|  | //===- GVNSink.cpp - sink expressions into successors ---------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | /// \file GVNSink.cpp | 
|  | /// This pass attempts to sink instructions into successors, reducing static | 
|  | /// instruction count and enabling if-conversion. | 
|  | /// | 
|  | /// We use a variant of global value numbering to decide what can be sunk. | 
|  | /// Consider: | 
|  | /// | 
|  | /// [ %a1 = add i32 %b, 1  ]   [ %c1 = add i32 %d, 1  ] | 
|  | /// [ %a2 = xor i32 %a1, 1 ]   [ %c2 = xor i32 %c1, 1 ] | 
|  | ///                  \           / | 
|  | ///            [ %e = phi i32 %a2, %c2 ] | 
|  | ///            [ add i32 %e, 4         ] | 
|  | /// | 
|  | /// | 
|  | /// GVN would number %a1 and %c1 differently because they compute different | 
|  | /// results - the VN of an instruction is a function of its opcode and the | 
|  | /// transitive closure of its operands. This is the key property for hoisting | 
|  | /// and CSE. | 
|  | /// | 
|  | /// What we want when sinking however is for a numbering that is a function of | 
|  | /// the *uses* of an instruction, which allows us to answer the question "if I | 
|  | /// replace %a1 with %c1, will it contribute in an equivalent way to all | 
|  | /// successive instructions?". The PostValueTable class in GVN provides this | 
|  | /// mapping. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/ADT/ArrayRef.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/DenseMapInfo.h" | 
|  | #include "llvm/ADT/DenseSet.h" | 
|  | #include "llvm/ADT/Hashing.h" | 
|  | #include "llvm/ADT/None.h" | 
|  | #include "llvm/ADT/Optional.h" | 
|  | #include "llvm/ADT/PostOrderIterator.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/ADT/StringExtras.h" | 
|  | #include "llvm/Analysis/GlobalsModRef.h" | 
|  | #include "llvm/Transforms/Utils/Local.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/CFG.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/InstrTypes.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/PassManager.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/IR/Use.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/Allocator.h" | 
|  | #include "llvm/Support/ArrayRecycler.h" | 
|  | #include "llvm/Support/AtomicOrdering.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Transforms/Scalar.h" | 
|  | #include "llvm/Transforms/Scalar/GVN.h" | 
|  | #include "llvm/Transforms/Scalar/GVNExpression.h" | 
|  | #include "llvm/Transforms/Utils/BasicBlockUtils.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <cstddef> | 
|  | #include <cstdint> | 
|  | #include <iterator> | 
|  | #include <utility> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "gvn-sink" | 
|  |  | 
|  | STATISTIC(NumRemoved, "Number of instructions removed"); | 
|  |  | 
|  | namespace llvm { | 
|  | namespace GVNExpression { | 
|  |  | 
|  | LLVM_DUMP_METHOD void Expression::dump() const { | 
|  | print(dbgs()); | 
|  | dbgs() << "\n"; | 
|  | } | 
|  |  | 
|  | } // end namespace GVNExpression | 
|  | } // end namespace llvm | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | static bool isMemoryInst(const Instruction *I) { | 
|  | return isa<LoadInst>(I) || isa<StoreInst>(I) || | 
|  | (isa<InvokeInst>(I) && !cast<InvokeInst>(I)->doesNotAccessMemory()) || | 
|  | (isa<CallInst>(I) && !cast<CallInst>(I)->doesNotAccessMemory()); | 
|  | } | 
|  |  | 
|  | /// Iterates through instructions in a set of blocks in reverse order from the | 
|  | /// first non-terminator. For example (assume all blocks have size n): | 
|  | ///   LockstepReverseIterator I([B1, B2, B3]); | 
|  | ///   *I-- = [B1[n], B2[n], B3[n]]; | 
|  | ///   *I-- = [B1[n-1], B2[n-1], B3[n-1]]; | 
|  | ///   *I-- = [B1[n-2], B2[n-2], B3[n-2]]; | 
|  | ///   ... | 
|  | /// | 
|  | /// It continues until all blocks have been exhausted. Use \c getActiveBlocks() | 
|  | /// to | 
|  | /// determine which blocks are still going and the order they appear in the | 
|  | /// list returned by operator*. | 
|  | class LockstepReverseIterator { | 
|  | ArrayRef<BasicBlock *> Blocks; | 
|  | SmallSetVector<BasicBlock *, 4> ActiveBlocks; | 
|  | SmallVector<Instruction *, 4> Insts; | 
|  | bool Fail; | 
|  |  | 
|  | public: | 
|  | LockstepReverseIterator(ArrayRef<BasicBlock *> Blocks) : Blocks(Blocks) { | 
|  | reset(); | 
|  | } | 
|  |  | 
|  | void reset() { | 
|  | Fail = false; | 
|  | ActiveBlocks.clear(); | 
|  | for (BasicBlock *BB : Blocks) | 
|  | ActiveBlocks.insert(BB); | 
|  | Insts.clear(); | 
|  | for (BasicBlock *BB : Blocks) { | 
|  | if (BB->size() <= 1) { | 
|  | // Block wasn't big enough - only contained a terminator. | 
|  | ActiveBlocks.remove(BB); | 
|  | continue; | 
|  | } | 
|  | Insts.push_back(BB->getTerminator()->getPrevNode()); | 
|  | } | 
|  | if (Insts.empty()) | 
|  | Fail = true; | 
|  | } | 
|  |  | 
|  | bool isValid() const { return !Fail; } | 
|  | ArrayRef<Instruction *> operator*() const { return Insts; } | 
|  |  | 
|  | // Note: This needs to return a SmallSetVector as the elements of | 
|  | // ActiveBlocks will be later copied to Blocks using std::copy. The | 
|  | // resultant order of elements in Blocks needs to be deterministic. | 
|  | // Using SmallPtrSet instead causes non-deterministic order while | 
|  | // copying. And we cannot simply sort Blocks as they need to match the | 
|  | // corresponding Values. | 
|  | SmallSetVector<BasicBlock *, 4> &getActiveBlocks() { return ActiveBlocks; } | 
|  |  | 
|  | void restrictToBlocks(SmallSetVector<BasicBlock *, 4> &Blocks) { | 
|  | for (auto II = Insts.begin(); II != Insts.end();) { | 
|  | if (std::find(Blocks.begin(), Blocks.end(), (*II)->getParent()) == | 
|  | Blocks.end()) { | 
|  | ActiveBlocks.remove((*II)->getParent()); | 
|  | II = Insts.erase(II); | 
|  | } else { | 
|  | ++II; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void operator--() { | 
|  | if (Fail) | 
|  | return; | 
|  | SmallVector<Instruction *, 4> NewInsts; | 
|  | for (auto *Inst : Insts) { | 
|  | if (Inst == &Inst->getParent()->front()) | 
|  | ActiveBlocks.remove(Inst->getParent()); | 
|  | else | 
|  | NewInsts.push_back(Inst->getPrevNode()); | 
|  | } | 
|  | if (NewInsts.empty()) { | 
|  | Fail = true; | 
|  | return; | 
|  | } | 
|  | Insts = NewInsts; | 
|  | } | 
|  | }; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// Candidate solution for sinking. There may be different ways to | 
|  | /// sink instructions, differing in the number of instructions sunk, | 
|  | /// the number of predecessors sunk from and the number of PHIs | 
|  | /// required. | 
|  | struct SinkingInstructionCandidate { | 
|  | unsigned NumBlocks; | 
|  | unsigned NumInstructions; | 
|  | unsigned NumPHIs; | 
|  | unsigned NumMemoryInsts; | 
|  | int Cost = -1; | 
|  | SmallVector<BasicBlock *, 4> Blocks; | 
|  |  | 
|  | void calculateCost(unsigned NumOrigPHIs, unsigned NumOrigBlocks) { | 
|  | unsigned NumExtraPHIs = NumPHIs - NumOrigPHIs; | 
|  | unsigned SplitEdgeCost = (NumOrigBlocks > NumBlocks) ? 2 : 0; | 
|  | Cost = (NumInstructions * (NumBlocks - 1)) - | 
|  | (NumExtraPHIs * | 
|  | NumExtraPHIs) // PHIs are expensive, so make sure they're worth it. | 
|  | - SplitEdgeCost; | 
|  | } | 
|  |  | 
|  | bool operator>(const SinkingInstructionCandidate &Other) const { | 
|  | return Cost > Other.Cost; | 
|  | } | 
|  | }; | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | raw_ostream &operator<<(raw_ostream &OS, const SinkingInstructionCandidate &C) { | 
|  | OS << "<Candidate Cost=" << C.Cost << " #Blocks=" << C.NumBlocks | 
|  | << " #Insts=" << C.NumInstructions << " #PHIs=" << C.NumPHIs << ">"; | 
|  | return OS; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// Describes a PHI node that may or may not exist. These track the PHIs | 
|  | /// that must be created if we sunk a sequence of instructions. It provides | 
|  | /// a hash function for efficient equality comparisons. | 
|  | class ModelledPHI { | 
|  | SmallVector<Value *, 4> Values; | 
|  | SmallVector<BasicBlock *, 4> Blocks; | 
|  |  | 
|  | public: | 
|  | ModelledPHI() = default; | 
|  |  | 
|  | ModelledPHI(const PHINode *PN) { | 
|  | // BasicBlock comes first so we sort by basic block pointer order, then by value pointer order. | 
|  | SmallVector<std::pair<BasicBlock *, Value *>, 4> Ops; | 
|  | for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) | 
|  | Ops.push_back({PN->getIncomingBlock(I), PN->getIncomingValue(I)}); | 
|  | llvm::sort(Ops.begin(), Ops.end()); | 
|  | for (auto &P : Ops) { | 
|  | Blocks.push_back(P.first); | 
|  | Values.push_back(P.second); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Create a dummy ModelledPHI that will compare unequal to any other ModelledPHI | 
|  | /// without the same ID. | 
|  | /// \note This is specifically for DenseMapInfo - do not use this! | 
|  | static ModelledPHI createDummy(size_t ID) { | 
|  | ModelledPHI M; | 
|  | M.Values.push_back(reinterpret_cast<Value*>(ID)); | 
|  | return M; | 
|  | } | 
|  |  | 
|  | /// Create a PHI from an array of incoming values and incoming blocks. | 
|  | template <typename VArray, typename BArray> | 
|  | ModelledPHI(const VArray &V, const BArray &B) { | 
|  | std::copy(V.begin(), V.end(), std::back_inserter(Values)); | 
|  | std::copy(B.begin(), B.end(), std::back_inserter(Blocks)); | 
|  | } | 
|  |  | 
|  | /// Create a PHI from [I[OpNum] for I in Insts]. | 
|  | template <typename BArray> | 
|  | ModelledPHI(ArrayRef<Instruction *> Insts, unsigned OpNum, const BArray &B) { | 
|  | std::copy(B.begin(), B.end(), std::back_inserter(Blocks)); | 
|  | for (auto *I : Insts) | 
|  | Values.push_back(I->getOperand(OpNum)); | 
|  | } | 
|  |  | 
|  | /// Restrict the PHI's contents down to only \c NewBlocks. | 
|  | /// \c NewBlocks must be a subset of \c this->Blocks. | 
|  | void restrictToBlocks(const SmallSetVector<BasicBlock *, 4> &NewBlocks) { | 
|  | auto BI = Blocks.begin(); | 
|  | auto VI = Values.begin(); | 
|  | while (BI != Blocks.end()) { | 
|  | assert(VI != Values.end()); | 
|  | if (std::find(NewBlocks.begin(), NewBlocks.end(), *BI) == | 
|  | NewBlocks.end()) { | 
|  | BI = Blocks.erase(BI); | 
|  | VI = Values.erase(VI); | 
|  | } else { | 
|  | ++BI; | 
|  | ++VI; | 
|  | } | 
|  | } | 
|  | assert(Blocks.size() == NewBlocks.size()); | 
|  | } | 
|  |  | 
|  | ArrayRef<Value *> getValues() const { return Values; } | 
|  |  | 
|  | bool areAllIncomingValuesSame() const { | 
|  | return llvm::all_of(Values, [&](Value *V) { return V == Values[0]; }); | 
|  | } | 
|  |  | 
|  | bool areAllIncomingValuesSameType() const { | 
|  | return llvm::all_of( | 
|  | Values, [&](Value *V) { return V->getType() == Values[0]->getType(); }); | 
|  | } | 
|  |  | 
|  | bool areAnyIncomingValuesConstant() const { | 
|  | return llvm::any_of(Values, [&](Value *V) { return isa<Constant>(V); }); | 
|  | } | 
|  |  | 
|  | // Hash functor | 
|  | unsigned hash() const { | 
|  | return (unsigned)hash_combine_range(Values.begin(), Values.end()); | 
|  | } | 
|  |  | 
|  | bool operator==(const ModelledPHI &Other) const { | 
|  | return Values == Other.Values && Blocks == Other.Blocks; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename ModelledPHI> struct DenseMapInfo { | 
|  | static inline ModelledPHI &getEmptyKey() { | 
|  | static ModelledPHI Dummy = ModelledPHI::createDummy(0); | 
|  | return Dummy; | 
|  | } | 
|  |  | 
|  | static inline ModelledPHI &getTombstoneKey() { | 
|  | static ModelledPHI Dummy = ModelledPHI::createDummy(1); | 
|  | return Dummy; | 
|  | } | 
|  |  | 
|  | static unsigned getHashValue(const ModelledPHI &V) { return V.hash(); } | 
|  |  | 
|  | static bool isEqual(const ModelledPHI &LHS, const ModelledPHI &RHS) { | 
|  | return LHS == RHS; | 
|  | } | 
|  | }; | 
|  |  | 
|  | using ModelledPHISet = DenseSet<ModelledPHI, DenseMapInfo<ModelledPHI>>; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                             ValueTable | 
|  | //===----------------------------------------------------------------------===// | 
|  | // This is a value number table where the value number is a function of the | 
|  | // *uses* of a value, rather than its operands. Thus, if VN(A) == VN(B) we know | 
|  | // that the program would be equivalent if we replaced A with PHI(A, B). | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// A GVN expression describing how an instruction is used. The operands | 
|  | /// field of BasicExpression is used to store uses, not operands. | 
|  | /// | 
|  | /// This class also contains fields for discriminators used when determining | 
|  | /// equivalence of instructions with sideeffects. | 
|  | class InstructionUseExpr : public GVNExpression::BasicExpression { | 
|  | unsigned MemoryUseOrder = -1; | 
|  | bool Volatile = false; | 
|  |  | 
|  | public: | 
|  | InstructionUseExpr(Instruction *I, ArrayRecycler<Value *> &R, | 
|  | BumpPtrAllocator &A) | 
|  | : GVNExpression::BasicExpression(I->getNumUses()) { | 
|  | allocateOperands(R, A); | 
|  | setOpcode(I->getOpcode()); | 
|  | setType(I->getType()); | 
|  |  | 
|  | for (auto &U : I->uses()) | 
|  | op_push_back(U.getUser()); | 
|  | llvm::sort(op_begin(), op_end()); | 
|  | } | 
|  |  | 
|  | void setMemoryUseOrder(unsigned MUO) { MemoryUseOrder = MUO; } | 
|  | void setVolatile(bool V) { Volatile = V; } | 
|  |  | 
|  | hash_code getHashValue() const override { | 
|  | return hash_combine(GVNExpression::BasicExpression::getHashValue(), | 
|  | MemoryUseOrder, Volatile); | 
|  | } | 
|  |  | 
|  | template <typename Function> hash_code getHashValue(Function MapFn) { | 
|  | hash_code H = | 
|  | hash_combine(getOpcode(), getType(), MemoryUseOrder, Volatile); | 
|  | for (auto *V : operands()) | 
|  | H = hash_combine(H, MapFn(V)); | 
|  | return H; | 
|  | } | 
|  | }; | 
|  |  | 
|  | class ValueTable { | 
|  | DenseMap<Value *, uint32_t> ValueNumbering; | 
|  | DenseMap<GVNExpression::Expression *, uint32_t> ExpressionNumbering; | 
|  | DenseMap<size_t, uint32_t> HashNumbering; | 
|  | BumpPtrAllocator Allocator; | 
|  | ArrayRecycler<Value *> Recycler; | 
|  | uint32_t nextValueNumber = 1; | 
|  |  | 
|  | /// Create an expression for I based on its opcode and its uses. If I | 
|  | /// touches or reads memory, the expression is also based upon its memory | 
|  | /// order - see \c getMemoryUseOrder(). | 
|  | InstructionUseExpr *createExpr(Instruction *I) { | 
|  | InstructionUseExpr *E = | 
|  | new (Allocator) InstructionUseExpr(I, Recycler, Allocator); | 
|  | if (isMemoryInst(I)) | 
|  | E->setMemoryUseOrder(getMemoryUseOrder(I)); | 
|  |  | 
|  | if (CmpInst *C = dyn_cast<CmpInst>(I)) { | 
|  | CmpInst::Predicate Predicate = C->getPredicate(); | 
|  | E->setOpcode((C->getOpcode() << 8) | Predicate); | 
|  | } | 
|  | return E; | 
|  | } | 
|  |  | 
|  | /// Helper to compute the value number for a memory instruction | 
|  | /// (LoadInst/StoreInst), including checking the memory ordering and | 
|  | /// volatility. | 
|  | template <class Inst> InstructionUseExpr *createMemoryExpr(Inst *I) { | 
|  | if (isStrongerThanUnordered(I->getOrdering()) || I->isAtomic()) | 
|  | return nullptr; | 
|  | InstructionUseExpr *E = createExpr(I); | 
|  | E->setVolatile(I->isVolatile()); | 
|  | return E; | 
|  | } | 
|  |  | 
|  | public: | 
|  | ValueTable() = default; | 
|  |  | 
|  | /// Returns the value number for the specified value, assigning | 
|  | /// it a new number if it did not have one before. | 
|  | uint32_t lookupOrAdd(Value *V) { | 
|  | auto VI = ValueNumbering.find(V); | 
|  | if (VI != ValueNumbering.end()) | 
|  | return VI->second; | 
|  |  | 
|  | if (!isa<Instruction>(V)) { | 
|  | ValueNumbering[V] = nextValueNumber; | 
|  | return nextValueNumber++; | 
|  | } | 
|  |  | 
|  | Instruction *I = cast<Instruction>(V); | 
|  | InstructionUseExpr *exp = nullptr; | 
|  | switch (I->getOpcode()) { | 
|  | case Instruction::Load: | 
|  | exp = createMemoryExpr(cast<LoadInst>(I)); | 
|  | break; | 
|  | case Instruction::Store: | 
|  | exp = createMemoryExpr(cast<StoreInst>(I)); | 
|  | break; | 
|  | case Instruction::Call: | 
|  | case Instruction::Invoke: | 
|  | case Instruction::Add: | 
|  | case Instruction::FAdd: | 
|  | case Instruction::Sub: | 
|  | case Instruction::FSub: | 
|  | case Instruction::Mul: | 
|  | case Instruction::FMul: | 
|  | case Instruction::UDiv: | 
|  | case Instruction::SDiv: | 
|  | case Instruction::FDiv: | 
|  | case Instruction::URem: | 
|  | case Instruction::SRem: | 
|  | case Instruction::FRem: | 
|  | case Instruction::Shl: | 
|  | case Instruction::LShr: | 
|  | case Instruction::AShr: | 
|  | case Instruction::And: | 
|  | case Instruction::Or: | 
|  | case Instruction::Xor: | 
|  | case Instruction::ICmp: | 
|  | case Instruction::FCmp: | 
|  | case Instruction::Trunc: | 
|  | case Instruction::ZExt: | 
|  | case Instruction::SExt: | 
|  | case Instruction::FPToUI: | 
|  | case Instruction::FPToSI: | 
|  | case Instruction::UIToFP: | 
|  | case Instruction::SIToFP: | 
|  | case Instruction::FPTrunc: | 
|  | case Instruction::FPExt: | 
|  | case Instruction::PtrToInt: | 
|  | case Instruction::IntToPtr: | 
|  | case Instruction::BitCast: | 
|  | case Instruction::Select: | 
|  | case Instruction::ExtractElement: | 
|  | case Instruction::InsertElement: | 
|  | case Instruction::ShuffleVector: | 
|  | case Instruction::InsertValue: | 
|  | case Instruction::GetElementPtr: | 
|  | exp = createExpr(I); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!exp) { | 
|  | ValueNumbering[V] = nextValueNumber; | 
|  | return nextValueNumber++; | 
|  | } | 
|  |  | 
|  | uint32_t e = ExpressionNumbering[exp]; | 
|  | if (!e) { | 
|  | hash_code H = exp->getHashValue([=](Value *V) { return lookupOrAdd(V); }); | 
|  | auto I = HashNumbering.find(H); | 
|  | if (I != HashNumbering.end()) { | 
|  | e = I->second; | 
|  | } else { | 
|  | e = nextValueNumber++; | 
|  | HashNumbering[H] = e; | 
|  | ExpressionNumbering[exp] = e; | 
|  | } | 
|  | } | 
|  | ValueNumbering[V] = e; | 
|  | return e; | 
|  | } | 
|  |  | 
|  | /// Returns the value number of the specified value. Fails if the value has | 
|  | /// not yet been numbered. | 
|  | uint32_t lookup(Value *V) const { | 
|  | auto VI = ValueNumbering.find(V); | 
|  | assert(VI != ValueNumbering.end() && "Value not numbered?"); | 
|  | return VI->second; | 
|  | } | 
|  |  | 
|  | /// Removes all value numberings and resets the value table. | 
|  | void clear() { | 
|  | ValueNumbering.clear(); | 
|  | ExpressionNumbering.clear(); | 
|  | HashNumbering.clear(); | 
|  | Recycler.clear(Allocator); | 
|  | nextValueNumber = 1; | 
|  | } | 
|  |  | 
|  | /// \c Inst uses or touches memory. Return an ID describing the memory state | 
|  | /// at \c Inst such that if getMemoryUseOrder(I1) == getMemoryUseOrder(I2), | 
|  | /// the exact same memory operations happen after I1 and I2. | 
|  | /// | 
|  | /// This is a very hard problem in general, so we use domain-specific | 
|  | /// knowledge that we only ever check for equivalence between blocks sharing a | 
|  | /// single immediate successor that is common, and when determining if I1 == | 
|  | /// I2 we will have already determined that next(I1) == next(I2). This | 
|  | /// inductive property allows us to simply return the value number of the next | 
|  | /// instruction that defines memory. | 
|  | uint32_t getMemoryUseOrder(Instruction *Inst) { | 
|  | auto *BB = Inst->getParent(); | 
|  | for (auto I = std::next(Inst->getIterator()), E = BB->end(); | 
|  | I != E && !I->isTerminator(); ++I) { | 
|  | if (!isMemoryInst(&*I)) | 
|  | continue; | 
|  | if (isa<LoadInst>(&*I)) | 
|  | continue; | 
|  | CallInst *CI = dyn_cast<CallInst>(&*I); | 
|  | if (CI && CI->onlyReadsMemory()) | 
|  | continue; | 
|  | InvokeInst *II = dyn_cast<InvokeInst>(&*I); | 
|  | if (II && II->onlyReadsMemory()) | 
|  | continue; | 
|  | return lookupOrAdd(&*I); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | }; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | class GVNSink { | 
|  | public: | 
|  | GVNSink() = default; | 
|  |  | 
|  | bool run(Function &F) { | 
|  | LLVM_DEBUG(dbgs() << "GVNSink: running on function @" << F.getName() | 
|  | << "\n"); | 
|  |  | 
|  | unsigned NumSunk = 0; | 
|  | ReversePostOrderTraversal<Function*> RPOT(&F); | 
|  | for (auto *N : RPOT) | 
|  | NumSunk += sinkBB(N); | 
|  |  | 
|  | return NumSunk > 0; | 
|  | } | 
|  |  | 
|  | private: | 
|  | ValueTable VN; | 
|  |  | 
|  | bool isInstructionBlacklisted(Instruction *I) { | 
|  | // These instructions may change or break semantics if moved. | 
|  | if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || | 
|  | I->getType()->isTokenTy()) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// The main heuristic function. Analyze the set of instructions pointed to by | 
|  | /// LRI and return a candidate solution if these instructions can be sunk, or | 
|  | /// None otherwise. | 
|  | Optional<SinkingInstructionCandidate> analyzeInstructionForSinking( | 
|  | LockstepReverseIterator &LRI, unsigned &InstNum, unsigned &MemoryInstNum, | 
|  | ModelledPHISet &NeededPHIs, SmallPtrSetImpl<Value *> &PHIContents); | 
|  |  | 
|  | /// Create a ModelledPHI for each PHI in BB, adding to PHIs. | 
|  | void analyzeInitialPHIs(BasicBlock *BB, ModelledPHISet &PHIs, | 
|  | SmallPtrSetImpl<Value *> &PHIContents) { | 
|  | for (PHINode &PN : BB->phis()) { | 
|  | auto MPHI = ModelledPHI(&PN); | 
|  | PHIs.insert(MPHI); | 
|  | for (auto *V : MPHI.getValues()) | 
|  | PHIContents.insert(V); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// The main instruction sinking driver. Set up state and try and sink | 
|  | /// instructions into BBEnd from its predecessors. | 
|  | unsigned sinkBB(BasicBlock *BBEnd); | 
|  |  | 
|  | /// Perform the actual mechanics of sinking an instruction from Blocks into | 
|  | /// BBEnd, which is their only successor. | 
|  | void sinkLastInstruction(ArrayRef<BasicBlock *> Blocks, BasicBlock *BBEnd); | 
|  |  | 
|  | /// Remove PHIs that all have the same incoming value. | 
|  | void foldPointlessPHINodes(BasicBlock *BB) { | 
|  | auto I = BB->begin(); | 
|  | while (PHINode *PN = dyn_cast<PHINode>(I++)) { | 
|  | if (!llvm::all_of(PN->incoming_values(), [&](const Value *V) { | 
|  | return V == PN->getIncomingValue(0); | 
|  | })) | 
|  | continue; | 
|  | if (PN->getIncomingValue(0) != PN) | 
|  | PN->replaceAllUsesWith(PN->getIncomingValue(0)); | 
|  | else | 
|  | PN->replaceAllUsesWith(UndefValue::get(PN->getType())); | 
|  | PN->eraseFromParent(); | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | Optional<SinkingInstructionCandidate> GVNSink::analyzeInstructionForSinking( | 
|  | LockstepReverseIterator &LRI, unsigned &InstNum, unsigned &MemoryInstNum, | 
|  | ModelledPHISet &NeededPHIs, SmallPtrSetImpl<Value *> &PHIContents) { | 
|  | auto Insts = *LRI; | 
|  | LLVM_DEBUG(dbgs() << " -- Analyzing instruction set: [\n"; for (auto *I | 
|  | : Insts) { | 
|  | I->dump(); | 
|  | } dbgs() << " ]\n";); | 
|  |  | 
|  | DenseMap<uint32_t, unsigned> VNums; | 
|  | for (auto *I : Insts) { | 
|  | uint32_t N = VN.lookupOrAdd(I); | 
|  | LLVM_DEBUG(dbgs() << " VN=" << Twine::utohexstr(N) << " for" << *I << "\n"); | 
|  | if (N == ~0U) | 
|  | return None; | 
|  | VNums[N]++; | 
|  | } | 
|  | unsigned VNumToSink = | 
|  | std::max_element(VNums.begin(), VNums.end(), | 
|  | [](const std::pair<uint32_t, unsigned> &I, | 
|  | const std::pair<uint32_t, unsigned> &J) { | 
|  | return I.second < J.second; | 
|  | }) | 
|  | ->first; | 
|  |  | 
|  | if (VNums[VNumToSink] == 1) | 
|  | // Can't sink anything! | 
|  | return None; | 
|  |  | 
|  | // Now restrict the number of incoming blocks down to only those with | 
|  | // VNumToSink. | 
|  | auto &ActivePreds = LRI.getActiveBlocks(); | 
|  | unsigned InitialActivePredSize = ActivePreds.size(); | 
|  | SmallVector<Instruction *, 4> NewInsts; | 
|  | for (auto *I : Insts) { | 
|  | if (VN.lookup(I) != VNumToSink) | 
|  | ActivePreds.remove(I->getParent()); | 
|  | else | 
|  | NewInsts.push_back(I); | 
|  | } | 
|  | for (auto *I : NewInsts) | 
|  | if (isInstructionBlacklisted(I)) | 
|  | return None; | 
|  |  | 
|  | // If we've restricted the incoming blocks, restrict all needed PHIs also | 
|  | // to that set. | 
|  | bool RecomputePHIContents = false; | 
|  | if (ActivePreds.size() != InitialActivePredSize) { | 
|  | ModelledPHISet NewNeededPHIs; | 
|  | for (auto P : NeededPHIs) { | 
|  | P.restrictToBlocks(ActivePreds); | 
|  | NewNeededPHIs.insert(P); | 
|  | } | 
|  | NeededPHIs = NewNeededPHIs; | 
|  | LRI.restrictToBlocks(ActivePreds); | 
|  | RecomputePHIContents = true; | 
|  | } | 
|  |  | 
|  | // The sunk instruction's results. | 
|  | ModelledPHI NewPHI(NewInsts, ActivePreds); | 
|  |  | 
|  | // Does sinking this instruction render previous PHIs redundant? | 
|  | if (NeededPHIs.find(NewPHI) != NeededPHIs.end()) { | 
|  | NeededPHIs.erase(NewPHI); | 
|  | RecomputePHIContents = true; | 
|  | } | 
|  |  | 
|  | if (RecomputePHIContents) { | 
|  | // The needed PHIs have changed, so recompute the set of all needed | 
|  | // values. | 
|  | PHIContents.clear(); | 
|  | for (auto &PHI : NeededPHIs) | 
|  | PHIContents.insert(PHI.getValues().begin(), PHI.getValues().end()); | 
|  | } | 
|  |  | 
|  | // Is this instruction required by a later PHI that doesn't match this PHI? | 
|  | // if so, we can't sink this instruction. | 
|  | for (auto *V : NewPHI.getValues()) | 
|  | if (PHIContents.count(V)) | 
|  | // V exists in this PHI, but the whole PHI is different to NewPHI | 
|  | // (else it would have been removed earlier). We cannot continue | 
|  | // because this isn't representable. | 
|  | return None; | 
|  |  | 
|  | // Which operands need PHIs? | 
|  | // FIXME: If any of these fail, we should partition up the candidates to | 
|  | // try and continue making progress. | 
|  | Instruction *I0 = NewInsts[0]; | 
|  | for (unsigned OpNum = 0, E = I0->getNumOperands(); OpNum != E; ++OpNum) { | 
|  | ModelledPHI PHI(NewInsts, OpNum, ActivePreds); | 
|  | if (PHI.areAllIncomingValuesSame()) | 
|  | continue; | 
|  | if (!canReplaceOperandWithVariable(I0, OpNum)) | 
|  | // We can 't create a PHI from this instruction! | 
|  | return None; | 
|  | if (NeededPHIs.count(PHI)) | 
|  | continue; | 
|  | if (!PHI.areAllIncomingValuesSameType()) | 
|  | return None; | 
|  | // Don't create indirect calls! The called value is the final operand. | 
|  | if ((isa<CallInst>(I0) || isa<InvokeInst>(I0)) && OpNum == E - 1 && | 
|  | PHI.areAnyIncomingValuesConstant()) | 
|  | return None; | 
|  |  | 
|  | NeededPHIs.reserve(NeededPHIs.size()); | 
|  | NeededPHIs.insert(PHI); | 
|  | PHIContents.insert(PHI.getValues().begin(), PHI.getValues().end()); | 
|  | } | 
|  |  | 
|  | if (isMemoryInst(NewInsts[0])) | 
|  | ++MemoryInstNum; | 
|  |  | 
|  | SinkingInstructionCandidate Cand; | 
|  | Cand.NumInstructions = ++InstNum; | 
|  | Cand.NumMemoryInsts = MemoryInstNum; | 
|  | Cand.NumBlocks = ActivePreds.size(); | 
|  | Cand.NumPHIs = NeededPHIs.size(); | 
|  | for (auto *C : ActivePreds) | 
|  | Cand.Blocks.push_back(C); | 
|  |  | 
|  | return Cand; | 
|  | } | 
|  |  | 
|  | unsigned GVNSink::sinkBB(BasicBlock *BBEnd) { | 
|  | LLVM_DEBUG(dbgs() << "GVNSink: running on basic block "; | 
|  | BBEnd->printAsOperand(dbgs()); dbgs() << "\n"); | 
|  | SmallVector<BasicBlock *, 4> Preds; | 
|  | for (auto *B : predecessors(BBEnd)) { | 
|  | auto *T = B->getTerminator(); | 
|  | if (isa<BranchInst>(T) || isa<SwitchInst>(T)) | 
|  | Preds.push_back(B); | 
|  | else | 
|  | return 0; | 
|  | } | 
|  | if (Preds.size() < 2) | 
|  | return 0; | 
|  | llvm::sort(Preds.begin(), Preds.end()); | 
|  |  | 
|  | unsigned NumOrigPreds = Preds.size(); | 
|  | // We can only sink instructions through unconditional branches. | 
|  | for (auto I = Preds.begin(); I != Preds.end();) { | 
|  | if ((*I)->getTerminator()->getNumSuccessors() != 1) | 
|  | I = Preds.erase(I); | 
|  | else | 
|  | ++I; | 
|  | } | 
|  |  | 
|  | LockstepReverseIterator LRI(Preds); | 
|  | SmallVector<SinkingInstructionCandidate, 4> Candidates; | 
|  | unsigned InstNum = 0, MemoryInstNum = 0; | 
|  | ModelledPHISet NeededPHIs; | 
|  | SmallPtrSet<Value *, 4> PHIContents; | 
|  | analyzeInitialPHIs(BBEnd, NeededPHIs, PHIContents); | 
|  | unsigned NumOrigPHIs = NeededPHIs.size(); | 
|  |  | 
|  | while (LRI.isValid()) { | 
|  | auto Cand = analyzeInstructionForSinking(LRI, InstNum, MemoryInstNum, | 
|  | NeededPHIs, PHIContents); | 
|  | if (!Cand) | 
|  | break; | 
|  | Cand->calculateCost(NumOrigPHIs, Preds.size()); | 
|  | Candidates.emplace_back(*Cand); | 
|  | --LRI; | 
|  | } | 
|  |  | 
|  | std::stable_sort( | 
|  | Candidates.begin(), Candidates.end(), | 
|  | [](const SinkingInstructionCandidate &A, | 
|  | const SinkingInstructionCandidate &B) { return A > B; }); | 
|  | LLVM_DEBUG(dbgs() << " -- Sinking candidates:\n"; for (auto &C | 
|  | : Candidates) dbgs() | 
|  | << "  " << C << "\n";); | 
|  |  | 
|  | // Pick the top candidate, as long it is positive! | 
|  | if (Candidates.empty() || Candidates.front().Cost <= 0) | 
|  | return 0; | 
|  | auto C = Candidates.front(); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << " -- Sinking: " << C << "\n"); | 
|  | BasicBlock *InsertBB = BBEnd; | 
|  | if (C.Blocks.size() < NumOrigPreds) { | 
|  | LLVM_DEBUG(dbgs() << " -- Splitting edge to "; | 
|  | BBEnd->printAsOperand(dbgs()); dbgs() << "\n"); | 
|  | InsertBB = SplitBlockPredecessors(BBEnd, C.Blocks, ".gvnsink.split"); | 
|  | if (!InsertBB) { | 
|  | LLVM_DEBUG(dbgs() << " -- FAILED to split edge!\n"); | 
|  | // Edge couldn't be split. | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (unsigned I = 0; I < C.NumInstructions; ++I) | 
|  | sinkLastInstruction(C.Blocks, InsertBB); | 
|  |  | 
|  | return C.NumInstructions; | 
|  | } | 
|  |  | 
|  | void GVNSink::sinkLastInstruction(ArrayRef<BasicBlock *> Blocks, | 
|  | BasicBlock *BBEnd) { | 
|  | SmallVector<Instruction *, 4> Insts; | 
|  | for (BasicBlock *BB : Blocks) | 
|  | Insts.push_back(BB->getTerminator()->getPrevNode()); | 
|  | Instruction *I0 = Insts.front(); | 
|  |  | 
|  | SmallVector<Value *, 4> NewOperands; | 
|  | for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { | 
|  | bool NeedPHI = llvm::any_of(Insts, [&I0, O](const Instruction *I) { | 
|  | return I->getOperand(O) != I0->getOperand(O); | 
|  | }); | 
|  | if (!NeedPHI) { | 
|  | NewOperands.push_back(I0->getOperand(O)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Create a new PHI in the successor block and populate it. | 
|  | auto *Op = I0->getOperand(O); | 
|  | assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); | 
|  | auto *PN = PHINode::Create(Op->getType(), Insts.size(), | 
|  | Op->getName() + ".sink", &BBEnd->front()); | 
|  | for (auto *I : Insts) | 
|  | PN->addIncoming(I->getOperand(O), I->getParent()); | 
|  | NewOperands.push_back(PN); | 
|  | } | 
|  |  | 
|  | // Arbitrarily use I0 as the new "common" instruction; remap its operands | 
|  | // and move it to the start of the successor block. | 
|  | for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) | 
|  | I0->getOperandUse(O).set(NewOperands[O]); | 
|  | I0->moveBefore(&*BBEnd->getFirstInsertionPt()); | 
|  |  | 
|  | // Update metadata and IR flags. | 
|  | for (auto *I : Insts) | 
|  | if (I != I0) { | 
|  | combineMetadataForCSE(I0, I); | 
|  | I0->andIRFlags(I); | 
|  | } | 
|  |  | 
|  | for (auto *I : Insts) | 
|  | if (I != I0) | 
|  | I->replaceAllUsesWith(I0); | 
|  | foldPointlessPHINodes(BBEnd); | 
|  |  | 
|  | // Finally nuke all instructions apart from the common instruction. | 
|  | for (auto *I : Insts) | 
|  | if (I != I0) | 
|  | I->eraseFromParent(); | 
|  |  | 
|  | NumRemoved += Insts.size() - 1; | 
|  | } | 
|  |  | 
|  | //////////////////////////////////////////////////////////////////////////////// | 
|  | // Pass machinery / boilerplate | 
|  |  | 
|  | class GVNSinkLegacyPass : public FunctionPass { | 
|  | public: | 
|  | static char ID; | 
|  |  | 
|  | GVNSinkLegacyPass() : FunctionPass(ID) { | 
|  | initializeGVNSinkLegacyPassPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | bool runOnFunction(Function &F) override { | 
|  | if (skipFunction(F)) | 
|  | return false; | 
|  | GVNSink G; | 
|  | return G.run(F); | 
|  | } | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.addPreserved<GlobalsAAWrapperPass>(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | PreservedAnalyses GVNSinkPass::run(Function &F, FunctionAnalysisManager &AM) { | 
|  | GVNSink G; | 
|  | if (!G.run(F)) | 
|  | return PreservedAnalyses::all(); | 
|  |  | 
|  | PreservedAnalyses PA; | 
|  | PA.preserve<GlobalsAA>(); | 
|  | return PA; | 
|  | } | 
|  |  | 
|  | char GVNSinkLegacyPass::ID = 0; | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN(GVNSinkLegacyPass, "gvn-sink", | 
|  | "Early GVN sinking of Expressions", false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) | 
|  | INITIALIZE_PASS_END(GVNSinkLegacyPass, "gvn-sink", | 
|  | "Early GVN sinking of Expressions", false, false) | 
|  |  | 
|  | FunctionPass *llvm::createGVNSinkPass() { return new GVNSinkLegacyPass(); } |