjectFileType()) { | 
|  | case MCObjectFileInfo::IsMachO: | 
|  | CurrentFormat = MACHO; | 
|  | break; | 
|  | case MCObjectFileInfo::IsELF: | 
|  | CurrentFormat = ELF; | 
|  | break; | 
|  | case MCObjectFileInfo::IsCOFF: | 
|  | CurrentFormat = COFF; | 
|  | break; | 
|  | case MCObjectFileInfo::IsWasm: | 
|  | CurrentFormat = WASM; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (~Prefix->SupportedFormats & CurrentFormat) { | 
|  | Error(Parser.getTok().getLoc(), | 
|  | "cannot represent relocation in the current file format"); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | RefKind = Prefix->VariantKind; | 
|  | Parser.Lex(); | 
|  |  | 
|  | if (getLexer().isNot(AsmToken::Colon)) { | 
|  | Error(Parser.getTok().getLoc(), "unexpected token after prefix"); | 
|  | return true; | 
|  | } | 
|  | Parser.Lex(); // Eat the last ':' | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// \brief Given a mnemonic, split out possible predication code and carry | 
|  | /// setting letters to form a canonical mnemonic and flags. | 
|  | // | 
|  | // FIXME: Would be nice to autogen this. | 
|  | // FIXME: This is a bit of a maze of special cases. | 
|  | StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic, | 
|  | unsigned &PredicationCode, | 
|  | bool &CarrySetting, | 
|  | unsigned &ProcessorIMod, | 
|  | StringRef &ITMask) { | 
|  | PredicationCode = ARMCC::AL; | 
|  | CarrySetting = false; | 
|  | ProcessorIMod = 0; | 
|  |  | 
|  | // Ignore some mnemonics we know aren't predicated forms. | 
|  | // | 
|  | // FIXME: Would be nice to autogen this. | 
|  | if ((Mnemonic == "movs" && isThumb()) || | 
|  | Mnemonic == "teq"   || Mnemonic == "vceq"   || Mnemonic == "svc"   || | 
|  | Mnemonic == "mls"   || Mnemonic == "smmls"  || Mnemonic == "vcls"  || | 
|  | Mnemonic == "vmls"  || Mnemonic == "vnmls"  || Mnemonic == "vacge" || | 
|  | Mnemonic == "vcge"  || Mnemonic == "vclt"   || Mnemonic == "vacgt" || | 
|  | Mnemonic == "vaclt" || Mnemonic == "vacle"  || Mnemonic == "hlt" || | 
|  | Mnemonic == "vcgt"  || Mnemonic == "vcle"   || Mnemonic == "smlal" || | 
|  | Mnemonic == "umaal" || Mnemonic == "umlal"  || Mnemonic == "vabal" || | 
|  | Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" || | 
|  | Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" || | 
|  | Mnemonic == "vcvta" || Mnemonic == "vcvtn"  || Mnemonic == "vcvtp" || | 
|  | Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" || | 
|  | Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic == "hvc" || | 
|  | Mnemonic.startswith("vsel") || Mnemonic == "vins" || Mnemonic == "vmovx" || | 
|  | Mnemonic == "bxns"  || Mnemonic == "blxns" || | 
|  | Mnemonic == "vudot" || Mnemonic == "vsdot" || | 
|  | Mnemonic == "vcmla" || Mnemonic == "vcadd") | 
|  | return Mnemonic; | 
|  |  | 
|  | // First, split out any predication code. Ignore mnemonics we know aren't | 
|  | // predicated but do have a carry-set and so weren't caught above. | 
|  | if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" && | 
|  | Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" && | 
|  | Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" && | 
|  | Mnemonic != "sbcs" && Mnemonic != "rscs") { | 
|  | unsigned CC = ARMCondCodeFromString(Mnemonic.substr(Mnemonic.size()-2)); | 
|  | if (CC != ~0U) { | 
|  | Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2); | 
|  | PredicationCode = CC; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Next, determine if we have a carry setting bit. We explicitly ignore all | 
|  | // the instructions we know end in 's'. | 
|  | if (Mnemonic.endswith("s") && | 
|  | !(Mnemonic == "cps" || Mnemonic == "mls" || | 
|  | Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" || | 
|  | Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" || | 
|  | Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" || | 
|  | Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" || | 
|  | Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" || | 
|  | Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" || | 
|  | Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" || | 
|  | Mnemonic == "vfms" || Mnemonic == "vfnms" || Mnemonic == "fconsts" || | 
|  | Mnemonic == "bxns" || Mnemonic == "blxns" || | 
|  | (Mnemonic == "movs" && isThumb()))) { | 
|  | Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1); | 
|  | CarrySetting = true; | 
|  | } | 
|  |  | 
|  | // The "cps" instruction can have a interrupt mode operand which is glued into | 
|  | // the mnemonic. Check if this is the case, split it and parse the imod op | 
|  | if (Mnemonic.startswith("cps")) { | 
|  | // Split out any imod code. | 
|  | unsigned IMod = | 
|  | StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2)) | 
|  | .Case("ie", ARM_PROC::IE) | 
|  | .Case("id", ARM_PROC::ID) | 
|  | .Default(~0U); | 
|  | if (IMod != ~0U) { | 
|  | Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2); | 
|  | ProcessorIMod = IMod; | 
|  | } | 
|  | } | 
|  |  | 
|  | // The "it" instruction has the condition mask on the end of the mnemonic. | 
|  | if (Mnemonic.startswith("it")) { | 
|  | ITMask = Mnemonic.slice(2, Mnemonic.size()); | 
|  | Mnemonic = Mnemonic.slice(0, 2); | 
|  | } | 
|  |  | 
|  | return Mnemonic; | 
|  | } | 
|  |  | 
|  | /// \brief Given a canonical mnemonic, determine if the instruction ever allows | 
|  | /// inclusion of carry set or predication code operands. | 
|  | // | 
|  | // FIXME: It would be nice to autogen this. | 
|  | void ARMAsmParser::getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst, | 
|  | bool &CanAcceptCarrySet, | 
|  | bool &CanAcceptPredicationCode) { | 
|  | CanAcceptCarrySet = | 
|  | Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" || | 
|  | Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" || | 
|  | Mnemonic == "add" || Mnemonic == "adc" || Mnemonic == "mul" || | 
|  | Mnemonic == "bic" || Mnemonic == "asr" || Mnemonic == "orr" || | 
|  | Mnemonic == "mvn" || Mnemonic == "rsb" || Mnemonic == "rsc" || | 
|  | Mnemonic == "orn" || Mnemonic == "sbc" || Mnemonic == "eor" || | 
|  | Mnemonic == "neg" || Mnemonic == "vfm" || Mnemonic == "vfnm" || | 
|  | (!isThumb() && | 
|  | (Mnemonic == "smull" || Mnemonic == "mov" || Mnemonic == "mla" || | 
|  | Mnemonic == "smlal" || Mnemonic == "umlal" || Mnemonic == "umull")); | 
|  |  | 
|  | if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" || | 
|  | Mnemonic == "cps" || Mnemonic == "it" || Mnemonic == "cbz" || | 
|  | Mnemonic == "trap" || Mnemonic == "hlt" || Mnemonic == "udf" || | 
|  | Mnemonic.startswith("crc32") || Mnemonic.startswith("cps") || | 
|  | Mnemonic.startswith("vsel") || Mnemonic == "vmaxnm" || | 
|  | Mnemonic == "vminnm" || Mnemonic == "vcvta" || Mnemonic == "vcvtn" || | 
|  | Mnemonic == "vcvtp" || Mnemonic == "vcvtm" || Mnemonic == "vrinta" || | 
|  | Mnemonic == "vrintn" || Mnemonic == "vrintp" || Mnemonic == "vrintm" || | 
|  | Mnemonic.startswith("aes") || Mnemonic == "hvc" || Mnemonic == "setpan" || | 
|  | Mnemonic.startswith("sha1") || Mnemonic.startswith("sha256") || | 
|  | (FullInst.startswith("vmull") && FullInst.endswith(".p64")) || | 
|  | Mnemonic == "vmovx" || Mnemonic == "vins" || | 
|  | Mnemonic == "vudot" || Mnemonic == "vsdot" || | 
|  | Mnemonic == "vcmla" || Mnemonic == "vcadd") { | 
|  | // These mnemonics are never predicable | 
|  | CanAcceptPredicationCode = false; | 
|  | } else if (!isThumb()) { | 
|  | // Some instructions are only predicable in Thumb mode | 
|  | CanAcceptPredicationCode = | 
|  | Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" && | 
|  | Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" && | 
|  | Mnemonic != "dmb" && Mnemonic != "dfb" && Mnemonic != "dsb" && | 
|  | Mnemonic != "isb" && Mnemonic != "pld" && Mnemonic != "pli" && | 
|  | Mnemonic != "pldw" && Mnemonic != "ldc2" && Mnemonic != "ldc2l" && | 
|  | Mnemonic != "stc2" && Mnemonic != "stc2l" && | 
|  | !Mnemonic.startswith("rfe") && !Mnemonic.startswith("srs"); | 
|  | } else if (isThumbOne()) { | 
|  | if (hasV6MOps()) | 
|  | CanAcceptPredicationCode = Mnemonic != "movs"; | 
|  | else | 
|  | CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs"; | 
|  | } else | 
|  | CanAcceptPredicationCode = true; | 
|  | } | 
|  |  | 
|  | // \brief Some Thumb instructions have two operand forms that are not | 
|  | // available as three operand, convert to two operand form if possible. | 
|  | // | 
|  | // FIXME: We would really like to be able to tablegen'erate this. | 
|  | void ARMAsmParser::tryConvertingToTwoOperandForm(StringRef Mnemonic, | 
|  | bool CarrySetting, | 
|  | OperandVector &Operands) { | 
|  | if (Operands.size() != 6) | 
|  | return; | 
|  |  | 
|  | const auto &Op3 = static_cast<ARMOperand &>(*Operands[3]); | 
|  | auto &Op4 = static_cast<ARMOperand &>(*Operands[4]); | 
|  | if (!Op3.isReg() || !Op4.isReg()) | 
|  | return; | 
|  |  | 
|  | auto Op3Reg = Op3.getReg(); | 
|  | auto Op4Reg = Op4.getReg(); | 
|  |  | 
|  | // For most Thumb2 cases we just generate the 3 operand form and reduce | 
|  | // it in processInstruction(), but the 3 operand form of ADD (t2ADDrr) | 
|  | // won't accept SP or PC so we do the transformation here taking care | 
|  | // with immediate range in the 'add sp, sp #imm' case. | 
|  | auto &Op5 = static_cast<ARMOperand &>(*Operands[5]); | 
|  | if (isThumbTwo()) { | 
|  | if (Mnemonic != "add") | 
|  | return; | 
|  | bool TryTransform = Op3Reg == ARM::PC || Op4Reg == ARM::PC || | 
|  | (Op5.isReg() && Op5.getReg() == ARM::PC); | 
|  | if (!TryTransform) { | 
|  | TryTransform = (Op3Reg == ARM::SP || Op4Reg == ARM::SP || | 
|  | (Op5.isReg() && Op5.getReg() == ARM::SP)) && | 
|  | !(Op3Reg == ARM::SP && Op4Reg == ARM::SP && | 
|  | Op5.isImm() && !Op5.isImm0_508s4()); | 
|  | } | 
|  | if (!TryTransform) | 
|  | return; | 
|  | } else if (!isThumbOne()) | 
|  | return; | 
|  |  | 
|  | if (!(Mnemonic == "add" || Mnemonic == "sub" || Mnemonic == "and" || | 
|  | Mnemonic == "eor" || Mnemonic == "lsl" || Mnemonic == "lsr" || | 
|  | Mnemonic == "asr" || Mnemonic == "adc" || Mnemonic == "sbc" || | 
|  | Mnemonic == "ror" || Mnemonic == "orr" || Mnemonic == "bic")) | 
|  | return; | 
|  |  | 
|  | // If first 2 operands of a 3 operand instruction are the same | 
|  | // then transform to 2 operand version of the same instruction | 
|  | // e.g. 'adds r0, r0, #1' transforms to 'adds r0, #1' | 
|  | bool Transform = Op3Reg == Op4Reg; | 
|  |  | 
|  | // For communtative operations, we might be able to transform if we swap | 
|  | // Op4 and Op5.  The 'ADD Rdm, SP, Rdm' form is already handled specially | 
|  | // as tADDrsp. | 
|  | const ARMOperand *LastOp = &Op5; | 
|  | bool Swap = false; | 
|  | if (!Transform && Op5.isReg() && Op3Reg == Op5.getReg() && | 
|  | ((Mnemonic == "add" && Op4Reg != ARM::SP) || | 
|  | Mnemonic == "and" || Mnemonic == "eor" || | 
|  | Mnemonic == "adc" || Mnemonic == "orr")) { | 
|  | Swap = true; | 
|  | LastOp = &Op4; | 
|  | Transform = true; | 
|  | } | 
|  |  | 
|  | // If both registers are the same then remove one of them from | 
|  | // the operand list, with certain exceptions. | 
|  | if (Transform) { | 
|  | // Don't transform 'adds Rd, Rd, Rm' or 'sub{s} Rd, Rd, Rm' because the | 
|  | // 2 operand forms don't exist. | 
|  | if (((Mnemonic == "add" && CarrySetting) || Mnemonic == "sub") && | 
|  | LastOp->isReg()) | 
|  | Transform = false; | 
|  |  | 
|  | // Don't transform 'add/sub{s} Rd, Rd, #imm' if the immediate fits into | 
|  | // 3-bits because the ARMARM says not to. | 
|  | if ((Mnemonic == "add" || Mnemonic == "sub") && LastOp->isImm0_7()) | 
|  | Transform = false; | 
|  | } | 
|  |  | 
|  | if (Transform) { | 
|  | if (Swap) | 
|  | std::swap(Op4, Op5); | 
|  | Operands.erase(Operands.begin() + 3); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic, | 
|  | OperandVector &Operands) { | 
|  | // FIXME: This is all horribly hacky. We really need a better way to deal | 
|  | // with optional operands like this in the matcher table. | 
|  |  | 
|  | // The 'mov' mnemonic is special. One variant has a cc_out operand, while | 
|  | // another does not. Specifically, the MOVW instruction does not. So we | 
|  | // special case it here and remove the defaulted (non-setting) cc_out | 
|  | // operand if that's the instruction we're trying to match. | 
|  | // | 
|  | // We do this as post-processing of the explicit operands rather than just | 
|  | // conditionally adding the cc_out in the first place because we need | 
|  | // to check the type of the parsed immediate operand. | 
|  | if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() && | 
|  | !static_cast<ARMOperand &>(*Operands[4]).isModImm() && | 
|  | static_cast<ARMOperand &>(*Operands[4]).isImm0_65535Expr() && | 
|  | static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) | 
|  | return true; | 
|  |  | 
|  | // Register-register 'add' for thumb does not have a cc_out operand | 
|  | // when there are only two register operands. | 
|  | if (isThumb() && Mnemonic == "add" && Operands.size() == 5 && | 
|  | static_cast<ARMOperand &>(*Operands[3]).isReg() && | 
|  | static_cast<ARMOperand &>(*Operands[4]).isReg() && | 
|  | static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) | 
|  | return true; | 
|  | // Register-register 'add' for thumb does not have a cc_out operand | 
|  | // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do | 
|  | // have to check the immediate range here since Thumb2 has a variant | 
|  | // that can handle a different range and has a cc_out operand. | 
|  | if (((isThumb() && Mnemonic == "add") || | 
|  | (isThumbTwo() && Mnemonic == "sub")) && | 
|  | Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && | 
|  | static_cast<ARMOperand &>(*Operands[4]).isReg() && | 
|  | static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::SP && | 
|  | static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && | 
|  | ((Mnemonic == "add" && static_cast<ARMOperand &>(*Operands[5]).isReg()) || | 
|  | static_cast<ARMOperand &>(*Operands[5]).isImm0_1020s4())) | 
|  | return true; | 
|  | // For Thumb2, add/sub immediate does not have a cc_out operand for the | 
|  | // imm0_4095 variant. That's the least-preferred variant when | 
|  | // selecting via the generic "add" mnemonic, so to know that we | 
|  | // should remove the cc_out operand, we have to explicitly check that | 
|  | // it's not one of the other variants. Ugh. | 
|  | if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") && | 
|  | Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && | 
|  | static_cast<ARMOperand &>(*Operands[4]).isReg() && | 
|  | static_cast<ARMOperand &>(*Operands[5]).isImm()) { | 
|  | // Nest conditions rather than one big 'if' statement for readability. | 
|  | // | 
|  | // If both registers are low, we're in an IT block, and the immediate is | 
|  | // in range, we should use encoding T1 instead, which has a cc_out. | 
|  | if (inITBlock() && | 
|  | isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) && | 
|  | isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) && | 
|  | static_cast<ARMOperand &>(*Operands[5]).isImm0_7()) | 
|  | return false; | 
|  | // Check against T3. If the second register is the PC, this is an | 
|  | // alternate form of ADR, which uses encoding T4, so check for that too. | 
|  | if (static_cast<ARMOperand &>(*Operands[4]).getReg() != ARM::PC && | 
|  | static_cast<ARMOperand &>(*Operands[5]).isT2SOImm()) | 
|  | return false; | 
|  |  | 
|  | // Otherwise, we use encoding T4, which does not have a cc_out | 
|  | // operand. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // The thumb2 multiply instruction doesn't have a CCOut register, so | 
|  | // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to | 
|  | // use the 16-bit encoding or not. | 
|  | if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 && | 
|  | static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && | 
|  | static_cast<ARMOperand &>(*Operands[3]).isReg() && | 
|  | static_cast<ARMOperand &>(*Operands[4]).isReg() && | 
|  | static_cast<ARMOperand &>(*Operands[5]).isReg() && | 
|  | // If the registers aren't low regs, the destination reg isn't the | 
|  | // same as one of the source regs, or the cc_out operand is zero | 
|  | // outside of an IT block, we have to use the 32-bit encoding, so | 
|  | // remove the cc_out operand. | 
|  | (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || | 
|  | !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || | 
|  | !isARMLowRegister(static_cast<ARMOperand &>(*Operands[5]).getReg()) || | 
|  | !inITBlock() || (static_cast<ARMOperand &>(*Operands[3]).getReg() != | 
|  | static_cast<ARMOperand &>(*Operands[5]).getReg() && | 
|  | static_cast<ARMOperand &>(*Operands[3]).getReg() != | 
|  | static_cast<ARMOperand &>(*Operands[4]).getReg()))) | 
|  | return true; | 
|  |  | 
|  | // Also check the 'mul' syntax variant that doesn't specify an explicit | 
|  | // destination register. | 
|  | if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 && | 
|  | static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && | 
|  | static_cast<ARMOperand &>(*Operands[3]).isReg() && | 
|  | static_cast<ARMOperand &>(*Operands[4]).isReg() && | 
|  | // If the registers aren't low regs  or the cc_out operand is zero | 
|  | // outside of an IT block, we have to use the 32-bit encoding, so | 
|  | // remove the cc_out operand. | 
|  | (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || | 
|  | !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || | 
|  | !inITBlock())) | 
|  | return true; | 
|  |  | 
|  | // Register-register 'add/sub' for thumb does not have a cc_out operand | 
|  | // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also | 
|  | // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't | 
|  | // right, this will result in better diagnostics (which operand is off) | 
|  | // anyway. | 
|  | if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") && | 
|  | (Operands.size() == 5 || Operands.size() == 6) && | 
|  | static_cast<ARMOperand &>(*Operands[3]).isReg() && | 
|  | static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::SP && | 
|  | static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && | 
|  | (static_cast<ARMOperand &>(*Operands[4]).isImm() || | 
|  | (Operands.size() == 6 && | 
|  | static_cast<ARMOperand &>(*Operands[5]).isImm()))) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool ARMAsmParser::shouldOmitPredicateOperand(StringRef Mnemonic, | 
|  | OperandVector &Operands) { | 
|  | // VRINT{Z, X} have a predicate operand in VFP, but not in NEON | 
|  | unsigned RegIdx = 3; | 
|  | if ((Mnemonic == "vrintz" || Mnemonic == "vrintx") && | 
|  | (static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f32" || | 
|  | static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f16")) { | 
|  | if (static_cast<ARMOperand &>(*Operands[3]).isToken() && | 
|  | (static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f32" || | 
|  | static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f16")) | 
|  | RegIdx = 4; | 
|  |  | 
|  | if (static_cast<ARMOperand &>(*Operands[RegIdx]).isReg() && | 
|  | (ARMMCRegisterClasses[ARM::DPRRegClassID].contains( | 
|  | static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()) || | 
|  | ARMMCRegisterClasses[ARM::QPRRegClassID].contains( | 
|  | static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()))) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool isDataTypeToken(StringRef Tok) { | 
|  | return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" || | 
|  | Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" || | 
|  | Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" || | 
|  | Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" || | 
|  | Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" || | 
|  | Tok == ".f" || Tok == ".d"; | 
|  | } | 
|  |  | 
|  | // FIXME: This bit should probably be handled via an explicit match class | 
|  | // in the .td files that matches the suffix instead of having it be | 
|  | // a literal string token the way it is now. | 
|  | static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) { | 
|  | return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm"); | 
|  | } | 
|  |  | 
|  | static void applyMnemonicAliases(StringRef &Mnemonic, uint64_t Features, | 
|  | unsigned VariantID); | 
|  |  | 
|  | // The GNU assembler has aliases of ldrd and strd with the second register | 
|  | // omitted. We don't have a way to do that in tablegen, so fix it up here. | 
|  | // | 
|  | // We have to be careful to not emit an invalid Rt2 here, because the rest of | 
|  | // the assmebly parser could then generate confusing diagnostics refering to | 
|  | // it. If we do find anything that prevents us from doing the transformation we | 
|  | // bail out, and let the assembly parser report an error on the instruction as | 
|  | // it is written. | 
|  | void ARMAsmParser::fixupGNULDRDAlias(StringRef Mnemonic, | 
|  | OperandVector &Operands) { | 
|  | if (Mnemonic != "ldrd" && Mnemonic != "strd") | 
|  | return; | 
|  | if (Operands.size() < 4) | 
|  | return; | 
|  |  | 
|  | ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[2]); | 
|  | ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]); | 
|  |  | 
|  | if (!Op2.isReg()) | 
|  | return; | 
|  | if (!Op3.isMem()) | 
|  | return; | 
|  |  | 
|  | const MCRegisterClass &GPR = MRI->getRegClass(ARM::GPRRegClassID); | 
|  | if (!GPR.contains(Op2.getReg())) | 
|  | return; | 
|  |  | 
|  | unsigned RtEncoding = MRI->getEncodingValue(Op2.getReg()); | 
|  | if (!isThumb() && (RtEncoding & 1)) { | 
|  | // In ARM mode, the registers must be from an aligned pair, this | 
|  | // restriction does not apply in Thumb mode. | 
|  | return; | 
|  | } | 
|  | if (Op2.getReg() == ARM::PC) | 
|  | return; | 
|  | unsigned PairedReg = GPR.getRegister(RtEncoding + 1); | 
|  | if (!PairedReg || PairedReg == ARM::PC || | 
|  | (PairedReg == ARM::SP && !hasV8Ops())) | 
|  | return; | 
|  |  | 
|  | Operands.insert( | 
|  | Operands.begin() + 3, | 
|  | ARMOperand::CreateReg(PairedReg, Op2.getStartLoc(), Op2.getEndLoc())); | 
|  | } | 
|  |  | 
|  | /// Parse an arm instruction mnemonic followed by its operands. | 
|  | bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name, | 
|  | SMLoc NameLoc, OperandVector &Operands) { | 
|  | MCAsmParser &Parser = getParser(); | 
|  |  | 
|  | // Apply mnemonic aliases before doing anything else, as the destination | 
|  | // mnemonic may include suffices and we want to handle them normally. | 
|  | // The generic tblgen'erated code does this later, at the start of | 
|  | // MatchInstructionImpl(), but that's too late for aliases that include | 
|  | // any sort of suffix. | 
|  | uint64_t AvailableFeatures = getAvailableFeatures(); | 
|  | unsigned AssemblerDialect = getParser().getAssemblerDialect(); | 
|  | applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect); | 
|  |  | 
|  | // First check for the ARM-specific .req directive. | 
|  | if (Parser.getTok().is(AsmToken::Identifier) && | 
|  | Parser.getTok().getIdentifier() == ".req") { | 
|  | parseDirectiveReq(Name, NameLoc); | 
|  | // We always return 'error' for this, as we're done with this | 
|  | // statement and don't need to match the 'instruction." | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Create the leading tokens for the mnemonic, split by '.' characters. | 
|  | size_t Start = 0, Next = Name.find('.'); | 
|  | StringRef Mnemonic = Name.slice(Start, Next); | 
|  |  | 
|  | // Split out the predication code and carry setting flag from the mnemonic. | 
|  | unsigned PredicationCode; | 
|  | unsigned ProcessorIMod; | 
|  | bool CarrySetting; | 
|  | StringRef ITMask; | 
|  | Mnemonic = splitMnemonic(Mnemonic, PredicationCode, CarrySetting, | 
|  | ProcessorIMod, ITMask); | 
|  |  | 
|  | // In Thumb1, only the branch (B) instruction can be predicated. | 
|  | if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") { | 
|  | return Error(NameLoc, "conditional execution not supported in Thumb1"); | 
|  | } | 
|  |  | 
|  | Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc)); | 
|  |  | 
|  | // Handle the IT instruction ITMask. Convert it to a bitmask. This | 
|  | // is the mask as it will be for the IT encoding if the conditional | 
|  | // encoding has a '1' as it's bit0 (i.e. 't' ==> '1'). In the case | 
|  | // where the conditional bit0 is zero, the instruction post-processing | 
|  | // will adjust the mask accordingly. | 
|  | if (Mnemonic == "it") { | 
|  | SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + 2); | 
|  | if (ITMask.size() > 3) { | 
|  | return Error(Loc, "too many conditions on IT instruction"); | 
|  | } | 
|  | unsigned Mask = 8; | 
|  | for (unsigned i = ITMask.size(); i != 0; --i) { | 
|  | char pos = ITMask[i - 1]; | 
|  | if (pos != 't' && pos != 'e') { | 
|  | return Error(Loc, "illegal IT block condition mask '" + ITMask + "'"); | 
|  | } | 
|  | Mask >>= 1; | 
|  | if (ITMask[i - 1] == 't') | 
|  | Mask |= 8; | 
|  | } | 
|  | Operands.push_back(ARMOperand::CreateITMask(Mask, Loc)); | 
|  | } | 
|  |  | 
|  | // FIXME: This is all a pretty gross hack. We should automatically handle | 
|  | // optional operands like this via tblgen. | 
|  |  | 
|  | // Next, add the CCOut and ConditionCode operands, if needed. | 
|  | // | 
|  | // For mnemonics which can ever incorporate a carry setting bit or predication | 
|  | // code, our matching model involves us always generating CCOut and | 
|  | // ConditionCode operands to match the mnemonic "as written" and then we let | 
|  | // the matcher deal with finding the right instruction or generating an | 
|  | // appropriate error. | 
|  | bool CanAcceptCarrySet, CanAcceptPredicationCode; | 
|  | getMnemonicAcceptInfo(Mnemonic, Name, CanAcceptCarrySet, CanAcceptPredicationCode); | 
|  |  | 
|  | // If we had a carry-set on an instruction that can't do that, issue an | 
|  | // error. | 
|  | if (!CanAcceptCarrySet && CarrySetting) { | 
|  | return Error(NameLoc, "instruction '" + Mnemonic + | 
|  | "' can not set flags, but 's' suffix specified"); | 
|  | } | 
|  | // If we had a predication code on an instruction that can't do that, issue an | 
|  | // error. | 
|  | if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) { | 
|  | return Error(NameLoc, "instruction '" + Mnemonic + | 
|  | "' is not predicable, but condition code specified"); | 
|  | } | 
|  |  | 
|  | // Add the carry setting operand, if necessary. | 
|  | if (CanAcceptCarrySet) { | 
|  | SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size()); | 
|  | Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0, | 
|  | Loc)); | 
|  | } | 
|  |  | 
|  | // Add the predication code operand, if necessary. | 
|  | if (CanAcceptPredicationCode) { | 
|  | SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() + | 
|  | CarrySetting); | 
|  | Operands.push_back(ARMOperand::CreateCondCode( | 
|  | ARMCC::CondCodes(PredicationCode), Loc)); | 
|  | } | 
|  |  | 
|  | // Add the processor imod operand, if necessary. | 
|  | if (ProcessorIMod) { | 
|  | Operands.push_back(ARMOperand::CreateImm( | 
|  | MCConstantExpr::create(ProcessorIMod, getContext()), | 
|  | NameLoc, NameLoc)); | 
|  | } else if (Mnemonic == "cps" && isMClass()) { | 
|  | return Error(NameLoc, "instruction 'cps' requires effect for M-class"); | 
|  | } | 
|  |  | 
|  | // Add the remaining tokens in the mnemonic. | 
|  | while (Next != StringRef::npos) { | 
|  | Start = Next; | 
|  | Next = Name.find('.', Start + 1); | 
|  | StringRef ExtraToken = Name.slice(Start, Next); | 
|  |  | 
|  | // Some NEON instructions have an optional datatype suffix that is | 
|  | // completely ignored. Check for that. | 
|  | if (isDataTypeToken(ExtraToken) && | 
|  | doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken)) | 
|  | continue; | 
|  |  | 
|  | // For for ARM mode generate an error if the .n qualifier is used. | 
|  | if (ExtraToken == ".n" && !isThumb()) { | 
|  | SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); | 
|  | return Error(Loc, "instruction with .n (narrow) qualifier not allowed in " | 
|  | "arm mode"); | 
|  | } | 
|  |  | 
|  | // The .n qualifier is always discarded as that is what the tables | 
|  | // and matcher expect.  In ARM mode the .w qualifier has no effect, | 
|  | // so discard it to avoid errors that can be caused by the matcher. | 
|  | if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) { | 
|  | SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); | 
|  | Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Read the remaining operands. | 
|  | if (getLexer().isNot(AsmToken::EndOfStatement)) { | 
|  | // Read the first operand. | 
|  | if (parseOperand(Operands, Mnemonic)) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | while (parseOptionalToken(AsmToken::Comma)) { | 
|  | // Parse and remember the operand. | 
|  | if (parseOperand(Operands, Mnemonic)) { | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (parseToken(AsmToken::EndOfStatement, "unexpected token in argument list")) | 
|  | return true; | 
|  |  | 
|  | tryConvertingToTwoOperandForm(Mnemonic, CarrySetting, Operands); | 
|  |  | 
|  | // Some instructions, mostly Thumb, have forms for the same mnemonic that | 
|  | // do and don't have a cc_out optional-def operand. With some spot-checks | 
|  | // of the operand list, we can figure out which variant we're trying to | 
|  | // parse and adjust accordingly before actually matching. We shouldn't ever | 
|  | // try to remove a cc_out operand that was explicitly set on the | 
|  | // mnemonic, of course (CarrySetting == true). Reason number #317 the | 
|  | // table driven matcher doesn't fit well with the ARM instruction set. | 
|  | if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands)) | 
|  | Operands.erase(Operands.begin() + 1); | 
|  |  | 
|  | // Some instructions have the same mnemonic, but don't always | 
|  | // have a predicate. Distinguish them here and delete the | 
|  | // predicate if needed. | 
|  | if (PredicationCode == ARMCC::AL && | 
|  | shouldOmitPredicateOperand(Mnemonic, Operands)) | 
|  | Operands.erase(Operands.begin() + 1); | 
|  |  | 
|  | // ARM mode 'blx' need special handling, as the register operand version | 
|  | // is predicable, but the label operand version is not. So, we can't rely | 
|  | // on the Mnemonic based checking to correctly figure out when to put | 
|  | // a k_CondCode operand in the list. If we're trying to match the label | 
|  | // version, remove the k_CondCode operand here. | 
|  | if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 && | 
|  | static_cast<ARMOperand &>(*Operands[2]).isImm()) | 
|  | Operands.erase(Operands.begin() + 1); | 
|  |  | 
|  | // Adjust operands of ldrexd/strexd to MCK_GPRPair. | 
|  | // ldrexd/strexd require even/odd GPR pair. To enforce this constraint, | 
|  | // a single GPRPair reg operand is used in the .td file to replace the two | 
|  | // GPRs. However, when parsing from asm, the two GRPs cannot be automatically | 
|  | // expressed as a GPRPair, so we have to manually merge them. | 
|  | // FIXME: We would really like to be able to tablegen'erate this. | 
|  | if (!isThumb() && Operands.size() > 4 && | 
|  | (Mnemonic == "ldrexd" || Mnemonic == "strexd" || Mnemonic == "ldaexd" || | 
|  | Mnemonic == "stlexd")) { | 
|  | bool isLoad = (Mnemonic == "ldrexd" || Mnemonic == "ldaexd"); | 
|  | unsigned Idx = isLoad ? 2 : 3; | 
|  | ARMOperand &Op1 = static_cast<ARMOperand &>(*Operands[Idx]); | 
|  | ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[Idx + 1]); | 
|  |  | 
|  | const MCRegisterClass& MRC = MRI->getRegClass(ARM::GPRRegClassID); | 
|  | // Adjust only if Op1 and Op2 are GPRs. | 
|  | if (Op1.isReg() && Op2.isReg() && MRC.contains(Op1.getReg()) && | 
|  | MRC.contains(Op2.getReg())) { | 
|  | unsigned Reg1 = Op1.getReg(); | 
|  | unsigned Reg2 = Op2.getReg(); | 
|  | unsigned Rt = MRI->getEncodingValue(Reg1); | 
|  | unsigned Rt2 = MRI->getEncodingValue(Reg2); | 
|  |  | 
|  | // Rt2 must be Rt + 1 and Rt must be even. | 
|  | if (Rt + 1 != Rt2 || (Rt & 1)) { | 
|  | return Error(Op2.getStartLoc(), | 
|  | isLoad ? "destination operands must be sequential" | 
|  | : "source operands must be sequential"); | 
|  | } | 
|  | unsigned NewReg = MRI->getMatchingSuperReg(Reg1, ARM::gsub_0, | 
|  | &(MRI->getRegClass(ARM::GPRPairRegClassID))); | 
|  | Operands[Idx] = | 
|  | ARMOperand::CreateReg(NewReg, Op1.getStartLoc(), Op2.getEndLoc()); | 
|  | Operands.erase(Operands.begin() + Idx + 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | // GNU Assembler extension (compatibility). | 
|  | fixupGNULDRDAlias(Mnemonic, Operands); | 
|  |  | 
|  | // FIXME: As said above, this is all a pretty gross hack.  This instruction | 
|  | // does not fit with other "subs" and tblgen. | 
|  | // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction | 
|  | // so the Mnemonic is the original name "subs" and delete the predicate | 
|  | // operand so it will match the table entry. | 
|  | if (isThumbTwo() && Mnemonic == "sub" && Operands.size() == 6 && | 
|  | static_cast<ARMOperand &>(*Operands[3]).isReg() && | 
|  | static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::PC && | 
|  | static_cast<ARMOperand &>(*Operands[4]).isReg() && | 
|  | static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::LR && | 
|  | static_cast<ARMOperand &>(*Operands[5]).isImm()) { | 
|  | Operands.front() = ARMOperand::CreateToken(Name, NameLoc); | 
|  | Operands.erase(Operands.begin() + 1); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Validate context-sensitive operand constraints. | 
|  |  | 
|  | // return 'true' if register list contains non-low GPR registers, | 
|  | // 'false' otherwise. If Reg is in the register list or is HiReg, set | 
|  | // 'containsReg' to true. | 
|  | static bool checkLowRegisterList(const MCInst &Inst, unsigned OpNo, | 
|  | unsigned Reg, unsigned HiReg, | 
|  | bool &containsReg) { | 
|  | containsReg = false; | 
|  | for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) { | 
|  | unsigned OpReg = Inst.getOperand(i).getReg(); | 
|  | if (OpReg == Reg) | 
|  | containsReg = true; | 
|  | // Anything other than a low register isn't legal here. | 
|  | if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg)) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Check if the specified regisgter is in the register list of the inst, | 
|  | // starting at the indicated operand number. | 
|  | static bool listContainsReg(const MCInst &Inst, unsigned OpNo, unsigned Reg) { | 
|  | for (unsigned i = OpNo, e = Inst.getNumOperands(); i < e; ++i) { | 
|  | unsigned OpReg = Inst.getOperand(i).getReg(); | 
|  | if (OpReg == Reg) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Return true if instruction has the interesting property of being | 
|  | // allowed in IT blocks, but not being predicable. | 
|  | static bool instIsBreakpoint(const MCInst &Inst) { | 
|  | return Inst.getOpcode() == ARM::tBKPT || | 
|  | Inst.getOpcode() == ARM::BKPT || | 
|  | Inst.getOpcode() == ARM::tHLT || | 
|  | Inst.getOpcode() == ARM::HLT; | 
|  | } | 
|  |  | 
|  | bool ARMAsmParser::validatetLDMRegList(const MCInst &Inst, | 
|  | const OperandVector &Operands, | 
|  | unsigned ListNo, bool IsARPop) { | 
|  | const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); | 
|  | bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; | 
|  |  | 
|  | bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); | 
|  | bool ListContainsLR = listContainsReg(Inst, ListNo, ARM::LR); | 
|  | bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); | 
|  |  | 
|  | if (!IsARPop && ListContainsSP) | 
|  | return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), | 
|  | "SP may not be in the register list"); | 
|  | else if (ListContainsPC && ListContainsLR) | 
|  | return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), | 
|  | "PC and LR may not be in the register list simultaneously"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool ARMAsmParser::validatetSTMRegList(const MCInst &Inst, | 
|  | const OperandVector &Operands, | 
|  | unsigned ListNo) { | 
|  | const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); | 
|  | bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; | 
|  |  | 
|  | bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); | 
|  | bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); | 
|  |  | 
|  | if (ListContainsSP && ListContainsPC) | 
|  | return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), | 
|  | "SP and PC may not be in the register list"); | 
|  | else if (ListContainsSP) | 
|  | return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), | 
|  | "SP may not be in the register list"); | 
|  | else if (ListContainsPC) | 
|  | return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), | 
|  | "PC may not be in the register list"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // FIXME: We would really like to be able to tablegen'erate this. | 
|  | bool ARMAsmParser::validateInstruction(MCInst &Inst, | 
|  | const OperandVector &Operands) { | 
|  | const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); | 
|  | SMLoc Loc = Operands[0]->getStartLoc(); | 
|  |  | 
|  | // Check the IT block state first. | 
|  | // NOTE: BKPT and HLT instructions have the interesting property of being | 
|  | // allowed in IT blocks, but not being predicable. They just always execute. | 
|  | if (inITBlock() && !instIsBreakpoint(Inst)) { | 
|  | // The instruction must be predicable. | 
|  | if (!MCID.isPredicable()) | 
|  | return Error(Loc, "instructions in IT block must be predicable"); | 
|  | ARMCC::CondCodes Cond = ARMCC::CondCodes( | 
|  | Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm()); | 
|  | if (Cond != currentITCond()) { | 
|  | // Find the condition code Operand to get its SMLoc information. | 
|  | SMLoc CondLoc; | 
|  | for (unsigned I = 1; I < Operands.size(); ++I) | 
|  | if (static_cast<ARMOperand &>(*Operands[I]).isCondCode()) | 
|  | CondLoc = Operands[I]->getStartLoc(); | 
|  | return Error(CondLoc, "incorrect condition in IT block; got '" + | 
|  | StringRef(ARMCondCodeToString(Cond)) + | 
|  | "', but expected '" + | 
|  | ARMCondCodeToString(currentITCond()) + "'"); | 
|  | } | 
|  | // Check for non-'al' condition codes outside of the IT block. | 
|  | } else if (isThumbTwo() && MCID.isPredicable() && | 
|  | Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != | 
|  | ARMCC::AL && Inst.getOpcode() != ARM::tBcc && | 
|  | Inst.getOpcode() != ARM::t2Bcc) { | 
|  | return Error(Loc, "predicated instructions must be in IT block"); | 
|  | } else if (!isThumb() && !useImplicitITARM() && MCID.isPredicable() && | 
|  | Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != | 
|  | ARMCC::AL) { | 
|  | return Warning(Loc, "predicated instructions should be in IT block"); | 
|  | } | 
|  |  | 
|  | // PC-setting instructions in an IT block, but not the last instruction of | 
|  | // the block, are UNPREDICTABLE. | 
|  | if (inExplicitITBlock() && !lastInITBlock() && isITBlockTerminator(Inst)) { | 
|  | return Error(Loc, "instruction must be outside of IT block or the last instruction in an IT block"); | 
|  | } | 
|  |  | 
|  | const unsigned Opcode = Inst.getOpcode(); | 
|  | switch (Opcode) { | 
|  | case ARM::LDRD: | 
|  | case ARM::LDRD_PRE: | 
|  | case ARM::LDRD_POST: { | 
|  | const unsigned RtReg = Inst.getOperand(0).getReg(); | 
|  |  | 
|  | // Rt can't be R14. | 
|  | if (RtReg == ARM::LR) | 
|  | return Error(Operands[3]->getStartLoc(), | 
|  | "Rt can't be R14"); | 
|  |  | 
|  | const unsigned Rt = MRI->getEncodingValue(RtReg); | 
|  | // Rt must be even-numbered. | 
|  | if ((Rt & 1) == 1) | 
|  | return Error(Operands[3]->getStartLoc(), | 
|  | "Rt must be even-numbered"); | 
|  |  | 
|  | // Rt2 must be Rt + 1. | 
|  | const unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); | 
|  | if (Rt2 != Rt + 1) | 
|  | return Error(Operands[3]->getStartLoc(), | 
|  | "destination operands must be sequential"); | 
|  |  | 
|  | if (Opcode == ARM::LDRD_PRE || Opcode == ARM::LDRD_POST) { | 
|  | const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(3).getReg()); | 
|  | // For addressing modes with writeback, the base register needs to be | 
|  | // different from the destination registers. | 
|  | if (Rn == Rt || Rn == Rt2) | 
|  | return Error(Operands[3]->getStartLoc(), | 
|  | "base register needs to be different from destination " | 
|  | "registers"); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  | case ARM::t2LDRDi8: | 
|  | case ARM::t2LDRD_PRE: | 
|  | case ARM::t2LDRD_POST: { | 
|  | // Rt2 must be different from Rt. | 
|  | unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); | 
|  | unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); | 
|  | if (Rt2 == Rt) | 
|  | return Error(Operands[3]->getStartLoc(), | 
|  | "destination operands can't be identical"); | 
|  | return false; | 
|  | } | 
|  | case ARM::t2BXJ: { | 
|  | const unsigned RmReg = Inst.getOperand(0).getReg(); | 
|  | // Rm = SP is no longer unpredictable in v8-A | 
|  | if (RmReg == ARM::SP && !hasV8Ops()) | 
|  | return Error(Operands[2]->getStartLoc(), | 
|  | "r13 (SP) is an unpredictable operand to BXJ"); | 
|  | return false; | 
|  | } | 
|  | case ARM::STRD: { | 
|  | // Rt2 must be Rt + 1. | 
|  | unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); | 
|  | unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); | 
|  | if (Rt2 != Rt + 1) | 
|  | return Error(Operands[3]->getStartLoc(), | 
|  | "source operands must be sequential"); | 
|  | return false; | 
|  | } | 
|  | case ARM::STRD_PRE: | 
|  | case ARM::STRD_POST: { | 
|  | // Rt2 must be Rt + 1. | 
|  | unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg()); | 
|  | unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(2).getReg()); | 
|  | if (Rt2 != Rt + 1) | 
|  | return Error(Operands[3]->getStartLoc(), | 
|  | "source operands must be sequential"); | 
|  | return false; | 
|  | } | 
|  | case ARM::STR_PRE_IMM: | 
|  | case ARM::STR_PRE_REG: | 
|  | case ARM::STR_POST_IMM: | 
|  | case ARM::STR_POST_REG: | 
|  | case ARM::STRH_PRE: | 
|  | case ARM::STRH_POST: | 
|  | case ARM::STRB_PRE_IMM: | 
|  | case ARM::STRB_PRE_REG: | 
|  | case ARM::STRB_POST_IMM: | 
|  | case ARM::STRB_POST_REG: { | 
|  | // Rt must be different from Rn. | 
|  | const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg()); | 
|  | const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); | 
|  |  | 
|  | if (Rt == Rn) | 
|  | return Error(Operands[3]->getStartLoc(), | 
|  | "source register and base register can't be identical"); | 
|  | return false; | 
|  | } | 
|  | case ARM::LDR_PRE_IMM: | 
|  | case ARM::LDR_PRE_REG: | 
|  | case ARM::LDR_POST_IMM: | 
|  | case ARM::LDR_POST_REG: | 
|  | case ARM::LDRH_PRE: | 
|  | case ARM::LDRH_POST: | 
|  | case ARM::LDRSH_PRE: | 
|  | case ARM::LDRSH_POST: | 
|  | case ARM::LDRB_PRE_IMM: | 
|  | case ARM::LDRB_PRE_REG: | 
|  | case ARM::LDRB_POST_IMM: | 
|  | case ARM::LDRB_POST_REG: | 
|  | case ARM::LDRSB_PRE: | 
|  | case ARM::LDRSB_POST: { | 
|  | // Rt must be different from Rn. | 
|  | const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); | 
|  | const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); | 
|  |  | 
|  | if (Rt == Rn) | 
|  | return Error(Operands[3]->getStartLoc(), | 
|  | "destination register and base register can't be identical"); | 
|  | return false; | 
|  | } | 
|  | case ARM::SBFX: | 
|  | case ARM::UBFX: { | 
|  | // Width must be in range [1, 32-lsb]. | 
|  | unsigned LSB = Inst.getOperand(2).getImm(); | 
|  | unsigned Widthm1 = Inst.getOperand(3).getImm(); | 
|  | if (Widthm1 >= 32 - LSB) | 
|  | return Error(Operands[5]->getStartLoc(), | 
|  | "bitfield width must be in range [1,32-lsb]"); | 
|  | return false; | 
|  | } | 
|  | // Notionally handles ARM::tLDMIA_UPD too. | 
|  | case ARM::tLDMIA: { | 
|  | // If we're parsing Thumb2, the .w variant is available and handles | 
|  | // most cases that are normally illegal for a Thumb1 LDM instruction. | 
|  | // We'll make the transformation in processInstruction() if necessary. | 
|  | // | 
|  | // Thumb LDM instructions are writeback iff the base register is not | 
|  | // in the register list. | 
|  | unsigned Rn = Inst.getOperand(0).getReg(); | 
|  | bool HasWritebackToken = | 
|  | (static_cast<ARMOperand &>(*Operands[3]).isToken() && | 
|  | static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); | 
|  | bool ListContainsBase; | 
|  | if (checkLowRegisterList(Inst, 3, Rn, 0, ListContainsBase) && !isThumbTwo()) | 
|  | return Error(Operands[3 + HasWritebackToken]->getStartLoc(), | 
|  | "registers must be in range r0-r7"); | 
|  | // If we should have writeback, then there should be a '!' token. | 
|  | if (!ListContainsBase && !HasWritebackToken && !isThumbTwo()) | 
|  | return Error(Operands[2]->getStartLoc(), | 
|  | "writeback operator '!' expected"); | 
|  | // If we should not have writeback, there must not be a '!'. This is | 
|  | // true even for the 32-bit wide encodings. | 
|  | if (ListContainsBase && HasWritebackToken) | 
|  | return Error(Operands[3]->getStartLoc(), | 
|  | "writeback operator '!' not allowed when base register " | 
|  | "in register list"); | 
|  |  | 
|  | if (validatetLDMRegList(Inst, Operands, 3)) | 
|  | return true; | 
|  | break; | 
|  | } | 
|  | case ARM::LDMIA_UPD: | 
|  | case ARM::LDMDB_UPD: | 
|  | case ARM::LDMIB_UPD: | 
|  | case ARM::LDMDA_UPD: | 
|  | // ARM variants loading and updating the same register are only officially | 
|  | // UNPREDICTABLE on v7 upwards. Goodness knows what they did before. | 
|  | if (!hasV7Ops()) | 
|  | break; | 
|  | if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) | 
|  | return Error(Operands.back()->getStartLoc(), | 
|  | "writeback register not allowed in register list"); | 
|  | break; | 
|  | case ARM::t2LDMIA: | 
|  | case ARM::t2LDMDB: | 
|  | if (validatetLDMRegList(Inst, Operands, 3)) | 
|  | return true; | 
|  | break; | 
|  | case ARM::t2STMIA: | 
|  | case ARM::t2STMDB: | 
|  | if (validatetSTMRegList(Inst, Operands, 3)) | 
|  | return true; | 
|  | break; | 
|  | case ARM::t2LDMIA_UPD: | 
|  | case ARM::t2LDMDB_UPD: | 
|  | case ARM::t2STMIA_UPD: | 
|  | case ARM::t2STMDB_UPD: | 
|  | if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) | 
|  | return Error(Operands.back()->getStartLoc(), | 
|  | "writeback register not allowed in register list"); | 
|  |  | 
|  | if (Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) { | 
|  | if (validatetLDMRegList(Inst, Operands, 3)) | 
|  | return true; | 
|  | } else { | 
|  | if (validatetSTMRegList(Inst, Operands, 3)) | 
|  | return true; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case ARM::sysLDMIA_UPD: | 
|  | case ARM::sysLDMDA_UPD: | 
|  | case ARM::sysLDMDB_UPD: | 
|  | case ARM::sysLDMIB_UPD: | 
|  | if (!listContainsReg(Inst, 3, ARM::PC)) | 
|  | return Error(Operands[4]->getStartLoc(), | 
|  | "writeback register only allowed on system LDM " | 
|  | "if PC in register-list"); | 
|  | break; | 
|  | case ARM::sysSTMIA_UPD: | 
|  | case ARM::sysSTMDA_UPD: | 
|  | case ARM::sysSTMDB_UPD: | 
|  | case ARM::sysSTMIB_UPD: | 
|  | return Error(Operands[2]->getStartLoc(), | 
|  | "system STM cannot have writeback register"); | 
|  | case ARM::tMUL: | 
|  | // The second source operand must be the same register as the destination | 
|  | // operand. | 
|  | // | 
|  | // In this case, we must directly check the parsed operands because the | 
|  | // cvtThumbMultiply() function is written in such a way that it guarantees | 
|  | // this first statement is always true for the new Inst.  Essentially, the | 
|  | // destination is unconditionally copied into the second source operand | 
|  | // without checking to see if it matches what we actually parsed. | 
|  | if (Operands.size() == 6 && (((ARMOperand &)*Operands[3]).getReg() != | 
|  | ((ARMOperand &)*Operands[5]).getReg()) && | 
|  | (((ARMOperand &)*Operands[3]).getReg() != | 
|  | ((ARMOperand &)*Operands[4]).getReg())) { | 
|  | return Error(Operands[3]->getStartLoc(), | 
|  | "destination register must match source register"); | 
|  | } | 
|  | break; | 
|  |  | 
|  | // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2, | 
|  | // so only issue a diagnostic for thumb1. The instructions will be | 
|  | // switched to the t2 encodings in processInstruction() if necessary. | 
|  | case ARM::tPOP: { | 
|  | bool ListContainsBase; | 
|  | if (checkLowRegisterList(Inst, 2, 0, ARM::PC, ListContainsBase) && | 
|  | !isThumbTwo()) | 
|  | return Error(Operands[2]->getStartLoc(), | 
|  | "registers must be in range r0-r7 or pc"); | 
|  | if (validatetLDMRegList(Inst, Operands, 2, !isMClass())) | 
|  | return true; | 
|  | break; | 
|  | } | 
|  | case ARM::tPUSH: { | 
|  | bool ListContainsBase; | 
|  | if (checkLowRegisterList(Inst, 2, 0, ARM::LR, ListContainsBase) && | 
|  | !isThumbTwo()) | 
|  | return Error(Operands[2]->getStartLoc(), | 
|  | "registers must be in range r0-r7 or lr"); | 
|  | if (validatetSTMRegList(Inst, Operands, 2)) | 
|  | return true; | 
|  | break; | 
|  | } | 
|  | case ARM::tSTMIA_UPD: { | 
|  | bool ListContainsBase, InvalidLowList; | 
|  | InvalidLowList = checkLowRegisterList(Inst, 4, Inst.getOperand(0).getReg(), | 
|  | 0, ListContainsBase); | 
|  | if (InvalidLowList && !isThumbTwo()) | 
|  | return Error(Operands[4]->getStartLoc(), | 
|  | "registers must be in range r0-r7"); | 
|  |  | 
|  | // This would be converted to a 32-bit stm, but that's not valid if the | 
|  | // writeback register is in the list. | 
|  | if (InvalidLowList && ListContainsBase) | 
|  | return Error(Operands[4]->getStartLoc(), | 
|  | "writeback operator '!' not allowed when base register " | 
|  | "in register list"); | 
|  |  | 
|  | if (validatetSTMRegList(Inst, Operands, 4)) | 
|  | return true; | 
|  | break; | 
|  | } | 
|  | case ARM::tADDrSP: | 
|  | // If the non-SP source operand and the destination operand are not the | 
|  | // same, we need thumb2 (for the wide encoding), or we have an error. | 
|  | if (!isThumbTwo() && | 
|  | Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { | 
|  | return Error(Operands[4]->getStartLoc(), | 
|  | "source register must be the same as destination"); | 
|  | } | 
|  | break; | 
|  |  | 
|  | // Final range checking for Thumb unconditional branch instructions. | 
|  | case ARM::tB: | 
|  | if (!(static_cast<ARMOperand &>(*Operands[2])).isSignedOffset<11, 1>()) | 
|  | return Error(Operands[2]->getStartLoc(), "branch target out of range"); | 
|  | break; | 
|  | case ARM::t2B: { | 
|  | int op = (Operands[2]->isImm()) ? 2 : 3; | 
|  | if (!static_cast<ARMOperand &>(*Operands[op]).isSignedOffset<24, 1>()) | 
|  | return Error(Operands[op]->getStartLoc(), "branch target out of range"); | 
|  | break; | 
|  | } | 
|  | // Final range checking for Thumb conditional branch instructions. | 
|  | case ARM::tBcc: | 
|  | if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<8, 1>()) | 
|  | return Error(Operands[2]->getStartLoc(), "branch target out of range"); | 
|  | break; | 
|  | case ARM::t2Bcc: { | 
|  | int Op = (Operands[2]->isImm()) ? 2 : 3; | 
|  | if (!static_cast<ARMOperand &>(*Operands[Op]).isSignedOffset<20, 1>()) | 
|  | return Error(Operands[Op]->getStartLoc(), "branch target out of range"); | 
|  | break; | 
|  | } | 
|  | case ARM::tCBZ: | 
|  | case ARM::tCBNZ: { | 
|  | if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<6, 1>()) | 
|  | return Error(Operands[2]->getStartLoc(), "branch target out of range"); | 
|  | break; | 
|  | } | 
|  | case ARM::MOVi16: | 
|  | case ARM::MOVTi16: | 
|  | case ARM::t2MOVi16: | 
|  | case ARM::t2MOVTi16: | 
|  | { | 
|  | // We want to avoid misleadingly allowing something like "mov r0, <symbol>" | 
|  | // especially when we turn it into a movw and the expression <symbol> does | 
|  | // not have a :lower16: or :upper16 as part of the expression.  We don't | 
|  | // want the behavior of silently truncating, which can be unexpected and | 
|  | // lead to bugs that are difficult to find since this is an easy mistake | 
|  | // to make. | 
|  | int i = (Operands[3]->isImm()) ? 3 : 4; | 
|  | ARMOperand &Op = static_cast<ARMOperand &>(*Operands[i]); | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()); | 
|  | if (CE) break; | 
|  | const MCExpr *E = dyn_cast<MCExpr>(Op.getImm()); | 
|  | if (!E) break; | 
|  | const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(E); | 
|  | if (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 && | 
|  | ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16)) | 
|  | return Error( | 
|  | Op.getStartLoc(), | 
|  | "immediate expression for mov requires :lower16: or :upper16"); | 
|  | break; | 
|  | } | 
|  | case ARM::HINT: | 
|  | case ARM::t2HINT: { | 
|  | unsigned Imm8 = Inst.getOperand(0).getImm(); | 
|  | unsigned Pred = Inst.getOperand(1).getImm(); | 
|  | // ESB is not predicable (pred must be AL). Without the RAS extension, this | 
|  | // behaves as any other unallocated hint. | 
|  | if (Imm8 == 0x10 && Pred != ARMCC::AL && hasRAS()) | 
|  | return Error(Operands[1]->getStartLoc(), "instruction 'esb' is not " | 
|  | "predicable, but condition " | 
|  | "code specified"); | 
|  | if (Imm8 == 0x14 && Pred != ARMCC::AL) | 
|  | return Error(Operands[1]->getStartLoc(), "instruction 'csdb' is not " | 
|  | "predicable, but condition " | 
|  | "code specified"); | 
|  | break; | 
|  | } | 
|  | case ARM::VMOVRRS: { | 
|  | // Source registers must be sequential. | 
|  | const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(2).getReg()); | 
|  | const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(3).getReg()); | 
|  | if (Sm1 != Sm + 1) | 
|  | return Error(Operands[5]->getStartLoc(), | 
|  | "source operands must be sequential"); | 
|  | break; | 
|  | } | 
|  | case ARM::VMOVSRR: { | 
|  | // Destination registers must be sequential. | 
|  | const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(0).getReg()); | 
|  | const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); | 
|  | if (Sm1 != Sm + 1) | 
|  | return Error(Operands[3]->getStartLoc(), | 
|  | "destination operands must be sequential"); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) { | 
|  | switch(Opc) { | 
|  | default: llvm_unreachable("unexpected opcode!"); | 
|  | // VST1LN | 
|  | case ARM::VST1LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST1LNd8_UPD; | 
|  | case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; | 
|  | case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; | 
|  | case ARM::VST1LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST1LNd8_UPD; | 
|  | case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; | 
|  | case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; | 
|  | case ARM::VST1LNdAsm_8:  Spacing = 1; return ARM::VST1LNd8; | 
|  | case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16; | 
|  | case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32; | 
|  |  | 
|  | // VST2LN | 
|  | case ARM::VST2LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST2LNd8_UPD; | 
|  | case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; | 
|  | case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; | 
|  | case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; | 
|  | case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; | 
|  |  | 
|  | case ARM::VST2LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST2LNd8_UPD; | 
|  | case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; | 
|  | case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; | 
|  | case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; | 
|  | case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; | 
|  |  | 
|  | case ARM::VST2LNdAsm_8:  Spacing = 1; return ARM::VST2LNd8; | 
|  | case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16; | 
|  | case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32; | 
|  | case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16; | 
|  | case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32; | 
|  |  | 
|  | // VST3LN | 
|  | case ARM::VST3LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST3LNd8_UPD; | 
|  | case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; | 
|  | case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; | 
|  | case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD; | 
|  | case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; | 
|  | case ARM::VST3LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST3LNd8_UPD; | 
|  | case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; | 
|  | case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; | 
|  | case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD; | 
|  | case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; | 
|  | case ARM::VST3LNdAsm_8:  Spacing = 1; return ARM::VST3LNd8; | 
|  | case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16; | 
|  | case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32; | 
|  | case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16; | 
|  | case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32; | 
|  |  | 
|  | // VST3 | 
|  | case ARM::VST3dWB_fixed_Asm_8:  Spacing = 1; return ARM::VST3d8_UPD; | 
|  | case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; | 
|  | case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; | 
|  | case ARM::VST3qWB_fixed_Asm_8:  Spacing = 2; return ARM::VST3q8_UPD; | 
|  | case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; | 
|  | case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; | 
|  | case ARM::VST3dWB_register_Asm_8:  Spacing = 1; return ARM::VST3d8_UPD; | 
|  | case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; | 
|  | case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; | 
|  | case ARM::VST3qWB_register_Asm_8:  Spacing = 2; return ARM::VST3q8_UPD; | 
|  | case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; | 
|  | case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; | 
|  | case ARM::VST3dAsm_8:  Spacing = 1; return ARM::VST3d8; | 
|  | case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16; | 
|  | case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32; | 
|  | case ARM::VST3qAsm_8:  Spacing = 2; return ARM::VST3q8; | 
|  | case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16; | 
|  | case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32; | 
|  |  | 
|  | // VST4LN | 
|  | case ARM::VST4LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST4LNd8_UPD; | 
|  | case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; | 
|  | case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; | 
|  | case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD; | 
|  | case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; | 
|  | case ARM::VST4LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST4LNd8_UPD; | 
|  | case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; | 
|  | case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; | 
|  | case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD; | 
|  | case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; | 
|  | case ARM::VST4LNdAsm_8:  Spacing = 1; return ARM::VST4LNd8; | 
|  | case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16; | 
|  | case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32; | 
|  | case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16; | 
|  | case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32; | 
|  |  | 
|  | // VST4 | 
|  | case ARM::VST4dWB_fixed_Asm_8:  Spacing = 1; return ARM::VST4d8_UPD; | 
|  | case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; | 
|  | case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; | 
|  | case ARM::VST4qWB_fixed_Asm_8:  Spacing = 2; return ARM::VST4q8_UPD; | 
|  | case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; | 
|  | case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; | 
|  | case ARM::VST4dWB_register_Asm_8:  Spacing = 1; return ARM::VST4d8_UPD; | 
|  | case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; | 
|  | case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; | 
|  | case ARM::VST4qWB_register_Asm_8:  Spacing = 2; return ARM::VST4q8_UPD; | 
|  | case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; | 
|  | case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; | 
|  | case ARM::VST4dAsm_8:  Spacing = 1; return ARM::VST4d8; | 
|  | case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16; | 
|  | case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32; | 
|  | case ARM::VST4qAsm_8:  Spacing = 2; return ARM::VST4q8; | 
|  | case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16; | 
|  | case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32; | 
|  | } | 
|  | } | 
|  |  | 
|  | static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) { | 
|  | switch(Opc) { | 
|  | default: llvm_unreachable("unexpected opcode!"); | 
|  | // VLD1LN | 
|  | case ARM::VLD1LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD1LNd8_UPD; | 
|  | case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; | 
|  | case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; | 
|  | case ARM::VLD1LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD1LNd8_UPD; | 
|  | case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; | 
|  | case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; | 
|  | case ARM::VLD1LNdAsm_8:  Spacing = 1; return ARM::VLD1LNd8; | 
|  | case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16; | 
|  | case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32; | 
|  |  | 
|  | // VLD2LN | 
|  | case ARM::VLD2LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD2LNd8_UPD; | 
|  | case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; | 
|  | case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; | 
|  | case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD; | 
|  | case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; | 
|  | case ARM::VLD2LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD2LNd8_UPD; | 
|  | case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; | 
|  | case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; | 
|  | case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD; | 
|  | case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; | 
|  | case ARM::VLD2LNdAsm_8:  Spacing = 1; return ARM::VLD2LNd8; | 
|  | case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16; | 
|  | case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32; | 
|  | case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16; | 
|  | case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32; | 
|  |  | 
|  | // VLD3DUP | 
|  | case ARM::VLD3DUPdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3DUPd8_UPD; | 
|  | case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; | 
|  | case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; | 
|  | case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD; | 
|  | case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; | 
|  | case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; | 
|  | case ARM::VLD3DUPdWB_register_Asm_8:  Spacing = 1; return ARM::VLD3DUPd8_UPD; | 
|  | case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; | 
|  | case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; | 
|  | case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD; | 
|  | case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; | 
|  | case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; | 
|  | case ARM::VLD3DUPdAsm_8:  Spacing = 1; return ARM::VLD3DUPd8; | 
|  | case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16; | 
|  | case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32; | 
|  | case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8; | 
|  | case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16; | 
|  | case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32; | 
|  |  | 
|  | // VLD3LN | 
|  | case ARM::VLD3LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3LNd8_UPD; | 
|  | case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; | 
|  | case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; | 
|  | case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD; | 
|  | case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; | 
|  | case ARM::VLD3LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD3LNd8_UPD; | 
|  | case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; | 
|  | case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; | 
|  | case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD; | 
|  | case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; | 
|  | case ARM::VLD3LNdAsm_8:  Spacing = 1; return ARM::VLD3LNd8; | 
|  | case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16; | 
|  | case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32; | 
|  | case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16; | 
|  | case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32; | 
|  |  | 
|  | // VLD3 | 
|  | case ARM::VLD3dWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3d8_UPD; | 
|  | case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; | 
|  | case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; | 
|  | case ARM::VLD3qWB_fixed_Asm_8:  Spacing = 2; return ARM::VLD3q8_UPD; | 
|  | case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; | 
|  | case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; | 
|  | case ARM::VLD3dWB_register_Asm_8:  Spacing = 1; return ARM::VLD3d8_UPD; | 
|  | case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; | 
|  | case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; | 
|  | case ARM::VLD3qWB_register_Asm_8:  Spacing = 2; return ARM::VLD3q8_UPD; | 
|  | case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; | 
|  | case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; | 
|  | case ARM::VLD3dAsm_8:  Spacing = 1; return ARM::VLD3d8; | 
|  | case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16; | 
|  | case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32; | 
|  | case ARM::VLD3qAsm_8:  Spacing = 2; return ARM::VLD3q8; | 
|  | case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16; | 
|  | case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32; | 
|  |  | 
|  | // VLD4LN | 
|  | case ARM::VLD4LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4LNd8_UPD; | 
|  | case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; | 
|  | case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; | 
|  | case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; | 
|  | case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; | 
|  | case ARM::VLD4LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD4LNd8_UPD; | 
|  | case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; | 
|  | case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; | 
|  | case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; | 
|  | case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; | 
|  | case ARM::VLD4LNdAsm_8:  Spacing = 1; return ARM::VLD4LNd8; | 
|  | case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16; | 
|  | case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32; | 
|  | case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16; | 
|  | case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32; | 
|  |  | 
|  | // VLD4DUP | 
|  | case ARM::VLD4DUPdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4DUPd8_UPD; | 
|  | case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; | 
|  | case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; | 
|  | case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD; | 
|  | case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD; | 
|  | case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; | 
|  | case ARM::VLD4DUPdWB_register_Asm_8:  Spacing = 1; return ARM::VLD4DUPd8_UPD; | 
|  | case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; | 
|  | case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; | 
|  | case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD; | 
|  | case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD; | 
|  | case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; | 
|  | case ARM::VLD4DUPdAsm_8:  Spacing = 1; return ARM::VLD4DUPd8; | 
|  | case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16; | 
|  | case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32; | 
|  | case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8; | 
|  | case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16; | 
|  | case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32; | 
|  |  | 
|  | // VLD4 | 
|  | case ARM::VLD4dWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4d8_UPD; | 
|  | case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; | 
|  | case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; | 
|  | case ARM::VLD4qWB_fixed_Asm_8:  Spacing = 2; return ARM::VLD4q8_UPD; | 
|  | case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; | 
|  | case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; | 
|  | case ARM::VLD4dWB_register_Asm_8:  Spacing = 1; return ARM::VLD4d8_UPD; | 
|  | case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; | 
|  | case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; | 
|  | case ARM::VLD4qWB_register_Asm_8:  Spacing = 2; return ARM::VLD4q8_UPD; | 
|  | case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; | 
|  | case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; | 
|  | case ARM::VLD4dAsm_8:  Spacing = 1; return ARM::VLD4d8; | 
|  | case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16; | 
|  | case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32; | 
|  | case ARM::VLD4qAsm_8:  Spacing = 2; return ARM::VLD4q8; | 
|  | case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16; | 
|  | case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool ARMAsmParser::processInstruction(MCInst &Inst, | 
|  | const OperandVector &Operands, | 
|  | MCStreamer &Out) { | 
|  | // Check if we have the wide qualifier, because if it's present we | 
|  | // must avoid selecting a 16-bit thumb instruction. | 
|  | bool HasWideQualifier = false; | 
|  | for (auto &Op : Operands) { | 
|  | ARMOperand &ARMOp = static_cast<ARMOperand&>(*Op); | 
|  | if (ARMOp.isToken() && ARMOp.getToken() == ".w") { | 
|  | HasWideQualifier = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | switch (Inst.getOpcode()) { | 
|  | // Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction. | 
|  | case ARM::LDRT_POST: | 
|  | case ARM::LDRBT_POST: { | 
|  | const unsigned Opcode = | 
|  | (Inst.getOpcode() == ARM::LDRT_POST) ? ARM::LDRT_POST_IMM | 
|  | : ARM::LDRBT_POST_IMM; | 
|  | MCInst TmpInst; | 
|  | TmpInst.setOpcode(Opcode); | 
|  | TmpInst.addOperand(Inst.getOperand(0)); | 
|  | TmpInst.addOperand(Inst.getOperand(1)); | 
|  | TmpInst.addOperand(Inst.getOperand(1)); | 
|  | TmpInst.addOperand(MCOperand::createReg(0)); | 
|  | TmpInst.addOperand(MCOperand::createImm(0)); | 
|  | TmpInst.addOperand(Inst.getOperand(2)); | 
|  | TmpInst.addOperand(Inst.getOperand(3)); | 
|  | Inst = TmpInst; | 
|  | return true; | 
|  | } | 
|  | // Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction. | 
|  | case ARM::STRT_POST: | 
|  | case ARM::STRBT_POST: { | 
|  | const unsigned Opcode = | 
|  | (Inst.getOpcode() == ARM::STRT_POST) ? ARM::STRT_POST_IMM | 
|  | : ARM::STRBT_POST_IMM; | 
|  | MCInst TmpInst; | 
|  | TmpInst.setOpcode(Opcode); | 
|  | TmpInst.addOperand(Inst.getOperand(1)); | 
|  | TmpInst.addOperand(Inst.getOperand(0)); | 
|  | TmpInst.addOperand(Inst.getOperand(1)); | 
|  | TmpInst.addOperand(MCOperand::createReg(0)); | 
|  | TmpInst.addOperand(MCOperand::createImm(0)); | 
|  | TmpInst.addOperand(Inst.getOperand(2)); | 
|  | TmpInst.addOperand(Inst.getOperand(3)); | 
|  | Inst = TmpInst; | 
|  | return true; | 
|  | } | 
|  | // Alias for alternate form of 'ADR Rd, #imm' instruction. | 
|  | case ARM::ADDri: { | 
|  | if (Inst.getOperand(1).getReg() != ARM::PC || | 
|  | Inst.getOperand(5).getReg() != 0 || | 
|  | !(Inst.getOperand(2).isExpr() || Inst.getOperand(2).isImm())) | 
|  | return false; | 
|  | MCInst TmpInst; | 
|  | TmpInst.setOpcode(ARM::ADR); | 
|  | TmpInst.addOperand(Inst.getOperand(0)); | 
|  | if (Inst.getOperand(2).isImm()) { | 
|  | // Immediate (mod_imm) will be in its encoded form, we must unencode it | 
|  | // before passing it to the ADR instruction. | 
|  | unsigned Enc = Inst.getOperand(2).getImm(); | 
|  | TmpInst.addOperand(MCOperand::createImm( | 
|  | ARM_AM::rotr32(Enc & 0xFF, (Enc & 0xF00) >> 7))); | 
|  | } else { | 
|  | // Turn PC-relative expression into absolute expression. | 
|  | // Reading PC provides the start of the current instruction + 8 and | 
|  | // the transform to adr is biased by that. | 
|  | MCSymbol *Dot = getContext().createTempSymbol(); | 
|  | Out.EmitLabel(Dot); | 
|  | const MCExpr *OpExpr = Inst.getOperand(2).getExpr(); | 
|  | const MCExpr *InstPC = MCSymbolRefExpr::create(Dot, | 
|  | MCSymbolRefExpr::VK_None, | 
|  | getContext()); | 
|  | const MCExpr *Const8 = MCConstantExpr::create(8, getContext()); | 
|  | const MCExpr *ReadPC = MCBinaryExpr::createAdd(InstPC, Const8, | 
|  | getContext()); | 
|  | const MCExpr *FixupAddr = MCBinaryExpr::createAdd(ReadPC, OpExpr, | 
|  | getContext()); | 
|  | TmpInst.addOperand(MCOperand::createExpr(FixupAddr)); | 
|  | } | 
|  | TmpInst.addOperand(Inst.getOperand(3)); | 
|  | TmpInst.addOperand(Inst.getOperand(4)); | 
|  | Inst = TmpInst; | 
|  | return true; | 
|  | } | 
|  | // Aliases for alternate PC+imm syntax of LDR instructions. | 
|  | case ARM::t2LDRpcrel: | 
|  | // Select the narrow version if the immediate will fit. | 
|  | if (Inst.getOperand(1).getImm() > 0 && | 
|  | Inst.getOperand(1).getImm() <= 0xff && | 
|  | !HasWideQualifier) | 
|  | Inst.setOpcode(ARM::tLDRpci); | 
|  | else | 
|  | Inst.setOpcode(ARM::t2LDRpci); | 
|  | return true; | 
|  | case ARM::t2LDRBpcrel: | 
|  | Inst.setOpcode(ARM::t2LDRBpci); | 
|  | return true; | 
|  | case ARM::t2LDRHpcrel: | 
|  | Inst.setOpcode(ARM::t2LDRHpci); | 
|  | return true; | 
|  | case ARM::t2LDRSBpcrel: | 
|  | Inst.setOpcode(ARM::t2LDRSBpci); | 
|  | return true; | 
|  | case ARM::t2LDRSHpcrel: | 
|  | Inst.setOpcode(ARM::t2LDRSHpci); | 
|  | return true; | 
|  | case ARM::LDRConstPool: | 
|  | case ARM::tLDRConstPool: | 
|  | case ARM::t2LDRConstPool: { | 
|  | // Pseudo instruction ldr rt, =immediate is converted to a | 
|  | // MOV rt, immediate if immediate is known and representable | 
|  | // otherwise we create a constant pool entry that we load from. | 
|  | MCInst TmpInst; | 
|  | if (Inst.getOpcode() == ARM::LDRConstPool) | 
|  | TmpInst.setOpcode(ARM::LDRi12); | 
|  | else if (Inst.getOpcode() == ARM::tLDRConstPool) | 
|  | TmpInst.setOpcode(ARM::tLDRpci); | 
|  | else if (Inst.getOpcode() == ARM::t2LDRConstPool) | 
|  | TmpInst.setOpcode(ARM::t2LDRpci); | 
|  | const ARMOperand &PoolOperand = | 
|  | (HasWideQualifier ? | 
|  | static_cast<ARMOperand &>(*Operands[4]) : | 
|  | static_cast<ARMOperand &>(*Operands[3])); | 
|  | const MCExpr *SubExprVal = PoolOperand.getConstantPoolImm(); | 
|  | // If SubExprVal is a constant we may be able to use a MOV | 
|  | if (isa<MCConstantExpr>(SubExprVal) && | 
|  | Inst.getOperand(0).getReg() != ARM::PC && | 
|  | Inst.getOperand(0).getReg() != ARM::SP) { | 
|  | int64_t Value = | 
|  | (int64_t) (cast<MCConstantExpr>(SubExprVal))->getValue(); | 
|  | bool UseMov  = true; | 
|  | bool MovHasS = true; | 
|  | if (Inst.getOpcode() == ARM::LDRConstPool) { | 
|  | // ARM Constant | 
|  | if (ARM_AM::getSOImmVal(Value) != -1) { | 
|  | Value = ARM_AM::getSOImmVal(Value); | 
|  | TmpInst.setOpcode(ARM::MOVi); | 
|  | } | 
|  | else if (ARM_AM::getSOImmVal(~Value) != -1) { | 
|  | Value = ARM_AM::getSOImmVal(~Value); | 
|  | TmpInst.setOpcode(ARM::MVNi); | 
|  | } | 
|  | else if (hasV6T2Ops() && | 
|  | Value >=0 && Value < 65536) { | 
|  | TmpInst.setOpcode(ARM::MOVi16); | 
|  | MovHasS = false; | 
|  | } | 
|  | else | 
|  | UseMov = false; | 
|  | } | 
|  | else { | 
|  | // Thumb/Thumb2 Constant | 
|  | if (hasThumb2() && | 
|  | ARM_AM::getT2SOImmVal(Value) != -1) | 
|  | TmpInst.setOpcode(ARM::t2MOVi); | 
|  | else if (hasThumb2() && | 
|  | ARM_AM::getT2SOImmVal(~Value) != -1) { | 
|  | TmpInst.setOpcode(ARM::t2MVNi); | 
|  | Value = ~Value; | 
|  | } | 
|  | else if (hasV8MBaseline() && | 
|  | Value >=0 && Value < 65536) { | 
|  | TmpInst.setOpcode(ARM::t2MOVi16); | 
|  | MovHasS = false; | 
|  | } | 
|  | else | 
|  | UseMov = false; | 
|  | } | 
|  | if (UseMov) { | 
|  | TmpInst.addOperand(Inst.getOperand(0));           // Rt | 
|  | TmpInst.addOperand(MCOperand::createImm(Value));  // Immediate | 
|  | TmpInst.addOperand(Inst.getOperand(2));           // CondCode | 
|  | TmpInst.addOperand(Inst.getOperand(3));           // CondCode | 
|  | if (MovHasS) | 
|  | TmpInst.addOperand(MCOperand::createReg(0));    // S | 
|  | Inst = TmpInst; | 
|  | return true; | 
|  | } | 
|  | } | 
|  | // No opportunity to use MOV/MVN create constant pool | 
|  | const MCExpr *CPLoc = | 
|  | getTargetStreamer().addConstantPoolEntry(SubExprVal, | 
|  | PoolOperand.getStartLoc()); | 
|  | TmpInst.addOperand(Inst.getOperand(0));           // Rt | 
|  | TmpInst.addOperand(MCOperand::createExpr(CPLoc)); // offset to constpool | 
|  | if (TmpInst.getOpcode() == ARM::LDRi12) | 
|  | TmpInst.addOperand(MCOperand::createImm(0));    // unused offset | 
|  | TmpInst.addOperand(Inst.getOperand(2));           // CondCode | 
|  | TmpInst.addOperand(Inst.getOperand(3));           // CondCode | 
|  | Inst = TmpInst; | 
|  | return true; | 
|  | } | 
|  | // Handle NEON VST complex aliases. | 
|  | case ARM::VST1LNdWB_register_Asm_8: | 
|  | case ARM::VST1LNdWB_register_Asm_16: | 
|  | case ARM::VST1LNdWB_register_Asm_32: { | 
|  | MCInst TmpInst; | 
|  | // Shuffle the operands around so the lane index operand is in the | 
|  | // right place. | 
|  | unsigned Spacing; | 
|  | TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); | 
|  | TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb | 
|  | TmpInst.addOperand(Inst.getOperand(2)); // Rn | 
|  | TmpInst.addOperand(Inst.getOperand(3)); // alignment | 
|  | TmpInst.addOperand(Inst.getOperand(4)); // Rm | 
|  | TmpInst.addOperand(Inst.getOperand(0)); // Vd | 
|  | TmpInst.addOperand(Inst.getOperand(1)); // lane | 
|  | TmpInst.addOperand(Inst.getOperand(5)); // CondCode | 
|  | TmpInst.addOperand(Inst.getOperand(6)); | 
|  | Inst = TmpInst; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case ARM::VST2LNdWB_register_Asm_8: | 
|  | case ARM::VST2LNdWB_register_Asm_16: | 
|  | case ARM::VST2LNdWB_register_Asm_32: | 
|  | case ARM::VST2LNqWB_register_Asm_16: | 
|  | case ARM::VST2LNqWB_register_Asm_32: { | 
|  | MCInst TmpInst; | 
|  | // Shuffle the operands around so the lane index operand is in the | 
|  | // right place. | 
|  | unsigned Spacing; | 
|  | TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); | 
|  | TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb | 
|  | TmpInst.addOperand(Inst.getOperand(2)); // Rn | 
|  | TmpInst.addOperand(Inst.getOperand(3)); // alignment | 
|  | TmpInst.addOperand(Inst.getOperand(4)); // Rm | 
|  | TmpInst.addOperand(Inst.getOperand(0)); // Vd | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing)); | 
|  | TmpInst.addOperand(Inst.getOperand(1)); // lane | 
|  | TmpInst.addOperand(Inst.getOperand(5)); // CondCode | 
|  | TmpInst.addOperand(Inst.getOperand(6)); | 
|  | Inst = TmpInst; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case ARM::VST3LNdWB_register_Asm_8: | 
|  | case ARM::VST3LNdWB_register_Asm_16: | 
|  | case ARM::VST3LNdWB_register_Asm_32: | 
|  | case ARM::VST3LNqWB_register_Asm_16: | 
|  | case ARM::VST3LNqWB_register_Asm_32: { | 
|  | MCInst TmpInst; | 
|  | // Shuffle the operands around so the lane index operand is in the | 
|  | // right place. | 
|  | unsigned Spacing; | 
|  | TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); | 
|  | TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb | 
|  | TmpInst.addOperand(Inst.getOperand(2)); // Rn | 
|  | TmpInst.addOperand(Inst.getOperand(3)); // alignment | 
|  | TmpInst.addOperand(Inst.getOperand(4)); // Rm | 
|  | TmpInst.addOperand(Inst.getOperand(0)); // Vd | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing)); | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing * 2)); | 
|  | TmpInst.addOperand(Inst.getOperand(1)); // lane | 
|  | TmpInst.addOperand(Inst.getOperand(5)); // CondCode | 
|  | TmpInst.addOperand(Inst.getOperand(6)); | 
|  | Inst = TmpInst; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case ARM::VST4LNdWB_register_Asm_8: | 
|  | case ARM::VST4LNdWB_register_Asm_16: | 
|  | case ARM::VST4LNdWB_register_Asm_32: | 
|  | case ARM::VST4LNqWB_register_Asm_16: | 
|  | case ARM::VST4LNqWB_register_Asm_32: { | 
|  | MCInst TmpInst; | 
|  | // Shuffle the operands around so the lane index operand is in the | 
|  | // right place. | 
|  | unsigned Spacing; | 
|  | TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); | 
|  | TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb | 
|  | TmpInst.addOperand(Inst.getOperand(2)); // Rn | 
|  | TmpInst.addOperand(Inst.getOperand(3)); // alignment | 
|  | TmpInst.addOperand(Inst.getOperand(4)); // Rm | 
|  | TmpInst.addOperand(Inst.getOperand(0)); // Vd | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing)); | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing * 2)); | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing * 3)); | 
|  | TmpInst.addOperand(Inst.getOperand(1)); // lane | 
|  | TmpInst.addOperand(Inst.getOperand(5)); // CondCode | 
|  | TmpInst.addOperand(Inst.getOperand(6)); | 
|  | Inst = TmpInst; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case ARM::VST1LNdWB_fixed_Asm_8: | 
|  | case ARM::VST1LNdWB_fixed_Asm_16: | 
|  | case ARM::VST1LNdWB_fixed_Asm_32: { | 
|  | MCInst TmpInst; | 
|  | // Shuffle the operands around so the lane index operand is in the | 
|  | // right place. | 
|  | unsigned Spacing; | 
|  | TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); | 
|  | TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb | 
|  | TmpInst.addOperand(Inst.getOperand(2)); // Rn | 
|  | TmpInst.addOperand(Inst.getOperand(3)); // alignment | 
|  | TmpInst.addOperand(MCOperand::createReg(0)); // Rm | 
|  | TmpInst.addOperand(Inst.getOperand(0)); // Vd | 
|  | TmpInst.addOperand(Inst.getOperand(1)); // lane | 
|  | TmpInst.addOperand(Inst.getOperand(4)); // CondCode | 
|  | TmpInst.addOperand(Inst.getOperand(5)); | 
|  | Inst = TmpInst; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case ARM::VST2LNdWB_fixed_Asm_8: | 
|  | case ARM::VST2LNdWB_fixed_Asm_16: | 
|  | case ARM::VST2LNdWB_fixed_Asm_32: | 
|  | case ARM::VST2LNqWB_fixed_Asm_16: | 
|  | case ARM::VST2LNqWB_fixed_Asm_32: { | 
|  | MCInst TmpInst; | 
|  | // Shuffle the operands around so the lane index operand is in the | 
|  | // right place. | 
|  | unsigned Spacing; | 
|  | TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); | 
|  | TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb | 
|  | TmpInst.addOperand(Inst.getOperand(2)); // Rn | 
|  | TmpInst.addOperand(Inst.getOperand(3)); // alignment | 
|  | TmpInst.addOperand(MCOperand::createReg(0)); // Rm | 
|  | TmpInst.addOperand(Inst.getOperand(0)); // Vd | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing)); | 
|  | TmpInst.addOperand(Inst.getOperand(1)); // lane | 
|  | TmpInst.addOperand(Inst.getOperand(4)); // CondCode | 
|  | TmpInst.addOperand(Inst.getOperand(5)); | 
|  | Inst = TmpInst; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case ARM::VST3LNdWB_fixed_Asm_8: | 
|  | case ARM::VST3LNdWB_fixed_Asm_16: | 
|  | case ARM::VST3LNdWB_fixed_Asm_32: | 
|  | case ARM::VST3LNqWB_fixed_Asm_16: | 
|  | case ARM::VST3LNqWB_fixed_Asm_32: { | 
|  | MCInst TmpInst; | 
|  | // Shuffle the operands around so the lane index operand is in the | 
|  | // right place. | 
|  | unsigned Spacing; | 
|  | TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); | 
|  | TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb | 
|  | TmpInst.addOperand(Inst.getOperand(2)); // Rn | 
|  | TmpInst.addOperand(Inst.getOperand(3)); // alignment | 
|  | TmpInst.addOperand(MCOperand::createReg(0)); // Rm | 
|  | TmpInst.addOperand(Inst.getOperand(0)); // Vd | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing)); | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing * 2)); | 
|  | TmpInst.addOperand(Inst.getOperand(1)); // lane | 
|  | TmpInst.addOperand(Inst.getOperand(4)); // CondCode | 
|  | TmpInst.addOperand(Inst.getOperand(5)); | 
|  | Inst = TmpInst; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case ARM::VST4LNdWB_fixed_Asm_8: | 
|  | case ARM::VST4LNdWB_fixed_Asm_16: | 
|  | case ARM::VST4LNdWB_fixed_Asm_32: | 
|  | case ARM::VST4LNqWB_fixed_Asm_16: | 
|  | case ARM::VST4LNqWB_fixed_Asm_32: { | 
|  | MCInst TmpInst; | 
|  | // Shuffle the operands around so the lane index operand is in the | 
|  | // right place. | 
|  | unsigned Spacing; | 
|  | TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); | 
|  | TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb | 
|  | TmpInst.addOperand(Inst.getOperand(2)); // Rn | 
|  | TmpInst.addOperand(Inst.getOperand(3)); // alignment | 
|  | TmpInst.addOperand(MCOperand::createReg(0)); // Rm | 
|  | TmpInst.addOperand(Inst.getOperand(0)); // Vd | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing)); | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing * 2)); | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing * 3)); | 
|  | TmpInst.addOperand(Inst.getOperand(1)); // lane | 
|  | TmpInst.addOperand(Inst.getOperand(4)); // CondCode | 
|  | TmpInst.addOperand(Inst.getOperand(5)); | 
|  | Inst = TmpInst; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case ARM::VST1LNdAsm_8: | 
|  | case ARM::VST1LNdAsm_16: | 
|  | case ARM::VST1LNdAsm_32: { | 
|  | MCInst TmpInst; | 
|  | // Shuffle the operands around so the lane index operand is in the | 
|  | // right place. | 
|  | unsigned Spacing; | 
|  | TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); | 
|  | TmpInst.addOperand(Inst.getOperand(2)); // Rn | 
|  | TmpInst.addOperand(Inst.getOperand(3)); // alignment | 
|  | TmpInst.addOperand(Inst.getOperand(0)); // Vd | 
|  | TmpInst.addOperand(Inst.getOperand(1)); // lane | 
|  | TmpInst.addOperand(Inst.getOperand(4)); // CondCode | 
|  | TmpInst.addOperand(Inst.getOperand(5)); | 
|  | Inst = TmpInst; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case ARM::VST2LNdAsm_8: | 
|  | case ARM::VST2LNdAsm_16: | 
|  | case ARM::VST2LNdAsm_32: | 
|  | case ARM::VST2LNqAsm_16: | 
|  | case ARM::VST2LNqAsm_32: { | 
|  | MCInst TmpInst; | 
|  | // Shuffle the operands around so the lane index operand is in the | 
|  | // right place. | 
|  | unsigned Spacing; | 
|  | TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); | 
|  | TmpInst.addOperand(Inst.getOperand(2)); // Rn | 
|  | TmpInst.addOperand(Inst.getOperand(3)); // alignment | 
|  | TmpInst.addOperand(Inst.getOperand(0)); // Vd | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing)); | 
|  | TmpInst.addOperand(Inst.getOperand(1)); // lane | 
|  | TmpInst.addOperand(Inst.getOperand(4)); // CondCode | 
|  | TmpInst.addOperand(Inst.getOperand(5)); | 
|  | Inst = TmpInst; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case ARM::VST3LNdAsm_8: | 
|  | case ARM::VST3LNdAsm_16: | 
|  | case ARM::VST3LNdAsm_32: | 
|  | case ARM::VST3LNqAsm_16: | 
|  | case ARM::VST3LNqAsm_32: { | 
|  | MCInst TmpInst; | 
|  | // Shuffle the operands around so the lane index operand is in the | 
|  | // right place. | 
|  | unsigned Spacing; | 
|  | TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); | 
|  | TmpInst.addOperand(Inst.getOperand(2)); // Rn | 
|  | TmpInst.addOperand(Inst.getOperand(3)); // alignment | 
|  | TmpInst.addOperand(Inst.getOperand(0)); // Vd | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing)); | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing * 2)); | 
|  | TmpInst.addOperand(Inst.getOperand(1)); // lane | 
|  | TmpInst.addOperand(Inst.getOperand(4)); // CondCode | 
|  | TmpInst.addOperand(Inst.getOperand(5)); | 
|  | Inst = TmpInst; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case ARM::VST4LNdAsm_8: | 
|  | case ARM::VST4LNdAsm_16: | 
|  | case ARM::VST4LNdAsm_32: | 
|  | case ARM::VST4LNqAsm_16: | 
|  | case ARM::VST4LNqAsm_32: { | 
|  | MCInst TmpInst; | 
|  | // Shuffle the operands around so the lane index operand is in the | 
|  | // right place. | 
|  | unsigned Spacing; | 
|  | TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); | 
|  | TmpInst.addOperand(Inst.getOperand(2)); // Rn | 
|  | TmpInst.addOperand(Inst.getOperand(3)); // alignment | 
|  | TmpInst.addOperand(Inst.getOperand(0)); // Vd | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing)); | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing * 2)); | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing * 3)); | 
|  | TmpInst.addOperand(Inst.getOperand(1)); // lane | 
|  | TmpInst.addOperand(Inst.getOperand(4)); // CondCode | 
|  | TmpInst.addOperand(Inst.getOperand(5)); | 
|  | Inst = TmpInst; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Handle NEON VLD complex aliases. | 
|  | case ARM::VLD1LNdWB_register_Asm_8: | 
|  | case ARM::VLD1LNdWB_register_Asm_16: | 
|  | case ARM::VLD1LNdWB_register_Asm_32: { | 
|  | MCInst TmpInst; | 
|  | // Shuffle the operands around so the lane index operand is in the | 
|  | // right place. | 
|  | unsigned Spacing; | 
|  | TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); | 
|  | TmpInst.addOperand(Inst.getOperand(0)); // Vd | 
|  | TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb | 
|  | TmpInst.addOperand(Inst.getOperand(2)); // Rn | 
|  | TmpInst.addOperand(Inst.getOperand(3)); // alignment | 
|  | TmpInst.addOperand(Inst.getOperand(4)); // Rm | 
|  | TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) | 
|  | TmpInst.addOperand(Inst.getOperand(1)); // lane | 
|  | TmpInst.addOperand(Inst.getOperand(5)); // CondCode | 
|  | TmpInst.addOperand(Inst.getOperand(6)); | 
|  | Inst = TmpInst; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case ARM::VLD2LNdWB_register_Asm_8: | 
|  | case ARM::VLD2LNdWB_register_Asm_16: | 
|  | case ARM::VLD2LNdWB_register_Asm_32: | 
|  | case ARM::VLD2LNqWB_register_Asm_16: | 
|  | case ARM::VLD2LNqWB_register_Asm_32: { | 
|  | MCInst TmpInst; | 
|  | // Shuffle the operands around so the lane index operand is in the | 
|  | // right place. | 
|  | unsigned Spacing; | 
|  | TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); | 
|  | TmpInst.addOperand(Inst.getOperand(0)); // Vd | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing)); | 
|  | TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb | 
|  | TmpInst.addOperand(Inst.getOperand(2)); // Rn | 
|  | TmpInst.addOperand(Inst.getOperand(3)); // alignment | 
|  | TmpInst.addOperand(Inst.getOperand(4)); // Rm | 
|  | TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing)); | 
|  | TmpInst.addOperand(Inst.getOperand(1)); // lane | 
|  | TmpInst.addOperand(Inst.getOperand(5)); // CondCode | 
|  | TmpInst.addOperand(Inst.getOperand(6)); | 
|  | Inst = TmpInst; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case ARM::VLD3LNdWB_register_Asm_8: | 
|  | case ARM::VLD3LNdWB_register_Asm_16: | 
|  | case ARM::VLD3LNdWB_register_Asm_32: | 
|  | case ARM::VLD3LNqWB_register_Asm_16: | 
|  | case ARM::VLD3LNqWB_register_Asm_32: { | 
|  | MCInst TmpInst; | 
|  | // Shuffle the operands around so the lane index operand is in the | 
|  | // right place. | 
|  | unsigned Spacing; | 
|  | TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); | 
|  | TmpInst.addOperand(Inst.getOperand(0)); // Vd | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing)); | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing * 2)); | 
|  | TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb | 
|  | TmpInst.addOperand(Inst.getOperand(2)); // Rn | 
|  | TmpInst.addOperand(Inst.getOperand(3)); // alignment | 
|  | TmpInst.addOperand(Inst.getOperand(4)); // Rm | 
|  | TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing)); | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing * 2)); | 
|  | TmpInst.addOperand(Inst.getOperand(1)); // lane | 
|  | TmpInst.addOperand(Inst.getOperand(5)); // CondCode | 
|  | TmpInst.addOperand(Inst.getOperand(6)); | 
|  | Inst = TmpInst; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case ARM::VLD4LNdWB_register_Asm_8: | 
|  | case ARM::VLD4LNdWB_register_Asm_16: | 
|  | case ARM::VLD4LNdWB_register_Asm_32: | 
|  | case ARM::VLD4LNqWB_register_Asm_16: | 
|  | case ARM::VLD4LNqWB_register_Asm_32: { | 
|  | MCInst TmpInst; | 
|  | // Shuffle the operands around so the lane index operand is in the | 
|  | // right place. | 
|  | unsigned Spacing; | 
|  | TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); | 
|  | TmpInst.addOperand(Inst.getOperand(0)); // Vd | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing)); | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing * 2)); | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing * 3)); | 
|  | TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb | 
|  | TmpInst.addOperand(Inst.getOperand(2)); // Rn | 
|  | TmpInst.addOperand(Inst.getOperand(3)); // alignment | 
|  | TmpInst.addOperand(Inst.getOperand(4)); // Rm | 
|  | TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing)); | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing * 2)); | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing * 3)); | 
|  | TmpInst.addOperand(Inst.getOperand(1)); // lane | 
|  | TmpInst.addOperand(Inst.getOperand(5)); // CondCode | 
|  | TmpInst.addOperand(Inst.getOperand(6)); | 
|  | Inst = TmpInst; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case ARM::VLD1LNdWB_fixed_Asm_8: | 
|  | case ARM::VLD1LNdWB_fixed_Asm_16: | 
|  | case ARM::VLD1LNdWB_fixed_Asm_32: { | 
|  | MCInst TmpInst; | 
|  | // Shuffle the operands around so the lane index operand is in the | 
|  | // right place. | 
|  | unsigned Spacing; | 
|  | TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); | 
|  | TmpInst.addOperand(Inst.getOperand(0)); // Vd | 
|  | TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb | 
|  | TmpInst.addOperand(Inst.getOperand(2)); // Rn | 
|  | TmpInst.addOperand(Inst.getOperand(3)); // alignment | 
|  | TmpInst.addOperand(MCOperand::createReg(0)); // Rm | 
|  | TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) | 
|  | TmpInst.addOperand(Inst.getOperand(1)); // lane | 
|  | TmpInst.addOperand(Inst.getOperand(4)); // CondCode | 
|  | TmpInst.addOperand(Inst.getOperand(5)); | 
|  | Inst = TmpInst; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case ARM::VLD2LNdWB_fixed_Asm_8: | 
|  | case ARM::VLD2LNdWB_fixed_Asm_16: | 
|  | case ARM::VLD2LNdWB_fixed_Asm_32: | 
|  | case ARM::VLD2LNqWB_fixed_Asm_16: | 
|  | case ARM::VLD2LNqWB_fixed_Asm_32: { | 
|  | MCInst TmpInst; | 
|  | // Shuffle the operands around so the lane index operand is in the | 
|  | // right place. | 
|  | unsigned Spacing; | 
|  | TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); | 
|  | TmpInst.addOperand(Inst.getOperand(0)); // Vd | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing)); | 
|  | TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb | 
|  | TmpInst.addOperand(Inst.getOperand(2)); // Rn | 
|  | TmpInst.addOperand(Inst.getOperand(3)); // alignment | 
|  | TmpInst.addOperand(MCOperand::createReg(0)); // Rm | 
|  | TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing)); | 
|  | TmpInst.addOperand(Inst.getOperand(1)); // lane | 
|  | TmpInst.addOperand(Inst.getOperand(4)); // CondCode | 
|  | TmpInst.addOperand(Inst.getOperand(5)); | 
|  | Inst = TmpInst; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case ARM::VLD3LNdWB_fixed_Asm_8: | 
|  | case ARM::VLD3LNdWB_fixed_Asm_16: | 
|  | case ARM::VLD3LNdWB_fixed_Asm_32: | 
|  | case ARM::VLD3LNqWB_fixed_Asm_16: | 
|  | case ARM::VLD3LNqWB_fixed_Asm_32: { | 
|  | MCInst TmpInst; | 
|  | // Shuffle the operands around so the lane index operand is in the | 
|  | // right place. | 
|  | unsigned Spacing; | 
|  | TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); | 
|  | TmpInst.addOperand(Inst.getOperand(0)); // Vd | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing)); | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing * 2)); | 
|  | TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb | 
|  | TmpInst.addOperand(Inst.getOperand(2)); // Rn | 
|  | TmpInst.addOperand(Inst.getOperand(3)); // alignment | 
|  | TmpInst.addOperand(MCOperand::createReg(0)); // Rm | 
|  | TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing)); | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing * 2)); | 
|  | TmpInst.addOperand(Inst.getOperand(1)); // lane | 
|  | TmpInst.addOperand(Inst.getOperand(4)); // CondCode | 
|  | TmpInst.addOperand(Inst.getOperand(5)); | 
|  | Inst = TmpInst; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case ARM::VLD4LNdWB_fixed_Asm_8: | 
|  | case ARM::VLD4LNdWB_fixed_Asm_16: | 
|  | case ARM::VLD4LNdWB_fixed_Asm_32: | 
|  | case ARM::VLD4LNqWB_fixed_Asm_16: | 
|  | case ARM::VLD4LNqWB_fixed_Asm_32: { | 
|  | MCInst TmpInst; | 
|  | // Shuffle the operands around so the lane index operand is in the | 
|  | // right place. | 
|  | unsigned Spacing; | 
|  | TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); | 
|  | TmpInst.addOperand(Inst.getOperand(0)); // Vd | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing)); | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing * 2)); | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing * 3)); | 
|  | TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb | 
|  | TmpInst.addOperand(Inst.getOperand(2)); // Rn | 
|  | TmpInst.addOperand(Inst.getOperand(3)); // alignment | 
|  | TmpInst.addOperand(MCOperand::createReg(0)); // Rm | 
|  | TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing)); | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing * 2)); | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing * 3)); | 
|  | TmpInst.addOperand(Inst.getOperand(1)); // lane | 
|  | TmpInst.addOperand(Inst.getOperand(4)); // CondCode | 
|  | TmpInst.addOperand(Inst.getOperand(5)); | 
|  | Inst = TmpInst; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case ARM::VLD1LNdAsm_8: | 
|  | case ARM::VLD1LNdAsm_16: | 
|  | case ARM::VLD1LNdAsm_32: { | 
|  | MCInst TmpInst; | 
|  | // Shuffle the operands around so the lane index operand is in the | 
|  | // right place. | 
|  | unsigned Spacing; | 
|  | TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); | 
|  | TmpInst.addOperand(Inst.getOperand(0)); // Vd | 
|  | TmpInst.addOperand(Inst.getOperand(2)); // Rn | 
|  | TmpInst.addOperand(Inst.getOperand(3)); // alignment | 
|  | TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) | 
|  | TmpInst.addOperand(Inst.getOperand(1)); // lane | 
|  | TmpInst.addOperand(Inst.getOperand(4)); // CondCode | 
|  | TmpInst.addOperand(Inst.getOperand(5)); | 
|  | Inst = TmpInst; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case ARM::VLD2LNdAsm_8: | 
|  | case ARM::VLD2LNdAsm_16: | 
|  | case ARM::VLD2LNdAsm_32: | 
|  | case ARM::VLD2LNqAsm_16: | 
|  | case ARM::VLD2LNqAsm_32: { | 
|  | MCInst TmpInst; | 
|  | // Shuffle the operands around so the lane index operand is in the | 
|  | // right place. | 
|  | unsigned Spacing; | 
|  | TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); | 
|  | TmpInst.addOperand(Inst.getOperand(0)); // Vd | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing)); | 
|  | TmpInst.addOperand(Inst.getOperand(2)); // Rn | 
|  | TmpInst.addOperand(Inst.getOperand(3)); // alignment | 
|  | TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing)); | 
|  | TmpInst.addOperand(Inst.getOperand(1)); // lane | 
|  | TmpInst.addOperand(Inst.getOperand(4)); // CondCode | 
|  | TmpInst.addOperand(Inst.getOperand(5)); | 
|  | Inst = TmpInst; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case ARM::VLD3LNdAsm_8: | 
|  | case ARM::VLD3LNdAsm_16: | 
|  | case ARM::VLD3LNdAsm_32: | 
|  | case ARM::VLD3LNqAsm_16: | 
|  | case ARM::VLD3LNqAsm_32: { | 
|  | MCInst TmpInst; | 
|  | // Shuffle the operands around so the lane index operand is in the | 
|  | // right place. | 
|  | unsigned Spacing; | 
|  | TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); | 
|  | TmpInst.addOperand(Inst.getOperand(0)); // Vd | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing)); | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing * 2)); | 
|  | TmpInst.addOperand(Inst.getOperand(2)); // Rn | 
|  | TmpInst.addOperand(Inst.getOperand(3)); // alignment | 
|  | TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing)); | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing * 2)); | 
|  | TmpInst.addOperand(Inst.getOperand(1)); // lane | 
|  | TmpInst.addOperand(Inst.getOperand(4)); // CondCode | 
|  | TmpInst.addOperand(Inst.getOperand(5)); | 
|  | Inst = TmpInst; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case ARM::VLD4LNdAsm_8: | 
|  | case ARM::VLD4LNdAsm_16: | 
|  | case ARM::VLD4LNdAsm_32: | 
|  | case ARM::VLD4LNqAsm_16: | 
|  | case ARM::VLD4LNqAsm_32: { | 
|  | MCInst TmpInst; | 
|  | // Shuffle the operands around so the lane index operand is in the | 
|  | // right place. | 
|  | unsigned Spacing; | 
|  | TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); | 
|  | TmpInst.addOperand(Inst.getOperand(0)); // Vd | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing)); | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing * 2)); | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing * 3)); | 
|  | TmpInst.addOperand(Inst.getOperand(2)); // Rn | 
|  | TmpInst.addOperand(Inst.getOperand(3)); // alignment | 
|  | TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing)); | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing * 2)); | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing * 3)); | 
|  | TmpInst.addOperand(Inst.getOperand(1)); // lane | 
|  | TmpInst.addOperand(Inst.getOperand(4)); // CondCode | 
|  | TmpInst.addOperand(Inst.getOperand(5)); | 
|  | Inst = TmpInst; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // VLD3DUP single 3-element structure to all lanes instructions. | 
|  | case ARM::VLD3DUPdAsm_8: | 
|  | case ARM::VLD3DUPdAsm_16: | 
|  | case ARM::VLD3DUPdAsm_32: | 
|  | case ARM::VLD3DUPqAsm_8: | 
|  | case ARM::VLD3DUPqAsm_16: | 
|  | case ARM::VLD3DUPqAsm_32: { | 
|  | MCInst TmpInst; | 
|  | unsigned Spacing; | 
|  | TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); | 
|  | TmpInst.addOperand(Inst.getOperand(0)); // Vd | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing)); | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing * 2)); | 
|  | TmpInst.addOperand(Inst.getOperand(1)); // Rn | 
|  | TmpInst.addOperand(Inst.getOperand(2)); // alignment | 
|  | TmpInst.addOperand(Inst.getOperand(3)); // CondCode | 
|  | TmpInst.addOperand(Inst.getOperand(4)); | 
|  | Inst = TmpInst; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case ARM::VLD3DUPdWB_fixed_Asm_8: | 
|  | case ARM::VLD3DUPdWB_fixed_Asm_16: | 
|  | case ARM::VLD3DUPdWB_fixed_Asm_32: | 
|  | case ARM::VLD3DUPqWB_fixed_Asm_8: | 
|  | case ARM::VLD3DUPqWB_fixed_Asm_16: | 
|  | case ARM::VLD3DUPqWB_fixed_Asm_32: { | 
|  | MCInst TmpInst; | 
|  | unsigned Spacing; | 
|  | TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); | 
|  | TmpInst.addOperand(Inst.getOperand(0)); // Vd | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing)); | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing * 2)); | 
|  | TmpInst.addOperand(Inst.getOperand(1)); // Rn | 
|  | TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn | 
|  | TmpInst.addOperand(Inst.getOperand(2)); // alignment | 
|  | TmpInst.addOperand(MCOperand::createReg(0)); // Rm | 
|  | TmpInst.addOperand(Inst.getOperand(3)); // CondCode | 
|  | TmpInst.addOperand(Inst.getOperand(4)); | 
|  | Inst = TmpInst; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case ARM::VLD3DUPdWB_register_Asm_8: | 
|  | case ARM::VLD3DUPdWB_register_Asm_16: | 
|  | case ARM::VLD3DUPdWB_register_Asm_32: | 
|  | case ARM::VLD3DUPqWB_register_Asm_8: | 
|  | case ARM::VLD3DUPqWB_register_Asm_16: | 
|  | case ARM::VLD3DUPqWB_register_Asm_32: { | 
|  | MCInst TmpInst; | 
|  | unsigned Spacing; | 
|  | TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); | 
|  | TmpInst.addOperand(Inst.getOperand(0)); // Vd | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing)); | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing * 2)); | 
|  | TmpInst.addOperand(Inst.getOperand(1)); // Rn | 
|  | TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn | 
|  | TmpInst.addOperand(Inst.getOperand(2)); // alignment | 
|  | TmpInst.addOperand(Inst.getOperand(3)); // Rm | 
|  | TmpInst.addOperand(Inst.getOperand(4)); // CondCode | 
|  | TmpInst.addOperand(Inst.getOperand(5)); | 
|  | Inst = TmpInst; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // VLD3 multiple 3-element structure instructions. | 
|  | case ARM::VLD3dAsm_8: | 
|  | case ARM::VLD3dAsm_16: | 
|  | case ARM::VLD3dAsm_32: | 
|  | case ARM::VLD3qAsm_8: | 
|  | case ARM::VLD3qAsm_16: | 
|  | case ARM::VLD3qAsm_32: { | 
|  | MCInst TmpInst; | 
|  | unsigned Spacing; | 
|  | TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); | 
|  | TmpInst.addOperand(Inst.getOperand(0)); // Vd | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing)); | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing * 2)); | 
|  | TmpInst.addOperand(Inst.getOperand(1)); // Rn | 
|  | TmpInst.addOperand(Inst.getOperand(2)); // alignment | 
|  | TmpInst.addOperand(Inst.getOperand(3)); // CondCode | 
|  | TmpInst.addOperand(Inst.getOperand(4)); | 
|  | Inst = TmpInst; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case ARM::VLD3dWB_fixed_Asm_8: | 
|  | case ARM::VLD3dWB_fixed_Asm_16: | 
|  | case ARM::VLD3dWB_fixed_Asm_32: | 
|  | case ARM::VLD3qWB_fixed_Asm_8: | 
|  | case ARM::VLD3qWB_fixed_Asm_16: | 
|  | case ARM::VLD3qWB_fixed_Asm_32: { | 
|  | MCInst TmpInst; | 
|  | unsigned Spacing; | 
|  | TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); | 
|  | TmpInst.addOperand(Inst.getOperand(0)); // Vd | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing)); | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing * 2)); | 
|  | TmpInst.addOperand(Inst.getOperand(1)); // Rn | 
|  | TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn | 
|  | TmpInst.addOperand(Inst.getOperand(2)); // alignment | 
|  | TmpInst.addOperand(MCOperand::createReg(0)); // Rm | 
|  | TmpInst.addOperand(Inst.getOperand(3)); // CondCode | 
|  | TmpInst.addOperand(Inst.getOperand(4)); | 
|  | Inst = TmpInst; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case ARM::VLD3dWB_register_Asm_8: | 
|  | case ARM::VLD3dWB_register_Asm_16: | 
|  | case ARM::VLD3dWB_register_Asm_32: | 
|  | case ARM::VLD3qWB_register_Asm_8: | 
|  | case ARM::VLD3qWB_register_Asm_16: | 
|  | case ARM::VLD3qWB_register_Asm_32: { | 
|  | MCInst TmpInst; | 
|  | unsigned Spacing; | 
|  | TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); | 
|  | TmpInst.addOperand(Inst.getOperand(0)); // Vd | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing)); | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing * 2)); | 
|  | TmpInst.addOperand(Inst.getOperand(1)); // Rn | 
|  | TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn | 
|  | TmpInst.addOperand(Inst.getOperand(2)); // alignment | 
|  | TmpInst.addOperand(Inst.getOperand(3)); // Rm | 
|  | TmpInst.addOperand(Inst.getOperand(4)); // CondCode | 
|  | TmpInst.addOperand(Inst.getOperand(5)); | 
|  | Inst = TmpInst; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // VLD4DUP single 3-element structure to all lanes instructions. | 
|  | case ARM::VLD4DUPdAsm_8: | 
|  | case ARM::VLD4DUPdAsm_16: | 
|  | case ARM::VLD4DUPdAsm_32: | 
|  | case ARM::VLD4DUPqAsm_8: | 
|  | case ARM::VLD4DUPqAsm_16: | 
|  | case ARM::VLD4DUPqAsm_32: { | 
|  | MCInst TmpInst; | 
|  | unsigned Spacing; | 
|  | TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); | 
|  | TmpInst.addOperand(Inst.getOperand(0)); // Vd | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing)); | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing * 2)); | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing * 3)); | 
|  | TmpInst.addOperand(Inst.getOperand(1)); // Rn | 
|  | TmpInst.addOperand(Inst.getOperand(2)); // alignment | 
|  | TmpInst.addOperand(Inst.getOperand(3)); // CondCode | 
|  | TmpInst.addOperand(Inst.getOperand(4)); | 
|  | Inst = TmpInst; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case ARM::VLD4DUPdWB_fixed_Asm_8: | 
|  | case ARM::VLD4DUPdWB_fixed_Asm_16: | 
|  | case ARM::VLD4DUPdWB_fixed_Asm_32: | 
|  | case ARM::VLD4DUPqWB_fixed_Asm_8: | 
|  | case ARM::VLD4DUPqWB_fixed_Asm_16: | 
|  | case ARM::VLD4DUPqWB_fixed_Asm_32: { | 
|  | MCInst TmpInst; | 
|  | unsigned Spacing; | 
|  | TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); | 
|  | TmpInst.addOperand(Inst.getOperand(0)); // Vd | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing)); | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing * 2)); | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing * 3)); | 
|  | TmpInst.addOperand(Inst.getOperand(1)); // Rn | 
|  | TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn | 
|  | TmpInst.addOperand(Inst.getOperand(2)); // alignment | 
|  | TmpInst.addOperand(MCOperand::createReg(0)); // Rm | 
|  | TmpInst.addOperand(Inst.getOperand(3)); // CondCode | 
|  | TmpInst.addOperand(Inst.getOperand(4)); | 
|  | Inst = TmpInst; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case ARM::VLD4DUPdWB_register_Asm_8: | 
|  | case ARM::VLD4DUPdWB_register_Asm_16: | 
|  | case ARM::VLD4DUPdWB_register_Asm_32: | 
|  | case ARM::VLD4DUPqWB_register_Asm_8: | 
|  | case ARM::VLD4DUPqWB_register_Asm_16: | 
|  | case ARM::VLD4DUPqWB_register_Asm_32: { | 
|  | MCInst TmpInst; | 
|  | unsigned Spacing; | 
|  | TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); | 
|  | TmpInst.addOperand(Inst.getOperand(0)); // Vd | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing)); | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing * 2)); | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing * 3)); | 
|  | TmpInst.addOperand(Inst.getOperand(1)); // Rn | 
|  | TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn | 
|  | TmpInst.addOperand(Inst.getOperand(2)); // alignment | 
|  | TmpInst.addOperand(Inst.getOperand(3)); // Rm | 
|  | TmpInst.addOperand(Inst.getOperand(4)); // CondCode | 
|  | TmpInst.addOperand(Inst.getOperand(5)); | 
|  | Inst = TmpInst; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // VLD4 multiple 4-element structure instructions. | 
|  | case ARM::VLD4dAsm_8: | 
|  | case ARM::VLD4dAsm_16: | 
|  | case ARM::VLD4dAsm_32: | 
|  | case ARM::VLD4qAsm_8: | 
|  | case ARM::VLD4qAsm_16: | 
|  | case ARM::VLD4qAsm_32: { | 
|  | MCInst TmpInst; | 
|  | unsigned Spacing; | 
|  | TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); | 
|  | TmpInst.addOperand(Inst.getOperand(0)); // Vd | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing)); | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing * 2)); | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing * 3)); | 
|  | TmpInst.addOperand(Inst.getOperand(1)); // Rn | 
|  | TmpInst.addOperand(Inst.getOperand(2)); // alignment | 
|  | TmpInst.addOperand(Inst.getOperand(3)); // CondCode | 
|  | TmpInst.addOperand(Inst.getOperand(4)); | 
|  | Inst = TmpInst; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case ARM::VLD4dWB_fixed_Asm_8: | 
|  | case ARM::VLD4dWB_fixed_Asm_16: | 
|  | case ARM::VLD4dWB_fixed_Asm_32: | 
|  | case ARM::VLD4qWB_fixed_Asm_8: | 
|  | case ARM::VLD4qWB_fixed_Asm_16: | 
|  | case ARM::VLD4qWB_fixed_Asm_32: { | 
|  | MCInst TmpInst; | 
|  | unsigned Spacing; | 
|  | TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); | 
|  | TmpInst.addOperand(Inst.getOperand(0)); // Vd | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing)); | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing * 2)); | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing * 3)); | 
|  | TmpInst.addOperand(Inst.getOperand(1)); // Rn | 
|  | TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn | 
|  | TmpInst.addOperand(Inst.getOperand(2)); // alignment | 
|  | TmpInst.addOperand(MCOperand::createReg(0)); // Rm | 
|  | TmpInst.addOperand(Inst.getOperand(3)); // CondCode | 
|  | TmpInst.addOperand(Inst.getOperand(4)); | 
|  | Inst = TmpInst; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case ARM::VLD4dWB_register_Asm_8: | 
|  | case ARM::VLD4dWB_register_Asm_16: | 
|  | case ARM::VLD4dWB_register_Asm_32: | 
|  | case ARM::VLD4qWB_register_Asm_8: | 
|  | case ARM::VLD4qWB_register_Asm_16: | 
|  | case ARM::VLD4qWB_register_Asm_32: { | 
|  | MCInst TmpInst; | 
|  | unsigned Spacing; | 
|  | TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); | 
|  | TmpInst.addOperand(Inst.getOperand(0)); // Vd | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing)); | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing * 2)); | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing * 3)); | 
|  | TmpInst.addOperand(Inst.getOperand(1)); // Rn | 
|  | TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn | 
|  | TmpInst.addOperand(Inst.getOperand(2)); // alignment | 
|  | TmpInst.addOperand(Inst.getOperand(3)); // Rm | 
|  | TmpInst.addOperand(Inst.getOperand(4)); // CondCode | 
|  | TmpInst.addOperand(Inst.getOperand(5)); | 
|  | Inst = TmpInst; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // VST3 multiple 3-element structure instructions. | 
|  | case ARM::VST3dAsm_8: | 
|  | case ARM::VST3dAsm_16: | 
|  | case ARM::VST3dAsm_32: | 
|  | case ARM::VST3qAsm_8: | 
|  | case ARM::VST3qAsm_16: | 
|  | case ARM::VST3qAsm_32: { | 
|  | MCInst TmpInst; | 
|  | unsigned Spacing; | 
|  | TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); | 
|  | TmpInst.addOperand(Inst.getOperand(1)); // Rn | 
|  | TmpInst.addOperand(Inst.getOperand(2)); // alignment | 
|  | TmpInst.addOperand(Inst.getOperand(0)); // Vd | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing)); | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing * 2)); | 
|  | TmpInst.addOperand(Inst.getOperand(3)); // CondCode | 
|  | TmpInst.addOperand(Inst.getOperand(4)); | 
|  | Inst = TmpInst; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case ARM::VST3dWB_fixed_Asm_8: | 
|  | case ARM::VST3dWB_fixed_Asm_16: | 
|  | case ARM::VST3dWB_fixed_Asm_32: | 
|  | case ARM::VST3qWB_fixed_Asm_8: | 
|  | case ARM::VST3qWB_fixed_Asm_16: | 
|  | case ARM::VST3qWB_fixed_Asm_32: { | 
|  | MCInst TmpInst; | 
|  | unsigned Spacing; | 
|  | TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); | 
|  | TmpInst.addOperand(Inst.getOperand(1)); // Rn | 
|  | TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn | 
|  | TmpInst.addOperand(Inst.getOperand(2)); // alignment | 
|  | TmpInst.addOperand(MCOperand::createReg(0)); // Rm | 
|  | TmpInst.addOperand(Inst.getOperand(0)); // Vd | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing)); | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing * 2)); | 
|  | TmpInst.addOperand(Inst.getOperand(3)); // CondCode | 
|  | TmpInst.addOperand(Inst.getOperand(4)); | 
|  | Inst = TmpInst; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case ARM::VST3dWB_register_Asm_8: | 
|  | case ARM::VST3dWB_register_Asm_16: | 
|  | case ARM::VST3dWB_register_Asm_32: | 
|  | case ARM::VST3qWB_register_Asm_8: | 
|  | case ARM::VST3qWB_register_Asm_16: | 
|  | case ARM::VST3qWB_register_Asm_32: { | 
|  | MCInst TmpInst; | 
|  | unsigned Spacing; | 
|  | TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); | 
|  | TmpInst.addOperand(Inst.getOperand(1)); // Rn | 
|  | TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn | 
|  | TmpInst.addOperand(Inst.getOperand(2)); // alignment | 
|  | TmpInst.addOperand(Inst.getOperand(3)); // Rm | 
|  | TmpInst.addOperand(Inst.getOperand(0)); // Vd | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing)); | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing * 2)); | 
|  | TmpInst.addOperand(Inst.getOperand(4)); // CondCode | 
|  | TmpInst.addOperand(Inst.getOperand(5)); | 
|  | Inst = TmpInst; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // VST4 multiple 3-element structure instructions. | 
|  | case ARM::VST4dAsm_8: | 
|  | case ARM::VST4dAsm_16: | 
|  | case ARM::VST4dAsm_32: | 
|  | case ARM::VST4qAsm_8: | 
|  | case ARM::VST4qAsm_16: | 
|  | case ARM::VST4qAsm_32: { | 
|  | MCInst TmpInst; | 
|  | unsigned Spacing; | 
|  | TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); | 
|  | TmpInst.addOperand(Inst.getOperand(1)); // Rn | 
|  | TmpInst.addOperand(Inst.getOperand(2)); // alignment | 
|  | TmpInst.addOperand(Inst.getOperand(0)); // Vd | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing)); | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing * 2)); | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing * 3)); | 
|  | TmpInst.addOperand(Inst.getOperand(3)); // CondCode | 
|  | TmpInst.addOperand(Inst.getOperand(4)); | 
|  | Inst = TmpInst; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case ARM::VST4dWB_fixed_Asm_8: | 
|  | case ARM::VST4dWB_fixed_Asm_16: | 
|  | case ARM::VST4dWB_fixed_Asm_32: | 
|  | case ARM::VST4qWB_fixed_Asm_8: | 
|  | case ARM::VST4qWB_fixed_Asm_16: | 
|  | case ARM::VST4qWB_fixed_Asm_32: { | 
|  | MCInst TmpInst; | 
|  | unsigned Spacing; | 
|  | TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); | 
|  | TmpInst.addOperand(Inst.getOperand(1)); // Rn | 
|  | TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn | 
|  | TmpInst.addOperand(Inst.getOperand(2)); // alignment | 
|  | TmpInst.addOperand(MCOperand::createReg(0)); // Rm | 
|  | TmpInst.addOperand(Inst.getOperand(0)); // Vd | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing)); | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing * 2)); | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing * 3)); | 
|  | TmpInst.addOperand(Inst.getOperand(3)); // CondCode | 
|  | TmpInst.addOperand(Inst.getOperand(4)); | 
|  | Inst = TmpInst; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case ARM::VST4dWB_register_Asm_8: | 
|  | case ARM::VST4dWB_register_Asm_16: | 
|  | case ARM::VST4dWB_register_Asm_32: | 
|  | case ARM::VST4qWB_register_Asm_8: | 
|  | case ARM::VST4qWB_register_Asm_16: | 
|  | case ARM::VST4qWB_register_Asm_32: { | 
|  | MCInst TmpInst; | 
|  | unsigned Spacing; | 
|  | TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); | 
|  | TmpInst.addOperand(Inst.getOperand(1)); // Rn | 
|  | TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn | 
|  | TmpInst.addOperand(Inst.getOperand(2)); // alignment | 
|  | TmpInst.addOperand(Inst.getOperand(3)); // Rm | 
|  | TmpInst.addOperand(Inst.getOperand(0)); // Vd | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing)); | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing * 2)); | 
|  | TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + | 
|  | Spacing * 3)); | 
|  | TmpInst.addOperand(Inst.getOperand(4)); // CondCode | 
|  | TmpInst.addOperand(Inst.getOperand(5)); | 
|  | Inst = TmpInst; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Handle encoding choice for the shift-immediate instructions. | 
|  | case ARM::t2LSLri: | 
|  | case ARM::t2LSRri: | 
|  | case ARM::t2ASRri: | 
|  | if (isARMLowRegister(Inst.getOperand(0).getReg()) && | 
|  | isARMLowRegister(Inst.getOperand(1).getReg()) && | 
|  | Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && | 
|  | !HasWideQualifier) { | 
|  | unsigned NewOpc; | 
|  | switch (Inst.getOpcode()) { | 
|  | default: llvm_unreachable("unexpected opcode"); | 
|  | case ARM::t2LSLri: NewOpc = ARM::tLSLri; break; | 
|  | case ARM::t2LSRri: NewOpc = ARM::tLSRri; break; | 
|  | case ARM::t2ASRri: NewOpc = ARM::tASRri; break; | 
|  | } | 
|  | // The Thumb1 operands aren't in the same order. Awesome, eh? | 
|  | MCInst TmpInst; | 
|  | TmpInst.setOpcode(NewOpc); | 
|  | TmpInst.addOperand(Inst.getOperand(0)); | 
|  | TmpInst.addOperand(Inst.getOperand(5)); | 
|  | TmpInst.addOperand(Inst.getOperand(1)); | 
|  | TmpInst.addOperand(Inst.getOperand(2)); | 
|  | TmpInst.addOperand(Inst.getOperand(3)); | 
|  | TmpInst.addOperand(Inst.getOperand(4)); | 
|  | Inst = TmpInst; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  |  | 
|  | // Handle the Thumb2 mode MOV complex aliases. | 
|  | case ARM::t2MOVsr: | 
|  | case ARM::t2MOVSsr: { | 
|  | // Which instruction to expand to depends on the CCOut operand and | 
|  | // whether we're in an IT block if the register operands are low | 
|  | // registers. | 
|  | bool isNarrow = false; | 
|  | if (isARMLowRegister(Inst.getOperand(0).getReg()) && | 
|  | isARMLowRegister(Inst.getOperand(1).getReg()) && | 
|  | isARMLowRegister(Inst.getOperand(2).getReg()) && | 
|  | Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && | 
|  | inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr) && | 
|  | !HasWideQualifier) | 
|  | isNarrow = true; | 
|  | MCInst TmpInst; | 
|  | unsigned newOpc; | 
|  | switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) { | 
|  | default: llvm_unreachable("unexpected opcode!"); | 
|  | case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break; | 
|  | case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break; | 
|  | case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break; | 
|  | case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR   : ARM::t2RORrr; break; | 
|  | } | 
|  | TmpInst.setOpcode(newOpc); | 
|  | TmpInst.addOperand(Inst.getOperand(0)); // Rd | 
|  | if (isNarrow) | 
|  | TmpInst.addOperand(MCOperand::createReg( | 
|  | Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); | 
|  | TmpInst.addOperand(Inst.getOperand(1)); // Rn | 
|  | TmpInst.addOperand(Inst.getOperand(2)); // Rm | 
|  | TmpInst.addOperand(Inst.getOperand(4)); // CondCode | 
|  | TmpInst.addOperand(Inst.getOperand(5)); | 
|  | if (!isNarrow) | 
|  | TmpInst.addOperand(MCOperand::createReg( | 
|  | Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); | 
|  | Inst = TmpInst; | 
|  | return true; | 
|  | } | 
|  | case ARM::t2MOVsi: | 
|  | case ARM::t2MOVSsi: { | 
|  | // Which instruction to expand to depends on the CCOut operand and | 
|  | // whether we're in an IT block if the register operands are low | 
|  | // registers. | 
|  | bool isNarrow = false; | 
|  | if (isARMLowRegister(Inst.getOperand(0).getReg()) && | 
|  | isARMLowRegister(Inst.getOperand(1).getReg()) && | 
|  | inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi) && | 
|  | !HasWideQualifier) | 
|  | isNarrow = true; | 
|  | MCInst TmpInst; | 
|  | unsigned newOpc; | 
|  | unsigned Shift = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); | 
|  | unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()); | 
|  | bool isMov = false; | 
|  | // MOV rd, rm, LSL #0 is actually a MOV instruction | 
|  | if (Shift == ARM_AM::lsl && Amount == 0) { | 
|  | isMov = true; | 
|  | // The 16-bit encoding of MOV rd, rm, LSL #N is explicitly encoding T2 of | 
|  | // MOV (register) in the ARMv8-A and ARMv8-M manuals, and immediate 0 is | 
|  | // unpredictable in an IT block so the 32-bit encoding T3 has to be used | 
|  | // instead. | 
|  | if (inITBlock()) { | 
|  | isNarrow = false; | 
|  | } | 
|  | newOpc = isNarrow ? ARM::tMOVSr : ARM::t2MOVr; | 
|  | } else { | 
|  | switch(Shift) { | 
|  | default: llvm_unreachable("unexpected opcode!"); | 
|  | case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break; | 
|  | case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break; | 
|  | case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break; | 
|  | case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break; | 
|  | case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break; | 
|  | } | 
|  | } | 
|  | if (Amount == 32) Amount = 0; | 
|  | TmpInst.setOpcode(newOpc); | 
|  | TmpInst.addOperand(Inst.getOperand(0)); // Rd | 
|  | if (isNarrow && !isMov) | 
|  | TmpInst.addOperand(MCOperand::createReg( | 
|  | Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); | 
|  | TmpInst.addOperand(Inst.getOperand(1)); // Rn | 
|  | if (newOpc != ARM::t2RRX && !isMov) | 
|  | TmpInst.addOperand(MCOperand::createImm(Amount)); | 
|  | TmpInst.addOperand(Inst.getOperand(3)); // CondCode | 
|  | TmpInst.addOperand(Inst.getOperand(4)); | 
|  | if (!isNarrow) | 
|  | TmpInst.addOperand(MCOperand::createReg( | 
|  | Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); | 
|  | Inst = TmpInst; | 
|  | return true; | 
|  | } | 
|  | // Handle the ARM mode MOV complex aliases. | 
|  | case ARM::ASRr: | 
|  | case ARM::LSRr: | 
|  | case ARM::LSLr: | 
|  | case ARM::RORr: { | 
|  | ARM_AM::ShiftOpc ShiftTy; | 
|  | switch(Inst.getOpcode()) { | 
|  | default: llvm_unreachable("unexpected opcode!"); | 
|  | case ARM::ASRr: ShiftTy = ARM_AM::asr; break; | 
|  | case ARM::LSRr: ShiftTy = ARM_AM::lsr; break; | 
|  | case ARM::LSLr: ShiftTy = ARM_AM::lsl; break; | 
|  | case ARM::RORr: ShiftTy = ARM_AM::ror; break; | 
|  | } | 
|  | unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0); | 
|  | MCInst TmpInst; | 
|  | TmpInst.setOpcode(ARM::MOVsr); | 
|  | TmpInst.addOperand(Inst.getOperand(0)); // Rd | 
|  | TmpInst.addOperand(Inst.getOperand(1)); // Rn | 
|  | TmpInst.addOperand(Inst.getOperand(2)); // Rm | 
|  | TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty | 
|  | TmpInst.addOperand(Inst.getOperand(3)); // CondCode | 
|  | TmpInst.addOperand(Inst.getOperand(4)); | 
|  | TmpInst.addOperand(Inst.getOperand(5)); // cc_out | 
|  | Inst = TmpInst; | 
|  | return true; | 
|  | } | 
|  | case ARM::ASRi: | 
|  | case ARM::LSRi: | 
|  | case ARM::LSLi: | 
|  | case ARM::RORi: { | 
|  | ARM_AM::ShiftOpc ShiftTy; | 
|  | switch(Inst.getOpcode()) { | 
|  | default: llvm_unreachable("unexpected opcode!"); | 
|  | case ARM::ASRi: ShiftTy = ARM_AM::asr; break; | 
|  | case ARM::LSRi: ShiftTy = ARM_AM::lsr; break; | 
|  | case ARM::LSLi: ShiftTy = ARM_AM::lsl; break; | 
|  | case ARM::RORi: ShiftTy = ARM_AM::ror; break; | 
|  | } | 
|  | // A shift by zero is a plain MOVr, not a MOVsi. | 
|  | unsigned Amt = Inst.getOperand(2).getImm(); | 
|  | unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi; | 
|  | // A shift by 32 should be encoded as 0 when permitted | 
|  | if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr)) | 
|  | Amt = 0; | 
|  | unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt); | 
|  | MCInst TmpInst; | 
|  | TmpInst.setOpcode(Opc); | 
|  | TmpInst.addOperand(Inst.getOperand(0)); // Rd | 
|  | TmpInst.addOperand(Inst.getOperand(1)); // Rn | 
|  | if (Opc == ARM::MOVsi) | 
|  | TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty | 
|  | TmpInst.addOperand(Inst.getOperand(3)); // CondCode | 
|  | TmpInst.addOperand(Inst.getOperand(4)); | 
|  | TmpInst.addOperand(Inst.getOperand(5)); // cc_out | 
|  | Inst = TmpInst; | 
|  | return true; | 
|  | } | 
|  | case ARM::RRXi: { | 
|  | unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0); | 
|  | MCInst TmpInst; | 
|  | TmpInst.setOpcode(ARM::MOVsi); | 
|  | TmpInst.addOperand(Inst.getOperand(0)); // Rd | 
|  | TmpInst.addOperand(Inst.getOperand(1)); // Rn | 
|  | TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty | 
|  | TmpInst.addOperand(Inst.getOperand(2)); // CondCode | 
|  | TmpInst.addOperand(Inst.getOperand(3)); | 
|  | TmpInst.addOperand(Inst.getOperand(4)); // cc_out | 
|  | Inst = TmpInst; | 
|  | return true; | 
|  | } | 
|  | case ARM::t2LDMIA_UPD: { | 
|  | // If this is a load of a single register, then we should use | 
|  | // a post-indexed LDR instruction instead, per the ARM ARM. | 
|  | if (Inst.getNumOperands() != 5) | 
|  | return false; | 
|  | MCInst TmpInst; | 
|  | TmpInst.setOpcode(ARM::t2LDR_POST); | 
|  | TmpInst.addOperand(Inst.getOperand(4)); // Rt | 
|  | TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb | 
|  | TmpInst.addOperand(Inst.getOperand(1)); // Rn | 
|  | TmpInst.addOperand(MCOperand::createImm(4)); | 
|  | TmpInst.addOperand(Inst.getOperand(2)); // CondCode | 
|  | TmpInst.addOperand(Inst.getOperand(3)); | 
|  | Inst = TmpInst; | 
|  | return true; | 
|  | } | 
|  | case ARM::t2STMDB_UPD: { | 
|  | // If this is a store of a single register, then we should use | 
|  | // a pre-indexed STR instruction instead, per the ARM ARM. | 
|  | if (Inst.getNumOperands() != 5) | 
|  | return false; | 
|  | MCInst TmpInst; | 
|  | TmpInst.setOpcode(ARM::t2STR_PRE); | 
|  | TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb | 
|  | TmpInst.addOperand(Inst.getOperand(4)); // Rt | 
|  | TmpInst.addOperand(Inst.getOperand(1)); // Rn | 
|  | TmpInst.addOperand(MCOperand::createImm(-4)); | 
|  | TmpInst.addOperand(Inst.getOperand(2)); // CondCode | 
|  | TmpInst.addOperand(Inst.getOperand(3)); | 
|  | Inst = TmpInst; | 
|  | return true; | 
|  | } | 
|  | case ARM::LDMIA_UPD: | 
|  | // If this is a load of a single register via a 'pop', then we should use | 
|  | // a post-indexed LDR instruction instead, per the ARM ARM. | 
|  | if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "pop" && | 
|  | Inst.getNumOperands() == 5) { | 
|  | MCInst TmpInst; | 
|  | TmpInst.setOpcode(ARM::LDR_POST_IMM); | 
|  | TmpInst.addOperand(Inst.getOperand(4)); // Rt | 
|  | TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb | 
|  | TmpInst.addOperand(Inst.getOperand(1)); // Rn | 
|  | TmpInst.addOperand(MCOperand::createReg(0));  // am2offset | 
|  | TmpInst.addOperand(MCOperand::createImm(4)); | 
|  | TmpInst.addOperand(Inst.getOperand(2)); // CondCode | 
|  | TmpInst.addOperand(Inst.getOperand(3)); | 
|  | Inst = TmpInst; | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | case ARM::STMDB_UPD: | 
|  | // If this is a store of a single register via a 'push', then we should use | 
|  | // a pre-indexed STR instruction instead, per the ARM ARM. | 
|  | if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "push" && | 
|  | Inst.getNumOperands() == 5) { | 
|  | MCInst TmpInst; | 
|  | TmpInst.setOpcode(ARM::STR_PRE_IMM); | 
|  | TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb | 
|  | TmpInst.addOperand(Inst.getOperand(4)); // Rt | 
|  | TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12 | 
|  | TmpInst.addOperand(MCOperand::createImm(-4)); | 
|  | TmpInst.addOperand(Inst.getOperand(2)); // CondCode | 
|  | TmpInst.addOperand(Inst.getOperand(3)); | 
|  | Inst = TmpInst; | 
|  | } | 
|  | break; | 
|  | case ARM::t2ADDri12: | 
|  | // If the immediate fits for encoding T3 (t2ADDri) and the generic "add" | 
|  | // mnemonic was used (not "addw"), encoding T3 is preferred. | 
|  | if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "add" || | 
|  | ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) | 
|  | break; | 
|  | Inst.setOpcode(ARM::t2ADDri); | 
|  | Inst.addOperand(MCOperand::createReg(0)); // cc_out | 
|  | break; | 
|  | case ARM::t2SUBri12: | 
|  | // If the immediate fits for encoding T3 (t2SUBri) and the generic "sub" | 
|  | // mnemonic was used (not "subw"), encoding T3 is preferred. | 
|  | if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "sub" || | 
|  | ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) | 
|  | break; | 
|  | Inst.setOpcode(ARM::t2SUBri); | 
|  | Inst.addOperand(MCOperand::createReg(0)); // cc_out | 
|  | break; | 
|  | case ARM::tADDi8: | 
|  | // If the immediate is in the range 0-7, we want tADDi3 iff Rd was | 
|  | // explicitly specified. From the ARM ARM: "Encoding T1 is preferred | 
|  | // to encoding T2 if <Rd> is specified and encoding T2 is preferred | 
|  | // to encoding T1 if <Rd> is omitted." | 
|  | if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { | 
|  | Inst.setOpcode(ARM::tADDi3); | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | case ARM::tSUBi8: | 
|  | // If the immediate is in the range 0-7, we want tADDi3 iff Rd was | 
|  | // explicitly specified. From the ARM ARM: "Encoding T1 is preferred | 
|  | // to encoding T2 if <Rd> is specified and encoding T2 is preferred | 
|  | // to encoding T1 if <Rd> is omitted." | 
|  | if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { | 
|  | Inst.setOpcode(ARM::tSUBi3); | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | case ARM::t2ADDri: | 
|  | case ARM::t2SUBri: { | 
|  | // If the destination and first source operand are the same, and | 
|  | // the flags are compatible with the current IT status, use encoding T2 | 
|  | // instead of T3. For compatibility with the system 'as'. Make sure the | 
|  | // wide encoding wasn't explicit. | 
|  | if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() || | 
|  | !isARMLowRegister(Inst.getOperand(0).getReg()) || | 
|  | (Inst.getOperand(2).isImm() && | 
|  | (unsigned)Inst.getOperand(2).getImm() > 255) || | 
|  | Inst.getOperand(5).getReg() != (inITBlock() ? 0 : ARM::CPSR) || | 
|  | HasWideQualifier) | 
|  | break; | 
|  | MCInst TmpInst; | 
|  | TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ? | 
|  | ARM::tADDi8 : ARM::tSUBi8); | 
|  | TmpInst.addOperand(Inst.getOperand(0)); | 
|  | TmpInst.addOperand(Inst.getOperand(5)); | 
|  | TmpInst.addOperand(Inst.getOperand(0)); | 
|  | TmpInst.addOperand(Inst.getOperand(2)); | 
|  | TmpInst.addOperand(Inst.getOperand(3)); | 
|  | TmpInst.addOperand(Inst.getOperand(4)); | 
|  | Inst = TmpInst; | 
|  | return true; | 
|  | } | 
|  | case ARM::t2ADDrr: { | 
|  | // If the destination and first source operand are the same, and | 
|  | // there's no setting of the flags, use encoding T2 instead of T3. | 
|  | // Note that this is only for ADD, not SUB. This mirrors the system | 
|  | // 'as' behaviour.  Also take advantage of ADD being commutative. | 
|  | // Make sure the wide encoding wasn't explicit. | 
|  | bool Swap = false; | 
|  | auto DestReg = Inst.getOperand(0).getReg(); | 
|  | bool Transform = DestReg == Inst.getOperand(1).getReg(); | 
|  | if (!Transform && DestReg == Inst.getOperand(2).getReg()) { | 
|  | Transform = true; | 
|  | Swap = true; | 
|  | } | 
|  | if (!Transform || | 
|  | Inst.getOperand(5).getReg() != 0 || | 
|  | HasWideQualifier) | 
|  | break; | 
|  | MCInst TmpInst; | 
|  | TmpInst.setOpcode(ARM::tADDhirr); | 
|  | TmpInst.addOperand(Inst.getOperand(0)); | 
|  | TmpInst.addOperand(Inst.getOperand(0)); | 
|  | TmpInst.addOperand(Inst.getOperand(Swap ? 1 : 2)); | 
|  | TmpInst.addOperand(Inst.getOperand(3)); | 
|  | TmpInst.addOperand(Inst.getOperand(4)); | 
|  | Inst = TmpInst; | 
|  | return true; | 
|  | } | 
|  | case ARM::tADDrSP: | 
|  | // If the non-SP source operand and the destination operand are not the | 
|  | // same, we need to use the 32-bit encoding if it's available. | 
|  | if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { | 
|  | Inst.setOpcode(ARM::t2ADDrr); | 
|  | Inst.addOperand(MCOperand::createReg(0)); // cc_out | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | case ARM::tB: | 
|  | // A Thumb conditional branch outside of an IT block is a tBcc. | 
|  | if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) { | 
|  | Inst.setOpcode(ARM::tBcc); | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | case ARM::t2B: | 
|  | // A Thumb2 conditional branch outside of an IT block is a t2Bcc. | 
|  | if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){ | 
|  | Inst.setOpcode(ARM::t2Bcc); | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | case ARM::t2Bcc: | 
|  | // If the conditional is AL or we're in an IT block, we really want t2B. | 
|  | if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) { | 
|  | Inst.setOpcode(ARM::t2B); | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | case ARM::tBcc: | 
|  | // If the conditional is AL, we really want tB. | 
|  | if (Inst.getOperand(1).getImm() == ARMCC::AL) { | 
|  | Inst.setOpcode(ARM::tB); | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | case ARM::tLDMIA: { | 
|  | // If the register list contains any high registers, or if the writeback | 
|  | // doesn't match what tLDMIA can do, we need to use the 32-bit encoding | 
|  | // instead if we're in Thumb2. Otherwise, this should have generated | 
|  | // an error in validateInstruction(). | 
|  | unsigned Rn = Inst.getOperand(0).getReg(); | 
|  | bool hasWritebackToken = | 
|  | (static_cast<ARMOperand &>(*Operands[3]).isToken() && | 
|  | static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); | 
|  | bool listContainsBase; | 
|  | if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) || | 
|  | (!listContainsBase && !hasWritebackToken) || | 
|  | (listContainsBase && hasWritebackToken)) { | 
|  | // 16-bit encoding isn't sufficient. Switch to the 32-bit version. | 
|  | assert(isThumbTwo()); | 
|  | Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA); | 
|  | // If we're switching to the updating version, we need to insert | 
|  | // the writeback tied operand. | 
|  | if (hasWritebackToken) | 
|  | Inst.insert(Inst.begin(), | 
|  | MCOperand::createReg(Inst.getOperand(0).getReg())); | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ARM::tSTMIA_UPD: { | 
|  | // If the register list contains any high registers, we need to use | 
|  | // the 32-bit encoding instead if we're in Thumb2. Otherwise, this | 
|  | // should have generated an error in validateInstruction(). | 
|  | unsigned Rn = Inst.getOperand(0).getReg(); | 
|  | bool listContainsBase; | 
|  | if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) { | 
|  | // 16-bit encoding isn't sufficient. Switch to the 32-bit version. | 
|  | assert(isThumbTwo()); | 
|  | Inst.setOpcode(ARM::t2STMIA_UPD); | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ARM::tPOP: { | 
|  | bool listContainsBase; | 
|  | // If the register list contains any high registers, we need to use | 
|  | // the 32-bit encoding instead if we're in Thumb2. Otherwise, this | 
|  | // should have generated an error in validateInstruction(). | 
|  | if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase)) | 
|  | return false; | 
|  | assert(isThumbTwo()); | 
|  | Inst.setOpcode(ARM::t2LDMIA_UPD); | 
|  | // Add the base register and writeback operands. | 
|  | Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); | 
|  | Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); | 
|  | return true; | 
|  | } | 
|  | case ARM::tPUSH: { | 
|  | bool listContainsBase; | 
|  | if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase)) | 
|  | return false; | 
|  | assert(isThumbTwo()); | 
|  | Inst.setOpcode(ARM::t2STMDB_UPD); | 
|  | // Add the base register and writeback operands. | 
|  | Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); | 
|  | Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); | 
|  | return true; | 
|  | } | 
|  | case ARM::t2MOVi: | 
|  | // If we can use the 16-bit encoding and the user didn't explicitly | 
|  | // request the 32-bit variant, transform it here. | 
|  | if (isARMLowRegister(Inst.getOperand(0).getReg()) && | 
|  | (Inst.getOperand(1).isImm() && | 
|  | (unsigned)Inst.getOperand(1).getImm() <= 255) && | 
|  | Inst.getOperand(4).getReg() == (inITBlock() ? 0 : ARM::CPSR) && | 
|  | !HasWideQualifier) { | 
|  | // The operands aren't in the same order for tMOVi8... | 
|  | MCInst TmpInst; | 
|  | TmpInst.setOpcode(ARM::tMOVi8); | 
|  | TmpInst.addOperand(Inst.getOperand(0)); | 
|  | TmpInst.addOperand(Inst.getOperand(4)); | 
|  | TmpInst.addOperand(Inst.getOperand(1)); | 
|  | TmpInst.addOperand(Inst.getOperand(2)); | 
|  | TmpInst.addOperand(Inst.getOperand(3)); | 
|  | Inst = TmpInst; | 
|  | return true; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case ARM::t2MOVr: | 
|  | // If we can use the 16-bit encoding and the user didn't explicitly | 
|  | // request the 32-bit variant, transform it here. | 
|  | if (isARMLowRegister(Inst.getOperand(0).getReg()) && | 
|  | isARMLowRegister(Inst.getOperand(1).getReg()) && | 
|  | Inst.getOperand(2).getImm() == ARMCC::AL && | 
|  | Inst.getOperand(4).getReg() == ARM::CPSR && | 
|  | !HasWideQualifier) { | 
|  | // The operands aren't the same for tMOV[S]r... (no cc_out) | 
|  | MCInst TmpInst; | 
|  | TmpInst.setOpcode(Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr); | 
|  | TmpInst.addOperand(Inst.getOperand(0)); | 
|  | TmpInst.addOperand(Inst.getOperand(1)); | 
|  | TmpInst.addOperand(Inst.getOperand(2)); | 
|  | TmpInst.addOperand(Inst.getOperand(3)); | 
|  | Inst = TmpInst; | 
|  | return true; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case ARM::t2SXTH: | 
|  | case ARM::t2SXTB: | 
|  | case ARM::t2UXTH: | 
|  | case ARM::t2UXTB: | 
|  | // If we can use the 16-bit encoding and the user didn't explicitly | 
|  | // request the 32-bit variant, transform it here. | 
|  | if (isARMLowRegister(Inst.getOperand(0).getReg()) && | 
|  | isARMLowRegister(Inst.getOperand(1).getReg()) && | 
|  | Inst.getOperand(2).getImm() == 0 && | 
|  | !HasWideQualifier) { | 
|  | unsigned NewOpc; | 
|  | switch (Inst.getOpcode()) { | 
|  | default: llvm_unreachable("Illegal opcode!"); | 
|  | case ARM::t2SXTH: NewOpc = ARM::tSXTH; break; | 
|  | case ARM::t2SXTB: NewOpc = ARM::tSXTB; break; | 
|  | case ARM::t2UXTH: NewOpc = ARM::tUXTH; break; | 
|  | case ARM::t2UXTB: NewOpc = ARM::tUXTB; break; | 
|  | } | 
|  | // The operands aren't the same for thumb1 (no rotate operand). | 
|  | MCInst TmpInst; | 
|  | TmpInst.setOpcode(NewOpc); | 
|  | TmpInst.addOperand(Inst.getOperand(0)); | 
|  | TmpInst.addOperand(Inst.getOperand(1)); | 
|  | TmpInst.addOperand(Inst.getOperand(3)); | 
|  | TmpInst.addOperand(Inst.getOperand(4)); | 
|  | Inst = TmpInst; | 
|  | return true; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case ARM::MOVsi: { | 
|  | ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); | 
|  | // rrx shifts and asr/lsr of #32 is encoded as 0 | 
|  | if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr) | 
|  | return false; | 
|  | if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) { | 
|  | // Shifting by zero is accepted as a vanilla 'MOVr' | 
|  | MCInst TmpInst; | 
|  | TmpInst.setOpcode(ARM::MOVr); | 
|  | TmpInst.addOperand(Inst.getOperand(0)); | 
|  | TmpInst.addOperand(Inst.getOperand(1)); | 
|  | TmpInst.addOperand(Inst.getOperand(3)); | 
|  | TmpInst.addOperand(Inst.getOperand(4)); | 
|  | TmpInst.addOperand(Inst.getOperand(5)); | 
|  | Inst = TmpInst; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  | case ARM::ANDrsi: | 
|  | case ARM::ORRrsi: | 
|  | case ARM::EORrsi: | 
|  | case ARM::BICrsi: | 
|  | case ARM::SUBrsi: | 
|  | case ARM::ADDrsi: { | 
|  | unsigned newOpc; | 
|  | ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm()); | 
|  | if (SOpc == ARM_AM::rrx) return false; | 
|  | switch (Inst.getOpcode()) { | 
|  | default: llvm_unreachable("unexpected opcode!"); | 
|  | case ARM::ANDrsi: newOpc = ARM::ANDrr; break; | 
|  | case ARM::ORRrsi: newOpc = ARM::ORRrr; break; | 
|  | case ARM::EORrsi: newOpc = ARM::EORrr; break; | 
|  | case ARM::BICrsi: newOpc = ARM::BICrr; break; | 
|  | case ARM::SUBrsi: newOpc = ARM::SUBrr; break; | 
|  | case ARM::ADDrsi: newOpc = ARM::ADDrr; break; | 
|  | } | 
|  | // If the shift is by zero, use the non-shifted instruction definition. | 
|  | // The exception is for right shifts, where 0 == 32 | 
|  | if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 && | 
|  | !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) { | 
|  | MCInst TmpInst; | 
|  | TmpInst.setOpcode(newOpc); | 
|  | TmpInst.addOperand(Inst.getOperand(0)); | 
|  | TmpInst.addOperand(Inst.getOperand(1)); | 
|  | TmpInst.addOperand(Inst.getOperand(2)); | 
|  | TmpInst.addOperand(Inst.getOperand(4)); | 
|  | TmpInst.addOperand(Inst.getOperand(5)); | 
|  | TmpInst.addOperand(Inst.getOperand(6)); | 
|  | Inst = TmpInst; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  | case ARM::ITasm: | 
|  | case ARM::t2IT: { | 
|  | MCOperand &MO = Inst.getOperand(1); | 
|  | unsigned Mask = MO.getImm(); | 
|  | ARMCC::CondCodes Cond = ARMCC::CondCodes(Inst.getOperand(0).getImm()); | 
|  |  | 
|  | // Set up the IT block state according to the IT instruction we just | 
|  | // matched. | 
|  | assert(!inITBlock() && "nested IT blocks?!"); | 
|  | startExplicitITBlock(Cond, Mask); | 
|  | MO.setImm(getITMaskEncoding()); | 
|  | break; | 
|  | } | 
|  | case ARM::t2LSLrr: | 
|  | case ARM::t2LSRrr: | 
|  | case ARM::t2ASRrr: | 
|  | case ARM::t2SBCrr: | 
|  | case ARM::t2RORrr: | 
|  | case ARM::t2BICrr: | 
|  | // Assemblers should use the narrow encodings of these instructions when permissible. | 
|  | if ((isARMLowRegister(Inst.getOperand(1).getReg()) && | 
|  | isARMLowRegister(Inst.getOperand(2).getReg())) && | 
|  | Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && | 
|  | Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && | 
|  | !HasWideQualifier) { | 
|  | unsigned NewOpc; | 
|  | switch (Inst.getOpcode()) { | 
|  | default: llvm_unreachable("unexpected opcode"); | 
|  | case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break; | 
|  | case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break; | 
|  | case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break; | 
|  | case ARM::t2SBCrr: NewOpc = ARM::tSBC; break; | 
|  | case ARM::t2RORrr: NewOpc = ARM::tROR; break; | 
|  | case ARM::t2BICrr: NewOpc = ARM::tBIC; break; | 
|  | } | 
|  | MCInst TmpInst; | 
|  | TmpInst.setOpcode(NewOpc); | 
|  | TmpInst.addOperand(Inst.getOperand(0)); | 
|  | TmpInst.addOperand(Inst.getOperand(5)); | 
|  | TmpInst.addOperand(Inst.getOperand(1)); | 
|  | TmpInst.addOperand(Inst.getOperand(2)); | 
|  | TmpInst.addOperand(Inst.getOperand(3)); | 
|  | TmpInst.addOperand(Inst.getOperand(4)); | 
|  | Inst = TmpInst; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  |  | 
|  | case ARM::t2ANDrr: | 
|  | case ARM::t2EORrr: | 
|  | case ARM::t2ADCrr: | 
|  | case ARM::t2ORRrr: | 
|  | // Assemblers should use the narrow encodings of these instructions when permissible. | 
|  | // These instructions are special in that they are commutable, so shorter encodings | 
|  | // are available more often. | 
|  | if ((isARMLowRegister(Inst.getOperand(1).getReg()) && | 
|  | isARMLowRegister(Inst.getOperand(2).getReg())) && | 
|  | (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() || | 
|  | Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) && | 
|  | Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && | 
|  | !HasWideQualifier) { | 
|  | unsigned NewOpc; | 
|  | switch (Inst.getOpcode()) { | 
|  | default: llvm_unreachable("unexpected opcode"); | 
|  | case ARM::t2ADCrr: NewOpc = ARM::tADC; break; | 
|  | case ARM::t2ANDrr: NewOpc = ARM::tAND; break; | 
|  | case ARM::t2EORrr: NewOpc = ARM::tEOR; break; | 
|  | case ARM::t2ORRrr: NewOpc = ARM::tORR; break; | 
|  | } | 
|  | MCInst TmpInst; | 
|  | TmpInst.setOpcode(NewOpc); | 
|  | TmpInst.addOperand(Inst.getOperand(0)); | 
|  | TmpInst.addOperand(Inst.getOperand(5)); | 
|  | if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) { | 
|  | TmpInst.addOperand(Inst.getOperand(1)); | 
|  | TmpInst.addOperand(Inst.getOperand(2)); | 
|  | } else { | 
|  | TmpInst.addOperand(Inst.getOperand(2)); | 
|  | TmpInst.addOperand(Inst.getOperand(1)); | 
|  | } | 
|  | TmpInst.addOperand(Inst.getOperand(3)); | 
|  | TmpInst.addOperand(Inst.getOperand(4)); | 
|  | Inst = TmpInst; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) { | 
|  | // 16-bit thumb arithmetic instructions either require or preclude the 'S' | 
|  | // suffix depending on whether they're in an IT block or not. | 
|  | unsigned Opc = Inst.getOpcode(); | 
|  | const MCInstrDesc &MCID = MII.get(Opc); | 
|  | if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) { | 
|  | assert(MCID.hasOptionalDef() && | 
|  | "optionally flag setting instruction missing optional def operand"); | 
|  | assert(MCID.NumOperands == Inst.getNumOperands() && | 
|  | "operand count mismatch!"); | 
|  | // Find the optional-def operand (cc_out). | 
|  | unsigned OpNo; | 
|  | for (OpNo = 0; | 
|  | !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands; | 
|  | ++OpNo) | 
|  | ; | 
|  | // If we're parsing Thumb1, reject it completely. | 
|  | if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR) | 
|  | return Match_RequiresFlagSetting; | 
|  | // If we're parsing Thumb2, which form is legal depends on whether we're | 
|  | // in an IT block. | 
|  | if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR && | 
|  | !inITBlock()) | 
|  | return Match_RequiresITBlock; | 
|  | if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR && | 
|  | inITBlock()) | 
|  | return Match_RequiresNotITBlock; | 
|  | // LSL with zero immediate is not allowed in an IT block | 
|  | if (Opc == ARM::tLSLri && Inst.getOperand(3).getImm() == 0 && inITBlock()) | 
|  | return Match_RequiresNotITBlock; | 
|  | } else if (isThumbOne()) { | 
|  | // Some high-register supporting Thumb1 encodings only allow both registers | 
|  | // to be from r0-r7 when in Thumb2. | 
|  | if (Opc == ARM::tADDhirr && !hasV6MOps() && | 
|  | isARMLowRegister(Inst.getOperand(1).getReg()) && | 
|  | isARMLowRegister(Inst.getOperand(2).getReg())) | 
|  | return Match_RequiresThumb2; | 
|  | // Others only require ARMv6 or later. | 
|  | else if (Opc == ARM::tMOVr && !hasV6Ops() && | 
|  | isARMLowRegister(Inst.getOperand(0).getReg()) && | 
|  | isARMLowRegister(Inst.getOperand(1).getReg())) | 
|  | return Match_RequiresV6; | 
|  | } | 
|  |  | 
|  | // Before ARMv8 the rules for when SP is allowed in t2MOVr are more complex | 
|  | // than the loop below can handle, so it uses the GPRnopc register class and | 
|  | // we do SP handling here. | 
|  | if (Opc == ARM::t2MOVr && !hasV8Ops()) | 
|  | { | 
|  | // SP as both source and destination is not allowed | 
|  | if (Inst.getOperand(0).getReg() == ARM::SP && | 
|  | Inst.getOperand(1).getReg() == ARM::SP) | 
|  | return Match_RequiresV8; | 
|  | // When flags-setting SP as either source or destination is not allowed | 
|  | if (Inst.getOperand(4).getReg() == ARM::CPSR && | 
|  | (Inst.getOperand(0).getReg() == ARM::SP || | 
|  | Inst.getOperand(1).getReg() == ARM::SP)) | 
|  | return Match_RequiresV8; | 
|  | } | 
|  |  | 
|  | // Use of SP for VMRS/VMSR is only allowed in ARM mode with the exception of | 
|  | // ARMv8-A. | 
|  | if ((Inst.getOpcode() == ARM::VMRS || Inst.getOpcode() == ARM::VMSR) && | 
|  | Inst.getOperand(0).getReg() == ARM::SP && (isThumb() && !hasV8Ops())) | 
|  | return Match_InvalidOperand; | 
|  |  | 
|  | for (unsigned I = 0; I < MCID.NumOperands; ++I) | 
|  | if (MCID.OpInfo[I].RegClass == ARM::rGPRRegClassID) { | 
|  | // rGPRRegClass excludes PC, and also excluded SP before ARMv8 | 
|  | if ((Inst.getOperand(I).getReg() == ARM::SP) && !hasV8Ops()) | 
|  | return Match_RequiresV8; | 
|  | else if (Inst.getOperand(I).getReg() == ARM::PC) | 
|  | return Match_InvalidOperand; | 
|  | } | 
|  |  | 
|  | return Match_Success; | 
|  | } | 
|  |  | 
|  | namespace llvm { | 
|  |  | 
|  | template <> inline bool IsCPSRDead<MCInst>(const MCInst *Instr) { | 
|  | return true; // In an assembly source, no need to second-guess | 
|  | } | 
|  |  | 
|  | } // end namespace llvm | 
|  |  | 
|  | // Returns true if Inst is unpredictable if it is in and IT block, but is not | 
|  | // the last instruction in the block. | 
|  | bool ARMAsmParser::isITBlockTerminator(MCInst &Inst) const { | 
|  | const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); | 
|  |  | 
|  | // All branch & call instructions terminate IT blocks with the exception of | 
|  | // SVC. | 
|  | if (MCID.isTerminator() || (MCID.isCall() && Inst.getOpcode() != ARM::tSVC) || | 
|  | MCID.isReturn() || MCID.isBranch() || MCID.isIndirectBranch()) | 
|  | return true; | 
|  |  | 
|  | // Any arithmetic instruction which writes to the PC also terminates the IT | 
|  | // block. | 
|  | for (unsigned OpIdx = 0; OpIdx < MCID.getNumDefs(); ++OpIdx) { | 
|  | MCOperand &Op = Inst.getOperand(OpIdx); | 
|  | if (Op.isReg() && Op.getReg() == ARM::PC) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (MCID.hasImplicitDefOfPhysReg(ARM::PC, MRI)) | 
|  | return true; | 
|  |  | 
|  | // Instructions with variable operand lists, which write to the variable | 
|  | // operands. We only care about Thumb instructions here, as ARM instructions | 
|  | // obviously can't be in an IT block. | 
|  | switch (Inst.getOpcode()) { | 
|  | case ARM::tLDMIA: | 
|  | case ARM::t2LDMIA: | 
|  | case ARM::t2LDMIA_UPD: | 
|  | case ARM::t2LDMDB: | 
|  | case ARM::t2LDMDB_UPD: | 
|  | if (listContainsReg(Inst, 3, ARM::PC)) | 
|  | return true; | 
|  | break; | 
|  | case ARM::tPOP: | 
|  | if (listContainsReg(Inst, 2, ARM::PC)) | 
|  | return true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | unsigned ARMAsmParser::MatchInstruction(OperandVector &Operands, MCInst &Inst, | 
|  | SmallVectorImpl<NearMissInfo> &NearMisses, | 
|  | bool MatchingInlineAsm, | 
|  | bool &EmitInITBlock, | 
|  | MCStreamer &Out) { | 
|  | // If we can't use an implicit IT block here, just match as normal. | 
|  | if (inExplicitITBlock() || !isThumbTwo() || !useImplicitITThumb()) | 
|  | return MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm); | 
|  |  | 
|  | // Try to match the instruction in an extension of the current IT block (if | 
|  | // there is one). | 
|  | if (inImplicitITBlock()) { | 
|  | extendImplicitITBlock(ITState.Cond); | 
|  | if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) == | 
|  | Match_Success) { | 
|  | // The match succeded, but we still have to check that the instruction is | 
|  | // valid in this implicit IT block. | 
|  | const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); | 
|  | if (MCID.isPredicable()) { | 
|  | ARMCC::CondCodes InstCond = | 
|  | (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) | 
|  | .getImm(); | 
|  | ARMCC::CondCodes ITCond = currentITCond(); | 
|  | if (InstCond == ITCond) { | 
|  | EmitInITBlock = true; | 
|  | return Match_Success; | 
|  | } else if (InstCond == ARMCC::getOppositeCondition(ITCond)) { | 
|  | invertCurrentITCondition(); | 
|  | EmitInITBlock = true; | 
|  | return Match_Success; | 
|  | } | 
|  | } | 
|  | } | 
|  | rewindImplicitITPosition(); | 
|  | } | 
|  |  | 
|  | // Finish the current IT block, and try to match outside any IT block. | 
|  | flushPendingInstructions(Out); | 
|  | unsigned PlainMatchResult = | 
|  | MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm); | 
|  | if (PlainMatchResult == Match_Success) { | 
|  | const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); | 
|  | if (MCID.isPredicable()) { | 
|  | ARMCC::CondCodes InstCond = | 
|  | (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) | 
|  | .getImm(); | 
|  | // Some forms of the branch instruction have their own condition code | 
|  | // fields, so can be conditionally executed without an IT block. | 
|  | if (Inst.getOpcode() == ARM::tBcc || Inst.getOpcode() == ARM::t2Bcc) { | 
|  | EmitInITBlock = false; | 
|  | return Match_Success; | 
|  | } | 
|  | if (InstCond == ARMCC::AL) { | 
|  | EmitInITBlock = false; | 
|  | return Match_Success; | 
|  | } | 
|  | } else { | 
|  | EmitInITBlock = false; | 
|  | return Match_Success; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Try to match in a new IT block. The matcher doesn't check the actual | 
|  | // condition, so we create an IT block with a dummy condition, and fix it up | 
|  | // once we know the actual condition. | 
|  | startImplicitITBlock(); | 
|  | if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) == | 
|  | Match_Success) { | 
|  | const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); | 
|  | if (MCID.isPredicable()) { | 
|  | ITState.Cond = | 
|  | (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) | 
|  | .getImm(); | 
|  | EmitInITBlock = true; | 
|  | return Match_Success; | 
|  | } | 
|  | } | 
|  | discardImplicitITBlock(); | 
|  |  | 
|  | // If none of these succeed, return the error we got when trying to match | 
|  | // outside any IT blocks. | 
|  | EmitInITBlock = false; | 
|  | return PlainMatchResult; | 
|  | } | 
|  |  | 
|  | static std::string ARMMnemonicSpellCheck(StringRef S, uint64_t FBS, | 
|  | unsigned VariantID = 0); | 
|  |  | 
|  | static const char *getSubtargetFeatureName(uint64_t Val); | 
|  | bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, | 
|  | OperandVector &Operands, | 
|  | MCStreamer &Out, uint64_t &ErrorInfo, | 
|  | bool MatchingInlineAsm) { | 
|  | MCInst Inst; | 
|  | unsigned MatchResult; | 
|  | bool PendConditionalInstruction = false; | 
|  |  | 
|  | SmallVector<NearMissInfo, 4> NearMisses; | 
|  | MatchResult = MatchInstruction(Operands, Inst, NearMisses, MatchingInlineAsm, | 
|  | PendConditionalInstruction, Out); | 
|  |  | 
|  | switch (MatchResult) { | 
|  | case Match_Success: | 
|  | // Context sensitive operand constraints aren't handled by the matcher, | 
|  | // so check them here. | 
|  | if (validateInstruction(Inst, Operands)) { | 
|  | // Still progress the IT block, otherwise one wrong condition causes | 
|  | // nasty cascading errors. | 
|  | forwardITPosition(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | { // processInstruction() updates inITBlock state, we need to save it away | 
|  | bool wasInITBlock = inITBlock(); | 
|  |  | 
|  | // Some instructions need post-processing to, for example, tweak which | 
|  | // encoding is selected. Loop on it while changes happen so the | 
|  | // individual transformations can chain off each other. E.g., | 
|  | // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8) | 
|  | while (processInstruction(Inst, Operands, Out)) | 
|  | ; | 
|  |  | 
|  | // Only after the instruction is fully processed, we can validate it | 
|  | if (wasInITBlock && hasV8Ops() && isThumb() && | 
|  | !isV8EligibleForIT(&Inst)) { | 
|  | Warning(IDLoc, "deprecated instruction in IT block"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Only move forward at the very end so that everything in validate | 
|  | // and process gets a consistent answer about whether we're in an IT | 
|  | // block. | 
|  | forwardITPosition(); | 
|  |  | 
|  | // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and | 
|  | // doesn't actually encode. | 
|  | if (Inst.getOpcode() == ARM::ITasm) | 
|  | return false; | 
|  |  | 
|  | Inst.setLoc(IDLoc); | 
|  | if (PendConditionalInstruction) { | 
|  | PendingConditionalInsts.push_back(Inst); | 
|  | if (isITBlockFull() || isITBlockTerminator(Inst)) | 
|  | flushPendingInstructions(Out); | 
|  | } else { | 
|  | Out.EmitInstruction(Inst, getSTI()); | 
|  | } | 
|  | return false; | 
|  | case Match_NearMisses: | 
|  | ReportNearMisses(NearMisses, IDLoc, Operands); | 
|  | return true; | 
|  | case Match_MnemonicFail: { | 
|  | uint64_t FBS = ComputeAvailableFeatures(getSTI().getFeatureBits()); | 
|  | std::string Suggestion = ARMMnemonicSpellCheck( | 
|  | ((ARMOperand &)*Operands[0]).getToken(), FBS); | 
|  | return Error(IDLoc, "invalid instruction" + Suggestion, | 
|  | ((ARMOperand &)*Operands[0]).getLocRange()); | 
|  | } | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Implement any new match types added!"); | 
|  | } | 
|  |  | 
|  | /// parseDirective parses the arm specific directives | 
|  | bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) { | 
|  | const MCObjectFileInfo::Environment Format = | 
|  | getContext().getObjectFileInfo()->getObjectFileType(); | 
|  | bool IsMachO = Format == MCObjectFileInfo::IsMachO; | 
|  | bool IsCOFF = Format == MCObjectFileInfo::IsCOFF; | 
|  |  | 
|  | StringRef IDVal = DirectiveID.getIdentifier(); | 
|  | if (IDVal == ".word") | 
|  | parseLiteralValues(4, DirectiveID.getLoc()); | 
|  | else if (IDVal == ".short" || IDVal == ".hword") | 
|  | parseLiteralValues(2, DirectiveID.getLoc()); | 
|  | else if (IDVal == ".thumb") | 
|  | parseDirectiveThumb(DirectiveID.getLoc()); | 
|  | else if (IDVal == ".arm") | 
|  | parseDirectiveARM(DirectiveID.getLoc()); | 
|  | else if (IDVal == ".thumb_func") | 
|  | parseDirectiveThumbFunc(DirectiveID.getLoc()); | 
|  | else if (IDVal == ".code") | 
|  | parseDirectiveCode(DirectiveID.getLoc()); | 
|  | else if (IDVal == ".syntax") | 
|  | parseDirectiveSyntax(DirectiveID.getLoc()); | 
|  | else if (IDVal == ".unreq") | 
|  | parseDirectiveUnreq(DirectiveID.getLoc()); | 
|  | else if (IDVal == ".fnend") | 
|  | parseDirectiveFnEnd(DirectiveID.getLoc()); | 
|  | else if (IDVal == ".cantunwind") | 
|  | parseDirectiveCantUnwind(DirectiveID.getLoc()); | 
|  | else if (IDVal == ".personality") | 
|  | parseDirectivePersonality(DirectiveID.getLoc()); | 
|  | else if (IDVal == ".handlerdata") | 
|  | parseDirectiveHandlerData(DirectiveID.getLoc()); | 
|  | else if (IDVal == ".setfp") | 
|  | parseDirectiveSetFP(DirectiveID.getLoc()); | 
|  | else if (IDVal == ".pad") | 
|  | parseDirectivePad(DirectiveID.getLoc()); | 
|  | else if (IDVal == ".save") | 
|  | parseDirectiveRegSave(DirectiveID.getLoc(), false); | 
|  | else if (IDVal == ".vsave") | 
|  | parseDirectiveRegSave(DirectiveID.getLoc(), true); | 
|  | else if (IDVal == ".ltorg" || IDVal == ".pool") | 
|  | parseDirectiveLtorg(DirectiveID.getLoc()); | 
|  | else if (IDVal == ".even") | 
|  | parseDirectiveEven(DirectiveID.getLoc()); | 
|  | else if (IDVal == ".personalityindex") | 
|  | parseDirectivePersonalityIndex(DirectiveID.getLoc()); | 
|  | else if (IDVal == ".unwind_raw") | 
|  | parseDirectiveUnwindRaw(DirectiveID.getLoc()); | 
|  | else if (IDVal == ".movsp") | 
|  | parseDirectiveMovSP(DirectiveID.getLoc()); | 
|  | else if (IDVal == ".arch_extension") | 
|  | parseDirectiveArchExtension(DirectiveID.getLoc()); | 
|  | else if (IDVal == ".align") | 
|  | return parseDirectiveAlign(DirectiveID.getLoc()); // Use Generic on failure. | 
|  | else if (IDVal == ".thumb_set") | 
|  | parseDirectiveThumbSet(DirectiveID.getLoc()); | 
|  | else if (!IsMachO && !IsCOFF) { | 
|  | if (IDVal == ".arch") | 
|  | parseDirectiveArch(DirectiveID.getLoc()); | 
|  | else if (IDVal == ".cpu") | 
|  | parseDirectiveCPU(DirectiveID.getLoc()); | 
|  | else if (IDVal == ".eabi_attribute") | 
|  | parseDirectiveEabiAttr(DirectiveID.getLoc()); | 
|  | else if (IDVal == ".fpu") | 
|  | parseDirectiveFPU(DirectiveID.getLoc()); | 
|  | else if (IDVal == ".fnstart") | 
|  | parseDirectiveFnStart(DirectiveID.getLoc()); | 
|  | else if (IDVal == ".inst") | 
|  | parseDirectiveInst(DirectiveID.getLoc()); | 
|  | else if (IDVal == ".inst.n") | 
|  | parseDirectiveInst(DirectiveID.getLoc(), 'n'); | 
|  | else if (IDVal == ".inst.w") | 
|  | parseDirectiveInst(DirectiveID.getLoc(), 'w'); | 
|  | else if (IDVal == ".object_arch") | 
|  | parseDirectiveObjectArch(DirectiveID.getLoc()); | 
|  | else if (IDVal == ".tlsdescseq") | 
|  | parseDirectiveTLSDescSeq(DirectiveID.getLoc()); | 
|  | else | 
|  | return true; | 
|  | } else | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// parseLiteralValues | 
|  | ///  ::= .hword expression [, expression]* | 
|  | ///  ::= .short expression [, expression]* | 
|  | ///  ::= .word expression [, expression]* | 
|  | bool ARMAsmParser::parseLiteralValues(unsigned Size, SMLoc L) { | 
|  | auto parseOne = [&]() -> bool { | 
|  | const MCExpr *Value; | 
|  | if (getParser().parseExpression(Value)) | 
|  | return true; | 
|  | getParser().getStreamer().EmitValue(Value, Size, L); | 
|  | return false; | 
|  | }; | 
|  | return (parseMany(parseOne)); | 
|  | } | 
|  |  | 
|  | /// parseDirectiveThumb | 
|  | ///  ::= .thumb | 
|  | bool ARMAsmParser::parseDirectiveThumb(SMLoc L) { | 
|  | if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") || | 
|  | check(!hasThumb(), L, "target does not support Thumb mode")) | 
|  | return true; | 
|  |  | 
|  | if (!isThumb()) | 
|  | SwitchMode(); | 
|  |  | 
|  | getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// parseDirectiveARM | 
|  | ///  ::= .arm | 
|  | bool ARMAsmParser::parseDirectiveARM(SMLoc L) { | 
|  | if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") || | 
|  | check(!hasARM(), L, "target does not support ARM mode")) | 
|  | return true; | 
|  |  | 
|  | if (isThumb()) | 
|  | SwitchMode(); | 
|  | getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void ARMAsmParser::onLabelParsed(MCSymbol *Symbol) { | 
|  | // We need to flush the current implicit IT block on a label, because it is | 
|  | // not legal to branch into an IT block. | 
|  | flushPendingInstructions(getStreamer()); | 
|  | if (NextSymbolIsThumb) { | 
|  | getParser().getStreamer().EmitThumbFunc(Symbol); | 
|  | NextSymbolIsThumb = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// parseDirectiveThumbFunc | 
|  | ///  ::= .thumbfunc symbol_name | 
|  | bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) { | 
|  | MCAsmParser &Parser = getParser(); | 
|  | const auto Format = getContext().getObjectFileInfo()->getObjectFileType(); | 
|  | bool IsMachO = Format == MCObjectFileInfo::IsMachO; | 
|  |  | 
|  | // Darwin asm has (optionally) function name after .thumb_func direction | 
|  | // ELF doesn't | 
|  |  | 
|  | if (IsMachO) { | 
|  | if (Parser.getTok().is(AsmToken::Identifier) || | 
|  | Parser.getTok().is(AsmToken::String)) { | 
|  | MCSymbol *Func = getParser().getContext().getOrCreateSymbol( | 
|  | Parser.getTok().getIdentifier()); | 
|  | getParser().getStreamer().EmitThumbFunc(Func); | 
|  | Parser.Lex(); | 
|  | if (parseToken(AsmToken::EndOfStatement, | 
|  | "unexpected token in '.thumb_func' directive")) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (parseToken(AsmToken::EndOfStatement, | 
|  | "unexpected token in '.thumb_func' directive")) | 
|  | return true; | 
|  |  | 
|  | NextSymbolIsThumb = true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// parseDirectiveSyntax | 
|  | ///  ::= .syntax unified | divided | 
|  | bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) { | 
|  | MCAsmParser &Parser = getParser(); | 
|  | const AsmToken &Tok = Parser.getTok(); | 
|  | if (Tok.isNot(AsmToken::Identifier)) { | 
|  | Error(L, "unexpected token in .syntax directive"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | StringRef Mode = Tok.getString(); | 
|  | Parser.Lex(); | 
|  | if (check(Mode == "divided" || Mode == "DIVIDED", L, | 
|  | "'.syntax divided' arm assembly not supported") || | 
|  | check(Mode != "unified" && Mode != "UNIFIED", L, | 
|  | "unrecognized syntax mode in .syntax directive") || | 
|  | parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) | 
|  | return true; | 
|  |  | 
|  | // TODO tell the MC streamer the mode | 
|  | // getParser().getStreamer().Emit???(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// parseDirectiveCode | 
|  | ///  ::= .code 16 | 32 | 
|  | bool ARMAsmParser::parseDirectiveCode(SMLoc L) { | 
|  | MCAsmParser &Parser = getParser(); | 
|  | const AsmToken &Tok = Parser.getTok(); | 
|  | if (Tok.isNot(AsmToken::Integer)) | 
|  | return Error(L, "unexpected token in .code directive"); | 
|  | int64_t Val = Parser.getTok().getIntVal(); | 
|  | if (Val != 16 && Val != 32) { | 
|  | Error(L, "invalid operand to .code directive"); | 
|  | return false; | 
|  | } | 
|  | Parser.Lex(); | 
|  |  | 
|  | if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) | 
|  | return true; | 
|  |  | 
|  | if (Val == 16) { | 
|  | if (!hasThumb()) | 
|  | return Error(L, "target does not support Thumb mode"); | 
|  |  | 
|  | if (!isThumb()) | 
|  | SwitchMode(); | 
|  | getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); | 
|  | } else { | 
|  | if (!hasARM()) | 
|  | return Error(L, "target does not support ARM mode"); | 
|  |  | 
|  | if (isThumb()) | 
|  | SwitchMode(); | 
|  | getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// parseDirectiveReq | 
|  | ///  ::= name .req registername | 
|  | bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) { | 
|  | MCAsmParser &Parser = getParser(); | 
|  | Parser.Lex(); // Eat the '.req' token. | 
|  | unsigned Reg; | 
|  | SMLoc SRegLoc, ERegLoc; | 
|  | if (check(ParseRegister(Reg, SRegLoc, ERegLoc), SRegLoc, | 
|  | "register name expected") || | 
|  | parseToken(AsmToken::EndOfStatement, | 
|  | "unexpected input in .req directive.")) | 
|  | return true; | 
|  |  | 
|  | if (RegisterReqs.insert(std::make_pair(Name, Reg)).first->second != Reg) | 
|  | return Error(SRegLoc, | 
|  | "redefinition of '" + Name + "' does not match original."); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// parseDirectiveUneq | 
|  | ///  ::= .unreq registername | 
|  | bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) { | 
|  | MCAsmParser &Parser = getParser(); | 
|  | if (Parser.getTok().isNot(AsmToken::Identifier)) | 
|  | return Error(L, "unexpected input in .unreq directive."); | 
|  | RegisterReqs.erase(Parser.getTok().getIdentifier().lower()); | 
|  | Parser.Lex(); // Eat the identifier. | 
|  | if (parseToken(AsmToken::EndOfStatement, | 
|  | "unexpected input in '.unreq' directive")) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // After changing arch/CPU, try to put the ARM/Thumb mode back to what it was | 
|  | // before, if supported by the new target, or emit mapping symbols for the mode | 
|  | // switch. | 
|  | void ARMAsmParser::FixModeAfterArchChange(bool WasThumb, SMLoc Loc) { | 
|  | if (WasThumb != isThumb()) { | 
|  | if (WasThumb && hasThumb()) { | 
|  | // Stay in Thumb mode | 
|  | SwitchMode(); | 
|  | } else if (!WasThumb && hasARM()) { | 
|  | // Stay in ARM mode | 
|  | SwitchMode(); | 
|  | } else { | 
|  | // Mode switch forced, because the new arch doesn't support the old mode. | 
|  | getParser().getStreamer().EmitAssemblerFlag(isThumb() ? MCAF_Code16 | 
|  | : MCAF_Code32); | 
|  | // Warn about the implcit mode switch. GAS does not switch modes here, | 
|  | // but instead stays in the old mode, reporting an error on any following | 
|  | // instructions as the mode does not exist on the target. | 
|  | Warning(Loc, Twine("new target does not support ") + | 
|  | (WasThumb ? "thumb" : "arm") + " mode, switching to " + | 
|  | (!WasThumb ? "thumb" : "arm") + " mode"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// parseDirectiveArch | 
|  | ///  ::= .arch token | 
|  | bool ARMAsmParser::parseDirectiveArch(SMLoc L) { | 
|  | StringRef Arch = getParser().parseStringToEndOfStatement().trim(); | 
|  | ARM::ArchKind ID = ARM::parseArch(Arch); | 
|  |  | 
|  | if (ID == ARM::ArchKind::INVALID) | 
|  | return Error(L, "Unknown arch name"); | 
|  |  | 
|  | bool WasThumb = isThumb(); | 
|  | Triple T; | 
|  | MCSubtargetInfo &STI = copySTI(); | 
|  | STI.setDefaultFeatures("", ("+" + ARM::getArchName(ID)).str()); | 
|  | setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); | 
|  | FixModeAfterArchChange(WasThumb, L); | 
|  |  | 
|  | getTargetStreamer().emitArch(ID); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// parseDirectiveEabiAttr | 
|  | ///  ::= .eabi_attribute int, int [, "str"] | 
|  | ///  ::= .eabi_attribute Tag_name, int [, "str"] | 
|  | bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) { | 
|  | MCAsmParser &Parser = getParser(); | 
|  | int64_t Tag; | 
|  | SMLoc TagLoc; | 
|  | TagLoc = Parser.getTok().getLoc(); | 
|  | if (Parser.getTok().is(AsmToken::Identifier)) { | 
|  | StringRef Name = Parser.getTok().getIdentifier(); | 
|  | Tag = ARMBuildAttrs::AttrTypeFromString(Name); | 
|  | if (Tag == -1) { | 
|  | Error(TagLoc, "attribute name not recognised: " + Name); | 
|  | return false; | 
|  | } | 
|  | Parser.Lex(); | 
|  | } else { | 
|  | const MCExpr *AttrExpr; | 
|  |  | 
|  | TagLoc = Parser.getTok().getLoc(); | 
|  | if (Parser.parseExpression(AttrExpr)) | 
|  | return true; | 
|  |  | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr); | 
|  | if (check(!CE, TagLoc, "expected numeric constant")) | 
|  | return true; | 
|  |  | 
|  | Tag = CE->getValue(); | 
|  | } | 
|  |  | 
|  | if (Parser.parseToken(AsmToken::Comma, "comma expected")) | 
|  | return true; | 
|  |  | 
|  | StringRef StringValue = ""; | 
|  | bool IsStringValue = false; | 
|  |  | 
|  | int64_t IntegerValue = 0; | 
|  | bool IsIntegerValue = false; | 
|  |  | 
|  | if (Tag == ARMBuildAttrs::CPU_raw_name || Tag == ARMBuildAttrs::CPU_name) | 
|  | IsStringValue = true; | 
|  | else if (Tag == ARMBuildAttrs::compatibility) { | 
|  | IsStringValue = true; | 
|  | IsIntegerValue = true; | 
|  | } else if (Tag < 32 || Tag % 2 == 0) | 
|  | IsIntegerValue = true; | 
|  | else if (Tag % 2 == 1) | 
|  | IsStringValue = true; | 
|  | else | 
|  | llvm_unreachable("invalid tag type"); | 
|  |  | 
|  | if (IsIntegerValue) { | 
|  | const MCExpr *ValueExpr; | 
|  | SMLoc ValueExprLoc = Parser.getTok().getLoc(); | 
|  | if (Parser.parseExpression(ValueExpr)) | 
|  | return true; | 
|  |  | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr); | 
|  | if (!CE) | 
|  | return Error(ValueExprLoc, "expected numeric constant"); | 
|  | IntegerValue = CE->getValue(); | 
|  | } | 
|  |  | 
|  | if (Tag == ARMBuildAttrs::compatibility) { | 
|  | if (Parser.parseToken(AsmToken::Comma, "comma expected")) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (IsStringValue) { | 
|  | if (Parser.getTok().isNot(AsmToken::String)) | 
|  | return Error(Parser.getTok().getLoc(), "bad string constant"); | 
|  |  | 
|  | StringValue = Parser.getTok().getStringContents(); | 
|  | Parser.Lex(); | 
|  | } | 
|  |  | 
|  | if (Parser.parseToken(AsmToken::EndOfStatement, | 
|  | "unexpected token in '.eabi_attribute' directive")) | 
|  | return true; | 
|  |  | 
|  | if (IsIntegerValue && IsStringValue) { | 
|  | assert(Tag == ARMBuildAttrs::compatibility); | 
|  | getTargetStreamer().emitIntTextAttribute(Tag, IntegerValue, StringValue); | 
|  | } else if (IsIntegerValue) | 
|  | getTargetStreamer().emitAttribute(Tag, IntegerValue); | 
|  | else if (IsStringValue) | 
|  | getTargetStreamer().emitTextAttribute(Tag, StringValue); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// parseDirectiveCPU | 
|  | ///  ::= .cpu str | 
|  | bool ARMAsmParser::parseDirectiveCPU(SMLoc L) { | 
|  | StringRef CPU = getParser().parseStringToEndOfStatement().trim(); | 
|  | getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name, CPU); | 
|  |  | 
|  | // FIXME: This is using table-gen data, but should be moved to | 
|  | // ARMTargetParser once that is table-gen'd. | 
|  | if (!getSTI().isCPUStringValid(CPU)) | 
|  | return Error(L, "Unknown CPU name"); | 
|  |  | 
|  | bool WasThumb = isThumb(); | 
|  | MCSubtargetInfo &STI = copySTI(); | 
|  | STI.setDefaultFeatures(CPU, ""); | 
|  | setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); | 
|  | FixModeAfterArchChange(WasThumb, L); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// parseDirectiveFPU | 
|  | ///  ::= .fpu str | 
|  | bool ARMAsmParser::parseDirectiveFPU(SMLoc L) { | 
|  | SMLoc FPUNameLoc = getTok().getLoc(); | 
|  | StringRef FPU = getParser().parseStringToEndOfStatement().trim(); | 
|  |  | 
|  | unsigned ID = ARM::parseFPU(FPU); | 
|  | std::vector<StringRef> Features; | 
|  | if (!ARM::getFPUFeatures(ID, Features)) | 
|  | return Error(FPUNameLoc, "Unknown FPU name"); | 
|  |  | 
|  | MCSubtargetInfo &STI = copySTI(); | 
|  | for (auto Feature : Features) | 
|  | STI.ApplyFeatureFlag(Feature); | 
|  | setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); | 
|  |  | 
|  | getTargetStreamer().emitFPU(ID); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// parseDirectiveFnStart | 
|  | ///  ::= .fnstart | 
|  | bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) { | 
|  | if (parseToken(AsmToken::EndOfStatement, | 
|  | "unexpected token in '.fnstart' directive")) | 
|  | return true; | 
|  |  | 
|  | if (UC.hasFnStart()) { | 
|  | Error(L, ".fnstart starts before the end of previous one"); | 
|  | UC.emitFnStartLocNotes(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Reset the unwind directives parser state | 
|  | UC.reset(); | 
|  |  | 
|  | getTargetStreamer().emitFnStart(); | 
|  |  | 
|  | UC.recordFnStart(L); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// parseDirectiveFnEnd | 
|  | ///  ::= .fnend | 
|  | bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) { | 
|  | if (parseToken(AsmToken::EndOfStatement, | 
|  | "unexpected token in '.fnend' directive")) | 
|  | return true; | 
|  | // Check the ordering of unwind directives | 
|  | if (!UC.hasFnStart()) | 
|  | return Error(L, ".fnstart must precede .fnend directive"); | 
|  |  | 
|  | // Reset the unwind directives parser state | 
|  | getTargetStreamer().emitFnEnd(); | 
|  |  | 
|  | UC.reset(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// parseDirectiveCantUnwind | 
|  | ///  ::= .cantunwind | 
|  | bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) { | 
|  | if (parseToken(AsmToken::EndOfStatement, | 
|  | "unexpected token in '.cantunwind' directive")) | 
|  | return true; | 
|  |  | 
|  | UC.recordCantUnwind(L); | 
|  | // Check the ordering of unwind directives | 
|  | if (check(!UC.hasFnStart(), L, ".fnstart must precede .cantunwind directive")) | 
|  | return true; | 
|  |  | 
|  | if (UC.hasHandlerData()) { | 
|  | Error(L, ".cantunwind can't be used with .handlerdata directive"); | 
|  | UC.emitHandlerDataLocNotes(); | 
|  | return true; | 
|  | } | 
|  | if (UC.hasPersonality()) { | 
|  | Error(L, ".cantunwind can't be used with .personality directive"); | 
|  | UC.emitPersonalityLocNotes(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | getTargetStreamer().emitCantUnwind(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// parseDirectivePersonality | 
|  | ///  ::= .personality name | 
|  | bool ARMAsmParser::parseDirectivePersonality(SMLoc L) { | 
|  | MCAsmParser &Parser = getParser(); | 
|  | bool HasExistingPersonality = UC.hasPersonality(); | 
|  |  | 
|  | // Parse the name of the personality routine | 
|  | if (Parser.getTok().isNot(AsmToken::Identifier)) | 
|  | return Error(L, "unexpected input in .personality directive."); | 
|  | StringRef Name(Parser.getTok().getIdentifier()); | 
|  | Parser.Lex(); | 
|  |  | 
|  | if (parseToken(AsmToken::EndOfStatement, | 
|  | "unexpected token in '.personality' directive")) | 
|  | return true; | 
|  |  | 
|  | UC.recordPersonality(L); | 
|  |  | 
|  | // Check the ordering of unwind directives | 
|  | if (!UC.hasFnStart()) | 
|  | return Error(L, ".fnstart must precede .personality directive"); | 
|  | if (UC.cantUnwind()) { | 
|  | Error(L, ".personality can't be used with .cantunwind directive"); | 
|  | UC.emitCantUnwindLocNotes(); | 
|  | return true; | 
|  | } | 
|  | if (UC.hasHandlerData()) { | 
|  | Error(L, ".personality must precede .handlerdata directive"); | 
|  | UC.emitHandlerDataLocNotes(); | 
|  | return true; | 
|  | } | 
|  | if (HasExistingPersonality) { | 
|  | Error(L, "multiple personality directives"); | 
|  | UC.emitPersonalityLocNotes(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | MCSymbol *PR = getParser().getContext().getOrCreateSymbol(Name); | 
|  | getTargetStreamer().emitPersonality(PR); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// parseDirectiveHandlerData | 
|  | ///  ::= .handlerdata | 
|  | bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) { | 
|  | if (parseToken(AsmToken::EndOfStatement, | 
|  | "unexpected token in '.handlerdata' directive")) | 
|  | return true; | 
|  |  | 
|  | UC.recordHandlerData(L); | 
|  | // Check the ordering of unwind directives | 
|  | if (!UC.hasFnStart()) | 
|  | return Error(L, ".fnstart must precede .personality directive"); | 
|  | if (UC.cantUnwind()) { | 
|  | Error(L, ".handlerdata can't be used with .cantunwind directive"); | 
|  | UC.emitCantUnwindLocNotes(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | getTargetStreamer().emitHandlerData(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// parseDirectiveSetFP | 
|  | ///  ::= .setfp fpreg, spreg [, offset] | 
|  | bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) { | 
|  | MCAsmParser &Parser = getParser(); | 
|  | // Check the ordering of unwind directives | 
|  | if (check(!UC.hasFnStart(), L, ".fnstart must precede .setfp directive") || | 
|  | check(UC.hasHandlerData(), L, | 
|  | ".setfp must precede .handlerdata directive")) | 
|  | return true; | 
|  |  | 
|  | // Parse fpreg | 
|  | SMLoc FPRegLoc = Parser.getTok().getLoc(); | 
|  | int FPReg = tryParseRegister(); | 
|  |  | 
|  | if (check(FPReg == -1, FPRegLoc, "frame pointer register expected") || | 
|  | Parser.parseToken(AsmToken::Comma, "comma expected")) | 
|  | return true; | 
|  |  | 
|  | // Parse spreg | 
|  | SMLoc SPRegLoc = Parser.getTok().getLoc(); | 
|  | int SPReg = tryParseRegister(); | 
|  | if (check(SPReg == -1, SPRegLoc, "stack pointer register expected") || | 
|  | check(SPReg != ARM::SP && SPReg != UC.getFPReg(), SPRegLoc, | 
|  | "register should be either $sp or the latest fp register")) | 
|  | return true; | 
|  |  | 
|  | // Update the frame pointer register | 
|  | UC.saveFPReg(FPReg); | 
|  |  | 
|  | // Parse offset | 
|  | int64_t Offset = 0; | 
|  | if (Parser.parseOptionalToken(AsmToken::Comma)) { | 
|  | if (Parser.getTok().isNot(AsmToken::Hash) && | 
|  | Parser.getTok().isNot(AsmToken::Dollar)) | 
|  | return Error(Parser.getTok().getLoc(), "'#' expected"); | 
|  | Parser.Lex(); // skip hash token. | 
|  |  | 
|  | const MCExpr *OffsetExpr; | 
|  | SMLoc ExLoc = Parser.getTok().getLoc(); | 
|  | SMLoc EndLoc; | 
|  | if (getParser().parseExpression(OffsetExpr, EndLoc)) | 
|  | return Error(ExLoc, "malformed setfp offset"); | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); | 
|  | if (check(!CE, ExLoc, "setfp offset must be an immediate")) | 
|  | return true; | 
|  | Offset = CE->getValue(); | 
|  | } | 
|  |  | 
|  | if (Parser.parseToken(AsmToken::EndOfStatement)) | 
|  | return true; | 
|  |  | 
|  | getTargetStreamer().emitSetFP(static_cast<unsigned>(FPReg), | 
|  | static_cast<unsigned>(SPReg), Offset); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// parseDirective | 
|  | ///  ::= .pad offset | 
|  | bool ARMAsmParser::parseDirectivePad(SMLoc L) { | 
|  | MCAsmParser &Parser = getParser(); | 
|  | // Check the ordering of unwind directives | 
|  | if (!UC.hasFnStart()) | 
|  | return Error(L, ".fnstart must precede .pad directive"); | 
|  | if (UC.hasHandlerData()) | 
|  | return Error(L, ".pad must precede .handlerdata directive"); | 
|  |  | 
|  | // Parse the offset | 
|  | if (Parser.getTok().isNot(AsmToken::Hash) && | 
|  | Parser.getTok().isNot(AsmToken::Dollar)) | 
|  | return Error(Parser.getTok().getLoc(), "'#' expected"); | 
|  | Parser.Lex(); // skip hash token. | 
|  |  | 
|  | const MCExpr *OffsetExpr; | 
|  | SMLoc ExLoc = Parser.getTok().getLoc(); | 
|  | SMLoc EndLoc; | 
|  | if (getParser().parseExpression(OffsetExpr, EndLoc)) | 
|  | return Error(ExLoc, "malformed pad offset"); | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); | 
|  | if (!CE) | 
|  | return Error(ExLoc, "pad offset must be an immediate"); | 
|  |  | 
|  | if (parseToken(AsmToken::EndOfStatement, | 
|  | "unexpected token in '.pad' directive")) | 
|  | return true; | 
|  |  | 
|  | getTargetStreamer().emitPad(CE->getValue()); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// parseDirectiveRegSave | 
|  | ///  ::= .save  { registers } | 
|  | ///  ::= .vsave { registers } | 
|  | bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) { | 
|  | // Check the ordering of unwind directives | 
|  | if (!UC.hasFnStart()) | 
|  | return Error(L, ".fnstart must precede .save or .vsave directives"); | 
|  | if (UC.hasHandlerData()) | 
|  | return Error(L, ".save or .vsave must precede .handlerdata directive"); | 
|  |  | 
|  | // RAII object to make sure parsed operands are deleted. | 
|  | SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands; | 
|  |  | 
|  | // Parse the register list | 
|  | if (parseRegisterList(Operands) || | 
|  | parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) | 
|  | return true; | 
|  | ARMOperand &Op = (ARMOperand &)*Operands[0]; | 
|  | if (!IsVector && !Op.isRegList()) | 
|  | return Error(L, ".save expects GPR registers"); | 
|  | if (IsVector && !Op.isDPRRegList()) | 
|  | return Error(L, ".vsave expects DPR registers"); | 
|  |  | 
|  | getTargetStreamer().emitRegSave(Op.getRegList(), IsVector); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// parseDirectiveInst | 
|  | ///  ::= .inst opcode [, ...] | 
|  | ///  ::= .inst.n opcode [, ...] | 
|  | ///  ::= .inst.w opcode [, ...] | 
|  | bool ARMAsmParser::parseDirectiveInst(SMLoc Loc, char Suffix) { | 
|  | int Width = 4; | 
|  |  | 
|  | if (isThumb()) { | 
|  | switch (Suffix) { | 
|  | case 'n': | 
|  | Width = 2; | 
|  | break; | 
|  | case 'w': | 
|  | break; | 
|  | default: | 
|  | return Error(Loc, "cannot determine Thumb instruction size, " | 
|  | "use inst.n/inst.w instead"); | 
|  | } | 
|  | } else { | 
|  | if (Suffix) | 
|  | return Error(Loc, "width suffixes are invalid in ARM mode"); | 
|  | } | 
|  |  | 
|  | auto parseOne = [&]() -> bool { | 
|  | const MCExpr *Expr; | 
|  | if (getParser().parseExpression(Expr)) | 
|  | return true; | 
|  | const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr); | 
|  | if (!Value) { | 
|  | return Error(Loc, "expected constant expression"); | 
|  | } | 
|  |  | 
|  | switch (Width) { | 
|  | case 2: | 
|  | if (Value->getValue() > 0xffff) | 
|  | return Error(Loc, "inst.n operand is too big, use inst.w instead"); | 
|  | break; | 
|  | case 4: | 
|  | if (Value->getValue() > 0xffffffff) | 
|  | return Error(Loc, StringRef(Suffix ? "inst.w" : "inst") + | 
|  | " operand is too big"); | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("only supported widths are 2 and 4"); | 
|  | } | 
|  |  | 
|  | getTargetStreamer().emitInst(Value->getValue(), Suffix); | 
|  | return false; | 
|  | }; | 
|  |  | 
|  | if (parseOptionalToken(AsmToken::EndOfStatement)) | 
|  | return Error(Loc, "expected expression following directive"); | 
|  | if (parseMany(parseOne)) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// parseDirectiveLtorg | 
|  | ///  ::= .ltorg | .pool | 
|  | bool ARMAsmParser::parseDirectiveLtorg(SMLoc L) { | 
|  | if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) | 
|  | return true; | 
|  | getTargetStreamer().emitCurrentConstantPool(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool ARMAsmParser::parseDirectiveEven(SMLoc L) { | 
|  | const MCSection *Section = getStreamer().getCurrentSectionOnly(); | 
|  |  | 
|  | if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) | 
|  | return true; | 
|  |  | 
|  | if (!Section) { | 
|  | getStreamer().InitSections(false); | 
|  | Section = getStreamer().getCurrentSectionOnly(); | 
|  | } | 
|  |  | 
|  | assert(Section && "must have section to emit alignment"); | 
|  | if (Section->UseCodeAlign()) | 
|  | getStreamer().EmitCodeAlignment(2); | 
|  | else | 
|  | getStreamer().EmitValueToAlignment(2); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// parseDirectivePersonalityIndex | 
|  | ///   ::= .personalityindex index | 
|  | bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L) { | 
|  | MCAsmParser &Parser = getParser(); | 
|  | bool HasExistingPersonality = UC.hasPersonality(); | 
|  |  | 
|  | const MCExpr *IndexExpression; | 
|  | SMLoc IndexLoc = Parser.getTok().getLoc(); | 
|  | if (Parser.parseExpression(IndexExpression) || | 
|  | parseToken(AsmToken::EndOfStatement, | 
|  | "unexpected token in '.personalityindex' directive")) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | UC.recordPersonalityIndex(L); | 
|  |  | 
|  | if (!UC.hasFnStart()) { | 
|  | return Error(L, ".fnstart must precede .personalityindex directive"); | 
|  | } | 
|  | if (UC.cantUnwind()) { | 
|  | Error(L, ".personalityindex cannot be used with .cantunwind"); | 
|  | UC.emitCantUnwindLocNotes(); | 
|  | return true; | 
|  | } | 
|  | if (UC.hasHandlerData()) { | 
|  | Error(L, ".personalityindex must precede .handlerdata directive"); | 
|  | UC.emitHandlerDataLocNotes(); | 
|  | return true; | 
|  | } | 
|  | if (HasExistingPersonality) { | 
|  | Error(L, "multiple personality directives"); | 
|  | UC.emitPersonalityLocNotes(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IndexExpression); | 
|  | if (!CE) | 
|  | return Error(IndexLoc, "index must be a constant number"); | 
|  | if (CE->getValue() < 0 || CE->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX) | 
|  | return Error(IndexLoc, | 
|  | "personality routine index should be in range [0-3]"); | 
|  |  | 
|  | getTargetStreamer().emitPersonalityIndex(CE->getValue()); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// parseDirectiveUnwindRaw | 
|  | ///   ::= .unwind_raw offset, opcode [, opcode...] | 
|  | bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L) { | 
|  | MCAsmParser &Parser = getParser(); | 
|  | int64_t StackOffset; | 
|  | const MCExpr *OffsetExpr; | 
|  | SMLoc OffsetLoc = getLexer().getLoc(); | 
|  |  | 
|  | if (!UC.hasFnStart()) | 
|  | return Error(L, ".fnstart must precede .unwind_raw directives"); | 
|  | if (getParser().parseExpression(OffsetExpr)) | 
|  | return Error(OffsetLoc, "expected expression"); | 
|  |  | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); | 
|  | if (!CE) | 
|  | return Error(OffsetLoc, "offset must be a constant"); | 
|  |  | 
|  | StackOffset = CE->getValue(); | 
|  |  | 
|  | if (Parser.parseToken(AsmToken::Comma, "expected comma")) | 
|  | return true; | 
|  |  | 
|  | SmallVector<uint8_t, 16> Opcodes; | 
|  |  | 
|  | auto parseOne = [&]() -> bool { | 
|  | const MCExpr *OE; | 
|  | SMLoc OpcodeLoc = getLexer().getLoc(); | 
|  | if (check(getLexer().is(AsmToken::EndOfStatement) || | 
|  | Parser.parseExpression(OE), | 
|  | OpcodeLoc, "expected opcode expression")) | 
|  | return true; | 
|  | const MCConstantExpr *OC = dyn_cast<MCConstantExpr>(OE); | 
|  | if (!OC) | 
|  | return Error(OpcodeLoc, "opcode value must be a constant"); | 
|  | const int64_t Opcode = OC->getValue(); | 
|  | if (Opcode & ~0xff) | 
|  | return Error(OpcodeLoc, "invalid opcode"); | 
|  | Opcodes.push_back(uint8_t(Opcode)); | 
|  | return false; | 
|  | }; | 
|  |  | 
|  | // Must have at least 1 element | 
|  | SMLoc OpcodeLoc = getLexer().getLoc(); | 
|  | if (parseOptionalToken(AsmToken::EndOfStatement)) | 
|  | return Error(OpcodeLoc, "expected opcode expression"); | 
|  | if (parseMany(parseOne)) | 
|  | return true; | 
|  |  | 
|  | getTargetStreamer().emitUnwindRaw(StackOffset, Opcodes); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// parseDirectiveTLSDescSeq | 
|  | ///   ::= .tlsdescseq tls-variable | 
|  | bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L) { | 
|  | MCAsmParser &Parser = getParser(); | 
|  |  | 
|  | if (getLexer().isNot(AsmToken::Identifier)) | 
|  | return TokError("expected variable after '.tlsdescseq' directive"); | 
|  |  | 
|  | const MCSymbolRefExpr *SRE = | 
|  | MCSymbolRefExpr::create(Parser.getTok().getIdentifier(), | 
|  | MCSymbolRefExpr::VK_ARM_TLSDESCSEQ, getContext()); | 
|  | Lex(); | 
|  |  | 
|  | if (parseToken(AsmToken::EndOfStatement, | 
|  | "unexpected token in '.tlsdescseq' directive")) | 
|  | return true; | 
|  |  | 
|  | getTargetStreamer().AnnotateTLSDescriptorSequence(SRE); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// parseDirectiveMovSP | 
|  | ///  ::= .movsp reg [, #offset] | 
|  | bool ARMAsmParser::parseDirectiveMovSP(SMLoc L) { | 
|  | MCAsmParser &Parser = getParser(); | 
|  | if (!UC.hasFnStart()) | 
|  | return Error(L, ".fnstart must precede .movsp directives"); | 
|  | if (UC.getFPReg() != ARM::SP) | 
|  | return Error(L, "unexpected .movsp directive"); | 
|  |  | 
|  | SMLoc SPRegLoc = Parser.getTok().getLoc(); | 
|  | int SPReg = tryParseRegister(); | 
|  | if (SPReg == -1) | 
|  | return Error(SPRegLoc, "register expected"); | 
|  | if (SPReg == ARM::SP || SPReg == ARM::PC) | 
|  | return Error(SPRegLoc, "sp and pc are not permitted in .movsp directive"); | 
|  |  | 
|  | int64_t Offset = 0; | 
|  | if (Parser.parseOptionalToken(AsmToken::Comma)) { | 
|  | if (Parser.parseToken(AsmToken::Hash, "expected #constant")) | 
|  | return true; | 
|  |  | 
|  | const MCExpr *OffsetExpr; | 
|  | SMLoc OffsetLoc = Parser.getTok().getLoc(); | 
|  |  | 
|  | if (Parser.parseExpression(OffsetExpr)) | 
|  | return Error(OffsetLoc, "malformed offset expression"); | 
|  |  | 
|  | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); | 
|  | if (!CE) | 
|  | return Error(OffsetLoc, "offset must be an immediate constant"); | 
|  |  | 
|  | Offset = CE->getValue(); | 
|  | } | 
|  |  | 
|  | if (parseToken(AsmToken::EndOfStatement, | 
|  | "unexpected token in '.movsp' directive")) | 
|  | return true; | 
|  |  | 
|  | getTargetStreamer().emitMovSP(SPReg, Offset); | 
|  | UC.saveFPReg(SPReg); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// parseDirectiveObjectArch | 
|  | ///   ::= .object_arch name | 
|  | bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L) { | 
|  | MCAsmParser &Parser = getParser(); | 
|  | if (getLexer().isNot(AsmToken::Identifier)) | 
|  | return Error(getLexer().getLoc(), "unexpected token"); | 
|  |  | 
|  | StringRef Arch = Parser.getTok().getString(); | 
|  | SMLoc ArchLoc = Parser.getTok().getLoc(); | 
|  | Lex(); | 
|  |  | 
|  | ARM::ArchKind ID = ARM::parseArch(Arch); | 
|  |  | 
|  | if (ID == ARM::ArchKind::INVALID) | 
|  | return Error(ArchLoc, "unknown architecture '" + Arch + "'"); | 
|  | if (parseToken(AsmToken::EndOfStatement)) | 
|  | return true; | 
|  |  | 
|  | getTargetStreamer().emitObjectArch(ID); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// parseDirectiveAlign | 
|  | ///   ::= .align | 
|  | bool ARMAsmParser::parseDirectiveAlign(SMLoc L) { | 
|  | // NOTE: if this is not the end of the statement, fall back to the target | 
|  | // agnostic handling for this directive which will correctly handle this. | 
|  | if (parseOptionalToken(AsmToken::EndOfStatement)) { | 
|  | // '.align' is target specifically handled to mean 2**2 byte alignment. | 
|  | const MCSection *Section = getStreamer().getCurrentSectionOnly(); | 
|  | assert(Section && "must have section to emit alignment"); | 
|  | if (Section->UseCodeAlign()) | 
|  | getStreamer().EmitCodeAlignment(4, 0); | 
|  | else | 
|  | getStreamer().EmitValueToAlignment(4, 0, 1, 0); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// parseDirectiveThumbSet | 
|  | ///  ::= .thumb_set name, value | 
|  | bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L) { | 
|  | MCAsmParser &Parser = getParser(); | 
|  |  | 
|  | StringRef Name; | 
|  | if (check(Parser.parseIdentifier(Name), | 
|  | "expected identifier after '.thumb_set'") || | 
|  | parseToken(AsmToken::Comma, "expected comma after name '" + Name + "'")) | 
|  | return true; | 
|  |  | 
|  | MCSymbol *Sym; | 
|  | const MCExpr *Value; | 
|  | if (MCParserUtils::parseAssignmentExpression(Name, /* allow_redef */ true, | 
|  | Parser, Sym, Value)) | 
|  | return true; | 
|  |  | 
|  | getTargetStreamer().emitThumbSet(Sym, Value); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Force static initialization. | 
|  | extern "C" void LLVMInitializeARMAsmParser() { | 
|  | RegisterMCAsmParser<ARMAsmParser> X(getTheARMLETarget()); | 
|  | RegisterMCAsmParser<ARMAsmParser> Y(getTheARMBETarget()); | 
|  | RegisterMCAsmParser<ARMAsmParser> A(getTheThumbLETarget()); | 
|  | RegisterMCAsmParser<ARMAsmParser> B(getTheThumbBETarget()); | 
|  | } | 
|  |  | 
|  | #define GET_REGISTER_MATCHER | 
|  | #define GET_SUBTARGET_FEATURE_NAME | 
|  | #define GET_MATCHER_IMPLEMENTATION | 
|  | #define GET_MNEMONIC_SPELL_CHECKER | 
|  | #include "ARMGenAsmMatcher.inc" | 
|  |  | 
|  | // Some diagnostics need to vary with subtarget features, so they are handled | 
|  | // here. For example, the DPR class has either 16 or 32 registers, depending | 
|  | // on the FPU available. | 
|  | const char * | 
|  | ARMAsmParser::getCustomOperandDiag(ARMMatchResultTy MatchError) { | 
|  | switch (MatchError) { | 
|  | // rGPR contains sp starting with ARMv8. | 
|  | case Match_rGPR: | 
|  | return hasV8Ops() ? "operand must be a register in range [r0, r14]" | 
|  | : "operand must be a register in range [r0, r12] or r14"; | 
|  | // DPR contains 16 registers for some FPUs, and 32 for others. | 
|  | case Match_DPR: | 
|  | return hasD16() ? "operand must be a register in range [d0, d15]" | 
|  | : "operand must be a register in range [d0, d31]"; | 
|  | case Match_DPR_RegList: | 
|  | return hasD16() ? "operand must be a list of registers in range [d0, d15]" | 
|  | : "operand must be a list of registers in range [d0, d31]"; | 
|  |  | 
|  | // For all other diags, use the static string from tablegen. | 
|  | default: | 
|  | return getMatchKindDiag(MatchError); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Process the list of near-misses, throwing away ones we don't want to report | 
|  | // to the user, and converting the rest to a source location and string that | 
|  | // should be reported. | 
|  | void | 
|  | ARMAsmParser::FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn, | 
|  | SmallVectorImpl<NearMissMessage> &NearMissesOut, | 
|  | SMLoc IDLoc, OperandVector &Operands) { | 
|  | // TODO: If operand didn't match, sub in a dummy one and run target | 
|  | // predicate, so that we can avoid reporting near-misses that are invalid? | 
|  | // TODO: Many operand types dont have SuperClasses set, so we report | 
|  | // redundant ones. | 
|  | // TODO: Some operands are superclasses of registers (e.g. | 
|  | // MCK_RegShiftedImm), we don't have any way to represent that currently. | 
|  | // TODO: This is not all ARM-specific, can some of it be factored out? | 
|  |  | 
|  | // Record some information about near-misses that we have already seen, so | 
|  | // that we can avoid reporting redundant ones. For example, if there are | 
|  | // variants of an instruction that take 8- and 16-bit immediates, we want | 
|  | // to only report the widest one. | 
|  | std::multimap<unsigned, unsigned> OperandMissesSeen; | 
|  | SmallSet<uint64_t, 4> FeatureMissesSeen; | 
|  | bool ReportedTooFewOperands = false; | 
|  |  | 
|  | // Process the near-misses in reverse order, so that we see more general ones | 
|  | // first, and so can avoid emitting more specific ones. | 
|  | for (NearMissInfo &I : reverse(NearMissesIn)) { | 
|  | switch (I.getKind()) { | 
|  | case NearMissInfo::NearMissOperand: { | 
|  | SMLoc OperandLoc = | 
|  | ((ARMOperand &)*Operands[I.getOperandIndex()]).getStartLoc(); | 
|  | const char *OperandDiag = | 
|  | getCustomOperandDiag((ARMMatchResultTy)I.getOperandError()); | 
|  |  | 
|  | // If we have already emitted a message for a superclass, don't also report | 
|  | // the sub-class. We consider all operand classes that we don't have a | 
|  | // specialised diagnostic for to be equal for the propose of this check, | 
|  | // so that we don't report the generic error multiple times on the same | 
|  | // operand. | 
|  | unsigned DupCheckMatchClass = OperandDiag ? I.getOperandClass() : ~0U; | 
|  | auto PrevReports = OperandMissesSeen.equal_range(I.getOperandIndex()); | 
|  | if (std::any_of(PrevReports.first, PrevReports.second, | 
|  | [DupCheckMatchClass]( | 
|  | const std::pair<unsigned, unsigned> Pair) { | 
|  | if (DupCheckMatchClass == ~0U || Pair.second == ~0U) | 
|  | return Pair.second == DupCheckMatchClass; | 
|  | else | 
|  | return isSubclass((MatchClassKind)DupCheckMatchClass, | 
|  | (MatchClassKind)Pair.second); | 
|  | })) | 
|  | break; | 
|  | OperandMissesSeen.insert( | 
|  | std::make_pair(I.getOperandIndex(), DupCheckMatchClass)); | 
|  |  | 
|  | NearMissMessage Message; | 
|  | Message.Loc = OperandLoc; | 
|  | if (OperandDiag) { | 
|  | Message.Message = OperandDiag; | 
|  | } else if (I.getOperandClass() == InvalidMatchClass) { | 
|  | Message.Message = "too many operands for instruction"; | 
|  | } else { | 
|  | Message.Message = "invalid operand for instruction"; | 
|  | DEBUG(dbgs() << "Missing diagnostic string for operand class " << | 
|  | getMatchClassName((MatchClassKind)I.getOperandClass()) | 
|  | << I.getOperandClass() << ", error " << I.getOperandError() | 
|  | << ", opcode " << MII.getName(I.getOpcode()) << "\n"); | 
|  | } | 
|  | NearMissesOut.emplace_back(Message); | 
|  | break; | 
|  | } | 
|  | case NearMissInfo::NearMissFeature: { | 
|  | uint64_t MissingFeatures = I.getFeatures(); | 
|  | // Don't report the same set of features twice. | 
|  | if (FeatureMissesSeen.count(MissingFeatures)) | 
|  | break; | 
|  | FeatureMissesSeen.insert(MissingFeatures); | 
|  |  | 
|  | // Special case: don't report a feature set which includes arm-mode for | 
|  | // targets that don't have ARM mode. | 
|  | if ((MissingFeatures & Feature_IsARM) && !hasARM()) | 
|  | break; | 
|  | // Don't report any near-misses that both require switching instruction | 
|  | // set, and adding other subtarget features. | 
|  | if (isThumb() && (MissingFeatures & Feature_IsARM) && | 
|  | (MissingFeatures & ~Feature_IsARM)) | 
|  | break; | 
|  | if (!isThumb() && (MissingFeatures & Feature_IsThumb) && | 
|  | (MissingFeatures & ~Feature_IsThumb)) | 
|  | break; | 
|  | if (!isThumb() && (MissingFeatures & Feature_IsThumb2) && | 
|  | (MissingFeatures & ~(Feature_IsThumb2 | Feature_IsThumb))) | 
|  | break; | 
|  | if (isMClass() && (MissingFeatures & Feature_HasNEON)) | 
|  | break; | 
|  |  | 
|  | NearMissMessage Message; | 
|  | Message.Loc = IDLoc; | 
|  | raw_svector_ostream OS(Message.Message); | 
|  |  | 
|  | OS << "instruction requires:"; | 
|  | uint64_t Mask = 1; | 
|  | for (unsigned MaskPos = 0; MaskPos < (sizeof(MissingFeatures) * 8 - 1); | 
|  | ++MaskPos) { | 
|  | if (MissingFeatures & Mask) { | 
|  | OS << " " << getSubtargetFeatureName(MissingFeatures & Mask); | 
|  | } | 
|  | Mask <<= 1; | 
|  | } | 
|  | NearMissesOut.emplace_back(Message); | 
|  |  | 
|  | break; | 
|  | } | 
|  | case NearMissInfo::NearMissPredicate: { | 
|  | NearMissMessage Message; | 
|  | Message.Loc = IDLoc; | 
|  | switch (I.getPredicateError()) { | 
|  | case Match_RequiresNotITBlock: | 
|  | Message.Message = "flag setting instruction only valid outside IT block"; | 
|  | break; | 
|  | case Match_RequiresITBlock: | 
|  | Message.Message = "instruction only valid inside IT block"; | 
|  | break; | 
|  | case Match_RequiresV6: | 
|  | Message.Message = "instruction variant requires ARMv6 or later"; | 
|  | break; | 
|  | case Match_RequiresThumb2: | 
|  | Message.Message = "instruction variant requires Thumb2"; | 
|  | break; | 
|  | case Match_RequiresV8: | 
|  | Message.Message = "instruction variant requires ARMv8 or later"; | 
|  | break; | 
|  | case Match_RequiresFlagSetting: | 
|  | Message.Message = "no flag-preserving variant of this instruction available"; | 
|  | break; | 
|  | case Match_InvalidOperand: | 
|  | Message.Message = "invalid operand for instruction"; | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("Unhandled target predicate error"); | 
|  | break; | 
|  | } | 
|  | NearMissesOut.emplace_back(Message); | 
|  | break; | 
|  | } | 
|  | case NearMissInfo::NearMissTooFewOperands: { | 
|  | if (!ReportedTooFewOperands) { | 
|  | SMLoc EndLoc = ((ARMOperand &)*Operands.back()).getEndLoc(); | 
|  | NearMissesOut.emplace_back(NearMissMessage{ | 
|  | EndLoc, StringRef("too few operands for instruction")}); | 
|  | ReportedTooFewOperands = true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case NearMissInfo::NoNearMiss: | 
|  | // This should never leave the matcher. | 
|  | llvm_unreachable("not a near-miss"); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void ARMAsmParser::ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses, | 
|  | SMLoc IDLoc, OperandVector &Operands) { | 
|  | SmallVector<NearMissMessage, 4> Messages; | 
|  | FilterNearMisses(NearMisses, Messages, IDLoc, Operands); | 
|  |  | 
|  | if (Messages.size() == 0) { | 
|  | // No near-misses were found, so the best we can do is "invalid | 
|  | // instruction". | 
|  | Error(IDLoc, "invalid instruction"); | 
|  | } else if (Messages.size() == 1) { | 
|  | // One near miss was found, report it as the sole error. | 
|  | Error(Messages[0].Loc, Messages[0].Message); | 
|  | } else { | 
|  | // More than one near miss, so report a generic "invalid instruction" | 
|  | // error, followed by notes for each of the near-misses. | 
|  | Error(IDLoc, "invalid instruction, any one of the following would fix this:"); | 
|  | for (auto &M : Messages) { | 
|  | Note(M.Loc, M.Message); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // FIXME: This structure should be moved inside ARMTargetParser | 
|  | // when we start to table-generate them, and we can use the ARM | 
|  | // flags below, that were generated by table-gen. | 
|  | static const struct { | 
|  | const unsigned Kind; | 
|  | const uint64_t ArchCheck; | 
|  | const FeatureBitset Features; | 
|  | } Extensions[] = { | 
|  | { ARM::AEK_CRC, Feature_HasV8, {ARM::FeatureCRC} }, | 
|  | { ARM::AEK_CRYPTO,  Feature_HasV8, | 
|  | {ARM::FeatureCrypto, ARM::FeatureNEON, ARM::FeatureFPARMv8} }, | 
|  | { ARM::AEK_FP, Feature_HasV8, {ARM::FeatureFPARMv8} }, | 
|  | { (ARM::AEK_HWDIVTHUMB | ARM::AEK_HWDIVARM), Feature_HasV7 | Feature_IsNotMClass, | 
|  | {ARM::FeatureHWDivThumb, ARM::FeatureHWDivARM} }, | 
|  | { ARM::AEK_MP, Feature_HasV7 | Feature_IsNotMClass, {ARM::FeatureMP} }, | 
|  | { ARM::AEK_SIMD, Feature_HasV8, {ARM::FeatureNEON, ARM::FeatureFPARMv8} }, | 
|  | { ARM::AEK_SEC, Feature_HasV6K, {ARM::FeatureTrustZone} }, | 
|  | // FIXME: Only available in A-class, isel not predicated | 
|  | { ARM::AEK_VIRT, Feature_HasV7, {ARM::FeatureVirtualization} }, | 
|  | { ARM::AEK_FP16, Feature_HasV8_2a, {ARM::FeatureFPARMv8, ARM::FeatureFullFP16} }, | 
|  | { ARM::AEK_RAS, Feature_HasV8, {ARM::FeatureRAS} }, | 
|  | // FIXME: Unsupported extensions. | 
|  | { ARM::AEK_OS, Feature_None, {} }, | 
|  | { ARM::AEK_IWMMXT, Feature_None, {} }, | 
|  | { ARM::AEK_IWMMXT2, Feature_None, {} }, | 
|  | { ARM::AEK_MAVERICK, Feature_None, {} }, | 
|  | { ARM::AEK_XSCALE, Feature_None, {} }, | 
|  | }; | 
|  |  | 
|  | /// parseDirectiveArchExtension | 
|  | ///   ::= .arch_extension [no]feature | 
|  | bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L) { | 
|  | MCAsmParser &Parser = getParser(); | 
|  |  | 
|  | if (getLexer().isNot(AsmToken::Identifier)) | 
|  | return Error(getLexer().getLoc(), "expected architecture extension name"); | 
|  |  | 
|  | StringRef Name = Parser.getTok().getString(); | 
|  | SMLoc ExtLoc = Parser.getTok().getLoc(); | 
|  | Lex(); | 
|  |  | 
|  | if (parseToken(AsmToken::EndOfStatement, | 
|  | "unexpected token in '.arch_extension' directive")) | 
|  | return true; | 
|  |  | 
|  | bool EnableFeature = true; | 
|  | if (Name.startswith_lower("no")) { | 
|  | EnableFeature = false; | 
|  | Name = Name.substr(2); | 
|  | } | 
|  | unsigned FeatureKind = ARM::parseArchExt(Name); | 
|  | if (FeatureKind == ARM::AEK_INVALID) | 
|  | return Error(ExtLoc, "unknown architectural extension: " + Name); | 
|  |  | 
|  | for (const auto &Extension : Extensions) { | 
|  | if (Extension.Kind != FeatureKind) | 
|  | continue; | 
|  |  | 
|  | if (Extension.Features.none()) | 
|  | return Error(ExtLoc, "unsupported architectural extension: " + Name); | 
|  |  | 
|  | if ((getAvailableFeatures() & Extension.ArchCheck) != Extension.ArchCheck) | 
|  | return Error(ExtLoc, "architectural extension '" + Name + | 
|  | "' is not " | 
|  | "allowed for the current base architecture"); | 
|  |  | 
|  | MCSubtargetInfo &STI = copySTI(); | 
|  | FeatureBitset ToggleFeatures = EnableFeature | 
|  | ? (~STI.getFeatureBits() & Extension.Features) | 
|  | : ( STI.getFeatureBits() & Extension.Features); | 
|  |  | 
|  | uint64_t Features = | 
|  | ComputeAvailableFeatures(STI.ToggleFeature(ToggleFeatures)); | 
|  | setAvailableFeatures(Features); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return Error(ExtLoc, "unknown architectural extension: " + Name); | 
|  | } | 
|  |  | 
|  | // Define this matcher function after the auto-generated include so we | 
|  | // have the match class enum definitions. | 
|  | unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp, | 
|  | unsigned Kind) { | 
|  | ARMOperand &Op = static_cast<ARMOperand &>(AsmOp); | 
|  | // If the kind is a token for a literal immediate, check if our asm | 
|  | // operand matches. This is for InstAliases which have a fixed-value | 
|  | // immediate in the syntax. | 
|  | switch (Kind) { | 
|  | default: break; | 
|  | case MCK__35_0: | 
|  | if (Op.isImm()) | 
|  | if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm())) | 
|  | if (CE->getValue() == 0) | 
|  | return Match_Success; | 
|  | break; | 
|  | case MCK_ModImm: | 
|  | if (Op.isImm()) { | 
|  | const MCExpr *SOExpr = Op.getImm(); | 
|  | int64_t Value; | 
|  | if (!SOExpr->evaluateAsAbsolute(Value)) | 
|  | return Match_Success; | 
|  | assert((Value >= std::numeric_limits<int32_t>::min() && | 
|  | Value <= std::numeric_limits<uint32_t>::max()) && | 
|  | "expression value must be representable in 32 bits"); | 
|  | } | 
|  | break; | 
|  | case MCK_rGPR: | 
|  | if (hasV8Ops() && Op.isReg() && Op.getReg() == ARM::SP) | 
|  | return Match_Success; | 
|  | return Match_rGPR; | 
|  | case MCK_GPRPair: | 
|  | if (Op.isReg() && | 
|  | MRI->getRegClass(ARM::GPRRegClassID).contains(Op.getReg())) | 
|  | return Match_Success; | 
|  | break; | 
|  | } | 
|  | return Match_InvalidOperand; | 
|  | } |