|  | //===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file defines the X86 specific subclass of TargetMachine. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "MCTargetDesc/X86MCTargetDesc.h" | 
|  | #include "X86.h" | 
|  | #include "X86CallLowering.h" | 
|  | #include "X86LegalizerInfo.h" | 
|  | #include "X86InstructionSelector.h" | 
|  | #ifdef LLVM_BUILD_GLOBAL_ISEL | 
|  | #include "X86RegisterBankInfo.h" | 
|  | #endif | 
|  | #include "X86MacroFusion.h" | 
|  | #include "X86Subtarget.h" | 
|  | #include "X86TargetMachine.h" | 
|  | #include "X86TargetObjectFile.h" | 
|  | #include "X86TargetTransformInfo.h" | 
|  | #include "llvm/ADT/Optional.h" | 
|  | #include "llvm/ADT/SmallString.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/StringRef.h" | 
|  | #include "llvm/ADT/Triple.h" | 
|  | #include "llvm/Analysis/TargetTransformInfo.h" | 
|  | #include "llvm/CodeGen/GlobalISel/CallLowering.h" | 
|  | #include "llvm/CodeGen/GlobalISel/GISelAccessor.h" | 
|  | #include "llvm/CodeGen/GlobalISel/IRTranslator.h" | 
|  | #include "llvm/CodeGen/GlobalISel/Legalizer.h" | 
|  | #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" | 
|  | #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" | 
|  | #include "llvm/CodeGen/MachineScheduler.h" | 
|  | #include "llvm/CodeGen/Passes.h" | 
|  | #include "llvm/CodeGen/TargetPassConfig.h" | 
|  | #include "llvm/IR/Attributes.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/CodeGen.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/TargetRegistry.h" | 
|  | #include "llvm/Target/TargetLoweringObjectFile.h" | 
|  | #include "llvm/Target/TargetOptions.h" | 
|  | #include <memory> | 
|  | #include <string> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | static cl::opt<bool> EnableMachineCombinerPass("x86-machine-combiner", | 
|  | cl::desc("Enable the machine combiner pass"), | 
|  | cl::init(true), cl::Hidden); | 
|  |  | 
|  | namespace llvm { | 
|  |  | 
|  | void initializeWinEHStatePassPass(PassRegistry &); | 
|  |  | 
|  | } // end namespace llvm | 
|  |  | 
|  | extern "C" void LLVMInitializeX86Target() { | 
|  | // Register the target. | 
|  | RegisterTargetMachine<X86TargetMachine> X(getTheX86_32Target()); | 
|  | RegisterTargetMachine<X86TargetMachine> Y(getTheX86_64Target()); | 
|  |  | 
|  | PassRegistry &PR = *PassRegistry::getPassRegistry(); | 
|  | initializeGlobalISel(PR); | 
|  | initializeWinEHStatePassPass(PR); | 
|  | initializeFixupBWInstPassPass(PR); | 
|  | initializeEvexToVexInstPassPass(PR); | 
|  | } | 
|  |  | 
|  | static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { | 
|  | if (TT.isOSBinFormatMachO()) { | 
|  | if (TT.getArch() == Triple::x86_64) | 
|  | return llvm::make_unique<X86_64MachoTargetObjectFile>(); | 
|  | return llvm::make_unique<TargetLoweringObjectFileMachO>(); | 
|  | } | 
|  |  | 
|  | if (TT.isOSFreeBSD()) | 
|  | return llvm::make_unique<X86FreeBSDTargetObjectFile>(); | 
|  | if (TT.isOSLinux() || TT.isOSNaCl()) | 
|  | return llvm::make_unique<X86LinuxNaClTargetObjectFile>(); | 
|  | if (TT.isOSFuchsia()) | 
|  | return llvm::make_unique<X86FuchsiaTargetObjectFile>(); | 
|  | if (TT.isOSBinFormatELF()) | 
|  | return llvm::make_unique<X86ELFTargetObjectFile>(); | 
|  | if (TT.isKnownWindowsMSVCEnvironment() || TT.isWindowsCoreCLREnvironment()) | 
|  | return llvm::make_unique<X86WindowsTargetObjectFile>(); | 
|  | if (TT.isOSBinFormatCOFF()) | 
|  | return llvm::make_unique<TargetLoweringObjectFileCOFF>(); | 
|  | llvm_unreachable("unknown subtarget type"); | 
|  | } | 
|  |  | 
|  | static std::string computeDataLayout(const Triple &TT) { | 
|  | // X86 is little endian | 
|  | std::string Ret = "e"; | 
|  |  | 
|  | Ret += DataLayout::getManglingComponent(TT); | 
|  | // X86 and x32 have 32 bit pointers. | 
|  | if ((TT.isArch64Bit() && | 
|  | (TT.getEnvironment() == Triple::GNUX32 || TT.isOSNaCl())) || | 
|  | !TT.isArch64Bit()) | 
|  | Ret += "-p:32:32"; | 
|  |  | 
|  | // Some ABIs align 64 bit integers and doubles to 64 bits, others to 32. | 
|  | if (TT.isArch64Bit() || TT.isOSWindows() || TT.isOSNaCl()) | 
|  | Ret += "-i64:64"; | 
|  | else if (TT.isOSIAMCU()) | 
|  | Ret += "-i64:32-f64:32"; | 
|  | else | 
|  | Ret += "-f64:32:64"; | 
|  |  | 
|  | // Some ABIs align long double to 128 bits, others to 32. | 
|  | if (TT.isOSNaCl() || TT.isOSIAMCU()) | 
|  | ; // No f80 | 
|  | else if (TT.isArch64Bit() || TT.isOSDarwin()) | 
|  | Ret += "-f80:128"; | 
|  | else | 
|  | Ret += "-f80:32"; | 
|  |  | 
|  | if (TT.isOSIAMCU()) | 
|  | Ret += "-f128:32"; | 
|  |  | 
|  | // The registers can hold 8, 16, 32 or, in x86-64, 64 bits. | 
|  | if (TT.isArch64Bit()) | 
|  | Ret += "-n8:16:32:64"; | 
|  | else | 
|  | Ret += "-n8:16:32"; | 
|  |  | 
|  | // The stack is aligned to 32 bits on some ABIs and 128 bits on others. | 
|  | if ((!TT.isArch64Bit() && TT.isOSWindows()) || TT.isOSIAMCU()) | 
|  | Ret += "-a:0:32-S32"; | 
|  | else | 
|  | Ret += "-S128"; | 
|  |  | 
|  | return Ret; | 
|  | } | 
|  |  | 
|  | static Reloc::Model getEffectiveRelocModel(const Triple &TT, | 
|  | Optional<Reloc::Model> RM) { | 
|  | bool is64Bit = TT.getArch() == Triple::x86_64; | 
|  | if (!RM.hasValue()) { | 
|  | // Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode. | 
|  | // Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we | 
|  | // use static relocation model by default. | 
|  | if (TT.isOSDarwin()) { | 
|  | if (is64Bit) | 
|  | return Reloc::PIC_; | 
|  | return Reloc::DynamicNoPIC; | 
|  | } | 
|  | if (TT.isOSWindows() && is64Bit) | 
|  | return Reloc::PIC_; | 
|  | return Reloc::Static; | 
|  | } | 
|  |  | 
|  | // ELF and X86-64 don't have a distinct DynamicNoPIC model.  DynamicNoPIC | 
|  | // is defined as a model for code which may be used in static or dynamic | 
|  | // executables but not necessarily a shared library. On X86-32 we just | 
|  | // compile in -static mode, in x86-64 we use PIC. | 
|  | if (*RM == Reloc::DynamicNoPIC) { | 
|  | if (is64Bit) | 
|  | return Reloc::PIC_; | 
|  | if (!TT.isOSDarwin()) | 
|  | return Reloc::Static; | 
|  | } | 
|  |  | 
|  | // If we are on Darwin, disallow static relocation model in X86-64 mode, since | 
|  | // the Mach-O file format doesn't support it. | 
|  | if (*RM == Reloc::Static && TT.isOSDarwin() && is64Bit) | 
|  | return Reloc::PIC_; | 
|  |  | 
|  | return *RM; | 
|  | } | 
|  |  | 
|  | /// Create an X86 target. | 
|  | /// | 
|  | X86TargetMachine::X86TargetMachine(const Target &T, const Triple &TT, | 
|  | StringRef CPU, StringRef FS, | 
|  | const TargetOptions &Options, | 
|  | Optional<Reloc::Model> RM, | 
|  | CodeModel::Model CM, CodeGenOpt::Level OL) | 
|  | : LLVMTargetMachine(T, computeDataLayout(TT), TT, CPU, FS, Options, | 
|  | getEffectiveRelocModel(TT, RM), CM, OL), | 
|  | TLOF(createTLOF(getTargetTriple())) { | 
|  | // Windows stack unwinder gets confused when execution flow "falls through" | 
|  | // after a call to 'noreturn' function. | 
|  | // To prevent that, we emit a trap for 'unreachable' IR instructions. | 
|  | // (which on X86, happens to be the 'ud2' instruction) | 
|  | // On PS4, the "return address" of a 'noreturn' call must still be within | 
|  | // the calling function, and TrapUnreachable is an easy way to get that. | 
|  | // The check here for 64-bit windows is a bit icky, but as we're unlikely | 
|  | // to ever want to mix 32 and 64-bit windows code in a single module | 
|  | // this should be fine. | 
|  | if ((TT.isOSWindows() && TT.getArch() == Triple::x86_64) || TT.isPS4()) | 
|  | this->Options.TrapUnreachable = true; | 
|  |  | 
|  | initAsmInfo(); | 
|  | } | 
|  |  | 
|  | X86TargetMachine::~X86TargetMachine() = default; | 
|  |  | 
|  | #ifdef LLVM_BUILD_GLOBAL_ISEL | 
|  | namespace { | 
|  |  | 
|  | struct X86GISelActualAccessor : public GISelAccessor { | 
|  | std::unique_ptr<CallLowering> CallLoweringInfo; | 
|  | std::unique_ptr<LegalizerInfo> Legalizer; | 
|  | std::unique_ptr<RegisterBankInfo> RegBankInfo; | 
|  | std::unique_ptr<InstructionSelector> InstSelector; | 
|  |  | 
|  | const CallLowering *getCallLowering() const override { | 
|  | return CallLoweringInfo.get(); | 
|  | } | 
|  |  | 
|  | const InstructionSelector *getInstructionSelector() const override { | 
|  | return InstSelector.get(); | 
|  | } | 
|  |  | 
|  | const LegalizerInfo *getLegalizerInfo() const override { | 
|  | return Legalizer.get(); | 
|  | } | 
|  |  | 
|  | const RegisterBankInfo *getRegBankInfo() const override { | 
|  | return RegBankInfo.get(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  | #endif | 
|  |  | 
|  | const X86Subtarget * | 
|  | X86TargetMachine::getSubtargetImpl(const Function &F) const { | 
|  | Attribute CPUAttr = F.getFnAttribute("target-cpu"); | 
|  | Attribute FSAttr = F.getFnAttribute("target-features"); | 
|  |  | 
|  | StringRef CPU = !CPUAttr.hasAttribute(Attribute::None) | 
|  | ? CPUAttr.getValueAsString() | 
|  | : (StringRef)TargetCPU; | 
|  | StringRef FS = !FSAttr.hasAttribute(Attribute::None) | 
|  | ? FSAttr.getValueAsString() | 
|  | : (StringRef)TargetFS; | 
|  |  | 
|  | SmallString<512> Key; | 
|  | Key.reserve(CPU.size() + FS.size()); | 
|  | Key += CPU; | 
|  | Key += FS; | 
|  |  | 
|  | // FIXME: This is related to the code below to reset the target options, | 
|  | // we need to know whether or not the soft float flag is set on the | 
|  | // function before we can generate a subtarget. We also need to use | 
|  | // it as a key for the subtarget since that can be the only difference | 
|  | // between two functions. | 
|  | bool SoftFloat = | 
|  | F.getFnAttribute("use-soft-float").getValueAsString() == "true"; | 
|  | // If the soft float attribute is set on the function turn on the soft float | 
|  | // subtarget feature. | 
|  | if (SoftFloat) | 
|  | Key += FS.empty() ? "+soft-float" : ",+soft-float"; | 
|  |  | 
|  | FS = Key.substr(CPU.size()); | 
|  |  | 
|  | auto &I = SubtargetMap[Key]; | 
|  | if (!I) { | 
|  | // This needs to be done before we create a new subtarget since any | 
|  | // creation will depend on the TM and the code generation flags on the | 
|  | // function that reside in TargetOptions. | 
|  | resetTargetOptions(F); | 
|  | I = llvm::make_unique<X86Subtarget>(TargetTriple, CPU, FS, *this, | 
|  | Options.StackAlignmentOverride); | 
|  | #ifndef LLVM_BUILD_GLOBAL_ISEL | 
|  | GISelAccessor *GISel = new GISelAccessor(); | 
|  | #else | 
|  | X86GISelActualAccessor *GISel = new X86GISelActualAccessor(); | 
|  |  | 
|  | GISel->CallLoweringInfo.reset(new X86CallLowering(*I->getTargetLowering())); | 
|  | GISel->Legalizer.reset(new X86LegalizerInfo(*I)); | 
|  |  | 
|  | auto *RBI = new X86RegisterBankInfo(*I->getRegisterInfo()); | 
|  | GISel->RegBankInfo.reset(RBI); | 
|  | GISel->InstSelector.reset(new X86InstructionSelector(*I, *RBI)); | 
|  |  | 
|  | #endif | 
|  | I->setGISelAccessor(*GISel); | 
|  | } | 
|  | return I.get(); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Command line options for x86 | 
|  | //===----------------------------------------------------------------------===// | 
|  | static cl::opt<bool> | 
|  | UseVZeroUpper("x86-use-vzeroupper", cl::Hidden, | 
|  | cl::desc("Minimize AVX to SSE transition penalty"), | 
|  | cl::init(true)); | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // X86 TTI query. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | TargetIRAnalysis X86TargetMachine::getTargetIRAnalysis() { | 
|  | return TargetIRAnalysis([this](const Function &F) { | 
|  | return TargetTransformInfo(X86TTIImpl(this, F)); | 
|  | }); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Pass Pipeline Configuration | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// X86 Code Generator Pass Configuration Options. | 
|  | class X86PassConfig : public TargetPassConfig { | 
|  | public: | 
|  | X86PassConfig(X86TargetMachine *TM, PassManagerBase &PM) | 
|  | : TargetPassConfig(TM, PM) {} | 
|  |  | 
|  | X86TargetMachine &getX86TargetMachine() const { | 
|  | return getTM<X86TargetMachine>(); | 
|  | } | 
|  |  | 
|  | ScheduleDAGInstrs * | 
|  | createMachineScheduler(MachineSchedContext *C) const override { | 
|  | ScheduleDAGMILive *DAG = createGenericSchedLive(C); | 
|  | DAG->addMutation(createX86MacroFusionDAGMutation()); | 
|  | return DAG; | 
|  | } | 
|  |  | 
|  | void addIRPasses() override; | 
|  | bool addInstSelector() override; | 
|  | #ifdef LLVM_BUILD_GLOBAL_ISEL | 
|  | bool addIRTranslator() override; | 
|  | bool addLegalizeMachineIR() override; | 
|  | bool addRegBankSelect() override; | 
|  | bool addGlobalInstructionSelect() override; | 
|  | #endif | 
|  | bool addILPOpts() override; | 
|  | bool addPreISel() override; | 
|  | void addPreRegAlloc() override; | 
|  | void addPostRegAlloc() override; | 
|  | void addPreEmitPass() override; | 
|  | void addPreSched2() override; | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) { | 
|  | return new X86PassConfig(this, PM); | 
|  | } | 
|  |  | 
|  | void X86PassConfig::addIRPasses() { | 
|  | addPass(createAtomicExpandPass(&getX86TargetMachine())); | 
|  |  | 
|  | TargetPassConfig::addIRPasses(); | 
|  |  | 
|  | if (TM->getOptLevel() != CodeGenOpt::None) | 
|  | addPass(createInterleavedAccessPass(TM)); | 
|  | } | 
|  |  | 
|  | bool X86PassConfig::addInstSelector() { | 
|  | // Install an instruction selector. | 
|  | addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel())); | 
|  |  | 
|  | // For ELF, cleanup any local-dynamic TLS accesses. | 
|  | if (TM->getTargetTriple().isOSBinFormatELF() && | 
|  | getOptLevel() != CodeGenOpt::None) | 
|  | addPass(createCleanupLocalDynamicTLSPass()); | 
|  |  | 
|  | addPass(createX86GlobalBaseRegPass()); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | #ifdef LLVM_BUILD_GLOBAL_ISEL | 
|  | bool X86PassConfig::addIRTranslator() { | 
|  | addPass(new IRTranslator()); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool X86PassConfig::addLegalizeMachineIR() { | 
|  | addPass(new Legalizer()); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool X86PassConfig::addRegBankSelect() { | 
|  | addPass(new RegBankSelect()); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool X86PassConfig::addGlobalInstructionSelect() { | 
|  | addPass(new InstructionSelect()); | 
|  | return false; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | bool X86PassConfig::addILPOpts() { | 
|  | addPass(&EarlyIfConverterID); | 
|  | if (EnableMachineCombinerPass) | 
|  | addPass(&MachineCombinerID); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool X86PassConfig::addPreISel() { | 
|  | // Only add this pass for 32-bit x86 Windows. | 
|  | const Triple &TT = TM->getTargetTriple(); | 
|  | if (TT.isOSWindows() && TT.getArch() == Triple::x86) | 
|  | addPass(createX86WinEHStatePass()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void X86PassConfig::addPreRegAlloc() { | 
|  | if (getOptLevel() != CodeGenOpt::None) { | 
|  | addPass(createX86FixupSetCC()); | 
|  | addPass(createX86OptimizeLEAs()); | 
|  | addPass(createX86CallFrameOptimization()); | 
|  | } | 
|  |  | 
|  | addPass(createX86WinAllocaExpander()); | 
|  | } | 
|  |  | 
|  | void X86PassConfig::addPostRegAlloc() { | 
|  | addPass(createX86FloatingPointStackifierPass()); | 
|  | } | 
|  |  | 
|  | void X86PassConfig::addPreSched2() { addPass(createX86ExpandPseudoPass()); } | 
|  |  | 
|  | void X86PassConfig::addPreEmitPass() { | 
|  | if (getOptLevel() != CodeGenOpt::None) | 
|  | addPass(createExecutionDependencyFixPass(&X86::VR128XRegClass)); | 
|  |  | 
|  | if (UseVZeroUpper) | 
|  | addPass(createX86IssueVZeroUpperPass()); | 
|  |  | 
|  | if (getOptLevel() != CodeGenOpt::None) { | 
|  | addPass(createX86FixupBWInsts()); | 
|  | addPass(createX86PadShortFunctions()); | 
|  | addPass(createX86FixupLEAs()); | 
|  | addPass(createX86EvexToVexInsts()); | 
|  | } | 
|  | } |