|  | //===- MergeICmps.cpp - Optimize chains of integer comparisons ------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This pass turns chains of integer comparisons into memcmp (the memcmp is | 
|  | // later typically inlined as a chain of efficient hardware comparisons). This | 
|  | // typically benefits c++ member or nonmember operator==(). | 
|  | // | 
|  | // The basic idea is to replace a larger chain of integer comparisons loaded | 
|  | // from contiguous memory locations into a smaller chain of such integer | 
|  | // comparisons. Benefits are double: | 
|  | //  - There are less jumps, and therefore less opportunities for mispredictions | 
|  | //    and I-cache misses. | 
|  | //  - Code size is smaller, both because jumps are removed and because the | 
|  | //    encoding of a 2*n byte compare is smaller than that of two n-byte | 
|  | //    compares. | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <numeric> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  | #include "llvm/Analysis/Loads.h" | 
|  | #include "llvm/Analysis/TargetLibraryInfo.h" | 
|  | #include "llvm/Analysis/TargetTransformInfo.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/IRBuilder.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Transforms/Scalar.h" | 
|  | #include "llvm/Transforms/Utils/BuildLibCalls.h" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | #define DEBUG_TYPE "mergeicmps" | 
|  |  | 
|  | // A BCE atom. | 
|  | struct BCEAtom { | 
|  | BCEAtom() : GEP(nullptr), LoadI(nullptr), Offset() {} | 
|  |  | 
|  | const Value *Base() const { return GEP ? GEP->getPointerOperand() : nullptr; } | 
|  |  | 
|  | bool operator<(const BCEAtom &O) const { | 
|  | assert(Base() && "invalid atom"); | 
|  | assert(O.Base() && "invalid atom"); | 
|  | // Just ordering by (Base(), Offset) is sufficient. However because this | 
|  | // means that the ordering will depend on the addresses of the base | 
|  | // values, which are not reproducible from run to run. To guarantee | 
|  | // stability, we use the names of the values if they exist; we sort by: | 
|  | // (Base.getName(), Base(), Offset). | 
|  | const int NameCmp = Base()->getName().compare(O.Base()->getName()); | 
|  | if (NameCmp == 0) { | 
|  | if (Base() == O.Base()) { | 
|  | return Offset.slt(O.Offset); | 
|  | } | 
|  | return Base() < O.Base(); | 
|  | } | 
|  | return NameCmp < 0; | 
|  | } | 
|  |  | 
|  | GetElementPtrInst *GEP; | 
|  | LoadInst *LoadI; | 
|  | APInt Offset; | 
|  | }; | 
|  |  | 
|  | // If this value is a load from a constant offset w.r.t. a base address, and | 
|  | // there are no other users of the load or address, returns the base address and | 
|  | // the offset. | 
|  | BCEAtom visitICmpLoadOperand(Value *const Val) { | 
|  | BCEAtom Result; | 
|  | if (auto *const LoadI = dyn_cast<LoadInst>(Val)) { | 
|  | LLVM_DEBUG(dbgs() << "load\n"); | 
|  | if (LoadI->isUsedOutsideOfBlock(LoadI->getParent())) { | 
|  | LLVM_DEBUG(dbgs() << "used outside of block\n"); | 
|  | return {}; | 
|  | } | 
|  | if (LoadI->isVolatile()) { | 
|  | LLVM_DEBUG(dbgs() << "volatile\n"); | 
|  | return {}; | 
|  | } | 
|  | Value *const Addr = LoadI->getOperand(0); | 
|  | if (auto *const GEP = dyn_cast<GetElementPtrInst>(Addr)) { | 
|  | LLVM_DEBUG(dbgs() << "GEP\n"); | 
|  | if (LoadI->isUsedOutsideOfBlock(LoadI->getParent())) { | 
|  | LLVM_DEBUG(dbgs() << "used outside of block\n"); | 
|  | return {}; | 
|  | } | 
|  | const auto &DL = GEP->getModule()->getDataLayout(); | 
|  | if (!isDereferenceablePointer(GEP, DL)) { | 
|  | LLVM_DEBUG(dbgs() << "not dereferenceable\n"); | 
|  | // We need to make sure that we can do comparison in any order, so we | 
|  | // require memory to be unconditionnally dereferencable. | 
|  | return {}; | 
|  | } | 
|  | Result.Offset = APInt(DL.getPointerTypeSizeInBits(GEP->getType()), 0); | 
|  | if (GEP->accumulateConstantOffset(DL, Result.Offset)) { | 
|  | Result.GEP = GEP; | 
|  | Result.LoadI = LoadI; | 
|  | } | 
|  | } | 
|  | } | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | // A basic block with a comparison between two BCE atoms. | 
|  | // The block might do extra work besides the atom comparison, in which case | 
|  | // doesOtherWork() returns true. Under some conditions, the block can be | 
|  | // split into the atom comparison part and the "other work" part | 
|  | // (see canSplit()). | 
|  | // Note: the terminology is misleading: the comparison is symmetric, so there | 
|  | // is no real {l/r}hs. What we want though is to have the same base on the | 
|  | // left (resp. right), so that we can detect consecutive loads. To ensure this | 
|  | // we put the smallest atom on the left. | 
|  | class BCECmpBlock { | 
|  | public: | 
|  | BCECmpBlock() {} | 
|  |  | 
|  | BCECmpBlock(BCEAtom L, BCEAtom R, int SizeBits) | 
|  | : Lhs_(L), Rhs_(R), SizeBits_(SizeBits) { | 
|  | if (Rhs_ < Lhs_) std::swap(Rhs_, Lhs_); | 
|  | } | 
|  |  | 
|  | bool IsValid() const { | 
|  | return Lhs_.Base() != nullptr && Rhs_.Base() != nullptr; | 
|  | } | 
|  |  | 
|  | // Assert the block is consistent: If valid, it should also have | 
|  | // non-null members besides Lhs_ and Rhs_. | 
|  | void AssertConsistent() const { | 
|  | if (IsValid()) { | 
|  | assert(BB); | 
|  | assert(CmpI); | 
|  | assert(BranchI); | 
|  | } | 
|  | } | 
|  |  | 
|  | const BCEAtom &Lhs() const { return Lhs_; } | 
|  | const BCEAtom &Rhs() const { return Rhs_; } | 
|  | int SizeBits() const { return SizeBits_; } | 
|  |  | 
|  | // Returns true if the block does other works besides comparison. | 
|  | bool doesOtherWork() const; | 
|  |  | 
|  | // Returns true if the non-BCE-cmp instructions can be separated from BCE-cmp | 
|  | // instructions in the block. | 
|  | bool canSplit() const; | 
|  |  | 
|  | // Return true if this all the relevant instructions in the BCE-cmp-block can | 
|  | // be sunk below this instruction. By doing this, we know we can separate the | 
|  | // BCE-cmp-block instructions from the non-BCE-cmp-block instructions in the | 
|  | // block. | 
|  | bool canSinkBCECmpInst(const Instruction *, DenseSet<Instruction *> &) const; | 
|  |  | 
|  | // We can separate the BCE-cmp-block instructions and the non-BCE-cmp-block | 
|  | // instructions. Split the old block and move all non-BCE-cmp-insts into the | 
|  | // new parent block. | 
|  | void split(BasicBlock *NewParent) const; | 
|  |  | 
|  | // The basic block where this comparison happens. | 
|  | BasicBlock *BB = nullptr; | 
|  | // The ICMP for this comparison. | 
|  | ICmpInst *CmpI = nullptr; | 
|  | // The terminating branch. | 
|  | BranchInst *BranchI = nullptr; | 
|  | // The block requires splitting. | 
|  | bool RequireSplit = false; | 
|  |  | 
|  | private: | 
|  | BCEAtom Lhs_; | 
|  | BCEAtom Rhs_; | 
|  | int SizeBits_ = 0; | 
|  | }; | 
|  |  | 
|  | bool BCECmpBlock::canSinkBCECmpInst(const Instruction *Inst, | 
|  | DenseSet<Instruction *> &BlockInsts) const { | 
|  | // If this instruction has side effects and its in middle of the BCE cmp block | 
|  | // instructions, then bail for now. | 
|  | // TODO: use alias analysis to tell whether there is real interference. | 
|  | if (Inst->mayHaveSideEffects()) | 
|  | return false; | 
|  | // Make sure this instruction does not use any of the BCE cmp block | 
|  | // instructions as operand. | 
|  | for (auto BI : BlockInsts) { | 
|  | if (is_contained(Inst->operands(), BI)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void BCECmpBlock::split(BasicBlock *NewParent) const { | 
|  | DenseSet<Instruction *> BlockInsts( | 
|  | {Lhs_.GEP, Rhs_.GEP, Lhs_.LoadI, Rhs_.LoadI, CmpI, BranchI}); | 
|  | llvm::SmallVector<Instruction *, 4> OtherInsts; | 
|  | for (Instruction &Inst : *BB) { | 
|  | if (BlockInsts.count(&Inst)) | 
|  | continue; | 
|  | assert(canSinkBCECmpInst(&Inst, BlockInsts) && "Split unsplittable block"); | 
|  | // This is a non-BCE-cmp-block instruction. And it can be separated | 
|  | // from the BCE-cmp-block instruction. | 
|  | OtherInsts.push_back(&Inst); | 
|  | } | 
|  |  | 
|  | // Do the actual spliting. | 
|  | for (Instruction *Inst : reverse(OtherInsts)) { | 
|  | Inst->moveBefore(&*NewParent->begin()); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool BCECmpBlock::canSplit() const { | 
|  | DenseSet<Instruction *> BlockInsts( | 
|  | {Lhs_.GEP, Rhs_.GEP, Lhs_.LoadI, Rhs_.LoadI, CmpI, BranchI}); | 
|  | for (Instruction &Inst : *BB) { | 
|  | if (!BlockInsts.count(&Inst)) { | 
|  | if (!canSinkBCECmpInst(&Inst, BlockInsts)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool BCECmpBlock::doesOtherWork() const { | 
|  | AssertConsistent(); | 
|  | // All the instructions we care about in the BCE cmp block. | 
|  | DenseSet<Instruction *> BlockInsts( | 
|  | {Lhs_.GEP, Rhs_.GEP, Lhs_.LoadI, Rhs_.LoadI, CmpI, BranchI}); | 
|  | // TODO(courbet): Can we allow some other things ? This is very conservative. | 
|  | // We might be able to get away with anything does not have any side | 
|  | // effects outside of the basic block. | 
|  | // Note: The GEPs and/or loads are not necessarily in the same block. | 
|  | for (const Instruction &Inst : *BB) { | 
|  | if (!BlockInsts.count(&Inst)) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Visit the given comparison. If this is a comparison between two valid | 
|  | // BCE atoms, returns the comparison. | 
|  | BCECmpBlock visitICmp(const ICmpInst *const CmpI, | 
|  | const ICmpInst::Predicate ExpectedPredicate) { | 
|  | // The comparison can only be used once: | 
|  | //  - For intermediate blocks, as a branch condition. | 
|  | //  - For the final block, as an incoming value for the Phi. | 
|  | // If there are any other uses of the comparison, we cannot merge it with | 
|  | // other comparisons as we would create an orphan use of the value. | 
|  | if (!CmpI->hasOneUse()) { | 
|  | LLVM_DEBUG(dbgs() << "cmp has several uses\n"); | 
|  | return {}; | 
|  | } | 
|  | if (CmpI->getPredicate() == ExpectedPredicate) { | 
|  | LLVM_DEBUG(dbgs() << "cmp " | 
|  | << (ExpectedPredicate == ICmpInst::ICMP_EQ ? "eq" : "ne") | 
|  | << "\n"); | 
|  | auto Lhs = visitICmpLoadOperand(CmpI->getOperand(0)); | 
|  | if (!Lhs.Base()) return {}; | 
|  | auto Rhs = visitICmpLoadOperand(CmpI->getOperand(1)); | 
|  | if (!Rhs.Base()) return {}; | 
|  | return BCECmpBlock(std::move(Lhs), std::move(Rhs), | 
|  | CmpI->getOperand(0)->getType()->getScalarSizeInBits()); | 
|  | } | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | // Visit the given comparison block. If this is a comparison between two valid | 
|  | // BCE atoms, returns the comparison. | 
|  | BCECmpBlock visitCmpBlock(Value *const Val, BasicBlock *const Block, | 
|  | const BasicBlock *const PhiBlock) { | 
|  | if (Block->empty()) return {}; | 
|  | auto *const BranchI = dyn_cast<BranchInst>(Block->getTerminator()); | 
|  | if (!BranchI) return {}; | 
|  | LLVM_DEBUG(dbgs() << "branch\n"); | 
|  | if (BranchI->isUnconditional()) { | 
|  | // In this case, we expect an incoming value which is the result of the | 
|  | // comparison. This is the last link in the chain of comparisons (note | 
|  | // that this does not mean that this is the last incoming value, blocks | 
|  | // can be reordered). | 
|  | auto *const CmpI = dyn_cast<ICmpInst>(Val); | 
|  | if (!CmpI) return {}; | 
|  | LLVM_DEBUG(dbgs() << "icmp\n"); | 
|  | auto Result = visitICmp(CmpI, ICmpInst::ICMP_EQ); | 
|  | Result.CmpI = CmpI; | 
|  | Result.BranchI = BranchI; | 
|  | return Result; | 
|  | } else { | 
|  | // In this case, we expect a constant incoming value (the comparison is | 
|  | // chained). | 
|  | const auto *const Const = dyn_cast<ConstantInt>(Val); | 
|  | LLVM_DEBUG(dbgs() << "const\n"); | 
|  | if (!Const->isZero()) return {}; | 
|  | LLVM_DEBUG(dbgs() << "false\n"); | 
|  | auto *const CmpI = dyn_cast<ICmpInst>(BranchI->getCondition()); | 
|  | if (!CmpI) return {}; | 
|  | LLVM_DEBUG(dbgs() << "icmp\n"); | 
|  | assert(BranchI->getNumSuccessors() == 2 && "expecting a cond branch"); | 
|  | BasicBlock *const FalseBlock = BranchI->getSuccessor(1); | 
|  | auto Result = visitICmp( | 
|  | CmpI, FalseBlock == PhiBlock ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE); | 
|  | Result.CmpI = CmpI; | 
|  | Result.BranchI = BranchI; | 
|  | return Result; | 
|  | } | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | static inline void enqueueBlock(std::vector<BCECmpBlock> &Comparisons, | 
|  | BCECmpBlock &Comparison) { | 
|  | LLVM_DEBUG(dbgs() << "Block '" << Comparison.BB->getName() | 
|  | << "': Found cmp of " << Comparison.SizeBits() | 
|  | << " bits between " << Comparison.Lhs().Base() << " + " | 
|  | << Comparison.Lhs().Offset << " and " | 
|  | << Comparison.Rhs().Base() << " + " | 
|  | << Comparison.Rhs().Offset << "\n"); | 
|  | LLVM_DEBUG(dbgs() << "\n"); | 
|  | Comparisons.push_back(Comparison); | 
|  | } | 
|  |  | 
|  | // A chain of comparisons. | 
|  | class BCECmpChain { | 
|  | public: | 
|  | BCECmpChain(const std::vector<BasicBlock *> &Blocks, PHINode &Phi); | 
|  |  | 
|  | int size() const { return Comparisons_.size(); } | 
|  |  | 
|  | #ifdef MERGEICMPS_DOT_ON | 
|  | void dump() const; | 
|  | #endif  // MERGEICMPS_DOT_ON | 
|  |  | 
|  | bool simplify(const TargetLibraryInfo *const TLI); | 
|  |  | 
|  | private: | 
|  | static bool IsContiguous(const BCECmpBlock &First, | 
|  | const BCECmpBlock &Second) { | 
|  | return First.Lhs().Base() == Second.Lhs().Base() && | 
|  | First.Rhs().Base() == Second.Rhs().Base() && | 
|  | First.Lhs().Offset + First.SizeBits() / 8 == Second.Lhs().Offset && | 
|  | First.Rhs().Offset + First.SizeBits() / 8 == Second.Rhs().Offset; | 
|  | } | 
|  |  | 
|  | // Merges the given comparison blocks into one memcmp block and update | 
|  | // branches. Comparisons are assumed to be continguous. If NextBBInChain is | 
|  | // null, the merged block will link to the phi block. | 
|  | void mergeComparisons(ArrayRef<BCECmpBlock> Comparisons, | 
|  | BasicBlock *const NextBBInChain, PHINode &Phi, | 
|  | const TargetLibraryInfo *const TLI); | 
|  |  | 
|  | PHINode &Phi_; | 
|  | std::vector<BCECmpBlock> Comparisons_; | 
|  | // The original entry block (before sorting); | 
|  | BasicBlock *EntryBlock_; | 
|  | }; | 
|  |  | 
|  | BCECmpChain::BCECmpChain(const std::vector<BasicBlock *> &Blocks, PHINode &Phi) | 
|  | : Phi_(Phi) { | 
|  | assert(!Blocks.empty() && "a chain should have at least one block"); | 
|  | // Now look inside blocks to check for BCE comparisons. | 
|  | std::vector<BCECmpBlock> Comparisons; | 
|  | for (size_t BlockIdx = 0; BlockIdx < Blocks.size(); ++BlockIdx) { | 
|  | BasicBlock *const Block = Blocks[BlockIdx]; | 
|  | assert(Block && "invalid block"); | 
|  | BCECmpBlock Comparison = visitCmpBlock(Phi.getIncomingValueForBlock(Block), | 
|  | Block, Phi.getParent()); | 
|  | Comparison.BB = Block; | 
|  | if (!Comparison.IsValid()) { | 
|  | LLVM_DEBUG(dbgs() << "chain with invalid BCECmpBlock, no merge.\n"); | 
|  | return; | 
|  | } | 
|  | if (Comparison.doesOtherWork()) { | 
|  | LLVM_DEBUG(dbgs() << "block '" << Comparison.BB->getName() | 
|  | << "' does extra work besides compare\n"); | 
|  | if (Comparisons.empty()) { | 
|  | // This is the initial block in the chain, in case this block does other | 
|  | // work, we can try to split the block and move the irrelevant | 
|  | // instructions to the predecessor. | 
|  | // | 
|  | // If this is not the initial block in the chain, splitting it wont | 
|  | // work. | 
|  | // | 
|  | // As once split, there will still be instructions before the BCE cmp | 
|  | // instructions that do other work in program order, i.e. within the | 
|  | // chain before sorting. Unless we can abort the chain at this point | 
|  | // and start anew. | 
|  | // | 
|  | // NOTE: we only handle block with single predecessor for now. | 
|  | if (Comparison.canSplit()) { | 
|  | LLVM_DEBUG(dbgs() | 
|  | << "Split initial block '" << Comparison.BB->getName() | 
|  | << "' that does extra work besides compare\n"); | 
|  | Comparison.RequireSplit = true; | 
|  | enqueueBlock(Comparisons, Comparison); | 
|  | } else { | 
|  | LLVM_DEBUG(dbgs() | 
|  | << "ignoring initial block '" << Comparison.BB->getName() | 
|  | << "' that does extra work besides compare\n"); | 
|  | } | 
|  | continue; | 
|  | } | 
|  | // TODO(courbet): Right now we abort the whole chain. We could be | 
|  | // merging only the blocks that don't do other work and resume the | 
|  | // chain from there. For example: | 
|  | //  if (a[0] == b[0]) {  // bb1 | 
|  | //    if (a[1] == b[1]) {  // bb2 | 
|  | //      some_value = 3; //bb3 | 
|  | //      if (a[2] == b[2]) { //bb3 | 
|  | //        do a ton of stuff  //bb4 | 
|  | //      } | 
|  | //    } | 
|  | //  } | 
|  | // | 
|  | // This is: | 
|  | // | 
|  | // bb1 --eq--> bb2 --eq--> bb3* -eq--> bb4 --+ | 
|  | //  \            \           \               \ | 
|  | //   ne           ne          ne              \ | 
|  | //    \            \           \               v | 
|  | //     +------------+-----------+----------> bb_phi | 
|  | // | 
|  | // We can only merge the first two comparisons, because bb3* does | 
|  | // "other work" (setting some_value to 3). | 
|  | // We could still merge bb1 and bb2 though. | 
|  | return; | 
|  | } | 
|  | enqueueBlock(Comparisons, Comparison); | 
|  | } | 
|  |  | 
|  | // It is possible we have no suitable comparison to merge. | 
|  | if (Comparisons.empty()) { | 
|  | LLVM_DEBUG(dbgs() << "chain with no BCE basic blocks, no merge\n"); | 
|  | return; | 
|  | } | 
|  | EntryBlock_ = Comparisons[0].BB; | 
|  | Comparisons_ = std::move(Comparisons); | 
|  | #ifdef MERGEICMPS_DOT_ON | 
|  | errs() << "BEFORE REORDERING:\n\n"; | 
|  | dump(); | 
|  | #endif  // MERGEICMPS_DOT_ON | 
|  | // Reorder blocks by LHS. We can do that without changing the | 
|  | // semantics because we are only accessing dereferencable memory. | 
|  | llvm::sort(Comparisons_.begin(), Comparisons_.end(), | 
|  | [](const BCECmpBlock &a, const BCECmpBlock &b) { | 
|  | return a.Lhs() < b.Lhs(); | 
|  | }); | 
|  | #ifdef MERGEICMPS_DOT_ON | 
|  | errs() << "AFTER REORDERING:\n\n"; | 
|  | dump(); | 
|  | #endif  // MERGEICMPS_DOT_ON | 
|  | } | 
|  |  | 
|  | #ifdef MERGEICMPS_DOT_ON | 
|  | void BCECmpChain::dump() const { | 
|  | errs() << "digraph dag {\n"; | 
|  | errs() << " graph [bgcolor=transparent];\n"; | 
|  | errs() << " node [color=black,style=filled,fillcolor=lightyellow];\n"; | 
|  | errs() << " edge [color=black];\n"; | 
|  | for (size_t I = 0; I < Comparisons_.size(); ++I) { | 
|  | const auto &Comparison = Comparisons_[I]; | 
|  | errs() << " \"" << I << "\" [label=\"%" | 
|  | << Comparison.Lhs().Base()->getName() << " + " | 
|  | << Comparison.Lhs().Offset << " == %" | 
|  | << Comparison.Rhs().Base()->getName() << " + " | 
|  | << Comparison.Rhs().Offset << " (" << (Comparison.SizeBits() / 8) | 
|  | << " bytes)\"];\n"; | 
|  | const Value *const Val = Phi_.getIncomingValueForBlock(Comparison.BB); | 
|  | if (I > 0) errs() << " \"" << (I - 1) << "\" -> \"" << I << "\";\n"; | 
|  | errs() << " \"" << I << "\" -> \"Phi\" [label=\"" << *Val << "\"];\n"; | 
|  | } | 
|  | errs() << " \"Phi\" [label=\"Phi\"];\n"; | 
|  | errs() << "}\n\n"; | 
|  | } | 
|  | #endif  // MERGEICMPS_DOT_ON | 
|  |  | 
|  | bool BCECmpChain::simplify(const TargetLibraryInfo *const TLI) { | 
|  | // First pass to check if there is at least one merge. If not, we don't do | 
|  | // anything and we keep analysis passes intact. | 
|  | { | 
|  | bool AtLeastOneMerged = false; | 
|  | for (size_t I = 1; I < Comparisons_.size(); ++I) { | 
|  | if (IsContiguous(Comparisons_[I - 1], Comparisons_[I])) { | 
|  | AtLeastOneMerged = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!AtLeastOneMerged) return false; | 
|  | } | 
|  |  | 
|  | // Remove phi references to comparison blocks, they will be rebuilt as we | 
|  | // merge the blocks. | 
|  | for (const auto &Comparison : Comparisons_) { | 
|  | Phi_.removeIncomingValue(Comparison.BB, false); | 
|  | } | 
|  |  | 
|  | // If entry block is part of the chain, we need to make the first block | 
|  | // of the chain the new entry block of the function. | 
|  | BasicBlock *Entry = &Comparisons_[0].BB->getParent()->getEntryBlock(); | 
|  | for (size_t I = 1; I < Comparisons_.size(); ++I) { | 
|  | if (Entry == Comparisons_[I].BB) { | 
|  | BasicBlock *NEntryBB = BasicBlock::Create(Entry->getContext(), "", | 
|  | Entry->getParent(), Entry); | 
|  | BranchInst::Create(Entry, NEntryBB); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Point the predecessors of the chain to the first comparison block (which is | 
|  | // the new entry point) and update the entry block of the chain. | 
|  | if (EntryBlock_ != Comparisons_[0].BB) { | 
|  | EntryBlock_->replaceAllUsesWith(Comparisons_[0].BB); | 
|  | EntryBlock_ = Comparisons_[0].BB; | 
|  | } | 
|  |  | 
|  | // Effectively merge blocks. | 
|  | int NumMerged = 1; | 
|  | for (size_t I = 1; I < Comparisons_.size(); ++I) { | 
|  | if (IsContiguous(Comparisons_[I - 1], Comparisons_[I])) { | 
|  | ++NumMerged; | 
|  | } else { | 
|  | // Merge all previous comparisons and start a new merge block. | 
|  | mergeComparisons( | 
|  | makeArrayRef(Comparisons_).slice(I - NumMerged, NumMerged), | 
|  | Comparisons_[I].BB, Phi_, TLI); | 
|  | NumMerged = 1; | 
|  | } | 
|  | } | 
|  | mergeComparisons(makeArrayRef(Comparisons_) | 
|  | .slice(Comparisons_.size() - NumMerged, NumMerged), | 
|  | nullptr, Phi_, TLI); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void BCECmpChain::mergeComparisons(ArrayRef<BCECmpBlock> Comparisons, | 
|  | BasicBlock *const NextBBInChain, | 
|  | PHINode &Phi, | 
|  | const TargetLibraryInfo *const TLI) { | 
|  | assert(!Comparisons.empty()); | 
|  | const auto &FirstComparison = *Comparisons.begin(); | 
|  | BasicBlock *const BB = FirstComparison.BB; | 
|  | LLVMContext &Context = BB->getContext(); | 
|  |  | 
|  | if (Comparisons.size() >= 2) { | 
|  | // If there is one block that requires splitting, we do it now, i.e. | 
|  | // just before we know we will collapse the chain. The instructions | 
|  | // can be executed before any of the instructions in the chain. | 
|  | auto C = std::find_if(Comparisons.begin(), Comparisons.end(), | 
|  | [](const BCECmpBlock &B) { return B.RequireSplit; }); | 
|  | if (C != Comparisons.end()) | 
|  | C->split(EntryBlock_); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Merging " << Comparisons.size() << " comparisons\n"); | 
|  | const auto TotalSize = | 
|  | std::accumulate(Comparisons.begin(), Comparisons.end(), 0, | 
|  | [](int Size, const BCECmpBlock &C) { | 
|  | return Size + C.SizeBits(); | 
|  | }) / | 
|  | 8; | 
|  |  | 
|  | // Incoming edges do not need to be updated, and both GEPs are already | 
|  | // computing the right address, we just need to: | 
|  | //   - replace the two loads and the icmp with the memcmp | 
|  | //   - update the branch | 
|  | //   - update the incoming values in the phi. | 
|  | FirstComparison.BranchI->eraseFromParent(); | 
|  | FirstComparison.CmpI->eraseFromParent(); | 
|  | FirstComparison.Lhs().LoadI->eraseFromParent(); | 
|  | FirstComparison.Rhs().LoadI->eraseFromParent(); | 
|  |  | 
|  | IRBuilder<> Builder(BB); | 
|  | const auto &DL = Phi.getModule()->getDataLayout(); | 
|  | Value *const MemCmpCall = emitMemCmp( | 
|  | FirstComparison.Lhs().GEP, FirstComparison.Rhs().GEP, | 
|  | ConstantInt::get(DL.getIntPtrType(Context), TotalSize), | 
|  | Builder, DL, TLI); | 
|  | Value *const MemCmpIsZero = Builder.CreateICmpEQ( | 
|  | MemCmpCall, ConstantInt::get(Type::getInt32Ty(Context), 0)); | 
|  |  | 
|  | // Add a branch to the next basic block in the chain. | 
|  | if (NextBBInChain) { | 
|  | Builder.CreateCondBr(MemCmpIsZero, NextBBInChain, Phi.getParent()); | 
|  | Phi.addIncoming(ConstantInt::getFalse(Context), BB); | 
|  | } else { | 
|  | Builder.CreateBr(Phi.getParent()); | 
|  | Phi.addIncoming(MemCmpIsZero, BB); | 
|  | } | 
|  |  | 
|  | // Delete merged blocks. | 
|  | for (size_t I = 1; I < Comparisons.size(); ++I) { | 
|  | BasicBlock *CBB = Comparisons[I].BB; | 
|  | CBB->replaceAllUsesWith(BB); | 
|  | CBB->eraseFromParent(); | 
|  | } | 
|  | } else { | 
|  | assert(Comparisons.size() == 1); | 
|  | // There are no blocks to merge, but we still need to update the branches. | 
|  | LLVM_DEBUG(dbgs() << "Only one comparison, updating branches\n"); | 
|  | if (NextBBInChain) { | 
|  | if (FirstComparison.BranchI->isConditional()) { | 
|  | LLVM_DEBUG(dbgs() << "conditional -> conditional\n"); | 
|  | // Just update the "true" target, the "false" target should already be | 
|  | // the phi block. | 
|  | assert(FirstComparison.BranchI->getSuccessor(1) == Phi.getParent()); | 
|  | FirstComparison.BranchI->setSuccessor(0, NextBBInChain); | 
|  | Phi.addIncoming(ConstantInt::getFalse(Context), BB); | 
|  | } else { | 
|  | LLVM_DEBUG(dbgs() << "unconditional -> conditional\n"); | 
|  | // Replace the unconditional branch by a conditional one. | 
|  | FirstComparison.BranchI->eraseFromParent(); | 
|  | IRBuilder<> Builder(BB); | 
|  | Builder.CreateCondBr(FirstComparison.CmpI, NextBBInChain, | 
|  | Phi.getParent()); | 
|  | Phi.addIncoming(FirstComparison.CmpI, BB); | 
|  | } | 
|  | } else { | 
|  | if (FirstComparison.BranchI->isConditional()) { | 
|  | LLVM_DEBUG(dbgs() << "conditional -> unconditional\n"); | 
|  | // Replace the conditional branch by an unconditional one. | 
|  | FirstComparison.BranchI->eraseFromParent(); | 
|  | IRBuilder<> Builder(BB); | 
|  | Builder.CreateBr(Phi.getParent()); | 
|  | Phi.addIncoming(FirstComparison.CmpI, BB); | 
|  | } else { | 
|  | LLVM_DEBUG(dbgs() << "unconditional -> unconditional\n"); | 
|  | Phi.addIncoming(FirstComparison.CmpI, BB); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | std::vector<BasicBlock *> getOrderedBlocks(PHINode &Phi, | 
|  | BasicBlock *const LastBlock, | 
|  | int NumBlocks) { | 
|  | // Walk up from the last block to find other blocks. | 
|  | std::vector<BasicBlock *> Blocks(NumBlocks); | 
|  | assert(LastBlock && "invalid last block"); | 
|  | BasicBlock *CurBlock = LastBlock; | 
|  | for (int BlockIndex = NumBlocks - 1; BlockIndex > 0; --BlockIndex) { | 
|  | if (CurBlock->hasAddressTaken()) { | 
|  | // Somebody is jumping to the block through an address, all bets are | 
|  | // off. | 
|  | LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex | 
|  | << " has its address taken\n"); | 
|  | return {}; | 
|  | } | 
|  | Blocks[BlockIndex] = CurBlock; | 
|  | auto *SinglePredecessor = CurBlock->getSinglePredecessor(); | 
|  | if (!SinglePredecessor) { | 
|  | // The block has two or more predecessors. | 
|  | LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex | 
|  | << " has two or more predecessors\n"); | 
|  | return {}; | 
|  | } | 
|  | if (Phi.getBasicBlockIndex(SinglePredecessor) < 0) { | 
|  | // The block does not link back to the phi. | 
|  | LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex | 
|  | << " does not link back to the phi\n"); | 
|  | return {}; | 
|  | } | 
|  | CurBlock = SinglePredecessor; | 
|  | } | 
|  | Blocks[0] = CurBlock; | 
|  | return Blocks; | 
|  | } | 
|  |  | 
|  | bool processPhi(PHINode &Phi, const TargetLibraryInfo *const TLI) { | 
|  | LLVM_DEBUG(dbgs() << "processPhi()\n"); | 
|  | if (Phi.getNumIncomingValues() <= 1) { | 
|  | LLVM_DEBUG(dbgs() << "skip: only one incoming value in phi\n"); | 
|  | return false; | 
|  | } | 
|  | // We are looking for something that has the following structure: | 
|  | //   bb1 --eq--> bb2 --eq--> bb3 --eq--> bb4 --+ | 
|  | //     \            \           \               \ | 
|  | //      ne           ne          ne              \ | 
|  | //       \            \           \               v | 
|  | //        +------------+-----------+----------> bb_phi | 
|  | // | 
|  | //  - The last basic block (bb4 here) must branch unconditionally to bb_phi. | 
|  | //    It's the only block that contributes a non-constant value to the Phi. | 
|  | //  - All other blocks (b1, b2, b3) must have exactly two successors, one of | 
|  | //    them being the phi block. | 
|  | //  - All intermediate blocks (bb2, bb3) must have only one predecessor. | 
|  | //  - Blocks cannot do other work besides the comparison, see doesOtherWork() | 
|  |  | 
|  | // The blocks are not necessarily ordered in the phi, so we start from the | 
|  | // last block and reconstruct the order. | 
|  | BasicBlock *LastBlock = nullptr; | 
|  | for (unsigned I = 0; I < Phi.getNumIncomingValues(); ++I) { | 
|  | if (isa<ConstantInt>(Phi.getIncomingValue(I))) continue; | 
|  | if (LastBlock) { | 
|  | // There are several non-constant values. | 
|  | LLVM_DEBUG(dbgs() << "skip: several non-constant values\n"); | 
|  | return false; | 
|  | } | 
|  | if (!isa<ICmpInst>(Phi.getIncomingValue(I)) || | 
|  | cast<ICmpInst>(Phi.getIncomingValue(I))->getParent() != | 
|  | Phi.getIncomingBlock(I)) { | 
|  | // Non-constant incoming value is not from a cmp instruction or not | 
|  | // produced by the last block. We could end up processing the value | 
|  | // producing block more than once. | 
|  | // | 
|  | // This is an uncommon case, so we bail. | 
|  | LLVM_DEBUG( | 
|  | dbgs() | 
|  | << "skip: non-constant value not from cmp or not from last block.\n"); | 
|  | return false; | 
|  | } | 
|  | LastBlock = Phi.getIncomingBlock(I); | 
|  | } | 
|  | if (!LastBlock) { | 
|  | // There is no non-constant block. | 
|  | LLVM_DEBUG(dbgs() << "skip: no non-constant block\n"); | 
|  | return false; | 
|  | } | 
|  | if (LastBlock->getSingleSuccessor() != Phi.getParent()) { | 
|  | LLVM_DEBUG(dbgs() << "skip: last block non-phi successor\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | const auto Blocks = | 
|  | getOrderedBlocks(Phi, LastBlock, Phi.getNumIncomingValues()); | 
|  | if (Blocks.empty()) return false; | 
|  | BCECmpChain CmpChain(Blocks, Phi); | 
|  |  | 
|  | if (CmpChain.size() < 2) { | 
|  | LLVM_DEBUG(dbgs() << "skip: only one compare block\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return CmpChain.simplify(TLI); | 
|  | } | 
|  |  | 
|  | class MergeICmps : public FunctionPass { | 
|  | public: | 
|  | static char ID; | 
|  |  | 
|  | MergeICmps() : FunctionPass(ID) { | 
|  | initializeMergeICmpsPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | bool runOnFunction(Function &F) override { | 
|  | if (skipFunction(F)) return false; | 
|  | const auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); | 
|  | const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); | 
|  | auto PA = runImpl(F, &TLI, &TTI); | 
|  | return !PA.areAllPreserved(); | 
|  | } | 
|  |  | 
|  | private: | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.addRequired<TargetLibraryInfoWrapperPass>(); | 
|  | AU.addRequired<TargetTransformInfoWrapperPass>(); | 
|  | } | 
|  |  | 
|  | PreservedAnalyses runImpl(Function &F, const TargetLibraryInfo *TLI, | 
|  | const TargetTransformInfo *TTI); | 
|  | }; | 
|  |  | 
|  | PreservedAnalyses MergeICmps::runImpl(Function &F, const TargetLibraryInfo *TLI, | 
|  | const TargetTransformInfo *TTI) { | 
|  | LLVM_DEBUG(dbgs() << "MergeICmpsPass: " << F.getName() << "\n"); | 
|  |  | 
|  | // We only try merging comparisons if the target wants to expand memcmp later. | 
|  | // The rationale is to avoid turning small chains into memcmp calls. | 
|  | if (!TTI->enableMemCmpExpansion(true)) return PreservedAnalyses::all(); | 
|  |  | 
|  | // If we don't have memcmp avaiable we can't emit calls to it. | 
|  | if (!TLI->has(LibFunc_memcmp)) | 
|  | return PreservedAnalyses::all(); | 
|  |  | 
|  | bool MadeChange = false; | 
|  |  | 
|  | for (auto BBIt = ++F.begin(); BBIt != F.end(); ++BBIt) { | 
|  | // A Phi operation is always first in a basic block. | 
|  | if (auto *const Phi = dyn_cast<PHINode>(&*BBIt->begin())) | 
|  | MadeChange |= processPhi(*Phi, TLI); | 
|  | } | 
|  |  | 
|  | if (MadeChange) return PreservedAnalyses::none(); | 
|  | return PreservedAnalyses::all(); | 
|  | } | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | char MergeICmps::ID = 0; | 
|  | INITIALIZE_PASS_BEGIN(MergeICmps, "mergeicmps", | 
|  | "Merge contiguous icmps into a memcmp", false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) | 
|  | INITIALIZE_PASS_END(MergeICmps, "mergeicmps", | 
|  | "Merge contiguous icmps into a memcmp", false, false) | 
|  |  | 
|  | Pass *llvm::createMergeICmpsPass() { return new MergeICmps(); } |