|  | //===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the Expr constant evaluator. | 
|  | // | 
|  | // Constant expression evaluation produces four main results: | 
|  | // | 
|  | //  * A success/failure flag indicating whether constant folding was successful. | 
|  | //    This is the 'bool' return value used by most of the code in this file. A | 
|  | //    'false' return value indicates that constant folding has failed, and any | 
|  | //    appropriate diagnostic has already been produced. | 
|  | // | 
|  | //  * An evaluated result, valid only if constant folding has not failed. | 
|  | // | 
|  | //  * A flag indicating if evaluation encountered (unevaluated) side-effects. | 
|  | //    These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1), | 
|  | //    where it is possible to determine the evaluated result regardless. | 
|  | // | 
|  | //  * A set of notes indicating why the evaluation was not a constant expression | 
|  | //    (under the C++11 / C++1y rules only, at the moment), or, if folding failed | 
|  | //    too, why the expression could not be folded. | 
|  | // | 
|  | // If we are checking for a potential constant expression, failure to constant | 
|  | // fold a potential constant sub-expression will be indicated by a 'false' | 
|  | // return value (the expression could not be folded) and no diagnostic (the | 
|  | // expression is not necessarily non-constant). | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "clang/AST/APValue.h" | 
|  | #include "clang/AST/ASTContext.h" | 
|  | #include "clang/AST/ASTDiagnostic.h" | 
|  | #include "clang/AST/ASTLambda.h" | 
|  | #include "clang/AST/CharUnits.h" | 
|  | #include "clang/AST/Expr.h" | 
|  | #include "clang/AST/OSLog.h" | 
|  | #include "clang/AST/RecordLayout.h" | 
|  | #include "clang/AST/StmtVisitor.h" | 
|  | #include "clang/AST/TypeLoc.h" | 
|  | #include "clang/Basic/Builtins.h" | 
|  | #include "clang/Basic/FixedPoint.h" | 
|  | #include "clang/Basic/TargetInfo.h" | 
|  | #include "llvm/Support/SaveAndRestore.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <cstring> | 
|  | #include <functional> | 
|  |  | 
|  | #define DEBUG_TYPE "exprconstant" | 
|  |  | 
|  | using namespace clang; | 
|  | using llvm::APSInt; | 
|  | using llvm::APFloat; | 
|  |  | 
|  | static bool IsGlobalLValue(APValue::LValueBase B); | 
|  |  | 
|  | namespace { | 
|  | struct LValue; | 
|  | struct CallStackFrame; | 
|  | struct EvalInfo; | 
|  |  | 
|  | static QualType getType(APValue::LValueBase B) { | 
|  | if (!B) return QualType(); | 
|  | if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) { | 
|  | // FIXME: It's unclear where we're supposed to take the type from, and | 
|  | // this actually matters for arrays of unknown bound. Eg: | 
|  | // | 
|  | // extern int arr[]; void f() { extern int arr[3]; }; | 
|  | // constexpr int *p = &arr[1]; // valid? | 
|  | // | 
|  | // For now, we take the array bound from the most recent declaration. | 
|  | for (auto *Redecl = cast<ValueDecl>(D->getMostRecentDecl()); Redecl; | 
|  | Redecl = cast_or_null<ValueDecl>(Redecl->getPreviousDecl())) { | 
|  | QualType T = Redecl->getType(); | 
|  | if (!T->isIncompleteArrayType()) | 
|  | return T; | 
|  | } | 
|  | return D->getType(); | 
|  | } | 
|  |  | 
|  | const Expr *Base = B.get<const Expr*>(); | 
|  |  | 
|  | // For a materialized temporary, the type of the temporary we materialized | 
|  | // may not be the type of the expression. | 
|  | if (const MaterializeTemporaryExpr *MTE = | 
|  | dyn_cast<MaterializeTemporaryExpr>(Base)) { | 
|  | SmallVector<const Expr *, 2> CommaLHSs; | 
|  | SmallVector<SubobjectAdjustment, 2> Adjustments; | 
|  | const Expr *Temp = MTE->GetTemporaryExpr(); | 
|  | const Expr *Inner = Temp->skipRValueSubobjectAdjustments(CommaLHSs, | 
|  | Adjustments); | 
|  | // Keep any cv-qualifiers from the reference if we generated a temporary | 
|  | // for it directly. Otherwise use the type after adjustment. | 
|  | if (!Adjustments.empty()) | 
|  | return Inner->getType(); | 
|  | } | 
|  |  | 
|  | return Base->getType(); | 
|  | } | 
|  |  | 
|  | /// Get an LValue path entry, which is known to not be an array index, as a | 
|  | /// field or base class. | 
|  | static | 
|  | APValue::BaseOrMemberType getAsBaseOrMember(APValue::LValuePathEntry E) { | 
|  | APValue::BaseOrMemberType Value; | 
|  | Value.setFromOpaqueValue(E.BaseOrMember); | 
|  | return Value; | 
|  | } | 
|  |  | 
|  | /// Get an LValue path entry, which is known to not be an array index, as a | 
|  | /// field declaration. | 
|  | static const FieldDecl *getAsField(APValue::LValuePathEntry E) { | 
|  | return dyn_cast<FieldDecl>(getAsBaseOrMember(E).getPointer()); | 
|  | } | 
|  | /// Get an LValue path entry, which is known to not be an array index, as a | 
|  | /// base class declaration. | 
|  | static const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) { | 
|  | return dyn_cast<CXXRecordDecl>(getAsBaseOrMember(E).getPointer()); | 
|  | } | 
|  | /// Determine whether this LValue path entry for a base class names a virtual | 
|  | /// base class. | 
|  | static bool isVirtualBaseClass(APValue::LValuePathEntry E) { | 
|  | return getAsBaseOrMember(E).getInt(); | 
|  | } | 
|  |  | 
|  | /// Given a CallExpr, try to get the alloc_size attribute. May return null. | 
|  | static const AllocSizeAttr *getAllocSizeAttr(const CallExpr *CE) { | 
|  | const FunctionDecl *Callee = CE->getDirectCallee(); | 
|  | return Callee ? Callee->getAttr<AllocSizeAttr>() : nullptr; | 
|  | } | 
|  |  | 
|  | /// Attempts to unwrap a CallExpr (with an alloc_size attribute) from an Expr. | 
|  | /// This will look through a single cast. | 
|  | /// | 
|  | /// Returns null if we couldn't unwrap a function with alloc_size. | 
|  | static const CallExpr *tryUnwrapAllocSizeCall(const Expr *E) { | 
|  | if (!E->getType()->isPointerType()) | 
|  | return nullptr; | 
|  |  | 
|  | E = E->IgnoreParens(); | 
|  | // If we're doing a variable assignment from e.g. malloc(N), there will | 
|  | // probably be a cast of some kind. In exotic cases, we might also see a | 
|  | // top-level ExprWithCleanups. Ignore them either way. | 
|  | if (const auto *FE = dyn_cast<FullExpr>(E)) | 
|  | E = FE->getSubExpr()->IgnoreParens(); | 
|  |  | 
|  | if (const auto *Cast = dyn_cast<CastExpr>(E)) | 
|  | E = Cast->getSubExpr()->IgnoreParens(); | 
|  |  | 
|  | if (const auto *CE = dyn_cast<CallExpr>(E)) | 
|  | return getAllocSizeAttr(CE) ? CE : nullptr; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Determines whether or not the given Base contains a call to a function | 
|  | /// with the alloc_size attribute. | 
|  | static bool isBaseAnAllocSizeCall(APValue::LValueBase Base) { | 
|  | const auto *E = Base.dyn_cast<const Expr *>(); | 
|  | return E && E->getType()->isPointerType() && tryUnwrapAllocSizeCall(E); | 
|  | } | 
|  |  | 
|  | /// The bound to claim that an array of unknown bound has. | 
|  | /// The value in MostDerivedArraySize is undefined in this case. So, set it | 
|  | /// to an arbitrary value that's likely to loudly break things if it's used. | 
|  | static const uint64_t AssumedSizeForUnsizedArray = | 
|  | std::numeric_limits<uint64_t>::max() / 2; | 
|  |  | 
|  | /// Determines if an LValue with the given LValueBase will have an unsized | 
|  | /// array in its designator. | 
|  | /// Find the path length and type of the most-derived subobject in the given | 
|  | /// path, and find the size of the containing array, if any. | 
|  | static unsigned | 
|  | findMostDerivedSubobject(ASTContext &Ctx, APValue::LValueBase Base, | 
|  | ArrayRef<APValue::LValuePathEntry> Path, | 
|  | uint64_t &ArraySize, QualType &Type, bool &IsArray, | 
|  | bool &FirstEntryIsUnsizedArray) { | 
|  | // This only accepts LValueBases from APValues, and APValues don't support | 
|  | // arrays that lack size info. | 
|  | assert(!isBaseAnAllocSizeCall(Base) && | 
|  | "Unsized arrays shouldn't appear here"); | 
|  | unsigned MostDerivedLength = 0; | 
|  | Type = getType(Base); | 
|  |  | 
|  | for (unsigned I = 0, N = Path.size(); I != N; ++I) { | 
|  | if (Type->isArrayType()) { | 
|  | const ArrayType *AT = Ctx.getAsArrayType(Type); | 
|  | Type = AT->getElementType(); | 
|  | MostDerivedLength = I + 1; | 
|  | IsArray = true; | 
|  |  | 
|  | if (auto *CAT = dyn_cast<ConstantArrayType>(AT)) { | 
|  | ArraySize = CAT->getSize().getZExtValue(); | 
|  | } else { | 
|  | assert(I == 0 && "unexpected unsized array designator"); | 
|  | FirstEntryIsUnsizedArray = true; | 
|  | ArraySize = AssumedSizeForUnsizedArray; | 
|  | } | 
|  | } else if (Type->isAnyComplexType()) { | 
|  | const ComplexType *CT = Type->castAs<ComplexType>(); | 
|  | Type = CT->getElementType(); | 
|  | ArraySize = 2; | 
|  | MostDerivedLength = I + 1; | 
|  | IsArray = true; | 
|  | } else if (const FieldDecl *FD = getAsField(Path[I])) { | 
|  | Type = FD->getType(); | 
|  | ArraySize = 0; | 
|  | MostDerivedLength = I + 1; | 
|  | IsArray = false; | 
|  | } else { | 
|  | // Path[I] describes a base class. | 
|  | ArraySize = 0; | 
|  | IsArray = false; | 
|  | } | 
|  | } | 
|  | return MostDerivedLength; | 
|  | } | 
|  |  | 
|  | // The order of this enum is important for diagnostics. | 
|  | enum CheckSubobjectKind { | 
|  | CSK_Base, CSK_Derived, CSK_Field, CSK_ArrayToPointer, CSK_ArrayIndex, | 
|  | CSK_This, CSK_Real, CSK_Imag | 
|  | }; | 
|  |  | 
|  | /// A path from a glvalue to a subobject of that glvalue. | 
|  | struct SubobjectDesignator { | 
|  | /// True if the subobject was named in a manner not supported by C++11. Such | 
|  | /// lvalues can still be folded, but they are not core constant expressions | 
|  | /// and we cannot perform lvalue-to-rvalue conversions on them. | 
|  | unsigned Invalid : 1; | 
|  |  | 
|  | /// Is this a pointer one past the end of an object? | 
|  | unsigned IsOnePastTheEnd : 1; | 
|  |  | 
|  | /// Indicator of whether the first entry is an unsized array. | 
|  | unsigned FirstEntryIsAnUnsizedArray : 1; | 
|  |  | 
|  | /// Indicator of whether the most-derived object is an array element. | 
|  | unsigned MostDerivedIsArrayElement : 1; | 
|  |  | 
|  | /// The length of the path to the most-derived object of which this is a | 
|  | /// subobject. | 
|  | unsigned MostDerivedPathLength : 28; | 
|  |  | 
|  | /// The size of the array of which the most-derived object is an element. | 
|  | /// This will always be 0 if the most-derived object is not an array | 
|  | /// element. 0 is not an indicator of whether or not the most-derived object | 
|  | /// is an array, however, because 0-length arrays are allowed. | 
|  | /// | 
|  | /// If the current array is an unsized array, the value of this is | 
|  | /// undefined. | 
|  | uint64_t MostDerivedArraySize; | 
|  |  | 
|  | /// The type of the most derived object referred to by this address. | 
|  | QualType MostDerivedType; | 
|  |  | 
|  | typedef APValue::LValuePathEntry PathEntry; | 
|  |  | 
|  | /// The entries on the path from the glvalue to the designated subobject. | 
|  | SmallVector<PathEntry, 8> Entries; | 
|  |  | 
|  | SubobjectDesignator() : Invalid(true) {} | 
|  |  | 
|  | explicit SubobjectDesignator(QualType T) | 
|  | : Invalid(false), IsOnePastTheEnd(false), | 
|  | FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false), | 
|  | MostDerivedPathLength(0), MostDerivedArraySize(0), | 
|  | MostDerivedType(T) {} | 
|  |  | 
|  | SubobjectDesignator(ASTContext &Ctx, const APValue &V) | 
|  | : Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false), | 
|  | FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false), | 
|  | MostDerivedPathLength(0), MostDerivedArraySize(0) { | 
|  | assert(V.isLValue() && "Non-LValue used to make an LValue designator?"); | 
|  | if (!Invalid) { | 
|  | IsOnePastTheEnd = V.isLValueOnePastTheEnd(); | 
|  | ArrayRef<PathEntry> VEntries = V.getLValuePath(); | 
|  | Entries.insert(Entries.end(), VEntries.begin(), VEntries.end()); | 
|  | if (V.getLValueBase()) { | 
|  | bool IsArray = false; | 
|  | bool FirstIsUnsizedArray = false; | 
|  | MostDerivedPathLength = findMostDerivedSubobject( | 
|  | Ctx, V.getLValueBase(), V.getLValuePath(), MostDerivedArraySize, | 
|  | MostDerivedType, IsArray, FirstIsUnsizedArray); | 
|  | MostDerivedIsArrayElement = IsArray; | 
|  | FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void setInvalid() { | 
|  | Invalid = true; | 
|  | Entries.clear(); | 
|  | } | 
|  |  | 
|  | /// Determine whether the most derived subobject is an array without a | 
|  | /// known bound. | 
|  | bool isMostDerivedAnUnsizedArray() const { | 
|  | assert(!Invalid && "Calling this makes no sense on invalid designators"); | 
|  | return Entries.size() == 1 && FirstEntryIsAnUnsizedArray; | 
|  | } | 
|  |  | 
|  | /// Determine what the most derived array's size is. Results in an assertion | 
|  | /// failure if the most derived array lacks a size. | 
|  | uint64_t getMostDerivedArraySize() const { | 
|  | assert(!isMostDerivedAnUnsizedArray() && "Unsized array has no size"); | 
|  | return MostDerivedArraySize; | 
|  | } | 
|  |  | 
|  | /// Determine whether this is a one-past-the-end pointer. | 
|  | bool isOnePastTheEnd() const { | 
|  | assert(!Invalid); | 
|  | if (IsOnePastTheEnd) | 
|  | return true; | 
|  | if (!isMostDerivedAnUnsizedArray() && MostDerivedIsArrayElement && | 
|  | Entries[MostDerivedPathLength - 1].ArrayIndex == MostDerivedArraySize) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Get the range of valid index adjustments in the form | 
|  | ///   {maximum value that can be subtracted from this pointer, | 
|  | ///    maximum value that can be added to this pointer} | 
|  | std::pair<uint64_t, uint64_t> validIndexAdjustments() { | 
|  | if (Invalid || isMostDerivedAnUnsizedArray()) | 
|  | return {0, 0}; | 
|  |  | 
|  | // [expr.add]p4: For the purposes of these operators, a pointer to a | 
|  | // nonarray object behaves the same as a pointer to the first element of | 
|  | // an array of length one with the type of the object as its element type. | 
|  | bool IsArray = MostDerivedPathLength == Entries.size() && | 
|  | MostDerivedIsArrayElement; | 
|  | uint64_t ArrayIndex = | 
|  | IsArray ? Entries.back().ArrayIndex : (uint64_t)IsOnePastTheEnd; | 
|  | uint64_t ArraySize = | 
|  | IsArray ? getMostDerivedArraySize() : (uint64_t)1; | 
|  | return {ArrayIndex, ArraySize - ArrayIndex}; | 
|  | } | 
|  |  | 
|  | /// Check that this refers to a valid subobject. | 
|  | bool isValidSubobject() const { | 
|  | if (Invalid) | 
|  | return false; | 
|  | return !isOnePastTheEnd(); | 
|  | } | 
|  | /// Check that this refers to a valid subobject, and if not, produce a | 
|  | /// relevant diagnostic and set the designator as invalid. | 
|  | bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK); | 
|  |  | 
|  | /// Get the type of the designated object. | 
|  | QualType getType(ASTContext &Ctx) const { | 
|  | assert(!Invalid && "invalid designator has no subobject type"); | 
|  | return MostDerivedPathLength == Entries.size() | 
|  | ? MostDerivedType | 
|  | : Ctx.getRecordType(getAsBaseClass(Entries.back())); | 
|  | } | 
|  |  | 
|  | /// Update this designator to refer to the first element within this array. | 
|  | void addArrayUnchecked(const ConstantArrayType *CAT) { | 
|  | PathEntry Entry; | 
|  | Entry.ArrayIndex = 0; | 
|  | Entries.push_back(Entry); | 
|  |  | 
|  | // This is a most-derived object. | 
|  | MostDerivedType = CAT->getElementType(); | 
|  | MostDerivedIsArrayElement = true; | 
|  | MostDerivedArraySize = CAT->getSize().getZExtValue(); | 
|  | MostDerivedPathLength = Entries.size(); | 
|  | } | 
|  | /// Update this designator to refer to the first element within the array of | 
|  | /// elements of type T. This is an array of unknown size. | 
|  | void addUnsizedArrayUnchecked(QualType ElemTy) { | 
|  | PathEntry Entry; | 
|  | Entry.ArrayIndex = 0; | 
|  | Entries.push_back(Entry); | 
|  |  | 
|  | MostDerivedType = ElemTy; | 
|  | MostDerivedIsArrayElement = true; | 
|  | // The value in MostDerivedArraySize is undefined in this case. So, set it | 
|  | // to an arbitrary value that's likely to loudly break things if it's | 
|  | // used. | 
|  | MostDerivedArraySize = AssumedSizeForUnsizedArray; | 
|  | MostDerivedPathLength = Entries.size(); | 
|  | } | 
|  | /// Update this designator to refer to the given base or member of this | 
|  | /// object. | 
|  | void addDeclUnchecked(const Decl *D, bool Virtual = false) { | 
|  | PathEntry Entry; | 
|  | APValue::BaseOrMemberType Value(D, Virtual); | 
|  | Entry.BaseOrMember = Value.getOpaqueValue(); | 
|  | Entries.push_back(Entry); | 
|  |  | 
|  | // If this isn't a base class, it's a new most-derived object. | 
|  | if (const FieldDecl *FD = dyn_cast<FieldDecl>(D)) { | 
|  | MostDerivedType = FD->getType(); | 
|  | MostDerivedIsArrayElement = false; | 
|  | MostDerivedArraySize = 0; | 
|  | MostDerivedPathLength = Entries.size(); | 
|  | } | 
|  | } | 
|  | /// Update this designator to refer to the given complex component. | 
|  | void addComplexUnchecked(QualType EltTy, bool Imag) { | 
|  | PathEntry Entry; | 
|  | Entry.ArrayIndex = Imag; | 
|  | Entries.push_back(Entry); | 
|  |  | 
|  | // This is technically a most-derived object, though in practice this | 
|  | // is unlikely to matter. | 
|  | MostDerivedType = EltTy; | 
|  | MostDerivedIsArrayElement = true; | 
|  | MostDerivedArraySize = 2; | 
|  | MostDerivedPathLength = Entries.size(); | 
|  | } | 
|  | void diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info, const Expr *E); | 
|  | void diagnosePointerArithmetic(EvalInfo &Info, const Expr *E, | 
|  | const APSInt &N); | 
|  | /// Add N to the address of this subobject. | 
|  | void adjustIndex(EvalInfo &Info, const Expr *E, APSInt N) { | 
|  | if (Invalid || !N) return; | 
|  | uint64_t TruncatedN = N.extOrTrunc(64).getZExtValue(); | 
|  | if (isMostDerivedAnUnsizedArray()) { | 
|  | diagnoseUnsizedArrayPointerArithmetic(Info, E); | 
|  | // Can't verify -- trust that the user is doing the right thing (or if | 
|  | // not, trust that the caller will catch the bad behavior). | 
|  | // FIXME: Should we reject if this overflows, at least? | 
|  | Entries.back().ArrayIndex += TruncatedN; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // [expr.add]p4: For the purposes of these operators, a pointer to a | 
|  | // nonarray object behaves the same as a pointer to the first element of | 
|  | // an array of length one with the type of the object as its element type. | 
|  | bool IsArray = MostDerivedPathLength == Entries.size() && | 
|  | MostDerivedIsArrayElement; | 
|  | uint64_t ArrayIndex = | 
|  | IsArray ? Entries.back().ArrayIndex : (uint64_t)IsOnePastTheEnd; | 
|  | uint64_t ArraySize = | 
|  | IsArray ? getMostDerivedArraySize() : (uint64_t)1; | 
|  |  | 
|  | if (N < -(int64_t)ArrayIndex || N > ArraySize - ArrayIndex) { | 
|  | // Calculate the actual index in a wide enough type, so we can include | 
|  | // it in the note. | 
|  | N = N.extend(std::max<unsigned>(N.getBitWidth() + 1, 65)); | 
|  | (llvm::APInt&)N += ArrayIndex; | 
|  | assert(N.ugt(ArraySize) && "bounds check failed for in-bounds index"); | 
|  | diagnosePointerArithmetic(Info, E, N); | 
|  | setInvalid(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | ArrayIndex += TruncatedN; | 
|  | assert(ArrayIndex <= ArraySize && | 
|  | "bounds check succeeded for out-of-bounds index"); | 
|  |  | 
|  | if (IsArray) | 
|  | Entries.back().ArrayIndex = ArrayIndex; | 
|  | else | 
|  | IsOnePastTheEnd = (ArrayIndex != 0); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// A stack frame in the constexpr call stack. | 
|  | struct CallStackFrame { | 
|  | EvalInfo &Info; | 
|  |  | 
|  | /// Parent - The caller of this stack frame. | 
|  | CallStackFrame *Caller; | 
|  |  | 
|  | /// Callee - The function which was called. | 
|  | const FunctionDecl *Callee; | 
|  |  | 
|  | /// This - The binding for the this pointer in this call, if any. | 
|  | const LValue *This; | 
|  |  | 
|  | /// Arguments - Parameter bindings for this function call, indexed by | 
|  | /// parameters' function scope indices. | 
|  | APValue *Arguments; | 
|  |  | 
|  | // Note that we intentionally use std::map here so that references to | 
|  | // values are stable. | 
|  | typedef std::pair<const void *, unsigned> MapKeyTy; | 
|  | typedef std::map<MapKeyTy, APValue> MapTy; | 
|  | /// Temporaries - Temporary lvalues materialized within this stack frame. | 
|  | MapTy Temporaries; | 
|  |  | 
|  | /// CallLoc - The location of the call expression for this call. | 
|  | SourceLocation CallLoc; | 
|  |  | 
|  | /// Index - The call index of this call. | 
|  | unsigned Index; | 
|  |  | 
|  | /// The stack of integers for tracking version numbers for temporaries. | 
|  | SmallVector<unsigned, 2> TempVersionStack = {1}; | 
|  | unsigned CurTempVersion = TempVersionStack.back(); | 
|  |  | 
|  | unsigned getTempVersion() const { return TempVersionStack.back(); } | 
|  |  | 
|  | void pushTempVersion() { | 
|  | TempVersionStack.push_back(++CurTempVersion); | 
|  | } | 
|  |  | 
|  | void popTempVersion() { | 
|  | TempVersionStack.pop_back(); | 
|  | } | 
|  |  | 
|  | // FIXME: Adding this to every 'CallStackFrame' may have a nontrivial impact | 
|  | // on the overall stack usage of deeply-recursing constexpr evaluations. | 
|  | // (We should cache this map rather than recomputing it repeatedly.) | 
|  | // But let's try this and see how it goes; we can look into caching the map | 
|  | // as a later change. | 
|  |  | 
|  | /// LambdaCaptureFields - Mapping from captured variables/this to | 
|  | /// corresponding data members in the closure class. | 
|  | llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; | 
|  | FieldDecl *LambdaThisCaptureField; | 
|  |  | 
|  | CallStackFrame(EvalInfo &Info, SourceLocation CallLoc, | 
|  | const FunctionDecl *Callee, const LValue *This, | 
|  | APValue *Arguments); | 
|  | ~CallStackFrame(); | 
|  |  | 
|  | // Return the temporary for Key whose version number is Version. | 
|  | APValue *getTemporary(const void *Key, unsigned Version) { | 
|  | MapKeyTy KV(Key, Version); | 
|  | auto LB = Temporaries.lower_bound(KV); | 
|  | if (LB != Temporaries.end() && LB->first == KV) | 
|  | return &LB->second; | 
|  | // Pair (Key,Version) wasn't found in the map. Check that no elements | 
|  | // in the map have 'Key' as their key. | 
|  | assert((LB == Temporaries.end() || LB->first.first != Key) && | 
|  | (LB == Temporaries.begin() || std::prev(LB)->first.first != Key) && | 
|  | "Element with key 'Key' found in map"); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Return the current temporary for Key in the map. | 
|  | APValue *getCurrentTemporary(const void *Key) { | 
|  | auto UB = Temporaries.upper_bound(MapKeyTy(Key, UINT_MAX)); | 
|  | if (UB != Temporaries.begin() && std::prev(UB)->first.first == Key) | 
|  | return &std::prev(UB)->second; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Return the version number of the current temporary for Key. | 
|  | unsigned getCurrentTemporaryVersion(const void *Key) const { | 
|  | auto UB = Temporaries.upper_bound(MapKeyTy(Key, UINT_MAX)); | 
|  | if (UB != Temporaries.begin() && std::prev(UB)->first.first == Key) | 
|  | return std::prev(UB)->first.second; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | APValue &createTemporary(const void *Key, bool IsLifetimeExtended); | 
|  | }; | 
|  |  | 
|  | /// Temporarily override 'this'. | 
|  | class ThisOverrideRAII { | 
|  | public: | 
|  | ThisOverrideRAII(CallStackFrame &Frame, const LValue *NewThis, bool Enable) | 
|  | : Frame(Frame), OldThis(Frame.This) { | 
|  | if (Enable) | 
|  | Frame.This = NewThis; | 
|  | } | 
|  | ~ThisOverrideRAII() { | 
|  | Frame.This = OldThis; | 
|  | } | 
|  | private: | 
|  | CallStackFrame &Frame; | 
|  | const LValue *OldThis; | 
|  | }; | 
|  |  | 
|  | /// A partial diagnostic which we might know in advance that we are not going | 
|  | /// to emit. | 
|  | class OptionalDiagnostic { | 
|  | PartialDiagnostic *Diag; | 
|  |  | 
|  | public: | 
|  | explicit OptionalDiagnostic(PartialDiagnostic *Diag = nullptr) | 
|  | : Diag(Diag) {} | 
|  |  | 
|  | template<typename T> | 
|  | OptionalDiagnostic &operator<<(const T &v) { | 
|  | if (Diag) | 
|  | *Diag << v; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | OptionalDiagnostic &operator<<(const APSInt &I) { | 
|  | if (Diag) { | 
|  | SmallVector<char, 32> Buffer; | 
|  | I.toString(Buffer); | 
|  | *Diag << StringRef(Buffer.data(), Buffer.size()); | 
|  | } | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | OptionalDiagnostic &operator<<(const APFloat &F) { | 
|  | if (Diag) { | 
|  | // FIXME: Force the precision of the source value down so we don't | 
|  | // print digits which are usually useless (we don't really care here if | 
|  | // we truncate a digit by accident in edge cases).  Ideally, | 
|  | // APFloat::toString would automatically print the shortest | 
|  | // representation which rounds to the correct value, but it's a bit | 
|  | // tricky to implement. | 
|  | unsigned precision = | 
|  | llvm::APFloat::semanticsPrecision(F.getSemantics()); | 
|  | precision = (precision * 59 + 195) / 196; | 
|  | SmallVector<char, 32> Buffer; | 
|  | F.toString(Buffer, precision); | 
|  | *Diag << StringRef(Buffer.data(), Buffer.size()); | 
|  | } | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | OptionalDiagnostic &operator<<(const APFixedPoint &FX) { | 
|  | if (Diag) { | 
|  | SmallVector<char, 32> Buffer; | 
|  | FX.toString(Buffer); | 
|  | *Diag << StringRef(Buffer.data(), Buffer.size()); | 
|  | } | 
|  | return *this; | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// A cleanup, and a flag indicating whether it is lifetime-extended. | 
|  | class Cleanup { | 
|  | llvm::PointerIntPair<APValue*, 1, bool> Value; | 
|  |  | 
|  | public: | 
|  | Cleanup(APValue *Val, bool IsLifetimeExtended) | 
|  | : Value(Val, IsLifetimeExtended) {} | 
|  |  | 
|  | bool isLifetimeExtended() const { return Value.getInt(); } | 
|  | void endLifetime() { | 
|  | *Value.getPointer() = APValue(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// EvalInfo - This is a private struct used by the evaluator to capture | 
|  | /// information about a subexpression as it is folded.  It retains information | 
|  | /// about the AST context, but also maintains information about the folded | 
|  | /// expression. | 
|  | /// | 
|  | /// If an expression could be evaluated, it is still possible it is not a C | 
|  | /// "integer constant expression" or constant expression.  If not, this struct | 
|  | /// captures information about how and why not. | 
|  | /// | 
|  | /// One bit of information passed *into* the request for constant folding | 
|  | /// indicates whether the subexpression is "evaluated" or not according to C | 
|  | /// rules.  For example, the RHS of (0 && foo()) is not evaluated.  We can | 
|  | /// evaluate the expression regardless of what the RHS is, but C only allows | 
|  | /// certain things in certain situations. | 
|  | struct EvalInfo { | 
|  | ASTContext &Ctx; | 
|  |  | 
|  | /// EvalStatus - Contains information about the evaluation. | 
|  | Expr::EvalStatus &EvalStatus; | 
|  |  | 
|  | /// CurrentCall - The top of the constexpr call stack. | 
|  | CallStackFrame *CurrentCall; | 
|  |  | 
|  | /// CallStackDepth - The number of calls in the call stack right now. | 
|  | unsigned CallStackDepth; | 
|  |  | 
|  | /// NextCallIndex - The next call index to assign. | 
|  | unsigned NextCallIndex; | 
|  |  | 
|  | /// StepsLeft - The remaining number of evaluation steps we're permitted | 
|  | /// to perform. This is essentially a limit for the number of statements | 
|  | /// we will evaluate. | 
|  | unsigned StepsLeft; | 
|  |  | 
|  | /// BottomFrame - The frame in which evaluation started. This must be | 
|  | /// initialized after CurrentCall and CallStackDepth. | 
|  | CallStackFrame BottomFrame; | 
|  |  | 
|  | /// A stack of values whose lifetimes end at the end of some surrounding | 
|  | /// evaluation frame. | 
|  | llvm::SmallVector<Cleanup, 16> CleanupStack; | 
|  |  | 
|  | /// EvaluatingDecl - This is the declaration whose initializer is being | 
|  | /// evaluated, if any. | 
|  | APValue::LValueBase EvaluatingDecl; | 
|  |  | 
|  | /// EvaluatingDeclValue - This is the value being constructed for the | 
|  | /// declaration whose initializer is being evaluated, if any. | 
|  | APValue *EvaluatingDeclValue; | 
|  |  | 
|  | /// EvaluatingObject - Pair of the AST node that an lvalue represents and | 
|  | /// the call index that that lvalue was allocated in. | 
|  | typedef std::pair<APValue::LValueBase, std::pair<unsigned, unsigned>> | 
|  | EvaluatingObject; | 
|  |  | 
|  | /// EvaluatingConstructors - Set of objects that are currently being | 
|  | /// constructed. | 
|  | llvm::DenseSet<EvaluatingObject> EvaluatingConstructors; | 
|  |  | 
|  | struct EvaluatingConstructorRAII { | 
|  | EvalInfo &EI; | 
|  | EvaluatingObject Object; | 
|  | bool DidInsert; | 
|  | EvaluatingConstructorRAII(EvalInfo &EI, EvaluatingObject Object) | 
|  | : EI(EI), Object(Object) { | 
|  | DidInsert = EI.EvaluatingConstructors.insert(Object).second; | 
|  | } | 
|  | ~EvaluatingConstructorRAII() { | 
|  | if (DidInsert) EI.EvaluatingConstructors.erase(Object); | 
|  | } | 
|  | }; | 
|  |  | 
|  | bool isEvaluatingConstructor(APValue::LValueBase Decl, unsigned CallIndex, | 
|  | unsigned Version) { | 
|  | return EvaluatingConstructors.count( | 
|  | EvaluatingObject(Decl, {CallIndex, Version})); | 
|  | } | 
|  |  | 
|  | /// If we're currently speculatively evaluating, the outermost call stack | 
|  | /// depth at which we can mutate state, otherwise 0. | 
|  | unsigned SpeculativeEvaluationDepth = 0; | 
|  |  | 
|  | /// The current array initialization index, if we're performing array | 
|  | /// initialization. | 
|  | uint64_t ArrayInitIndex = -1; | 
|  |  | 
|  | /// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further | 
|  | /// notes attached to it will also be stored, otherwise they will not be. | 
|  | bool HasActiveDiagnostic; | 
|  |  | 
|  | /// Have we emitted a diagnostic explaining why we couldn't constant | 
|  | /// fold (not just why it's not strictly a constant expression)? | 
|  | bool HasFoldFailureDiagnostic; | 
|  |  | 
|  | /// Whether or not we're in a context where the front end requires a | 
|  | /// constant value. | 
|  | bool InConstantContext; | 
|  |  | 
|  | enum EvaluationMode { | 
|  | /// Evaluate as a constant expression. Stop if we find that the expression | 
|  | /// is not a constant expression. | 
|  | EM_ConstantExpression, | 
|  |  | 
|  | /// Evaluate as a potential constant expression. Keep going if we hit a | 
|  | /// construct that we can't evaluate yet (because we don't yet know the | 
|  | /// value of something) but stop if we hit something that could never be | 
|  | /// a constant expression. | 
|  | EM_PotentialConstantExpression, | 
|  |  | 
|  | /// Fold the expression to a constant. Stop if we hit a side-effect that | 
|  | /// we can't model. | 
|  | EM_ConstantFold, | 
|  |  | 
|  | /// Evaluate the expression looking for integer overflow and similar | 
|  | /// issues. Don't worry about side-effects, and try to visit all | 
|  | /// subexpressions. | 
|  | EM_EvaluateForOverflow, | 
|  |  | 
|  | /// Evaluate in any way we know how. Don't worry about side-effects that | 
|  | /// can't be modeled. | 
|  | EM_IgnoreSideEffects, | 
|  |  | 
|  | /// Evaluate as a constant expression. Stop if we find that the expression | 
|  | /// is not a constant expression. Some expressions can be retried in the | 
|  | /// optimizer if we don't constant fold them here, but in an unevaluated | 
|  | /// context we try to fold them immediately since the optimizer never | 
|  | /// gets a chance to look at it. | 
|  | EM_ConstantExpressionUnevaluated, | 
|  |  | 
|  | /// Evaluate as a potential constant expression. Keep going if we hit a | 
|  | /// construct that we can't evaluate yet (because we don't yet know the | 
|  | /// value of something) but stop if we hit something that could never be | 
|  | /// a constant expression. Some expressions can be retried in the | 
|  | /// optimizer if we don't constant fold them here, but in an unevaluated | 
|  | /// context we try to fold them immediately since the optimizer never | 
|  | /// gets a chance to look at it. | 
|  | EM_PotentialConstantExpressionUnevaluated, | 
|  | } EvalMode; | 
|  |  | 
|  | /// Are we checking whether the expression is a potential constant | 
|  | /// expression? | 
|  | bool checkingPotentialConstantExpression() const { | 
|  | return EvalMode == EM_PotentialConstantExpression || | 
|  | EvalMode == EM_PotentialConstantExpressionUnevaluated; | 
|  | } | 
|  |  | 
|  | /// Are we checking an expression for overflow? | 
|  | // FIXME: We should check for any kind of undefined or suspicious behavior | 
|  | // in such constructs, not just overflow. | 
|  | bool checkingForOverflow() { return EvalMode == EM_EvaluateForOverflow; } | 
|  |  | 
|  | EvalInfo(const ASTContext &C, Expr::EvalStatus &S, EvaluationMode Mode) | 
|  | : Ctx(const_cast<ASTContext &>(C)), EvalStatus(S), CurrentCall(nullptr), | 
|  | CallStackDepth(0), NextCallIndex(1), | 
|  | StepsLeft(getLangOpts().ConstexprStepLimit), | 
|  | BottomFrame(*this, SourceLocation(), nullptr, nullptr, nullptr), | 
|  | EvaluatingDecl((const ValueDecl *)nullptr), | 
|  | EvaluatingDeclValue(nullptr), HasActiveDiagnostic(false), | 
|  | HasFoldFailureDiagnostic(false), | 
|  | InConstantContext(false), EvalMode(Mode) {} | 
|  |  | 
|  | void setEvaluatingDecl(APValue::LValueBase Base, APValue &Value) { | 
|  | EvaluatingDecl = Base; | 
|  | EvaluatingDeclValue = &Value; | 
|  | EvaluatingConstructors.insert({Base, {0, 0}}); | 
|  | } | 
|  |  | 
|  | const LangOptions &getLangOpts() const { return Ctx.getLangOpts(); } | 
|  |  | 
|  | bool CheckCallLimit(SourceLocation Loc) { | 
|  | // Don't perform any constexpr calls (other than the call we're checking) | 
|  | // when checking a potential constant expression. | 
|  | if (checkingPotentialConstantExpression() && CallStackDepth > 1) | 
|  | return false; | 
|  | if (NextCallIndex == 0) { | 
|  | // NextCallIndex has wrapped around. | 
|  | FFDiag(Loc, diag::note_constexpr_call_limit_exceeded); | 
|  | return false; | 
|  | } | 
|  | if (CallStackDepth <= getLangOpts().ConstexprCallDepth) | 
|  | return true; | 
|  | FFDiag(Loc, diag::note_constexpr_depth_limit_exceeded) | 
|  | << getLangOpts().ConstexprCallDepth; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | std::pair<CallStackFrame *, unsigned> | 
|  | getCallFrameAndDepth(unsigned CallIndex) { | 
|  | assert(CallIndex && "no call index in getCallFrameAndDepth"); | 
|  | // We will eventually hit BottomFrame, which has Index 1, so Frame can't | 
|  | // be null in this loop. | 
|  | unsigned Depth = CallStackDepth; | 
|  | CallStackFrame *Frame = CurrentCall; | 
|  | while (Frame->Index > CallIndex) { | 
|  | Frame = Frame->Caller; | 
|  | --Depth; | 
|  | } | 
|  | if (Frame->Index == CallIndex) | 
|  | return {Frame, Depth}; | 
|  | return {nullptr, 0}; | 
|  | } | 
|  |  | 
|  | bool nextStep(const Stmt *S) { | 
|  | if (!StepsLeft) { | 
|  | FFDiag(S->getBeginLoc(), diag::note_constexpr_step_limit_exceeded); | 
|  | return false; | 
|  | } | 
|  | --StepsLeft; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | private: | 
|  | /// Add a diagnostic to the diagnostics list. | 
|  | PartialDiagnostic &addDiag(SourceLocation Loc, diag::kind DiagId) { | 
|  | PartialDiagnostic PD(DiagId, Ctx.getDiagAllocator()); | 
|  | EvalStatus.Diag->push_back(std::make_pair(Loc, PD)); | 
|  | return EvalStatus.Diag->back().second; | 
|  | } | 
|  |  | 
|  | /// Add notes containing a call stack to the current point of evaluation. | 
|  | void addCallStack(unsigned Limit); | 
|  |  | 
|  | private: | 
|  | OptionalDiagnostic Diag(SourceLocation Loc, diag::kind DiagId, | 
|  | unsigned ExtraNotes, bool IsCCEDiag) { | 
|  |  | 
|  | if (EvalStatus.Diag) { | 
|  | // If we have a prior diagnostic, it will be noting that the expression | 
|  | // isn't a constant expression. This diagnostic is more important, | 
|  | // unless we require this evaluation to produce a constant expression. | 
|  | // | 
|  | // FIXME: We might want to show both diagnostics to the user in | 
|  | // EM_ConstantFold mode. | 
|  | if (!EvalStatus.Diag->empty()) { | 
|  | switch (EvalMode) { | 
|  | case EM_ConstantFold: | 
|  | case EM_IgnoreSideEffects: | 
|  | case EM_EvaluateForOverflow: | 
|  | if (!HasFoldFailureDiagnostic) | 
|  | break; | 
|  | // We've already failed to fold something. Keep that diagnostic. | 
|  | LLVM_FALLTHROUGH; | 
|  | case EM_ConstantExpression: | 
|  | case EM_PotentialConstantExpression: | 
|  | case EM_ConstantExpressionUnevaluated: | 
|  | case EM_PotentialConstantExpressionUnevaluated: | 
|  | HasActiveDiagnostic = false; | 
|  | return OptionalDiagnostic(); | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned CallStackNotes = CallStackDepth - 1; | 
|  | unsigned Limit = Ctx.getDiagnostics().getConstexprBacktraceLimit(); | 
|  | if (Limit) | 
|  | CallStackNotes = std::min(CallStackNotes, Limit + 1); | 
|  | if (checkingPotentialConstantExpression()) | 
|  | CallStackNotes = 0; | 
|  |  | 
|  | HasActiveDiagnostic = true; | 
|  | HasFoldFailureDiagnostic = !IsCCEDiag; | 
|  | EvalStatus.Diag->clear(); | 
|  | EvalStatus.Diag->reserve(1 + ExtraNotes + CallStackNotes); | 
|  | addDiag(Loc, DiagId); | 
|  | if (!checkingPotentialConstantExpression()) | 
|  | addCallStack(Limit); | 
|  | return OptionalDiagnostic(&(*EvalStatus.Diag)[0].second); | 
|  | } | 
|  | HasActiveDiagnostic = false; | 
|  | return OptionalDiagnostic(); | 
|  | } | 
|  | public: | 
|  | // Diagnose that the evaluation could not be folded (FF => FoldFailure) | 
|  | OptionalDiagnostic | 
|  | FFDiag(SourceLocation Loc, | 
|  | diag::kind DiagId = diag::note_invalid_subexpr_in_const_expr, | 
|  | unsigned ExtraNotes = 0) { | 
|  | return Diag(Loc, DiagId, ExtraNotes, false); | 
|  | } | 
|  |  | 
|  | OptionalDiagnostic FFDiag(const Expr *E, diag::kind DiagId | 
|  | = diag::note_invalid_subexpr_in_const_expr, | 
|  | unsigned ExtraNotes = 0) { | 
|  | if (EvalStatus.Diag) | 
|  | return Diag(E->getExprLoc(), DiagId, ExtraNotes, /*IsCCEDiag*/false); | 
|  | HasActiveDiagnostic = false; | 
|  | return OptionalDiagnostic(); | 
|  | } | 
|  |  | 
|  | /// Diagnose that the evaluation does not produce a C++11 core constant | 
|  | /// expression. | 
|  | /// | 
|  | /// FIXME: Stop evaluating if we're in EM_ConstantExpression or | 
|  | /// EM_PotentialConstantExpression mode and we produce one of these. | 
|  | OptionalDiagnostic CCEDiag(SourceLocation Loc, diag::kind DiagId | 
|  | = diag::note_invalid_subexpr_in_const_expr, | 
|  | unsigned ExtraNotes = 0) { | 
|  | // Don't override a previous diagnostic. Don't bother collecting | 
|  | // diagnostics if we're evaluating for overflow. | 
|  | if (!EvalStatus.Diag || !EvalStatus.Diag->empty()) { | 
|  | HasActiveDiagnostic = false; | 
|  | return OptionalDiagnostic(); | 
|  | } | 
|  | return Diag(Loc, DiagId, ExtraNotes, true); | 
|  | } | 
|  | OptionalDiagnostic CCEDiag(const Expr *E, diag::kind DiagId | 
|  | = diag::note_invalid_subexpr_in_const_expr, | 
|  | unsigned ExtraNotes = 0) { | 
|  | return CCEDiag(E->getExprLoc(), DiagId, ExtraNotes); | 
|  | } | 
|  | /// Add a note to a prior diagnostic. | 
|  | OptionalDiagnostic Note(SourceLocation Loc, diag::kind DiagId) { | 
|  | if (!HasActiveDiagnostic) | 
|  | return OptionalDiagnostic(); | 
|  | return OptionalDiagnostic(&addDiag(Loc, DiagId)); | 
|  | } | 
|  |  | 
|  | /// Add a stack of notes to a prior diagnostic. | 
|  | void addNotes(ArrayRef<PartialDiagnosticAt> Diags) { | 
|  | if (HasActiveDiagnostic) { | 
|  | EvalStatus.Diag->insert(EvalStatus.Diag->end(), | 
|  | Diags.begin(), Diags.end()); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Should we continue evaluation after encountering a side-effect that we | 
|  | /// couldn't model? | 
|  | bool keepEvaluatingAfterSideEffect() { | 
|  | switch (EvalMode) { | 
|  | case EM_PotentialConstantExpression: | 
|  | case EM_PotentialConstantExpressionUnevaluated: | 
|  | case EM_EvaluateForOverflow: | 
|  | case EM_IgnoreSideEffects: | 
|  | return true; | 
|  |  | 
|  | case EM_ConstantExpression: | 
|  | case EM_ConstantExpressionUnevaluated: | 
|  | case EM_ConstantFold: | 
|  | return false; | 
|  | } | 
|  | llvm_unreachable("Missed EvalMode case"); | 
|  | } | 
|  |  | 
|  | /// Note that we have had a side-effect, and determine whether we should | 
|  | /// keep evaluating. | 
|  | bool noteSideEffect() { | 
|  | EvalStatus.HasSideEffects = true; | 
|  | return keepEvaluatingAfterSideEffect(); | 
|  | } | 
|  |  | 
|  | /// Should we continue evaluation after encountering undefined behavior? | 
|  | bool keepEvaluatingAfterUndefinedBehavior() { | 
|  | switch (EvalMode) { | 
|  | case EM_EvaluateForOverflow: | 
|  | case EM_IgnoreSideEffects: | 
|  | case EM_ConstantFold: | 
|  | return true; | 
|  |  | 
|  | case EM_PotentialConstantExpression: | 
|  | case EM_PotentialConstantExpressionUnevaluated: | 
|  | case EM_ConstantExpression: | 
|  | case EM_ConstantExpressionUnevaluated: | 
|  | return false; | 
|  | } | 
|  | llvm_unreachable("Missed EvalMode case"); | 
|  | } | 
|  |  | 
|  | /// Note that we hit something that was technically undefined behavior, but | 
|  | /// that we can evaluate past it (such as signed overflow or floating-point | 
|  | /// division by zero.) | 
|  | bool noteUndefinedBehavior() { | 
|  | EvalStatus.HasUndefinedBehavior = true; | 
|  | return keepEvaluatingAfterUndefinedBehavior(); | 
|  | } | 
|  |  | 
|  | /// Should we continue evaluation as much as possible after encountering a | 
|  | /// construct which can't be reduced to a value? | 
|  | bool keepEvaluatingAfterFailure() { | 
|  | if (!StepsLeft) | 
|  | return false; | 
|  |  | 
|  | switch (EvalMode) { | 
|  | case EM_PotentialConstantExpression: | 
|  | case EM_PotentialConstantExpressionUnevaluated: | 
|  | case EM_EvaluateForOverflow: | 
|  | return true; | 
|  |  | 
|  | case EM_ConstantExpression: | 
|  | case EM_ConstantExpressionUnevaluated: | 
|  | case EM_ConstantFold: | 
|  | case EM_IgnoreSideEffects: | 
|  | return false; | 
|  | } | 
|  | llvm_unreachable("Missed EvalMode case"); | 
|  | } | 
|  |  | 
|  | /// Notes that we failed to evaluate an expression that other expressions | 
|  | /// directly depend on, and determine if we should keep evaluating. This | 
|  | /// should only be called if we actually intend to keep evaluating. | 
|  | /// | 
|  | /// Call noteSideEffect() instead if we may be able to ignore the value that | 
|  | /// we failed to evaluate, e.g. if we failed to evaluate Foo() in: | 
|  | /// | 
|  | /// (Foo(), 1)      // use noteSideEffect | 
|  | /// (Foo() || true) // use noteSideEffect | 
|  | /// Foo() + 1       // use noteFailure | 
|  | LLVM_NODISCARD bool noteFailure() { | 
|  | // Failure when evaluating some expression often means there is some | 
|  | // subexpression whose evaluation was skipped. Therefore, (because we | 
|  | // don't track whether we skipped an expression when unwinding after an | 
|  | // evaluation failure) every evaluation failure that bubbles up from a | 
|  | // subexpression implies that a side-effect has potentially happened. We | 
|  | // skip setting the HasSideEffects flag to true until we decide to | 
|  | // continue evaluating after that point, which happens here. | 
|  | bool KeepGoing = keepEvaluatingAfterFailure(); | 
|  | EvalStatus.HasSideEffects |= KeepGoing; | 
|  | return KeepGoing; | 
|  | } | 
|  |  | 
|  | class ArrayInitLoopIndex { | 
|  | EvalInfo &Info; | 
|  | uint64_t OuterIndex; | 
|  |  | 
|  | public: | 
|  | ArrayInitLoopIndex(EvalInfo &Info) | 
|  | : Info(Info), OuterIndex(Info.ArrayInitIndex) { | 
|  | Info.ArrayInitIndex = 0; | 
|  | } | 
|  | ~ArrayInitLoopIndex() { Info.ArrayInitIndex = OuterIndex; } | 
|  |  | 
|  | operator uint64_t&() { return Info.ArrayInitIndex; } | 
|  | }; | 
|  | }; | 
|  |  | 
|  | /// Object used to treat all foldable expressions as constant expressions. | 
|  | struct FoldConstant { | 
|  | EvalInfo &Info; | 
|  | bool Enabled; | 
|  | bool HadNoPriorDiags; | 
|  | EvalInfo::EvaluationMode OldMode; | 
|  |  | 
|  | explicit FoldConstant(EvalInfo &Info, bool Enabled) | 
|  | : Info(Info), | 
|  | Enabled(Enabled), | 
|  | HadNoPriorDiags(Info.EvalStatus.Diag && | 
|  | Info.EvalStatus.Diag->empty() && | 
|  | !Info.EvalStatus.HasSideEffects), | 
|  | OldMode(Info.EvalMode) { | 
|  | if (Enabled && | 
|  | (Info.EvalMode == EvalInfo::EM_ConstantExpression || | 
|  | Info.EvalMode == EvalInfo::EM_ConstantExpressionUnevaluated)) | 
|  | Info.EvalMode = EvalInfo::EM_ConstantFold; | 
|  | } | 
|  | void keepDiagnostics() { Enabled = false; } | 
|  | ~FoldConstant() { | 
|  | if (Enabled && HadNoPriorDiags && !Info.EvalStatus.Diag->empty() && | 
|  | !Info.EvalStatus.HasSideEffects) | 
|  | Info.EvalStatus.Diag->clear(); | 
|  | Info.EvalMode = OldMode; | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// RAII object used to set the current evaluation mode to ignore | 
|  | /// side-effects. | 
|  | struct IgnoreSideEffectsRAII { | 
|  | EvalInfo &Info; | 
|  | EvalInfo::EvaluationMode OldMode; | 
|  | explicit IgnoreSideEffectsRAII(EvalInfo &Info) | 
|  | : Info(Info), OldMode(Info.EvalMode) { | 
|  | if (!Info.checkingPotentialConstantExpression()) | 
|  | Info.EvalMode = EvalInfo::EM_IgnoreSideEffects; | 
|  | } | 
|  |  | 
|  | ~IgnoreSideEffectsRAII() { Info.EvalMode = OldMode; } | 
|  | }; | 
|  |  | 
|  | /// RAII object used to optionally suppress diagnostics and side-effects from | 
|  | /// a speculative evaluation. | 
|  | class SpeculativeEvaluationRAII { | 
|  | EvalInfo *Info = nullptr; | 
|  | Expr::EvalStatus OldStatus; | 
|  | unsigned OldSpeculativeEvaluationDepth; | 
|  |  | 
|  | void moveFromAndCancel(SpeculativeEvaluationRAII &&Other) { | 
|  | Info = Other.Info; | 
|  | OldStatus = Other.OldStatus; | 
|  | OldSpeculativeEvaluationDepth = Other.OldSpeculativeEvaluationDepth; | 
|  | Other.Info = nullptr; | 
|  | } | 
|  |  | 
|  | void maybeRestoreState() { | 
|  | if (!Info) | 
|  | return; | 
|  |  | 
|  | Info->EvalStatus = OldStatus; | 
|  | Info->SpeculativeEvaluationDepth = OldSpeculativeEvaluationDepth; | 
|  | } | 
|  |  | 
|  | public: | 
|  | SpeculativeEvaluationRAII() = default; | 
|  |  | 
|  | SpeculativeEvaluationRAII( | 
|  | EvalInfo &Info, SmallVectorImpl<PartialDiagnosticAt> *NewDiag = nullptr) | 
|  | : Info(&Info), OldStatus(Info.EvalStatus), | 
|  | OldSpeculativeEvaluationDepth(Info.SpeculativeEvaluationDepth) { | 
|  | Info.EvalStatus.Diag = NewDiag; | 
|  | Info.SpeculativeEvaluationDepth = Info.CallStackDepth + 1; | 
|  | } | 
|  |  | 
|  | SpeculativeEvaluationRAII(const SpeculativeEvaluationRAII &Other) = delete; | 
|  | SpeculativeEvaluationRAII(SpeculativeEvaluationRAII &&Other) { | 
|  | moveFromAndCancel(std::move(Other)); | 
|  | } | 
|  |  | 
|  | SpeculativeEvaluationRAII &operator=(SpeculativeEvaluationRAII &&Other) { | 
|  | maybeRestoreState(); | 
|  | moveFromAndCancel(std::move(Other)); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | ~SpeculativeEvaluationRAII() { maybeRestoreState(); } | 
|  | }; | 
|  |  | 
|  | /// RAII object wrapping a full-expression or block scope, and handling | 
|  | /// the ending of the lifetime of temporaries created within it. | 
|  | template<bool IsFullExpression> | 
|  | class ScopeRAII { | 
|  | EvalInfo &Info; | 
|  | unsigned OldStackSize; | 
|  | public: | 
|  | ScopeRAII(EvalInfo &Info) | 
|  | : Info(Info), OldStackSize(Info.CleanupStack.size()) { | 
|  | // Push a new temporary version. This is needed to distinguish between | 
|  | // temporaries created in different iterations of a loop. | 
|  | Info.CurrentCall->pushTempVersion(); | 
|  | } | 
|  | ~ScopeRAII() { | 
|  | // Body moved to a static method to encourage the compiler to inline away | 
|  | // instances of this class. | 
|  | cleanup(Info, OldStackSize); | 
|  | Info.CurrentCall->popTempVersion(); | 
|  | } | 
|  | private: | 
|  | static void cleanup(EvalInfo &Info, unsigned OldStackSize) { | 
|  | unsigned NewEnd = OldStackSize; | 
|  | for (unsigned I = OldStackSize, N = Info.CleanupStack.size(); | 
|  | I != N; ++I) { | 
|  | if (IsFullExpression && Info.CleanupStack[I].isLifetimeExtended()) { | 
|  | // Full-expression cleanup of a lifetime-extended temporary: nothing | 
|  | // to do, just move this cleanup to the right place in the stack. | 
|  | std::swap(Info.CleanupStack[I], Info.CleanupStack[NewEnd]); | 
|  | ++NewEnd; | 
|  | } else { | 
|  | // End the lifetime of the object. | 
|  | Info.CleanupStack[I].endLifetime(); | 
|  | } | 
|  | } | 
|  | Info.CleanupStack.erase(Info.CleanupStack.begin() + NewEnd, | 
|  | Info.CleanupStack.end()); | 
|  | } | 
|  | }; | 
|  | typedef ScopeRAII<false> BlockScopeRAII; | 
|  | typedef ScopeRAII<true> FullExpressionRAII; | 
|  | } | 
|  |  | 
|  | bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E, | 
|  | CheckSubobjectKind CSK) { | 
|  | if (Invalid) | 
|  | return false; | 
|  | if (isOnePastTheEnd()) { | 
|  | Info.CCEDiag(E, diag::note_constexpr_past_end_subobject) | 
|  | << CSK; | 
|  | setInvalid(); | 
|  | return false; | 
|  | } | 
|  | // Note, we do not diagnose if isMostDerivedAnUnsizedArray(), because there | 
|  | // must actually be at least one array element; even a VLA cannot have a | 
|  | // bound of zero. And if our index is nonzero, we already had a CCEDiag. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void SubobjectDesignator::diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info, | 
|  | const Expr *E) { | 
|  | Info.CCEDiag(E, diag::note_constexpr_unsized_array_indexed); | 
|  | // Do not set the designator as invalid: we can represent this situation, | 
|  | // and correct handling of __builtin_object_size requires us to do so. | 
|  | } | 
|  |  | 
|  | void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info, | 
|  | const Expr *E, | 
|  | const APSInt &N) { | 
|  | // If we're complaining, we must be able to statically determine the size of | 
|  | // the most derived array. | 
|  | if (MostDerivedPathLength == Entries.size() && MostDerivedIsArrayElement) | 
|  | Info.CCEDiag(E, diag::note_constexpr_array_index) | 
|  | << N << /*array*/ 0 | 
|  | << static_cast<unsigned>(getMostDerivedArraySize()); | 
|  | else | 
|  | Info.CCEDiag(E, diag::note_constexpr_array_index) | 
|  | << N << /*non-array*/ 1; | 
|  | setInvalid(); | 
|  | } | 
|  |  | 
|  | CallStackFrame::CallStackFrame(EvalInfo &Info, SourceLocation CallLoc, | 
|  | const FunctionDecl *Callee, const LValue *This, | 
|  | APValue *Arguments) | 
|  | : Info(Info), Caller(Info.CurrentCall), Callee(Callee), This(This), | 
|  | Arguments(Arguments), CallLoc(CallLoc), Index(Info.NextCallIndex++) { | 
|  | Info.CurrentCall = this; | 
|  | ++Info.CallStackDepth; | 
|  | } | 
|  |  | 
|  | CallStackFrame::~CallStackFrame() { | 
|  | assert(Info.CurrentCall == this && "calls retired out of order"); | 
|  | --Info.CallStackDepth; | 
|  | Info.CurrentCall = Caller; | 
|  | } | 
|  |  | 
|  | APValue &CallStackFrame::createTemporary(const void *Key, | 
|  | bool IsLifetimeExtended) { | 
|  | unsigned Version = Info.CurrentCall->getTempVersion(); | 
|  | APValue &Result = Temporaries[MapKeyTy(Key, Version)]; | 
|  | assert(Result.isUninit() && "temporary created multiple times"); | 
|  | Info.CleanupStack.push_back(Cleanup(&Result, IsLifetimeExtended)); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | static void describeCall(CallStackFrame *Frame, raw_ostream &Out); | 
|  |  | 
|  | void EvalInfo::addCallStack(unsigned Limit) { | 
|  | // Determine which calls to skip, if any. | 
|  | unsigned ActiveCalls = CallStackDepth - 1; | 
|  | unsigned SkipStart = ActiveCalls, SkipEnd = SkipStart; | 
|  | if (Limit && Limit < ActiveCalls) { | 
|  | SkipStart = Limit / 2 + Limit % 2; | 
|  | SkipEnd = ActiveCalls - Limit / 2; | 
|  | } | 
|  |  | 
|  | // Walk the call stack and add the diagnostics. | 
|  | unsigned CallIdx = 0; | 
|  | for (CallStackFrame *Frame = CurrentCall; Frame != &BottomFrame; | 
|  | Frame = Frame->Caller, ++CallIdx) { | 
|  | // Skip this call? | 
|  | if (CallIdx >= SkipStart && CallIdx < SkipEnd) { | 
|  | if (CallIdx == SkipStart) { | 
|  | // Note that we're skipping calls. | 
|  | addDiag(Frame->CallLoc, diag::note_constexpr_calls_suppressed) | 
|  | << unsigned(ActiveCalls - Limit); | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Use a different note for an inheriting constructor, because from the | 
|  | // user's perspective it's not really a function at all. | 
|  | if (auto *CD = dyn_cast_or_null<CXXConstructorDecl>(Frame->Callee)) { | 
|  | if (CD->isInheritingConstructor()) { | 
|  | addDiag(Frame->CallLoc, diag::note_constexpr_inherited_ctor_call_here) | 
|  | << CD->getParent(); | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | SmallVector<char, 128> Buffer; | 
|  | llvm::raw_svector_ostream Out(Buffer); | 
|  | describeCall(Frame, Out); | 
|  | addDiag(Frame->CallLoc, diag::note_constexpr_call_here) << Out.str(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Kinds of access we can perform on an object, for diagnostics. | 
|  | enum AccessKinds { | 
|  | AK_Read, | 
|  | AK_Assign, | 
|  | AK_Increment, | 
|  | AK_Decrement | 
|  | }; | 
|  |  | 
|  | namespace { | 
|  | struct ComplexValue { | 
|  | private: | 
|  | bool IsInt; | 
|  |  | 
|  | public: | 
|  | APSInt IntReal, IntImag; | 
|  | APFloat FloatReal, FloatImag; | 
|  |  | 
|  | ComplexValue() : FloatReal(APFloat::Bogus()), FloatImag(APFloat::Bogus()) {} | 
|  |  | 
|  | void makeComplexFloat() { IsInt = false; } | 
|  | bool isComplexFloat() const { return !IsInt; } | 
|  | APFloat &getComplexFloatReal() { return FloatReal; } | 
|  | APFloat &getComplexFloatImag() { return FloatImag; } | 
|  |  | 
|  | void makeComplexInt() { IsInt = true; } | 
|  | bool isComplexInt() const { return IsInt; } | 
|  | APSInt &getComplexIntReal() { return IntReal; } | 
|  | APSInt &getComplexIntImag() { return IntImag; } | 
|  |  | 
|  | void moveInto(APValue &v) const { | 
|  | if (isComplexFloat()) | 
|  | v = APValue(FloatReal, FloatImag); | 
|  | else | 
|  | v = APValue(IntReal, IntImag); | 
|  | } | 
|  | void setFrom(const APValue &v) { | 
|  | assert(v.isComplexFloat() || v.isComplexInt()); | 
|  | if (v.isComplexFloat()) { | 
|  | makeComplexFloat(); | 
|  | FloatReal = v.getComplexFloatReal(); | 
|  | FloatImag = v.getComplexFloatImag(); | 
|  | } else { | 
|  | makeComplexInt(); | 
|  | IntReal = v.getComplexIntReal(); | 
|  | IntImag = v.getComplexIntImag(); | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct LValue { | 
|  | APValue::LValueBase Base; | 
|  | CharUnits Offset; | 
|  | SubobjectDesignator Designator; | 
|  | bool IsNullPtr : 1; | 
|  | bool InvalidBase : 1; | 
|  |  | 
|  | const APValue::LValueBase getLValueBase() const { return Base; } | 
|  | CharUnits &getLValueOffset() { return Offset; } | 
|  | const CharUnits &getLValueOffset() const { return Offset; } | 
|  | SubobjectDesignator &getLValueDesignator() { return Designator; } | 
|  | const SubobjectDesignator &getLValueDesignator() const { return Designator;} | 
|  | bool isNullPointer() const { return IsNullPtr;} | 
|  |  | 
|  | unsigned getLValueCallIndex() const { return Base.getCallIndex(); } | 
|  | unsigned getLValueVersion() const { return Base.getVersion(); } | 
|  |  | 
|  | void moveInto(APValue &V) const { | 
|  | if (Designator.Invalid) | 
|  | V = APValue(Base, Offset, APValue::NoLValuePath(), IsNullPtr); | 
|  | else { | 
|  | assert(!InvalidBase && "APValues can't handle invalid LValue bases"); | 
|  | V = APValue(Base, Offset, Designator.Entries, | 
|  | Designator.IsOnePastTheEnd, IsNullPtr); | 
|  | } | 
|  | } | 
|  | void setFrom(ASTContext &Ctx, const APValue &V) { | 
|  | assert(V.isLValue() && "Setting LValue from a non-LValue?"); | 
|  | Base = V.getLValueBase(); | 
|  | Offset = V.getLValueOffset(); | 
|  | InvalidBase = false; | 
|  | Designator = SubobjectDesignator(Ctx, V); | 
|  | IsNullPtr = V.isNullPointer(); | 
|  | } | 
|  |  | 
|  | void set(APValue::LValueBase B, bool BInvalid = false) { | 
|  | #ifndef NDEBUG | 
|  | // We only allow a few types of invalid bases. Enforce that here. | 
|  | if (BInvalid) { | 
|  | const auto *E = B.get<const Expr *>(); | 
|  | assert((isa<MemberExpr>(E) || tryUnwrapAllocSizeCall(E)) && | 
|  | "Unexpected type of invalid base"); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | Base = B; | 
|  | Offset = CharUnits::fromQuantity(0); | 
|  | InvalidBase = BInvalid; | 
|  | Designator = SubobjectDesignator(getType(B)); | 
|  | IsNullPtr = false; | 
|  | } | 
|  |  | 
|  | void setNull(QualType PointerTy, uint64_t TargetVal) { | 
|  | Base = (Expr *)nullptr; | 
|  | Offset = CharUnits::fromQuantity(TargetVal); | 
|  | InvalidBase = false; | 
|  | Designator = SubobjectDesignator(PointerTy->getPointeeType()); | 
|  | IsNullPtr = true; | 
|  | } | 
|  |  | 
|  | void setInvalid(APValue::LValueBase B, unsigned I = 0) { | 
|  | set(B, true); | 
|  | } | 
|  |  | 
|  | private: | 
|  | // Check that this LValue is not based on a null pointer. If it is, produce | 
|  | // a diagnostic and mark the designator as invalid. | 
|  | template <typename GenDiagType> | 
|  | bool checkNullPointerDiagnosingWith(const GenDiagType &GenDiag) { | 
|  | if (Designator.Invalid) | 
|  | return false; | 
|  | if (IsNullPtr) { | 
|  | GenDiag(); | 
|  | Designator.setInvalid(); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | public: | 
|  | bool checkNullPointer(EvalInfo &Info, const Expr *E, | 
|  | CheckSubobjectKind CSK) { | 
|  | return checkNullPointerDiagnosingWith([&Info, E, CSK] { | 
|  | Info.CCEDiag(E, diag::note_constexpr_null_subobject) << CSK; | 
|  | }); | 
|  | } | 
|  |  | 
|  | bool checkNullPointerForFoldAccess(EvalInfo &Info, const Expr *E, | 
|  | AccessKinds AK) { | 
|  | return checkNullPointerDiagnosingWith([&Info, E, AK] { | 
|  | Info.FFDiag(E, diag::note_constexpr_access_null) << AK; | 
|  | }); | 
|  | } | 
|  |  | 
|  | // Check this LValue refers to an object. If not, set the designator to be | 
|  | // invalid and emit a diagnostic. | 
|  | bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK) { | 
|  | return (CSK == CSK_ArrayToPointer || checkNullPointer(Info, E, CSK)) && | 
|  | Designator.checkSubobject(Info, E, CSK); | 
|  | } | 
|  |  | 
|  | void addDecl(EvalInfo &Info, const Expr *E, | 
|  | const Decl *D, bool Virtual = false) { | 
|  | if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field : CSK_Base)) | 
|  | Designator.addDeclUnchecked(D, Virtual); | 
|  | } | 
|  | void addUnsizedArray(EvalInfo &Info, const Expr *E, QualType ElemTy) { | 
|  | if (!Designator.Entries.empty()) { | 
|  | Info.CCEDiag(E, diag::note_constexpr_unsupported_unsized_array); | 
|  | Designator.setInvalid(); | 
|  | return; | 
|  | } | 
|  | if (checkSubobject(Info, E, CSK_ArrayToPointer)) { | 
|  | assert(getType(Base)->isPointerType() || getType(Base)->isArrayType()); | 
|  | Designator.FirstEntryIsAnUnsizedArray = true; | 
|  | Designator.addUnsizedArrayUnchecked(ElemTy); | 
|  | } | 
|  | } | 
|  | void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) { | 
|  | if (checkSubobject(Info, E, CSK_ArrayToPointer)) | 
|  | Designator.addArrayUnchecked(CAT); | 
|  | } | 
|  | void addComplex(EvalInfo &Info, const Expr *E, QualType EltTy, bool Imag) { | 
|  | if (checkSubobject(Info, E, Imag ? CSK_Imag : CSK_Real)) | 
|  | Designator.addComplexUnchecked(EltTy, Imag); | 
|  | } | 
|  | void clearIsNullPointer() { | 
|  | IsNullPtr = false; | 
|  | } | 
|  | void adjustOffsetAndIndex(EvalInfo &Info, const Expr *E, | 
|  | const APSInt &Index, CharUnits ElementSize) { | 
|  | // An index of 0 has no effect. (In C, adding 0 to a null pointer is UB, | 
|  | // but we're not required to diagnose it and it's valid in C++.) | 
|  | if (!Index) | 
|  | return; | 
|  |  | 
|  | // Compute the new offset in the appropriate width, wrapping at 64 bits. | 
|  | // FIXME: When compiling for a 32-bit target, we should use 32-bit | 
|  | // offsets. | 
|  | uint64_t Offset64 = Offset.getQuantity(); | 
|  | uint64_t ElemSize64 = ElementSize.getQuantity(); | 
|  | uint64_t Index64 = Index.extOrTrunc(64).getZExtValue(); | 
|  | Offset = CharUnits::fromQuantity(Offset64 + ElemSize64 * Index64); | 
|  |  | 
|  | if (checkNullPointer(Info, E, CSK_ArrayIndex)) | 
|  | Designator.adjustIndex(Info, E, Index); | 
|  | clearIsNullPointer(); | 
|  | } | 
|  | void adjustOffset(CharUnits N) { | 
|  | Offset += N; | 
|  | if (N.getQuantity()) | 
|  | clearIsNullPointer(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct MemberPtr { | 
|  | MemberPtr() {} | 
|  | explicit MemberPtr(const ValueDecl *Decl) : | 
|  | DeclAndIsDerivedMember(Decl, false), Path() {} | 
|  |  | 
|  | /// The member or (direct or indirect) field referred to by this member | 
|  | /// pointer, or 0 if this is a null member pointer. | 
|  | const ValueDecl *getDecl() const { | 
|  | return DeclAndIsDerivedMember.getPointer(); | 
|  | } | 
|  | /// Is this actually a member of some type derived from the relevant class? | 
|  | bool isDerivedMember() const { | 
|  | return DeclAndIsDerivedMember.getInt(); | 
|  | } | 
|  | /// Get the class which the declaration actually lives in. | 
|  | const CXXRecordDecl *getContainingRecord() const { | 
|  | return cast<CXXRecordDecl>( | 
|  | DeclAndIsDerivedMember.getPointer()->getDeclContext()); | 
|  | } | 
|  |  | 
|  | void moveInto(APValue &V) const { | 
|  | V = APValue(getDecl(), isDerivedMember(), Path); | 
|  | } | 
|  | void setFrom(const APValue &V) { | 
|  | assert(V.isMemberPointer()); | 
|  | DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl()); | 
|  | DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember()); | 
|  | Path.clear(); | 
|  | ArrayRef<const CXXRecordDecl*> P = V.getMemberPointerPath(); | 
|  | Path.insert(Path.end(), P.begin(), P.end()); | 
|  | } | 
|  |  | 
|  | /// DeclAndIsDerivedMember - The member declaration, and a flag indicating | 
|  | /// whether the member is a member of some class derived from the class type | 
|  | /// of the member pointer. | 
|  | llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember; | 
|  | /// Path - The path of base/derived classes from the member declaration's | 
|  | /// class (exclusive) to the class type of the member pointer (inclusive). | 
|  | SmallVector<const CXXRecordDecl*, 4> Path; | 
|  |  | 
|  | /// Perform a cast towards the class of the Decl (either up or down the | 
|  | /// hierarchy). | 
|  | bool castBack(const CXXRecordDecl *Class) { | 
|  | assert(!Path.empty()); | 
|  | const CXXRecordDecl *Expected; | 
|  | if (Path.size() >= 2) | 
|  | Expected = Path[Path.size() - 2]; | 
|  | else | 
|  | Expected = getContainingRecord(); | 
|  | if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) { | 
|  | // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*), | 
|  | // if B does not contain the original member and is not a base or | 
|  | // derived class of the class containing the original member, the result | 
|  | // of the cast is undefined. | 
|  | // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to | 
|  | // (D::*). We consider that to be a language defect. | 
|  | return false; | 
|  | } | 
|  | Path.pop_back(); | 
|  | return true; | 
|  | } | 
|  | /// Perform a base-to-derived member pointer cast. | 
|  | bool castToDerived(const CXXRecordDecl *Derived) { | 
|  | if (!getDecl()) | 
|  | return true; | 
|  | if (!isDerivedMember()) { | 
|  | Path.push_back(Derived); | 
|  | return true; | 
|  | } | 
|  | if (!castBack(Derived)) | 
|  | return false; | 
|  | if (Path.empty()) | 
|  | DeclAndIsDerivedMember.setInt(false); | 
|  | return true; | 
|  | } | 
|  | /// Perform a derived-to-base member pointer cast. | 
|  | bool castToBase(const CXXRecordDecl *Base) { | 
|  | if (!getDecl()) | 
|  | return true; | 
|  | if (Path.empty()) | 
|  | DeclAndIsDerivedMember.setInt(true); | 
|  | if (isDerivedMember()) { | 
|  | Path.push_back(Base); | 
|  | return true; | 
|  | } | 
|  | return castBack(Base); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// Compare two member pointers, which are assumed to be of the same type. | 
|  | static bool operator==(const MemberPtr &LHS, const MemberPtr &RHS) { | 
|  | if (!LHS.getDecl() || !RHS.getDecl()) | 
|  | return !LHS.getDecl() && !RHS.getDecl(); | 
|  | if (LHS.getDecl()->getCanonicalDecl() != RHS.getDecl()->getCanonicalDecl()) | 
|  | return false; | 
|  | return LHS.Path == RHS.Path; | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E); | 
|  | static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, | 
|  | const LValue &This, const Expr *E, | 
|  | bool AllowNonLiteralTypes = false); | 
|  | static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info, | 
|  | bool InvalidBaseOK = false); | 
|  | static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info, | 
|  | bool InvalidBaseOK = false); | 
|  | static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result, | 
|  | EvalInfo &Info); | 
|  | static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info); | 
|  | static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info); | 
|  | static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result, | 
|  | EvalInfo &Info); | 
|  | static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info); | 
|  | static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info); | 
|  | static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result, | 
|  | EvalInfo &Info); | 
|  | static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result); | 
|  |  | 
|  | /// Evaluate an integer or fixed point expression into an APResult. | 
|  | static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result, | 
|  | EvalInfo &Info); | 
|  |  | 
|  | /// Evaluate only a fixed point expression into an APResult. | 
|  | static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result, | 
|  | EvalInfo &Info); | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Misc utilities | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// A helper function to create a temporary and set an LValue. | 
|  | template <class KeyTy> | 
|  | static APValue &createTemporary(const KeyTy *Key, bool IsLifetimeExtended, | 
|  | LValue &LV, CallStackFrame &Frame) { | 
|  | LV.set({Key, Frame.Info.CurrentCall->Index, | 
|  | Frame.Info.CurrentCall->getTempVersion()}); | 
|  | return Frame.createTemporary(Key, IsLifetimeExtended); | 
|  | } | 
|  |  | 
|  | /// Negate an APSInt in place, converting it to a signed form if necessary, and | 
|  | /// preserving its value (by extending by up to one bit as needed). | 
|  | static void negateAsSigned(APSInt &Int) { | 
|  | if (Int.isUnsigned() || Int.isMinSignedValue()) { | 
|  | Int = Int.extend(Int.getBitWidth() + 1); | 
|  | Int.setIsSigned(true); | 
|  | } | 
|  | Int = -Int; | 
|  | } | 
|  |  | 
|  | /// Produce a string describing the given constexpr call. | 
|  | static void describeCall(CallStackFrame *Frame, raw_ostream &Out) { | 
|  | unsigned ArgIndex = 0; | 
|  | bool IsMemberCall = isa<CXXMethodDecl>(Frame->Callee) && | 
|  | !isa<CXXConstructorDecl>(Frame->Callee) && | 
|  | cast<CXXMethodDecl>(Frame->Callee)->isInstance(); | 
|  |  | 
|  | if (!IsMemberCall) | 
|  | Out << *Frame->Callee << '('; | 
|  |  | 
|  | if (Frame->This && IsMemberCall) { | 
|  | APValue Val; | 
|  | Frame->This->moveInto(Val); | 
|  | Val.printPretty(Out, Frame->Info.Ctx, | 
|  | Frame->This->Designator.MostDerivedType); | 
|  | // FIXME: Add parens around Val if needed. | 
|  | Out << "->" << *Frame->Callee << '('; | 
|  | IsMemberCall = false; | 
|  | } | 
|  |  | 
|  | for (FunctionDecl::param_const_iterator I = Frame->Callee->param_begin(), | 
|  | E = Frame->Callee->param_end(); I != E; ++I, ++ArgIndex) { | 
|  | if (ArgIndex > (unsigned)IsMemberCall) | 
|  | Out << ", "; | 
|  |  | 
|  | const ParmVarDecl *Param = *I; | 
|  | const APValue &Arg = Frame->Arguments[ArgIndex]; | 
|  | Arg.printPretty(Out, Frame->Info.Ctx, Param->getType()); | 
|  |  | 
|  | if (ArgIndex == 0 && IsMemberCall) | 
|  | Out << "->" << *Frame->Callee << '('; | 
|  | } | 
|  |  | 
|  | Out << ')'; | 
|  | } | 
|  |  | 
|  | /// Evaluate an expression to see if it had side-effects, and discard its | 
|  | /// result. | 
|  | /// \return \c true if the caller should keep evaluating. | 
|  | static bool EvaluateIgnoredValue(EvalInfo &Info, const Expr *E) { | 
|  | APValue Scratch; | 
|  | if (!Evaluate(Scratch, Info, E)) | 
|  | // We don't need the value, but we might have skipped a side effect here. | 
|  | return Info.noteSideEffect(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Should this call expression be treated as a string literal? | 
|  | static bool IsStringLiteralCall(const CallExpr *E) { | 
|  | unsigned Builtin = E->getBuiltinCallee(); | 
|  | return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString || | 
|  | Builtin == Builtin::BI__builtin___NSStringMakeConstantString); | 
|  | } | 
|  |  | 
|  | static bool IsGlobalLValue(APValue::LValueBase B) { | 
|  | // C++11 [expr.const]p3 An address constant expression is a prvalue core | 
|  | // constant expression of pointer type that evaluates to... | 
|  |  | 
|  | // ... a null pointer value, or a prvalue core constant expression of type | 
|  | // std::nullptr_t. | 
|  | if (!B) return true; | 
|  |  | 
|  | if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) { | 
|  | // ... the address of an object with static storage duration, | 
|  | if (const VarDecl *VD = dyn_cast<VarDecl>(D)) | 
|  | return VD->hasGlobalStorage(); | 
|  | // ... the address of a function, | 
|  | return isa<FunctionDecl>(D); | 
|  | } | 
|  |  | 
|  | const Expr *E = B.get<const Expr*>(); | 
|  | switch (E->getStmtClass()) { | 
|  | default: | 
|  | return false; | 
|  | case Expr::CompoundLiteralExprClass: { | 
|  | const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E); | 
|  | return CLE->isFileScope() && CLE->isLValue(); | 
|  | } | 
|  | case Expr::MaterializeTemporaryExprClass: | 
|  | // A materialized temporary might have been lifetime-extended to static | 
|  | // storage duration. | 
|  | return cast<MaterializeTemporaryExpr>(E)->getStorageDuration() == SD_Static; | 
|  | // A string literal has static storage duration. | 
|  | case Expr::StringLiteralClass: | 
|  | case Expr::PredefinedExprClass: | 
|  | case Expr::ObjCStringLiteralClass: | 
|  | case Expr::ObjCEncodeExprClass: | 
|  | case Expr::CXXTypeidExprClass: | 
|  | case Expr::CXXUuidofExprClass: | 
|  | return true; | 
|  | case Expr::ObjCBoxedExprClass: | 
|  | return cast<ObjCBoxedExpr>(E)->isExpressibleAsConstantInitializer(); | 
|  | case Expr::CallExprClass: | 
|  | return IsStringLiteralCall(cast<CallExpr>(E)); | 
|  | // For GCC compatibility, &&label has static storage duration. | 
|  | case Expr::AddrLabelExprClass: | 
|  | return true; | 
|  | // A Block literal expression may be used as the initialization value for | 
|  | // Block variables at global or local static scope. | 
|  | case Expr::BlockExprClass: | 
|  | return !cast<BlockExpr>(E)->getBlockDecl()->hasCaptures(); | 
|  | case Expr::ImplicitValueInitExprClass: | 
|  | // FIXME: | 
|  | // We can never form an lvalue with an implicit value initialization as its | 
|  | // base through expression evaluation, so these only appear in one case: the | 
|  | // implicit variable declaration we invent when checking whether a constexpr | 
|  | // constructor can produce a constant expression. We must assume that such | 
|  | // an expression might be a global lvalue. | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | static const ValueDecl *GetLValueBaseDecl(const LValue &LVal) { | 
|  | return LVal.Base.dyn_cast<const ValueDecl*>(); | 
|  | } | 
|  |  | 
|  | static bool IsLiteralLValue(const LValue &Value) { | 
|  | if (Value.getLValueCallIndex()) | 
|  | return false; | 
|  | const Expr *E = Value.Base.dyn_cast<const Expr*>(); | 
|  | return E && !isa<MaterializeTemporaryExpr>(E); | 
|  | } | 
|  |  | 
|  | static bool IsWeakLValue(const LValue &Value) { | 
|  | const ValueDecl *Decl = GetLValueBaseDecl(Value); | 
|  | return Decl && Decl->isWeak(); | 
|  | } | 
|  |  | 
|  | static bool isZeroSized(const LValue &Value) { | 
|  | const ValueDecl *Decl = GetLValueBaseDecl(Value); | 
|  | if (Decl && isa<VarDecl>(Decl)) { | 
|  | QualType Ty = Decl->getType(); | 
|  | if (Ty->isArrayType()) | 
|  | return Ty->isIncompleteType() || | 
|  | Decl->getASTContext().getTypeSize(Ty) == 0; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool HasSameBase(const LValue &A, const LValue &B) { | 
|  | if (!A.getLValueBase()) | 
|  | return !B.getLValueBase(); | 
|  | if (!B.getLValueBase()) | 
|  | return false; | 
|  |  | 
|  | if (A.getLValueBase().getOpaqueValue() != | 
|  | B.getLValueBase().getOpaqueValue()) { | 
|  | const Decl *ADecl = GetLValueBaseDecl(A); | 
|  | if (!ADecl) | 
|  | return false; | 
|  | const Decl *BDecl = GetLValueBaseDecl(B); | 
|  | if (!BDecl || ADecl->getCanonicalDecl() != BDecl->getCanonicalDecl()) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return IsGlobalLValue(A.getLValueBase()) || | 
|  | (A.getLValueCallIndex() == B.getLValueCallIndex() && | 
|  | A.getLValueVersion() == B.getLValueVersion()); | 
|  | } | 
|  |  | 
|  | static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) { | 
|  | assert(Base && "no location for a null lvalue"); | 
|  | const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>(); | 
|  | if (VD) | 
|  | Info.Note(VD->getLocation(), diag::note_declared_at); | 
|  | else | 
|  | Info.Note(Base.get<const Expr*>()->getExprLoc(), | 
|  | diag::note_constexpr_temporary_here); | 
|  | } | 
|  |  | 
|  | /// Check that this reference or pointer core constant expression is a valid | 
|  | /// value for an address or reference constant expression. Return true if we | 
|  | /// can fold this expression, whether or not it's a constant expression. | 
|  | static bool CheckLValueConstantExpression(EvalInfo &Info, SourceLocation Loc, | 
|  | QualType Type, const LValue &LVal, | 
|  | Expr::ConstExprUsage Usage) { | 
|  | bool IsReferenceType = Type->isReferenceType(); | 
|  |  | 
|  | APValue::LValueBase Base = LVal.getLValueBase(); | 
|  | const SubobjectDesignator &Designator = LVal.getLValueDesignator(); | 
|  |  | 
|  | // Check that the object is a global. Note that the fake 'this' object we | 
|  | // manufacture when checking potential constant expressions is conservatively | 
|  | // assumed to be global here. | 
|  | if (!IsGlobalLValue(Base)) { | 
|  | if (Info.getLangOpts().CPlusPlus11) { | 
|  | const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>(); | 
|  | Info.FFDiag(Loc, diag::note_constexpr_non_global, 1) | 
|  | << IsReferenceType << !Designator.Entries.empty() | 
|  | << !!VD << VD; | 
|  | NoteLValueLocation(Info, Base); | 
|  | } else { | 
|  | Info.FFDiag(Loc); | 
|  | } | 
|  | // Don't allow references to temporaries to escape. | 
|  | return false; | 
|  | } | 
|  | assert((Info.checkingPotentialConstantExpression() || | 
|  | LVal.getLValueCallIndex() == 0) && | 
|  | "have call index for global lvalue"); | 
|  |  | 
|  | if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>()) { | 
|  | if (const VarDecl *Var = dyn_cast<const VarDecl>(VD)) { | 
|  | // Check if this is a thread-local variable. | 
|  | if (Var->getTLSKind()) | 
|  | return false; | 
|  |  | 
|  | // A dllimport variable never acts like a constant. | 
|  | if (Usage == Expr::EvaluateForCodeGen && Var->hasAttr<DLLImportAttr>()) | 
|  | return false; | 
|  | } | 
|  | if (const auto *FD = dyn_cast<const FunctionDecl>(VD)) { | 
|  | // __declspec(dllimport) must be handled very carefully: | 
|  | // We must never initialize an expression with the thunk in C++. | 
|  | // Doing otherwise would allow the same id-expression to yield | 
|  | // different addresses for the same function in different translation | 
|  | // units.  However, this means that we must dynamically initialize the | 
|  | // expression with the contents of the import address table at runtime. | 
|  | // | 
|  | // The C language has no notion of ODR; furthermore, it has no notion of | 
|  | // dynamic initialization.  This means that we are permitted to | 
|  | // perform initialization with the address of the thunk. | 
|  | if (Info.getLangOpts().CPlusPlus && Usage == Expr::EvaluateForCodeGen && | 
|  | FD->hasAttr<DLLImportAttr>()) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Allow address constant expressions to be past-the-end pointers. This is | 
|  | // an extension: the standard requires them to point to an object. | 
|  | if (!IsReferenceType) | 
|  | return true; | 
|  |  | 
|  | // A reference constant expression must refer to an object. | 
|  | if (!Base) { | 
|  | // FIXME: diagnostic | 
|  | Info.CCEDiag(Loc); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Does this refer one past the end of some object? | 
|  | if (!Designator.Invalid && Designator.isOnePastTheEnd()) { | 
|  | const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>(); | 
|  | Info.FFDiag(Loc, diag::note_constexpr_past_end, 1) | 
|  | << !Designator.Entries.empty() << !!VD << VD; | 
|  | NoteLValueLocation(Info, Base); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Member pointers are constant expressions unless they point to a | 
|  | /// non-virtual dllimport member function. | 
|  | static bool CheckMemberPointerConstantExpression(EvalInfo &Info, | 
|  | SourceLocation Loc, | 
|  | QualType Type, | 
|  | const APValue &Value, | 
|  | Expr::ConstExprUsage Usage) { | 
|  | const ValueDecl *Member = Value.getMemberPointerDecl(); | 
|  | const auto *FD = dyn_cast_or_null<CXXMethodDecl>(Member); | 
|  | if (!FD) | 
|  | return true; | 
|  | return Usage == Expr::EvaluateForMangling || FD->isVirtual() || | 
|  | !FD->hasAttr<DLLImportAttr>(); | 
|  | } | 
|  |  | 
|  | /// Check that this core constant expression is of literal type, and if not, | 
|  | /// produce an appropriate diagnostic. | 
|  | static bool CheckLiteralType(EvalInfo &Info, const Expr *E, | 
|  | const LValue *This = nullptr) { | 
|  | if (!E->isRValue() || E->getType()->isLiteralType(Info.Ctx)) | 
|  | return true; | 
|  |  | 
|  | // C++1y: A constant initializer for an object o [...] may also invoke | 
|  | // constexpr constructors for o and its subobjects even if those objects | 
|  | // are of non-literal class types. | 
|  | // | 
|  | // C++11 missed this detail for aggregates, so classes like this: | 
|  | //   struct foo_t { union { int i; volatile int j; } u; }; | 
|  | // are not (obviously) initializable like so: | 
|  | //   __attribute__((__require_constant_initialization__)) | 
|  | //   static const foo_t x = {{0}}; | 
|  | // because "i" is a subobject with non-literal initialization (due to the | 
|  | // volatile member of the union). See: | 
|  | //   http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1677 | 
|  | // Therefore, we use the C++1y behavior. | 
|  | if (This && Info.EvaluatingDecl == This->getLValueBase()) | 
|  | return true; | 
|  |  | 
|  | // Prvalue constant expressions must be of literal types. | 
|  | if (Info.getLangOpts().CPlusPlus11) | 
|  | Info.FFDiag(E, diag::note_constexpr_nonliteral) | 
|  | << E->getType(); | 
|  | else | 
|  | Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Check that this core constant expression value is a valid value for a | 
|  | /// constant expression. If not, report an appropriate diagnostic. Does not | 
|  | /// check that the expression is of literal type. | 
|  | static bool | 
|  | CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc, QualType Type, | 
|  | const APValue &Value, | 
|  | Expr::ConstExprUsage Usage = Expr::EvaluateForCodeGen) { | 
|  | if (Value.isUninit()) { | 
|  | Info.FFDiag(DiagLoc, diag::note_constexpr_uninitialized) | 
|  | << true << Type; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // We allow _Atomic(T) to be initialized from anything that T can be | 
|  | // initialized from. | 
|  | if (const AtomicType *AT = Type->getAs<AtomicType>()) | 
|  | Type = AT->getValueType(); | 
|  |  | 
|  | // Core issue 1454: For a literal constant expression of array or class type, | 
|  | // each subobject of its value shall have been initialized by a constant | 
|  | // expression. | 
|  | if (Value.isArray()) { | 
|  | QualType EltTy = Type->castAsArrayTypeUnsafe()->getElementType(); | 
|  | for (unsigned I = 0, N = Value.getArrayInitializedElts(); I != N; ++I) { | 
|  | if (!CheckConstantExpression(Info, DiagLoc, EltTy, | 
|  | Value.getArrayInitializedElt(I), Usage)) | 
|  | return false; | 
|  | } | 
|  | if (!Value.hasArrayFiller()) | 
|  | return true; | 
|  | return CheckConstantExpression(Info, DiagLoc, EltTy, Value.getArrayFiller(), | 
|  | Usage); | 
|  | } | 
|  | if (Value.isUnion() && Value.getUnionField()) { | 
|  | return CheckConstantExpression(Info, DiagLoc, | 
|  | Value.getUnionField()->getType(), | 
|  | Value.getUnionValue(), Usage); | 
|  | } | 
|  | if (Value.isStruct()) { | 
|  | RecordDecl *RD = Type->castAs<RecordType>()->getDecl(); | 
|  | if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) { | 
|  | unsigned BaseIndex = 0; | 
|  | for (const CXXBaseSpecifier &BS : CD->bases()) { | 
|  | if (!CheckConstantExpression(Info, DiagLoc, BS.getType(), | 
|  | Value.getStructBase(BaseIndex), Usage)) | 
|  | return false; | 
|  | ++BaseIndex; | 
|  | } | 
|  | } | 
|  | for (const auto *I : RD->fields()) { | 
|  | if (I->isUnnamedBitfield()) | 
|  | continue; | 
|  |  | 
|  | if (!CheckConstantExpression(Info, DiagLoc, I->getType(), | 
|  | Value.getStructField(I->getFieldIndex()), | 
|  | Usage)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Value.isLValue()) { | 
|  | LValue LVal; | 
|  | LVal.setFrom(Info.Ctx, Value); | 
|  | return CheckLValueConstantExpression(Info, DiagLoc, Type, LVal, Usage); | 
|  | } | 
|  |  | 
|  | if (Value.isMemberPointer()) | 
|  | return CheckMemberPointerConstantExpression(Info, DiagLoc, Type, Value, Usage); | 
|  |  | 
|  | // Everything else is fine. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) { | 
|  | // A null base expression indicates a null pointer.  These are always | 
|  | // evaluatable, and they are false unless the offset is zero. | 
|  | if (!Value.getLValueBase()) { | 
|  | Result = !Value.getLValueOffset().isZero(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // We have a non-null base.  These are generally known to be true, but if it's | 
|  | // a weak declaration it can be null at runtime. | 
|  | Result = true; | 
|  | const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>(); | 
|  | return !Decl || !Decl->isWeak(); | 
|  | } | 
|  |  | 
|  | static bool HandleConversionToBool(const APValue &Val, bool &Result) { | 
|  | switch (Val.getKind()) { | 
|  | case APValue::Uninitialized: | 
|  | return false; | 
|  | case APValue::Int: | 
|  | Result = Val.getInt().getBoolValue(); | 
|  | return true; | 
|  | case APValue::FixedPoint: | 
|  | Result = Val.getFixedPoint().getBoolValue(); | 
|  | return true; | 
|  | case APValue::Float: | 
|  | Result = !Val.getFloat().isZero(); | 
|  | return true; | 
|  | case APValue::ComplexInt: | 
|  | Result = Val.getComplexIntReal().getBoolValue() || | 
|  | Val.getComplexIntImag().getBoolValue(); | 
|  | return true; | 
|  | case APValue::ComplexFloat: | 
|  | Result = !Val.getComplexFloatReal().isZero() || | 
|  | !Val.getComplexFloatImag().isZero(); | 
|  | return true; | 
|  | case APValue::LValue: | 
|  | return EvalPointerValueAsBool(Val, Result); | 
|  | case APValue::MemberPointer: | 
|  | Result = Val.getMemberPointerDecl(); | 
|  | return true; | 
|  | case APValue::Vector: | 
|  | case APValue::Array: | 
|  | case APValue::Struct: | 
|  | case APValue::Union: | 
|  | case APValue::AddrLabelDiff: | 
|  | return false; | 
|  | } | 
|  |  | 
|  | llvm_unreachable("unknown APValue kind"); | 
|  | } | 
|  |  | 
|  | static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result, | 
|  | EvalInfo &Info) { | 
|  | assert(E->isRValue() && "missing lvalue-to-rvalue conv in bool condition"); | 
|  | APValue Val; | 
|  | if (!Evaluate(Val, Info, E)) | 
|  | return false; | 
|  | return HandleConversionToBool(Val, Result); | 
|  | } | 
|  |  | 
|  | template<typename T> | 
|  | static bool HandleOverflow(EvalInfo &Info, const Expr *E, | 
|  | const T &SrcValue, QualType DestType) { | 
|  | Info.CCEDiag(E, diag::note_constexpr_overflow) | 
|  | << SrcValue << DestType; | 
|  | return Info.noteUndefinedBehavior(); | 
|  | } | 
|  |  | 
|  | static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E, | 
|  | QualType SrcType, const APFloat &Value, | 
|  | QualType DestType, APSInt &Result) { | 
|  | unsigned DestWidth = Info.Ctx.getIntWidth(DestType); | 
|  | // Determine whether we are converting to unsigned or signed. | 
|  | bool DestSigned = DestType->isSignedIntegerOrEnumerationType(); | 
|  |  | 
|  | Result = APSInt(DestWidth, !DestSigned); | 
|  | bool ignored; | 
|  | if (Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored) | 
|  | & APFloat::opInvalidOp) | 
|  | return HandleOverflow(Info, E, Value, DestType); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E, | 
|  | QualType SrcType, QualType DestType, | 
|  | APFloat &Result) { | 
|  | APFloat Value = Result; | 
|  | bool ignored; | 
|  | if (Result.convert(Info.Ctx.getFloatTypeSemantics(DestType), | 
|  | APFloat::rmNearestTiesToEven, &ignored) | 
|  | & APFloat::opOverflow) | 
|  | return HandleOverflow(Info, E, Value, DestType); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static APSInt HandleIntToIntCast(EvalInfo &Info, const Expr *E, | 
|  | QualType DestType, QualType SrcType, | 
|  | const APSInt &Value) { | 
|  | unsigned DestWidth = Info.Ctx.getIntWidth(DestType); | 
|  | // Figure out if this is a truncate, extend or noop cast. | 
|  | // If the input is signed, do a sign extend, noop, or truncate. | 
|  | APSInt Result = Value.extOrTrunc(DestWidth); | 
|  | Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType()); | 
|  | if (DestType->isBooleanType()) | 
|  | Result = Value.getBoolValue(); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E, | 
|  | QualType SrcType, const APSInt &Value, | 
|  | QualType DestType, APFloat &Result) { | 
|  | Result = APFloat(Info.Ctx.getFloatTypeSemantics(DestType), 1); | 
|  | if (Result.convertFromAPInt(Value, Value.isSigned(), | 
|  | APFloat::rmNearestTiesToEven) | 
|  | & APFloat::opOverflow) | 
|  | return HandleOverflow(Info, E, Value, DestType); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool truncateBitfieldValue(EvalInfo &Info, const Expr *E, | 
|  | APValue &Value, const FieldDecl *FD) { | 
|  | assert(FD->isBitField() && "truncateBitfieldValue on non-bitfield"); | 
|  |  | 
|  | if (!Value.isInt()) { | 
|  | // Trying to store a pointer-cast-to-integer into a bitfield. | 
|  | // FIXME: In this case, we should provide the diagnostic for casting | 
|  | // a pointer to an integer. | 
|  | assert(Value.isLValue() && "integral value neither int nor lvalue?"); | 
|  | Info.FFDiag(E); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | APSInt &Int = Value.getInt(); | 
|  | unsigned OldBitWidth = Int.getBitWidth(); | 
|  | unsigned NewBitWidth = FD->getBitWidthValue(Info.Ctx); | 
|  | if (NewBitWidth < OldBitWidth) | 
|  | Int = Int.trunc(NewBitWidth).extend(OldBitWidth); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool EvalAndBitcastToAPInt(EvalInfo &Info, const Expr *E, | 
|  | llvm::APInt &Res) { | 
|  | APValue SVal; | 
|  | if (!Evaluate(SVal, Info, E)) | 
|  | return false; | 
|  | if (SVal.isInt()) { | 
|  | Res = SVal.getInt(); | 
|  | return true; | 
|  | } | 
|  | if (SVal.isFloat()) { | 
|  | Res = SVal.getFloat().bitcastToAPInt(); | 
|  | return true; | 
|  | } | 
|  | if (SVal.isVector()) { | 
|  | QualType VecTy = E->getType(); | 
|  | unsigned VecSize = Info.Ctx.getTypeSize(VecTy); | 
|  | QualType EltTy = VecTy->castAs<VectorType>()->getElementType(); | 
|  | unsigned EltSize = Info.Ctx.getTypeSize(EltTy); | 
|  | bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian(); | 
|  | Res = llvm::APInt::getNullValue(VecSize); | 
|  | for (unsigned i = 0; i < SVal.getVectorLength(); i++) { | 
|  | APValue &Elt = SVal.getVectorElt(i); | 
|  | llvm::APInt EltAsInt; | 
|  | if (Elt.isInt()) { | 
|  | EltAsInt = Elt.getInt(); | 
|  | } else if (Elt.isFloat()) { | 
|  | EltAsInt = Elt.getFloat().bitcastToAPInt(); | 
|  | } else { | 
|  | // Don't try to handle vectors of anything other than int or float | 
|  | // (not sure if it's possible to hit this case). | 
|  | Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); | 
|  | return false; | 
|  | } | 
|  | unsigned BaseEltSize = EltAsInt.getBitWidth(); | 
|  | if (BigEndian) | 
|  | Res |= EltAsInt.zextOrTrunc(VecSize).rotr(i*EltSize+BaseEltSize); | 
|  | else | 
|  | Res |= EltAsInt.zextOrTrunc(VecSize).rotl(i*EltSize); | 
|  | } | 
|  | return true; | 
|  | } | 
|  | // Give up if the input isn't an int, float, or vector.  For example, we | 
|  | // reject "(v4i16)(intptr_t)&a". | 
|  | Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Perform the given integer operation, which is known to need at most BitWidth | 
|  | /// bits, and check for overflow in the original type (if that type was not an | 
|  | /// unsigned type). | 
|  | template<typename Operation> | 
|  | static bool CheckedIntArithmetic(EvalInfo &Info, const Expr *E, | 
|  | const APSInt &LHS, const APSInt &RHS, | 
|  | unsigned BitWidth, Operation Op, | 
|  | APSInt &Result) { | 
|  | if (LHS.isUnsigned()) { | 
|  | Result = Op(LHS, RHS); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | APSInt Value(Op(LHS.extend(BitWidth), RHS.extend(BitWidth)), false); | 
|  | Result = Value.trunc(LHS.getBitWidth()); | 
|  | if (Result.extend(BitWidth) != Value) { | 
|  | if (Info.checkingForOverflow()) | 
|  | Info.Ctx.getDiagnostics().Report(E->getExprLoc(), | 
|  | diag::warn_integer_constant_overflow) | 
|  | << Result.toString(10) << E->getType(); | 
|  | else | 
|  | return HandleOverflow(Info, E, Value, E->getType()); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Perform the given binary integer operation. | 
|  | static bool handleIntIntBinOp(EvalInfo &Info, const Expr *E, const APSInt &LHS, | 
|  | BinaryOperatorKind Opcode, APSInt RHS, | 
|  | APSInt &Result) { | 
|  | switch (Opcode) { | 
|  | default: | 
|  | Info.FFDiag(E); | 
|  | return false; | 
|  | case BO_Mul: | 
|  | return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() * 2, | 
|  | std::multiplies<APSInt>(), Result); | 
|  | case BO_Add: | 
|  | return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1, | 
|  | std::plus<APSInt>(), Result); | 
|  | case BO_Sub: | 
|  | return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1, | 
|  | std::minus<APSInt>(), Result); | 
|  | case BO_And: Result = LHS & RHS; return true; | 
|  | case BO_Xor: Result = LHS ^ RHS; return true; | 
|  | case BO_Or:  Result = LHS | RHS; return true; | 
|  | case BO_Div: | 
|  | case BO_Rem: | 
|  | if (RHS == 0) { | 
|  | Info.FFDiag(E, diag::note_expr_divide_by_zero); | 
|  | return false; | 
|  | } | 
|  | Result = (Opcode == BO_Rem ? LHS % RHS : LHS / RHS); | 
|  | // Check for overflow case: INT_MIN / -1 or INT_MIN % -1. APSInt supports | 
|  | // this operation and gives the two's complement result. | 
|  | if (RHS.isNegative() && RHS.isAllOnesValue() && | 
|  | LHS.isSigned() && LHS.isMinSignedValue()) | 
|  | return HandleOverflow(Info, E, -LHS.extend(LHS.getBitWidth() + 1), | 
|  | E->getType()); | 
|  | return true; | 
|  | case BO_Shl: { | 
|  | if (Info.getLangOpts().OpenCL) | 
|  | // OpenCL 6.3j: shift values are effectively % word size of LHS. | 
|  | RHS &= APSInt(llvm::APInt(RHS.getBitWidth(), | 
|  | static_cast<uint64_t>(LHS.getBitWidth() - 1)), | 
|  | RHS.isUnsigned()); | 
|  | else if (RHS.isSigned() && RHS.isNegative()) { | 
|  | // During constant-folding, a negative shift is an opposite shift. Such | 
|  | // a shift is not a constant expression. | 
|  | Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS; | 
|  | RHS = -RHS; | 
|  | goto shift_right; | 
|  | } | 
|  | shift_left: | 
|  | // C++11 [expr.shift]p1: Shift width must be less than the bit width of | 
|  | // the shifted type. | 
|  | unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1); | 
|  | if (SA != RHS) { | 
|  | Info.CCEDiag(E, diag::note_constexpr_large_shift) | 
|  | << RHS << E->getType() << LHS.getBitWidth(); | 
|  | } else if (LHS.isSigned()) { | 
|  | // C++11 [expr.shift]p2: A signed left shift must have a non-negative | 
|  | // operand, and must not overflow the corresponding unsigned type. | 
|  | if (LHS.isNegative()) | 
|  | Info.CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS; | 
|  | else if (LHS.countLeadingZeros() < SA) | 
|  | Info.CCEDiag(E, diag::note_constexpr_lshift_discards); | 
|  | } | 
|  | Result = LHS << SA; | 
|  | return true; | 
|  | } | 
|  | case BO_Shr: { | 
|  | if (Info.getLangOpts().OpenCL) | 
|  | // OpenCL 6.3j: shift values are effectively % word size of LHS. | 
|  | RHS &= APSInt(llvm::APInt(RHS.getBitWidth(), | 
|  | static_cast<uint64_t>(LHS.getBitWidth() - 1)), | 
|  | RHS.isUnsigned()); | 
|  | else if (RHS.isSigned() && RHS.isNegative()) { | 
|  | // During constant-folding, a negative shift is an opposite shift. Such a | 
|  | // shift is not a constant expression. | 
|  | Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS; | 
|  | RHS = -RHS; | 
|  | goto shift_left; | 
|  | } | 
|  | shift_right: | 
|  | // C++11 [expr.shift]p1: Shift width must be less than the bit width of the | 
|  | // shifted type. | 
|  | unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1); | 
|  | if (SA != RHS) | 
|  | Info.CCEDiag(E, diag::note_constexpr_large_shift) | 
|  | << RHS << E->getType() << LHS.getBitWidth(); | 
|  | Result = LHS >> SA; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case BO_LT: Result = LHS < RHS; return true; | 
|  | case BO_GT: Result = LHS > RHS; return true; | 
|  | case BO_LE: Result = LHS <= RHS; return true; | 
|  | case BO_GE: Result = LHS >= RHS; return true; | 
|  | case BO_EQ: Result = LHS == RHS; return true; | 
|  | case BO_NE: Result = LHS != RHS; return true; | 
|  | case BO_Cmp: | 
|  | llvm_unreachable("BO_Cmp should be handled elsewhere"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Perform the given binary floating-point operation, in-place, on LHS. | 
|  | static bool handleFloatFloatBinOp(EvalInfo &Info, const Expr *E, | 
|  | APFloat &LHS, BinaryOperatorKind Opcode, | 
|  | const APFloat &RHS) { | 
|  | switch (Opcode) { | 
|  | default: | 
|  | Info.FFDiag(E); | 
|  | return false; | 
|  | case BO_Mul: | 
|  | LHS.multiply(RHS, APFloat::rmNearestTiesToEven); | 
|  | break; | 
|  | case BO_Add: | 
|  | LHS.add(RHS, APFloat::rmNearestTiesToEven); | 
|  | break; | 
|  | case BO_Sub: | 
|  | LHS.subtract(RHS, APFloat::rmNearestTiesToEven); | 
|  | break; | 
|  | case BO_Div: | 
|  | LHS.divide(RHS, APFloat::rmNearestTiesToEven); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (LHS.isInfinity() || LHS.isNaN()) { | 
|  | Info.CCEDiag(E, diag::note_constexpr_float_arithmetic) << LHS.isNaN(); | 
|  | return Info.noteUndefinedBehavior(); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Cast an lvalue referring to a base subobject to a derived class, by | 
|  | /// truncating the lvalue's path to the given length. | 
|  | static bool CastToDerivedClass(EvalInfo &Info, const Expr *E, LValue &Result, | 
|  | const RecordDecl *TruncatedType, | 
|  | unsigned TruncatedElements) { | 
|  | SubobjectDesignator &D = Result.Designator; | 
|  |  | 
|  | // Check we actually point to a derived class object. | 
|  | if (TruncatedElements == D.Entries.size()) | 
|  | return true; | 
|  | assert(TruncatedElements >= D.MostDerivedPathLength && | 
|  | "not casting to a derived class"); | 
|  | if (!Result.checkSubobject(Info, E, CSK_Derived)) | 
|  | return false; | 
|  |  | 
|  | // Truncate the path to the subobject, and remove any derived-to-base offsets. | 
|  | const RecordDecl *RD = TruncatedType; | 
|  | for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I) { | 
|  | if (RD->isInvalidDecl()) return false; | 
|  | const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); | 
|  | const CXXRecordDecl *Base = getAsBaseClass(D.Entries[I]); | 
|  | if (isVirtualBaseClass(D.Entries[I])) | 
|  | Result.Offset -= Layout.getVBaseClassOffset(Base); | 
|  | else | 
|  | Result.Offset -= Layout.getBaseClassOffset(Base); | 
|  | RD = Base; | 
|  | } | 
|  | D.Entries.resize(TruncatedElements); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool HandleLValueDirectBase(EvalInfo &Info, const Expr *E, LValue &Obj, | 
|  | const CXXRecordDecl *Derived, | 
|  | const CXXRecordDecl *Base, | 
|  | const ASTRecordLayout *RL = nullptr) { | 
|  | if (!RL) { | 
|  | if (Derived->isInvalidDecl()) return false; | 
|  | RL = &Info.Ctx.getASTRecordLayout(Derived); | 
|  | } | 
|  |  | 
|  | Obj.getLValueOffset() += RL->getBaseClassOffset(Base); | 
|  | Obj.addDecl(Info, E, Base, /*Virtual*/ false); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool HandleLValueBase(EvalInfo &Info, const Expr *E, LValue &Obj, | 
|  | const CXXRecordDecl *DerivedDecl, | 
|  | const CXXBaseSpecifier *Base) { | 
|  | const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl(); | 
|  |  | 
|  | if (!Base->isVirtual()) | 
|  | return HandleLValueDirectBase(Info, E, Obj, DerivedDecl, BaseDecl); | 
|  |  | 
|  | SubobjectDesignator &D = Obj.Designator; | 
|  | if (D.Invalid) | 
|  | return false; | 
|  |  | 
|  | // Extract most-derived object and corresponding type. | 
|  | DerivedDecl = D.MostDerivedType->getAsCXXRecordDecl(); | 
|  | if (!CastToDerivedClass(Info, E, Obj, DerivedDecl, D.MostDerivedPathLength)) | 
|  | return false; | 
|  |  | 
|  | // Find the virtual base class. | 
|  | if (DerivedDecl->isInvalidDecl()) return false; | 
|  | const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl); | 
|  | Obj.getLValueOffset() += Layout.getVBaseClassOffset(BaseDecl); | 
|  | Obj.addDecl(Info, E, BaseDecl, /*Virtual*/ true); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool HandleLValueBasePath(EvalInfo &Info, const CastExpr *E, | 
|  | QualType Type, LValue &Result) { | 
|  | for (CastExpr::path_const_iterator PathI = E->path_begin(), | 
|  | PathE = E->path_end(); | 
|  | PathI != PathE; ++PathI) { | 
|  | if (!HandleLValueBase(Info, E, Result, Type->getAsCXXRecordDecl(), | 
|  | *PathI)) | 
|  | return false; | 
|  | Type = (*PathI)->getType(); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Update LVal to refer to the given field, which must be a member of the type | 
|  | /// currently described by LVal. | 
|  | static bool HandleLValueMember(EvalInfo &Info, const Expr *E, LValue &LVal, | 
|  | const FieldDecl *FD, | 
|  | const ASTRecordLayout *RL = nullptr) { | 
|  | if (!RL) { | 
|  | if (FD->getParent()->isInvalidDecl()) return false; | 
|  | RL = &Info.Ctx.getASTRecordLayout(FD->getParent()); | 
|  | } | 
|  |  | 
|  | unsigned I = FD->getFieldIndex(); | 
|  | LVal.adjustOffset(Info.Ctx.toCharUnitsFromBits(RL->getFieldOffset(I))); | 
|  | LVal.addDecl(Info, E, FD); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Update LVal to refer to the given indirect field. | 
|  | static bool HandleLValueIndirectMember(EvalInfo &Info, const Expr *E, | 
|  | LValue &LVal, | 
|  | const IndirectFieldDecl *IFD) { | 
|  | for (const auto *C : IFD->chain()) | 
|  | if (!HandleLValueMember(Info, E, LVal, cast<FieldDecl>(C))) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Get the size of the given type in char units. | 
|  | static bool HandleSizeof(EvalInfo &Info, SourceLocation Loc, | 
|  | QualType Type, CharUnits &Size) { | 
|  | // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc | 
|  | // extension. | 
|  | if (Type->isVoidType() || Type->isFunctionType()) { | 
|  | Size = CharUnits::One(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (Type->isDependentType()) { | 
|  | Info.FFDiag(Loc); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!Type->isConstantSizeType()) { | 
|  | // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2. | 
|  | // FIXME: Better diagnostic. | 
|  | Info.FFDiag(Loc); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Size = Info.Ctx.getTypeSizeInChars(Type); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Update a pointer value to model pointer arithmetic. | 
|  | /// \param Info - Information about the ongoing evaluation. | 
|  | /// \param E - The expression being evaluated, for diagnostic purposes. | 
|  | /// \param LVal - The pointer value to be updated. | 
|  | /// \param EltTy - The pointee type represented by LVal. | 
|  | /// \param Adjustment - The adjustment, in objects of type EltTy, to add. | 
|  | static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E, | 
|  | LValue &LVal, QualType EltTy, | 
|  | APSInt Adjustment) { | 
|  | CharUnits SizeOfPointee; | 
|  | if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfPointee)) | 
|  | return false; | 
|  |  | 
|  | LVal.adjustOffsetAndIndex(Info, E, Adjustment, SizeOfPointee); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E, | 
|  | LValue &LVal, QualType EltTy, | 
|  | int64_t Adjustment) { | 
|  | return HandleLValueArrayAdjustment(Info, E, LVal, EltTy, | 
|  | APSInt::get(Adjustment)); | 
|  | } | 
|  |  | 
|  | /// Update an lvalue to refer to a component of a complex number. | 
|  | /// \param Info - Information about the ongoing evaluation. | 
|  | /// \param LVal - The lvalue to be updated. | 
|  | /// \param EltTy - The complex number's component type. | 
|  | /// \param Imag - False for the real component, true for the imaginary. | 
|  | static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E, | 
|  | LValue &LVal, QualType EltTy, | 
|  | bool Imag) { | 
|  | if (Imag) { | 
|  | CharUnits SizeOfComponent; | 
|  | if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfComponent)) | 
|  | return false; | 
|  | LVal.Offset += SizeOfComponent; | 
|  | } | 
|  | LVal.addComplex(Info, E, EltTy, Imag); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool handleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv, | 
|  | QualType Type, const LValue &LVal, | 
|  | APValue &RVal); | 
|  |  | 
|  | /// Try to evaluate the initializer for a variable declaration. | 
|  | /// | 
|  | /// \param Info   Information about the ongoing evaluation. | 
|  | /// \param E      An expression to be used when printing diagnostics. | 
|  | /// \param VD     The variable whose initializer should be obtained. | 
|  | /// \param Frame  The frame in which the variable was created. Must be null | 
|  | ///               if this variable is not local to the evaluation. | 
|  | /// \param Result Filled in with a pointer to the value of the variable. | 
|  | static bool evaluateVarDeclInit(EvalInfo &Info, const Expr *E, | 
|  | const VarDecl *VD, CallStackFrame *Frame, | 
|  | APValue *&Result, const LValue *LVal) { | 
|  |  | 
|  | // If this is a parameter to an active constexpr function call, perform | 
|  | // argument substitution. | 
|  | if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) { | 
|  | // Assume arguments of a potential constant expression are unknown | 
|  | // constant expressions. | 
|  | if (Info.checkingPotentialConstantExpression()) | 
|  | return false; | 
|  | if (!Frame || !Frame->Arguments) { | 
|  | Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); | 
|  | return false; | 
|  | } | 
|  | Result = &Frame->Arguments[PVD->getFunctionScopeIndex()]; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If this is a local variable, dig out its value. | 
|  | if (Frame) { | 
|  | Result = LVal ? Frame->getTemporary(VD, LVal->getLValueVersion()) | 
|  | : Frame->getCurrentTemporary(VD); | 
|  | if (!Result) { | 
|  | // Assume variables referenced within a lambda's call operator that were | 
|  | // not declared within the call operator are captures and during checking | 
|  | // of a potential constant expression, assume they are unknown constant | 
|  | // expressions. | 
|  | assert(isLambdaCallOperator(Frame->Callee) && | 
|  | (VD->getDeclContext() != Frame->Callee || VD->isInitCapture()) && | 
|  | "missing value for local variable"); | 
|  | if (Info.checkingPotentialConstantExpression()) | 
|  | return false; | 
|  | // FIXME: implement capture evaluation during constant expr evaluation. | 
|  | Info.FFDiag(E->getBeginLoc(), | 
|  | diag::note_unimplemented_constexpr_lambda_feature_ast) | 
|  | << "captures not currently allowed"; | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Dig out the initializer, and use the declaration which it's attached to. | 
|  | const Expr *Init = VD->getAnyInitializer(VD); | 
|  | if (!Init || Init->isValueDependent()) { | 
|  | // If we're checking a potential constant expression, the variable could be | 
|  | // initialized later. | 
|  | if (!Info.checkingPotentialConstantExpression()) | 
|  | Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If we're currently evaluating the initializer of this declaration, use that | 
|  | // in-flight value. | 
|  | if (Info.EvaluatingDecl.dyn_cast<const ValueDecl*>() == VD) { | 
|  | Result = Info.EvaluatingDeclValue; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Never evaluate the initializer of a weak variable. We can't be sure that | 
|  | // this is the definition which will be used. | 
|  | if (VD->isWeak()) { | 
|  | Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Check that we can fold the initializer. In C++, we will have already done | 
|  | // this in the cases where it matters for conformance. | 
|  | SmallVector<PartialDiagnosticAt, 8> Notes; | 
|  | if (!VD->evaluateValue(Notes)) { | 
|  | Info.FFDiag(E, diag::note_constexpr_var_init_non_constant, | 
|  | Notes.size() + 1) << VD; | 
|  | Info.Note(VD->getLocation(), diag::note_declared_at); | 
|  | Info.addNotes(Notes); | 
|  | return false; | 
|  | } else if (!VD->checkInitIsICE()) { | 
|  | Info.CCEDiag(E, diag::note_constexpr_var_init_non_constant, | 
|  | Notes.size() + 1) << VD; | 
|  | Info.Note(VD->getLocation(), diag::note_declared_at); | 
|  | Info.addNotes(Notes); | 
|  | } | 
|  |  | 
|  | Result = VD->getEvaluatedValue(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool IsConstNonVolatile(QualType T) { | 
|  | Qualifiers Quals = T.getQualifiers(); | 
|  | return Quals.hasConst() && !Quals.hasVolatile(); | 
|  | } | 
|  |  | 
|  | /// Get the base index of the given base class within an APValue representing | 
|  | /// the given derived class. | 
|  | static unsigned getBaseIndex(const CXXRecordDecl *Derived, | 
|  | const CXXRecordDecl *Base) { | 
|  | Base = Base->getCanonicalDecl(); | 
|  | unsigned Index = 0; | 
|  | for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(), | 
|  | E = Derived->bases_end(); I != E; ++I, ++Index) { | 
|  | if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base) | 
|  | return Index; | 
|  | } | 
|  |  | 
|  | llvm_unreachable("base class missing from derived class's bases list"); | 
|  | } | 
|  |  | 
|  | /// Extract the value of a character from a string literal. | 
|  | static APSInt extractStringLiteralCharacter(EvalInfo &Info, const Expr *Lit, | 
|  | uint64_t Index) { | 
|  | // FIXME: Support MakeStringConstant | 
|  | if (const auto *ObjCEnc = dyn_cast<ObjCEncodeExpr>(Lit)) { | 
|  | std::string Str; | 
|  | Info.Ctx.getObjCEncodingForType(ObjCEnc->getEncodedType(), Str); | 
|  | assert(Index <= Str.size() && "Index too large"); | 
|  | return APSInt::getUnsigned(Str.c_str()[Index]); | 
|  | } | 
|  |  | 
|  | if (auto PE = dyn_cast<PredefinedExpr>(Lit)) | 
|  | Lit = PE->getFunctionName(); | 
|  | const StringLiteral *S = cast<StringLiteral>(Lit); | 
|  | const ConstantArrayType *CAT = | 
|  | Info.Ctx.getAsConstantArrayType(S->getType()); | 
|  | assert(CAT && "string literal isn't an array"); | 
|  | QualType CharType = CAT->getElementType(); | 
|  | assert(CharType->isIntegerType() && "unexpected character type"); | 
|  |  | 
|  | APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(), | 
|  | CharType->isUnsignedIntegerType()); | 
|  | if (Index < S->getLength()) | 
|  | Value = S->getCodeUnit(Index); | 
|  | return Value; | 
|  | } | 
|  |  | 
|  | // Expand a string literal into an array of characters. | 
|  | // | 
|  | // FIXME: This is inefficient; we should probably introduce something similar | 
|  | // to the LLVM ConstantDataArray to make this cheaper. | 
|  | static void expandStringLiteral(EvalInfo &Info, const StringLiteral *S, | 
|  | APValue &Result) { | 
|  | const ConstantArrayType *CAT = | 
|  | Info.Ctx.getAsConstantArrayType(S->getType()); | 
|  | assert(CAT && "string literal isn't an array"); | 
|  | QualType CharType = CAT->getElementType(); | 
|  | assert(CharType->isIntegerType() && "unexpected character type"); | 
|  |  | 
|  | unsigned Elts = CAT->getSize().getZExtValue(); | 
|  | Result = APValue(APValue::UninitArray(), | 
|  | std::min(S->getLength(), Elts), Elts); | 
|  | APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(), | 
|  | CharType->isUnsignedIntegerType()); | 
|  | if (Result.hasArrayFiller()) | 
|  | Result.getArrayFiller() = APValue(Value); | 
|  | for (unsigned I = 0, N = Result.getArrayInitializedElts(); I != N; ++I) { | 
|  | Value = S->getCodeUnit(I); | 
|  | Result.getArrayInitializedElt(I) = APValue(Value); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Expand an array so that it has more than Index filled elements. | 
|  | static void expandArray(APValue &Array, unsigned Index) { | 
|  | unsigned Size = Array.getArraySize(); | 
|  | assert(Index < Size); | 
|  |  | 
|  | // Always at least double the number of elements for which we store a value. | 
|  | unsigned OldElts = Array.getArrayInitializedElts(); | 
|  | unsigned NewElts = std::max(Index+1, OldElts * 2); | 
|  | NewElts = std::min(Size, std::max(NewElts, 8u)); | 
|  |  | 
|  | // Copy the data across. | 
|  | APValue NewValue(APValue::UninitArray(), NewElts, Size); | 
|  | for (unsigned I = 0; I != OldElts; ++I) | 
|  | NewValue.getArrayInitializedElt(I).swap(Array.getArrayInitializedElt(I)); | 
|  | for (unsigned I = OldElts; I != NewElts; ++I) | 
|  | NewValue.getArrayInitializedElt(I) = Array.getArrayFiller(); | 
|  | if (NewValue.hasArrayFiller()) | 
|  | NewValue.getArrayFiller() = Array.getArrayFiller(); | 
|  | Array.swap(NewValue); | 
|  | } | 
|  |  | 
|  | /// Determine whether a type would actually be read by an lvalue-to-rvalue | 
|  | /// conversion. If it's of class type, we may assume that the copy operation | 
|  | /// is trivial. Note that this is never true for a union type with fields | 
|  | /// (because the copy always "reads" the active member) and always true for | 
|  | /// a non-class type. | 
|  | static bool isReadByLvalueToRvalueConversion(QualType T) { | 
|  | CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); | 
|  | if (!RD || (RD->isUnion() && !RD->field_empty())) | 
|  | return true; | 
|  | if (RD->isEmpty()) | 
|  | return false; | 
|  |  | 
|  | for (auto *Field : RD->fields()) | 
|  | if (isReadByLvalueToRvalueConversion(Field->getType())) | 
|  | return true; | 
|  |  | 
|  | for (auto &BaseSpec : RD->bases()) | 
|  | if (isReadByLvalueToRvalueConversion(BaseSpec.getType())) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Diagnose an attempt to read from any unreadable field within the specified | 
|  | /// type, which might be a class type. | 
|  | static bool diagnoseUnreadableFields(EvalInfo &Info, const Expr *E, | 
|  | QualType T) { | 
|  | CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); | 
|  | if (!RD) | 
|  | return false; | 
|  |  | 
|  | if (!RD->hasMutableFields()) | 
|  | return false; | 
|  |  | 
|  | for (auto *Field : RD->fields()) { | 
|  | // If we're actually going to read this field in some way, then it can't | 
|  | // be mutable. If we're in a union, then assigning to a mutable field | 
|  | // (even an empty one) can change the active member, so that's not OK. | 
|  | // FIXME: Add core issue number for the union case. | 
|  | if (Field->isMutable() && | 
|  | (RD->isUnion() || isReadByLvalueToRvalueConversion(Field->getType()))) { | 
|  | Info.FFDiag(E, diag::note_constexpr_ltor_mutable, 1) << Field; | 
|  | Info.Note(Field->getLocation(), diag::note_declared_at); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (diagnoseUnreadableFields(Info, E, Field->getType())) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | for (auto &BaseSpec : RD->bases()) | 
|  | if (diagnoseUnreadableFields(Info, E, BaseSpec.getType())) | 
|  | return true; | 
|  |  | 
|  | // All mutable fields were empty, and thus not actually read. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | /// A handle to a complete object (an object that is not a subobject of | 
|  | /// another object). | 
|  | struct CompleteObject { | 
|  | /// The value of the complete object. | 
|  | APValue *Value; | 
|  | /// The type of the complete object. | 
|  | QualType Type; | 
|  | bool LifetimeStartedInEvaluation; | 
|  |  | 
|  | CompleteObject() : Value(nullptr) {} | 
|  | CompleteObject(APValue *Value, QualType Type, | 
|  | bool LifetimeStartedInEvaluation) | 
|  | : Value(Value), Type(Type), | 
|  | LifetimeStartedInEvaluation(LifetimeStartedInEvaluation) { | 
|  | assert(Value && "missing value for complete object"); | 
|  | } | 
|  |  | 
|  | explicit operator bool() const { return Value; } | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | /// Find the designated sub-object of an rvalue. | 
|  | template<typename SubobjectHandler> | 
|  | typename SubobjectHandler::result_type | 
|  | findSubobject(EvalInfo &Info, const Expr *E, const CompleteObject &Obj, | 
|  | const SubobjectDesignator &Sub, SubobjectHandler &handler) { | 
|  | if (Sub.Invalid) | 
|  | // A diagnostic will have already been produced. | 
|  | return handler.failed(); | 
|  | if (Sub.isOnePastTheEnd() || Sub.isMostDerivedAnUnsizedArray()) { | 
|  | if (Info.getLangOpts().CPlusPlus11) | 
|  | Info.FFDiag(E, Sub.isOnePastTheEnd() | 
|  | ? diag::note_constexpr_access_past_end | 
|  | : diag::note_constexpr_access_unsized_array) | 
|  | << handler.AccessKind; | 
|  | else | 
|  | Info.FFDiag(E); | 
|  | return handler.failed(); | 
|  | } | 
|  |  | 
|  | APValue *O = Obj.Value; | 
|  | QualType ObjType = Obj.Type; | 
|  | const FieldDecl *LastField = nullptr; | 
|  | const bool MayReadMutableMembers = | 
|  | Obj.LifetimeStartedInEvaluation && Info.getLangOpts().CPlusPlus14; | 
|  |  | 
|  | // Walk the designator's path to find the subobject. | 
|  | for (unsigned I = 0, N = Sub.Entries.size(); /**/; ++I) { | 
|  | if (O->isUninit()) { | 
|  | if (!Info.checkingPotentialConstantExpression()) | 
|  | Info.FFDiag(E, diag::note_constexpr_access_uninit) << handler.AccessKind; | 
|  | return handler.failed(); | 
|  | } | 
|  |  | 
|  | if (I == N) { | 
|  | // If we are reading an object of class type, there may still be more | 
|  | // things we need to check: if there are any mutable subobjects, we | 
|  | // cannot perform this read. (This only happens when performing a trivial | 
|  | // copy or assignment.) | 
|  | if (ObjType->isRecordType() && handler.AccessKind == AK_Read && | 
|  | !MayReadMutableMembers && diagnoseUnreadableFields(Info, E, ObjType)) | 
|  | return handler.failed(); | 
|  |  | 
|  | if (!handler.found(*O, ObjType)) | 
|  | return false; | 
|  |  | 
|  | // If we modified a bit-field, truncate it to the right width. | 
|  | if (handler.AccessKind != AK_Read && | 
|  | LastField && LastField->isBitField() && | 
|  | !truncateBitfieldValue(Info, E, *O, LastField)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | LastField = nullptr; | 
|  | if (ObjType->isArrayType()) { | 
|  | // Next subobject is an array element. | 
|  | const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType); | 
|  | assert(CAT && "vla in literal type?"); | 
|  | uint64_t Index = Sub.Entries[I].ArrayIndex; | 
|  | if (CAT->getSize().ule(Index)) { | 
|  | // Note, it should not be possible to form a pointer with a valid | 
|  | // designator which points more than one past the end of the array. | 
|  | if (Info.getLangOpts().CPlusPlus11) | 
|  | Info.FFDiag(E, diag::note_constexpr_access_past_end) | 
|  | << handler.AccessKind; | 
|  | else | 
|  | Info.FFDiag(E); | 
|  | return handler.failed(); | 
|  | } | 
|  |  | 
|  | ObjType = CAT->getElementType(); | 
|  |  | 
|  | if (O->getArrayInitializedElts() > Index) | 
|  | O = &O->getArrayInitializedElt(Index); | 
|  | else if (handler.AccessKind != AK_Read) { | 
|  | expandArray(*O, Index); | 
|  | O = &O->getArrayInitializedElt(Index); | 
|  | } else | 
|  | O = &O->getArrayFiller(); | 
|  | } else if (ObjType->isAnyComplexType()) { | 
|  | // Next subobject is a complex number. | 
|  | uint64_t Index = Sub.Entries[I].ArrayIndex; | 
|  | if (Index > 1) { | 
|  | if (Info.getLangOpts().CPlusPlus11) | 
|  | Info.FFDiag(E, diag::note_constexpr_access_past_end) | 
|  | << handler.AccessKind; | 
|  | else | 
|  | Info.FFDiag(E); | 
|  | return handler.failed(); | 
|  | } | 
|  |  | 
|  | bool WasConstQualified = ObjType.isConstQualified(); | 
|  | ObjType = ObjType->castAs<ComplexType>()->getElementType(); | 
|  | if (WasConstQualified) | 
|  | ObjType.addConst(); | 
|  |  | 
|  | assert(I == N - 1 && "extracting subobject of scalar?"); | 
|  | if (O->isComplexInt()) { | 
|  | return handler.found(Index ? O->getComplexIntImag() | 
|  | : O->getComplexIntReal(), ObjType); | 
|  | } else { | 
|  | assert(O->isComplexFloat()); | 
|  | return handler.found(Index ? O->getComplexFloatImag() | 
|  | : O->getComplexFloatReal(), ObjType); | 
|  | } | 
|  | } else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) { | 
|  | // In C++14 onwards, it is permitted to read a mutable member whose | 
|  | // lifetime began within the evaluation. | 
|  | // FIXME: Should we also allow this in C++11? | 
|  | if (Field->isMutable() && handler.AccessKind == AK_Read && | 
|  | !MayReadMutableMembers) { | 
|  | Info.FFDiag(E, diag::note_constexpr_ltor_mutable, 1) | 
|  | << Field; | 
|  | Info.Note(Field->getLocation(), diag::note_declared_at); | 
|  | return handler.failed(); | 
|  | } | 
|  |  | 
|  | // Next subobject is a class, struct or union field. | 
|  | RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl(); | 
|  | if (RD->isUnion()) { | 
|  | const FieldDecl *UnionField = O->getUnionField(); | 
|  | if (!UnionField || | 
|  | UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) { | 
|  | Info.FFDiag(E, diag::note_constexpr_access_inactive_union_member) | 
|  | << handler.AccessKind << Field << !UnionField << UnionField; | 
|  | return handler.failed(); | 
|  | } | 
|  | O = &O->getUnionValue(); | 
|  | } else | 
|  | O = &O->getStructField(Field->getFieldIndex()); | 
|  |  | 
|  | bool WasConstQualified = ObjType.isConstQualified(); | 
|  | ObjType = Field->getType(); | 
|  | if (WasConstQualified && !Field->isMutable()) | 
|  | ObjType.addConst(); | 
|  |  | 
|  | if (ObjType.isVolatileQualified()) { | 
|  | if (Info.getLangOpts().CPlusPlus) { | 
|  | // FIXME: Include a description of the path to the volatile subobject. | 
|  | Info.FFDiag(E, diag::note_constexpr_access_volatile_obj, 1) | 
|  | << handler.AccessKind << 2 << Field; | 
|  | Info.Note(Field->getLocation(), diag::note_declared_at); | 
|  | } else { | 
|  | Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); | 
|  | } | 
|  | return handler.failed(); | 
|  | } | 
|  |  | 
|  | LastField = Field; | 
|  | } else { | 
|  | // Next subobject is a base class. | 
|  | const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl(); | 
|  | const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]); | 
|  | O = &O->getStructBase(getBaseIndex(Derived, Base)); | 
|  |  | 
|  | bool WasConstQualified = ObjType.isConstQualified(); | 
|  | ObjType = Info.Ctx.getRecordType(Base); | 
|  | if (WasConstQualified) | 
|  | ObjType.addConst(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | struct ExtractSubobjectHandler { | 
|  | EvalInfo &Info; | 
|  | APValue &Result; | 
|  |  | 
|  | static const AccessKinds AccessKind = AK_Read; | 
|  |  | 
|  | typedef bool result_type; | 
|  | bool failed() { return false; } | 
|  | bool found(APValue &Subobj, QualType SubobjType) { | 
|  | Result = Subobj; | 
|  | return true; | 
|  | } | 
|  | bool found(APSInt &Value, QualType SubobjType) { | 
|  | Result = APValue(Value); | 
|  | return true; | 
|  | } | 
|  | bool found(APFloat &Value, QualType SubobjType) { | 
|  | Result = APValue(Value); | 
|  | return true; | 
|  | } | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | const AccessKinds ExtractSubobjectHandler::AccessKind; | 
|  |  | 
|  | /// Extract the designated sub-object of an rvalue. | 
|  | static bool extractSubobject(EvalInfo &Info, const Expr *E, | 
|  | const CompleteObject &Obj, | 
|  | const SubobjectDesignator &Sub, | 
|  | APValue &Result) { | 
|  | ExtractSubobjectHandler Handler = { Info, Result }; | 
|  | return findSubobject(Info, E, Obj, Sub, Handler); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | struct ModifySubobjectHandler { | 
|  | EvalInfo &Info; | 
|  | APValue &NewVal; | 
|  | const Expr *E; | 
|  |  | 
|  | typedef bool result_type; | 
|  | static const AccessKinds AccessKind = AK_Assign; | 
|  |  | 
|  | bool checkConst(QualType QT) { | 
|  | // Assigning to a const object has undefined behavior. | 
|  | if (QT.isConstQualified()) { | 
|  | Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT; | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool failed() { return false; } | 
|  | bool found(APValue &Subobj, QualType SubobjType) { | 
|  | if (!checkConst(SubobjType)) | 
|  | return false; | 
|  | // We've been given ownership of NewVal, so just swap it in. | 
|  | Subobj.swap(NewVal); | 
|  | return true; | 
|  | } | 
|  | bool found(APSInt &Value, QualType SubobjType) { | 
|  | if (!checkConst(SubobjType)) | 
|  | return false; | 
|  | if (!NewVal.isInt()) { | 
|  | // Maybe trying to write a cast pointer value into a complex? | 
|  | Info.FFDiag(E); | 
|  | return false; | 
|  | } | 
|  | Value = NewVal.getInt(); | 
|  | return true; | 
|  | } | 
|  | bool found(APFloat &Value, QualType SubobjType) { | 
|  | if (!checkConst(SubobjType)) | 
|  | return false; | 
|  | Value = NewVal.getFloat(); | 
|  | return true; | 
|  | } | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | const AccessKinds ModifySubobjectHandler::AccessKind; | 
|  |  | 
|  | /// Update the designated sub-object of an rvalue to the given value. | 
|  | static bool modifySubobject(EvalInfo &Info, const Expr *E, | 
|  | const CompleteObject &Obj, | 
|  | const SubobjectDesignator &Sub, | 
|  | APValue &NewVal) { | 
|  | ModifySubobjectHandler Handler = { Info, NewVal, E }; | 
|  | return findSubobject(Info, E, Obj, Sub, Handler); | 
|  | } | 
|  |  | 
|  | /// Find the position where two subobject designators diverge, or equivalently | 
|  | /// the length of the common initial subsequence. | 
|  | static unsigned FindDesignatorMismatch(QualType ObjType, | 
|  | const SubobjectDesignator &A, | 
|  | const SubobjectDesignator &B, | 
|  | bool &WasArrayIndex) { | 
|  | unsigned I = 0, N = std::min(A.Entries.size(), B.Entries.size()); | 
|  | for (/**/; I != N; ++I) { | 
|  | if (!ObjType.isNull() && | 
|  | (ObjType->isArrayType() || ObjType->isAnyComplexType())) { | 
|  | // Next subobject is an array element. | 
|  | if (A.Entries[I].ArrayIndex != B.Entries[I].ArrayIndex) { | 
|  | WasArrayIndex = true; | 
|  | return I; | 
|  | } | 
|  | if (ObjType->isAnyComplexType()) | 
|  | ObjType = ObjType->castAs<ComplexType>()->getElementType(); | 
|  | else | 
|  | ObjType = ObjType->castAsArrayTypeUnsafe()->getElementType(); | 
|  | } else { | 
|  | if (A.Entries[I].BaseOrMember != B.Entries[I].BaseOrMember) { | 
|  | WasArrayIndex = false; | 
|  | return I; | 
|  | } | 
|  | if (const FieldDecl *FD = getAsField(A.Entries[I])) | 
|  | // Next subobject is a field. | 
|  | ObjType = FD->getType(); | 
|  | else | 
|  | // Next subobject is a base class. | 
|  | ObjType = QualType(); | 
|  | } | 
|  | } | 
|  | WasArrayIndex = false; | 
|  | return I; | 
|  | } | 
|  |  | 
|  | /// Determine whether the given subobject designators refer to elements of the | 
|  | /// same array object. | 
|  | static bool AreElementsOfSameArray(QualType ObjType, | 
|  | const SubobjectDesignator &A, | 
|  | const SubobjectDesignator &B) { | 
|  | if (A.Entries.size() != B.Entries.size()) | 
|  | return false; | 
|  |  | 
|  | bool IsArray = A.MostDerivedIsArrayElement; | 
|  | if (IsArray && A.MostDerivedPathLength != A.Entries.size()) | 
|  | // A is a subobject of the array element. | 
|  | return false; | 
|  |  | 
|  | // If A (and B) designates an array element, the last entry will be the array | 
|  | // index. That doesn't have to match. Otherwise, we're in the 'implicit array | 
|  | // of length 1' case, and the entire path must match. | 
|  | bool WasArrayIndex; | 
|  | unsigned CommonLength = FindDesignatorMismatch(ObjType, A, B, WasArrayIndex); | 
|  | return CommonLength >= A.Entries.size() - IsArray; | 
|  | } | 
|  |  | 
|  | /// Find the complete object to which an LValue refers. | 
|  | static CompleteObject findCompleteObject(EvalInfo &Info, const Expr *E, | 
|  | AccessKinds AK, const LValue &LVal, | 
|  | QualType LValType) { | 
|  | if (!LVal.Base) { | 
|  | Info.FFDiag(E, diag::note_constexpr_access_null) << AK; | 
|  | return CompleteObject(); | 
|  | } | 
|  |  | 
|  | CallStackFrame *Frame = nullptr; | 
|  | unsigned Depth = 0; | 
|  | if (LVal.getLValueCallIndex()) { | 
|  | std::tie(Frame, Depth) = | 
|  | Info.getCallFrameAndDepth(LVal.getLValueCallIndex()); | 
|  | if (!Frame) { | 
|  | Info.FFDiag(E, diag::note_constexpr_lifetime_ended, 1) | 
|  | << AK << LVal.Base.is<const ValueDecl*>(); | 
|  | NoteLValueLocation(Info, LVal.Base); | 
|  | return CompleteObject(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++11 DR1311: An lvalue-to-rvalue conversion on a volatile-qualified type | 
|  | // is not a constant expression (even if the object is non-volatile). We also | 
|  | // apply this rule to C++98, in order to conform to the expected 'volatile' | 
|  | // semantics. | 
|  | if (LValType.isVolatileQualified()) { | 
|  | if (Info.getLangOpts().CPlusPlus) | 
|  | Info.FFDiag(E, diag::note_constexpr_access_volatile_type) | 
|  | << AK << LValType; | 
|  | else | 
|  | Info.FFDiag(E); | 
|  | return CompleteObject(); | 
|  | } | 
|  |  | 
|  | // Compute value storage location and type of base object. | 
|  | APValue *BaseVal = nullptr; | 
|  | QualType BaseType = getType(LVal.Base); | 
|  | bool LifetimeStartedInEvaluation = Frame; | 
|  |  | 
|  | if (const ValueDecl *D = LVal.Base.dyn_cast<const ValueDecl*>()) { | 
|  | // In C++98, const, non-volatile integers initialized with ICEs are ICEs. | 
|  | // In C++11, constexpr, non-volatile variables initialized with constant | 
|  | // expressions are constant expressions too. Inside constexpr functions, | 
|  | // parameters are constant expressions even if they're non-const. | 
|  | // In C++1y, objects local to a constant expression (those with a Frame) are | 
|  | // both readable and writable inside constant expressions. | 
|  | // In C, such things can also be folded, although they are not ICEs. | 
|  | const VarDecl *VD = dyn_cast<VarDecl>(D); | 
|  | if (VD) { | 
|  | if (const VarDecl *VDef = VD->getDefinition(Info.Ctx)) | 
|  | VD = VDef; | 
|  | } | 
|  | if (!VD || VD->isInvalidDecl()) { | 
|  | Info.FFDiag(E); | 
|  | return CompleteObject(); | 
|  | } | 
|  |  | 
|  | // Accesses of volatile-qualified objects are not allowed. | 
|  | if (BaseType.isVolatileQualified()) { | 
|  | if (Info.getLangOpts().CPlusPlus) { | 
|  | Info.FFDiag(E, diag::note_constexpr_access_volatile_obj, 1) | 
|  | << AK << 1 << VD; | 
|  | Info.Note(VD->getLocation(), diag::note_declared_at); | 
|  | } else { | 
|  | Info.FFDiag(E); | 
|  | } | 
|  | return CompleteObject(); | 
|  | } | 
|  |  | 
|  | // Unless we're looking at a local variable or argument in a constexpr call, | 
|  | // the variable we're reading must be const. | 
|  | if (!Frame) { | 
|  | if (Info.getLangOpts().CPlusPlus14 && | 
|  | VD == Info.EvaluatingDecl.dyn_cast<const ValueDecl *>()) { | 
|  | // OK, we can read and modify an object if we're in the process of | 
|  | // evaluating its initializer, because its lifetime began in this | 
|  | // evaluation. | 
|  | } else if (AK != AK_Read) { | 
|  | // All the remaining cases only permit reading. | 
|  | Info.FFDiag(E, diag::note_constexpr_modify_global); | 
|  | return CompleteObject(); | 
|  | } else if (VD->isConstexpr()) { | 
|  | // OK, we can read this variable. | 
|  | } else if (BaseType->isIntegralOrEnumerationType()) { | 
|  | // In OpenCL if a variable is in constant address space it is a const value. | 
|  | if (!(BaseType.isConstQualified() || | 
|  | (Info.getLangOpts().OpenCL && | 
|  | BaseType.getAddressSpace() == LangAS::opencl_constant))) { | 
|  | if (Info.getLangOpts().CPlusPlus) { | 
|  | Info.FFDiag(E, diag::note_constexpr_ltor_non_const_int, 1) << VD; | 
|  | Info.Note(VD->getLocation(), diag::note_declared_at); | 
|  | } else { | 
|  | Info.FFDiag(E); | 
|  | } | 
|  | return CompleteObject(); | 
|  | } | 
|  | } else if (BaseType->isFloatingType() && BaseType.isConstQualified()) { | 
|  | // We support folding of const floating-point types, in order to make | 
|  | // static const data members of such types (supported as an extension) | 
|  | // more useful. | 
|  | if (Info.getLangOpts().CPlusPlus11) { | 
|  | Info.CCEDiag(E, diag::note_constexpr_ltor_non_constexpr, 1) << VD; | 
|  | Info.Note(VD->getLocation(), diag::note_declared_at); | 
|  | } else { | 
|  | Info.CCEDiag(E); | 
|  | } | 
|  | } else if (BaseType.isConstQualified() && VD->hasDefinition(Info.Ctx)) { | 
|  | Info.CCEDiag(E, diag::note_constexpr_ltor_non_constexpr) << VD; | 
|  | // Keep evaluating to see what we can do. | 
|  | } else { | 
|  | // FIXME: Allow folding of values of any literal type in all languages. | 
|  | if (Info.checkingPotentialConstantExpression() && | 
|  | VD->getType().isConstQualified() && !VD->hasDefinition(Info.Ctx)) { | 
|  | // The definition of this variable could be constexpr. We can't | 
|  | // access it right now, but may be able to in future. | 
|  | } else if (Info.getLangOpts().CPlusPlus11) { | 
|  | Info.FFDiag(E, diag::note_constexpr_ltor_non_constexpr, 1) << VD; | 
|  | Info.Note(VD->getLocation(), diag::note_declared_at); | 
|  | } else { | 
|  | Info.FFDiag(E); | 
|  | } | 
|  | return CompleteObject(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!evaluateVarDeclInit(Info, E, VD, Frame, BaseVal, &LVal)) | 
|  | return CompleteObject(); | 
|  | } else { | 
|  | const Expr *Base = LVal.Base.dyn_cast<const Expr*>(); | 
|  |  | 
|  | if (!Frame) { | 
|  | if (const MaterializeTemporaryExpr *MTE = | 
|  | dyn_cast<MaterializeTemporaryExpr>(Base)) { | 
|  | assert(MTE->getStorageDuration() == SD_Static && | 
|  | "should have a frame for a non-global materialized temporary"); | 
|  |  | 
|  | // Per C++1y [expr.const]p2: | 
|  | //  an lvalue-to-rvalue conversion [is not allowed unless it applies to] | 
|  | //   - a [...] glvalue of integral or enumeration type that refers to | 
|  | //     a non-volatile const object [...] | 
|  | //   [...] | 
|  | //   - a [...] glvalue of literal type that refers to a non-volatile | 
|  | //     object whose lifetime began within the evaluation of e. | 
|  | // | 
|  | // C++11 misses the 'began within the evaluation of e' check and | 
|  | // instead allows all temporaries, including things like: | 
|  | //   int &&r = 1; | 
|  | //   int x = ++r; | 
|  | //   constexpr int k = r; | 
|  | // Therefore we use the C++14 rules in C++11 too. | 
|  | const ValueDecl *VD = Info.EvaluatingDecl.dyn_cast<const ValueDecl*>(); | 
|  | const ValueDecl *ED = MTE->getExtendingDecl(); | 
|  | if (!(BaseType.isConstQualified() && | 
|  | BaseType->isIntegralOrEnumerationType()) && | 
|  | !(VD && VD->getCanonicalDecl() == ED->getCanonicalDecl())) { | 
|  | Info.FFDiag(E, diag::note_constexpr_access_static_temporary, 1) << AK; | 
|  | Info.Note(MTE->getExprLoc(), diag::note_constexpr_temporary_here); | 
|  | return CompleteObject(); | 
|  | } | 
|  |  | 
|  | BaseVal = Info.Ctx.getMaterializedTemporaryValue(MTE, false); | 
|  | assert(BaseVal && "got reference to unevaluated temporary"); | 
|  | LifetimeStartedInEvaluation = true; | 
|  | } else { | 
|  | Info.FFDiag(E); | 
|  | return CompleteObject(); | 
|  | } | 
|  | } else { | 
|  | BaseVal = Frame->getTemporary(Base, LVal.Base.getVersion()); | 
|  | assert(BaseVal && "missing value for temporary"); | 
|  | } | 
|  |  | 
|  | // Volatile temporary objects cannot be accessed in constant expressions. | 
|  | if (BaseType.isVolatileQualified()) { | 
|  | if (Info.getLangOpts().CPlusPlus) { | 
|  | Info.FFDiag(E, diag::note_constexpr_access_volatile_obj, 1) | 
|  | << AK << 0; | 
|  | Info.Note(Base->getExprLoc(), diag::note_constexpr_temporary_here); | 
|  | } else { | 
|  | Info.FFDiag(E); | 
|  | } | 
|  | return CompleteObject(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // During the construction of an object, it is not yet 'const'. | 
|  | // FIXME: This doesn't do quite the right thing for const subobjects of the | 
|  | // object under construction. | 
|  | if (Info.isEvaluatingConstructor(LVal.getLValueBase(), | 
|  | LVal.getLValueCallIndex(), | 
|  | LVal.getLValueVersion())) { | 
|  | BaseType = Info.Ctx.getCanonicalType(BaseType); | 
|  | BaseType.removeLocalConst(); | 
|  | LifetimeStartedInEvaluation = true; | 
|  | } | 
|  |  | 
|  | // In C++14, we can't safely access any mutable state when we might be | 
|  | // evaluating after an unmodeled side effect. | 
|  | // | 
|  | // FIXME: Not all local state is mutable. Allow local constant subobjects | 
|  | // to be read here (but take care with 'mutable' fields). | 
|  | if ((Frame && Info.getLangOpts().CPlusPlus14 && | 
|  | Info.EvalStatus.HasSideEffects) || | 
|  | (AK != AK_Read && Depth < Info.SpeculativeEvaluationDepth)) | 
|  | return CompleteObject(); | 
|  |  | 
|  | return CompleteObject(BaseVal, BaseType, LifetimeStartedInEvaluation); | 
|  | } | 
|  |  | 
|  | /// Perform an lvalue-to-rvalue conversion on the given glvalue. This | 
|  | /// can also be used for 'lvalue-to-lvalue' conversions for looking up the | 
|  | /// glvalue referred to by an entity of reference type. | 
|  | /// | 
|  | /// \param Info - Information about the ongoing evaluation. | 
|  | /// \param Conv - The expression for which we are performing the conversion. | 
|  | ///               Used for diagnostics. | 
|  | /// \param Type - The type of the glvalue (before stripping cv-qualifiers in the | 
|  | ///               case of a non-class type). | 
|  | /// \param LVal - The glvalue on which we are attempting to perform this action. | 
|  | /// \param RVal - The produced value will be placed here. | 
|  | static bool handleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv, | 
|  | QualType Type, | 
|  | const LValue &LVal, APValue &RVal) { | 
|  | if (LVal.Designator.Invalid) | 
|  | return false; | 
|  |  | 
|  | // Check for special cases where there is no existing APValue to look at. | 
|  | const Expr *Base = LVal.Base.dyn_cast<const Expr*>(); | 
|  | if (Base && !LVal.getLValueCallIndex() && !Type.isVolatileQualified()) { | 
|  | if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(Base)) { | 
|  | // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the | 
|  | // initializer until now for such expressions. Such an expression can't be | 
|  | // an ICE in C, so this only matters for fold. | 
|  | if (Type.isVolatileQualified()) { | 
|  | Info.FFDiag(Conv); | 
|  | return false; | 
|  | } | 
|  | APValue Lit; | 
|  | if (!Evaluate(Lit, Info, CLE->getInitializer())) | 
|  | return false; | 
|  | CompleteObject LitObj(&Lit, Base->getType(), false); | 
|  | return extractSubobject(Info, Conv, LitObj, LVal.Designator, RVal); | 
|  | } else if (isa<StringLiteral>(Base) || isa<PredefinedExpr>(Base)) { | 
|  | // Special-case character extraction so we don't have to construct an | 
|  | // APValue for the whole string. | 
|  | assert(LVal.Designator.Entries.size() <= 1 && | 
|  | "Can only read characters from string literals"); | 
|  | if (LVal.Designator.Entries.empty()) { | 
|  | // Fail for now for LValue to RValue conversion of an array. | 
|  | // (This shouldn't show up in C/C++, but it could be triggered by a | 
|  | // weird EvaluateAsRValue call from a tool.) | 
|  | Info.FFDiag(Conv); | 
|  | return false; | 
|  | } | 
|  | if (LVal.Designator.isOnePastTheEnd()) { | 
|  | if (Info.getLangOpts().CPlusPlus11) | 
|  | Info.FFDiag(Conv, diag::note_constexpr_access_past_end) << AK_Read; | 
|  | else | 
|  | Info.FFDiag(Conv); | 
|  | return false; | 
|  | } | 
|  | uint64_t CharIndex = LVal.Designator.Entries[0].ArrayIndex; | 
|  | RVal = APValue(extractStringLiteralCharacter(Info, Base, CharIndex)); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | CompleteObject Obj = findCompleteObject(Info, Conv, AK_Read, LVal, Type); | 
|  | return Obj && extractSubobject(Info, Conv, Obj, LVal.Designator, RVal); | 
|  | } | 
|  |  | 
|  | /// Perform an assignment of Val to LVal. Takes ownership of Val. | 
|  | static bool handleAssignment(EvalInfo &Info, const Expr *E, const LValue &LVal, | 
|  | QualType LValType, APValue &Val) { | 
|  | if (LVal.Designator.Invalid) | 
|  | return false; | 
|  |  | 
|  | if (!Info.getLangOpts().CPlusPlus14) { | 
|  | Info.FFDiag(E); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType); | 
|  | return Obj && modifySubobject(Info, E, Obj, LVal.Designator, Val); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | struct CompoundAssignSubobjectHandler { | 
|  | EvalInfo &Info; | 
|  | const Expr *E; | 
|  | QualType PromotedLHSType; | 
|  | BinaryOperatorKind Opcode; | 
|  | const APValue &RHS; | 
|  |  | 
|  | static const AccessKinds AccessKind = AK_Assign; | 
|  |  | 
|  | typedef bool result_type; | 
|  |  | 
|  | bool checkConst(QualType QT) { | 
|  | // Assigning to a const object has undefined behavior. | 
|  | if (QT.isConstQualified()) { | 
|  | Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT; | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool failed() { return false; } | 
|  | bool found(APValue &Subobj, QualType SubobjType) { | 
|  | switch (Subobj.getKind()) { | 
|  | case APValue::Int: | 
|  | return found(Subobj.getInt(), SubobjType); | 
|  | case APValue::Float: | 
|  | return found(Subobj.getFloat(), SubobjType); | 
|  | case APValue::ComplexInt: | 
|  | case APValue::ComplexFloat: | 
|  | // FIXME: Implement complex compound assignment. | 
|  | Info.FFDiag(E); | 
|  | return false; | 
|  | case APValue::LValue: | 
|  | return foundPointer(Subobj, SubobjType); | 
|  | default: | 
|  | // FIXME: can this happen? | 
|  | Info.FFDiag(E); | 
|  | return false; | 
|  | } | 
|  | } | 
|  | bool found(APSInt &Value, QualType SubobjType) { | 
|  | if (!checkConst(SubobjType)) | 
|  | return false; | 
|  |  | 
|  | if (!SubobjType->isIntegerType()) { | 
|  | // We don't support compound assignment on integer-cast-to-pointer | 
|  | // values. | 
|  | Info.FFDiag(E); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (RHS.isInt()) { | 
|  | APSInt LHS = | 
|  | HandleIntToIntCast(Info, E, PromotedLHSType, SubobjType, Value); | 
|  | if (!handleIntIntBinOp(Info, E, LHS, Opcode, RHS.getInt(), LHS)) | 
|  | return false; | 
|  | Value = HandleIntToIntCast(Info, E, SubobjType, PromotedLHSType, LHS); | 
|  | return true; | 
|  | } else if (RHS.isFloat()) { | 
|  | APFloat FValue(0.0); | 
|  | return HandleIntToFloatCast(Info, E, SubobjType, Value, PromotedLHSType, | 
|  | FValue) && | 
|  | handleFloatFloatBinOp(Info, E, FValue, Opcode, RHS.getFloat()) && | 
|  | HandleFloatToIntCast(Info, E, PromotedLHSType, FValue, SubobjType, | 
|  | Value); | 
|  | } | 
|  |  | 
|  | Info.FFDiag(E); | 
|  | return false; | 
|  | } | 
|  | bool found(APFloat &Value, QualType SubobjType) { | 
|  | return checkConst(SubobjType) && | 
|  | HandleFloatToFloatCast(Info, E, SubobjType, PromotedLHSType, | 
|  | Value) && | 
|  | handleFloatFloatBinOp(Info, E, Value, Opcode, RHS.getFloat()) && | 
|  | HandleFloatToFloatCast(Info, E, PromotedLHSType, SubobjType, Value); | 
|  | } | 
|  | bool foundPointer(APValue &Subobj, QualType SubobjType) { | 
|  | if (!checkConst(SubobjType)) | 
|  | return false; | 
|  |  | 
|  | QualType PointeeType; | 
|  | if (const PointerType *PT = SubobjType->getAs<PointerType>()) | 
|  | PointeeType = PT->getPointeeType(); | 
|  |  | 
|  | if (PointeeType.isNull() || !RHS.isInt() || | 
|  | (Opcode != BO_Add && Opcode != BO_Sub)) { | 
|  | Info.FFDiag(E); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | APSInt Offset = RHS.getInt(); | 
|  | if (Opcode == BO_Sub) | 
|  | negateAsSigned(Offset); | 
|  |  | 
|  | LValue LVal; | 
|  | LVal.setFrom(Info.Ctx, Subobj); | 
|  | if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType, Offset)) | 
|  | return false; | 
|  | LVal.moveInto(Subobj); | 
|  | return true; | 
|  | } | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | const AccessKinds CompoundAssignSubobjectHandler::AccessKind; | 
|  |  | 
|  | /// Perform a compound assignment of LVal <op>= RVal. | 
|  | static bool handleCompoundAssignment( | 
|  | EvalInfo &Info, const Expr *E, | 
|  | const LValue &LVal, QualType LValType, QualType PromotedLValType, | 
|  | BinaryOperatorKind Opcode, const APValue &RVal) { | 
|  | if (LVal.Designator.Invalid) | 
|  | return false; | 
|  |  | 
|  | if (!Info.getLangOpts().CPlusPlus14) { | 
|  | Info.FFDiag(E); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType); | 
|  | CompoundAssignSubobjectHandler Handler = { Info, E, PromotedLValType, Opcode, | 
|  | RVal }; | 
|  | return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | struct IncDecSubobjectHandler { | 
|  | EvalInfo &Info; | 
|  | const UnaryOperator *E; | 
|  | AccessKinds AccessKind; | 
|  | APValue *Old; | 
|  |  | 
|  | typedef bool result_type; | 
|  |  | 
|  | bool checkConst(QualType QT) { | 
|  | // Assigning to a const object has undefined behavior. | 
|  | if (QT.isConstQualified()) { | 
|  | Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT; | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool failed() { return false; } | 
|  | bool found(APValue &Subobj, QualType SubobjType) { | 
|  | // Stash the old value. Also clear Old, so we don't clobber it later | 
|  | // if we're post-incrementing a complex. | 
|  | if (Old) { | 
|  | *Old = Subobj; | 
|  | Old = nullptr; | 
|  | } | 
|  |  | 
|  | switch (Subobj.getKind()) { | 
|  | case APValue::Int: | 
|  | return found(Subobj.getInt(), SubobjType); | 
|  | case APValue::Float: | 
|  | return found(Subobj.getFloat(), SubobjType); | 
|  | case APValue::ComplexInt: | 
|  | return found(Subobj.getComplexIntReal(), | 
|  | SubobjType->castAs<ComplexType>()->getElementType() | 
|  | .withCVRQualifiers(SubobjType.getCVRQualifiers())); | 
|  | case APValue::ComplexFloat: | 
|  | return found(Subobj.getComplexFloatReal(), | 
|  | SubobjType->castAs<ComplexType>()->getElementType() | 
|  | .withCVRQualifiers(SubobjType.getCVRQualifiers())); | 
|  | case APValue::LValue: | 
|  | return foundPointer(Subobj, SubobjType); | 
|  | default: | 
|  | // FIXME: can this happen? | 
|  | Info.FFDiag(E); | 
|  | return false; | 
|  | } | 
|  | } | 
|  | bool found(APSInt &Value, QualType SubobjType) { | 
|  | if (!checkConst(SubobjType)) | 
|  | return false; | 
|  |  | 
|  | if (!SubobjType->isIntegerType()) { | 
|  | // We don't support increment / decrement on integer-cast-to-pointer | 
|  | // values. | 
|  | Info.FFDiag(E); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (Old) *Old = APValue(Value); | 
|  |  | 
|  | // bool arithmetic promotes to int, and the conversion back to bool | 
|  | // doesn't reduce mod 2^n, so special-case it. | 
|  | if (SubobjType->isBooleanType()) { | 
|  | if (AccessKind == AK_Increment) | 
|  | Value = 1; | 
|  | else | 
|  | Value = !Value; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool WasNegative = Value.isNegative(); | 
|  | if (AccessKind == AK_Increment) { | 
|  | ++Value; | 
|  |  | 
|  | if (!WasNegative && Value.isNegative() && E->canOverflow()) { | 
|  | APSInt ActualValue(Value, /*IsUnsigned*/true); | 
|  | return HandleOverflow(Info, E, ActualValue, SubobjType); | 
|  | } | 
|  | } else { | 
|  | --Value; | 
|  |  | 
|  | if (WasNegative && !Value.isNegative() && E->canOverflow()) { | 
|  | unsigned BitWidth = Value.getBitWidth(); | 
|  | APSInt ActualValue(Value.sext(BitWidth + 1), /*IsUnsigned*/false); | 
|  | ActualValue.setBit(BitWidth); | 
|  | return HandleOverflow(Info, E, ActualValue, SubobjType); | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  | bool found(APFloat &Value, QualType SubobjType) { | 
|  | if (!checkConst(SubobjType)) | 
|  | return false; | 
|  |  | 
|  | if (Old) *Old = APValue(Value); | 
|  |  | 
|  | APFloat One(Value.getSemantics(), 1); | 
|  | if (AccessKind == AK_Increment) | 
|  | Value.add(One, APFloat::rmNearestTiesToEven); | 
|  | else | 
|  | Value.subtract(One, APFloat::rmNearestTiesToEven); | 
|  | return true; | 
|  | } | 
|  | bool foundPointer(APValue &Subobj, QualType SubobjType) { | 
|  | if (!checkConst(SubobjType)) | 
|  | return false; | 
|  |  | 
|  | QualType PointeeType; | 
|  | if (const PointerType *PT = SubobjType->getAs<PointerType>()) | 
|  | PointeeType = PT->getPointeeType(); | 
|  | else { | 
|  | Info.FFDiag(E); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | LValue LVal; | 
|  | LVal.setFrom(Info.Ctx, Subobj); | 
|  | if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType, | 
|  | AccessKind == AK_Increment ? 1 : -1)) | 
|  | return false; | 
|  | LVal.moveInto(Subobj); | 
|  | return true; | 
|  | } | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | /// Perform an increment or decrement on LVal. | 
|  | static bool handleIncDec(EvalInfo &Info, const Expr *E, const LValue &LVal, | 
|  | QualType LValType, bool IsIncrement, APValue *Old) { | 
|  | if (LVal.Designator.Invalid) | 
|  | return false; | 
|  |  | 
|  | if (!Info.getLangOpts().CPlusPlus14) { | 
|  | Info.FFDiag(E); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | AccessKinds AK = IsIncrement ? AK_Increment : AK_Decrement; | 
|  | CompleteObject Obj = findCompleteObject(Info, E, AK, LVal, LValType); | 
|  | IncDecSubobjectHandler Handler = {Info, cast<UnaryOperator>(E), AK, Old}; | 
|  | return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler); | 
|  | } | 
|  |  | 
|  | /// Build an lvalue for the object argument of a member function call. | 
|  | static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object, | 
|  | LValue &This) { | 
|  | if (Object->getType()->isPointerType()) | 
|  | return EvaluatePointer(Object, This, Info); | 
|  |  | 
|  | if (Object->isGLValue()) | 
|  | return EvaluateLValue(Object, This, Info); | 
|  |  | 
|  | if (Object->getType()->isLiteralType(Info.Ctx)) | 
|  | return EvaluateTemporary(Object, This, Info); | 
|  |  | 
|  | Info.FFDiag(Object, diag::note_constexpr_nonliteral) << Object->getType(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// HandleMemberPointerAccess - Evaluate a member access operation and build an | 
|  | /// lvalue referring to the result. | 
|  | /// | 
|  | /// \param Info - Information about the ongoing evaluation. | 
|  | /// \param LV - An lvalue referring to the base of the member pointer. | 
|  | /// \param RHS - The member pointer expression. | 
|  | /// \param IncludeMember - Specifies whether the member itself is included in | 
|  | ///        the resulting LValue subobject designator. This is not possible when | 
|  | ///        creating a bound member function. | 
|  | /// \return The field or method declaration to which the member pointer refers, | 
|  | ///         or 0 if evaluation fails. | 
|  | static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info, | 
|  | QualType LVType, | 
|  | LValue &LV, | 
|  | const Expr *RHS, | 
|  | bool IncludeMember = true) { | 
|  | MemberPtr MemPtr; | 
|  | if (!EvaluateMemberPointer(RHS, MemPtr, Info)) | 
|  | return nullptr; | 
|  |  | 
|  | // C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to | 
|  | // member value, the behavior is undefined. | 
|  | if (!MemPtr.getDecl()) { | 
|  | // FIXME: Specific diagnostic. | 
|  | Info.FFDiag(RHS); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | if (MemPtr.isDerivedMember()) { | 
|  | // This is a member of some derived class. Truncate LV appropriately. | 
|  | // The end of the derived-to-base path for the base object must match the | 
|  | // derived-to-base path for the member pointer. | 
|  | if (LV.Designator.MostDerivedPathLength + MemPtr.Path.size() > | 
|  | LV.Designator.Entries.size()) { | 
|  | Info.FFDiag(RHS); | 
|  | return nullptr; | 
|  | } | 
|  | unsigned PathLengthToMember = | 
|  | LV.Designator.Entries.size() - MemPtr.Path.size(); | 
|  | for (unsigned I = 0, N = MemPtr.Path.size(); I != N; ++I) { | 
|  | const CXXRecordDecl *LVDecl = getAsBaseClass( | 
|  | LV.Designator.Entries[PathLengthToMember + I]); | 
|  | const CXXRecordDecl *MPDecl = MemPtr.Path[I]; | 
|  | if (LVDecl->getCanonicalDecl() != MPDecl->getCanonicalDecl()) { | 
|  | Info.FFDiag(RHS); | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Truncate the lvalue to the appropriate derived class. | 
|  | if (!CastToDerivedClass(Info, RHS, LV, MemPtr.getContainingRecord(), | 
|  | PathLengthToMember)) | 
|  | return nullptr; | 
|  | } else if (!MemPtr.Path.empty()) { | 
|  | // Extend the LValue path with the member pointer's path. | 
|  | LV.Designator.Entries.reserve(LV.Designator.Entries.size() + | 
|  | MemPtr.Path.size() + IncludeMember); | 
|  |  | 
|  | // Walk down to the appropriate base class. | 
|  | if (const PointerType *PT = LVType->getAs<PointerType>()) | 
|  | LVType = PT->getPointeeType(); | 
|  | const CXXRecordDecl *RD = LVType->getAsCXXRecordDecl(); | 
|  | assert(RD && "member pointer access on non-class-type expression"); | 
|  | // The first class in the path is that of the lvalue. | 
|  | for (unsigned I = 1, N = MemPtr.Path.size(); I != N; ++I) { | 
|  | const CXXRecordDecl *Base = MemPtr.Path[N - I - 1]; | 
|  | if (!HandleLValueDirectBase(Info, RHS, LV, RD, Base)) | 
|  | return nullptr; | 
|  | RD = Base; | 
|  | } | 
|  | // Finally cast to the class containing the member. | 
|  | if (!HandleLValueDirectBase(Info, RHS, LV, RD, | 
|  | MemPtr.getContainingRecord())) | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Add the member. Note that we cannot build bound member functions here. | 
|  | if (IncludeMember) { | 
|  | if (const FieldDecl *FD = dyn_cast<FieldDecl>(MemPtr.getDecl())) { | 
|  | if (!HandleLValueMember(Info, RHS, LV, FD)) | 
|  | return nullptr; | 
|  | } else if (const IndirectFieldDecl *IFD = | 
|  | dyn_cast<IndirectFieldDecl>(MemPtr.getDecl())) { | 
|  | if (!HandleLValueIndirectMember(Info, RHS, LV, IFD)) | 
|  | return nullptr; | 
|  | } else { | 
|  | llvm_unreachable("can't construct reference to bound member function"); | 
|  | } | 
|  | } | 
|  |  | 
|  | return MemPtr.getDecl(); | 
|  | } | 
|  |  | 
|  | static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info, | 
|  | const BinaryOperator *BO, | 
|  | LValue &LV, | 
|  | bool IncludeMember = true) { | 
|  | assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI); | 
|  |  | 
|  | if (!EvaluateObjectArgument(Info, BO->getLHS(), LV)) { | 
|  | if (Info.noteFailure()) { | 
|  | MemberPtr MemPtr; | 
|  | EvaluateMemberPointer(BO->getRHS(), MemPtr, Info); | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | return HandleMemberPointerAccess(Info, BO->getLHS()->getType(), LV, | 
|  | BO->getRHS(), IncludeMember); | 
|  | } | 
|  |  | 
|  | /// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on | 
|  | /// the provided lvalue, which currently refers to the base object. | 
|  | static bool HandleBaseToDerivedCast(EvalInfo &Info, const CastExpr *E, | 
|  | LValue &Result) { | 
|  | SubobjectDesignator &D = Result.Designator; | 
|  | if (D.Invalid || !Result.checkNullPointer(Info, E, CSK_Derived)) | 
|  | return false; | 
|  |  | 
|  | QualType TargetQT = E->getType(); | 
|  | if (const PointerType *PT = TargetQT->getAs<PointerType>()) | 
|  | TargetQT = PT->getPointeeType(); | 
|  |  | 
|  | // Check this cast lands within the final derived-to-base subobject path. | 
|  | if (D.MostDerivedPathLength + E->path_size() > D.Entries.size()) { | 
|  | Info.CCEDiag(E, diag::note_constexpr_invalid_downcast) | 
|  | << D.MostDerivedType << TargetQT; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Check the type of the final cast. We don't need to check the path, | 
|  | // since a cast can only be formed if the path is unique. | 
|  | unsigned NewEntriesSize = D.Entries.size() - E->path_size(); | 
|  | const CXXRecordDecl *TargetType = TargetQT->getAsCXXRecordDecl(); | 
|  | const CXXRecordDecl *FinalType; | 
|  | if (NewEntriesSize == D.MostDerivedPathLength) | 
|  | FinalType = D.MostDerivedType->getAsCXXRecordDecl(); | 
|  | else | 
|  | FinalType = getAsBaseClass(D.Entries[NewEntriesSize - 1]); | 
|  | if (FinalType->getCanonicalDecl() != TargetType->getCanonicalDecl()) { | 
|  | Info.CCEDiag(E, diag::note_constexpr_invalid_downcast) | 
|  | << D.MostDerivedType << TargetQT; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Truncate the lvalue to the appropriate derived class. | 
|  | return CastToDerivedClass(Info, E, Result, TargetType, NewEntriesSize); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | enum EvalStmtResult { | 
|  | /// Evaluation failed. | 
|  | ESR_Failed, | 
|  | /// Hit a 'return' statement. | 
|  | ESR_Returned, | 
|  | /// Evaluation succeeded. | 
|  | ESR_Succeeded, | 
|  | /// Hit a 'continue' statement. | 
|  | ESR_Continue, | 
|  | /// Hit a 'break' statement. | 
|  | ESR_Break, | 
|  | /// Still scanning for 'case' or 'default' statement. | 
|  | ESR_CaseNotFound | 
|  | }; | 
|  | } | 
|  |  | 
|  | static bool EvaluateVarDecl(EvalInfo &Info, const VarDecl *VD) { | 
|  | // We don't need to evaluate the initializer for a static local. | 
|  | if (!VD->hasLocalStorage()) | 
|  | return true; | 
|  |  | 
|  | LValue Result; | 
|  | APValue &Val = createTemporary(VD, true, Result, *Info.CurrentCall); | 
|  |  | 
|  | const Expr *InitE = VD->getInit(); | 
|  | if (!InitE) { | 
|  | Info.FFDiag(VD->getBeginLoc(), diag::note_constexpr_uninitialized) | 
|  | << false << VD->getType(); | 
|  | Val = APValue(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (InitE->isValueDependent()) | 
|  | return false; | 
|  |  | 
|  | if (!EvaluateInPlace(Val, Info, Result, InitE)) { | 
|  | // Wipe out any partially-computed value, to allow tracking that this | 
|  | // evaluation failed. | 
|  | Val = APValue(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool EvaluateDecl(EvalInfo &Info, const Decl *D) { | 
|  | bool OK = true; | 
|  |  | 
|  | if (const VarDecl *VD = dyn_cast<VarDecl>(D)) | 
|  | OK &= EvaluateVarDecl(Info, VD); | 
|  |  | 
|  | if (const DecompositionDecl *DD = dyn_cast<DecompositionDecl>(D)) | 
|  | for (auto *BD : DD->bindings()) | 
|  | if (auto *VD = BD->getHoldingVar()) | 
|  | OK &= EvaluateDecl(Info, VD); | 
|  |  | 
|  | return OK; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// Evaluate a condition (either a variable declaration or an expression). | 
|  | static bool EvaluateCond(EvalInfo &Info, const VarDecl *CondDecl, | 
|  | const Expr *Cond, bool &Result) { | 
|  | FullExpressionRAII Scope(Info); | 
|  | if (CondDecl && !EvaluateDecl(Info, CondDecl)) | 
|  | return false; | 
|  | return EvaluateAsBooleanCondition(Cond, Result, Info); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | /// A location where the result (returned value) of evaluating a | 
|  | /// statement should be stored. | 
|  | struct StmtResult { | 
|  | /// The APValue that should be filled in with the returned value. | 
|  | APValue &Value; | 
|  | /// The location containing the result, if any (used to support RVO). | 
|  | const LValue *Slot; | 
|  | }; | 
|  |  | 
|  | struct TempVersionRAII { | 
|  | CallStackFrame &Frame; | 
|  |  | 
|  | TempVersionRAII(CallStackFrame &Frame) : Frame(Frame) { | 
|  | Frame.pushTempVersion(); | 
|  | } | 
|  |  | 
|  | ~TempVersionRAII() { | 
|  | Frame.popTempVersion(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | } | 
|  |  | 
|  | static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info, | 
|  | const Stmt *S, | 
|  | const SwitchCase *SC = nullptr); | 
|  |  | 
|  | /// Evaluate the body of a loop, and translate the result as appropriate. | 
|  | static EvalStmtResult EvaluateLoopBody(StmtResult &Result, EvalInfo &Info, | 
|  | const Stmt *Body, | 
|  | const SwitchCase *Case = nullptr) { | 
|  | BlockScopeRAII Scope(Info); | 
|  | switch (EvalStmtResult ESR = EvaluateStmt(Result, Info, Body, Case)) { | 
|  | case ESR_Break: | 
|  | return ESR_Succeeded; | 
|  | case ESR_Succeeded: | 
|  | case ESR_Continue: | 
|  | return ESR_Continue; | 
|  | case ESR_Failed: | 
|  | case ESR_Returned: | 
|  | case ESR_CaseNotFound: | 
|  | return ESR; | 
|  | } | 
|  | llvm_unreachable("Invalid EvalStmtResult!"); | 
|  | } | 
|  |  | 
|  | /// Evaluate a switch statement. | 
|  | static EvalStmtResult EvaluateSwitch(StmtResult &Result, EvalInfo &Info, | 
|  | const SwitchStmt *SS) { | 
|  | BlockScopeRAII Scope(Info); | 
|  |  | 
|  | // Evaluate the switch condition. | 
|  | APSInt Value; | 
|  | { | 
|  | FullExpressionRAII Scope(Info); | 
|  | if (const Stmt *Init = SS->getInit()) { | 
|  | EvalStmtResult ESR = EvaluateStmt(Result, Info, Init); | 
|  | if (ESR != ESR_Succeeded) | 
|  | return ESR; | 
|  | } | 
|  | if (SS->getConditionVariable() && | 
|  | !EvaluateDecl(Info, SS->getConditionVariable())) | 
|  | return ESR_Failed; | 
|  | if (!EvaluateInteger(SS->getCond(), Value, Info)) | 
|  | return ESR_Failed; | 
|  | } | 
|  |  | 
|  | // Find the switch case corresponding to the value of the condition. | 
|  | // FIXME: Cache this lookup. | 
|  | const SwitchCase *Found = nullptr; | 
|  | for (const SwitchCase *SC = SS->getSwitchCaseList(); SC; | 
|  | SC = SC->getNextSwitchCase()) { | 
|  | if (isa<DefaultStmt>(SC)) { | 
|  | Found = SC; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | const CaseStmt *CS = cast<CaseStmt>(SC); | 
|  | APSInt LHS = CS->getLHS()->EvaluateKnownConstInt(Info.Ctx); | 
|  | APSInt RHS = CS->getRHS() ? CS->getRHS()->EvaluateKnownConstInt(Info.Ctx) | 
|  | : LHS; | 
|  | if (LHS <= Value && Value <= RHS) { | 
|  | Found = SC; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!Found) | 
|  | return ESR_Succeeded; | 
|  |  | 
|  | // Search the switch body for the switch case and evaluate it from there. | 
|  | switch (EvalStmtResult ESR = EvaluateStmt(Result, Info, SS->getBody(), Found)) { | 
|  | case ESR_Break: | 
|  | return ESR_Succeeded; | 
|  | case ESR_Succeeded: | 
|  | case ESR_Continue: | 
|  | case ESR_Failed: | 
|  | case ESR_Returned: | 
|  | return ESR; | 
|  | case ESR_CaseNotFound: | 
|  | // This can only happen if the switch case is nested within a statement | 
|  | // expression. We have no intention of supporting that. | 
|  | Info.FFDiag(Found->getBeginLoc(), | 
|  | diag::note_constexpr_stmt_expr_unsupported); | 
|  | return ESR_Failed; | 
|  | } | 
|  | llvm_unreachable("Invalid EvalStmtResult!"); | 
|  | } | 
|  |  | 
|  | // Evaluate a statement. | 
|  | static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info, | 
|  | const Stmt *S, const SwitchCase *Case) { | 
|  | if (!Info.nextStep(S)) | 
|  | return ESR_Failed; | 
|  |  | 
|  | // If we're hunting down a 'case' or 'default' label, recurse through | 
|  | // substatements until we hit the label. | 
|  | if (Case) { | 
|  | // FIXME: We don't start the lifetime of objects whose initialization we | 
|  | // jump over. However, such objects must be of class type with a trivial | 
|  | // default constructor that initialize all subobjects, so must be empty, | 
|  | // so this almost never matters. | 
|  | switch (S->getStmtClass()) { | 
|  | case Stmt::CompoundStmtClass: | 
|  | // FIXME: Precompute which substatement of a compound statement we | 
|  | // would jump to, and go straight there rather than performing a | 
|  | // linear scan each time. | 
|  | case Stmt::LabelStmtClass: | 
|  | case Stmt::AttributedStmtClass: | 
|  | case Stmt::DoStmtClass: | 
|  | break; | 
|  |  | 
|  | case Stmt::CaseStmtClass: | 
|  | case Stmt::DefaultStmtClass: | 
|  | if (Case == S) | 
|  | Case = nullptr; | 
|  | break; | 
|  |  | 
|  | case Stmt::IfStmtClass: { | 
|  | // FIXME: Precompute which side of an 'if' we would jump to, and go | 
|  | // straight there rather than scanning both sides. | 
|  | const IfStmt *IS = cast<IfStmt>(S); | 
|  |  | 
|  | // Wrap the evaluation in a block scope, in case it's a DeclStmt | 
|  | // preceded by our switch label. | 
|  | BlockScopeRAII Scope(Info); | 
|  |  | 
|  | EvalStmtResult ESR = EvaluateStmt(Result, Info, IS->getThen(), Case); | 
|  | if (ESR != ESR_CaseNotFound || !IS->getElse()) | 
|  | return ESR; | 
|  | return EvaluateStmt(Result, Info, IS->getElse(), Case); | 
|  | } | 
|  |  | 
|  | case Stmt::WhileStmtClass: { | 
|  | EvalStmtResult ESR = | 
|  | EvaluateLoopBody(Result, Info, cast<WhileStmt>(S)->getBody(), Case); | 
|  | if (ESR != ESR_Continue) | 
|  | return ESR; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Stmt::ForStmtClass: { | 
|  | const ForStmt *FS = cast<ForStmt>(S); | 
|  | EvalStmtResult ESR = | 
|  | EvaluateLoopBody(Result, Info, FS->getBody(), Case); | 
|  | if (ESR != ESR_Continue) | 
|  | return ESR; | 
|  | if (FS->getInc()) { | 
|  | FullExpressionRAII IncScope(Info); | 
|  | if (!EvaluateIgnoredValue(Info, FS->getInc())) | 
|  | return ESR_Failed; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Stmt::DeclStmtClass: | 
|  | // FIXME: If the variable has initialization that can't be jumped over, | 
|  | // bail out of any immediately-surrounding compound-statement too. | 
|  | default: | 
|  | return ESR_CaseNotFound; | 
|  | } | 
|  | } | 
|  |  | 
|  | switch (S->getStmtClass()) { | 
|  | default: | 
|  | if (const Expr *E = dyn_cast<Expr>(S)) { | 
|  | // Don't bother evaluating beyond an expression-statement which couldn't | 
|  | // be evaluated. | 
|  | FullExpressionRAII Scope(Info); | 
|  | if (!EvaluateIgnoredValue(Info, E)) | 
|  | return ESR_Failed; | 
|  | return ESR_Succeeded; | 
|  | } | 
|  |  | 
|  | Info.FFDiag(S->getBeginLoc()); | 
|  | return ESR_Failed; | 
|  |  | 
|  | case Stmt::NullStmtClass: | 
|  | return ESR_Succeeded; | 
|  |  | 
|  | case Stmt::DeclStmtClass: { | 
|  | const DeclStmt *DS = cast<DeclStmt>(S); | 
|  | for (const auto *DclIt : DS->decls()) { | 
|  | // Each declaration initialization is its own full-expression. | 
|  | // FIXME: This isn't quite right; if we're performing aggregate | 
|  | // initialization, each braced subexpression is its own full-expression. | 
|  | FullExpressionRAII Scope(Info); | 
|  | if (!EvaluateDecl(Info, DclIt) && !Info.noteFailure()) | 
|  | return ESR_Failed; | 
|  | } | 
|  | return ESR_Succeeded; | 
|  | } | 
|  |  | 
|  | case Stmt::ReturnStmtClass: { | 
|  | const Expr *RetExpr = cast<ReturnStmt>(S)->getRetValue(); | 
|  | FullExpressionRAII Scope(Info); | 
|  | if (RetExpr && | 
|  | !(Result.Slot | 
|  | ? EvaluateInPlace(Result.Value, Info, *Result.Slot, RetExpr) | 
|  | : Evaluate(Result.Value, Info, RetExpr))) | 
|  | return ESR_Failed; | 
|  | return ESR_Returned; | 
|  | } | 
|  |  | 
|  | case Stmt::CompoundStmtClass: { | 
|  | BlockScopeRAII Scope(Info); | 
|  |  | 
|  | const CompoundStmt *CS = cast<CompoundStmt>(S); | 
|  | for (const auto *BI : CS->body()) { | 
|  | EvalStmtResult ESR = EvaluateStmt(Result, Info, BI, Case); | 
|  | if (ESR == ESR_Succeeded) | 
|  | Case = nullptr; | 
|  | else if (ESR != ESR_CaseNotFound) | 
|  | return ESR; | 
|  | } | 
|  | return Case ? ESR_CaseNotFound : ESR_Succeeded; | 
|  | } | 
|  |  | 
|  | case Stmt::IfStmtClass: { | 
|  | const IfStmt *IS = cast<IfStmt>(S); | 
|  |  | 
|  | // Evaluate the condition, as either a var decl or as an expression. | 
|  | BlockScopeRAII Scope(Info); | 
|  | if (const Stmt *Init = IS->getInit()) { | 
|  | EvalStmtResult ESR = EvaluateStmt(Result, Info, Init); | 
|  | if (ESR != ESR_Succeeded) | 
|  | return ESR; | 
|  | } | 
|  | bool Cond; | 
|  | if (!EvaluateCond(Info, IS->getConditionVariable(), IS->getCond(), Cond)) | 
|  | return ESR_Failed; | 
|  |  | 
|  | if (const Stmt *SubStmt = Cond ? IS->getThen() : IS->getElse()) { | 
|  | EvalStmtResult ESR = EvaluateStmt(Result, Info, SubStmt); | 
|  | if (ESR != ESR_Succeeded) | 
|  | return ESR; | 
|  | } | 
|  | return ESR_Succeeded; | 
|  | } | 
|  |  | 
|  | case Stmt::WhileStmtClass: { | 
|  | const WhileStmt *WS = cast<WhileStmt>(S); | 
|  | while (true) { | 
|  | BlockScopeRAII Scope(Info); | 
|  | bool Continue; | 
|  | if (!EvaluateCond(Info, WS->getConditionVariable(), WS->getCond(), | 
|  | Continue)) | 
|  | return ESR_Failed; | 
|  | if (!Continue) | 
|  | break; | 
|  |  | 
|  | EvalStmtResult ESR = EvaluateLoopBody(Result, Info, WS->getBody()); | 
|  | if (ESR != ESR_Continue) | 
|  | return ESR; | 
|  | } | 
|  | return ESR_Succeeded; | 
|  | } | 
|  |  | 
|  | case Stmt::DoStmtClass: { | 
|  | const DoStmt *DS = cast<DoStmt>(S); | 
|  | bool Continue; | 
|  | do { | 
|  | EvalStmtResult ESR = EvaluateLoopBody(Result, Info, DS->getBody(), Case); | 
|  | if (ESR != ESR_Continue) | 
|  | return ESR; | 
|  | Case = nullptr; | 
|  |  | 
|  | FullExpressionRAII CondScope(Info); | 
|  | if (!EvaluateAsBooleanCondition(DS->getCond(), Continue, Info)) | 
|  | return ESR_Failed; | 
|  | } while (Continue); | 
|  | return ESR_Succeeded; | 
|  | } | 
|  |  | 
|  | case Stmt::ForStmtClass: { | 
|  | const ForStmt *FS = cast<ForStmt>(S); | 
|  | BlockScopeRAII Scope(Info); | 
|  | if (FS->getInit()) { | 
|  | EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit()); | 
|  | if (ESR != ESR_Succeeded) | 
|  | return ESR; | 
|  | } | 
|  | while (true) { | 
|  | BlockScopeRAII Scope(Info); | 
|  | bool Continue = true; | 
|  | if (FS->getCond() && !EvaluateCond(Info, FS->getConditionVariable(), | 
|  | FS->getCond(), Continue)) | 
|  | return ESR_Failed; | 
|  | if (!Continue) | 
|  | break; | 
|  |  | 
|  | EvalStmtResult ESR = EvaluateLoopBody(Result, Info, FS->getBody()); | 
|  | if (ESR != ESR_Continue) | 
|  | return ESR; | 
|  |  | 
|  | if (FS->getInc()) { | 
|  | FullExpressionRAII IncScope(Info); | 
|  | if (!EvaluateIgnoredValue(Info, FS->getInc())) | 
|  | return ESR_Failed; | 
|  | } | 
|  | } | 
|  | return ESR_Succeeded; | 
|  | } | 
|  |  | 
|  | case Stmt::CXXForRangeStmtClass: { | 
|  | const CXXForRangeStmt *FS = cast<CXXForRangeStmt>(S); | 
|  | BlockScopeRAII Scope(Info); | 
|  |  | 
|  | // Evaluate the init-statement if present. | 
|  | if (FS->getInit()) { | 
|  | EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit()); | 
|  | if (ESR != ESR_Succeeded) | 
|  | return ESR; | 
|  | } | 
|  |  | 
|  | // Initialize the __range variable. | 
|  | EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getRangeStmt()); | 
|  | if (ESR != ESR_Succeeded) | 
|  | return ESR; | 
|  |  | 
|  | // Create the __begin and __end iterators. | 
|  | ESR = EvaluateStmt(Result, Info, FS->getBeginStmt()); | 
|  | if (ESR != ESR_Succeeded) | 
|  | return ESR; | 
|  | ESR = EvaluateStmt(Result, Info, FS->getEndStmt()); | 
|  | if (ESR != ESR_Succeeded) | 
|  | return ESR; | 
|  |  | 
|  | while (true) { | 
|  | // Condition: __begin != __end. | 
|  | { | 
|  | bool Continue = true; | 
|  | FullExpressionRAII CondExpr(Info); | 
|  | if (!EvaluateAsBooleanCondition(FS->getCond(), Continue, Info)) | 
|  | return ESR_Failed; | 
|  | if (!Continue) | 
|  | break; | 
|  | } | 
|  |  | 
|  | // User's variable declaration, initialized by *__begin. | 
|  | BlockScopeRAII InnerScope(Info); | 
|  | ESR = EvaluateStmt(Result, Info, FS->getLoopVarStmt()); | 
|  | if (ESR != ESR_Succeeded) | 
|  | return ESR; | 
|  |  | 
|  | // Loop body. | 
|  | ESR = EvaluateLoopBody(Result, Info, FS->getBody()); | 
|  | if (ESR != ESR_Continue) | 
|  | return ESR; | 
|  |  | 
|  | // Increment: ++__begin | 
|  | if (!EvaluateIgnoredValue(Info, FS->getInc())) | 
|  | return ESR_Failed; | 
|  | } | 
|  |  | 
|  | return ESR_Succeeded; | 
|  | } | 
|  |  | 
|  | case Stmt::SwitchStmtClass: | 
|  | return EvaluateSwitch(Result, Info, cast<SwitchStmt>(S)); | 
|  |  | 
|  | case Stmt::ContinueStmtClass: | 
|  | return ESR_Continue; | 
|  |  | 
|  | case Stmt::BreakStmtClass: | 
|  | return ESR_Break; | 
|  |  | 
|  | case Stmt::LabelStmtClass: | 
|  | return EvaluateStmt(Result, Info, cast<LabelStmt>(S)->getSubStmt(), Case); | 
|  |  | 
|  | case Stmt::AttributedStmtClass: | 
|  | // As a general principle, C++11 attributes can be ignored without | 
|  | // any semantic impact. | 
|  | return EvaluateStmt(Result, Info, cast<AttributedStmt>(S)->getSubStmt(), | 
|  | Case); | 
|  |  | 
|  | case Stmt::CaseStmtClass: | 
|  | case Stmt::DefaultStmtClass: | 
|  | return EvaluateStmt(Result, Info, cast<SwitchCase>(S)->getSubStmt(), Case); | 
|  | case Stmt::CXXTryStmtClass: | 
|  | // Evaluate try blocks by evaluating all sub statements. | 
|  | return EvaluateStmt(Result, Info, cast<CXXTryStmt>(S)->getTryBlock(), Case); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// CheckTrivialDefaultConstructor - Check whether a constructor is a trivial | 
|  | /// default constructor. If so, we'll fold it whether or not it's marked as | 
|  | /// constexpr. If it is marked as constexpr, we will never implicitly define it, | 
|  | /// so we need special handling. | 
|  | static bool CheckTrivialDefaultConstructor(EvalInfo &Info, SourceLocation Loc, | 
|  | const CXXConstructorDecl *CD, | 
|  | bool IsValueInitialization) { | 
|  | if (!CD->isTrivial() || !CD->isDefaultConstructor()) | 
|  | return false; | 
|  |  | 
|  | // Value-initialization does not call a trivial default constructor, so such a | 
|  | // call is a core constant expression whether or not the constructor is | 
|  | // constexpr. | 
|  | if (!CD->isConstexpr() && !IsValueInitialization) { | 
|  | if (Info.getLangOpts().CPlusPlus11) { | 
|  | // FIXME: If DiagDecl is an implicitly-declared special member function, | 
|  | // we should be much more explicit about why it's not constexpr. | 
|  | Info.CCEDiag(Loc, diag::note_constexpr_invalid_function, 1) | 
|  | << /*IsConstexpr*/0 << /*IsConstructor*/1 << CD; | 
|  | Info.Note(CD->getLocation(), diag::note_declared_at); | 
|  | } else { | 
|  | Info.CCEDiag(Loc, diag::note_invalid_subexpr_in_const_expr); | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// CheckConstexprFunction - Check that a function can be called in a constant | 
|  | /// expression. | 
|  | static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc, | 
|  | const FunctionDecl *Declaration, | 
|  | const FunctionDecl *Definition, | 
|  | const Stmt *Body) { | 
|  | // Potential constant expressions can contain calls to declared, but not yet | 
|  | // defined, constexpr functions. | 
|  | if (Info.checkingPotentialConstantExpression() && !Definition && | 
|  | Declaration->isConstexpr()) | 
|  | return false; | 
|  |  | 
|  | // Bail out if the function declaration itself is invalid.  We will | 
|  | // have produced a relevant diagnostic while parsing it, so just | 
|  | // note the problematic sub-expression. | 
|  | if (Declaration->isInvalidDecl()) { | 
|  | Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Can we evaluate this function call? | 
|  | if (Definition && Definition->isConstexpr() && | 
|  | !Definition->isInvalidDecl() && Body) | 
|  | return true; | 
|  |  | 
|  | if (Info.getLangOpts().CPlusPlus11) { | 
|  | const FunctionDecl *DiagDecl = Definition ? Definition : Declaration; | 
|  |  | 
|  | // If this function is not constexpr because it is an inherited | 
|  | // non-constexpr constructor, diagnose that directly. | 
|  | auto *CD = dyn_cast<CXXConstructorDecl>(DiagDecl); | 
|  | if (CD && CD->isInheritingConstructor()) { | 
|  | auto *Inherited = CD->getInheritedConstructor().getConstructor(); | 
|  | if (!Inherited->isConstexpr()) | 
|  | DiagDecl = CD = Inherited; | 
|  | } | 
|  |  | 
|  | // FIXME: If DiagDecl is an implicitly-declared special member function | 
|  | // or an inheriting constructor, we should be much more explicit about why | 
|  | // it's not constexpr. | 
|  | if (CD && CD->isInheritingConstructor()) | 
|  | Info.FFDiag(CallLoc, diag::note_constexpr_invalid_inhctor, 1) | 
|  | << CD->getInheritedConstructor().getConstructor()->getParent(); | 
|  | else | 
|  | Info.FFDiag(CallLoc, diag::note_constexpr_invalid_function, 1) | 
|  | << DiagDecl->isConstexpr() << (bool)CD << DiagDecl; | 
|  | Info.Note(DiagDecl->getLocation(), diag::note_declared_at); | 
|  | } else { | 
|  | Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Determine if a class has any fields that might need to be copied by a | 
|  | /// trivial copy or move operation. | 
|  | static bool hasFields(const CXXRecordDecl *RD) { | 
|  | if (!RD || RD->isEmpty()) | 
|  | return false; | 
|  | for (auto *FD : RD->fields()) { | 
|  | if (FD->isUnnamedBitfield()) | 
|  | continue; | 
|  | return true; | 
|  | } | 
|  | for (auto &Base : RD->bases()) | 
|  | if (hasFields(Base.getType()->getAsCXXRecordDecl())) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | typedef SmallVector<APValue, 8> ArgVector; | 
|  | } | 
|  |  | 
|  | /// EvaluateArgs - Evaluate the arguments to a function call. | 
|  | static bool EvaluateArgs(ArrayRef<const Expr*> Args, ArgVector &ArgValues, | 
|  | EvalInfo &Info) { | 
|  | bool Success = true; | 
|  | for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end(); | 
|  | I != E; ++I) { | 
|  | if (!Evaluate(ArgValues[I - Args.begin()], Info, *I)) { | 
|  | // If we're checking for a potential constant expression, evaluate all | 
|  | // initializers even if some of them fail. | 
|  | if (!Info.noteFailure()) | 
|  | return false; | 
|  | Success = false; | 
|  | } | 
|  | } | 
|  | return Success; | 
|  | } | 
|  |  | 
|  | /// Evaluate a function call. | 
|  | static bool HandleFunctionCall(SourceLocation CallLoc, | 
|  | const FunctionDecl *Callee, const LValue *This, | 
|  | ArrayRef<const Expr*> Args, const Stmt *Body, | 
|  | EvalInfo &Info, APValue &Result, | 
|  | const LValue *ResultSlot) { | 
|  | ArgVector ArgValues(Args.size()); | 
|  | if (!EvaluateArgs(Args, ArgValues, Info)) | 
|  | return false; | 
|  |  | 
|  | if (!Info.CheckCallLimit(CallLoc)) | 
|  | return false; | 
|  |  | 
|  | CallStackFrame Frame(Info, CallLoc, Callee, This, ArgValues.data()); | 
|  |  | 
|  | // For a trivial copy or move assignment, perform an APValue copy. This is | 
|  | // essential for unions, where the operations performed by the assignment | 
|  | // operator cannot be represented as statements. | 
|  | // | 
|  | // Skip this for non-union classes with no fields; in that case, the defaulted | 
|  | // copy/move does not actually read the object. | 
|  | const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Callee); | 
|  | if (MD && MD->isDefaulted() && | 
|  | (MD->getParent()->isUnion() || | 
|  | (MD->isTrivial() && hasFields(MD->getParent())))) { | 
|  | assert(This && | 
|  | (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator())); | 
|  | LValue RHS; | 
|  | RHS.setFrom(Info.Ctx, ArgValues[0]); | 
|  | APValue RHSValue; | 
|  | if (!handleLValueToRValueConversion(Info, Args[0], Args[0]->getType(), | 
|  | RHS, RHSValue)) | 
|  | return false; | 
|  | if (!handleAssignment(Info, Args[0], *This, MD->getThisType(), | 
|  | RHSValue)) | 
|  | return false; | 
|  | This->moveInto(Result); | 
|  | return true; | 
|  | } else if (MD && isLambdaCallOperator(MD)) { | 
|  | // We're in a lambda; determine the lambda capture field maps unless we're | 
|  | // just constexpr checking a lambda's call operator. constexpr checking is | 
|  | // done before the captures have been added to the closure object (unless | 
|  | // we're inferring constexpr-ness), so we don't have access to them in this | 
|  | // case. But since we don't need the captures to constexpr check, we can | 
|  | // just ignore them. | 
|  | if (!Info.checkingPotentialConstantExpression()) | 
|  | MD->getParent()->getCaptureFields(Frame.LambdaCaptureFields, | 
|  | Frame.LambdaThisCaptureField); | 
|  | } | 
|  |  | 
|  | StmtResult Ret = {Result, ResultSlot}; | 
|  | EvalStmtResult ESR = EvaluateStmt(Ret, Info, Body); | 
|  | if (ESR == ESR_Succeeded) { | 
|  | if (Callee->getReturnType()->isVoidType()) | 
|  | return true; | 
|  | Info.FFDiag(Callee->getEndLoc(), diag::note_constexpr_no_return); | 
|  | } | 
|  | return ESR == ESR_Returned; | 
|  | } | 
|  |  | 
|  | /// Evaluate a constructor call. | 
|  | static bool HandleConstructorCall(const Expr *E, const LValue &This, | 
|  | APValue *ArgValues, | 
|  | const CXXConstructorDecl *Definition, | 
|  | EvalInfo &Info, APValue &Result) { | 
|  | SourceLocation CallLoc = E->getExprLoc(); | 
|  | if (!Info.CheckCallLimit(CallLoc)) | 
|  | return false; | 
|  |  | 
|  | const CXXRecordDecl *RD = Definition->getParent(); | 
|  | if (RD->getNumVBases()) { | 
|  | Info.FFDiag(CallLoc, diag::note_constexpr_virtual_base) << RD; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | EvalInfo::EvaluatingConstructorRAII EvalObj( | 
|  | Info, {This.getLValueBase(), | 
|  | {This.getLValueCallIndex(), This.getLValueVersion()}}); | 
|  | CallStackFrame Frame(Info, CallLoc, Definition, &This, ArgValues); | 
|  |  | 
|  | // FIXME: Creating an APValue just to hold a nonexistent return value is | 
|  | // wasteful. | 
|  | APValue RetVal; | 
|  | StmtResult Ret = {RetVal, nullptr}; | 
|  |  | 
|  | // If it's a delegating constructor, delegate. | 
|  | if (Definition->isDelegatingConstructor()) { | 
|  | CXXConstructorDecl::init_const_iterator I = Definition->init_begin(); | 
|  | { | 
|  | FullExpressionRAII InitScope(Info); | 
|  | if (!EvaluateInPlace(Result, Info, This, (*I)->getInit())) | 
|  | return false; | 
|  | } | 
|  | return EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed; | 
|  | } | 
|  |  | 
|  | // For a trivial copy or move constructor, perform an APValue copy. This is | 
|  | // essential for unions (or classes with anonymous union members), where the | 
|  | // operations performed by the constructor cannot be represented by | 
|  | // ctor-initializers. | 
|  | // | 
|  | // Skip this for empty non-union classes; we should not perform an | 
|  | // lvalue-to-rvalue conversion on them because their copy constructor does not | 
|  | // actually read them. | 
|  | if (Definition->isDefaulted() && Definition->isCopyOrMoveConstructor() && | 
|  | (Definition->getParent()->isUnion() || | 
|  | (Definition->isTrivial() && hasFields(Definition->getParent())))) { | 
|  | LValue RHS; | 
|  | RHS.setFrom(Info.Ctx, ArgValues[0]); | 
|  | return handleLValueToRValueConversion( | 
|  | Info, E, Definition->getParamDecl(0)->getType().getNonReferenceType(), | 
|  | RHS, Result); | 
|  | } | 
|  |  | 
|  | // Reserve space for the struct members. | 
|  | if (!RD->isUnion() && Result.isUninit()) | 
|  | Result = APValue(APValue::UninitStruct(), RD->getNumBases(), | 
|  | std::distance(RD->field_begin(), RD->field_end())); | 
|  |  | 
|  | if (RD->isInvalidDecl()) return false; | 
|  | const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); | 
|  |  | 
|  | // A scope for temporaries lifetime-extended by reference members. | 
|  | BlockScopeRAII LifetimeExtendedScope(Info); | 
|  |  | 
|  | bool Success = true; | 
|  | unsigned BasesSeen = 0; | 
|  | #ifndef NDEBUG | 
|  | CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin(); | 
|  | #endif | 
|  | for (const auto *I : Definition->inits()) { | 
|  | LValue Subobject = This; | 
|  | LValue SubobjectParent = This; | 
|  | APValue *Value = &Result; | 
|  |  | 
|  | // Determine the subobject to initialize. | 
|  | FieldDecl *FD = nullptr; | 
|  | if (I->isBaseInitializer()) { | 
|  | QualType BaseType(I->getBaseClass(), 0); | 
|  | #ifndef NDEBUG | 
|  | // Non-virtual base classes are initialized in the order in the class | 
|  | // definition. We have already checked for virtual base classes. | 
|  | assert(!BaseIt->isVirtual() && "virtual base for literal type"); | 
|  | assert(Info.Ctx.hasSameType(BaseIt->getType(), BaseType) && | 
|  | "base class initializers not in expected order"); | 
|  | ++BaseIt; | 
|  | #endif | 
|  | if (!HandleLValueDirectBase(Info, I->getInit(), Subobject, RD, | 
|  | BaseType->getAsCXXRecordDecl(), &Layout)) | 
|  | return false; | 
|  | Value = &Result.getStructBase(BasesSeen++); | 
|  | } else if ((FD = I->getMember())) { | 
|  | if (!HandleLValueMember(Info, I->getInit(), Subobject, FD, &Layout)) | 
|  | return false; | 
|  | if (RD->isUnion()) { | 
|  | Result = APValue(FD); | 
|  | Value = &Result.getUnionValue(); | 
|  | } else { | 
|  | Value = &Result.getStructField(FD->getFieldIndex()); | 
|  | } | 
|  | } else if (IndirectFieldDecl *IFD = I->getIndirectMember()) { | 
|  | // Walk the indirect field decl's chain to find the object to initialize, | 
|  | // and make sure we've initialized every step along it. | 
|  | auto IndirectFieldChain = IFD->chain(); | 
|  | for (auto *C : IndirectFieldChain) { | 
|  | FD = cast<FieldDecl>(C); | 
|  | CXXRecordDecl *CD = cast<CXXRecordDecl>(FD->getParent()); | 
|  | // Switch the union field if it differs. This happens if we had | 
|  | // preceding zero-initialization, and we're now initializing a union | 
|  | // subobject other than the first. | 
|  | // FIXME: In this case, the values of the other subobjects are | 
|  | // specified, since zero-initialization sets all padding bits to zero. | 
|  | if (Value->isUninit() || | 
|  | (Value->isUnion() && Value->getUnionField() != FD)) { | 
|  | if (CD->isUnion()) | 
|  | *Value = APValue(FD); | 
|  | else | 
|  | *Value = APValue(APValue::UninitStruct(), CD->getNumBases(), | 
|  | std::distance(CD->field_begin(), CD->field_end())); | 
|  | } | 
|  | // Store Subobject as its parent before updating it for the last element | 
|  | // in the chain. | 
|  | if (C == IndirectFieldChain.back()) | 
|  | SubobjectParent = Subobject; | 
|  | if (!HandleLValueMember(Info, I->getInit(), Subobject, FD)) | 
|  | return false; | 
|  | if (CD->isUnion()) | 
|  | Value = &Value->getUnionValue(); | 
|  | else | 
|  | Value = &Value->getStructField(FD->getFieldIndex()); | 
|  | } | 
|  | } else { | 
|  | llvm_unreachable("unknown base initializer kind"); | 
|  | } | 
|  |  | 
|  | // Need to override This for implicit field initializers as in this case | 
|  | // This refers to innermost anonymous struct/union containing initializer, | 
|  | // not to currently constructed class. | 
|  | const Expr *Init = I->getInit(); | 
|  | ThisOverrideRAII ThisOverride(*Info.CurrentCall, &SubobjectParent, | 
|  | isa<CXXDefaultInitExpr>(Init)); | 
|  | FullExpressionRAII InitScope(Info); | 
|  | if (!EvaluateInPlace(*Value, Info, Subobject, Init) || | 
|  | (FD && FD->isBitField() && | 
|  | !truncateBitfieldValue(Info, Init, *Value, FD))) { | 
|  | // If we're checking for a potential constant expression, evaluate all | 
|  | // initializers even if some of them fail. | 
|  | if (!Info.noteFailure()) | 
|  | return false; | 
|  | Success = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return Success && | 
|  | EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed; | 
|  | } | 
|  |  | 
|  | static bool HandleConstructorCall(const Expr *E, const LValue &This, | 
|  | ArrayRef<const Expr*> Args, | 
|  | const CXXConstructorDecl *Definition, | 
|  | EvalInfo &Info, APValue &Result) { | 
|  | ArgVector ArgValues(Args.size()); | 
|  | if (!EvaluateArgs(Args, ArgValues, Info)) | 
|  | return false; | 
|  |  | 
|  | return HandleConstructorCall(E, This, ArgValues.data(), Definition, | 
|  | Info, Result); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Generic Evaluation | 
|  | //===----------------------------------------------------------------------===// | 
|  | namespace { | 
|  |  | 
|  | template <class Derived> | 
|  | class ExprEvaluatorBase | 
|  | : public ConstStmtVisitor<Derived, bool> { | 
|  | private: | 
|  | Derived &getDerived() { return static_cast<Derived&>(*this); } | 
|  | bool DerivedSuccess(const APValue &V, const Expr *E) { | 
|  | return getDerived().Success(V, E); | 
|  | } | 
|  | bool DerivedZeroInitialization(const Expr *E) { | 
|  | return getDerived().ZeroInitialization(E); | 
|  | } | 
|  |  | 
|  | // Check whether a conditional operator with a non-constant condition is a | 
|  | // potential constant expression. If neither arm is a potential constant | 
|  | // expression, then the conditional operator is not either. | 
|  | template<typename ConditionalOperator> | 
|  | void CheckPotentialConstantConditional(const ConditionalOperator *E) { | 
|  | assert(Info.checkingPotentialConstantExpression()); | 
|  |  | 
|  | // Speculatively evaluate both arms. | 
|  | SmallVector<PartialDiagnosticAt, 8> Diag; | 
|  | { | 
|  | SpeculativeEvaluationRAII Speculate(Info, &Diag); | 
|  | StmtVisitorTy::Visit(E->getFalseExpr()); | 
|  | if (Diag.empty()) | 
|  | return; | 
|  | } | 
|  |  | 
|  | { | 
|  | SpeculativeEvaluationRAII Speculate(Info, &Diag); | 
|  | Diag.clear(); | 
|  | StmtVisitorTy::Visit(E->getTrueExpr()); | 
|  | if (Diag.empty()) | 
|  | return; | 
|  | } | 
|  |  | 
|  | Error(E, diag::note_constexpr_conditional_never_const); | 
|  | } | 
|  |  | 
|  |  | 
|  | template<typename ConditionalOperator> | 
|  | bool HandleConditionalOperator(const ConditionalOperator *E) { | 
|  | bool BoolResult; | 
|  | if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info)) { | 
|  | if (Info.checkingPotentialConstantExpression() && Info.noteFailure()) { | 
|  | CheckPotentialConstantConditional(E); | 
|  | return false; | 
|  | } | 
|  | if (Info.noteFailure()) { | 
|  | StmtVisitorTy::Visit(E->getTrueExpr()); | 
|  | StmtVisitorTy::Visit(E->getFalseExpr()); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr(); | 
|  | return StmtVisitorTy::Visit(EvalExpr); | 
|  | } | 
|  |  | 
|  | protected: | 
|  | EvalInfo &Info; | 
|  | typedef ConstStmtVisitor<Derived, bool> StmtVisitorTy; | 
|  | typedef ExprEvaluatorBase ExprEvaluatorBaseTy; | 
|  |  | 
|  | OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) { | 
|  | return Info.CCEDiag(E, D); | 
|  | } | 
|  |  | 
|  | bool ZeroInitialization(const Expr *E) { return Error(E); } | 
|  |  | 
|  | public: | 
|  | ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {} | 
|  |  | 
|  | EvalInfo &getEvalInfo() { return Info; } | 
|  |  | 
|  | /// Report an evaluation error. This should only be called when an error is | 
|  | /// first discovered. When propagating an error, just return false. | 
|  | bool Error(const Expr *E, diag::kind D) { | 
|  | Info.FFDiag(E, D); | 
|  | return false; | 
|  | } | 
|  | bool Error(const Expr *E) { | 
|  | return Error(E, diag::note_invalid_subexpr_in_const_expr); | 
|  | } | 
|  |  | 
|  | bool VisitStmt(const Stmt *) { | 
|  | llvm_unreachable("Expression evaluator should not be called on stmts"); | 
|  | } | 
|  | bool VisitExpr(const Expr *E) { | 
|  | return Error(E); | 
|  | } | 
|  |  | 
|  | bool VisitConstantExpr(const ConstantExpr *E) | 
|  | { return StmtVisitorTy::Visit(E->getSubExpr()); } | 
|  | bool VisitParenExpr(const ParenExpr *E) | 
|  | { return StmtVisitorTy::Visit(E->getSubExpr()); } | 
|  | bool VisitUnaryExtension(const UnaryOperator *E) | 
|  | { return StmtVisitorTy::Visit(E->getSubExpr()); } | 
|  | bool VisitUnaryPlus(const UnaryOperator *E) | 
|  | { return StmtVisitorTy::Visit(E->getSubExpr()); } | 
|  | bool VisitChooseExpr(const ChooseExpr *E) | 
|  | { return StmtVisitorTy::Visit(E->getChosenSubExpr()); } | 
|  | bool VisitGenericSelectionExpr(const GenericSelectionExpr *E) | 
|  | { return StmtVisitorTy::Visit(E->getResultExpr()); } | 
|  | bool VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E) | 
|  | { return StmtVisitorTy::Visit(E->getReplacement()); } | 
|  | bool VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) { | 
|  | TempVersionRAII RAII(*Info.CurrentCall); | 
|  | return StmtVisitorTy::Visit(E->getExpr()); | 
|  | } | 
|  | bool VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) { | 
|  | TempVersionRAII RAII(*Info.CurrentCall); | 
|  | // The initializer may not have been parsed yet, or might be erroneous. | 
|  | if (!E->getExpr()) | 
|  | return Error(E); | 
|  | return StmtVisitorTy::Visit(E->getExpr()); | 
|  | } | 
|  | // We cannot create any objects for which cleanups are required, so there is | 
|  | // nothing to do here; all cleanups must come from unevaluated subexpressions. | 
|  | bool VisitExprWithCleanups(const ExprWithCleanups *E) | 
|  | { return StmtVisitorTy::Visit(E->getSubExpr()); } | 
|  |  | 
|  | bool VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *E) { | 
|  | CCEDiag(E, diag::note_constexpr_invalid_cast) << 0; | 
|  | return static_cast<Derived*>(this)->VisitCastExpr(E); | 
|  | } | 
|  | bool VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) { | 
|  | CCEDiag(E, diag::note_constexpr_invalid_cast) << 1; | 
|  | return static_cast<Derived*>(this)->VisitCastExpr(E); | 
|  | } | 
|  |  | 
|  | bool VisitBinaryOperator(const BinaryOperator *E) { | 
|  | switch (E->getOpcode()) { | 
|  | default: | 
|  | return Error(E); | 
|  |  | 
|  | case BO_Comma: | 
|  | VisitIgnoredValue(E->getLHS()); | 
|  | return StmtVisitorTy::Visit(E->getRHS()); | 
|  |  | 
|  | case BO_PtrMemD: | 
|  | case BO_PtrMemI: { | 
|  | LValue Obj; | 
|  | if (!HandleMemberPointerAccess(Info, E, Obj)) | 
|  | return false; | 
|  | APValue Result; | 
|  | if (!handleLValueToRValueConversion(Info, E, E->getType(), Obj, Result)) | 
|  | return false; | 
|  | return DerivedSuccess(Result, E); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) { | 
|  | // Evaluate and cache the common expression. We treat it as a temporary, | 
|  | // even though it's not quite the same thing. | 
|  | if (!Evaluate(Info.CurrentCall->createTemporary(E->getOpaqueValue(), false), | 
|  | Info, E->getCommon())) | 
|  | return false; | 
|  |  | 
|  | return HandleConditionalOperator(E); | 
|  | } | 
|  |  | 
|  | bool VisitConditionalOperator(const ConditionalOperator *E) { | 
|  | bool IsBcpCall = false; | 
|  | // If the condition (ignoring parens) is a __builtin_constant_p call, | 
|  | // the result is a constant expression if it can be folded without | 
|  | // side-effects. This is an important GNU extension. See GCC PR38377 | 
|  | // for discussion. | 
|  | if (const CallExpr *CallCE = | 
|  | dyn_cast<CallExpr>(E->getCond()->IgnoreParenCasts())) | 
|  | if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p) | 
|  | IsBcpCall = true; | 
|  |  | 
|  | // Always assume __builtin_constant_p(...) ? ... : ... is a potential | 
|  | // constant expression; we can't check whether it's potentially foldable. | 
|  | if (Info.checkingPotentialConstantExpression() && IsBcpCall) | 
|  | return false; | 
|  |  | 
|  | FoldConstant Fold(Info, IsBcpCall); | 
|  | if (!HandleConditionalOperator(E)) { | 
|  | Fold.keepDiagnostics(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool VisitOpaqueValueExpr(const OpaqueValueExpr *E) { | 
|  | if (APValue *Value = Info.CurrentCall->getCurrentTemporary(E)) | 
|  | return DerivedSuccess(*Value, E); | 
|  |  | 
|  | const Expr *Source = E->getSourceExpr(); | 
|  | if (!Source) | 
|  | return Error(E); | 
|  | if (Source == E) { // sanity checking. | 
|  | assert(0 && "OpaqueValueExpr recursively refers to itself"); | 
|  | return Error(E); | 
|  | } | 
|  | return StmtVisitorTy::Visit(Source); | 
|  | } | 
|  |  | 
|  | bool VisitCallExpr(const CallExpr *E) { | 
|  | APValue Result; | 
|  | if (!handleCallExpr(E, Result, nullptr)) | 
|  | return false; | 
|  | return DerivedSuccess(Result, E); | 
|  | } | 
|  |  | 
|  | bool handleCallExpr(const CallExpr *E, APValue &Result, | 
|  | const LValue *ResultSlot) { | 
|  | const Expr *Callee = E->getCallee()->IgnoreParens(); | 
|  | QualType CalleeType = Callee->getType(); | 
|  |  | 
|  | const FunctionDecl *FD = nullptr; | 
|  | LValue *This = nullptr, ThisVal; | 
|  | auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs()); | 
|  | bool HasQualifier = false; | 
|  |  | 
|  | // Extract function decl and 'this' pointer from the callee. | 
|  | if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember)) { | 
|  | const ValueDecl *Member = nullptr; | 
|  | if (const MemberExpr *ME = dyn_cast<MemberExpr>(Callee)) { | 
|  | // Explicit bound member calls, such as x.f() or p->g(); | 
|  | if (!EvaluateObjectArgument(Info, ME->getBase(), ThisVal)) | 
|  | return false; | 
|  | Member = ME->getMemberDecl(); | 
|  | This = &ThisVal; | 
|  | HasQualifier = ME->hasQualifier(); | 
|  | } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Callee)) { | 
|  | // Indirect bound member calls ('.*' or '->*'). | 
|  | Member = HandleMemberPointerAccess(Info, BE, ThisVal, false); | 
|  | if (!Member) return false; | 
|  | This = &ThisVal; | 
|  | } else | 
|  | return Error(Callee); | 
|  |  | 
|  | FD = dyn_cast<FunctionDecl>(Member); | 
|  | if (!FD) | 
|  | return Error(Callee); | 
|  | } else if (CalleeType->isFunctionPointerType()) { | 
|  | LValue Call; | 
|  | if (!EvaluatePointer(Callee, Call, Info)) | 
|  | return false; | 
|  |  | 
|  | if (!Call.getLValueOffset().isZero()) | 
|  | return Error(Callee); | 
|  | FD = dyn_cast_or_null<FunctionDecl>( | 
|  | Call.getLValueBase().dyn_cast<const ValueDecl*>()); | 
|  | if (!FD) | 
|  | return Error(Callee); | 
|  | // Don't call function pointers which have been cast to some other type. | 
|  | // Per DR (no number yet), the caller and callee can differ in noexcept. | 
|  | if (!Info.Ctx.hasSameFunctionTypeIgnoringExceptionSpec( | 
|  | CalleeType->getPointeeType(), FD->getType())) { | 
|  | return Error(E); | 
|  | } | 
|  |  | 
|  | // Overloaded operator calls to member functions are represented as normal | 
|  | // calls with '*this' as the first argument. | 
|  | const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); | 
|  | if (MD && !MD->isStatic()) { | 
|  | // FIXME: When selecting an implicit conversion for an overloaded | 
|  | // operator delete, we sometimes try to evaluate calls to conversion | 
|  | // operators without a 'this' parameter! | 
|  | if (Args.empty()) | 
|  | return Error(E); | 
|  |  | 
|  | if (!EvaluateObjectArgument(Info, Args[0], ThisVal)) | 
|  | return false; | 
|  | This = &ThisVal; | 
|  | Args = Args.slice(1); | 
|  | } else if (MD && MD->isLambdaStaticInvoker()) { | 
|  | // Map the static invoker for the lambda back to the call operator. | 
|  | // Conveniently, we don't have to slice out the 'this' argument (as is | 
|  | // being done for the non-static case), since a static member function | 
|  | // doesn't have an implicit argument passed in. | 
|  | const CXXRecordDecl *ClosureClass = MD->getParent(); | 
|  | assert( | 
|  | ClosureClass->captures_begin() == ClosureClass->captures_end() && | 
|  | "Number of captures must be zero for conversion to function-ptr"); | 
|  |  | 
|  | const CXXMethodDecl *LambdaCallOp = | 
|  | ClosureClass->getLambdaCallOperator(); | 
|  |  | 
|  | // Set 'FD', the function that will be called below, to the call | 
|  | // operator.  If the closure object represents a generic lambda, find | 
|  | // the corresponding specialization of the call operator. | 
|  |  | 
|  | if (ClosureClass->isGenericLambda()) { | 
|  | assert(MD->isFunctionTemplateSpecialization() && | 
|  | "A generic lambda's static-invoker function must be a " | 
|  | "template specialization"); | 
|  | const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs(); | 
|  | FunctionTemplateDecl *CallOpTemplate = | 
|  | LambdaCallOp->getDescribedFunctionTemplate(); | 
|  | void *InsertPos = nullptr; | 
|  | FunctionDecl *CorrespondingCallOpSpecialization = | 
|  | CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos); | 
|  | assert(CorrespondingCallOpSpecialization && | 
|  | "We must always have a function call operator specialization " | 
|  | "that corresponds to our static invoker specialization"); | 
|  | FD = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization); | 
|  | } else | 
|  | FD = LambdaCallOp; | 
|  | } | 
|  |  | 
|  |  | 
|  | } else | 
|  | return Error(E); | 
|  |  | 
|  | if (This && !This->checkSubobject(Info, E, CSK_This)) | 
|  | return false; | 
|  |  | 
|  | // DR1358 allows virtual constexpr functions in some cases. Don't allow | 
|  | // calls to such functions in constant expressions. | 
|  | if (This && !HasQualifier && | 
|  | isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isVirtual()) | 
|  | return Error(E, diag::note_constexpr_virtual_call); | 
|  |  | 
|  | const FunctionDecl *Definition = nullptr; | 
|  | Stmt *Body = FD->getBody(Definition); | 
|  |  | 
|  | if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body) || | 
|  | !HandleFunctionCall(E->getExprLoc(), Definition, This, Args, Body, Info, | 
|  | Result, ResultSlot)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) { | 
|  | return StmtVisitorTy::Visit(E->getInitializer()); | 
|  | } | 
|  | bool VisitInitListExpr(const InitListExpr *E) { | 
|  | if (E->getNumInits() == 0) | 
|  | return DerivedZeroInitialization(E); | 
|  | if (E->getNumInits() == 1) | 
|  | return StmtVisitorTy::Visit(E->getInit(0)); | 
|  | return Error(E); | 
|  | } | 
|  | bool VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { | 
|  | return DerivedZeroInitialization(E); | 
|  | } | 
|  | bool VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { | 
|  | return DerivedZeroInitialization(E); | 
|  | } | 
|  | bool VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { | 
|  | return DerivedZeroInitialization(E); | 
|  | } | 
|  |  | 
|  | /// A member expression where the object is a prvalue is itself a prvalue. | 
|  | bool VisitMemberExpr(const MemberExpr *E) { | 
|  | assert(!E->isArrow() && "missing call to bound member function?"); | 
|  |  | 
|  | APValue Val; | 
|  | if (!Evaluate(Val, Info, E->getBase())) | 
|  | return false; | 
|  |  | 
|  | QualType BaseTy = E->getBase()->getType(); | 
|  |  | 
|  | const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl()); | 
|  | if (!FD) return Error(E); | 
|  | assert(!FD->getType()->isReferenceType() && "prvalue reference?"); | 
|  | assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() == | 
|  | FD->getParent()->getCanonicalDecl() && "record / field mismatch"); | 
|  |  | 
|  | CompleteObject Obj(&Val, BaseTy, true); | 
|  | SubobjectDesignator Designator(BaseTy); | 
|  | Designator.addDeclUnchecked(FD); | 
|  |  | 
|  | APValue Result; | 
|  | return extractSubobject(Info, E, Obj, Designator, Result) && | 
|  | DerivedSuccess(Result, E); | 
|  | } | 
|  |  | 
|  | bool VisitCastExpr(const CastExpr *E) { | 
|  | switch (E->getCastKind()) { | 
|  | default: | 
|  | break; | 
|  |  | 
|  | case CK_AtomicToNonAtomic: { | 
|  | APValue AtomicVal; | 
|  | // This does not need to be done in place even for class/array types: | 
|  | // atomic-to-non-atomic conversion implies copying the object | 
|  | // representation. | 
|  | if (!Evaluate(AtomicVal, Info, E->getSubExpr())) | 
|  | return false; | 
|  | return DerivedSuccess(AtomicVal, E); | 
|  | } | 
|  |  | 
|  | case CK_NoOp: | 
|  | case CK_UserDefinedConversion: | 
|  | return StmtVisitorTy::Visit(E->getSubExpr()); | 
|  |  | 
|  | case CK_LValueToRValue: { | 
|  | LValue LVal; | 
|  | if (!EvaluateLValue(E->getSubExpr(), LVal, Info)) | 
|  | return false; | 
|  | APValue RVal; | 
|  | // Note, we use the subexpression's type in order to retain cv-qualifiers. | 
|  | if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(), | 
|  | LVal, RVal)) | 
|  | return false; | 
|  | return DerivedSuccess(RVal, E); | 
|  | } | 
|  | } | 
|  |  | 
|  | return Error(E); | 
|  | } | 
|  |  | 
|  | bool VisitUnaryPostInc(const UnaryOperator *UO) { | 
|  | return VisitUnaryPostIncDec(UO); | 
|  | } | 
|  | bool VisitUnaryPostDec(const UnaryOperator *UO) { | 
|  | return VisitUnaryPostIncDec(UO); | 
|  | } | 
|  | bool VisitUnaryPostIncDec(const UnaryOperator *UO) { | 
|  | if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure()) | 
|  | return Error(UO); | 
|  |  | 
|  | LValue LVal; | 
|  | if (!EvaluateLValue(UO->getSubExpr(), LVal, Info)) | 
|  | return false; | 
|  | APValue RVal; | 
|  | if (!handleIncDec(this->Info, UO, LVal, UO->getSubExpr()->getType(), | 
|  | UO->isIncrementOp(), &RVal)) | 
|  | return false; | 
|  | return DerivedSuccess(RVal, UO); | 
|  | } | 
|  |  | 
|  | bool VisitStmtExpr(const StmtExpr *E) { | 
|  | // We will have checked the full-expressions inside the statement expression | 
|  | // when they were completed, and don't need to check them again now. | 
|  | if (Info.checkingForOverflow()) | 
|  | return Error(E); | 
|  |  | 
|  | BlockScopeRAII Scope(Info); | 
|  | const CompoundStmt *CS = E->getSubStmt(); | 
|  | if (CS->body_empty()) | 
|  | return true; | 
|  |  | 
|  | for (CompoundStmt::const_body_iterator BI = CS->body_begin(), | 
|  | BE = CS->body_end(); | 
|  | /**/; ++BI) { | 
|  | if (BI + 1 == BE) { | 
|  | const Expr *FinalExpr = dyn_cast<Expr>(*BI); | 
|  | if (!FinalExpr) { | 
|  | Info.FFDiag((*BI)->getBeginLoc(), | 
|  | diag::note_constexpr_stmt_expr_unsupported); | 
|  | return false; | 
|  | } | 
|  | return this->Visit(FinalExpr); | 
|  | } | 
|  |  | 
|  | APValue ReturnValue; | 
|  | StmtResult Result = { ReturnValue, nullptr }; | 
|  | EvalStmtResult ESR = EvaluateStmt(Result, Info, *BI); | 
|  | if (ESR != ESR_Succeeded) { | 
|  | // FIXME: If the statement-expression terminated due to 'return', | 
|  | // 'break', or 'continue', it would be nice to propagate that to | 
|  | // the outer statement evaluation rather than bailing out. | 
|  | if (ESR != ESR_Failed) | 
|  | Info.FFDiag((*BI)->getBeginLoc(), | 
|  | diag::note_constexpr_stmt_expr_unsupported); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Return from function from the loop above."); | 
|  | } | 
|  |  | 
|  | /// Visit a value which is evaluated, but whose value is ignored. | 
|  | void VisitIgnoredValue(const Expr *E) { | 
|  | EvaluateIgnoredValue(Info, E); | 
|  | } | 
|  |  | 
|  | /// Potentially visit a MemberExpr's base expression. | 
|  | void VisitIgnoredBaseExpression(const Expr *E) { | 
|  | // While MSVC doesn't evaluate the base expression, it does diagnose the | 
|  | // presence of side-effecting behavior. | 
|  | if (Info.getLangOpts().MSVCCompat && !E->HasSideEffects(Info.Ctx)) | 
|  | return; | 
|  | VisitIgnoredValue(E); | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // namespace | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Common base class for lvalue and temporary evaluation. | 
|  | //===----------------------------------------------------------------------===// | 
|  | namespace { | 
|  | template<class Derived> | 
|  | class LValueExprEvaluatorBase | 
|  | : public ExprEvaluatorBase<Derived> { | 
|  | protected: | 
|  | LValue &Result; | 
|  | bool InvalidBaseOK; | 
|  | typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy; | 
|  | typedef ExprEvaluatorBase<Derived> ExprEvaluatorBaseTy; | 
|  |  | 
|  | bool Success(APValue::LValueBase B) { | 
|  | Result.set(B); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool evaluatePointer(const Expr *E, LValue &Result) { | 
|  | return EvaluatePointer(E, Result, this->Info, InvalidBaseOK); | 
|  | } | 
|  |  | 
|  | public: | 
|  | LValueExprEvaluatorBase(EvalInfo &Info, LValue &Result, bool InvalidBaseOK) | 
|  | : ExprEvaluatorBaseTy(Info), Result(Result), | 
|  | InvalidBaseOK(InvalidBaseOK) {} | 
|  |  | 
|  | bool Success(const APValue &V, const Expr *E) { | 
|  | Result.setFrom(this->Info.Ctx, V); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool VisitMemberExpr(const MemberExpr *E) { | 
|  | // Handle non-static data members. | 
|  | QualType BaseTy; | 
|  | bool EvalOK; | 
|  | if (E->isArrow()) { | 
|  | EvalOK = evaluatePointer(E->getBase(), Result); | 
|  | BaseTy = E->getBase()->getType()->castAs<PointerType>()->getPointeeType(); | 
|  | } else if (E->getBase()->isRValue()) { | 
|  | assert(E->getBase()->getType()->isRecordType()); | 
|  | EvalOK = EvaluateTemporary(E->getBase(), Result, this->Info); | 
|  | BaseTy = E->getBase()->getType(); | 
|  | } else { | 
|  | EvalOK = this->Visit(E->getBase()); | 
|  | BaseTy = E->getBase()->getType(); | 
|  | } | 
|  | if (!EvalOK) { | 
|  | if (!InvalidBaseOK) | 
|  | return false; | 
|  | Result.setInvalid(E); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | const ValueDecl *MD = E->getMemberDecl(); | 
|  | if (const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl())) { | 
|  | assert(BaseTy->getAs<RecordType>()->getDecl()->getCanonicalDecl() == | 
|  | FD->getParent()->getCanonicalDecl() && "record / field mismatch"); | 
|  | (void)BaseTy; | 
|  | if (!HandleLValueMember(this->Info, E, Result, FD)) | 
|  | return false; | 
|  | } else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(MD)) { | 
|  | if (!HandleLValueIndirectMember(this->Info, E, Result, IFD)) | 
|  | return false; | 
|  | } else | 
|  | return this->Error(E); | 
|  |  | 
|  | if (MD->getType()->isReferenceType()) { | 
|  | APValue RefValue; | 
|  | if (!handleLValueToRValueConversion(this->Info, E, MD->getType(), Result, | 
|  | RefValue)) | 
|  | return false; | 
|  | return Success(RefValue, E); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool VisitBinaryOperator(const BinaryOperator *E) { | 
|  | switch (E->getOpcode()) { | 
|  | default: | 
|  | return ExprEvaluatorBaseTy::VisitBinaryOperator(E); | 
|  |  | 
|  | case BO_PtrMemD: | 
|  | case BO_PtrMemI: | 
|  | return HandleMemberPointerAccess(this->Info, E, Result); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool VisitCastExpr(const CastExpr *E) { | 
|  | switch (E->getCastKind()) { | 
|  | default: | 
|  | return ExprEvaluatorBaseTy::VisitCastExpr(E); | 
|  |  | 
|  | case CK_DerivedToBase: | 
|  | case CK_UncheckedDerivedToBase: | 
|  | if (!this->Visit(E->getSubExpr())) | 
|  | return false; | 
|  |  | 
|  | // Now figure out the necessary offset to add to the base LV to get from | 
|  | // the derived class to the base class. | 
|  | return HandleLValueBasePath(this->Info, E, E->getSubExpr()->getType(), | 
|  | Result); | 
|  | } | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // LValue Evaluation | 
|  | // | 
|  | // This is used for evaluating lvalues (in C and C++), xvalues (in C++11), | 
|  | // function designators (in C), decl references to void objects (in C), and | 
|  | // temporaries (if building with -Wno-address-of-temporary). | 
|  | // | 
|  | // LValue evaluation produces values comprising a base expression of one of the | 
|  | // following types: | 
|  | // - Declarations | 
|  | //  * VarDecl | 
|  | //  * FunctionDecl | 
|  | // - Literals | 
|  | //  * CompoundLiteralExpr in C (and in global scope in C++) | 
|  | //  * StringLiteral | 
|  | //  * CXXTypeidExpr | 
|  | //  * PredefinedExpr | 
|  | //  * ObjCStringLiteralExpr | 
|  | //  * ObjCEncodeExpr | 
|  | //  * AddrLabelExpr | 
|  | //  * BlockExpr | 
|  | //  * CallExpr for a MakeStringConstant builtin | 
|  | // - Locals and temporaries | 
|  | //  * MaterializeTemporaryExpr | 
|  | //  * Any Expr, with a CallIndex indicating the function in which the temporary | 
|  | //    was evaluated, for cases where the MaterializeTemporaryExpr is missing | 
|  | //    from the AST (FIXME). | 
|  | //  * A MaterializeTemporaryExpr that has static storage duration, with no | 
|  | //    CallIndex, for a lifetime-extended temporary. | 
|  | // plus an offset in bytes. | 
|  | //===----------------------------------------------------------------------===// | 
|  | namespace { | 
|  | class LValueExprEvaluator | 
|  | : public LValueExprEvaluatorBase<LValueExprEvaluator> { | 
|  | public: | 
|  | LValueExprEvaluator(EvalInfo &Info, LValue &Result, bool InvalidBaseOK) : | 
|  | LValueExprEvaluatorBaseTy(Info, Result, InvalidBaseOK) {} | 
|  |  | 
|  | bool VisitVarDecl(const Expr *E, const VarDecl *VD); | 
|  | bool VisitUnaryPreIncDec(const UnaryOperator *UO); | 
|  |  | 
|  | bool VisitDeclRefExpr(const DeclRefExpr *E); | 
|  | bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); } | 
|  | bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); | 
|  | bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E); | 
|  | bool VisitMemberExpr(const MemberExpr *E); | 
|  | bool VisitStringLiteral(const StringLiteral *E) { return Success(E); } | 
|  | bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); } | 
|  | bool VisitCXXTypeidExpr(const CXXTypeidExpr *E); | 
|  | bool VisitCXXUuidofExpr(const CXXUuidofExpr *E); | 
|  | bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E); | 
|  | bool VisitUnaryDeref(const UnaryOperator *E); | 
|  | bool VisitUnaryReal(const UnaryOperator *E); | 
|  | bool VisitUnaryImag(const UnaryOperator *E); | 
|  | bool VisitUnaryPreInc(const UnaryOperator *UO) { | 
|  | return VisitUnaryPreIncDec(UO); | 
|  | } | 
|  | bool VisitUnaryPreDec(const UnaryOperator *UO) { | 
|  | return VisitUnaryPreIncDec(UO); | 
|  | } | 
|  | bool VisitBinAssign(const BinaryOperator *BO); | 
|  | bool VisitCompoundAssignOperator(const CompoundAssignOperator *CAO); | 
|  |  | 
|  | bool VisitCastExpr(const CastExpr *E) { | 
|  | switch (E->getCastKind()) { | 
|  | default: | 
|  | return LValueExprEvaluatorBaseTy::VisitCastExpr(E); | 
|  |  | 
|  | case CK_LValueBitCast: | 
|  | this->CCEDiag(E, diag::note_constexpr_invalid_cast) << 2; | 
|  | if (!Visit(E->getSubExpr())) | 
|  | return false; | 
|  | Result.Designator.setInvalid(); | 
|  | return true; | 
|  |  | 
|  | case CK_BaseToDerived: | 
|  | if (!Visit(E->getSubExpr())) | 
|  | return false; | 
|  | return HandleBaseToDerivedCast(Info, E, Result); | 
|  | } | 
|  | } | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | /// Evaluate an expression as an lvalue. This can be legitimately called on | 
|  | /// expressions which are not glvalues, in three cases: | 
|  | ///  * function designators in C, and | 
|  | ///  * "extern void" objects | 
|  | ///  * @selector() expressions in Objective-C | 
|  | static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info, | 
|  | bool InvalidBaseOK) { | 
|  | assert(E->isGLValue() || E->getType()->isFunctionType() || | 
|  | E->getType()->isVoidType() || isa<ObjCSelectorExpr>(E)); | 
|  | return LValueExprEvaluator(Info, Result, InvalidBaseOK).Visit(E); | 
|  | } | 
|  |  | 
|  | bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) { | 
|  | if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(E->getDecl())) | 
|  | return Success(FD); | 
|  | if (const VarDecl *VD = dyn_cast<VarDecl>(E->getDecl())) | 
|  | return VisitVarDecl(E, VD); | 
|  | if (const BindingDecl *BD = dyn_cast<BindingDecl>(E->getDecl())) | 
|  | return Visit(BD->getBinding()); | 
|  | return Error(E); | 
|  | } | 
|  |  | 
|  |  | 
|  | bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) { | 
|  |  | 
|  | // If we are within a lambda's call operator, check whether the 'VD' referred | 
|  | // to within 'E' actually represents a lambda-capture that maps to a | 
|  | // data-member/field within the closure object, and if so, evaluate to the | 
|  | // field or what the field refers to. | 
|  | if (Info.CurrentCall && isLambdaCallOperator(Info.CurrentCall->Callee) && | 
|  | isa<DeclRefExpr>(E) && | 
|  | cast<DeclRefExpr>(E)->refersToEnclosingVariableOrCapture()) { | 
|  | // We don't always have a complete capture-map when checking or inferring if | 
|  | // the function call operator meets the requirements of a constexpr function | 
|  | // - but we don't need to evaluate the captures to determine constexprness | 
|  | // (dcl.constexpr C++17). | 
|  | if (Info.checkingPotentialConstantExpression()) | 
|  | return false; | 
|  |  | 
|  | if (auto *FD = Info.CurrentCall->LambdaCaptureFields.lookup(VD)) { | 
|  | // Start with 'Result' referring to the complete closure object... | 
|  | Result = *Info.CurrentCall->This; | 
|  | // ... then update it to refer to the field of the closure object | 
|  | // that represents the capture. | 
|  | if (!HandleLValueMember(Info, E, Result, FD)) | 
|  | return false; | 
|  | // And if the field is of reference type, update 'Result' to refer to what | 
|  | // the field refers to. | 
|  | if (FD->getType()->isReferenceType()) { | 
|  | APValue RVal; | 
|  | if (!handleLValueToRValueConversion(Info, E, FD->getType(), Result, | 
|  | RVal)) | 
|  | return false; | 
|  | Result.setFrom(Info.Ctx, RVal); | 
|  | } | 
|  | return true; | 
|  | } | 
|  | } | 
|  | CallStackFrame *Frame = nullptr; | 
|  | if (VD->hasLocalStorage() && Info.CurrentCall->Index > 1) { | 
|  | // Only if a local variable was declared in the function currently being | 
|  | // evaluated, do we expect to be able to find its value in the current | 
|  | // frame. (Otherwise it was likely declared in an enclosing context and | 
|  | // could either have a valid evaluatable value (for e.g. a constexpr | 
|  | // variable) or be ill-formed (and trigger an appropriate evaluation | 
|  | // diagnostic)). | 
|  | if (Info.CurrentCall->Callee && | 
|  | Info.CurrentCall->Callee->Equals(VD->getDeclContext())) { | 
|  | Frame = Info.CurrentCall; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!VD->getType()->isReferenceType()) { | 
|  | if (Frame) { | 
|  | Result.set({VD, Frame->Index, | 
|  | Info.CurrentCall->getCurrentTemporaryVersion(VD)}); | 
|  | return true; | 
|  | } | 
|  | return Success(VD); | 
|  | } | 
|  |  | 
|  | APValue *V; | 
|  | if (!evaluateVarDeclInit(Info, E, VD, Frame, V, nullptr)) | 
|  | return false; | 
|  | if (V->isUninit()) { | 
|  | if (!Info.checkingPotentialConstantExpression()) | 
|  | Info.FFDiag(E, diag::note_constexpr_use_uninit_reference); | 
|  | return false; | 
|  | } | 
|  | return Success(*V, E); | 
|  | } | 
|  |  | 
|  | bool LValueExprEvaluator::VisitMaterializeTemporaryExpr( | 
|  | const MaterializeTemporaryExpr *E) { | 
|  | // Walk through the expression to find the materialized temporary itself. | 
|  | SmallVector<const Expr *, 2> CommaLHSs; | 
|  | SmallVector<SubobjectAdjustment, 2> Adjustments; | 
|  | const Expr *Inner = E->GetTemporaryExpr()-> | 
|  | skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); | 
|  |  | 
|  | // If we passed any comma operators, evaluate their LHSs. | 
|  | for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I) | 
|  | if (!EvaluateIgnoredValue(Info, CommaLHSs[I])) | 
|  | return false; | 
|  |  | 
|  | // A materialized temporary with static storage duration can appear within the | 
|  | // result of a constant expression evaluation, so we need to preserve its | 
|  | // value for use outside this evaluation. | 
|  | APValue *Value; | 
|  | if (E->getStorageDuration() == SD_Static) { | 
|  | Value = Info.Ctx.getMaterializedTemporaryValue(E, true); | 
|  | *Value = APValue(); | 
|  | Result.set(E); | 
|  | } else { | 
|  | Value = &createTemporary(E, E->getStorageDuration() == SD_Automatic, Result, | 
|  | *Info.CurrentCall); | 
|  | } | 
|  |  | 
|  | QualType Type = Inner->getType(); | 
|  |  | 
|  | // Materialize the temporary itself. | 
|  | if (!EvaluateInPlace(*Value, Info, Result, Inner) || | 
|  | (E->getStorageDuration() == SD_Static && | 
|  | !CheckConstantExpression(Info, E->getExprLoc(), Type, *Value))) { | 
|  | *Value = APValue(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Adjust our lvalue to refer to the desired subobject. | 
|  | for (unsigned I = Adjustments.size(); I != 0; /**/) { | 
|  | --I; | 
|  | switch (Adjustments[I].Kind) { | 
|  | case SubobjectAdjustment::DerivedToBaseAdjustment: | 
|  | if (!HandleLValueBasePath(Info, Adjustments[I].DerivedToBase.BasePath, | 
|  | Type, Result)) | 
|  | return false; | 
|  | Type = Adjustments[I].DerivedToBase.BasePath->getType(); | 
|  | break; | 
|  |  | 
|  | case SubobjectAdjustment::FieldAdjustment: | 
|  | if (!HandleLValueMember(Info, E, Result, Adjustments[I].Field)) | 
|  | return false; | 
|  | Type = Adjustments[I].Field->getType(); | 
|  | break; | 
|  |  | 
|  | case SubobjectAdjustment::MemberPointerAdjustment: | 
|  | if (!HandleMemberPointerAccess(this->Info, Type, Result, | 
|  | Adjustments[I].Ptr.RHS)) | 
|  | return false; | 
|  | Type = Adjustments[I].Ptr.MPT->getPointeeType(); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool | 
|  | LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) { | 
|  | assert((!Info.getLangOpts().CPlusPlus || E->isFileScope()) && | 
|  | "lvalue compound literal in c++?"); | 
|  | // Defer visiting the literal until the lvalue-to-rvalue conversion. We can | 
|  | // only see this when folding in C, so there's no standard to follow here. | 
|  | return Success(E); | 
|  | } | 
|  |  | 
|  | bool LValueExprEvaluator::VisitCXXTypeidExpr(const CXXTypeidExpr *E) { | 
|  | if (!E->isPotentiallyEvaluated()) | 
|  | return Success(E); | 
|  |  | 
|  | Info.FFDiag(E, diag::note_constexpr_typeid_polymorphic) | 
|  | << E->getExprOperand()->getType() | 
|  | << E->getExprOperand()->getSourceRange(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool LValueExprEvaluator::VisitCXXUuidofExpr(const CXXUuidofExpr *E) { | 
|  | return Success(E); | 
|  | } | 
|  |  | 
|  | bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) { | 
|  | // Handle static data members. | 
|  | if (const VarDecl *VD = dyn_cast<VarDecl>(E->getMemberDecl())) { | 
|  | VisitIgnoredBaseExpression(E->getBase()); | 
|  | return VisitVarDecl(E, VD); | 
|  | } | 
|  |  | 
|  | // Handle static member functions. | 
|  | if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) { | 
|  | if (MD->isStatic()) { | 
|  | VisitIgnoredBaseExpression(E->getBase()); | 
|  | return Success(MD); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Handle non-static data members. | 
|  | return LValueExprEvaluatorBaseTy::VisitMemberExpr(E); | 
|  | } | 
|  |  | 
|  | bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) { | 
|  | // FIXME: Deal with vectors as array subscript bases. | 
|  | if (E->getBase()->getType()->isVectorType()) | 
|  | return Error(E); | 
|  |  | 
|  | bool Success = true; | 
|  | if (!evaluatePointer(E->getBase(), Result)) { | 
|  | if (!Info.noteFailure()) | 
|  | return false; | 
|  | Success = false; | 
|  | } | 
|  |  | 
|  | APSInt Index; | 
|  | if (!EvaluateInteger(E->getIdx(), Index, Info)) | 
|  | return false; | 
|  |  | 
|  | return Success && | 
|  | HandleLValueArrayAdjustment(Info, E, Result, E->getType(), Index); | 
|  | } | 
|  |  | 
|  | bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) { | 
|  | return evaluatePointer(E->getSubExpr(), Result); | 
|  | } | 
|  |  | 
|  | bool LValueExprEvaluator::VisitUnaryReal(const UnaryOperator *E) { | 
|  | if (!Visit(E->getSubExpr())) | 
|  | return false; | 
|  | // __real is a no-op on scalar lvalues. | 
|  | if (E->getSubExpr()->getType()->isAnyComplexType()) | 
|  | HandleLValueComplexElement(Info, E, Result, E->getType(), false); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool LValueExprEvaluator::VisitUnaryImag(const UnaryOperator *E) { | 
|  | assert(E->getSubExpr()->getType()->isAnyComplexType() && | 
|  | "lvalue __imag__ on scalar?"); | 
|  | if (!Visit(E->getSubExpr())) | 
|  | return false; | 
|  | HandleLValueComplexElement(Info, E, Result, E->getType(), true); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool LValueExprEvaluator::VisitUnaryPreIncDec(const UnaryOperator *UO) { | 
|  | if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure()) | 
|  | return Error(UO); | 
|  |  | 
|  | if (!this->Visit(UO->getSubExpr())) | 
|  | return false; | 
|  |  | 
|  | return handleIncDec( | 
|  | this->Info, UO, Result, UO->getSubExpr()->getType(), | 
|  | UO->isIncrementOp(), nullptr); | 
|  | } | 
|  |  | 
|  | bool LValueExprEvaluator::VisitCompoundAssignOperator( | 
|  | const CompoundAssignOperator *CAO) { | 
|  | if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure()) | 
|  | return Error(CAO); | 
|  |  | 
|  | APValue RHS; | 
|  |  | 
|  | // The overall lvalue result is the result of evaluating the LHS. | 
|  | if (!this->Visit(CAO->getLHS())) { | 
|  | if (Info.noteFailure()) | 
|  | Evaluate(RHS, this->Info, CAO->getRHS()); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!Evaluate(RHS, this->Info, CAO->getRHS())) | 
|  | return false; | 
|  |  | 
|  | return handleCompoundAssignment( | 
|  | this->Info, CAO, | 
|  | Result, CAO->getLHS()->getType(), CAO->getComputationLHSType(), | 
|  | CAO->getOpForCompoundAssignment(CAO->getOpcode()), RHS); | 
|  | } | 
|  |  | 
|  | bool LValueExprEvaluator::VisitBinAssign(const BinaryOperator *E) { | 
|  | if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure()) | 
|  | return Error(E); | 
|  |  | 
|  | APValue NewVal; | 
|  |  | 
|  | if (!this->Visit(E->getLHS())) { | 
|  | if (Info.noteFailure()) | 
|  | Evaluate(NewVal, this->Info, E->getRHS()); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!Evaluate(NewVal, this->Info, E->getRHS())) | 
|  | return false; | 
|  |  | 
|  | return handleAssignment(this->Info, E, Result, E->getLHS()->getType(), | 
|  | NewVal); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Pointer Evaluation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// Attempts to compute the number of bytes available at the pointer | 
|  | /// returned by a function with the alloc_size attribute. Returns true if we | 
|  | /// were successful. Places an unsigned number into `Result`. | 
|  | /// | 
|  | /// This expects the given CallExpr to be a call to a function with an | 
|  | /// alloc_size attribute. | 
|  | static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx, | 
|  | const CallExpr *Call, | 
|  | llvm::APInt &Result) { | 
|  | const AllocSizeAttr *AllocSize = getAllocSizeAttr(Call); | 
|  |  | 
|  | assert(AllocSize && AllocSize->getElemSizeParam().isValid()); | 
|  | unsigned SizeArgNo = AllocSize->getElemSizeParam().getASTIndex(); | 
|  | unsigned BitsInSizeT = Ctx.getTypeSize(Ctx.getSizeType()); | 
|  | if (Call->getNumArgs() <= SizeArgNo) | 
|  | return false; | 
|  |  | 
|  | auto EvaluateAsSizeT = [&](const Expr *E, APSInt &Into) { | 
|  | Expr::EvalResult ExprResult; | 
|  | if (!E->EvaluateAsInt(ExprResult, Ctx, Expr::SE_AllowSideEffects)) | 
|  | return false; | 
|  | Into = ExprResult.Val.getInt(); | 
|  | if (Into.isNegative() || !Into.isIntN(BitsInSizeT)) | 
|  | return false; | 
|  | Into = Into.zextOrSelf(BitsInSizeT); | 
|  | return true; | 
|  | }; | 
|  |  | 
|  | APSInt SizeOfElem; | 
|  | if (!EvaluateAsSizeT(Call->getArg(SizeArgNo), SizeOfElem)) | 
|  | return false; | 
|  |  | 
|  | if (!AllocSize->getNumElemsParam().isValid()) { | 
|  | Result = std::move(SizeOfElem); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | APSInt NumberOfElems; | 
|  | unsigned NumArgNo = AllocSize->getNumElemsParam().getASTIndex(); | 
|  | if (!EvaluateAsSizeT(Call->getArg(NumArgNo), NumberOfElems)) | 
|  | return false; | 
|  |  | 
|  | bool Overflow; | 
|  | llvm::APInt BytesAvailable = SizeOfElem.umul_ov(NumberOfElems, Overflow); | 
|  | if (Overflow) | 
|  | return false; | 
|  |  | 
|  | Result = std::move(BytesAvailable); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Convenience function. LVal's base must be a call to an alloc_size | 
|  | /// function. | 
|  | static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx, | 
|  | const LValue &LVal, | 
|  | llvm::APInt &Result) { | 
|  | assert(isBaseAnAllocSizeCall(LVal.getLValueBase()) && | 
|  | "Can't get the size of a non alloc_size function"); | 
|  | const auto *Base = LVal.getLValueBase().get<const Expr *>(); | 
|  | const CallExpr *CE = tryUnwrapAllocSizeCall(Base); | 
|  | return getBytesReturnedByAllocSizeCall(Ctx, CE, Result); | 
|  | } | 
|  |  | 
|  | /// Attempts to evaluate the given LValueBase as the result of a call to | 
|  | /// a function with the alloc_size attribute. If it was possible to do so, this | 
|  | /// function will return true, make Result's Base point to said function call, | 
|  | /// and mark Result's Base as invalid. | 
|  | static bool evaluateLValueAsAllocSize(EvalInfo &Info, APValue::LValueBase Base, | 
|  | LValue &Result) { | 
|  | if (Base.isNull()) | 
|  | return false; | 
|  |  | 
|  | // Because we do no form of static analysis, we only support const variables. | 
|  | // | 
|  | // Additionally, we can't support parameters, nor can we support static | 
|  | // variables (in the latter case, use-before-assign isn't UB; in the former, | 
|  | // we have no clue what they'll be assigned to). | 
|  | const auto *VD = | 
|  | dyn_cast_or_null<VarDecl>(Base.dyn_cast<const ValueDecl *>()); | 
|  | if (!VD || !VD->isLocalVarDecl() || !VD->getType().isConstQualified()) | 
|  | return false; | 
|  |  | 
|  | const Expr *Init = VD->getAnyInitializer(); | 
|  | if (!Init) | 
|  | return false; | 
|  |  | 
|  | const Expr *E = Init->IgnoreParens(); | 
|  | if (!tryUnwrapAllocSizeCall(E)) | 
|  | return false; | 
|  |  | 
|  | // Store E instead of E unwrapped so that the type of the LValue's base is | 
|  | // what the user wanted. | 
|  | Result.setInvalid(E); | 
|  |  | 
|  | QualType Pointee = E->getType()->castAs<PointerType>()->getPointeeType(); | 
|  | Result.addUnsizedArray(Info, E, Pointee); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | class PointerExprEvaluator | 
|  | : public ExprEvaluatorBase<PointerExprEvaluator> { | 
|  | LValue &Result; | 
|  | bool InvalidBaseOK; | 
|  |  | 
|  | bool Success(const Expr *E) { | 
|  | Result.set(E); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool evaluateLValue(const Expr *E, LValue &Result) { | 
|  | return EvaluateLValue(E, Result, Info, InvalidBaseOK); | 
|  | } | 
|  |  | 
|  | bool evaluatePointer(const Expr *E, LValue &Result) { | 
|  | return EvaluatePointer(E, Result, Info, InvalidBaseOK); | 
|  | } | 
|  |  | 
|  | bool visitNonBuiltinCallExpr(const CallExpr *E); | 
|  | public: | 
|  |  | 
|  | PointerExprEvaluator(EvalInfo &info, LValue &Result, bool InvalidBaseOK) | 
|  | : ExprEvaluatorBaseTy(info), Result(Result), | 
|  | InvalidBaseOK(InvalidBaseOK) {} | 
|  |  | 
|  | bool Success(const APValue &V, const Expr *E) { | 
|  | Result.setFrom(Info.Ctx, V); | 
|  | return true; | 
|  | } | 
|  | bool ZeroInitialization(const Expr *E) { | 
|  | auto TargetVal = Info.Ctx.getTargetNullPointerValue(E->getType()); | 
|  | Result.setNull(E->getType(), TargetVal); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool VisitBinaryOperator(const BinaryOperator *E); | 
|  | bool VisitCastExpr(const CastExpr* E); | 
|  | bool VisitUnaryAddrOf(const UnaryOperator *E); | 
|  | bool VisitObjCStringLiteral(const ObjCStringLiteral *E) | 
|  | { return Success(E); } | 
|  | bool VisitObjCBoxedExpr(const ObjCBoxedExpr *E) { | 
|  | if (E->isExpressibleAsConstantInitializer()) | 
|  | return Success(E); | 
|  | if (Info.noteFailure()) | 
|  | EvaluateIgnoredValue(Info, E->getSubExpr()); | 
|  | return Error(E); | 
|  | } | 
|  | bool VisitAddrLabelExpr(const AddrLabelExpr *E) | 
|  | { return Success(E); } | 
|  | bool VisitCallExpr(const CallExpr *E); | 
|  | bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp); | 
|  | bool VisitBlockExpr(const BlockExpr *E) { | 
|  | if (!E->getBlockDecl()->hasCaptures()) | 
|  | return Success(E); | 
|  | return Error(E); | 
|  | } | 
|  | bool VisitCXXThisExpr(const CXXThisExpr *E) { | 
|  | // Can't look at 'this' when checking a potential constant expression. | 
|  | if (Info.checkingPotentialConstantExpression()) | 
|  | return false; | 
|  | if (!Info.CurrentCall->This) { | 
|  | if (Info.getLangOpts().CPlusPlus11) | 
|  | Info.FFDiag(E, diag::note_constexpr_this) << E->isImplicit(); | 
|  | else | 
|  | Info.FFDiag(E); | 
|  | return false; | 
|  | } | 
|  | Result = *Info.CurrentCall->This; | 
|  | // If we are inside a lambda's call operator, the 'this' expression refers | 
|  | // to the enclosing '*this' object (either by value or reference) which is | 
|  | // either copied into the closure object's field that represents the '*this' | 
|  | // or refers to '*this'. | 
|  | if (isLambdaCallOperator(Info.CurrentCall->Callee)) { | 
|  | // Update 'Result' to refer to the data member/field of the closure object | 
|  | // that represents the '*this' capture. | 
|  | if (!HandleLValueMember(Info, E, Result, | 
|  | Info.CurrentCall->LambdaThisCaptureField)) | 
|  | return false; | 
|  | // If we captured '*this' by reference, replace the field with its referent. | 
|  | if (Info.CurrentCall->LambdaThisCaptureField->getType() | 
|  | ->isPointerType()) { | 
|  | APValue RVal; | 
|  | if (!handleLValueToRValueConversion(Info, E, E->getType(), Result, | 
|  | RVal)) | 
|  | return false; | 
|  |  | 
|  | Result.setFrom(Info.Ctx, RVal); | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // FIXME: Missing: @protocol, @selector | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info, | 
|  | bool InvalidBaseOK) { | 
|  | assert(E->isRValue() && E->getType()->hasPointerRepresentation()); | 
|  | return PointerExprEvaluator(Info, Result, InvalidBaseOK).Visit(E); | 
|  | } | 
|  |  | 
|  | bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { | 
|  | if (E->getOpcode() != BO_Add && | 
|  | E->getOpcode() != BO_Sub) | 
|  | return ExprEvaluatorBaseTy::VisitBinaryOperator(E); | 
|  |  | 
|  | const Expr *PExp = E->getLHS(); | 
|  | const Expr *IExp = E->getRHS(); | 
|  | if (IExp->getType()->isPointerType()) | 
|  | std::swap(PExp, IExp); | 
|  |  | 
|  | bool EvalPtrOK = evaluatePointer(PExp, Result); | 
|  | if (!EvalPtrOK && !Info.noteFailure()) | 
|  | return false; | 
|  |  | 
|  | llvm::APSInt Offset; | 
|  | if (!EvaluateInteger(IExp, Offset, Info) || !EvalPtrOK) | 
|  | return false; | 
|  |  | 
|  | if (E->getOpcode() == BO_Sub) | 
|  | negateAsSigned(Offset); | 
|  |  | 
|  | QualType Pointee = PExp->getType()->castAs<PointerType>()->getPointeeType(); | 
|  | return HandleLValueArrayAdjustment(Info, E, Result, Pointee, Offset); | 
|  | } | 
|  |  | 
|  | bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) { | 
|  | return evaluateLValue(E->getSubExpr(), Result); | 
|  | } | 
|  |  | 
|  | bool PointerExprEvaluator::VisitCastExpr(const CastExpr *E) { | 
|  | const Expr *SubExpr = E->getSubExpr(); | 
|  |  | 
|  | switch (E->getCastKind()) { | 
|  | default: | 
|  | break; | 
|  |  | 
|  | case CK_BitCast: | 
|  | case CK_CPointerToObjCPointerCast: | 
|  | case CK_BlockPointerToObjCPointerCast: | 
|  | case CK_AnyPointerToBlockPointerCast: | 
|  | case CK_AddressSpaceConversion: | 
|  | if (!Visit(SubExpr)) | 
|  | return false; | 
|  | // Bitcasts to cv void* are static_casts, not reinterpret_casts, so are | 
|  | // permitted in constant expressions in C++11. Bitcasts from cv void* are | 
|  | // also static_casts, but we disallow them as a resolution to DR1312. | 
|  | if (!E->getType()->isVoidPointerType()) { | 
|  | Result.Designator.setInvalid(); | 
|  | if (SubExpr->getType()->isVoidPointerType()) | 
|  | CCEDiag(E, diag::note_constexpr_invalid_cast) | 
|  | << 3 << SubExpr->getType(); | 
|  | else | 
|  | CCEDiag(E, diag::note_constexpr_invalid_cast) << 2; | 
|  | } | 
|  | if (E->getCastKind() == CK_AddressSpaceConversion && Result.IsNullPtr) | 
|  | ZeroInitialization(E); | 
|  | return true; | 
|  |  | 
|  | case CK_DerivedToBase: | 
|  | case CK_UncheckedDerivedToBase: | 
|  | if (!evaluatePointer(E->getSubExpr(), Result)) | 
|  | return false; | 
|  | if (!Result.Base && Result.Offset.isZero()) | 
|  | return true; | 
|  |  | 
|  | // Now figure out the necessary offset to add to the base LV to get from | 
|  | // the derived class to the base class. | 
|  | return HandleLValueBasePath(Info, E, E->getSubExpr()->getType()-> | 
|  | castAs<PointerType>()->getPointeeType(), | 
|  | Result); | 
|  |  | 
|  | case CK_BaseToDerived: | 
|  | if (!Visit(E->getSubExpr())) | 
|  | return false; | 
|  | if (!Result.Base && Result.Offset.isZero()) | 
|  | return true; | 
|  | return HandleBaseToDerivedCast(Info, E, Result); | 
|  |  | 
|  | case CK_NullToPointer: | 
|  | VisitIgnoredValue(E->getSubExpr()); | 
|  | return ZeroInitialization(E); | 
|  |  | 
|  | case CK_IntegralToPointer: { | 
|  | CCEDiag(E, diag::note_constexpr_invalid_cast) << 2; | 
|  |  | 
|  | APValue Value; | 
|  | if (!EvaluateIntegerOrLValue(SubExpr, Value, Info)) | 
|  | break; | 
|  |  | 
|  | if (Value.isInt()) { | 
|  | unsigned Size = Info.Ctx.getTypeSize(E->getType()); | 
|  | uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue(); | 
|  | Result.Base = (Expr*)nullptr; | 
|  | Result.InvalidBase = false; | 
|  | Result.Offset = CharUnits::fromQuantity(N); | 
|  | Result.Designator.setInvalid(); | 
|  | Result.IsNullPtr = false; | 
|  | return true; | 
|  | } else { | 
|  | // Cast is of an lvalue, no need to change value. | 
|  | Result.setFrom(Info.Ctx, Value); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | case CK_ArrayToPointerDecay: { | 
|  | if (SubExpr->isGLValue()) { | 
|  | if (!evaluateLValue(SubExpr, Result)) | 
|  | return false; | 
|  | } else { | 
|  | APValue &Value = createTemporary(SubExpr, false, Result, | 
|  | *Info.CurrentCall); | 
|  | if (!EvaluateInPlace(Value, Info, Result, SubExpr)) | 
|  | return false; | 
|  | } | 
|  | // The result is a pointer to the first element of the array. | 
|  | auto *AT = Info.Ctx.getAsArrayType(SubExpr->getType()); | 
|  | if (auto *CAT = dyn_cast<ConstantArrayType>(AT)) | 
|  | Result.addArray(Info, E, CAT); | 
|  | else | 
|  | Result.addUnsizedArray(Info, E, AT->getElementType()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case CK_FunctionToPointerDecay: | 
|  | return evaluateLValue(SubExpr, Result); | 
|  |  | 
|  | case CK_LValueToRValue: { | 
|  | LValue LVal; | 
|  | if (!evaluateLValue(E->getSubExpr(), LVal)) | 
|  | return false; | 
|  |  | 
|  | APValue RVal; | 
|  | // Note, we use the subexpression's type in order to retain cv-qualifiers. | 
|  | if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(), | 
|  | LVal, RVal)) | 
|  | return InvalidBaseOK && | 
|  | evaluateLValueAsAllocSize(Info, LVal.Base, Result); | 
|  | return Success(RVal, E); | 
|  | } | 
|  | } | 
|  |  | 
|  | return ExprEvaluatorBaseTy::VisitCastExpr(E); | 
|  | } | 
|  |  | 
|  | static CharUnits GetAlignOfType(EvalInfo &Info, QualType T, | 
|  | UnaryExprOrTypeTrait ExprKind) { | 
|  | // C++ [expr.alignof]p3: | 
|  | //     When alignof is applied to a reference type, the result is the | 
|  | //     alignment of the referenced type. | 
|  | if (const ReferenceType *Ref = T->getAs<ReferenceType>()) | 
|  | T = Ref->getPointeeType(); | 
|  |  | 
|  | if (T.getQualifiers().hasUnaligned()) | 
|  | return CharUnits::One(); | 
|  |  | 
|  | const bool AlignOfReturnsPreferred = | 
|  | Info.Ctx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7; | 
|  |  | 
|  | // __alignof is defined to return the preferred alignment. | 
|  | // Before 8, clang returned the preferred alignment for alignof and _Alignof | 
|  | // as well. | 
|  | if (ExprKind == UETT_PreferredAlignOf || AlignOfReturnsPreferred) | 
|  | return Info.Ctx.toCharUnitsFromBits( | 
|  | Info.Ctx.getPreferredTypeAlign(T.getTypePtr())); | 
|  | // alignof and _Alignof are defined to return the ABI alignment. | 
|  | else if (ExprKind == UETT_AlignOf) | 
|  | return Info.Ctx.getTypeAlignInChars(T.getTypePtr()); | 
|  | else | 
|  | llvm_unreachable("GetAlignOfType on a non-alignment ExprKind"); | 
|  | } | 
|  |  | 
|  | static CharUnits GetAlignOfExpr(EvalInfo &Info, const Expr *E, | 
|  | UnaryExprOrTypeTrait ExprKind) { | 
|  | E = E->IgnoreParens(); | 
|  |  | 
|  | // The kinds of expressions that we have special-case logic here for | 
|  | // should be kept up to date with the special checks for those | 
|  | // expressions in Sema. | 
|  |  | 
|  | // alignof decl is always accepted, even if it doesn't make sense: we default | 
|  | // to 1 in those cases. | 
|  | if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) | 
|  | return Info.Ctx.getDeclAlign(DRE->getDecl(), | 
|  | /*RefAsPointee*/true); | 
|  |  | 
|  | if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) | 
|  | return Info.Ctx.getDeclAlign(ME->getMemberDecl(), | 
|  | /*RefAsPointee*/true); | 
|  |  | 
|  | return GetAlignOfType(Info, E->getType(), ExprKind); | 
|  | } | 
|  |  | 
|  | // To be clear: this happily visits unsupported builtins. Better name welcomed. | 
|  | bool PointerExprEvaluator::visitNonBuiltinCallExpr(const CallExpr *E) { | 
|  | if (ExprEvaluatorBaseTy::VisitCallExpr(E)) | 
|  | return true; | 
|  |  | 
|  | if (!(InvalidBaseOK && getAllocSizeAttr(E))) | 
|  | return false; | 
|  |  | 
|  | Result.setInvalid(E); | 
|  | QualType PointeeTy = E->getType()->castAs<PointerType>()->getPointeeType(); | 
|  | Result.addUnsizedArray(Info, E, PointeeTy); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) { | 
|  | if (IsStringLiteralCall(E)) | 
|  | return Success(E); | 
|  |  | 
|  | if (unsigned BuiltinOp = E->getBuiltinCallee()) | 
|  | return VisitBuiltinCallExpr(E, BuiltinOp); | 
|  |  | 
|  | return visitNonBuiltinCallExpr(E); | 
|  | } | 
|  |  | 
|  | bool PointerExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E, | 
|  | unsigned BuiltinOp) { | 
|  | switch (BuiltinOp) { | 
|  | case Builtin::BI__builtin_addressof: | 
|  | return evaluateLValue(E->getArg(0), Result); | 
|  | case Builtin::BI__builtin_assume_aligned: { | 
|  | // We need to be very careful here because: if the pointer does not have the | 
|  | // asserted alignment, then the behavior is undefined, and undefined | 
|  | // behavior is non-constant. | 
|  | if (!evaluatePointer(E->getArg(0), Result)) | 
|  | return false; | 
|  |  | 
|  | LValue OffsetResult(Result); | 
|  | APSInt Alignment; | 
|  | if (!EvaluateInteger(E->getArg(1), Alignment, Info)) | 
|  | return false; | 
|  | CharUnits Align = CharUnits::fromQuantity(Alignment.getZExtValue()); | 
|  |  | 
|  | if (E->getNumArgs() > 2) { | 
|  | APSInt Offset; | 
|  | if (!EvaluateInteger(E->getArg(2), Offset, Info)) | 
|  | return false; | 
|  |  | 
|  | int64_t AdditionalOffset = -Offset.getZExtValue(); | 
|  | OffsetResult.Offset += CharUnits::fromQuantity(AdditionalOffset); | 
|  | } | 
|  |  | 
|  | // If there is a base object, then it must have the correct alignment. | 
|  | if (OffsetResult.Base) { | 
|  | CharUnits BaseAlignment; | 
|  | if (const ValueDecl *VD = | 
|  | OffsetResult.Base.dyn_cast<const ValueDecl*>()) { | 
|  | BaseAlignment = Info.Ctx.getDeclAlign(VD); | 
|  | } else { | 
|  | BaseAlignment = GetAlignOfExpr( | 
|  | Info, OffsetResult.Base.get<const Expr *>(), UETT_AlignOf); | 
|  | } | 
|  |  | 
|  | if (BaseAlignment < Align) { | 
|  | Result.Designator.setInvalid(); | 
|  | // FIXME: Add support to Diagnostic for long / long long. | 
|  | CCEDiag(E->getArg(0), | 
|  | diag::note_constexpr_baa_insufficient_alignment) << 0 | 
|  | << (unsigned)BaseAlignment.getQuantity() | 
|  | << (unsigned)Align.getQuantity(); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // The offset must also have the correct alignment. | 
|  | if (OffsetResult.Offset.alignTo(Align) != OffsetResult.Offset) { | 
|  | Result.Designator.setInvalid(); | 
|  |  | 
|  | (OffsetResult.Base | 
|  | ? CCEDiag(E->getArg(0), | 
|  | diag::note_constexpr_baa_insufficient_alignment) << 1 | 
|  | : CCEDiag(E->getArg(0), | 
|  | diag::note_constexpr_baa_value_insufficient_alignment)) | 
|  | << (int)OffsetResult.Offset.getQuantity() | 
|  | << (unsigned)Align.getQuantity(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  | case Builtin::BI__builtin_launder: | 
|  | return evaluatePointer(E->getArg(0), Result); | 
|  | case Builtin::BIstrchr: | 
|  | case Builtin::BIwcschr: | 
|  | case Builtin::BImemchr: | 
|  | case Builtin::BIwmemchr: | 
|  | if (Info.getLangOpts().CPlusPlus11) | 
|  | Info.CCEDiag(E, diag::note_constexpr_invalid_function) | 
|  | << /*isConstexpr*/0 << /*isConstructor*/0 | 
|  | << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'"); | 
|  | else | 
|  | Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr); | 
|  | LLVM_FALLTHROUGH; | 
|  | case Builtin::BI__builtin_strchr: | 
|  | case Builtin::BI__builtin_wcschr: | 
|  | case Builtin::BI__builtin_memchr: | 
|  | case Builtin::BI__builtin_char_memchr: | 
|  | case Builtin::BI__builtin_wmemchr: { | 
|  | if (!Visit(E->getArg(0))) | 
|  | return false; | 
|  | APSInt Desired; | 
|  | if (!EvaluateInteger(E->getArg(1), Desired, Info)) | 
|  | return false; | 
|  | uint64_t MaxLength = uint64_t(-1); | 
|  | if (BuiltinOp != Builtin::BIstrchr && | 
|  | BuiltinOp != Builtin::BIwcschr && | 
|  | BuiltinOp != Builtin::BI__builtin_strchr && | 
|  | BuiltinOp != Builtin::BI__builtin_wcschr) { | 
|  | APSInt N; | 
|  | if (!EvaluateInteger(E->getArg(2), N, Info)) | 
|  | return false; | 
|  | MaxLength = N.getExtValue(); | 
|  | } | 
|  | // We cannot find the value if there are no candidates to match against. | 
|  | if (MaxLength == 0u) | 
|  | return ZeroInitialization(E); | 
|  | if (!Result.checkNullPointerForFoldAccess(Info, E, AK_Read) || | 
|  | Result.Designator.Invalid) | 
|  | return false; | 
|  | QualType CharTy = Result.Designator.getType(Info.Ctx); | 
|  | bool IsRawByte = BuiltinOp == Builtin::BImemchr || | 
|  | BuiltinOp == Builtin::BI__builtin_memchr; | 
|  | assert(IsRawByte || | 
|  | Info.Ctx.hasSameUnqualifiedType( | 
|  | CharTy, E->getArg(0)->getType()->getPointeeType())); | 
|  | // Pointers to const void may point to objects of incomplete type. | 
|  | if (IsRawByte && CharTy->isIncompleteType()) { | 
|  | Info.FFDiag(E, diag::note_constexpr_ltor_incomplete_type) << CharTy; | 
|  | return false; | 
|  | } | 
|  | // Give up on byte-oriented matching against multibyte elements. | 
|  | // FIXME: We can compare the bytes in the correct order. | 
|  | if (IsRawByte && Info.Ctx.getTypeSizeInChars(CharTy) != CharUnits::One()) | 
|  | return false; | 
|  | // Figure out what value we're actually looking for (after converting to | 
|  | // the corresponding unsigned type if necessary). | 
|  | uint64_t DesiredVal; | 
|  | bool StopAtNull = false; | 
|  | switch (BuiltinOp) { | 
|  | case Builtin::BIstrchr: | 
|  | case Builtin::BI__builtin_strchr: | 
|  | // strchr compares directly to the passed integer, and therefore | 
|  | // always fails if given an int that is not a char. | 
|  | if (!APSInt::isSameValue(HandleIntToIntCast(Info, E, CharTy, | 
|  | E->getArg(1)->getType(), | 
|  | Desired), | 
|  | Desired)) | 
|  | return ZeroInitialization(E); | 
|  | StopAtNull = true; | 
|  | LLVM_FALLTHROUGH; | 
|  | case Builtin::BImemchr: | 
|  | case Builtin::BI__builtin_memchr: | 
|  | case Builtin::BI__builtin_char_memchr: | 
|  | // memchr compares by converting both sides to unsigned char. That's also | 
|  | // correct for strchr if we get this far (to cope with plain char being | 
|  | // unsigned in the strchr case). | 
|  | DesiredVal = Desired.trunc(Info.Ctx.getCharWidth()).getZExtValue(); | 
|  | break; | 
|  |  | 
|  | case Builtin::BIwcschr: | 
|  | case Builtin::BI__builtin_wcschr: | 
|  | StopAtNull = true; | 
|  | LLVM_FALLTHROUGH; | 
|  | case Builtin::BIwmemchr: | 
|  | case Builtin::BI__builtin_wmemchr: | 
|  | // wcschr and wmemchr are given a wchar_t to look for. Just use it. | 
|  | DesiredVal = Desired.getZExtValue(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | for (; MaxLength; --MaxLength) { | 
|  | APValue Char; | 
|  | if (!handleLValueToRValueConversion(Info, E, CharTy, Result, Char) || | 
|  | !Char.isInt()) | 
|  | return false; | 
|  | if (Char.getInt().getZExtValue() == DesiredVal) | 
|  | return true; | 
|  | if (StopAtNull && !Char.getInt()) | 
|  | break; | 
|  | if (!HandleLValueArrayAdjustment(Info, E, Result, CharTy, 1)) | 
|  | return false; | 
|  | } | 
|  | // Not found: return nullptr. | 
|  | return ZeroInitialization(E); | 
|  | } | 
|  |  | 
|  | case Builtin::BImemcpy: | 
|  | case Builtin::BImemmove: | 
|  | case Builtin::BIwmemcpy: | 
|  | case Builtin::BIwmemmove: | 
|  | if (Info.getLangOpts().CPlusPlus11) | 
|  | Info.CCEDiag(E, diag::note_constexpr_invalid_function) | 
|  | << /*isConstexpr*/0 << /*isConstructor*/0 | 
|  | << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'"); | 
|  | else | 
|  | Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr); | 
|  | LLVM_FALLTHROUGH; | 
|  | case Builtin::BI__builtin_memcpy: | 
|  | case Builtin::BI__builtin_memmove: | 
|  | case Builtin::BI__builtin_wmemcpy: | 
|  | case Builtin::BI__builtin_wmemmove: { | 
|  | bool WChar = BuiltinOp == Builtin::BIwmemcpy || | 
|  | BuiltinOp == Builtin::BIwmemmove || | 
|  | BuiltinOp == Builtin::BI__builtin_wmemcpy || | 
|  | BuiltinOp == Builtin::BI__builtin_wmemmove; | 
|  | bool Move = BuiltinOp == Builtin::BImemmove || | 
|  | BuiltinOp == Builtin::BIwmemmove || | 
|  | BuiltinOp == Builtin::BI__builtin_memmove || | 
|  | BuiltinOp == Builtin::BI__builtin_wmemmove; | 
|  |  | 
|  | // The result of mem* is the first argument. | 
|  | if (!Visit(E->getArg(0))) | 
|  | return false; | 
|  | LValue Dest = Result; | 
|  |  | 
|  | LValue Src; | 
|  | if (!EvaluatePointer(E->getArg(1), Src, Info)) | 
|  | return false; | 
|  |  | 
|  | APSInt N; | 
|  | if (!EvaluateInteger(E->getArg(2), N, Info)) | 
|  | return false; | 
|  | assert(!N.isSigned() && "memcpy and friends take an unsigned size"); | 
|  |  | 
|  | // If the size is zero, we treat this as always being a valid no-op. | 
|  | // (Even if one of the src and dest pointers is null.) | 
|  | if (!N) | 
|  | return true; | 
|  |  | 
|  | // Otherwise, if either of the operands is null, we can't proceed. Don't | 
|  | // try to determine the type of the copied objects, because there aren't | 
|  | // any. | 
|  | if (!Src.Base || !Dest.Base) { | 
|  | APValue Val; | 
|  | (!Src.Base ? Src : Dest).moveInto(Val); | 
|  | Info.FFDiag(E, diag::note_constexpr_memcpy_null) | 
|  | << Move << WChar << !!Src.Base | 
|  | << Val.getAsString(Info.Ctx, E->getArg(0)->getType()); | 
|  | return false; | 
|  | } | 
|  | if (Src.Designator.Invalid || Dest.Designator.Invalid) | 
|  | return false; | 
|  |  | 
|  | // We require that Src and Dest are both pointers to arrays of | 
|  | // trivially-copyable type. (For the wide version, the designator will be | 
|  | // invalid if the designated object is not a wchar_t.) | 
|  | QualType T = Dest.Designator.getType(Info.Ctx); | 
|  | QualType SrcT = Src.Designator.getType(Info.Ctx); | 
|  | if (!Info.Ctx.hasSameUnqualifiedType(T, SrcT)) { | 
|  | Info.FFDiag(E, diag::note_constexpr_memcpy_type_pun) << Move << SrcT << T; | 
|  | return false; | 
|  | } | 
|  | if (T->isIncompleteType()) { | 
|  | Info.FFDiag(E, diag::note_constexpr_memcpy_incomplete_type) << Move << T; | 
|  | return false; | 
|  | } | 
|  | if (!T.isTriviallyCopyableType(Info.Ctx)) { | 
|  | Info.FFDiag(E, diag::note_constexpr_memcpy_nontrivial) << Move << T; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Figure out how many T's we're copying. | 
|  | uint64_t TSize = Info.Ctx.getTypeSizeInChars(T).getQuantity(); | 
|  | if (!WChar) { | 
|  | uint64_t Remainder; | 
|  | llvm::APInt OrigN = N; | 
|  | llvm::APInt::udivrem(OrigN, TSize, N, Remainder); | 
|  | if (Remainder) { | 
|  | Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported) | 
|  | << Move << WChar << 0 << T << OrigN.toString(10, /*Signed*/false) | 
|  | << (unsigned)TSize; | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check that the copying will remain within the arrays, just so that we | 
|  | // can give a more meaningful diagnostic. This implicitly also checks that | 
|  | // N fits into 64 bits. | 
|  | uint64_t RemainingSrcSize = Src.Designator.validIndexAdjustments().second; | 
|  | uint64_t RemainingDestSize = Dest.Designator.validIndexAdjustments().second; | 
|  | if (N.ugt(RemainingSrcSize) || N.ugt(RemainingDestSize)) { | 
|  | Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported) | 
|  | << Move << WChar << (N.ugt(RemainingSrcSize) ? 1 : 2) << T | 
|  | << N.toString(10, /*Signed*/false); | 
|  | return false; | 
|  | } | 
|  | uint64_t NElems = N.getZExtValue(); | 
|  | uint64_t NBytes = NElems * TSize; | 
|  |  | 
|  | // Check for overlap. | 
|  | int Direction = 1; | 
|  | if (HasSameBase(Src, Dest)) { | 
|  | uint64_t SrcOffset = Src.getLValueOffset().getQuantity(); | 
|  | uint64_t DestOffset = Dest.getLValueOffset().getQuantity(); | 
|  | if (DestOffset >= SrcOffset && DestOffset - SrcOffset < NBytes) { | 
|  | // Dest is inside the source region. | 
|  | if (!Move) { | 
|  | Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar; | 
|  | return false; | 
|  | } | 
|  | // For memmove and friends, copy backwards. | 
|  | if (!HandleLValueArrayAdjustment(Info, E, Src, T, NElems - 1) || | 
|  | !HandleLValueArrayAdjustment(Info, E, Dest, T, NElems - 1)) | 
|  | return false; | 
|  | Direction = -1; | 
|  | } else if (!Move && SrcOffset >= DestOffset && | 
|  | SrcOffset - DestOffset < NBytes) { | 
|  | // Src is inside the destination region for memcpy: invalid. | 
|  | Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar; | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | while (true) { | 
|  | APValue Val; | 
|  | if (!handleLValueToRValueConversion(Info, E, T, Src, Val) || | 
|  | !handleAssignment(Info, E, Dest, T, Val)) | 
|  | return false; | 
|  | // Do not iterate past the last element; if we're copying backwards, that | 
|  | // might take us off the start of the array. | 
|  | if (--NElems == 0) | 
|  | return true; | 
|  | if (!HandleLValueArrayAdjustment(Info, E, Src, T, Direction) || | 
|  | !HandleLValueArrayAdjustment(Info, E, Dest, T, Direction)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | default: | 
|  | return visitNonBuiltinCallExpr(E); | 
|  | } | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Member Pointer Evaluation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | namespace { | 
|  | class MemberPointerExprEvaluator | 
|  | : public ExprEvaluatorBase<MemberPointerExprEvaluator> { | 
|  | MemberPtr &Result; | 
|  |  | 
|  | bool Success(const ValueDecl *D) { | 
|  | Result = MemberPtr(D); | 
|  | return true; | 
|  | } | 
|  | public: | 
|  |  | 
|  | MemberPointerExprEvaluator(EvalInfo &Info, MemberPtr &Result) | 
|  | : ExprEvaluatorBaseTy(Info), Result(Result) {} | 
|  |  | 
|  | bool Success(const APValue &V, const Expr *E) { | 
|  | Result.setFrom(V); | 
|  | return true; | 
|  | } | 
|  | bool ZeroInitialization(const Expr *E) { | 
|  | return Success((const ValueDecl*)nullptr); | 
|  | } | 
|  |  | 
|  | bool VisitCastExpr(const CastExpr *E); | 
|  | bool VisitUnaryAddrOf(const UnaryOperator *E); | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result, | 
|  | EvalInfo &Info) { | 
|  | assert(E->isRValue() && E->getType()->isMemberPointerType()); | 
|  | return MemberPointerExprEvaluator(Info, Result).Visit(E); | 
|  | } | 
|  |  | 
|  | bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr *E) { | 
|  | switch (E->getCastKind()) { | 
|  | default: | 
|  | return ExprEvaluatorBaseTy::VisitCastExpr(E); | 
|  |  | 
|  | case CK_NullToMemberPointer: | 
|  | VisitIgnoredValue(E->getSubExpr()); | 
|  | return ZeroInitialization(E); | 
|  |  | 
|  | case CK_BaseToDerivedMemberPointer: { | 
|  | if (!Visit(E->getSubExpr())) | 
|  | return false; | 
|  | if (E->path_empty()) | 
|  | return true; | 
|  | // Base-to-derived member pointer casts store the path in derived-to-base | 
|  | // order, so iterate backwards. The CXXBaseSpecifier also provides us with | 
|  | // the wrong end of the derived->base arc, so stagger the path by one class. | 
|  | typedef std::reverse_iterator<CastExpr::path_const_iterator> ReverseIter; | 
|  | for (ReverseIter PathI(E->path_end() - 1), PathE(E->path_begin()); | 
|  | PathI != PathE; ++PathI) { | 
|  | assert(!(*PathI)->isVirtual() && "memptr cast through vbase"); | 
|  | const CXXRecordDecl *Derived = (*PathI)->getType()->getAsCXXRecordDecl(); | 
|  | if (!Result.castToDerived(Derived)) | 
|  | return Error(E); | 
|  | } | 
|  | const Type *FinalTy = E->getType()->castAs<MemberPointerType>()->getClass(); | 
|  | if (!Result.castToDerived(FinalTy->getAsCXXRecordDecl())) | 
|  | return Error(E); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case CK_DerivedToBaseMemberPointer: | 
|  | if (!Visit(E->getSubExpr())) | 
|  | return false; | 
|  | for (CastExpr::path_const_iterator PathI = E->path_begin(), | 
|  | PathE = E->path_end(); PathI != PathE; ++PathI) { | 
|  | assert(!(*PathI)->isVirtual() && "memptr cast through vbase"); | 
|  | const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl(); | 
|  | if (!Result.castToBase(Base)) | 
|  | return Error(E); | 
|  | } | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) { | 
|  | // C++11 [expr.unary.op]p3 has very strict rules on how the address of a | 
|  | // member can be formed. | 
|  | return Success(cast<DeclRefExpr>(E->getSubExpr())->getDecl()); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Record Evaluation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | namespace { | 
|  | class RecordExprEvaluator | 
|  | : public ExprEvaluatorBase<RecordExprEvaluator> { | 
|  | const LValue &This; | 
|  | APValue &Result; | 
|  | public: | 
|  |  | 
|  | RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result) | 
|  | : ExprEvaluatorBaseTy(info), This(This), Result(Result) {} | 
|  |  | 
|  | bool Success(const APValue &V, const Expr *E) { | 
|  | Result = V; | 
|  | return true; | 
|  | } | 
|  | bool ZeroInitialization(const Expr *E) { | 
|  | return ZeroInitialization(E, E->getType()); | 
|  | } | 
|  | bool ZeroInitialization(const Expr *E, QualType T); | 
|  |  | 
|  | bool VisitCallExpr(const CallExpr *E) { | 
|  | return handleCallExpr(E, Result, &This); | 
|  | } | 
|  | bool VisitCastExpr(const CastExpr *E); | 
|  | bool VisitInitListExpr(const InitListExpr *E); | 
|  | bool VisitCXXConstructExpr(const CXXConstructExpr *E) { | 
|  | return VisitCXXConstructExpr(E, E->getType()); | 
|  | } | 
|  | bool VisitLambdaExpr(const LambdaExpr *E); | 
|  | bool VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E); | 
|  | bool VisitCXXConstructExpr(const CXXConstructExpr *E, QualType T); | 
|  | bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E); | 
|  |  | 
|  | bool VisitBinCmp(const BinaryOperator *E); | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// Perform zero-initialization on an object of non-union class type. | 
|  | /// C++11 [dcl.init]p5: | 
|  | ///  To zero-initialize an object or reference of type T means: | 
|  | ///    [...] | 
|  | ///    -- if T is a (possibly cv-qualified) non-union class type, | 
|  | ///       each non-static data member and each base-class subobject is | 
|  | ///       zero-initialized | 
|  | static bool HandleClassZeroInitialization(EvalInfo &Info, const Expr *E, | 
|  | const RecordDecl *RD, | 
|  | const LValue &This, APValue &Result) { | 
|  | assert(!RD->isUnion() && "Expected non-union class type"); | 
|  | const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD); | 
|  | Result = APValue(APValue::UninitStruct(), CD ? CD->getNumBases() : 0, | 
|  | std::distance(RD->field_begin(), RD->field_end())); | 
|  |  | 
|  | if (RD->isInvalidDecl()) return false; | 
|  | const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); | 
|  |  | 
|  | if (CD) { | 
|  | unsigned Index = 0; | 
|  | for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(), | 
|  | End = CD->bases_end(); I != End; ++I, ++Index) { | 
|  | const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl(); | 
|  | LValue Subobject = This; | 
|  | if (!HandleLValueDirectBase(Info, E, Subobject, CD, Base, &Layout)) | 
|  | return false; | 
|  | if (!HandleClassZeroInitialization(Info, E, Base, Subobject, | 
|  | Result.getStructBase(Index))) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (const auto *I : RD->fields()) { | 
|  | // -- if T is a reference type, no initialization is performed. | 
|  | if (I->getType()->isReferenceType()) | 
|  | continue; | 
|  |  | 
|  | LValue Subobject = This; | 
|  | if (!HandleLValueMember(Info, E, Subobject, I, &Layout)) | 
|  | return false; | 
|  |  | 
|  | ImplicitValueInitExpr VIE(I->getType()); | 
|  | if (!EvaluateInPlace( | 
|  | Result.getStructField(I->getFieldIndex()), Info, Subobject, &VIE)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool RecordExprEvaluator::ZeroInitialization(const Expr *E, QualType T) { | 
|  | const RecordDecl *RD = T->castAs<RecordType>()->getDecl(); | 
|  | if (RD->isInvalidDecl()) return false; | 
|  | if (RD->isUnion()) { | 
|  | // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the | 
|  | // object's first non-static named data member is zero-initialized | 
|  | RecordDecl::field_iterator I = RD->field_begin(); | 
|  | if (I == RD->field_end()) { | 
|  | Result = APValue((const FieldDecl*)nullptr); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | LValue Subobject = This; | 
|  | if (!HandleLValueMember(Info, E, Subobject, *I)) | 
|  | return false; | 
|  | Result = APValue(*I); | 
|  | ImplicitValueInitExpr VIE(I->getType()); | 
|  | return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, &VIE); | 
|  | } | 
|  |  | 
|  | if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->getNumVBases()) { | 
|  | Info.FFDiag(E, diag::note_constexpr_virtual_base) << RD; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return HandleClassZeroInitialization(Info, E, RD, This, Result); | 
|  | } | 
|  |  | 
|  | bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) { | 
|  | switch (E->getCastKind()) { | 
|  | default: | 
|  | return ExprEvaluatorBaseTy::VisitCastExpr(E); | 
|  |  | 
|  | case CK_ConstructorConversion: | 
|  | return Visit(E->getSubExpr()); | 
|  |  | 
|  | case CK_DerivedToBase: | 
|  | case CK_UncheckedDerivedToBase: { | 
|  | APValue DerivedObject; | 
|  | if (!Evaluate(DerivedObject, Info, E->getSubExpr())) | 
|  | return false; | 
|  | if (!DerivedObject.isStruct()) | 
|  | return Error(E->getSubExpr()); | 
|  |  | 
|  | // Derived-to-base rvalue conversion: just slice off the derived part. | 
|  | APValue *Value = &DerivedObject; | 
|  | const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl(); | 
|  | for (CastExpr::path_const_iterator PathI = E->path_begin(), | 
|  | PathE = E->path_end(); PathI != PathE; ++PathI) { | 
|  | assert(!(*PathI)->isVirtual() && "record rvalue with virtual base"); | 
|  | const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl(); | 
|  | Value = &Value->getStructBase(getBaseIndex(RD, Base)); | 
|  | RD = Base; | 
|  | } | 
|  | Result = *Value; | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) { | 
|  | if (E->isTransparent()) | 
|  | return Visit(E->getInit(0)); | 
|  |  | 
|  | const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl(); | 
|  | if (RD->isInvalidDecl()) return false; | 
|  | const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); | 
|  |  | 
|  | if (RD->isUnion()) { | 
|  | const FieldDecl *Field = E->getInitializedFieldInUnion(); | 
|  | Result = APValue(Field); | 
|  | if (!Field) | 
|  | return true; | 
|  |  | 
|  | // If the initializer list for a union does not contain any elements, the | 
|  | // first element of the union is value-initialized. | 
|  | // FIXME: The element should be initialized from an initializer list. | 
|  | //        Is this difference ever observable for initializer lists which | 
|  | //        we don't build? | 
|  | ImplicitValueInitExpr VIE(Field->getType()); | 
|  | const Expr *InitExpr = E->getNumInits() ? E->getInit(0) : &VIE; | 
|  |  | 
|  | LValue Subobject = This; | 
|  | if (!HandleLValueMember(Info, InitExpr, Subobject, Field, &Layout)) | 
|  | return false; | 
|  |  | 
|  | // Temporarily override This, in case there's a CXXDefaultInitExpr in here. | 
|  | ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This, | 
|  | isa<CXXDefaultInitExpr>(InitExpr)); | 
|  |  | 
|  | return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, InitExpr); | 
|  | } | 
|  |  | 
|  | auto *CXXRD = dyn_cast<CXXRecordDecl>(RD); | 
|  | if (Result.isUninit()) | 
|  | Result = APValue(APValue::UninitStruct(), CXXRD ? CXXRD->getNumBases() : 0, | 
|  | std::distance(RD->field_begin(), RD->field_end())); | 
|  | unsigned ElementNo = 0; | 
|  | bool Success = true; | 
|  |  | 
|  | // Initialize base classes. | 
|  | if (CXXRD) { | 
|  | for (const auto &Base : CXXRD->bases()) { | 
|  | assert(ElementNo < E->getNumInits() && "missing init for base class"); | 
|  | const Expr *Init = E->getInit(ElementNo); | 
|  |  | 
|  | LValue Subobject = This; | 
|  | if (!HandleLValueBase(Info, Init, Subobject, CXXRD, &Base)) | 
|  | return false; | 
|  |  | 
|  | APValue &FieldVal = Result.getStructBase(ElementNo); | 
|  | if (!EvaluateInPlace(FieldVal, Info, Subobject, Init)) { | 
|  | if (!Info.noteFailure()) | 
|  | return false; | 
|  | Success = false; | 
|  | } | 
|  | ++ElementNo; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Initialize members. | 
|  | for (const auto *Field : RD->fields()) { | 
|  | // Anonymous bit-fields are not considered members of the class for | 
|  | // purposes of aggregate initialization. | 
|  | if (Field->isUnnamedBitfield()) | 
|  | continue; | 
|  |  | 
|  | LValue Subobject = This; | 
|  |  | 
|  | bool HaveInit = ElementNo < E->getNumInits(); | 
|  |  | 
|  | // FIXME: Diagnostics here should point to the end of the initializer | 
|  | // list, not the start. | 
|  | if (!HandleLValueMember(Info, HaveInit ? E->getInit(ElementNo) : E, | 
|  | Subobject, Field, &Layout)) | 
|  | return false; | 
|  |  | 
|  | // Perform an implicit value-initialization for members beyond the end of | 
|  | // the initializer list. | 
|  | ImplicitValueInitExpr VIE(HaveInit ? Info.Ctx.IntTy : Field->getType()); | 
|  | const Expr *Init = HaveInit ? E->getInit(ElementNo++) : &VIE; | 
|  |  | 
|  | // Temporarily override This, in case there's a CXXDefaultInitExpr in here. | 
|  | ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This, | 
|  | isa<CXXDefaultInitExpr>(Init)); | 
|  |  | 
|  | APValue &FieldVal = Result.getStructField(Field->getFieldIndex()); | 
|  | if (!EvaluateInPlace(FieldVal, Info, Subobject, Init) || | 
|  | (Field->isBitField() && !truncateBitfieldValue(Info, Init, | 
|  | FieldVal, Field))) { | 
|  | if (!Info.noteFailure()) | 
|  | return false; | 
|  | Success = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return Success; | 
|  | } | 
|  |  | 
|  | bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E, | 
|  | QualType T) { | 
|  | // Note that E's type is not necessarily the type of our class here; we might | 
|  | // be initializing an array element instead. | 
|  | const CXXConstructorDecl *FD = E->getConstructor(); | 
|  | if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) return false; | 
|  |  | 
|  | bool ZeroInit = E->requiresZeroInitialization(); | 
|  | if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) { | 
|  | // If we've already performed zero-initialization, we're already done. | 
|  | if (!Result.isUninit()) | 
|  | return true; | 
|  |  | 
|  | // We can get here in two different ways: | 
|  | //  1) We're performing value-initialization, and should zero-initialize | 
|  | //     the object, or | 
|  | //  2) We're performing default-initialization of an object with a trivial | 
|  | //     constexpr default constructor, in which case we should start the | 
|  | //     lifetimes of all the base subobjects (there can be no data member | 
|  | //     subobjects in this case) per [basic.life]p1. | 
|  | // Either way, ZeroInitialization is appropriate. | 
|  | return ZeroInitialization(E, T); | 
|  | } | 
|  |  | 
|  | const FunctionDecl *Definition = nullptr; | 
|  | auto Body = FD->getBody(Definition); | 
|  |  | 
|  | if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body)) | 
|  | return false; | 
|  |  | 
|  | // Avoid materializing a temporary for an elidable copy/move constructor. | 
|  | if (E->isElidable() && !ZeroInit) | 
|  | if (const MaterializeTemporaryExpr *ME | 
|  | = dyn_cast<MaterializeTemporaryExpr>(E->getArg(0))) | 
|  | return Visit(ME->GetTemporaryExpr()); | 
|  |  | 
|  | if (ZeroInit && !ZeroInitialization(E, T)) | 
|  | return false; | 
|  |  | 
|  | auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs()); | 
|  | return HandleConstructorCall(E, This, Args, | 
|  | cast<CXXConstructorDecl>(Definition), Info, | 
|  | Result); | 
|  | } | 
|  |  | 
|  | bool RecordExprEvaluator::VisitCXXInheritedCtorInitExpr( | 
|  | const CXXInheritedCtorInitExpr *E) { | 
|  | if (!Info.CurrentCall) { | 
|  | assert(Info.checkingPotentialConstantExpression()); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | const CXXConstructorDecl *FD = E->getConstructor(); | 
|  | if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) | 
|  | return false; | 
|  |  | 
|  | const FunctionDecl *Definition = nullptr; | 
|  | auto Body = FD->getBody(Definition); | 
|  |  | 
|  | if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body)) | 
|  | return false; | 
|  |  | 
|  | return HandleConstructorCall(E, This, Info.CurrentCall->Arguments, | 
|  | cast<CXXConstructorDecl>(Definition), Info, | 
|  | Result); | 
|  | } | 
|  |  | 
|  | bool RecordExprEvaluator::VisitCXXStdInitializerListExpr( | 
|  | const CXXStdInitializerListExpr *E) { | 
|  | const ConstantArrayType *ArrayType = | 
|  | Info.Ctx.getAsConstantArrayType(E->getSubExpr()->getType()); | 
|  |  | 
|  | LValue Array; | 
|  | if (!EvaluateLValue(E->getSubExpr(), Array, Info)) | 
|  | return false; | 
|  |  | 
|  | // Get a pointer to the first element of the array. | 
|  | Array.addArray(Info, E, ArrayType); | 
|  |  | 
|  | // FIXME: Perform the checks on the field types in SemaInit. | 
|  | RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl(); | 
|  | RecordDecl::field_iterator Field = Record->field_begin(); | 
|  | if (Field == Record->field_end()) | 
|  | return Error(E); | 
|  |  | 
|  | // Start pointer. | 
|  | if (!Field->getType()->isPointerType() || | 
|  | !Info.Ctx.hasSameType(Field->getType()->getPointeeType(), | 
|  | ArrayType->getElementType())) | 
|  | return Error(E); | 
|  |  | 
|  | // FIXME: What if the initializer_list type has base classes, etc? | 
|  | Result = APValue(APValue::UninitStruct(), 0, 2); | 
|  | Array.moveInto(Result.getStructField(0)); | 
|  |  | 
|  | if (++Field == Record->field_end()) | 
|  | return Error(E); | 
|  |  | 
|  | if (Field->getType()->isPointerType() && | 
|  | Info.Ctx.hasSameType(Field->getType()->getPointeeType(), | 
|  | ArrayType->getElementType())) { | 
|  | // End pointer. | 
|  | if (!HandleLValueArrayAdjustment(Info, E, Array, | 
|  | ArrayType->getElementType(), | 
|  | ArrayType->getSize().getZExtValue())) | 
|  | return false; | 
|  | Array.moveInto(Result.getStructField(1)); | 
|  | } else if (Info.Ctx.hasSameType(Field->getType(), Info.Ctx.getSizeType())) | 
|  | // Length. | 
|  | Result.getStructField(1) = APValue(APSInt(ArrayType->getSize())); | 
|  | else | 
|  | return Error(E); | 
|  |  | 
|  | if (++Field != Record->field_end()) | 
|  | return Error(E); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool RecordExprEvaluator::VisitLambdaExpr(const LambdaExpr *E) { | 
|  | const CXXRecordDecl *ClosureClass = E->getLambdaClass(); | 
|  | if (ClosureClass->isInvalidDecl()) return false; | 
|  |  | 
|  | if (Info.checkingPotentialConstantExpression()) return true; | 
|  |  | 
|  | const size_t NumFields = | 
|  | std::distance(ClosureClass->field_begin(), ClosureClass->field_end()); | 
|  |  | 
|  | assert(NumFields == (size_t)std::distance(E->capture_init_begin(), | 
|  | E->capture_init_end()) && | 
|  | "The number of lambda capture initializers should equal the number of " | 
|  | "fields within the closure type"); | 
|  |  | 
|  | Result = APValue(APValue::UninitStruct(), /*NumBases*/0, NumFields); | 
|  | // Iterate through all the lambda's closure object's fields and initialize | 
|  | // them. | 
|  | auto *CaptureInitIt = E->capture_init_begin(); | 
|  | const LambdaCapture *CaptureIt = ClosureClass->captures_begin(); | 
|  | bool Success = true; | 
|  | for (const auto *Field : ClosureClass->fields()) { | 
|  | assert(CaptureInitIt != E->capture_init_end()); | 
|  | // Get the initializer for this field | 
|  | Expr *const CurFieldInit = *CaptureInitIt++; | 
|  |  | 
|  | // If there is no initializer, either this is a VLA or an error has | 
|  | // occurred. | 
|  | if (!CurFieldInit) | 
|  | return Error(E); | 
|  |  | 
|  | APValue &FieldVal = Result.getStructField(Field->getFieldIndex()); | 
|  | if (!EvaluateInPlace(FieldVal, Info, This, CurFieldInit)) { | 
|  | if (!Info.keepEvaluatingAfterFailure()) | 
|  | return false; | 
|  | Success = false; | 
|  | } | 
|  | ++CaptureIt; | 
|  | } | 
|  | return Success; | 
|  | } | 
|  |  | 
|  | static bool EvaluateRecord(const Expr *E, const LValue &This, | 
|  | APValue &Result, EvalInfo &Info) { | 
|  | assert(E->isRValue() && E->getType()->isRecordType() && | 
|  | "can't evaluate expression as a record rvalue"); | 
|  | return RecordExprEvaluator(Info, This, Result).Visit(E); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Temporary Evaluation | 
|  | // | 
|  | // Temporaries are represented in the AST as rvalues, but generally behave like | 
|  | // lvalues. The full-object of which the temporary is a subobject is implicitly | 
|  | // materialized so that a reference can bind to it. | 
|  | //===----------------------------------------------------------------------===// | 
|  | namespace { | 
|  | class TemporaryExprEvaluator | 
|  | : public LValueExprEvaluatorBase<TemporaryExprEvaluator> { | 
|  | public: | 
|  | TemporaryExprEvaluator(EvalInfo &Info, LValue &Result) : | 
|  | LValueExprEvaluatorBaseTy(Info, Result, false) {} | 
|  |  | 
|  | /// Visit an expression which constructs the value of this temporary. | 
|  | bool VisitConstructExpr(const Expr *E) { | 
|  | APValue &Value = createTemporary(E, false, Result, *Info.CurrentCall); | 
|  | return EvaluateInPlace(Value, Info, Result, E); | 
|  | } | 
|  |  | 
|  | bool VisitCastExpr(const CastExpr *E) { | 
|  | switch (E->getCastKind()) { | 
|  | default: | 
|  | return LValueExprEvaluatorBaseTy::VisitCastExpr(E); | 
|  |  | 
|  | case CK_ConstructorConversion: | 
|  | return VisitConstructExpr(E->getSubExpr()); | 
|  | } | 
|  | } | 
|  | bool VisitInitListExpr(const InitListExpr *E) { | 
|  | return VisitConstructExpr(E); | 
|  | } | 
|  | bool VisitCXXConstructExpr(const CXXConstructExpr *E) { | 
|  | return VisitConstructExpr(E); | 
|  | } | 
|  | bool VisitCallExpr(const CallExpr *E) { | 
|  | return VisitConstructExpr(E); | 
|  | } | 
|  | bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E) { | 
|  | return VisitConstructExpr(E); | 
|  | } | 
|  | bool VisitLambdaExpr(const LambdaExpr *E) { | 
|  | return VisitConstructExpr(E); | 
|  | } | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | /// Evaluate an expression of record type as a temporary. | 
|  | static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info) { | 
|  | assert(E->isRValue() && E->getType()->isRecordType()); | 
|  | return TemporaryExprEvaluator(Info, Result).Visit(E); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Vector Evaluation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | namespace { | 
|  | class VectorExprEvaluator | 
|  | : public ExprEvaluatorBase<VectorExprEvaluator> { | 
|  | APValue &Result; | 
|  | public: | 
|  |  | 
|  | VectorExprEvaluator(EvalInfo &info, APValue &Result) | 
|  | : ExprEvaluatorBaseTy(info), Result(Result) {} | 
|  |  | 
|  | bool Success(ArrayRef<APValue> V, const Expr *E) { | 
|  | assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements()); | 
|  | // FIXME: remove this APValue copy. | 
|  | Result = APValue(V.data(), V.size()); | 
|  | return true; | 
|  | } | 
|  | bool Success(const APValue &V, const Expr *E) { | 
|  | assert(V.isVector()); | 
|  | Result = V; | 
|  | return true; | 
|  | } | 
|  | bool ZeroInitialization(const Expr *E); | 
|  |  | 
|  | bool VisitUnaryReal(const UnaryOperator *E) | 
|  | { return Visit(E->getSubExpr()); } | 
|  | bool VisitCastExpr(const CastExpr* E); | 
|  | bool VisitInitListExpr(const InitListExpr *E); | 
|  | bool VisitUnaryImag(const UnaryOperator *E); | 
|  | // FIXME: Missing: unary -, unary ~, binary add/sub/mul/div, | 
|  | //                 binary comparisons, binary and/or/xor, | 
|  | //                 shufflevector, ExtVectorElementExpr | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) { | 
|  | assert(E->isRValue() && E->getType()->isVectorType() &&"not a vector rvalue"); | 
|  | return VectorExprEvaluator(Info, Result).Visit(E); | 
|  | } | 
|  |  | 
|  | bool VectorExprEvaluator::VisitCastExpr(const CastExpr *E) { | 
|  | const VectorType *VTy = E->getType()->castAs<VectorType>(); | 
|  | unsigned NElts = VTy->getNumElements(); | 
|  |  | 
|  | const Expr *SE = E->getSubExpr(); | 
|  | QualType SETy = SE->getType(); | 
|  |  | 
|  | switch (E->getCastKind()) { | 
|  | case CK_VectorSplat: { | 
|  | APValue Val = APValue(); | 
|  | if (SETy->isIntegerType()) { | 
|  | APSInt IntResult; | 
|  | if (!EvaluateInteger(SE, IntResult, Info)) | 
|  | return false; | 
|  | Val = APValue(std::move(IntResult)); | 
|  | } else if (SETy->isRealFloatingType()) { | 
|  | APFloat FloatResult(0.0); | 
|  | if (!EvaluateFloat(SE, FloatResult, Info)) | 
|  | return false; | 
|  | Val = APValue(std::move(FloatResult)); | 
|  | } else { | 
|  | return Error(E); | 
|  | } | 
|  |  | 
|  | // Splat and create vector APValue. | 
|  | SmallVector<APValue, 4> Elts(NElts, Val); | 
|  | return Success(Elts, E); | 
|  | } | 
|  | case CK_BitCast: { | 
|  | // Evaluate the operand into an APInt we can extract from. | 
|  | llvm::APInt SValInt; | 
|  | if (!EvalAndBitcastToAPInt(Info, SE, SValInt)) | 
|  | return false; | 
|  | // Extract the elements | 
|  | QualType EltTy = VTy->getElementType(); | 
|  | unsigned EltSize = Info.Ctx.getTypeSize(EltTy); | 
|  | bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian(); | 
|  | SmallVector<APValue, 4> Elts; | 
|  | if (EltTy->isRealFloatingType()) { | 
|  | const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(EltTy); | 
|  | unsigned FloatEltSize = EltSize; | 
|  | if (&Sem == &APFloat::x87DoubleExtended()) | 
|  | FloatEltSize = 80; | 
|  | for (unsigned i = 0; i < NElts; i++) { | 
|  | llvm::APInt Elt; | 
|  | if (BigEndian) | 
|  | Elt = SValInt.rotl(i*EltSize+FloatEltSize).trunc(FloatEltSize); | 
|  | else | 
|  | Elt = SValInt.rotr(i*EltSize).trunc(FloatEltSize); | 
|  | Elts.push_back(APValue(APFloat(Sem, Elt))); | 
|  | } | 
|  | } else if (EltTy->isIntegerType()) { | 
|  | for (unsigned i = 0; i < NElts; i++) { | 
|  | llvm::APInt Elt; | 
|  | if (BigEndian) | 
|  | Elt = SValInt.rotl(i*EltSize+EltSize).zextOrTrunc(EltSize); | 
|  | else | 
|  | Elt = SValInt.rotr(i*EltSize).zextOrTrunc(EltSize); | 
|  | Elts.push_back(APValue(APSInt(Elt, EltTy->isSignedIntegerType()))); | 
|  | } | 
|  | } else { | 
|  | return Error(E); | 
|  | } | 
|  | return Success(Elts, E); | 
|  | } | 
|  | default: | 
|  | return ExprEvaluatorBaseTy::VisitCastExpr(E); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool | 
|  | VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) { | 
|  | const VectorType *VT = E->getType()->castAs<VectorType>(); | 
|  | unsigned NumInits = E->getNumInits(); | 
|  | unsigned NumElements = VT->getNumElements(); | 
|  |  | 
|  | QualType EltTy = VT->getElementType(); | 
|  | SmallVector<APValue, 4> Elements; | 
|  |  | 
|  | // The number of initializers can be less than the number of | 
|  | // vector elements. For OpenCL, this can be due to nested vector | 
|  | // initialization. For GCC compatibility, missing trailing elements | 
|  | // should be initialized with zeroes. | 
|  | unsigned CountInits = 0, CountElts = 0; | 
|  | while (CountElts < NumElements) { | 
|  | // Handle nested vector initialization. | 
|  | if (CountInits < NumInits | 
|  | && E->getInit(CountInits)->getType()->isVectorType()) { | 
|  | APValue v; | 
|  | if (!EvaluateVector(E->getInit(CountInits), v, Info)) | 
|  | return Error(E); | 
|  | unsigned vlen = v.getVectorLength(); | 
|  | for (unsigned j = 0; j < vlen; j++) | 
|  | Elements.push_back(v.getVectorElt(j)); | 
|  | CountElts += vlen; | 
|  | } else if (EltTy->isIntegerType()) { | 
|  | llvm::APSInt sInt(32); | 
|  | if (CountInits < NumInits) { | 
|  | if (!EvaluateInteger(E->getInit(CountInits), sInt, Info)) | 
|  | return false; | 
|  | } else // trailing integer zero. | 
|  | sInt = Info.Ctx.MakeIntValue(0, EltTy); | 
|  | Elements.push_back(APValue(sInt)); | 
|  | CountElts++; | 
|  | } else { | 
|  | llvm::APFloat f(0.0); | 
|  | if (CountInits < NumInits) { | 
|  | if (!EvaluateFloat(E->getInit(CountInits), f, Info)) | 
|  | return false; | 
|  | } else // trailing float zero. | 
|  | f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)); | 
|  | Elements.push_back(APValue(f)); | 
|  | CountElts++; | 
|  | } | 
|  | CountInits++; | 
|  | } | 
|  | return Success(Elements, E); | 
|  | } | 
|  |  | 
|  | bool | 
|  | VectorExprEvaluator::ZeroInitialization(const Expr *E) { | 
|  | const VectorType *VT = E->getType()->getAs<VectorType>(); | 
|  | QualType EltTy = VT->getElementType(); | 
|  | APValue ZeroElement; | 
|  | if (EltTy->isIntegerType()) | 
|  | ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy)); | 
|  | else | 
|  | ZeroElement = | 
|  | APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy))); | 
|  |  | 
|  | SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement); | 
|  | return Success(Elements, E); | 
|  | } | 
|  |  | 
|  | bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) { | 
|  | VisitIgnoredValue(E->getSubExpr()); | 
|  | return ZeroInitialization(E); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Array Evaluation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | namespace { | 
|  | class ArrayExprEvaluator | 
|  | : public ExprEvaluatorBase<ArrayExprEvaluator> { | 
|  | const LValue &This; | 
|  | APValue &Result; | 
|  | public: | 
|  |  | 
|  | ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result) | 
|  | : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {} | 
|  |  | 
|  | bool Success(const APValue &V, const Expr *E) { | 
|  | assert(V.isArray() && "expected array"); | 
|  | Result = V; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool ZeroInitialization(const Expr *E) { | 
|  | const ConstantArrayType *CAT = | 
|  | Info.Ctx.getAsConstantArrayType(E->getType()); | 
|  | if (!CAT) | 
|  | return Error(E); | 
|  |  | 
|  | Result = APValue(APValue::UninitArray(), 0, | 
|  | CAT->getSize().getZExtValue()); | 
|  | if (!Result.hasArrayFiller()) return true; | 
|  |  | 
|  | // Zero-initialize all elements. | 
|  | LValue Subobject = This; | 
|  | Subobject.addArray(Info, E, CAT); | 
|  | ImplicitValueInitExpr VIE(CAT->getElementType()); | 
|  | return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE); | 
|  | } | 
|  |  | 
|  | bool VisitCallExpr(const CallExpr *E) { | 
|  | return handleCallExpr(E, Result, &This); | 
|  | } | 
|  | bool VisitInitListExpr(const InitListExpr *E); | 
|  | bool VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E); | 
|  | bool VisitCXXConstructExpr(const CXXConstructExpr *E); | 
|  | bool VisitCXXConstructExpr(const CXXConstructExpr *E, | 
|  | const LValue &Subobject, | 
|  | APValue *Value, QualType Type); | 
|  | bool VisitStringLiteral(const StringLiteral *E) { | 
|  | expandStringLiteral(Info, E, Result); | 
|  | return true; | 
|  | } | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | static bool EvaluateArray(const Expr *E, const LValue &This, | 
|  | APValue &Result, EvalInfo &Info) { | 
|  | assert(E->isRValue() && E->getType()->isArrayType() && "not an array rvalue"); | 
|  | return ArrayExprEvaluator(Info, This, Result).Visit(E); | 
|  | } | 
|  |  | 
|  | // Return true iff the given array filler may depend on the element index. | 
|  | static bool MaybeElementDependentArrayFiller(const Expr *FillerExpr) { | 
|  | // For now, just whitelist non-class value-initialization and initialization | 
|  | // lists comprised of them. | 
|  | if (isa<ImplicitValueInitExpr>(FillerExpr)) | 
|  | return false; | 
|  | if (const InitListExpr *ILE = dyn_cast<InitListExpr>(FillerExpr)) { | 
|  | for (unsigned I = 0, E = ILE->getNumInits(); I != E; ++I) { | 
|  | if (MaybeElementDependentArrayFiller(ILE->getInit(I))) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E) { | 
|  | const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(E->getType()); | 
|  | if (!CAT) | 
|  | return Error(E); | 
|  |  | 
|  | // C++11 [dcl.init.string]p1: A char array [...] can be initialized by [...] | 
|  | // an appropriately-typed string literal enclosed in braces. | 
|  | if (E->isStringLiteralInit()) | 
|  | return Visit(E->getInit(0)); | 
|  |  | 
|  | bool Success = true; | 
|  |  | 
|  | assert((!Result.isArray() || Result.getArrayInitializedElts() == 0) && | 
|  | "zero-initialized array shouldn't have any initialized elts"); | 
|  | APValue Filler; | 
|  | if (Result.isArray() && Result.hasArrayFiller()) | 
|  | Filler = Result.getArrayFiller(); | 
|  |  | 
|  | unsigned NumEltsToInit = E->getNumInits(); | 
|  | unsigned NumElts = CAT->getSize().getZExtValue(); | 
|  | const Expr *FillerExpr = E->hasArrayFiller() ? E->getArrayFiller() : nullptr; | 
|  |  | 
|  | // If the initializer might depend on the array index, run it for each | 
|  | // array element. | 
|  | if (NumEltsToInit != NumElts && MaybeElementDependentArrayFiller(FillerExpr)) | 
|  | NumEltsToInit = NumElts; | 
|  |  | 
|  | LLVM_DEBUG(llvm::dbgs() << "The number of elements to initialize: " | 
|  | << NumEltsToInit << ".\n"); | 
|  |  | 
|  | Result = APValue(APValue::UninitArray(), NumEltsToInit, NumElts); | 
|  |  | 
|  | // If the array was previously zero-initialized, preserve the | 
|  | // zero-initialized values. | 
|  | if (!Filler.isUninit()) { | 
|  | for (unsigned I = 0, E = Result.getArrayInitializedElts(); I != E; ++I) | 
|  | Result.getArrayInitializedElt(I) = Filler; | 
|  | if (Result.hasArrayFiller()) | 
|  | Result.getArrayFiller() = Filler; | 
|  | } | 
|  |  | 
|  | LValue Subobject = This; | 
|  | Subobject.addArray(Info, E, CAT); | 
|  | for (unsigned Index = 0; Index != NumEltsToInit; ++Index) { | 
|  | const Expr *Init = | 
|  | Index < E->getNumInits() ? E->getInit(Index) : FillerExpr; | 
|  | if (!EvaluateInPlace(Result.getArrayInitializedElt(Index), | 
|  | Info, Subobject, Init) || | 
|  | !HandleLValueArrayAdjustment(Info, Init, Subobject, | 
|  | CAT->getElementType(), 1)) { | 
|  | if (!Info.noteFailure()) | 
|  | return false; | 
|  | Success = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!Result.hasArrayFiller()) | 
|  | return Success; | 
|  |  | 
|  | // If we get here, we have a trivial filler, which we can just evaluate | 
|  | // once and splat over the rest of the array elements. | 
|  | assert(FillerExpr && "no array filler for incomplete init list"); | 
|  | return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, | 
|  | FillerExpr) && Success; | 
|  | } | 
|  |  | 
|  | bool ArrayExprEvaluator::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) { | 
|  | if (E->getCommonExpr() && | 
|  | !Evaluate(Info.CurrentCall->createTemporary(E->getCommonExpr(), false), | 
|  | Info, E->getCommonExpr()->getSourceExpr())) | 
|  | return false; | 
|  |  | 
|  | auto *CAT = cast<ConstantArrayType>(E->getType()->castAsArrayTypeUnsafe()); | 
|  |  | 
|  | uint64_t Elements = CAT->getSize().getZExtValue(); | 
|  | Result = APValue(APValue::UninitArray(), Elements, Elements); | 
|  |  | 
|  | LValue Subobject = This; | 
|  | Subobject.addArray(Info, E, CAT); | 
|  |  | 
|  | bool Success = true; | 
|  | for (EvalInfo::ArrayInitLoopIndex Index(Info); Index != Elements; ++Index) { | 
|  | if (!EvaluateInPlace(Result.getArrayInitializedElt(Index), | 
|  | Info, Subobject, E->getSubExpr()) || | 
|  | !HandleLValueArrayAdjustment(Info, E, Subobject, | 
|  | CAT->getElementType(), 1)) { | 
|  | if (!Info.noteFailure()) | 
|  | return false; | 
|  | Success = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return Success; | 
|  | } | 
|  |  | 
|  | bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) { | 
|  | return VisitCXXConstructExpr(E, This, &Result, E->getType()); | 
|  | } | 
|  |  | 
|  | bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E, | 
|  | const LValue &Subobject, | 
|  | APValue *Value, | 
|  | QualType Type) { | 
|  | bool HadZeroInit = !Value->isUninit(); | 
|  |  | 
|  | if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(Type)) { | 
|  | unsigned N = CAT->getSize().getZExtValue(); | 
|  |  | 
|  | // Preserve the array filler if we had prior zero-initialization. | 
|  | APValue Filler = | 
|  | HadZeroInit && Value->hasArrayFiller() ? Value->getArrayFiller() | 
|  | : APValue(); | 
|  |  | 
|  | *Value = APValue(APValue::UninitArray(), N, N); | 
|  |  | 
|  | if (HadZeroInit) | 
|  | for (unsigned I = 0; I != N; ++I) | 
|  | Value->getArrayInitializedElt(I) = Filler; | 
|  |  | 
|  | // Initialize the elements. | 
|  | LValue ArrayElt = Subobject; | 
|  | ArrayElt.addArray(Info, E, CAT); | 
|  | for (unsigned I = 0; I != N; ++I) | 
|  | if (!VisitCXXConstructExpr(E, ArrayElt, &Value->getArrayInitializedElt(I), | 
|  | CAT->getElementType()) || | 
|  | !HandleLValueArrayAdjustment(Info, E, ArrayElt, | 
|  | CAT->getElementType(), 1)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (!Type->isRecordType()) | 
|  | return Error(E); | 
|  |  | 
|  | return RecordExprEvaluator(Info, Subobject, *Value) | 
|  | .VisitCXXConstructExpr(E, Type); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Integer Evaluation | 
|  | // | 
|  | // As a GNU extension, we support casting pointers to sufficiently-wide integer | 
|  | // types and back in constant folding. Integer values are thus represented | 
|  | // either as an integer-valued APValue, or as an lvalue-valued APValue. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | namespace { | 
|  | class IntExprEvaluator | 
|  | : public ExprEvaluatorBase<IntExprEvaluator> { | 
|  | APValue &Result; | 
|  | public: | 
|  | IntExprEvaluator(EvalInfo &info, APValue &result) | 
|  | : ExprEvaluatorBaseTy(info), Result(result) {} | 
|  |  | 
|  | bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) { | 
|  | assert(E->getType()->isIntegralOrEnumerationType() && | 
|  | "Invalid evaluation result."); | 
|  | assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() && | 
|  | "Invalid evaluation result."); | 
|  | assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) && | 
|  | "Invalid evaluation result."); | 
|  | Result = APValue(SI); | 
|  | return true; | 
|  | } | 
|  | bool Success(const llvm::APSInt &SI, const Expr *E) { | 
|  | return Success(SI, E, Result); | 
|  | } | 
|  |  | 
|  | bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) { | 
|  | assert(E->getType()->isIntegralOrEnumerationType() && | 
|  | "Invalid evaluation result."); | 
|  | assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) && | 
|  | "Invalid evaluation result."); | 
|  | Result = APValue(APSInt(I)); | 
|  | Result.getInt().setIsUnsigned( | 
|  | E->getType()->isUnsignedIntegerOrEnumerationType()); | 
|  | return true; | 
|  | } | 
|  | bool Success(const llvm::APInt &I, const Expr *E) { | 
|  | return Success(I, E, Result); | 
|  | } | 
|  |  | 
|  | bool Success(uint64_t Value, const Expr *E, APValue &Result) { | 
|  | assert(E->getType()->isIntegralOrEnumerationType() && | 
|  | "Invalid evaluation result."); | 
|  | Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType())); | 
|  | return true; | 
|  | } | 
|  | bool Success(uint64_t Value, const Expr *E) { | 
|  | return Success(Value, E, Result); | 
|  | } | 
|  |  | 
|  | bool Success(CharUnits Size, const Expr *E) { | 
|  | return Success(Size.getQuantity(), E); | 
|  | } | 
|  |  | 
|  | bool Success(const APValue &V, const Expr *E) { | 
|  | if (V.isLValue() || V.isAddrLabelDiff()) { | 
|  | Result = V; | 
|  | return true; | 
|  | } | 
|  | return Success(V.getInt(), E); | 
|  | } | 
|  |  | 
|  | bool ZeroInitialization(const Expr *E) { return Success(0, E); } | 
|  |  | 
|  | //===--------------------------------------------------------------------===// | 
|  | //                            Visitor Methods | 
|  | //===--------------------------------------------------------------------===// | 
|  |  | 
|  | bool VisitConstantExpr(const ConstantExpr *E); | 
|  |  | 
|  | bool VisitIntegerLiteral(const IntegerLiteral *E) { | 
|  | return Success(E->getValue(), E); | 
|  | } | 
|  | bool VisitCharacterLiteral(const CharacterLiteral *E) { | 
|  | return Success(E->getValue(), E); | 
|  | } | 
|  |  | 
|  | bool CheckReferencedDecl(const Expr *E, const Decl *D); | 
|  | bool VisitDeclRefExpr(const DeclRefExpr *E) { | 
|  | if (CheckReferencedDecl(E, E->getDecl())) | 
|  | return true; | 
|  |  | 
|  | return ExprEvaluatorBaseTy::VisitDeclRefExpr(E); | 
|  | } | 
|  | bool VisitMemberExpr(const MemberExpr *E) { | 
|  | if (CheckReferencedDecl(E, E->getMemberDecl())) { | 
|  | VisitIgnoredBaseExpression(E->getBase()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return ExprEvaluatorBaseTy::VisitMemberExpr(E); | 
|  | } | 
|  |  | 
|  | bool VisitCallExpr(const CallExpr *E); | 
|  | bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp); | 
|  | bool VisitBinaryOperator(const BinaryOperator *E); | 
|  | bool VisitOffsetOfExpr(const OffsetOfExpr *E); | 
|  | bool VisitUnaryOperator(const UnaryOperator *E); | 
|  |  | 
|  | bool VisitCastExpr(const CastExpr* E); | 
|  | bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); | 
|  |  | 
|  | bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { | 
|  | return Success(E->getValue(), E); | 
|  | } | 
|  |  | 
|  | bool VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { | 
|  | return Success(E->getValue(), E); | 
|  | } | 
|  |  | 
|  | bool VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) { | 
|  | if (Info.ArrayInitIndex == uint64_t(-1)) { | 
|  | // We were asked to evaluate this subexpression independent of the | 
|  | // enclosing ArrayInitLoopExpr. We can't do that. | 
|  | Info.FFDiag(E); | 
|  | return false; | 
|  | } | 
|  | return Success(Info.ArrayInitIndex, E); | 
|  | } | 
|  |  | 
|  | // Note, GNU defines __null as an integer, not a pointer. | 
|  | bool VisitGNUNullExpr(const GNUNullExpr *E) { | 
|  | return ZeroInitialization(E); | 
|  | } | 
|  |  | 
|  | bool VisitTypeTraitExpr(const TypeTraitExpr *E) { | 
|  | return Success(E->getValue(), E); | 
|  | } | 
|  |  | 
|  | bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { | 
|  | return Success(E->getValue(), E); | 
|  | } | 
|  |  | 
|  | bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { | 
|  | return Success(E->getValue(), E); | 
|  | } | 
|  |  | 
|  | bool VisitUnaryReal(const UnaryOperator *E); | 
|  | bool VisitUnaryImag(const UnaryOperator *E); | 
|  |  | 
|  | bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E); | 
|  | bool VisitSizeOfPackExpr(const SizeOfPackExpr *E); | 
|  |  | 
|  | // FIXME: Missing: array subscript of vector, member of vector | 
|  | }; | 
|  |  | 
|  | class FixedPointExprEvaluator | 
|  | : public ExprEvaluatorBase<FixedPointExprEvaluator> { | 
|  | APValue &Result; | 
|  |  | 
|  | public: | 
|  | FixedPointExprEvaluator(EvalInfo &info, APValue &result) | 
|  | : ExprEvaluatorBaseTy(info), Result(result) {} | 
|  |  | 
|  | bool Success(const llvm::APInt &I, const Expr *E) { | 
|  | return Success( | 
|  | APFixedPoint(I, Info.Ctx.getFixedPointSemantics(E->getType())), E); | 
|  | } | 
|  |  | 
|  | bool Success(uint64_t Value, const Expr *E) { | 
|  | return Success( | 
|  | APFixedPoint(Value, Info.Ctx.getFixedPointSemantics(E->getType())), E); | 
|  | } | 
|  |  | 
|  | bool Success(const APValue &V, const Expr *E) { | 
|  | return Success(V.getFixedPoint(), E); | 
|  | } | 
|  |  | 
|  | bool Success(const APFixedPoint &V, const Expr *E) { | 
|  | assert(E->getType()->isFixedPointType() && "Invalid evaluation result."); | 
|  | assert(V.getWidth() == Info.Ctx.getIntWidth(E->getType()) && | 
|  | "Invalid evaluation result."); | 
|  | Result = APValue(V); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | //===--------------------------------------------------------------------===// | 
|  | //                            Visitor Methods | 
|  | //===--------------------------------------------------------------------===// | 
|  |  | 
|  | bool VisitFixedPointLiteral(const FixedPointLiteral *E) { | 
|  | return Success(E->getValue(), E); | 
|  | } | 
|  |  | 
|  | bool VisitCastExpr(const CastExpr *E); | 
|  | bool VisitUnaryOperator(const UnaryOperator *E); | 
|  | bool VisitBinaryOperator(const BinaryOperator *E); | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | /// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and | 
|  | /// produce either the integer value or a pointer. | 
|  | /// | 
|  | /// GCC has a heinous extension which folds casts between pointer types and | 
|  | /// pointer-sized integral types. We support this by allowing the evaluation of | 
|  | /// an integer rvalue to produce a pointer (represented as an lvalue) instead. | 
|  | /// Some simple arithmetic on such values is supported (they are treated much | 
|  | /// like char*). | 
|  | static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result, | 
|  | EvalInfo &Info) { | 
|  | assert(E->isRValue() && E->getType()->isIntegralOrEnumerationType()); | 
|  | return IntExprEvaluator(Info, Result).Visit(E); | 
|  | } | 
|  |  | 
|  | static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info) { | 
|  | APValue Val; | 
|  | if (!EvaluateIntegerOrLValue(E, Val, Info)) | 
|  | return false; | 
|  | if (!Val.isInt()) { | 
|  | // FIXME: It would be better to produce the diagnostic for casting | 
|  | //        a pointer to an integer. | 
|  | Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); | 
|  | return false; | 
|  | } | 
|  | Result = Val.getInt(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result, | 
|  | EvalInfo &Info) { | 
|  | if (E->getType()->isFixedPointType()) { | 
|  | APValue Val; | 
|  | if (!FixedPointExprEvaluator(Info, Val).Visit(E)) | 
|  | return false; | 
|  | if (!Val.isFixedPoint()) | 
|  | return false; | 
|  |  | 
|  | Result = Val.getFixedPoint(); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result, | 
|  | EvalInfo &Info) { | 
|  | if (E->getType()->isIntegerType()) { | 
|  | auto FXSema = Info.Ctx.getFixedPointSemantics(E->getType()); | 
|  | APSInt Val; | 
|  | if (!EvaluateInteger(E, Val, Info)) | 
|  | return false; | 
|  | Result = APFixedPoint(Val, FXSema); | 
|  | return true; | 
|  | } else if (E->getType()->isFixedPointType()) { | 
|  | return EvaluateFixedPoint(E, Result, Info); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Check whether the given declaration can be directly converted to an integral | 
|  | /// rvalue. If not, no diagnostic is produced; there are other things we can | 
|  | /// try. | 
|  | bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) { | 
|  | // Enums are integer constant exprs. | 
|  | if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) { | 
|  | // Check for signedness/width mismatches between E type and ECD value. | 
|  | bool SameSign = (ECD->getInitVal().isSigned() | 
|  | == E->getType()->isSignedIntegerOrEnumerationType()); | 
|  | bool SameWidth = (ECD->getInitVal().getBitWidth() | 
|  | == Info.Ctx.getIntWidth(E->getType())); | 
|  | if (SameSign && SameWidth) | 
|  | return Success(ECD->getInitVal(), E); | 
|  | else { | 
|  | // Get rid of mismatch (otherwise Success assertions will fail) | 
|  | // by computing a new value matching the type of E. | 
|  | llvm::APSInt Val = ECD->getInitVal(); | 
|  | if (!SameSign) | 
|  | Val.setIsSigned(!ECD->getInitVal().isSigned()); | 
|  | if (!SameWidth) | 
|  | Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType())); | 
|  | return Success(Val, E); | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Values returned by __builtin_classify_type, chosen to match the values | 
|  | /// produced by GCC's builtin. | 
|  | enum class GCCTypeClass { | 
|  | None = -1, | 
|  | Void = 0, | 
|  | Integer = 1, | 
|  | // GCC reserves 2 for character types, but instead classifies them as | 
|  | // integers. | 
|  | Enum = 3, | 
|  | Bool = 4, | 
|  | Pointer = 5, | 
|  | // GCC reserves 6 for references, but appears to never use it (because | 
|  | // expressions never have reference type, presumably). | 
|  | PointerToDataMember = 7, | 
|  | RealFloat = 8, | 
|  | Complex = 9, | 
|  | // GCC reserves 10 for functions, but does not use it since GCC version 6 due | 
|  | // to decay to pointer. (Prior to version 6 it was only used in C++ mode). | 
|  | // GCC claims to reserve 11 for pointers to member functions, but *actually* | 
|  | // uses 12 for that purpose, same as for a class or struct. Maybe it | 
|  | // internally implements a pointer to member as a struct?  Who knows. | 
|  | PointerToMemberFunction = 12, // Not a bug, see above. | 
|  | ClassOrStruct = 12, | 
|  | Union = 13, | 
|  | // GCC reserves 14 for arrays, but does not use it since GCC version 6 due to | 
|  | // decay to pointer. (Prior to version 6 it was only used in C++ mode). | 
|  | // GCC reserves 15 for strings, but actually uses 5 (pointer) for string | 
|  | // literals. | 
|  | }; | 
|  |  | 
|  | /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way | 
|  | /// as GCC. | 
|  | static GCCTypeClass | 
|  | EvaluateBuiltinClassifyType(QualType T, const LangOptions &LangOpts) { | 
|  | assert(!T->isDependentType() && "unexpected dependent type"); | 
|  |  | 
|  | QualType CanTy = T.getCanonicalType(); | 
|  | const BuiltinType *BT = dyn_cast<BuiltinType>(CanTy); | 
|  |  | 
|  | switch (CanTy->getTypeClass()) { | 
|  | #define TYPE(ID, BASE) | 
|  | #define DEPENDENT_TYPE(ID, BASE) case Type::ID: | 
|  | #define NON_CANONICAL_TYPE(ID, BASE) case Type::ID: | 
|  | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(ID, BASE) case Type::ID: | 
|  | #include "clang/AST/TypeNodes.def" | 
|  | case Type::Auto: | 
|  | case Type::DeducedTemplateSpecialization: | 
|  | llvm_unreachable("unexpected non-canonical or dependent type"); | 
|  |  | 
|  | case Type::Builtin: | 
|  | switch (BT->getKind()) { | 
|  | #define BUILTIN_TYPE(ID, SINGLETON_ID) | 
|  | #define SIGNED_TYPE(ID, SINGLETON_ID) \ | 
|  | case BuiltinType::ID: return GCCTypeClass::Integer; | 
|  | #define FLOATING_TYPE(ID, SINGLETON_ID) \ | 
|  | case BuiltinType::ID: return GCCTypeClass::RealFloat; | 
|  | #define PLACEHOLDER_TYPE(ID, SINGLETON_ID) \ | 
|  | case BuiltinType::ID: break; | 
|  | #include "clang/AST/BuiltinTypes.def" | 
|  | case BuiltinType::Void: | 
|  | return GCCTypeClass::Void; | 
|  |  | 
|  | case BuiltinType::Bool: | 
|  | return GCCTypeClass::Bool; | 
|  |  | 
|  | case BuiltinType::Char_U: | 
|  | case BuiltinType::UChar: | 
|  | case BuiltinType::WChar_U: | 
|  | case BuiltinType::Char8: | 
|  | case BuiltinType::Char16: | 
|  | case BuiltinType::Char32: | 
|  | case BuiltinType::UShort: | 
|  | case BuiltinType::UInt: | 
|  | case BuiltinType::ULong: | 
|  | case BuiltinType::ULongLong: | 
|  | case BuiltinType::UInt128: | 
|  | return GCCTypeClass::Integer; | 
|  |  | 
|  | case BuiltinType::UShortAccum: | 
|  | case BuiltinType::UAccum: | 
|  | case BuiltinType::ULongAccum: | 
|  | case BuiltinType::UShortFract: | 
|  | case BuiltinType::UFract: | 
|  | case BuiltinType::ULongFract: | 
|  | case BuiltinType::SatUShortAccum: | 
|  | case BuiltinType::SatUAccum: | 
|  | case BuiltinType::SatULongAccum: | 
|  | case BuiltinType::SatUShortFract: | 
|  | case BuiltinType::SatUFract: | 
|  | case BuiltinType::SatULongFract: | 
|  | return GCCTypeClass::None; | 
|  |  | 
|  | case BuiltinType::NullPtr: | 
|  |  | 
|  | case BuiltinType::ObjCId: | 
|  | case BuiltinType::ObjCClass: | 
|  | case BuiltinType::ObjCSel: | 
|  | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ | 
|  | case BuiltinType::Id: | 
|  | #include "clang/Basic/OpenCLImageTypes.def" | 
|  | #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ | 
|  | case BuiltinType::Id: | 
|  | #include "clang/Basic/OpenCLExtensionTypes.def" | 
|  | case BuiltinType::OCLSampler: | 
|  | case BuiltinType::OCLEvent: | 
|  | case BuiltinType::OCLClkEvent: | 
|  | case BuiltinType::OCLQueue: | 
|  | case BuiltinType::OCLReserveID: | 
|  | return GCCTypeClass::None; | 
|  |  | 
|  | case BuiltinType::Dependent: | 
|  | llvm_unreachable("unexpected dependent type"); | 
|  | }; | 
|  | llvm_unreachable("unexpected placeholder type"); | 
|  |  | 
|  | case Type::Enum: | 
|  | return LangOpts.CPlusPlus ? GCCTypeClass::Enum : GCCTypeClass::Integer; | 
|  |  | 
|  | case Type::Pointer: | 
|  | case Type::ConstantArray: | 
|  | case Type::VariableArray: | 
|  | case Type::IncompleteArray: | 
|  | case Type::FunctionNoProto: | 
|  | case Type::FunctionProto: | 
|  | return GCCTypeClass::Pointer; | 
|  |  | 
|  | case Type::MemberPointer: | 
|  | return CanTy->isMemberDataPointerType() | 
|  | ? GCCTypeClass::PointerToDataMember | 
|  | : GCCTypeClass::PointerToMemberFunction; | 
|  |  | 
|  | case Type::Complex: | 
|  | return GCCTypeClass::Complex; | 
|  |  | 
|  | case Type::Record: | 
|  | return CanTy->isUnionType() ? GCCTypeClass::Union | 
|  | : GCCTypeClass::ClassOrStruct; | 
|  |  | 
|  | case Type::Atomic: | 
|  | // GCC classifies _Atomic T the same as T. | 
|  | return EvaluateBuiltinClassifyType( | 
|  | CanTy->castAs<AtomicType>()->getValueType(), LangOpts); | 
|  |  | 
|  | case Type::BlockPointer: | 
|  | case Type::Vector: | 
|  | case Type::ExtVector: | 
|  | case Type::ObjCObject: | 
|  | case Type::ObjCInterface: | 
|  | case Type::ObjCObjectPointer: | 
|  | case Type::Pipe: | 
|  | // GCC classifies vectors as None. We follow its lead and classify all | 
|  | // other types that don't fit into the regular classification the same way. | 
|  | return GCCTypeClass::None; | 
|  |  | 
|  | case Type::LValueReference: | 
|  | case Type::RValueReference: | 
|  | llvm_unreachable("invalid type for expression"); | 
|  | } | 
|  |  | 
|  | llvm_unreachable("unexpected type class"); | 
|  | } | 
|  |  | 
|  | /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way | 
|  | /// as GCC. | 
|  | static GCCTypeClass | 
|  | EvaluateBuiltinClassifyType(const CallExpr *E, const LangOptions &LangOpts) { | 
|  | // If no argument was supplied, default to None. This isn't | 
|  | // ideal, however it is what gcc does. | 
|  | if (E->getNumArgs() == 0) | 
|  | return GCCTypeClass::None; | 
|  |  | 
|  | // FIXME: Bizarrely, GCC treats a call with more than one argument as not | 
|  | // being an ICE, but still folds it to a constant using the type of the first | 
|  | // argument. | 
|  | return EvaluateBuiltinClassifyType(E->getArg(0)->getType(), LangOpts); | 
|  | } | 
|  |  | 
|  | /// EvaluateBuiltinConstantPForLValue - Determine the result of | 
|  | /// __builtin_constant_p when applied to the given pointer. | 
|  | /// | 
|  | /// A pointer is only "constant" if it is null (or a pointer cast to integer) | 
|  | /// or it points to the first character of a string literal. | 
|  | static bool EvaluateBuiltinConstantPForLValue(const APValue &LV) { | 
|  | APValue::LValueBase Base = LV.getLValueBase(); | 
|  | if (Base.isNull()) { | 
|  | // A null base is acceptable. | 
|  | return true; | 
|  | } else if (const Expr *E = Base.dyn_cast<const Expr *>()) { | 
|  | if (!isa<StringLiteral>(E)) | 
|  | return false; | 
|  | return LV.getLValueOffset().isZero(); | 
|  | } else { | 
|  | // Any other base is not constant enough for GCC. | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// EvaluateBuiltinConstantP - Evaluate __builtin_constant_p as similarly to | 
|  | /// GCC as we can manage. | 
|  | static bool EvaluateBuiltinConstantP(EvalInfo &Info, const Expr *Arg) { | 
|  | // This evaluation is not permitted to have side-effects, so evaluate it in | 
|  | // a speculative evaluation context. | 
|  | SpeculativeEvaluationRAII SpeculativeEval(Info); | 
|  |  | 
|  | // Constant-folding is always enabled for the operand of __builtin_constant_p | 
|  | // (even when the enclosing evaluation context otherwise requires a strict | 
|  | // language-specific constant expression). | 
|  | FoldConstant Fold(Info, true); | 
|  |  | 
|  | QualType ArgType = Arg->getType(); | 
|  |  | 
|  | // __builtin_constant_p always has one operand. The rules which gcc follows | 
|  | // are not precisely documented, but are as follows: | 
|  | // | 
|  | //  - If the operand is of integral, floating, complex or enumeration type, | 
|  | //    and can be folded to a known value of that type, it returns 1. | 
|  | //  - If the operand can be folded to a pointer to the first character | 
|  | //    of a string literal (or such a pointer cast to an integral type) | 
|  | //    or to a null pointer or an integer cast to a pointer, it returns 1. | 
|  | // | 
|  | // Otherwise, it returns 0. | 
|  | // | 
|  | // FIXME: GCC also intends to return 1 for literals of aggregate types, but | 
|  | // its support for this did not work prior to GCC 9 and is not yet well | 
|  | // understood. | 
|  | if (ArgType->isIntegralOrEnumerationType() || ArgType->isFloatingType() || | 
|  | ArgType->isAnyComplexType() || ArgType->isPointerType() || | 
|  | ArgType->isNullPtrType()) { | 
|  | APValue V; | 
|  | if (!::EvaluateAsRValue(Info, Arg, V)) { | 
|  | Fold.keepDiagnostics(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // For a pointer (possibly cast to integer), there are special rules. | 
|  | if (V.getKind() == APValue::LValue) | 
|  | return EvaluateBuiltinConstantPForLValue(V); | 
|  |  | 
|  | // Otherwise, any constant value is good enough. | 
|  | return V.getKind() != APValue::Uninitialized; | 
|  | } | 
|  |  | 
|  | // Anything else isn't considered to be sufficiently constant. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Retrieves the "underlying object type" of the given expression, | 
|  | /// as used by __builtin_object_size. | 
|  | static QualType getObjectType(APValue::LValueBase B) { | 
|  | if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) { | 
|  | if (const VarDecl *VD = dyn_cast<VarDecl>(D)) | 
|  | return VD->getType(); | 
|  | } else if (const Expr *E = B.get<const Expr*>()) { | 
|  | if (isa<CompoundLiteralExpr>(E)) | 
|  | return E->getType(); | 
|  | } | 
|  |  | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | /// A more selective version of E->IgnoreParenCasts for | 
|  | /// tryEvaluateBuiltinObjectSize. This ignores some casts/parens that serve only | 
|  | /// to change the type of E. | 
|  | /// Ex. For E = `(short*)((char*)(&foo))`, returns `&foo` | 
|  | /// | 
|  | /// Always returns an RValue with a pointer representation. | 
|  | static const Expr *ignorePointerCastsAndParens(const Expr *E) { | 
|  | assert(E->isRValue() && E->getType()->hasPointerRepresentation()); | 
|  |  | 
|  | auto *NoParens = E->IgnoreParens(); | 
|  | auto *Cast = dyn_cast<CastExpr>(NoParens); | 
|  | if (Cast == nullptr) | 
|  | return NoParens; | 
|  |  | 
|  | // We only conservatively allow a few kinds of casts, because this code is | 
|  | // inherently a simple solution that seeks to support the common case. | 
|  | auto CastKind = Cast->getCastKind(); | 
|  | if (CastKind != CK_NoOp && CastKind != CK_BitCast && | 
|  | CastKind != CK_AddressSpaceConversion) | 
|  | return NoParens; | 
|  |  | 
|  | auto *SubExpr = Cast->getSubExpr(); | 
|  | if (!SubExpr->getType()->hasPointerRepresentation() || !SubExpr->isRValue()) | 
|  | return NoParens; | 
|  | return ignorePointerCastsAndParens(SubExpr); | 
|  | } | 
|  |  | 
|  | /// Checks to see if the given LValue's Designator is at the end of the LValue's | 
|  | /// record layout. e.g. | 
|  | ///   struct { struct { int a, b; } fst, snd; } obj; | 
|  | ///   obj.fst   // no | 
|  | ///   obj.snd   // yes | 
|  | ///   obj.fst.a // no | 
|  | ///   obj.fst.b // no | 
|  | ///   obj.snd.a // no | 
|  | ///   obj.snd.b // yes | 
|  | /// | 
|  | /// Please note: this function is specialized for how __builtin_object_size | 
|  | /// views "objects". | 
|  | /// | 
|  | /// If this encounters an invalid RecordDecl or otherwise cannot determine the | 
|  | /// correct result, it will always return true. | 
|  | static bool isDesignatorAtObjectEnd(const ASTContext &Ctx, const LValue &LVal) { | 
|  | assert(!LVal.Designator.Invalid); | 
|  |  | 
|  | auto IsLastOrInvalidFieldDecl = [&Ctx](const FieldDecl *FD, bool &Invalid) { | 
|  | const RecordDecl *Parent = FD->getParent(); | 
|  | Invalid = Parent->isInvalidDecl(); | 
|  | if (Invalid || Parent->isUnion()) | 
|  | return true; | 
|  | const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(Parent); | 
|  | return FD->getFieldIndex() + 1 == Layout.getFieldCount(); | 
|  | }; | 
|  |  | 
|  | auto &Base = LVal.getLValueBase(); | 
|  | if (auto *ME = dyn_cast_or_null<MemberExpr>(Base.dyn_cast<const Expr *>())) { | 
|  | if (auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { | 
|  | bool Invalid; | 
|  | if (!IsLastOrInvalidFieldDecl(FD, Invalid)) | 
|  | return Invalid; | 
|  | } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(ME->getMemberDecl())) { | 
|  | for (auto *FD : IFD->chain()) { | 
|  | bool Invalid; | 
|  | if (!IsLastOrInvalidFieldDecl(cast<FieldDecl>(FD), Invalid)) | 
|  | return Invalid; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned I = 0; | 
|  | QualType BaseType = getType(Base); | 
|  | if (LVal.Designator.FirstEntryIsAnUnsizedArray) { | 
|  | // If we don't know the array bound, conservatively assume we're looking at | 
|  | // the final array element. | 
|  | ++I; | 
|  | if (BaseType->isIncompleteArrayType()) | 
|  | BaseType = Ctx.getAsArrayType(BaseType)->getElementType(); | 
|  | else | 
|  | BaseType = BaseType->castAs<PointerType>()->getPointeeType(); | 
|  | } | 
|  |  | 
|  | for (unsigned E = LVal.Designator.Entries.size(); I != E; ++I) { | 
|  | const auto &Entry = LVal.Designator.Entries[I]; | 
|  | if (BaseType->isArrayType()) { | 
|  | // Because __builtin_object_size treats arrays as objects, we can ignore | 
|  | // the index iff this is the last array in the Designator. | 
|  | if (I + 1 == E) | 
|  | return true; | 
|  | const auto *CAT = cast<ConstantArrayType>(Ctx.getAsArrayType(BaseType)); | 
|  | uint64_t Index = Entry.ArrayIndex; | 
|  | if (Index + 1 != CAT->getSize()) | 
|  | return false; | 
|  | BaseType = CAT->getElementType(); | 
|  | } else if (BaseType->isAnyComplexType()) { | 
|  | const auto *CT = BaseType->castAs<ComplexType>(); | 
|  | uint64_t Index = Entry.ArrayIndex; | 
|  | if (Index != 1) | 
|  | return false; | 
|  | BaseType = CT->getElementType(); | 
|  | } else if (auto *FD = getAsField(Entry)) { | 
|  | bool Invalid; | 
|  | if (!IsLastOrInvalidFieldDecl(FD, Invalid)) | 
|  | return Invalid; | 
|  | BaseType = FD->getType(); | 
|  | } else { | 
|  | assert(getAsBaseClass(Entry) && "Expecting cast to a base class"); | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Tests to see if the LValue has a user-specified designator (that isn't | 
|  | /// necessarily valid). Note that this always returns 'true' if the LValue has | 
|  | /// an unsized array as its first designator entry, because there's currently no | 
|  | /// way to tell if the user typed *foo or foo[0]. | 
|  | static bool refersToCompleteObject(const LValue &LVal) { | 
|  | if (LVal.Designator.Invalid) | 
|  | return false; | 
|  |  | 
|  | if (!LVal.Designator.Entries.empty()) | 
|  | return LVal.Designator.isMostDerivedAnUnsizedArray(); | 
|  |  | 
|  | if (!LVal.InvalidBase) | 
|  | return true; | 
|  |  | 
|  | // If `E` is a MemberExpr, then the first part of the designator is hiding in | 
|  | // the LValueBase. | 
|  | const auto *E = LVal.Base.dyn_cast<const Expr *>(); | 
|  | return !E || !isa<MemberExpr>(E); | 
|  | } | 
|  |  | 
|  | /// Attempts to detect a user writing into a piece of memory that's impossible | 
|  | /// to figure out the size of by just using types. | 
|  | static bool isUserWritingOffTheEnd(const ASTContext &Ctx, const LValue &LVal) { | 
|  | const SubobjectDesignator &Designator = LVal.Designator; | 
|  | // Notes: | 
|  | // - Users can only write off of the end when we have an invalid base. Invalid | 
|  | //   bases imply we don't know where the memory came from. | 
|  | // - We used to be a bit more aggressive here; we'd only be conservative if | 
|  | //   the array at the end was flexible, or if it had 0 or 1 elements. This | 
|  | //   broke some common standard library extensions (PR30346), but was | 
|  | //   otherwise seemingly fine. It may be useful to reintroduce this behavior | 
|  | //   with some sort of whitelist. OTOH, it seems that GCC is always | 
|  | //   conservative with the last element in structs (if it's an array), so our | 
|  | //   current behavior is more compatible than a whitelisting approach would | 
|  | //   be. | 
|  | return LVal.InvalidBase && | 
|  | Designator.Entries.size() == Designator.MostDerivedPathLength && | 
|  | Designator.MostDerivedIsArrayElement && | 
|  | isDesignatorAtObjectEnd(Ctx, LVal); | 
|  | } | 
|  |  | 
|  | /// Converts the given APInt to CharUnits, assuming the APInt is unsigned. | 
|  | /// Fails if the conversion would cause loss of precision. | 
|  | static bool convertUnsignedAPIntToCharUnits(const llvm::APInt &Int, | 
|  | CharUnits &Result) { | 
|  | auto CharUnitsMax = std::numeric_limits<CharUnits::QuantityType>::max(); | 
|  | if (Int.ugt(CharUnitsMax)) | 
|  | return false; | 
|  | Result = CharUnits::fromQuantity(Int.getZExtValue()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Helper for tryEvaluateBuiltinObjectSize -- Given an LValue, this will | 
|  | /// determine how many bytes exist from the beginning of the object to either | 
|  | /// the end of the current subobject, or the end of the object itself, depending | 
|  | /// on what the LValue looks like + the value of Type. | 
|  | /// | 
|  | /// If this returns false, the value of Result is undefined. | 
|  | static bool determineEndOffset(EvalInfo &Info, SourceLocation ExprLoc, | 
|  | unsigned Type, const LValue &LVal, | 
|  | CharUnits &EndOffset) { | 
|  | bool DetermineForCompleteObject = refersToCompleteObject(LVal); | 
|  |  | 
|  | auto CheckedHandleSizeof = [&](QualType Ty, CharUnits &Result) { | 
|  | if (Ty.isNull() || Ty->isIncompleteType() || Ty->isFunctionType()) | 
|  | return false; | 
|  | return HandleSizeof(Info, ExprLoc, Ty, Result); | 
|  | }; | 
|  |  | 
|  | // We want to evaluate the size of the entire object. This is a valid fallback | 
|  | // for when Type=1 and the designator is invalid, because we're asked for an | 
|  | // upper-bound. | 
|  | if (!(Type & 1) || LVal.Designator.Invalid || DetermineForCompleteObject) { | 
|  | // Type=3 wants a lower bound, so we can't fall back to this. | 
|  | if (Type == 3 && !DetermineForCompleteObject) | 
|  | return false; | 
|  |  | 
|  | llvm::APInt APEndOffset; | 
|  | if (isBaseAnAllocSizeCall(LVal.getLValueBase()) && | 
|  | getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset)) | 
|  | return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset); | 
|  |  | 
|  | if (LVal.InvalidBase) | 
|  | return false; | 
|  |  | 
|  | QualType BaseTy = getObjectType(LVal.getLValueBase()); | 
|  | return CheckedHandleSizeof(BaseTy, EndOffset); | 
|  | } | 
|  |  | 
|  | // We want to evaluate the size of a subobject. | 
|  | const SubobjectDesignator &Designator = LVal.Designator; | 
|  |  | 
|  | // The following is a moderately common idiom in C: | 
|  | // | 
|  | // struct Foo { int a; char c[1]; }; | 
|  | // struct Foo *F = (struct Foo *)malloc(sizeof(struct Foo) + strlen(Bar)); | 
|  | // strcpy(&F->c[0], Bar); | 
|  | // | 
|  | // In order to not break too much legacy code, we need to support it. | 
|  | if (isUserWritingOffTheEnd(Info.Ctx, LVal)) { | 
|  | // If we can resolve this to an alloc_size call, we can hand that back, | 
|  | // because we know for certain how many bytes there are to write to. | 
|  | llvm::APInt APEndOffset; | 
|  | if (isBaseAnAllocSizeCall(LVal.getLValueBase()) && | 
|  | getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset)) | 
|  | return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset); | 
|  |  | 
|  | // If we cannot determine the size of the initial allocation, then we can't | 
|  | // given an accurate upper-bound. However, we are still able to give | 
|  | // conservative lower-bounds for Type=3. | 
|  | if (Type == 1) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | CharUnits BytesPerElem; | 
|  | if (!CheckedHandleSizeof(Designator.MostDerivedType, BytesPerElem)) | 
|  | return false; | 
|  |  | 
|  | // According to the GCC documentation, we want the size of the subobject | 
|  | // denoted by the pointer. But that's not quite right -- what we actually | 
|  | // want is the size of the immediately-enclosing array, if there is one. | 
|  | int64_t ElemsRemaining; | 
|  | if (Designator.MostDerivedIsArrayElement && | 
|  | Designator.Entries.size() == Designator.MostDerivedPathLength) { | 
|  | uint64_t ArraySize = Designator.getMostDerivedArraySize(); | 
|  | uint64_t ArrayIndex = Designator.Entries.back().ArrayIndex; | 
|  | ElemsRemaining = ArraySize <= ArrayIndex ? 0 : ArraySize - ArrayIndex; | 
|  | } else { | 
|  | ElemsRemaining = Designator.isOnePastTheEnd() ? 0 : 1; | 
|  | } | 
|  |  | 
|  | EndOffset = LVal.getLValueOffset() + BytesPerElem * ElemsRemaining; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Tries to evaluate the __builtin_object_size for @p E. If successful, | 
|  | /// returns true and stores the result in @p Size. | 
|  | /// | 
|  | /// If @p WasError is non-null, this will report whether the failure to evaluate | 
|  | /// is to be treated as an Error in IntExprEvaluator. | 
|  | static bool tryEvaluateBuiltinObjectSize(const Expr *E, unsigned Type, | 
|  | EvalInfo &Info, uint64_t &Size) { | 
|  | // Determine the denoted object. | 
|  | LValue LVal; | 
|  | { | 
|  | // The operand of __builtin_object_size is never evaluated for side-effects. | 
|  | // If there are any, but we can determine the pointed-to object anyway, then | 
|  | // ignore the side-effects. | 
|  | SpeculativeEvaluationRAII SpeculativeEval(Info); | 
|  | IgnoreSideEffectsRAII Fold(Info); | 
|  |  | 
|  | if (E->isGLValue()) { | 
|  | // It's possible for us to be given GLValues if we're called via | 
|  | // Expr::tryEvaluateObjectSize. | 
|  | APValue RVal; | 
|  | if (!EvaluateAsRValue(Info, E, RVal)) | 
|  | return false; | 
|  | LVal.setFrom(Info.Ctx, RVal); | 
|  | } else if (!EvaluatePointer(ignorePointerCastsAndParens(E), LVal, Info, | 
|  | /*InvalidBaseOK=*/true)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If we point to before the start of the object, there are no accessible | 
|  | // bytes. | 
|  | if (LVal.getLValueOffset().isNegative()) { | 
|  | Size = 0; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | CharUnits EndOffset; | 
|  | if (!determineEndOffset(Info, E->getExprLoc(), Type, LVal, EndOffset)) | 
|  | return false; | 
|  |  | 
|  | // If we've fallen outside of the end offset, just pretend there's nothing to | 
|  | // write to/read from. | 
|  | if (EndOffset <= LVal.getLValueOffset()) | 
|  | Size = 0; | 
|  | else | 
|  | Size = (EndOffset - LVal.getLValueOffset()).getQuantity(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool IntExprEvaluator::VisitConstantExpr(const ConstantExpr *E) { | 
|  | llvm::SaveAndRestore<bool> InConstantContext(Info.InConstantContext, true); | 
|  | return ExprEvaluatorBaseTy::VisitConstantExpr(E); | 
|  | } | 
|  |  | 
|  | bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) { | 
|  | if (unsigned BuiltinOp = E->getBuiltinCallee()) | 
|  | return VisitBuiltinCallExpr(E, BuiltinOp); | 
|  |  | 
|  | return ExprEvaluatorBaseTy::VisitCallExpr(E); | 
|  | } | 
|  |  | 
|  | bool IntExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E, | 
|  | unsigned BuiltinOp) { | 
|  | switch (unsigned BuiltinOp = E->getBuiltinCallee()) { | 
|  | default: | 
|  | return ExprEvaluatorBaseTy::VisitCallExpr(E); | 
|  |  | 
|  | case Builtin::BI__builtin_dynamic_object_size: | 
|  | case Builtin::BI__builtin_object_size: { | 
|  | // The type was checked when we built the expression. | 
|  | unsigned Type = | 
|  | E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue(); | 
|  | assert(Type <= 3 && "unexpected type"); | 
|  |  | 
|  | uint64_t Size; | 
|  | if (tryEvaluateBuiltinObjectSize(E->getArg(0), Type, Info, Size)) | 
|  | return Success(Size, E); | 
|  |  | 
|  | if (E->getArg(0)->HasSideEffects(Info.Ctx)) | 
|  | return Success((Type & 2) ? 0 : -1, E); | 
|  |  | 
|  | // Expression had no side effects, but we couldn't statically determine the | 
|  | // size of the referenced object. | 
|  | switch (Info.EvalMode) { | 
|  | case EvalInfo::EM_ConstantExpression: | 
|  | case EvalInfo::EM_PotentialConstantExpression: | 
|  | case EvalInfo::EM_ConstantFold: | 
|  | case EvalInfo::EM_EvaluateForOverflow: | 
|  | case EvalInfo::EM_IgnoreSideEffects: | 
|  | // Leave it to IR generation. | 
|  | return Error(E); | 
|  | case EvalInfo::EM_ConstantExpressionUnevaluated: | 
|  | case EvalInfo::EM_PotentialConstantExpressionUnevaluated: | 
|  | // Reduce it to a constant now. | 
|  | return Success((Type & 2) ? 0 : -1, E); | 
|  | } | 
|  |  | 
|  | llvm_unreachable("unexpected EvalMode"); | 
|  | } | 
|  |  | 
|  | case Builtin::BI__builtin_os_log_format_buffer_size: { | 
|  | analyze_os_log::OSLogBufferLayout Layout; | 
|  | analyze_os_log::computeOSLogBufferLayout(Info.Ctx, E, Layout); | 
|  | return Success(Layout.size().getQuantity(), E); | 
|  | } | 
|  |  | 
|  | case Builtin::BI__builtin_bswap16: | 
|  | case Builtin::BI__builtin_bswap32: | 
|  | case Builtin::BI__builtin_bswap64: { | 
|  | APSInt Val; | 
|  | if (!EvaluateInteger(E->getArg(0), Val, Info)) | 
|  | return false; | 
|  |  | 
|  | return Success(Val.byteSwap(), E); | 
|  | } | 
|  |  | 
|  | case Builtin::BI__builtin_classify_type: | 
|  | return Success((int)EvaluateBuiltinClassifyType(E, Info.getLangOpts()), E); | 
|  |  | 
|  | case Builtin::BI__builtin_clrsb: | 
|  | case Builtin::BI__builtin_clrsbl: | 
|  | case Builtin::BI__builtin_clrsbll: { | 
|  | APSInt Val; | 
|  | if (!EvaluateInteger(E->getArg(0), Val, Info)) | 
|  | return false; | 
|  |  | 
|  | return Success(Val.getBitWidth() - Val.getMinSignedBits(), E); | 
|  | } | 
|  |  | 
|  | case Builtin::BI__builtin_clz: | 
|  | case Builtin::BI__builtin_clzl: | 
|  | case Builtin::BI__builtin_clzll: | 
|  | case Builtin::BI__builtin_clzs: { | 
|  | APSInt Val; | 
|  | if (!EvaluateInteger(E->getArg(0), Val, Info)) | 
|  | return false; | 
|  | if (!Val) | 
|  | return Error(E); | 
|  |  | 
|  | return Success(Val.countLeadingZeros(), E); | 
|  | } | 
|  |  | 
|  | case Builtin::BI__builtin_constant_p: { | 
|  | const Expr *Arg = E->getArg(0); | 
|  | if (EvaluateBuiltinConstantP(Info, Arg)) | 
|  | return Success(true, E); | 
|  | if (Info.InConstantContext || Arg->HasSideEffects(Info.Ctx)) { | 
|  | // Outside a constant context, eagerly evaluate to false in the presence | 
|  | // of side-effects in order to avoid -Wunsequenced false-positives in | 
|  | // a branch on __builtin_constant_p(expr). | 
|  | return Success(false, E); | 
|  | } | 
|  | Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | case Builtin::BI__builtin_is_constant_evaluated: | 
|  | return Success(Info.InConstantContext, E); | 
|  |  | 
|  | case Builtin::BI__builtin_ctz: | 
|  | case Builtin::BI__builtin_ctzl: | 
|  | case Builtin::BI__builtin_ctzll: | 
|  | case Builtin::BI__builtin_ctzs: { | 
|  | APSInt Val; | 
|  | if (!EvaluateInteger(E->getArg(0), Val, Info)) | 
|  | return false; | 
|  | if (!Val) | 
|  | return Error(E); | 
|  |  | 
|  | return Success(Val.countTrailingZeros(), E); | 
|  | } | 
|  |  | 
|  | case Builtin::BI__builtin_eh_return_data_regno: { | 
|  | int Operand = E->getArg(0)->EvaluateKnownConstInt(Info.Ctx).getZExtValue(); | 
|  | Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(Operand); | 
|  | return Success(Operand, E); | 
|  | } | 
|  |  | 
|  | case Builtin::BI__builtin_expect: | 
|  | return Visit(E->getArg(0)); | 
|  |  | 
|  | case Builtin::BI__builtin_ffs: | 
|  | case Builtin::BI__builtin_ffsl: | 
|  | case Builtin::BI__builtin_ffsll: { | 
|  | APSInt Val; | 
|  | if (!EvaluateInteger(E->getArg(0), Val, Info)) | 
|  | return false; | 
|  |  | 
|  | unsigned N = Val.countTrailingZeros(); | 
|  | return Success(N == Val.getBitWidth() ? 0 : N + 1, E); | 
|  | } | 
|  |  | 
|  | case Builtin::BI__builtin_fpclassify: { | 
|  | APFloat Val(0.0); | 
|  | if (!EvaluateFloat(E->getArg(5), Val, Info)) | 
|  | return false; | 
|  | unsigned Arg; | 
|  | switch (Val.getCategory()) { | 
|  | case APFloat::fcNaN: Arg = 0; break; | 
|  | case APFloat::fcInfinity: Arg = 1; break; | 
|  | case APFloat::fcNormal: Arg = Val.isDenormal() ? 3 : 2; break; | 
|  | case APFloat::fcZero: Arg = 4; break; | 
|  | } | 
|  | return Visit(E->getArg(Arg)); | 
|  | } | 
|  |  | 
|  | case Builtin::BI__builtin_isinf_sign: { | 
|  | APFloat Val(0.0); | 
|  | return EvaluateFloat(E->getArg(0), Val, Info) && | 
|  | Success(Val.isInfinity() ? (Val.isNegative() ? -1 : 1) : 0, E); | 
|  | } | 
|  |  | 
|  | case Builtin::BI__builtin_isinf: { | 
|  | APFloat Val(0.0); | 
|  | return EvaluateFloat(E->getArg(0), Val, Info) && | 
|  | Success(Val.isInfinity() ? 1 : 0, E); | 
|  | } | 
|  |  | 
|  | case Builtin::BI__builtin_isfinite: { | 
|  | APFloat Val(0.0); | 
|  | return EvaluateFloat(E->getArg(0), Val, Info) && | 
|  | Success(Val.isFinite() ? 1 : 0, E); | 
|  | } | 
|  |  | 
|  | case Builtin::BI__builtin_isnan: { | 
|  | APFloat Val(0.0); | 
|  | return EvaluateFloat(E->getArg(0), Val, Info) && | 
|  | Success(Val.isNaN() ? 1 : 0, E); | 
|  | } | 
|  |  | 
|  | case Builtin::BI__builtin_isnormal: { | 
|  | APFloat Val(0.0); | 
|  | return EvaluateFloat(E->getArg(0), Val, Info) && | 
|  | Success(Val.isNormal() ? 1 : 0, E); | 
|  | } | 
|  |  | 
|  | case Builtin::BI__builtin_parity: | 
|  | case Builtin::BI__builtin_parityl: | 
|  | case Builtin::BI__builtin_parityll: { | 
|  | APSInt Val; | 
|  | if (!EvaluateInteger(E->getArg(0), Val, Info)) | 
|  | return false; | 
|  |  | 
|  | return Success(Val.countPopulation() % 2, E); | 
|  | } | 
|  |  | 
|  | case Builtin::BI__builtin_popcount: | 
|  | case Builtin::BI__builtin_popcountl: | 
|  | case Builtin::BI__builtin_popcountll: { | 
|  | APSInt Val; | 
|  | if (!EvaluateInteger(E->getArg(0), Val, Info)) | 
|  | return false; | 
|  |  | 
|  | return Success(Val.countPopulation(), E); | 
|  | } | 
|  |  | 
|  | case Builtin::BIstrlen: | 
|  | case Builtin::BIwcslen: | 
|  | // A call to strlen is not a constant expression. | 
|  | if (Info.getLangOpts().CPlusPlus11) | 
|  | Info.CCEDiag(E, diag::note_constexpr_invalid_function) | 
|  | << /*isConstexpr*/0 << /*isConstructor*/0 | 
|  | << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'"); | 
|  | else | 
|  | Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr); | 
|  | LLVM_FALLTHROUGH; | 
|  | case Builtin::BI__builtin_strlen: | 
|  | case Builtin::BI__builtin_wcslen: { | 
|  | // As an extension, we support __builtin_strlen() as a constant expression, | 
|  | // and support folding strlen() to a constant. | 
|  | LValue String; | 
|  | if (!EvaluatePointer(E->getArg(0), String, Info)) | 
|  | return false; | 
|  |  | 
|  | QualType CharTy = E->getArg(0)->getType()->getPointeeType(); | 
|  |  | 
|  | // Fast path: if it's a string literal, search the string value. | 
|  | if (const StringLiteral *S = dyn_cast_or_null<StringLiteral>( | 
|  | String.getLValueBase().dyn_cast<const Expr *>())) { | 
|  | // The string literal may have embedded null characters. Find the first | 
|  | // one and truncate there. | 
|  | StringRef Str = S->getBytes(); | 
|  | int64_t Off = String.Offset.getQuantity(); | 
|  | if (Off >= 0 && (uint64_t)Off <= (uint64_t)Str.size() && | 
|  | S->getCharByteWidth() == 1 && | 
|  | // FIXME: Add fast-path for wchar_t too. | 
|  | Info.Ctx.hasSameUnqualifiedType(CharTy, Info.Ctx.CharTy)) { | 
|  | Str = Str.substr(Off); | 
|  |  | 
|  | StringRef::size_type Pos = Str.find(0); | 
|  | if (Pos != StringRef::npos) | 
|  | Str = Str.substr(0, Pos); | 
|  |  | 
|  | return Success(Str.size(), E); | 
|  | } | 
|  |  | 
|  | // Fall through to slow path to issue appropriate diagnostic. | 
|  | } | 
|  |  | 
|  | // Slow path: scan the bytes of the string looking for the terminating 0. | 
|  | for (uint64_t Strlen = 0; /**/; ++Strlen) { | 
|  | APValue Char; | 
|  | if (!handleLValueToRValueConversion(Info, E, CharTy, String, Char) || | 
|  | !Char.isInt()) | 
|  | return false; | 
|  | if (!Char.getInt()) | 
|  | return Success(Strlen, E); | 
|  | if (!HandleLValueArrayAdjustment(Info, E, String, CharTy, 1)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | case Builtin::BIstrcmp: | 
|  | case Builtin::BIwcscmp: | 
|  | case Builtin::BIstrncmp: | 
|  | case Builtin::BIwcsncmp: | 
|  | case Builtin::BImemcmp: | 
|  | case Builtin::BIbcmp: | 
|  | case Builtin::BIwmemcmp: | 
|  | // A call to strlen is not a constant expression. | 
|  | if (Info.getLangOpts().CPlusPlus11) | 
|  | Info.CCEDiag(E, diag::note_constexpr_invalid_function) | 
|  | << /*isConstexpr*/0 << /*isConstructor*/0 | 
|  | << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'"); | 
|  | else | 
|  | Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr); | 
|  | LLVM_FALLTHROUGH; | 
|  | case Builtin::BI__builtin_strcmp: | 
|  | case Builtin::BI__builtin_wcscmp: | 
|  | case Builtin::BI__builtin_strncmp: | 
|  | case Builtin::BI__builtin_wcsncmp: | 
|  | case Builtin::BI__builtin_memcmp: | 
|  | case Builtin::BI__builtin_bcmp: | 
|  | case Builtin::BI__builtin_wmemcmp: { | 
|  | LValue String1, String2; | 
|  | if (!EvaluatePointer(E->getArg(0), String1, Info) || | 
|  | !EvaluatePointer(E->getArg(1), String2, Info)) | 
|  | return false; | 
|  |  | 
|  | uint64_t MaxLength = uint64_t(-1); | 
|  | if (BuiltinOp != Builtin::BIstrcmp && | 
|  | BuiltinOp != Builtin::BIwcscmp && | 
|  | BuiltinOp != Builtin::BI__builtin_strcmp && | 
|  | BuiltinOp != Builtin::BI__builtin_wcscmp) { | 
|  | APSInt N; | 
|  | if (!EvaluateInteger(E->getArg(2), N, Info)) | 
|  | return false; | 
|  | MaxLength = N.getExtValue(); | 
|  | } | 
|  |  | 
|  | // Empty substrings compare equal by definition. | 
|  | if (MaxLength == 0u) | 
|  | return Success(0, E); | 
|  |  | 
|  | if (!String1.checkNullPointerForFoldAccess(Info, E, AK_Read) || | 
|  | !String2.checkNullPointerForFoldAccess(Info, E, AK_Read) || | 
|  | String1.Designator.Invalid || String2.Designator.Invalid) | 
|  | return false; | 
|  |  | 
|  | QualType CharTy1 = String1.Designator.getType(Info.Ctx); | 
|  | QualType CharTy2 = String2.Designator.getType(Info.Ctx); | 
|  |  | 
|  | bool IsRawByte = BuiltinOp == Builtin::BImemcmp || | 
|  | BuiltinOp == Builtin::BIbcmp || | 
|  | BuiltinOp == Builtin::BI__builtin_memcmp || | 
|  | BuiltinOp == Builtin::BI__builtin_bcmp; | 
|  |  | 
|  | assert(IsRawByte || | 
|  | (Info.Ctx.hasSameUnqualifiedType( | 
|  | CharTy1, E->getArg(0)->getType()->getPointeeType()) && | 
|  | Info.Ctx.hasSameUnqualifiedType(CharTy1, CharTy2))); | 
|  |  | 
|  | const auto &ReadCurElems = [&](APValue &Char1, APValue &Char2) { | 
|  | return handleLValueToRValueConversion(Info, E, CharTy1, String1, Char1) && | 
|  | handleLValueToRValueConversion(Info, E, CharTy2, String2, Char2) && | 
|  | Char1.isInt() && Char2.isInt(); | 
|  | }; | 
|  | const auto &AdvanceElems = [&] { | 
|  | return HandleLValueArrayAdjustment(Info, E, String1, CharTy1, 1) && | 
|  | HandleLValueArrayAdjustment(Info, E, String2, CharTy2, 1); | 
|  | }; | 
|  |  | 
|  | if (IsRawByte) { | 
|  | uint64_t BytesRemaining = MaxLength; | 
|  | // Pointers to const void may point to objects of incomplete type. | 
|  | if (CharTy1->isIncompleteType()) { | 
|  | Info.FFDiag(E, diag::note_constexpr_ltor_incomplete_type) << CharTy1; | 
|  | return false; | 
|  | } | 
|  | if (CharTy2->isIncompleteType()) { | 
|  | Info.FFDiag(E, diag::note_constexpr_ltor_incomplete_type) << CharTy2; | 
|  | return false; | 
|  | } | 
|  | uint64_t CharTy1Width{Info.Ctx.getTypeSize(CharTy1)}; | 
|  | CharUnits CharTy1Size = Info.Ctx.toCharUnitsFromBits(CharTy1Width); | 
|  | // Give up on comparing between elements with disparate widths. | 
|  | if (CharTy1Size != Info.Ctx.getTypeSizeInChars(CharTy2)) | 
|  | return false; | 
|  | uint64_t BytesPerElement = CharTy1Size.getQuantity(); | 
|  | assert(BytesRemaining && "BytesRemaining should not be zero: the " | 
|  | "following loop considers at least one element"); | 
|  | while (true) { | 
|  | APValue Char1, Char2; | 
|  | if (!ReadCurElems(Char1, Char2)) | 
|  | return false; | 
|  | // We have compatible in-memory widths, but a possible type and | 
|  | // (for `bool`) internal representation mismatch. | 
|  | // Assuming two's complement representation, including 0 for `false` and | 
|  | // 1 for `true`, we can check an appropriate number of elements for | 
|  | // equality even if they are not byte-sized. | 
|  | APSInt Char1InMem = Char1.getInt().extOrTrunc(CharTy1Width); | 
|  | APSInt Char2InMem = Char2.getInt().extOrTrunc(CharTy1Width); | 
|  | if (Char1InMem.ne(Char2InMem)) { | 
|  | // If the elements are byte-sized, then we can produce a three-way | 
|  | // comparison result in a straightforward manner. | 
|  | if (BytesPerElement == 1u) { | 
|  | // memcmp always compares unsigned chars. | 
|  | return Success(Char1InMem.ult(Char2InMem) ? -1 : 1, E); | 
|  | } | 
|  | // The result is byte-order sensitive, and we have multibyte elements. | 
|  | // FIXME: We can compare the remaining bytes in the correct order. | 
|  | return false; | 
|  | } | 
|  | if (!AdvanceElems()) | 
|  | return false; | 
|  | if (BytesRemaining <= BytesPerElement) | 
|  | break; | 
|  | BytesRemaining -= BytesPerElement; | 
|  | } | 
|  | // Enough elements are equal to account for the memcmp limit. | 
|  | return Success(0, E); | 
|  | } | 
|  |  | 
|  | bool StopAtNull = | 
|  | (BuiltinOp != Builtin::BImemcmp && BuiltinOp != Builtin::BIbcmp && | 
|  | BuiltinOp != Builtin::BIwmemcmp && | 
|  | BuiltinOp != Builtin::BI__builtin_memcmp && | 
|  | BuiltinOp != Builtin::BI__builtin_bcmp && | 
|  | BuiltinOp != Builtin::BI__builtin_wmemcmp); | 
|  | bool IsWide = BuiltinOp == Builtin::BIwcscmp || | 
|  | BuiltinOp == Builtin::BIwcsncmp || | 
|  | BuiltinOp == Builtin::BIwmemcmp || | 
|  | BuiltinOp == Builtin::BI__builtin_wcscmp || | 
|  | BuiltinOp == Builtin::BI__builtin_wcsncmp || | 
|  | BuiltinOp == Builtin::BI__builtin_wmemcmp; | 
|  |  | 
|  | for (; MaxLength; --MaxLength) { | 
|  | APValue Char1, Char2; | 
|  | if (!ReadCurElems(Char1, Char2)) | 
|  | return false; | 
|  | if (Char1.getInt() != Char2.getInt()) { | 
|  | if (IsWide) // wmemcmp compares with wchar_t signedness. | 
|  | return Success(Char1.getInt() < Char2.getInt() ? -1 : 1, E); | 
|  | // memcmp always compares unsigned chars. | 
|  | return Success(Char1.getInt().ult(Char2.getInt()) ? -1 : 1, E); | 
|  | } | 
|  | if (StopAtNull && !Char1.getInt()) | 
|  | return Success(0, E); | 
|  | assert(!(StopAtNull && !Char2.getInt())); | 
|  | if (!AdvanceElems()) | 
|  | return false; | 
|  | } | 
|  | // We hit the strncmp / memcmp limit. | 
|  | return Success(0, E); | 
|  | } | 
|  |  | 
|  | case Builtin::BI__atomic_always_lock_free: | 
|  | case Builtin::BI__atomic_is_lock_free: | 
|  | case Builtin::BI__c11_atomic_is_lock_free: { | 
|  | APSInt SizeVal; | 
|  | if (!EvaluateInteger(E->getArg(0), SizeVal, Info)) | 
|  | return false; | 
|  |  | 
|  | // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power | 
|  | // of two less than the maximum inline atomic width, we know it is | 
|  | // lock-free.  If the size isn't a power of two, or greater than the | 
|  | // maximum alignment where we promote atomics, we know it is not lock-free | 
|  | // (at least not in the sense of atomic_is_lock_free).  Otherwise, | 
|  | // the answer can only be determined at runtime; for example, 16-byte | 
|  | // atomics have lock-free implementations on some, but not all, | 
|  | // x86-64 processors. | 
|  |  | 
|  | // Check power-of-two. | 
|  | CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue()); | 
|  | if (Size.isPowerOfTwo()) { | 
|  | // Check against inlining width. | 
|  | unsigned InlineWidthBits = | 
|  | Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth(); | 
|  | if (Size <= Info.Ctx.toCharUnitsFromBits(InlineWidthBits)) { | 
|  | if (BuiltinOp == Builtin::BI__c11_atomic_is_lock_free || | 
|  | Size == CharUnits::One() || | 
|  | E->getArg(1)->isNullPointerConstant(Info.Ctx, | 
|  | Expr::NPC_NeverValueDependent)) | 
|  | // OK, we will inline appropriately-aligned operations of this size, | 
|  | // and _Atomic(T) is appropriately-aligned. | 
|  | return Success(1, E); | 
|  |  | 
|  | QualType PointeeType = E->getArg(1)->IgnoreImpCasts()->getType()-> | 
|  | castAs<PointerType>()->getPointeeType(); | 
|  | if (!PointeeType->isIncompleteType() && | 
|  | Info.Ctx.getTypeAlignInChars(PointeeType) >= Size) { | 
|  | // OK, we will inline operations on this object. | 
|  | return Success(1, E); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return BuiltinOp == Builtin::BI__atomic_always_lock_free ? | 
|  | Success(0, E) : Error(E); | 
|  | } | 
|  | case Builtin::BIomp_is_initial_device: | 
|  | // We can decide statically which value the runtime would return if called. | 
|  | return Success(Info.getLangOpts().OpenMPIsDevice ? 0 : 1, E); | 
|  | case Builtin::BI__builtin_add_overflow: | 
|  | case Builtin::BI__builtin_sub_overflow: | 
|  | case Builtin::BI__builtin_mul_overflow: | 
|  | case Builtin::BI__builtin_sadd_overflow: | 
|  | case Builtin::BI__builtin_uadd_overflow: | 
|  | case Builtin::BI__builtin_uaddl_overflow: | 
|  | case Builtin::BI__builtin_uaddll_overflow: | 
|  | case Builtin::BI__builtin_usub_overflow: | 
|  | case Builtin::BI__builtin_usubl_overflow: | 
|  | case Builtin::BI__builtin_usubll_overflow: | 
|  | case Builtin::BI__builtin_umul_overflow: | 
|  | case Builtin::BI__builtin_umull_overflow: | 
|  | case Builtin::BI__builtin_umulll_overflow: | 
|  | case Builtin::BI__builtin_saddl_overflow: | 
|  | case Builtin::BI__builtin_saddll_overflow: | 
|  | case Builtin::BI__builtin_ssub_overflow: | 
|  | case Builtin::BI__builtin_ssubl_overflow: | 
|  | case Builtin::BI__builtin_ssubll_overflow: | 
|  | case Builtin::BI__builtin_smul_overflow: | 
|  | case Builtin::BI__builtin_smull_overflow: | 
|  | case Builtin::BI__builtin_smulll_overflow: { | 
|  | LValue ResultLValue; | 
|  | APSInt LHS, RHS; | 
|  |  | 
|  | QualType ResultType = E->getArg(2)->getType()->getPointeeType(); | 
|  | if (!EvaluateInteger(E->getArg(0), LHS, Info) || | 
|  | !EvaluateInteger(E->getArg(1), RHS, Info) || | 
|  | !EvaluatePointer(E->getArg(2), ResultLValue, Info)) | 
|  | return false; | 
|  |  | 
|  | APSInt Result; | 
|  | bool DidOverflow = false; | 
|  |  | 
|  | // If the types don't have to match, enlarge all 3 to the largest of them. | 
|  | if (BuiltinOp == Builtin::BI__builtin_add_overflow || | 
|  | BuiltinOp == Builtin::BI__builtin_sub_overflow || | 
|  | BuiltinOp == Builtin::BI__builtin_mul_overflow) { | 
|  | bool IsSigned = LHS.isSigned() || RHS.isSigned() || | 
|  | ResultType->isSignedIntegerOrEnumerationType(); | 
|  | bool AllSigned = LHS.isSigned() && RHS.isSigned() && | 
|  | ResultType->isSignedIntegerOrEnumerationType(); | 
|  | uint64_t LHSSize = LHS.getBitWidth(); | 
|  | uint64_t RHSSize = RHS.getBitWidth(); | 
|  | uint64_t ResultSize = Info.Ctx.getTypeSize(ResultType); | 
|  | uint64_t MaxBits = std::max(std::max(LHSSize, RHSSize), ResultSize); | 
|  |  | 
|  | // Add an additional bit if the signedness isn't uniformly agreed to. We | 
|  | // could do this ONLY if there is a signed and an unsigned that both have | 
|  | // MaxBits, but the code to check that is pretty nasty.  The issue will be | 
|  | // caught in the shrink-to-result later anyway. | 
|  | if (IsSigned && !AllSigned) | 
|  | ++MaxBits; | 
|  |  | 
|  | LHS = APSInt(IsSigned ? LHS.sextOrSelf(MaxBits) : LHS.zextOrSelf(MaxBits), | 
|  | !IsSigned); | 
|  | RHS = APSInt(IsSigned ? RHS.sextOrSelf(MaxBits) : RHS.zextOrSelf(MaxBits), | 
|  | !IsSigned); | 
|  | Result = APSInt(MaxBits, !IsSigned); | 
|  | } | 
|  |  | 
|  | // Find largest int. | 
|  | switch (BuiltinOp) { | 
|  | default: | 
|  | llvm_unreachable("Invalid value for BuiltinOp"); | 
|  | case Builtin::BI__builtin_add_overflow: | 
|  | case Builtin::BI__builtin_sadd_overflow: | 
|  | case Builtin::BI__builtin_saddl_overflow: | 
|  | case Builtin::BI__builtin_saddll_overflow: | 
|  | case Builtin::BI__builtin_uadd_overflow: | 
|  | case Builtin::BI__builtin_uaddl_overflow: | 
|  | case Builtin::BI__builtin_uaddll_overflow: | 
|  | Result = LHS.isSigned() ? LHS.sadd_ov(RHS, DidOverflow) | 
|  | : LHS.uadd_ov(RHS, DidOverflow); | 
|  | break; | 
|  | case Builtin::BI__builtin_sub_overflow: | 
|  | case Builtin::BI__builtin_ssub_overflow: | 
|  | case Builtin::BI__builtin_ssubl_overflow: | 
|  | case Builtin::BI__builtin_ssubll_overflow: | 
|  | case Builtin::BI__builtin_usub_overflow: | 
|  | case Builtin::BI__builtin_usubl_overflow: | 
|  | case Builtin::BI__builtin_usubll_overflow: | 
|  | Result = LHS.isSigned() ? LHS.ssub_ov(RHS, DidOverflow) | 
|  | : LHS.usub_ov(RHS, DidOverflow); | 
|  | break; | 
|  | case Builtin::BI__builtin_mul_overflow: | 
|  | case Builtin::BI__builtin_smul_overflow: | 
|  | case Builtin::BI__builtin_smull_overflow: | 
|  | case Builtin::BI__builtin_smulll_overflow: | 
|  | case Builtin::BI__builtin_umul_overflow: | 
|  | case Builtin::BI__builtin_umull_overflow: | 
|  | case Builtin::BI__builtin_umulll_overflow: | 
|  | Result = LHS.isSigned() ? LHS.smul_ov(RHS, DidOverflow) | 
|  | : LHS.umul_ov(RHS, DidOverflow); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // In the case where multiple sizes are allowed, truncate and see if | 
|  | // the values are the same. | 
|  | if (BuiltinOp == Builtin::BI__builtin_add_overflow || | 
|  | BuiltinOp == Builtin::BI__builtin_sub_overflow || | 
|  | BuiltinOp == Builtin::BI__builtin_mul_overflow) { | 
|  | // APSInt doesn't have a TruncOrSelf, so we use extOrTrunc instead, | 
|  | // since it will give us the behavior of a TruncOrSelf in the case where | 
|  | // its parameter <= its size.  We previously set Result to be at least the | 
|  | // type-size of the result, so getTypeSize(ResultType) <= Result.BitWidth | 
|  | // will work exactly like TruncOrSelf. | 
|  | APSInt Temp = Result.extOrTrunc(Info.Ctx.getTypeSize(ResultType)); | 
|  | Temp.setIsSigned(ResultType->isSignedIntegerOrEnumerationType()); | 
|  |  | 
|  | if (!APSInt::isSameValue(Temp, Result)) | 
|  | DidOverflow = true; | 
|  | Result = Temp; | 
|  | } | 
|  |  | 
|  | APValue APV{Result}; | 
|  | if (!handleAssignment(Info, E, ResultLValue, ResultType, APV)) | 
|  | return false; | 
|  | return Success(DidOverflow, E); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Determine whether this is a pointer past the end of the complete | 
|  | /// object referred to by the lvalue. | 
|  | static bool isOnePastTheEndOfCompleteObject(const ASTContext &Ctx, | 
|  | const LValue &LV) { | 
|  | // A null pointer can be viewed as being "past the end" but we don't | 
|  | // choose to look at it that way here. | 
|  | if (!LV.getLValueBase()) | 
|  | return false; | 
|  |  | 
|  | // If the designator is valid and refers to a subobject, we're not pointing | 
|  | // past the end. | 
|  | if (!LV.getLValueDesignator().Invalid && | 
|  | !LV.getLValueDesignator().isOnePastTheEnd()) | 
|  | return false; | 
|  |  | 
|  | // A pointer to an incomplete type might be past-the-end if the type's size is | 
|  | // zero.  We cannot tell because the type is incomplete. | 
|  | QualType Ty = getType(LV.getLValueBase()); | 
|  | if (Ty->isIncompleteType()) | 
|  | return true; | 
|  |  | 
|  | // We're a past-the-end pointer if we point to the byte after the object, | 
|  | // no matter what our type or path is. | 
|  | auto Size = Ctx.getTypeSizeInChars(Ty); | 
|  | return LV.getLValueOffset() == Size; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// Data recursive integer evaluator of certain binary operators. | 
|  | /// | 
|  | /// We use a data recursive algorithm for binary operators so that we are able | 
|  | /// to handle extreme cases of chained binary operators without causing stack | 
|  | /// overflow. | 
|  | class DataRecursiveIntBinOpEvaluator { | 
|  | struct EvalResult { | 
|  | APValue Val; | 
|  | bool Failed; | 
|  |  | 
|  | EvalResult() : Failed(false) { } | 
|  |  | 
|  | void swap(EvalResult &RHS) { | 
|  | Val.swap(RHS.Val); | 
|  | Failed = RHS.Failed; | 
|  | RHS.Failed = false; | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct Job { | 
|  | const Expr *E; | 
|  | EvalResult LHSResult; // meaningful only for binary operator expression. | 
|  | enum { AnyExprKind, BinOpKind, BinOpVisitedLHSKind } Kind; | 
|  |  | 
|  | Job() = default; | 
|  | Job(Job &&) = default; | 
|  |  | 
|  | void startSpeculativeEval(EvalInfo &Info) { | 
|  | SpecEvalRAII = SpeculativeEvaluationRAII(Info); | 
|  | } | 
|  |  | 
|  | private: | 
|  | SpeculativeEvaluationRAII SpecEvalRAII; | 
|  | }; | 
|  |  | 
|  | SmallVector<Job, 16> Queue; | 
|  |  | 
|  | IntExprEvaluator &IntEval; | 
|  | EvalInfo &Info; | 
|  | APValue &FinalResult; | 
|  |  | 
|  | public: | 
|  | DataRecursiveIntBinOpEvaluator(IntExprEvaluator &IntEval, APValue &Result) | 
|  | : IntEval(IntEval), Info(IntEval.getEvalInfo()), FinalResult(Result) { } | 
|  |  | 
|  | /// True if \param E is a binary operator that we are going to handle | 
|  | /// data recursively. | 
|  | /// We handle binary operators that are comma, logical, or that have operands | 
|  | /// with integral or enumeration type. | 
|  | static bool shouldEnqueue(const BinaryOperator *E) { | 
|  | return E->getOpcode() == BO_Comma || E->isLogicalOp() || | 
|  | (E->isRValue() && E->getType()->isIntegralOrEnumerationType() && | 
|  | E->getLHS()->getType()->isIntegralOrEnumerationType() && | 
|  | E->getRHS()->getType()->isIntegralOrEnumerationType()); | 
|  | } | 
|  |  | 
|  | bool Traverse(const BinaryOperator *E) { | 
|  | enqueue(E); | 
|  | EvalResult PrevResult; | 
|  | while (!Queue.empty()) | 
|  | process(PrevResult); | 
|  |  | 
|  | if (PrevResult.Failed) return false; | 
|  |  | 
|  | FinalResult.swap(PrevResult.Val); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | private: | 
|  | bool Success(uint64_t Value, const Expr *E, APValue &Result) { | 
|  | return IntEval.Success(Value, E, Result); | 
|  | } | 
|  | bool Success(const APSInt &Value, const Expr *E, APValue &Result) { | 
|  | return IntEval.Success(Value, E, Result); | 
|  | } | 
|  | bool Error(const Expr *E) { | 
|  | return IntEval.Error(E); | 
|  | } | 
|  | bool Error(const Expr *E, diag::kind D) { | 
|  | return IntEval.Error(E, D); | 
|  | } | 
|  |  | 
|  | OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) { | 
|  | return Info.CCEDiag(E, D); | 
|  | } | 
|  |  | 
|  | // Returns true if visiting the RHS is necessary, false otherwise. | 
|  | bool VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E, | 
|  | bool &SuppressRHSDiags); | 
|  |  | 
|  | bool VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult, | 
|  | const BinaryOperator *E, APValue &Result); | 
|  |  | 
|  | void EvaluateExpr(const Expr *E, EvalResult &Result) { | 
|  | Result.Failed = !Evaluate(Result.Val, Info, E); | 
|  | if (Result.Failed) | 
|  | Result.Val = APValue(); | 
|  | } | 
|  |  | 
|  | void process(EvalResult &Result); | 
|  |  | 
|  | void enqueue(const Expr *E) { | 
|  | E = E->IgnoreParens(); | 
|  | Queue.resize(Queue.size()+1); | 
|  | Queue.back().E = E; | 
|  | Queue.back().Kind = Job::AnyExprKind; | 
|  | } | 
|  | }; | 
|  |  | 
|  | } | 
|  |  | 
|  | bool DataRecursiveIntBinOpEvaluator:: | 
|  | VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E, | 
|  | bool &SuppressRHSDiags) { | 
|  | if (E->getOpcode() == BO_Comma) { | 
|  | // Ignore LHS but note if we could not evaluate it. | 
|  | if (LHSResult.Failed) | 
|  | return Info.noteSideEffect(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (E->isLogicalOp()) { | 
|  | bool LHSAsBool; | 
|  | if (!LHSResult.Failed && HandleConversionToBool(LHSResult.Val, LHSAsBool)) { | 
|  | // We were able to evaluate the LHS, see if we can get away with not | 
|  | // evaluating the RHS: 0 && X -> 0, 1 || X -> 1 | 
|  | if (LHSAsBool == (E->getOpcode() == BO_LOr)) { | 
|  | Success(LHSAsBool, E, LHSResult.Val); | 
|  | return false; // Ignore RHS | 
|  | } | 
|  | } else { | 
|  | LHSResult.Failed = true; | 
|  |  | 
|  | // Since we weren't able to evaluate the left hand side, it | 
|  | // might have had side effects. | 
|  | if (!Info.noteSideEffect()) | 
|  | return false; | 
|  |  | 
|  | // We can't evaluate the LHS; however, sometimes the result | 
|  | // is determined by the RHS: X && 0 -> 0, X || 1 -> 1. | 
|  | // Don't ignore RHS and suppress diagnostics from this arm. | 
|  | SuppressRHSDiags = true; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | assert(E->getLHS()->getType()->isIntegralOrEnumerationType() && | 
|  | E->getRHS()->getType()->isIntegralOrEnumerationType()); | 
|  |  | 
|  | if (LHSResult.Failed && !Info.noteFailure()) | 
|  | return false; // Ignore RHS; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void addOrSubLValueAsInteger(APValue &LVal, const APSInt &Index, | 
|  | bool IsSub) { | 
|  | // Compute the new offset in the appropriate width, wrapping at 64 bits. | 
|  | // FIXME: When compiling for a 32-bit target, we should use 32-bit | 
|  | // offsets. | 
|  | assert(!LVal.hasLValuePath() && "have designator for integer lvalue"); | 
|  | CharUnits &Offset = LVal.getLValueOffset(); | 
|  | uint64_t Offset64 = Offset.getQuantity(); | 
|  | uint64_t Index64 = Index.extOrTrunc(64).getZExtValue(); | 
|  | Offset = CharUnits::fromQuantity(IsSub ? Offset64 - Index64 | 
|  | : Offset64 + Index64); | 
|  | } | 
|  |  | 
|  | bool DataRecursiveIntBinOpEvaluator:: | 
|  | VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult, | 
|  | const BinaryOperator *E, APValue &Result) { | 
|  | if (E->getOpcode() == BO_Comma) { | 
|  | if (RHSResult.Failed) | 
|  | return false; | 
|  | Result = RHSResult.Val; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (E->isLogicalOp()) { | 
|  | bool lhsResult, rhsResult; | 
|  | bool LHSIsOK = HandleConversionToBool(LHSResult.Val, lhsResult); | 
|  | bool RHSIsOK = HandleConversionToBool(RHSResult.Val, rhsResult); | 
|  |  | 
|  | if (LHSIsOK) { | 
|  | if (RHSIsOK) { | 
|  | if (E->getOpcode() == BO_LOr) | 
|  | return Success(lhsResult || rhsResult, E, Result); | 
|  | else | 
|  | return Success(lhsResult && rhsResult, E, Result); | 
|  | } | 
|  | } else { | 
|  | if (RHSIsOK) { | 
|  | // We can't evaluate the LHS; however, sometimes the result | 
|  | // is determined by the RHS: X && 0 -> 0, X || 1 -> 1. | 
|  | if (rhsResult == (E->getOpcode() == BO_LOr)) | 
|  | return Success(rhsResult, E, Result); | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | assert(E->getLHS()->getType()->isIntegralOrEnumerationType() && | 
|  | E->getRHS()->getType()->isIntegralOrEnumerationType()); | 
|  |  | 
|  | if (LHSResult.Failed || RHSResult.Failed) | 
|  | return false; | 
|  |  | 
|  | const APValue &LHSVal = LHSResult.Val; | 
|  | const APValue &RHSVal = RHSResult.Val; | 
|  |  | 
|  | // Handle cases like (unsigned long)&a + 4. | 
|  | if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) { | 
|  | Result = LHSVal; | 
|  | addOrSubLValueAsInteger(Result, RHSVal.getInt(), E->getOpcode() == BO_Sub); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Handle cases like 4 + (unsigned long)&a | 
|  | if (E->getOpcode() == BO_Add && | 
|  | RHSVal.isLValue() && LHSVal.isInt()) { | 
|  | Result = RHSVal; | 
|  | addOrSubLValueAsInteger(Result, LHSVal.getInt(), /*IsSub*/false); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) { | 
|  | // Handle (intptr_t)&&A - (intptr_t)&&B. | 
|  | if (!LHSVal.getLValueOffset().isZero() || | 
|  | !RHSVal.getLValueOffset().isZero()) | 
|  | return false; | 
|  | const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>(); | 
|  | const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>(); | 
|  | if (!LHSExpr || !RHSExpr) | 
|  | return false; | 
|  | const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr); | 
|  | const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr); | 
|  | if (!LHSAddrExpr || !RHSAddrExpr) | 
|  | return false; | 
|  | // Make sure both labels come from the same function. | 
|  | if (LHSAddrExpr->getLabel()->getDeclContext() != | 
|  | RHSAddrExpr->getLabel()->getDeclContext()) | 
|  | return false; | 
|  | Result = APValue(LHSAddrExpr, RHSAddrExpr); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // All the remaining cases expect both operands to be an integer | 
|  | if (!LHSVal.isInt() || !RHSVal.isInt()) | 
|  | return Error(E); | 
|  |  | 
|  | // Set up the width and signedness manually, in case it can't be deduced | 
|  | // from the operation we're performing. | 
|  | // FIXME: Don't do this in the cases where we can deduce it. | 
|  | APSInt Value(Info.Ctx.getIntWidth(E->getType()), | 
|  | E->getType()->isUnsignedIntegerOrEnumerationType()); | 
|  | if (!handleIntIntBinOp(Info, E, LHSVal.getInt(), E->getOpcode(), | 
|  | RHSVal.getInt(), Value)) | 
|  | return false; | 
|  | return Success(Value, E, Result); | 
|  | } | 
|  |  | 
|  | void DataRecursiveIntBinOpEvaluator::process(EvalResult &Result) { | 
|  | Job &job = Queue.back(); | 
|  |  | 
|  | switch (job.Kind) { | 
|  | case Job::AnyExprKind: { | 
|  | if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(job.E)) { | 
|  | if (shouldEnqueue(Bop)) { | 
|  | job.Kind = Job::BinOpKind; | 
|  | enqueue(Bop->getLHS()); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | EvaluateExpr(job.E, Result); | 
|  | Queue.pop_back(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | case Job::BinOpKind: { | 
|  | const BinaryOperator *Bop = cast<BinaryOperator>(job.E); | 
|  | bool SuppressRHSDiags = false; | 
|  | if (!VisitBinOpLHSOnly(Result, Bop, SuppressRHSDiags)) { | 
|  | Queue.pop_back(); | 
|  | return; | 
|  | } | 
|  | if (SuppressRHSDiags) | 
|  | job.startSpeculativeEval(Info); | 
|  | job.LHSResult.swap(Result); | 
|  | job.Kind = Job::BinOpVisitedLHSKind; | 
|  | enqueue(Bop->getRHS()); | 
|  | return; | 
|  | } | 
|  |  | 
|  | case Job::BinOpVisitedLHSKind: { | 
|  | const BinaryOperator *Bop = cast<BinaryOperator>(job.E); | 
|  | EvalResult RHS; | 
|  | RHS.swap(Result); | 
|  | Result.Failed = !VisitBinOp(job.LHSResult, RHS, Bop, Result.Val); | 
|  | Queue.pop_back(); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Invalid Job::Kind!"); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | /// Used when we determine that we should fail, but can keep evaluating prior to | 
|  | /// noting that we had a failure. | 
|  | class DelayedNoteFailureRAII { | 
|  | EvalInfo &Info; | 
|  | bool NoteFailure; | 
|  |  | 
|  | public: | 
|  | DelayedNoteFailureRAII(EvalInfo &Info, bool NoteFailure = true) | 
|  | : Info(Info), NoteFailure(NoteFailure) {} | 
|  | ~DelayedNoteFailureRAII() { | 
|  | if (NoteFailure) { | 
|  | bool ContinueAfterFailure = Info.noteFailure(); | 
|  | (void)ContinueAfterFailure; | 
|  | assert(ContinueAfterFailure && | 
|  | "Shouldn't have kept evaluating on failure."); | 
|  | } | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | template <class SuccessCB, class AfterCB> | 
|  | static bool | 
|  | EvaluateComparisonBinaryOperator(EvalInfo &Info, const BinaryOperator *E, | 
|  | SuccessCB &&Success, AfterCB &&DoAfter) { | 
|  | assert(E->isComparisonOp() && "expected comparison operator"); | 
|  | assert((E->getOpcode() == BO_Cmp || | 
|  | E->getType()->isIntegralOrEnumerationType()) && | 
|  | "unsupported binary expression evaluation"); | 
|  | auto Error = [&](const Expr *E) { | 
|  | Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); | 
|  | return false; | 
|  | }; | 
|  |  | 
|  | using CCR = ComparisonCategoryResult; | 
|  | bool IsRelational = E->isRelationalOp(); | 
|  | bool IsEquality = E->isEqualityOp(); | 
|  | if (E->getOpcode() == BO_Cmp) { | 
|  | const ComparisonCategoryInfo &CmpInfo = | 
|  | Info.Ctx.CompCategories.getInfoForType(E->getType()); | 
|  | IsRelational = CmpInfo.isOrdered(); | 
|  | IsEquality = CmpInfo.isEquality(); | 
|  | } | 
|  |  | 
|  | QualType LHSTy = E->getLHS()->getType(); | 
|  | QualType RHSTy = E->getRHS()->getType(); | 
|  |  | 
|  | if (LHSTy->isIntegralOrEnumerationType() && | 
|  | RHSTy->isIntegralOrEnumerationType()) { | 
|  | APSInt LHS, RHS; | 
|  | bool LHSOK = EvaluateInteger(E->getLHS(), LHS, Info); | 
|  | if (!LHSOK && !Info.noteFailure()) | 
|  | return false; | 
|  | if (!EvaluateInteger(E->getRHS(), RHS, Info) || !LHSOK) | 
|  | return false; | 
|  | if (LHS < RHS) | 
|  | return Success(CCR::Less, E); | 
|  | if (LHS > RHS) | 
|  | return Success(CCR::Greater, E); | 
|  | return Success(CCR::Equal, E); | 
|  | } | 
|  |  | 
|  | if (LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) { | 
|  | APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(LHSTy)); | 
|  | APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(RHSTy)); | 
|  |  | 
|  | bool LHSOK = EvaluateFixedPointOrInteger(E->getLHS(), LHSFX, Info); | 
|  | if (!LHSOK && !Info.noteFailure()) | 
|  | return false; | 
|  | if (!EvaluateFixedPointOrInteger(E->getRHS(), RHSFX, Info) || !LHSOK) | 
|  | return false; | 
|  | if (LHSFX < RHSFX) | 
|  | return Success(CCR::Less, E); | 
|  | if (LHSFX > RHSFX) | 
|  | return Success(CCR::Greater, E); | 
|  | return Success(CCR::Equal, E); | 
|  | } | 
|  |  | 
|  | if (LHSTy->isAnyComplexType() || RHSTy->isAnyComplexType()) { | 
|  | ComplexValue LHS, RHS; | 
|  | bool LHSOK; | 
|  | if (E->isAssignmentOp()) { | 
|  | LValue LV; | 
|  | EvaluateLValue(E->getLHS(), LV, Info); | 
|  | LHSOK = false; | 
|  | } else if (LHSTy->isRealFloatingType()) { | 
|  | LHSOK = EvaluateFloat(E->getLHS(), LHS.FloatReal, Info); | 
|  | if (LHSOK) { | 
|  | LHS.makeComplexFloat(); | 
|  | LHS.FloatImag = APFloat(LHS.FloatReal.getSemantics()); | 
|  | } | 
|  | } else { | 
|  | LHSOK = EvaluateComplex(E->getLHS(), LHS, Info); | 
|  | } | 
|  | if (!LHSOK && !Info.noteFailure()) | 
|  | return false; | 
|  |  | 
|  | if (E->getRHS()->getType()->isRealFloatingType()) { | 
|  | if (!EvaluateFloat(E->getRHS(), RHS.FloatReal, Info) || !LHSOK) | 
|  | return false; | 
|  | RHS.makeComplexFloat(); | 
|  | RHS.FloatImag = APFloat(RHS.FloatReal.getSemantics()); | 
|  | } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK) | 
|  | return false; | 
|  |  | 
|  | if (LHS.isComplexFloat()) { | 
|  | APFloat::cmpResult CR_r = | 
|  | LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal()); | 
|  | APFloat::cmpResult CR_i = | 
|  | LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag()); | 
|  | bool IsEqual = CR_r == APFloat::cmpEqual && CR_i == APFloat::cmpEqual; | 
|  | return Success(IsEqual ? CCR::Equal : CCR::Nonequal, E); | 
|  | } else { | 
|  | assert(IsEquality && "invalid complex comparison"); | 
|  | bool IsEqual = LHS.getComplexIntReal() == RHS.getComplexIntReal() && | 
|  | LHS.getComplexIntImag() == RHS.getComplexIntImag(); | 
|  | return Success(IsEqual ? CCR::Equal : CCR::Nonequal, E); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (LHSTy->isRealFloatingType() && | 
|  | RHSTy->isRealFloatingType()) { | 
|  | APFloat RHS(0.0), LHS(0.0); | 
|  |  | 
|  | bool LHSOK = EvaluateFloat(E->getRHS(), RHS, Info); | 
|  | if (!LHSOK && !Info.noteFailure()) | 
|  | return false; | 
|  |  | 
|  | if (!EvaluateFloat(E->getLHS(), LHS, Info) || !LHSOK) | 
|  | return false; | 
|  |  | 
|  | assert(E->isComparisonOp() && "Invalid binary operator!"); | 
|  | auto GetCmpRes = [&]() { | 
|  | switch (LHS.compare(RHS)) { | 
|  | case APFloat::cmpEqual: | 
|  | return CCR::Equal; | 
|  | case APFloat::cmpLessThan: | 
|  | return CCR::Less; | 
|  | case APFloat::cmpGreaterThan: | 
|  | return CCR::Greater; | 
|  | case APFloat::cmpUnordered: | 
|  | return CCR::Unordered; | 
|  | } | 
|  | llvm_unreachable("Unrecognised APFloat::cmpResult enum"); | 
|  | }; | 
|  | return Success(GetCmpRes(), E); | 
|  | } | 
|  |  | 
|  | if (LHSTy->isPointerType() && RHSTy->isPointerType()) { | 
|  | LValue LHSValue, RHSValue; | 
|  |  | 
|  | bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info); | 
|  | if (!LHSOK && !Info.noteFailure()) | 
|  | return false; | 
|  |  | 
|  | if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK) | 
|  | return false; | 
|  |  | 
|  | // Reject differing bases from the normal codepath; we special-case | 
|  | // comparisons to null. | 
|  | if (!HasSameBase(LHSValue, RHSValue)) { | 
|  | // Inequalities and subtractions between unrelated pointers have | 
|  | // unspecified or undefined behavior. | 
|  | if (!IsEquality) | 
|  | return Error(E); | 
|  | // A constant address may compare equal to the address of a symbol. | 
|  | // The one exception is that address of an object cannot compare equal | 
|  | // to a null pointer constant. | 
|  | if ((!LHSValue.Base && !LHSValue.Offset.isZero()) || | 
|  | (!RHSValue.Base && !RHSValue.Offset.isZero())) | 
|  | return Error(E); | 
|  | // It's implementation-defined whether distinct literals will have | 
|  | // distinct addresses. In clang, the result of such a comparison is | 
|  | // unspecified, so it is not a constant expression. However, we do know | 
|  | // that the address of a literal will be non-null. | 
|  | if ((IsLiteralLValue(LHSValue) || IsLiteralLValue(RHSValue)) && | 
|  | LHSValue.Base && RHSValue.Base) | 
|  | return Error(E); | 
|  | // We can't tell whether weak symbols will end up pointing to the same | 
|  | // object. | 
|  | if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue)) | 
|  | return Error(E); | 
|  | // We can't compare the address of the start of one object with the | 
|  | // past-the-end address of another object, per C++ DR1652. | 
|  | if ((LHSValue.Base && LHSValue.Offset.isZero() && | 
|  | isOnePastTheEndOfCompleteObject(Info.Ctx, RHSValue)) || | 
|  | (RHSValue.Base && RHSValue.Offset.isZero() && | 
|  | isOnePastTheEndOfCompleteObject(Info.Ctx, LHSValue))) | 
|  | return Error(E); | 
|  | // We can't tell whether an object is at the same address as another | 
|  | // zero sized object. | 
|  | if ((RHSValue.Base && isZeroSized(LHSValue)) || | 
|  | (LHSValue.Base && isZeroSized(RHSValue))) | 
|  | return Error(E); | 
|  | return Success(CCR::Nonequal, E); | 
|  | } | 
|  |  | 
|  | const CharUnits &LHSOffset = LHSValue.getLValueOffset(); | 
|  | const CharUnits &RHSOffset = RHSValue.getLValueOffset(); | 
|  |  | 
|  | SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator(); | 
|  | SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator(); | 
|  |  | 
|  | // C++11 [expr.rel]p3: | 
|  | //   Pointers to void (after pointer conversions) can be compared, with a | 
|  | //   result defined as follows: If both pointers represent the same | 
|  | //   address or are both the null pointer value, the result is true if the | 
|  | //   operator is <= or >= and false otherwise; otherwise the result is | 
|  | //   unspecified. | 
|  | // We interpret this as applying to pointers to *cv* void. | 
|  | if (LHSTy->isVoidPointerType() && LHSOffset != RHSOffset && IsRelational) | 
|  | Info.CCEDiag(E, diag::note_constexpr_void_comparison); | 
|  |  | 
|  | // C++11 [expr.rel]p2: | 
|  | // - If two pointers point to non-static data members of the same object, | 
|  | //   or to subobjects or array elements fo such members, recursively, the | 
|  | //   pointer to the later declared member compares greater provided the | 
|  | //   two members have the same access control and provided their class is | 
|  | //   not a union. | 
|  | //   [...] | 
|  | // - Otherwise pointer comparisons are unspecified. | 
|  | if (!LHSDesignator.Invalid && !RHSDesignator.Invalid && IsRelational) { | 
|  | bool WasArrayIndex; | 
|  | unsigned Mismatch = FindDesignatorMismatch( | 
|  | getType(LHSValue.Base), LHSDesignator, RHSDesignator, WasArrayIndex); | 
|  | // At the point where the designators diverge, the comparison has a | 
|  | // specified value if: | 
|  | //  - we are comparing array indices | 
|  | //  - we are comparing fields of a union, or fields with the same access | 
|  | // Otherwise, the result is unspecified and thus the comparison is not a | 
|  | // constant expression. | 
|  | if (!WasArrayIndex && Mismatch < LHSDesignator.Entries.size() && | 
|  | Mismatch < RHSDesignator.Entries.size()) { | 
|  | const FieldDecl *LF = getAsField(LHSDesignator.Entries[Mismatch]); | 
|  | const FieldDecl *RF = getAsField(RHSDesignator.Entries[Mismatch]); | 
|  | if (!LF && !RF) | 
|  | Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_classes); | 
|  | else if (!LF) | 
|  | Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field) | 
|  | << getAsBaseClass(LHSDesignator.Entries[Mismatch]) | 
|  | << RF->getParent() << RF; | 
|  | else if (!RF) | 
|  | Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field) | 
|  | << getAsBaseClass(RHSDesignator.Entries[Mismatch]) | 
|  | << LF->getParent() << LF; | 
|  | else if (!LF->getParent()->isUnion() && | 
|  | LF->getAccess() != RF->getAccess()) | 
|  | Info.CCEDiag(E, | 
|  | diag::note_constexpr_pointer_comparison_differing_access) | 
|  | << LF << LF->getAccess() << RF << RF->getAccess() | 
|  | << LF->getParent(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // The comparison here must be unsigned, and performed with the same | 
|  | // width as the pointer. | 
|  | unsigned PtrSize = Info.Ctx.getTypeSize(LHSTy); | 
|  | uint64_t CompareLHS = LHSOffset.getQuantity(); | 
|  | uint64_t CompareRHS = RHSOffset.getQuantity(); | 
|  | assert(PtrSize <= 64 && "Unexpected pointer width"); | 
|  | uint64_t Mask = ~0ULL >> (64 - PtrSize); | 
|  | CompareLHS &= Mask; | 
|  | CompareRHS &= Mask; | 
|  |  | 
|  | // If there is a base and this is a relational operator, we can only | 
|  | // compare pointers within the object in question; otherwise, the result | 
|  | // depends on where the object is located in memory. | 
|  | if (!LHSValue.Base.isNull() && IsRelational) { | 
|  | QualType BaseTy = getType(LHSValue.Base); | 
|  | if (BaseTy->isIncompleteType()) | 
|  | return Error(E); | 
|  | CharUnits Size = Info.Ctx.getTypeSizeInChars(BaseTy); | 
|  | uint64_t OffsetLimit = Size.getQuantity(); | 
|  | if (CompareLHS > OffsetLimit || CompareRHS > OffsetLimit) | 
|  | return Error(E); | 
|  | } | 
|  |  | 
|  | if (CompareLHS < CompareRHS) | 
|  | return Success(CCR::Less, E); | 
|  | if (CompareLHS > CompareRHS) | 
|  | return Success(CCR::Greater, E); | 
|  | return Success(CCR::Equal, E); | 
|  | } | 
|  |  | 
|  | if (LHSTy->isMemberPointerType()) { | 
|  | assert(IsEquality && "unexpected member pointer operation"); | 
|  | assert(RHSTy->isMemberPointerType() && "invalid comparison"); | 
|  |  | 
|  | MemberPtr LHSValue, RHSValue; | 
|  |  | 
|  | bool LHSOK = EvaluateMemberPointer(E->getLHS(), LHSValue, Info); | 
|  | if (!LHSOK && !Info.noteFailure()) | 
|  | return false; | 
|  |  | 
|  | if (!EvaluateMemberPointer(E->getRHS(), RHSValue, Info) || !LHSOK) | 
|  | return false; | 
|  |  | 
|  | // C++11 [expr.eq]p2: | 
|  | //   If both operands are null, they compare equal. Otherwise if only one is | 
|  | //   null, they compare unequal. | 
|  | if (!LHSValue.getDecl() || !RHSValue.getDecl()) { | 
|  | bool Equal = !LHSValue.getDecl() && !RHSValue.getDecl(); | 
|  | return Success(Equal ? CCR::Equal : CCR::Nonequal, E); | 
|  | } | 
|  |  | 
|  | //   Otherwise if either is a pointer to a virtual member function, the | 
|  | //   result is unspecified. | 
|  | if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(LHSValue.getDecl())) | 
|  | if (MD->isVirtual()) | 
|  | Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD; | 
|  | if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(RHSValue.getDecl())) | 
|  | if (MD->isVirtual()) | 
|  | Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD; | 
|  |  | 
|  | //   Otherwise they compare equal if and only if they would refer to the | 
|  | //   same member of the same most derived object or the same subobject if | 
|  | //   they were dereferenced with a hypothetical object of the associated | 
|  | //   class type. | 
|  | bool Equal = LHSValue == RHSValue; | 
|  | return Success(Equal ? CCR::Equal : CCR::Nonequal, E); | 
|  | } | 
|  |  | 
|  | if (LHSTy->isNullPtrType()) { | 
|  | assert(E->isComparisonOp() && "unexpected nullptr operation"); | 
|  | assert(RHSTy->isNullPtrType() && "missing pointer conversion"); | 
|  | // C++11 [expr.rel]p4, [expr.eq]p3: If two operands of type std::nullptr_t | 
|  | // are compared, the result is true of the operator is <=, >= or ==, and | 
|  | // false otherwise. | 
|  | return Success(CCR::Equal, E); | 
|  | } | 
|  |  | 
|  | return DoAfter(); | 
|  | } | 
|  |  | 
|  | bool RecordExprEvaluator::VisitBinCmp(const BinaryOperator *E) { | 
|  | if (!CheckLiteralType(Info, E)) | 
|  | return false; | 
|  |  | 
|  | auto OnSuccess = [&](ComparisonCategoryResult ResKind, | 
|  | const BinaryOperator *E) { | 
|  | // Evaluation succeeded. Lookup the information for the comparison category | 
|  | // type and fetch the VarDecl for the result. | 
|  | const ComparisonCategoryInfo &CmpInfo = | 
|  | Info.Ctx.CompCategories.getInfoForType(E->getType()); | 
|  | const VarDecl *VD = | 
|  | CmpInfo.getValueInfo(CmpInfo.makeWeakResult(ResKind))->VD; | 
|  | // Check and evaluate the result as a constant expression. | 
|  | LValue LV; | 
|  | LV.set(VD); | 
|  | if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result)) | 
|  | return false; | 
|  | return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result); | 
|  | }; | 
|  | return EvaluateComparisonBinaryOperator(Info, E, OnSuccess, [&]() { | 
|  | return ExprEvaluatorBaseTy::VisitBinCmp(E); | 
|  | }); | 
|  | } | 
|  |  | 
|  | bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { | 
|  | // We don't call noteFailure immediately because the assignment happens after | 
|  | // we evaluate LHS and RHS. | 
|  | if (!Info.keepEvaluatingAfterFailure() && E->isAssignmentOp()) | 
|  | return Error(E); | 
|  |  | 
|  | DelayedNoteFailureRAII MaybeNoteFailureLater(Info, E->isAssignmentOp()); | 
|  | if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E)) | 
|  | return DataRecursiveIntBinOpEvaluator(*this, Result).Traverse(E); | 
|  |  | 
|  | assert((!E->getLHS()->getType()->isIntegralOrEnumerationType() || | 
|  | !E->getRHS()->getType()->isIntegralOrEnumerationType()) && | 
|  | "DataRecursiveIntBinOpEvaluator should have handled integral types"); | 
|  |  | 
|  | if (E->isComparisonOp()) { | 
|  | // Evaluate builtin binary comparisons by evaluating them as C++2a three-way | 
|  | // comparisons and then translating the result. | 
|  | auto OnSuccess = [&](ComparisonCategoryResult ResKind, | 
|  | const BinaryOperator *E) { | 
|  | using CCR = ComparisonCategoryResult; | 
|  | bool IsEqual   = ResKind == CCR::Equal, | 
|  | IsLess    = ResKind == CCR::Less, | 
|  | IsGreater = ResKind == CCR::Greater; | 
|  | auto Op = E->getOpcode(); | 
|  | switch (Op) { | 
|  | default: | 
|  | llvm_unreachable("unsupported binary operator"); | 
|  | case BO_EQ: | 
|  | case BO_NE: | 
|  | return Success(IsEqual == (Op == BO_EQ), E); | 
|  | case BO_LT: return Success(IsLess, E); | 
|  | case BO_GT: return Success(IsGreater, E); | 
|  | case BO_LE: return Success(IsEqual || IsLess, E); | 
|  | case BO_GE: return Success(IsEqual || IsGreater, E); | 
|  | } | 
|  | }; | 
|  | return EvaluateComparisonBinaryOperator(Info, E, OnSuccess, [&]() { | 
|  | return ExprEvaluatorBaseTy::VisitBinaryOperator(E); | 
|  | }); | 
|  | } | 
|  |  | 
|  | QualType LHSTy = E->getLHS()->getType(); | 
|  | QualType RHSTy = E->getRHS()->getType(); | 
|  |  | 
|  | if (LHSTy->isPointerType() && RHSTy->isPointerType() && | 
|  | E->getOpcode() == BO_Sub) { | 
|  | LValue LHSValue, RHSValue; | 
|  |  | 
|  | bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info); | 
|  | if (!LHSOK && !Info.noteFailure()) | 
|  | return false; | 
|  |  | 
|  | if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK) | 
|  | return false; | 
|  |  | 
|  | // Reject differing bases from the normal codepath; we special-case | 
|  | // comparisons to null. | 
|  | if (!HasSameBase(LHSValue, RHSValue)) { | 
|  | // Handle &&A - &&B. | 
|  | if (!LHSValue.Offset.isZero() || !RHSValue.Offset.isZero()) | 
|  | return Error(E); | 
|  | const Expr *LHSExpr = LHSValue.Base.dyn_cast<const Expr *>(); | 
|  | const Expr *RHSExpr = RHSValue.Base.dyn_cast<const Expr *>(); | 
|  | if (!LHSExpr || !RHSExpr) | 
|  | return Error(E); | 
|  | const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr); | 
|  | const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr); | 
|  | if (!LHSAddrExpr || !RHSAddrExpr) | 
|  | return Error(E); | 
|  | // Make sure both labels come from the same function. | 
|  | if (LHSAddrExpr->getLabel()->getDeclContext() != | 
|  | RHSAddrExpr->getLabel()->getDeclContext()) | 
|  | return Error(E); | 
|  | return Success(APValue(LHSAddrExpr, RHSAddrExpr), E); | 
|  | } | 
|  | const CharUnits &LHSOffset = LHSValue.getLValueOffset(); | 
|  | const CharUnits &RHSOffset = RHSValue.getLValueOffset(); | 
|  |  | 
|  | SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator(); | 
|  | SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator(); | 
|  |  | 
|  | // C++11 [expr.add]p6: | 
|  | //   Unless both pointers point to elements of the same array object, or | 
|  | //   one past the last element of the array object, the behavior is | 
|  | //   undefined. | 
|  | if (!LHSDesignator.Invalid && !RHSDesignator.Invalid && | 
|  | !AreElementsOfSameArray(getType(LHSValue.Base), LHSDesignator, | 
|  | RHSDesignator)) | 
|  | Info.CCEDiag(E, diag::note_constexpr_pointer_subtraction_not_same_array); | 
|  |  | 
|  | QualType Type = E->getLHS()->getType(); | 
|  | QualType ElementType = Type->getAs<PointerType>()->getPointeeType(); | 
|  |  | 
|  | CharUnits ElementSize; | 
|  | if (!HandleSizeof(Info, E->getExprLoc(), ElementType, ElementSize)) | 
|  | return false; | 
|  |  | 
|  | // As an extension, a type may have zero size (empty struct or union in | 
|  | // C, array of zero length). Pointer subtraction in such cases has | 
|  | // undefined behavior, so is not constant. | 
|  | if (ElementSize.isZero()) { | 
|  | Info.FFDiag(E, diag::note_constexpr_pointer_subtraction_zero_size) | 
|  | << ElementType; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // FIXME: LLVM and GCC both compute LHSOffset - RHSOffset at runtime, | 
|  | // and produce incorrect results when it overflows. Such behavior | 
|  | // appears to be non-conforming, but is common, so perhaps we should | 
|  | // assume the standard intended for such cases to be undefined behavior | 
|  | // and check for them. | 
|  |  | 
|  | // Compute (LHSOffset - RHSOffset) / Size carefully, checking for | 
|  | // overflow in the final conversion to ptrdiff_t. | 
|  | APSInt LHS(llvm::APInt(65, (int64_t)LHSOffset.getQuantity(), true), false); | 
|  | APSInt RHS(llvm::APInt(65, (int64_t)RHSOffset.getQuantity(), true), false); | 
|  | APSInt ElemSize(llvm::APInt(65, (int64_t)ElementSize.getQuantity(), true), | 
|  | false); | 
|  | APSInt TrueResult = (LHS - RHS) / ElemSize; | 
|  | APSInt Result = TrueResult.trunc(Info.Ctx.getIntWidth(E->getType())); | 
|  |  | 
|  | if (Result.extend(65) != TrueResult && | 
|  | !HandleOverflow(Info, E, TrueResult, E->getType())) | 
|  | return false; | 
|  | return Success(Result, E); | 
|  | } | 
|  |  | 
|  | return ExprEvaluatorBaseTy::VisitBinaryOperator(E); | 
|  | } | 
|  |  | 
|  | /// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with | 
|  | /// a result as the expression's type. | 
|  | bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr( | 
|  | const UnaryExprOrTypeTraitExpr *E) { | 
|  | switch(E->getKind()) { | 
|  | case UETT_PreferredAlignOf: | 
|  | case UETT_AlignOf: { | 
|  | if (E->isArgumentType()) | 
|  | return Success(GetAlignOfType(Info, E->getArgumentType(), E->getKind()), | 
|  | E); | 
|  | else | 
|  | return Success(GetAlignOfExpr(Info, E->getArgumentExpr(), E->getKind()), | 
|  | E); | 
|  | } | 
|  |  | 
|  | case UETT_VecStep: { | 
|  | QualType Ty = E->getTypeOfArgument(); | 
|  |  | 
|  | if (Ty->isVectorType()) { | 
|  | unsigned n = Ty->castAs<VectorType>()->getNumElements(); | 
|  |  | 
|  | // The vec_step built-in functions that take a 3-component | 
|  | // vector return 4. (OpenCL 1.1 spec 6.11.12) | 
|  | if (n == 3) | 
|  | n = 4; | 
|  |  | 
|  | return Success(n, E); | 
|  | } else | 
|  | return Success(1, E); | 
|  | } | 
|  |  | 
|  | case UETT_SizeOf: { | 
|  | QualType SrcTy = E->getTypeOfArgument(); | 
|  | // C++ [expr.sizeof]p2: "When applied to a reference or a reference type, | 
|  | //   the result is the size of the referenced type." | 
|  | if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>()) | 
|  | SrcTy = Ref->getPointeeType(); | 
|  |  | 
|  | CharUnits Sizeof; | 
|  | if (!HandleSizeof(Info, E->getExprLoc(), SrcTy, Sizeof)) | 
|  | return false; | 
|  | return Success(Sizeof, E); | 
|  | } | 
|  | case UETT_OpenMPRequiredSimdAlign: | 
|  | assert(E->isArgumentType()); | 
|  | return Success( | 
|  | Info.Ctx.toCharUnitsFromBits( | 
|  | Info.Ctx.getOpenMPDefaultSimdAlign(E->getArgumentType())) | 
|  | .getQuantity(), | 
|  | E); | 
|  | } | 
|  |  | 
|  | llvm_unreachable("unknown expr/type trait"); | 
|  | } | 
|  |  | 
|  | bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) { | 
|  | CharUnits Result; | 
|  | unsigned n = OOE->getNumComponents(); | 
|  | if (n == 0) | 
|  | return Error(OOE); | 
|  | QualType CurrentType = OOE->getTypeSourceInfo()->getType(); | 
|  | for (unsigned i = 0; i != n; ++i) { | 
|  | OffsetOfNode ON = OOE->getComponent(i); | 
|  | switch (ON.getKind()) { | 
|  | case OffsetOfNode::Array: { | 
|  | const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex()); | 
|  | APSInt IdxResult; | 
|  | if (!EvaluateInteger(Idx, IdxResult, Info)) | 
|  | return false; | 
|  | const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType); | 
|  | if (!AT) | 
|  | return Error(OOE); | 
|  | CurrentType = AT->getElementType(); | 
|  | CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType); | 
|  | Result += IdxResult.getSExtValue() * ElementSize; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case OffsetOfNode::Field: { | 
|  | FieldDecl *MemberDecl = ON.getField(); | 
|  | const RecordType *RT = CurrentType->getAs<RecordType>(); | 
|  | if (!RT) | 
|  | return Error(OOE); | 
|  | RecordDecl *RD = RT->getDecl(); | 
|  | if (RD->isInvalidDecl()) return false; | 
|  | const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD); | 
|  | unsigned i = MemberDecl->getFieldIndex(); | 
|  | assert(i < RL.getFieldCount() && "offsetof field in wrong type"); | 
|  | Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i)); | 
|  | CurrentType = MemberDecl->getType().getNonReferenceType(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case OffsetOfNode::Identifier: | 
|  | llvm_unreachable("dependent __builtin_offsetof"); | 
|  |  | 
|  | case OffsetOfNode::Base: { | 
|  | CXXBaseSpecifier *BaseSpec = ON.getBase(); | 
|  | if (BaseSpec->isVirtual()) | 
|  | return Error(OOE); | 
|  |  | 
|  | // Find the layout of the class whose base we are looking into. | 
|  | const RecordType *RT = CurrentType->getAs<RecordType>(); | 
|  | if (!RT) | 
|  | return Error(OOE); | 
|  | RecordDecl *RD = RT->getDecl(); | 
|  | if (RD->isInvalidDecl()) return false; | 
|  | const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD); | 
|  |  | 
|  | // Find the base class itself. | 
|  | CurrentType = BaseSpec->getType(); | 
|  | const RecordType *BaseRT = CurrentType->getAs<RecordType>(); | 
|  | if (!BaseRT) | 
|  | return Error(OOE); | 
|  |  | 
|  | // Add the offset to the base. | 
|  | Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl())); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | return Success(Result, OOE); | 
|  | } | 
|  |  | 
|  | bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { | 
|  | switch (E->getOpcode()) { | 
|  | default: | 
|  | // Address, indirect, pre/post inc/dec, etc are not valid constant exprs. | 
|  | // See C99 6.6p3. | 
|  | return Error(E); | 
|  | case UO_Extension: | 
|  | // FIXME: Should extension allow i-c-e extension expressions in its scope? | 
|  | // If so, we could clear the diagnostic ID. | 
|  | return Visit(E->getSubExpr()); | 
|  | case UO_Plus: | 
|  | // The result is just the value. | 
|  | return Visit(E->getSubExpr()); | 
|  | case UO_Minus: { | 
|  | if (!Visit(E->getSubExpr())) | 
|  | return false; | 
|  | if (!Result.isInt()) return Error(E); | 
|  | const APSInt &Value = Result.getInt(); | 
|  | if (Value.isSigned() && Value.isMinSignedValue() && E->canOverflow() && | 
|  | !HandleOverflow(Info, E, -Value.extend(Value.getBitWidth() + 1), | 
|  | E->getType())) | 
|  | return false; | 
|  | return Success(-Value, E); | 
|  | } | 
|  | case UO_Not: { | 
|  | if (!Visit(E->getSubExpr())) | 
|  | return false; | 
|  | if (!Result.isInt()) return Error(E); | 
|  | return Success(~Result.getInt(), E); | 
|  | } | 
|  | case UO_LNot: { | 
|  | bool bres; | 
|  | if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info)) | 
|  | return false; | 
|  | return Success(!bres, E); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// HandleCast - This is used to evaluate implicit or explicit casts where the | 
|  | /// result type is integer. | 
|  | bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) { | 
|  | const Expr *SubExpr = E->getSubExpr(); | 
|  | QualType DestType = E->getType(); | 
|  | QualType SrcType = SubExpr->getType(); | 
|  |  | 
|  | switch (E->getCastKind()) { | 
|  | case CK_BaseToDerived: | 
|  | case CK_DerivedToBase: | 
|  | case CK_UncheckedDerivedToBase: | 
|  | case CK_Dynamic: | 
|  | case CK_ToUnion: | 
|  | case CK_ArrayToPointerDecay: | 
|  | case CK_FunctionToPointerDecay: | 
|  | case CK_NullToPointer: | 
|  | case CK_NullToMemberPointer: | 
|  | case CK_BaseToDerivedMemberPointer: | 
|  | case CK_DerivedToBaseMemberPointer: | 
|  | case CK_ReinterpretMemberPointer: | 
|  | case CK_ConstructorConversion: | 
|  | case CK_IntegralToPointer: | 
|  | case CK_ToVoid: | 
|  | case CK_VectorSplat: | 
|  | case CK_IntegralToFloating: | 
|  | case CK_FloatingCast: | 
|  | case CK_CPointerToObjCPointerCast: | 
|  | case CK_BlockPointerToObjCPointerCast: | 
|  | case CK_AnyPointerToBlockPointerCast: | 
|  | case CK_ObjCObjectLValueCast: | 
|  | case CK_FloatingRealToComplex: | 
|  | case CK_FloatingComplexToReal: | 
|  | case CK_FloatingComplexCast: | 
|  | case CK_FloatingComplexToIntegralComplex: | 
|  | case CK_IntegralRealToComplex: | 
|  | case CK_IntegralComplexCast: | 
|  | case CK_IntegralComplexToFloatingComplex: | 
|  | case CK_BuiltinFnToFnPtr: | 
|  | case CK_ZeroToOCLOpaqueType: | 
|  | case CK_NonAtomicToAtomic: | 
|  | case CK_AddressSpaceConversion: | 
|  | case CK_IntToOCLSampler: | 
|  | case CK_FixedPointCast: | 
|  | case CK_IntegralToFixedPoint: | 
|  | llvm_unreachable("invalid cast kind for integral value"); | 
|  |  | 
|  | case CK_BitCast: | 
|  | case CK_Dependent: | 
|  | case CK_LValueBitCast: | 
|  | case CK_ARCProduceObject: | 
|  | case CK_ARCConsumeObject: | 
|  | case CK_ARCReclaimReturnedObject: | 
|  | case CK_ARCExtendBlockObject: | 
|  | case CK_CopyAndAutoreleaseBlockObject: | 
|  | return Error(E); | 
|  |  | 
|  | case CK_UserDefinedConversion: | 
|  | case CK_LValueToRValue: | 
|  | case CK_AtomicToNonAtomic: | 
|  | case CK_NoOp: | 
|  | return ExprEvaluatorBaseTy::VisitCastExpr(E); | 
|  |  | 
|  | case CK_MemberPointerToBoolean: | 
|  | case CK_PointerToBoolean: | 
|  | case CK_IntegralToBoolean: | 
|  | case CK_FloatingToBoolean: | 
|  | case CK_BooleanToSignedIntegral: | 
|  | case CK_FloatingComplexToBoolean: | 
|  | case CK_IntegralComplexToBoolean: { | 
|  | bool BoolResult; | 
|  | if (!EvaluateAsBooleanCondition(SubExpr, BoolResult, Info)) | 
|  | return false; | 
|  | uint64_t IntResult = BoolResult; | 
|  | if (BoolResult && E->getCastKind() == CK_BooleanToSignedIntegral) | 
|  | IntResult = (uint64_t)-1; | 
|  | return Success(IntResult, E); | 
|  | } | 
|  |  | 
|  | case CK_FixedPointToIntegral: { | 
|  | APFixedPoint Src(Info.Ctx.getFixedPointSemantics(SrcType)); | 
|  | if (!EvaluateFixedPoint(SubExpr, Src, Info)) | 
|  | return false; | 
|  | bool Overflowed; | 
|  | llvm::APSInt Result = Src.convertToInt( | 
|  | Info.Ctx.getIntWidth(DestType), | 
|  | DestType->isSignedIntegerOrEnumerationType(), &Overflowed); | 
|  | if (Overflowed && !HandleOverflow(Info, E, Result, DestType)) | 
|  | return false; | 
|  | return Success(Result, E); | 
|  | } | 
|  |  | 
|  | case CK_FixedPointToBoolean: { | 
|  | // Unsigned padding does not affect this. | 
|  | APValue Val; | 
|  | if (!Evaluate(Val, Info, SubExpr)) | 
|  | return false; | 
|  | return Success(Val.getFixedPoint().getBoolValue(), E); | 
|  | } | 
|  |  | 
|  | case CK_IntegralCast: { | 
|  | if (!Visit(SubExpr)) | 
|  | return false; | 
|  |  | 
|  | if (!Result.isInt()) { | 
|  | // Allow casts of address-of-label differences if they are no-ops | 
|  | // or narrowing.  (The narrowing case isn't actually guaranteed to | 
|  | // be constant-evaluatable except in some narrow cases which are hard | 
|  | // to detect here.  We let it through on the assumption the user knows | 
|  | // what they are doing.) | 
|  | if (Result.isAddrLabelDiff()) | 
|  | return Info.Ctx.getTypeSize(DestType) <= Info.Ctx.getTypeSize(SrcType); | 
|  | // Only allow casts of lvalues if they are lossless. | 
|  | return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType); | 
|  | } | 
|  |  | 
|  | return Success(HandleIntToIntCast(Info, E, DestType, SrcType, | 
|  | Result.getInt()), E); | 
|  | } | 
|  |  | 
|  | case CK_PointerToIntegral: { | 
|  | CCEDiag(E, diag::note_constexpr_invalid_cast) << 2; | 
|  |  | 
|  | LValue LV; | 
|  | if (!EvaluatePointer(SubExpr, LV, Info)) | 
|  | return false; | 
|  |  | 
|  | if (LV.getLValueBase()) { | 
|  | // Only allow based lvalue casts if they are lossless. | 
|  | // FIXME: Allow a larger integer size than the pointer size, and allow | 
|  | // narrowing back down to pointer width in subsequent integral casts. | 
|  | // FIXME: Check integer type's active bits, not its type size. | 
|  | if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType)) | 
|  | return Error(E); | 
|  |  | 
|  | LV.Designator.setInvalid(); | 
|  | LV.moveInto(Result); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | APSInt AsInt; | 
|  | APValue V; | 
|  | LV.moveInto(V); | 
|  | if (!V.toIntegralConstant(AsInt, SrcType, Info.Ctx)) | 
|  | llvm_unreachable("Can't cast this!"); | 
|  |  | 
|  | return Success(HandleIntToIntCast(Info, E, DestType, SrcType, AsInt), E); | 
|  | } | 
|  |  | 
|  | case CK_IntegralComplexToReal: { | 
|  | ComplexValue C; | 
|  | if (!EvaluateComplex(SubExpr, C, Info)) | 
|  | return false; | 
|  | return Success(C.getComplexIntReal(), E); | 
|  | } | 
|  |  | 
|  | case CK_FloatingToIntegral: { | 
|  | APFloat F(0.0); | 
|  | if (!EvaluateFloat(SubExpr, F, Info)) | 
|  | return false; | 
|  |  | 
|  | APSInt Value; | 
|  | if (!HandleFloatToIntCast(Info, E, SrcType, F, DestType, Value)) | 
|  | return false; | 
|  | return Success(Value, E); | 
|  | } | 
|  | } | 
|  |  | 
|  | llvm_unreachable("unknown cast resulting in integral value"); | 
|  | } | 
|  |  | 
|  | bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) { | 
|  | if (E->getSubExpr()->getType()->isAnyComplexType()) { | 
|  | ComplexValue LV; | 
|  | if (!EvaluateComplex(E->getSubExpr(), LV, Info)) | 
|  | return false; | 
|  | if (!LV.isComplexInt()) | 
|  | return Error(E); | 
|  | return Success(LV.getComplexIntReal(), E); | 
|  | } | 
|  |  | 
|  | return Visit(E->getSubExpr()); | 
|  | } | 
|  |  | 
|  | bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) { | 
|  | if (E->getSubExpr()->getType()->isComplexIntegerType()) { | 
|  | ComplexValue LV; | 
|  | if (!EvaluateComplex(E->getSubExpr(), LV, Info)) | 
|  | return false; | 
|  | if (!LV.isComplexInt()) | 
|  | return Error(E); | 
|  | return Success(LV.getComplexIntImag(), E); | 
|  | } | 
|  |  | 
|  | VisitIgnoredValue(E->getSubExpr()); | 
|  | return Success(0, E); | 
|  | } | 
|  |  | 
|  | bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) { | 
|  | return Success(E->getPackLength(), E); | 
|  | } | 
|  |  | 
|  | bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { | 
|  | return Success(E->getValue(), E); | 
|  | } | 
|  |  | 
|  | bool FixedPointExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { | 
|  | switch (E->getOpcode()) { | 
|  | default: | 
|  | // Invalid unary operators | 
|  | return Error(E); | 
|  | case UO_Plus: | 
|  | // The result is just the value. | 
|  | return Visit(E->getSubExpr()); | 
|  | case UO_Minus: { | 
|  | if (!Visit(E->getSubExpr())) return false; | 
|  | if (!Result.isFixedPoint()) | 
|  | return Error(E); | 
|  | bool Overflowed; | 
|  | APFixedPoint Negated = Result.getFixedPoint().negate(&Overflowed); | 
|  | if (Overflowed && !HandleOverflow(Info, E, Negated, E->getType())) | 
|  | return false; | 
|  | return Success(Negated, E); | 
|  | } | 
|  | case UO_LNot: { | 
|  | bool bres; | 
|  | if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info)) | 
|  | return false; | 
|  | return Success(!bres, E); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool FixedPointExprEvaluator::VisitCastExpr(const CastExpr *E) { | 
|  | const Expr *SubExpr = E->getSubExpr(); | 
|  | QualType DestType = E->getType(); | 
|  | assert(DestType->isFixedPointType() && | 
|  | "Expected destination type to be a fixed point type"); | 
|  | auto DestFXSema = Info.Ctx.getFixedPointSemantics(DestType); | 
|  |  | 
|  | switch (E->getCastKind()) { | 
|  | case CK_FixedPointCast: { | 
|  | APFixedPoint Src(Info.Ctx.getFixedPointSemantics(SubExpr->getType())); | 
|  | if (!EvaluateFixedPoint(SubExpr, Src, Info)) | 
|  | return false; | 
|  | bool Overflowed; | 
|  | APFixedPoint Result = Src.convert(DestFXSema, &Overflowed); | 
|  | if (Overflowed && !HandleOverflow(Info, E, Result, DestType)) | 
|  | return false; | 
|  | return Success(Result, E); | 
|  | } | 
|  | case CK_IntegralToFixedPoint: { | 
|  | APSInt Src; | 
|  | if (!EvaluateInteger(SubExpr, Src, Info)) | 
|  | return false; | 
|  |  | 
|  | bool Overflowed; | 
|  | APFixedPoint IntResult = APFixedPoint::getFromIntValue( | 
|  | Src, Info.Ctx.getFixedPointSemantics(DestType), &Overflowed); | 
|  |  | 
|  | if (Overflowed && !HandleOverflow(Info, E, IntResult, DestType)) | 
|  | return false; | 
|  |  | 
|  | return Success(IntResult, E); | 
|  | } | 
|  | case CK_NoOp: | 
|  | case CK_LValueToRValue: | 
|  | return ExprEvaluatorBaseTy::VisitCastExpr(E); | 
|  | default: | 
|  | return Error(E); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool FixedPointExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { | 
|  | const Expr *LHS = E->getLHS(); | 
|  | const Expr *RHS = E->getRHS(); | 
|  | FixedPointSemantics ResultFXSema = | 
|  | Info.Ctx.getFixedPointSemantics(E->getType()); | 
|  |  | 
|  | APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(LHS->getType())); | 
|  | if (!EvaluateFixedPointOrInteger(LHS, LHSFX, Info)) | 
|  | return false; | 
|  | APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(RHS->getType())); | 
|  | if (!EvaluateFixedPointOrInteger(RHS, RHSFX, Info)) | 
|  | return false; | 
|  |  | 
|  | switch (E->getOpcode()) { | 
|  | case BO_Add: { | 
|  | bool AddOverflow, ConversionOverflow; | 
|  | APFixedPoint Result = LHSFX.add(RHSFX, &AddOverflow) | 
|  | .convert(ResultFXSema, &ConversionOverflow); | 
|  | if ((AddOverflow || ConversionOverflow) && | 
|  | !HandleOverflow(Info, E, Result, E->getType())) | 
|  | return false; | 
|  | return Success(Result, E); | 
|  | } | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | llvm_unreachable("Should've exited before this"); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Float Evaluation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | namespace { | 
|  | class FloatExprEvaluator | 
|  | : public ExprEvaluatorBase<FloatExprEvaluator> { | 
|  | APFloat &Result; | 
|  | public: | 
|  | FloatExprEvaluator(EvalInfo &info, APFloat &result) | 
|  | : ExprEvaluatorBaseTy(info), Result(result) {} | 
|  |  | 
|  | bool Success(const APValue &V, const Expr *e) { | 
|  | Result = V.getFloat(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool ZeroInitialization(const Expr *E) { | 
|  | Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType())); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool VisitCallExpr(const CallExpr *E); | 
|  |  | 
|  | bool VisitUnaryOperator(const UnaryOperator *E); | 
|  | bool VisitBinaryOperator(const BinaryOperator *E); | 
|  | bool VisitFloatingLiteral(const FloatingLiteral *E); | 
|  | bool VisitCastExpr(const CastExpr *E); | 
|  |  | 
|  | bool VisitUnaryReal(const UnaryOperator *E); | 
|  | bool VisitUnaryImag(const UnaryOperator *E); | 
|  |  | 
|  | // FIXME: Missing: array subscript of vector, member of vector | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) { | 
|  | assert(E->isRValue() && E->getType()->isRealFloatingType()); | 
|  | return FloatExprEvaluator(Info, Result).Visit(E); | 
|  | } | 
|  |  | 
|  | static bool TryEvaluateBuiltinNaN(const ASTContext &Context, | 
|  | QualType ResultTy, | 
|  | const Expr *Arg, | 
|  | bool SNaN, | 
|  | llvm::APFloat &Result) { | 
|  | const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts()); | 
|  | if (!S) return false; | 
|  |  | 
|  | const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy); | 
|  |  | 
|  | llvm::APInt fill; | 
|  |  | 
|  | // Treat empty strings as if they were zero. | 
|  | if (S->getString().empty()) | 
|  | fill = llvm::APInt(32, 0); | 
|  | else if (S->getString().getAsInteger(0, fill)) | 
|  | return false; | 
|  |  | 
|  | if (Context.getTargetInfo().isNan2008()) { | 
|  | if (SNaN) | 
|  | Result = llvm::APFloat::getSNaN(Sem, false, &fill); | 
|  | else | 
|  | Result = llvm::APFloat::getQNaN(Sem, false, &fill); | 
|  | } else { | 
|  | // Prior to IEEE 754-2008, architectures were allowed to choose whether | 
|  | // the first bit of their significand was set for qNaN or sNaN. MIPS chose | 
|  | // a different encoding to what became a standard in 2008, and for pre- | 
|  | // 2008 revisions, MIPS interpreted sNaN-2008 as qNan and qNaN-2008 as | 
|  | // sNaN. This is now known as "legacy NaN" encoding. | 
|  | if (SNaN) | 
|  | Result = llvm::APFloat::getQNaN(Sem, false, &fill); | 
|  | else | 
|  | Result = llvm::APFloat::getSNaN(Sem, false, &fill); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) { | 
|  | switch (E->getBuiltinCallee()) { | 
|  | default: | 
|  | return ExprEvaluatorBaseTy::VisitCallExpr(E); | 
|  |  | 
|  | case Builtin::BI__builtin_huge_val: | 
|  | case Builtin::BI__builtin_huge_valf: | 
|  | case Builtin::BI__builtin_huge_vall: | 
|  | case Builtin::BI__builtin_huge_valf128: | 
|  | case Builtin::BI__builtin_inf: | 
|  | case Builtin::BI__builtin_inff: | 
|  | case Builtin::BI__builtin_infl: | 
|  | case Builtin::BI__builtin_inff128: { | 
|  | const llvm::fltSemantics &Sem = | 
|  | Info.Ctx.getFloatTypeSemantics(E->getType()); | 
|  | Result = llvm::APFloat::getInf(Sem); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case Builtin::BI__builtin_nans: | 
|  | case Builtin::BI__builtin_nansf: | 
|  | case Builtin::BI__builtin_nansl: | 
|  | case Builtin::BI__builtin_nansf128: | 
|  | if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0), | 
|  | true, Result)) | 
|  | return Error(E); | 
|  | return true; | 
|  |  | 
|  | case Builtin::BI__builtin_nan: | 
|  | case Builtin::BI__builtin_nanf: | 
|  | case Builtin::BI__builtin_nanl: | 
|  | case Builtin::BI__builtin_nanf128: | 
|  | // If this is __builtin_nan() turn this into a nan, otherwise we | 
|  | // can't constant fold it. | 
|  | if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0), | 
|  | false, Result)) | 
|  | return Error(E); | 
|  | return true; | 
|  |  | 
|  | case Builtin::BI__builtin_fabs: | 
|  | case Builtin::BI__builtin_fabsf: | 
|  | case Builtin::BI__builtin_fabsl: | 
|  | case Builtin::BI__builtin_fabsf128: | 
|  | if (!EvaluateFloat(E->getArg(0), Result, Info)) | 
|  | return false; | 
|  |  | 
|  | if (Result.isNegative()) | 
|  | Result.changeSign(); | 
|  | return true; | 
|  |  | 
|  | // FIXME: Builtin::BI__builtin_powi | 
|  | // FIXME: Builtin::BI__builtin_powif | 
|  | // FIXME: Builtin::BI__builtin_powil | 
|  |  | 
|  | case Builtin::BI__builtin_copysign: | 
|  | case Builtin::BI__builtin_copysignf: | 
|  | case Builtin::BI__builtin_copysignl: | 
|  | case Builtin::BI__builtin_copysignf128: { | 
|  | APFloat RHS(0.); | 
|  | if (!EvaluateFloat(E->getArg(0), Result, Info) || | 
|  | !EvaluateFloat(E->getArg(1), RHS, Info)) | 
|  | return false; | 
|  | Result.copySign(RHS); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) { | 
|  | if (E->getSubExpr()->getType()->isAnyComplexType()) { | 
|  | ComplexValue CV; | 
|  | if (!EvaluateComplex(E->getSubExpr(), CV, Info)) | 
|  | return false; | 
|  | Result = CV.FloatReal; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return Visit(E->getSubExpr()); | 
|  | } | 
|  |  | 
|  | bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) { | 
|  | if (E->getSubExpr()->getType()->isAnyComplexType()) { | 
|  | ComplexValue CV; | 
|  | if (!EvaluateComplex(E->getSubExpr(), CV, Info)) | 
|  | return false; | 
|  | Result = CV.FloatImag; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | VisitIgnoredValue(E->getSubExpr()); | 
|  | const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType()); | 
|  | Result = llvm::APFloat::getZero(Sem); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { | 
|  | switch (E->getOpcode()) { | 
|  | default: return Error(E); | 
|  | case UO_Plus: | 
|  | return EvaluateFloat(E->getSubExpr(), Result, Info); | 
|  | case UO_Minus: | 
|  | if (!EvaluateFloat(E->getSubExpr(), Result, Info)) | 
|  | return false; | 
|  | Result.changeSign(); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { | 
|  | if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma) | 
|  | return ExprEvaluatorBaseTy::VisitBinaryOperator(E); | 
|  |  | 
|  | APFloat RHS(0.0); | 
|  | bool LHSOK = EvaluateFloat(E->getLHS(), Result, Info); | 
|  | if (!LHSOK && !Info.noteFailure()) | 
|  | return false; | 
|  | return EvaluateFloat(E->getRHS(), RHS, Info) && LHSOK && | 
|  | handleFloatFloatBinOp(Info, E, Result, E->getOpcode(), RHS); | 
|  | } | 
|  |  | 
|  | bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) { | 
|  | Result = E->getValue(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) { | 
|  | const Expr* SubExpr = E->getSubExpr(); | 
|  |  | 
|  | switch (E->getCastKind()) { | 
|  | default: | 
|  | return ExprEvaluatorBaseTy::VisitCastExpr(E); | 
|  |  | 
|  | case CK_IntegralToFloating: { | 
|  | APSInt IntResult; | 
|  | return EvaluateInteger(SubExpr, IntResult, Info) && | 
|  | HandleIntToFloatCast(Info, E, SubExpr->getType(), IntResult, | 
|  | E->getType(), Result); | 
|  | } | 
|  |  | 
|  | case CK_FloatingCast: { | 
|  | if (!Visit(SubExpr)) | 
|  | return false; | 
|  | return HandleFloatToFloatCast(Info, E, SubExpr->getType(), E->getType(), | 
|  | Result); | 
|  | } | 
|  |  | 
|  | case CK_FloatingComplexToReal: { | 
|  | ComplexValue V; | 
|  | if (!EvaluateComplex(SubExpr, V, Info)) | 
|  | return false; | 
|  | Result = V.getComplexFloatReal(); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Complex Evaluation (for float and integer) | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | namespace { | 
|  | class ComplexExprEvaluator | 
|  | : public ExprEvaluatorBase<ComplexExprEvaluator> { | 
|  | ComplexValue &Result; | 
|  |  | 
|  | public: | 
|  | ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result) | 
|  | : ExprEvaluatorBaseTy(info), Result(Result) {} | 
|  |  | 
|  | bool Success(const APValue &V, const Expr *e) { | 
|  | Result.setFrom(V); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool ZeroInitialization(const Expr *E); | 
|  |  | 
|  | //===--------------------------------------------------------------------===// | 
|  | //                            Visitor Methods | 
|  | //===--------------------------------------------------------------------===// | 
|  |  | 
|  | bool VisitImaginaryLiteral(const ImaginaryLiteral *E); | 
|  | bool VisitCastExpr(const CastExpr *E); | 
|  | bool VisitBinaryOperator(const BinaryOperator *E); | 
|  | bool VisitUnaryOperator(const UnaryOperator *E); | 
|  | bool VisitInitListExpr(const InitListExpr *E); | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | static bool EvaluateComplex(const Expr *E, ComplexValue &Result, | 
|  | EvalInfo &Info) { | 
|  | assert(E->isRValue() && E->getType()->isAnyComplexType()); | 
|  | return ComplexExprEvaluator(Info, Result).Visit(E); | 
|  | } | 
|  |  | 
|  | bool ComplexExprEvaluator::ZeroInitialization(const Expr *E) { | 
|  | QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType(); | 
|  | if (ElemTy->isRealFloatingType()) { | 
|  | Result.makeComplexFloat(); | 
|  | APFloat Zero = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(ElemTy)); | 
|  | Result.FloatReal = Zero; | 
|  | Result.FloatImag = Zero; | 
|  | } else { | 
|  | Result.makeComplexInt(); | 
|  | APSInt Zero = Info.Ctx.MakeIntValue(0, ElemTy); | 
|  | Result.IntReal = Zero; | 
|  | Result.IntImag = Zero; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) { | 
|  | const Expr* SubExpr = E->getSubExpr(); | 
|  |  | 
|  | if (SubExpr->getType()->isRealFloatingType()) { | 
|  | Result.makeComplexFloat(); | 
|  | APFloat &Imag = Result.FloatImag; | 
|  | if (!EvaluateFloat(SubExpr, Imag, Info)) | 
|  | return false; | 
|  |  | 
|  | Result.FloatReal = APFloat(Imag.getSemantics()); | 
|  | return true; | 
|  | } else { | 
|  | assert(SubExpr->getType()->isIntegerType() && | 
|  | "Unexpected imaginary literal."); | 
|  |  | 
|  | Result.makeComplexInt(); | 
|  | APSInt &Imag = Result.IntImag; | 
|  | if (!EvaluateInteger(SubExpr, Imag, Info)) | 
|  | return false; | 
|  |  | 
|  | Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned()); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) { | 
|  |  | 
|  | switch (E->getCastKind()) { | 
|  | case CK_BitCast: | 
|  | case CK_BaseToDerived: | 
|  | case CK_DerivedToBase: | 
|  | case CK_UncheckedDerivedToBase: | 
|  | case CK_Dynamic: | 
|  | case CK_ToUnion: | 
|  | case CK_ArrayToPointerDecay: | 
|  | case CK_FunctionToPointerDecay: | 
|  | case CK_NullToPointer: | 
|  | case CK_NullToMemberPointer: | 
|  | case CK_BaseToDerivedMemberPointer: | 
|  | case CK_DerivedToBaseMemberPointer: | 
|  | case CK_MemberPointerToBoolean: | 
|  | case CK_ReinterpretMemberPointer: | 
|  | case CK_ConstructorConversion: | 
|  | case CK_IntegralToPointer: | 
|  | case CK_PointerToIntegral: | 
|  | case CK_PointerToBoolean: | 
|  | case CK_ToVoid: | 
|  | case CK_VectorSplat: | 
|  | case CK_IntegralCast: | 
|  | case CK_BooleanToSignedIntegral: | 
|  | case CK_IntegralToBoolean: | 
|  | case CK_IntegralToFloating: | 
|  | case CK_FloatingToIntegral: | 
|  | case CK_FloatingToBoolean: | 
|  | case CK_FloatingCast: | 
|  | case CK_CPointerToObjCPointerCast: | 
|  | case CK_BlockPointerToObjCPointerCast: | 
|  | case CK_AnyPointerToBlockPointerCast: | 
|  | case CK_ObjCObjectLValueCast: | 
|  | case CK_FloatingComplexToReal: | 
|  | case CK_FloatingComplexToBoolean: | 
|  | case CK_IntegralComplexToReal: | 
|  | case CK_IntegralComplexToBoolean: | 
|  | case CK_ARCProduceObject: | 
|  | case CK_ARCConsumeObject: | 
|  | case CK_ARCReclaimReturnedObject: | 
|  | case CK_ARCExtendBlockObject: | 
|  | case CK_CopyAndAutoreleaseBlockObject: | 
|  | case CK_BuiltinFnToFnPtr: | 
|  | case CK_ZeroToOCLOpaqueType: | 
|  | case CK_NonAtomicToAtomic: | 
|  | case CK_AddressSpaceConversion: | 
|  | case CK_IntToOCLSampler: | 
|  | case CK_FixedPointCast: | 
|  | case CK_FixedPointToBoolean: | 
|  | case CK_FixedPointToIntegral: | 
|  | case CK_IntegralToFixedPoint: | 
|  | llvm_unreachable("invalid cast kind for complex value"); | 
|  |  | 
|  | case CK_LValueToRValue: | 
|  | case CK_AtomicToNonAtomic: | 
|  | case CK_NoOp: | 
|  | return ExprEvaluatorBaseTy::VisitCastExpr(E); | 
|  |  | 
|  | case CK_Dependent: | 
|  | case CK_LValueBitCast: | 
|  | case CK_UserDefinedConversion: | 
|  | return Error(E); | 
|  |  | 
|  | case CK_FloatingRealToComplex: { | 
|  | APFloat &Real = Result.FloatReal; | 
|  | if (!EvaluateFloat(E->getSubExpr(), Real, Info)) | 
|  | return false; | 
|  |  | 
|  | Result.makeComplexFloat(); | 
|  | Result.FloatImag = APFloat(Real.getSemantics()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case CK_FloatingComplexCast: { | 
|  | if (!Visit(E->getSubExpr())) | 
|  | return false; | 
|  |  | 
|  | QualType To = E->getType()->getAs<ComplexType>()->getElementType(); | 
|  | QualType From | 
|  | = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType(); | 
|  |  | 
|  | return HandleFloatToFloatCast(Info, E, From, To, Result.FloatReal) && | 
|  | HandleFloatToFloatCast(Info, E, From, To, Result.FloatImag); | 
|  | } | 
|  |  | 
|  | case CK_FloatingComplexToIntegralComplex: { | 
|  | if (!Visit(E->getSubExpr())) | 
|  | return false; | 
|  |  | 
|  | QualType To = E->getType()->getAs<ComplexType>()->getElementType(); | 
|  | QualType From | 
|  | = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType(); | 
|  | Result.makeComplexInt(); | 
|  | return HandleFloatToIntCast(Info, E, From, Result.FloatReal, | 
|  | To, Result.IntReal) && | 
|  | HandleFloatToIntCast(Info, E, From, Result.FloatImag, | 
|  | To, Result.IntImag); | 
|  | } | 
|  |  | 
|  | case CK_IntegralRealToComplex: { | 
|  | APSInt &Real = Result.IntReal; | 
|  | if (!EvaluateInteger(E->getSubExpr(), Real, Info)) | 
|  | return false; | 
|  |  | 
|  | Result.makeComplexInt(); | 
|  | Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case CK_IntegralComplexCast: { | 
|  | if (!Visit(E->getSubExpr())) | 
|  | return false; | 
|  |  | 
|  | QualType To = E->getType()->getAs<ComplexType>()->getElementType(); | 
|  | QualType From | 
|  | = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType(); | 
|  |  | 
|  | Result.IntReal = HandleIntToIntCast(Info, E, To, From, Result.IntReal); | 
|  | Result.IntImag = HandleIntToIntCast(Info, E, To, From, Result.IntImag); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case CK_IntegralComplexToFloatingComplex: { | 
|  | if (!Visit(E->getSubExpr())) | 
|  | return false; | 
|  |  | 
|  | QualType To = E->getType()->castAs<ComplexType>()->getElementType(); | 
|  | QualType From | 
|  | = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType(); | 
|  | Result.makeComplexFloat(); | 
|  | return HandleIntToFloatCast(Info, E, From, Result.IntReal, | 
|  | To, Result.FloatReal) && | 
|  | HandleIntToFloatCast(Info, E, From, Result.IntImag, | 
|  | To, Result.FloatImag); | 
|  | } | 
|  | } | 
|  |  | 
|  | llvm_unreachable("unknown cast resulting in complex value"); | 
|  | } | 
|  |  | 
|  | bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { | 
|  | if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma) | 
|  | return ExprEvaluatorBaseTy::VisitBinaryOperator(E); | 
|  |  | 
|  | // Track whether the LHS or RHS is real at the type system level. When this is | 
|  | // the case we can simplify our evaluation strategy. | 
|  | bool LHSReal = false, RHSReal = false; | 
|  |  | 
|  | bool LHSOK; | 
|  | if (E->getLHS()->getType()->isRealFloatingType()) { | 
|  | LHSReal = true; | 
|  | APFloat &Real = Result.FloatReal; | 
|  | LHSOK = EvaluateFloat(E->getLHS(), Real, Info); | 
|  | if (LHSOK) { | 
|  | Result.makeComplexFloat(); | 
|  | Result.FloatImag = APFloat(Real.getSemantics()); | 
|  | } | 
|  | } else { | 
|  | LHSOK = Visit(E->getLHS()); | 
|  | } | 
|  | if (!LHSOK && !Info.noteFailure()) | 
|  | return false; | 
|  |  | 
|  | ComplexValue RHS; | 
|  | if (E->getRHS()->getType()->isRealFloatingType()) { | 
|  | RHSReal = true; | 
|  | APFloat &Real = RHS.FloatReal; | 
|  | if (!EvaluateFloat(E->getRHS(), Real, Info) || !LHSOK) | 
|  | return false; | 
|  | RHS.makeComplexFloat(); | 
|  | RHS.FloatImag = APFloat(Real.getSemantics()); | 
|  | } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK) | 
|  | return false; | 
|  |  | 
|  | assert(!(LHSReal && RHSReal) && | 
|  | "Cannot have both operands of a complex operation be real."); | 
|  | switch (E->getOpcode()) { | 
|  | default: return Error(E); | 
|  | case BO_Add: | 
|  | if (Result.isComplexFloat()) { | 
|  | Result.getComplexFloatReal().add(RHS.getComplexFloatReal(), | 
|  | APFloat::rmNearestTiesToEven); | 
|  | if (LHSReal) | 
|  | Result.getComplexFloatImag() = RHS.getComplexFloatImag(); | 
|  | else if (!RHSReal) | 
|  | Result.getComplexFloatImag().add(RHS.getComplexFloatImag(), | 
|  | APFloat::rmNearestTiesToEven); | 
|  | } else { | 
|  | Result.getComplexIntReal() += RHS.getComplexIntReal(); | 
|  | Result.getComplexIntImag() += RHS.getComplexIntImag(); | 
|  | } | 
|  | break; | 
|  | case BO_Sub: | 
|  | if (Result.isComplexFloat()) { | 
|  | Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(), | 
|  | APFloat::rmNearestTiesToEven); | 
|  | if (LHSReal) { | 
|  | Result.getComplexFloatImag() = RHS.getComplexFloatImag(); | 
|  | Result.getComplexFloatImag().changeSign(); | 
|  | } else if (!RHSReal) { | 
|  | Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(), | 
|  | APFloat::rmNearestTiesToEven); | 
|  | } | 
|  | } else { | 
|  | Result.getComplexIntReal() -= RHS.getComplexIntReal(); | 
|  | Result.getComplexIntImag() -= RHS.getComplexIntImag(); | 
|  | } | 
|  | break; | 
|  | case BO_Mul: | 
|  | if (Result.isComplexFloat()) { | 
|  | // This is an implementation of complex multiplication according to the | 
|  | // constraints laid out in C11 Annex G. The implementation uses the | 
|  | // following naming scheme: | 
|  | //   (a + ib) * (c + id) | 
|  | ComplexValue LHS = Result; | 
|  | APFloat &A = LHS.getComplexFloatReal(); | 
|  | APFloat &B = LHS.getComplexFloatImag(); | 
|  | APFloat &C = RHS.getComplexFloatReal(); | 
|  | APFloat &D = RHS.getComplexFloatImag(); | 
|  | APFloat &ResR = Result.getComplexFloatReal(); | 
|  | APFloat &ResI = Result.getComplexFloatImag(); | 
|  | if (LHSReal) { | 
|  | assert(!RHSReal && "Cannot have two real operands for a complex op!"); | 
|  | ResR = A * C; | 
|  | ResI = A * D; | 
|  | } else if (RHSReal) { | 
|  | ResR = C * A; | 
|  | ResI = C * B; | 
|  | } else { | 
|  | // In the fully general case, we need to handle NaNs and infinities | 
|  | // robustly. | 
|  | APFloat AC = A * C; | 
|  | APFloat BD = B * D; | 
|  | APFloat AD = A * D; | 
|  | APFloat BC = B * C; | 
|  | ResR = AC - BD; | 
|  | ResI = AD + BC; | 
|  | if (ResR.isNaN() && ResI.isNaN()) { | 
|  | bool Recalc = false; | 
|  | if (A.isInfinity() || B.isInfinity()) { | 
|  | A = APFloat::copySign( | 
|  | APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A); | 
|  | B = APFloat::copySign( | 
|  | APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B); | 
|  | if (C.isNaN()) | 
|  | C = APFloat::copySign(APFloat(C.getSemantics()), C); | 
|  | if (D.isNaN()) | 
|  | D = APFloat::copySign(APFloat(D.getSemantics()), D); | 
|  | Recalc = true; | 
|  | } | 
|  | if (C.isInfinity() || D.isInfinity()) { | 
|  | C = APFloat::copySign( | 
|  | APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C); | 
|  | D = APFloat::copySign( | 
|  | APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D); | 
|  | if (A.isNaN()) | 
|  | A = APFloat::copySign(APFloat(A.getSemantics()), A); | 
|  | if (B.isNaN()) | 
|  | B = APFloat::copySign(APFloat(B.getSemantics()), B); | 
|  | Recalc = true; | 
|  | } | 
|  | if (!Recalc && (AC.isInfinity() || BD.isInfinity() || | 
|  | AD.isInfinity() || BC.isInfinity())) { | 
|  | if (A.isNaN()) | 
|  | A = APFloat::copySign(APFloat(A.getSemantics()), A); | 
|  | if (B.isNaN()) | 
|  | B = APFloat::copySign(APFloat(B.getSemantics()), B); | 
|  | if (C.isNaN()) | 
|  | C = APFloat::copySign(APFloat(C.getSemantics()), C); | 
|  | if (D.isNaN()) | 
|  | D = APFloat::copySign(APFloat(D.getSemantics()), D); | 
|  | Recalc = true; | 
|  | } | 
|  | if (Recalc) { | 
|  | ResR = APFloat::getInf(A.getSemantics()) * (A * C - B * D); | 
|  | ResI = APFloat::getInf(A.getSemantics()) * (A * D + B * C); | 
|  | } | 
|  | } | 
|  | } | 
|  | } else { | 
|  | ComplexValue LHS = Result; | 
|  | Result.getComplexIntReal() = | 
|  | (LHS.getComplexIntReal() * RHS.getComplexIntReal() - | 
|  | LHS.getComplexIntImag() * RHS.getComplexIntImag()); | 
|  | Result.getComplexIntImag() = | 
|  | (LHS.getComplexIntReal() * RHS.getComplexIntImag() + | 
|  | LHS.getComplexIntImag() * RHS.getComplexIntReal()); | 
|  | } | 
|  | break; | 
|  | case BO_Div: | 
|  | if (Result.isComplexFloat()) { | 
|  | // This is an implementation of complex division according to the | 
|  | // constraints laid out in C11 Annex G. The implementation uses the | 
|  | // following naming scheme: | 
|  | //   (a + ib) / (c + id) | 
|  | ComplexValue LHS = Result; | 
|  | APFloat &A = LHS.getComplexFloatReal(); | 
|  | APFloat &B = LHS.getComplexFloatImag(); | 
|  | APFloat &C = RHS.getComplexFloatReal(); | 
|  | APFloat &D = RHS.getComplexFloatImag(); | 
|  | APFloat &ResR = Result.getComplexFloatReal(); | 
|  | APFloat &ResI = Result.getComplexFloatImag(); | 
|  | if (RHSReal) { | 
|  | ResR = A / C; | 
|  | ResI = B / C; | 
|  | } else { | 
|  | if (LHSReal) { | 
|  | // No real optimizations we can do here, stub out with zero. | 
|  | B = APFloat::getZero(A.getSemantics()); | 
|  | } | 
|  | int DenomLogB = 0; | 
|  | APFloat MaxCD = maxnum(abs(C), abs(D)); | 
|  | if (MaxCD.isFinite()) { | 
|  | DenomLogB = ilogb(MaxCD); | 
|  | C = scalbn(C, -DenomLogB, APFloat::rmNearestTiesToEven); | 
|  | D = scalbn(D, -DenomLogB, APFloat::rmNearestTiesToEven); | 
|  | } | 
|  | APFloat Denom = C * C + D * D; | 
|  | ResR = scalbn((A * C + B * D) / Denom, -DenomLogB, | 
|  | APFloat::rmNearestTiesToEven); | 
|  | ResI = scalbn((B * C - A * D) / Denom, -DenomLogB, | 
|  | APFloat::rmNearestTiesToEven); | 
|  | if (ResR.isNaN() && ResI.isNaN()) { | 
|  | if (Denom.isPosZero() && (!A.isNaN() || !B.isNaN())) { | 
|  | ResR = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * A; | 
|  | ResI = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * B; | 
|  | } else if ((A.isInfinity() || B.isInfinity()) && C.isFinite() && | 
|  | D.isFinite()) { | 
|  | A = APFloat::copySign( | 
|  | APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A); | 
|  | B = APFloat::copySign( | 
|  | APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B); | 
|  | ResR = APFloat::getInf(ResR.getSemantics()) * (A * C + B * D); | 
|  | ResI = APFloat::getInf(ResI.getSemantics()) * (B * C - A * D); | 
|  | } else if (MaxCD.isInfinity() && A.isFinite() && B.isFinite()) { | 
|  | C = APFloat::copySign( | 
|  | APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C); | 
|  | D = APFloat::copySign( | 
|  | APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D); | 
|  | ResR = APFloat::getZero(ResR.getSemantics()) * (A * C + B * D); | 
|  | ResI = APFloat::getZero(ResI.getSemantics()) * (B * C - A * D); | 
|  | } | 
|  | } | 
|  | } | 
|  | } else { | 
|  | if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0) | 
|  | return Error(E, diag::note_expr_divide_by_zero); | 
|  |  | 
|  | ComplexValue LHS = Result; | 
|  | APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() + | 
|  | RHS.getComplexIntImag() * RHS.getComplexIntImag(); | 
|  | Result.getComplexIntReal() = | 
|  | (LHS.getComplexIntReal() * RHS.getComplexIntReal() + | 
|  | LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den; | 
|  | Result.getComplexIntImag() = | 
|  | (LHS.getComplexIntImag() * RHS.getComplexIntReal() - | 
|  | LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { | 
|  | // Get the operand value into 'Result'. | 
|  | if (!Visit(E->getSubExpr())) | 
|  | return false; | 
|  |  | 
|  | switch (E->getOpcode()) { | 
|  | default: | 
|  | return Error(E); | 
|  | case UO_Extension: | 
|  | return true; | 
|  | case UO_Plus: | 
|  | // The result is always just the subexpr. | 
|  | return true; | 
|  | case UO_Minus: | 
|  | if (Result.isComplexFloat()) { | 
|  | Result.getComplexFloatReal().changeSign(); | 
|  | Result.getComplexFloatImag().changeSign(); | 
|  | } | 
|  | else { | 
|  | Result.getComplexIntReal() = -Result.getComplexIntReal(); | 
|  | Result.getComplexIntImag() = -Result.getComplexIntImag(); | 
|  | } | 
|  | return true; | 
|  | case UO_Not: | 
|  | if (Result.isComplexFloat()) | 
|  | Result.getComplexFloatImag().changeSign(); | 
|  | else | 
|  | Result.getComplexIntImag() = -Result.getComplexIntImag(); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool ComplexExprEvaluator::VisitInitListExpr(const InitListExpr *E) { | 
|  | if (E->getNumInits() == 2) { | 
|  | if (E->getType()->isComplexType()) { | 
|  | Result.makeComplexFloat(); | 
|  | if (!EvaluateFloat(E->getInit(0), Result.FloatReal, Info)) | 
|  | return false; | 
|  | if (!EvaluateFloat(E->getInit(1), Result.FloatImag, Info)) | 
|  | return false; | 
|  | } else { | 
|  | Result.makeComplexInt(); | 
|  | if (!EvaluateInteger(E->getInit(0), Result.IntReal, Info)) | 
|  | return false; | 
|  | if (!EvaluateInteger(E->getInit(1), Result.IntImag, Info)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  | return ExprEvaluatorBaseTy::VisitInitListExpr(E); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Atomic expression evaluation, essentially just handling the NonAtomicToAtomic | 
|  | // implicit conversion. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | namespace { | 
|  | class AtomicExprEvaluator : | 
|  | public ExprEvaluatorBase<AtomicExprEvaluator> { | 
|  | const LValue *This; | 
|  | APValue &Result; | 
|  | public: | 
|  | AtomicExprEvaluator(EvalInfo &Info, const LValue *This, APValue &Result) | 
|  | : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {} | 
|  |  | 
|  | bool Success(const APValue &V, const Expr *E) { | 
|  | Result = V; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool ZeroInitialization(const Expr *E) { | 
|  | ImplicitValueInitExpr VIE( | 
|  | E->getType()->castAs<AtomicType>()->getValueType()); | 
|  | // For atomic-qualified class (and array) types in C++, initialize the | 
|  | // _Atomic-wrapped subobject directly, in-place. | 
|  | return This ? EvaluateInPlace(Result, Info, *This, &VIE) | 
|  | : Evaluate(Result, Info, &VIE); | 
|  | } | 
|  |  | 
|  | bool VisitCastExpr(const CastExpr *E) { | 
|  | switch (E->getCastKind()) { | 
|  | default: | 
|  | return ExprEvaluatorBaseTy::VisitCastExpr(E); | 
|  | case CK_NonAtomicToAtomic: | 
|  | return This ? EvaluateInPlace(Result, Info, *This, E->getSubExpr()) | 
|  | : Evaluate(Result, Info, E->getSubExpr()); | 
|  | } | 
|  | } | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result, | 
|  | EvalInfo &Info) { | 
|  | assert(E->isRValue() && E->getType()->isAtomicType()); | 
|  | return AtomicExprEvaluator(Info, This, Result).Visit(E); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Void expression evaluation, primarily for a cast to void on the LHS of a | 
|  | // comma operator | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | namespace { | 
|  | class VoidExprEvaluator | 
|  | : public ExprEvaluatorBase<VoidExprEvaluator> { | 
|  | public: | 
|  | VoidExprEvaluator(EvalInfo &Info) : ExprEvaluatorBaseTy(Info) {} | 
|  |  | 
|  | bool Success(const APValue &V, const Expr *e) { return true; } | 
|  |  | 
|  | bool ZeroInitialization(const Expr *E) { return true; } | 
|  |  | 
|  | bool VisitCastExpr(const CastExpr *E) { | 
|  | switch (E->getCastKind()) { | 
|  | default: | 
|  | return ExprEvaluatorBaseTy::VisitCastExpr(E); | 
|  | case CK_ToVoid: | 
|  | VisitIgnoredValue(E->getSubExpr()); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool VisitCallExpr(const CallExpr *E) { | 
|  | switch (E->getBuiltinCallee()) { | 
|  | default: | 
|  | return ExprEvaluatorBaseTy::VisitCallExpr(E); | 
|  | case Builtin::BI__assume: | 
|  | case Builtin::BI__builtin_assume: | 
|  | // The argument is not evaluated! | 
|  | return true; | 
|  | } | 
|  | } | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | static bool EvaluateVoid(const Expr *E, EvalInfo &Info) { | 
|  | assert(E->isRValue() && E->getType()->isVoidType()); | 
|  | return VoidExprEvaluator(Info).Visit(E); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Top level Expr::EvaluateAsRValue method. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) { | 
|  | // In C, function designators are not lvalues, but we evaluate them as if they | 
|  | // are. | 
|  | QualType T = E->getType(); | 
|  | if (E->isGLValue() || T->isFunctionType()) { | 
|  | LValue LV; | 
|  | if (!EvaluateLValue(E, LV, Info)) | 
|  | return false; | 
|  | LV.moveInto(Result); | 
|  | } else if (T->isVectorType()) { | 
|  | if (!EvaluateVector(E, Result, Info)) | 
|  | return false; | 
|  | } else if (T->isIntegralOrEnumerationType()) { | 
|  | if (!IntExprEvaluator(Info, Result).Visit(E)) | 
|  | return false; | 
|  | } else if (T->hasPointerRepresentation()) { | 
|  | LValue LV; | 
|  | if (!EvaluatePointer(E, LV, Info)) | 
|  | return false; | 
|  | LV.moveInto(Result); | 
|  | } else if (T->isRealFloatingType()) { | 
|  | llvm::APFloat F(0.0); | 
|  | if (!EvaluateFloat(E, F, Info)) | 
|  | return false; | 
|  | Result = APValue(F); | 
|  | } else if (T->isAnyComplexType()) { | 
|  | ComplexValue C; | 
|  | if (!EvaluateComplex(E, C, Info)) | 
|  | return false; | 
|  | C.moveInto(Result); | 
|  | } else if (T->isFixedPointType()) { | 
|  | if (!FixedPointExprEvaluator(Info, Result).Visit(E)) return false; | 
|  | } else if (T->isMemberPointerType()) { | 
|  | MemberPtr P; | 
|  | if (!EvaluateMemberPointer(E, P, Info)) | 
|  | return false; | 
|  | P.moveInto(Result); | 
|  | return true; | 
|  | } else if (T->isArrayType()) { | 
|  | LValue LV; | 
|  | APValue &Value = createTemporary(E, false, LV, *Info.CurrentCall); | 
|  | if (!EvaluateArray(E, LV, Value, Info)) | 
|  | return false; | 
|  | Result = Value; | 
|  | } else if (T->isRecordType()) { | 
|  | LValue LV; | 
|  | APValue &Value = createTemporary(E, false, LV, *Info.CurrentCall); | 
|  | if (!EvaluateRecord(E, LV, Value, Info)) | 
|  | return false; | 
|  | Result = Value; | 
|  | } else if (T->isVoidType()) { | 
|  | if (!Info.getLangOpts().CPlusPlus11) | 
|  | Info.CCEDiag(E, diag::note_constexpr_nonliteral) | 
|  | << E->getType(); | 
|  | if (!EvaluateVoid(E, Info)) | 
|  | return false; | 
|  | } else if (T->isAtomicType()) { | 
|  | QualType Unqual = T.getAtomicUnqualifiedType(); | 
|  | if (Unqual->isArrayType() || Unqual->isRecordType()) { | 
|  | LValue LV; | 
|  | APValue &Value = createTemporary(E, false, LV, *Info.CurrentCall); | 
|  | if (!EvaluateAtomic(E, &LV, Value, Info)) | 
|  | return false; | 
|  | } else { | 
|  | if (!EvaluateAtomic(E, nullptr, Result, Info)) | 
|  | return false; | 
|  | } | 
|  | } else if (Info.getLangOpts().CPlusPlus11) { | 
|  | Info.FFDiag(E, diag::note_constexpr_nonliteral) << E->getType(); | 
|  | return false; | 
|  | } else { | 
|  | Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// EvaluateInPlace - Evaluate an expression in-place in an APValue. In some | 
|  | /// cases, the in-place evaluation is essential, since later initializers for | 
|  | /// an object can indirectly refer to subobjects which were initialized earlier. | 
|  | static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, const LValue &This, | 
|  | const Expr *E, bool AllowNonLiteralTypes) { | 
|  | assert(!E->isValueDependent()); | 
|  |  | 
|  | if (!AllowNonLiteralTypes && !CheckLiteralType(Info, E, &This)) | 
|  | return false; | 
|  |  | 
|  | if (E->isRValue()) { | 
|  | // Evaluate arrays and record types in-place, so that later initializers can | 
|  | // refer to earlier-initialized members of the object. | 
|  | QualType T = E->getType(); | 
|  | if (T->isArrayType()) | 
|  | return EvaluateArray(E, This, Result, Info); | 
|  | else if (T->isRecordType()) | 
|  | return EvaluateRecord(E, This, Result, Info); | 
|  | else if (T->isAtomicType()) { | 
|  | QualType Unqual = T.getAtomicUnqualifiedType(); | 
|  | if (Unqual->isArrayType() || Unqual->isRecordType()) | 
|  | return EvaluateAtomic(E, &This, Result, Info); | 
|  | } | 
|  | } | 
|  |  | 
|  | // For any other type, in-place evaluation is unimportant. | 
|  | return Evaluate(Result, Info, E); | 
|  | } | 
|  |  | 
|  | /// EvaluateAsRValue - Try to evaluate this expression, performing an implicit | 
|  | /// lvalue-to-rvalue cast if it is an lvalue. | 
|  | static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result) { | 
|  | if (E->getType().isNull()) | 
|  | return false; | 
|  |  | 
|  | if (!CheckLiteralType(Info, E)) | 
|  | return false; | 
|  |  | 
|  | if (!::Evaluate(Result, Info, E)) | 
|  | return false; | 
|  |  | 
|  | if (E->isGLValue()) { | 
|  | LValue LV; | 
|  | LV.setFrom(Info.Ctx, Result); | 
|  | if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Check this core constant expression is a constant expression. | 
|  | return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result); | 
|  | } | 
|  |  | 
|  | static bool FastEvaluateAsRValue(const Expr *Exp, Expr::EvalResult &Result, | 
|  | const ASTContext &Ctx, bool &IsConst) { | 
|  | // Fast-path evaluations of integer literals, since we sometimes see files | 
|  | // containing vast quantities of these. | 
|  | if (const IntegerLiteral *L = dyn_cast<IntegerLiteral>(Exp)) { | 
|  | Result.Val = APValue(APSInt(L->getValue(), | 
|  | L->getType()->isUnsignedIntegerType())); | 
|  | IsConst = true; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // This case should be rare, but we need to check it before we check on | 
|  | // the type below. | 
|  | if (Exp->getType().isNull()) { | 
|  | IsConst = false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // FIXME: Evaluating values of large array and record types can cause | 
|  | // performance problems. Only do so in C++11 for now. | 
|  | if (Exp->isRValue() && (Exp->getType()->isArrayType() || | 
|  | Exp->getType()->isRecordType()) && | 
|  | !Ctx.getLangOpts().CPlusPlus11) { | 
|  | IsConst = false; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool hasUnacceptableSideEffect(Expr::EvalStatus &Result, | 
|  | Expr::SideEffectsKind SEK) { | 
|  | return (SEK < Expr::SE_AllowSideEffects && Result.HasSideEffects) || | 
|  | (SEK < Expr::SE_AllowUndefinedBehavior && Result.HasUndefinedBehavior); | 
|  | } | 
|  |  | 
|  | static bool EvaluateAsRValue(const Expr *E, Expr::EvalResult &Result, | 
|  | const ASTContext &Ctx, EvalInfo &Info) { | 
|  | bool IsConst; | 
|  | if (FastEvaluateAsRValue(E, Result, Ctx, IsConst)) | 
|  | return IsConst; | 
|  |  | 
|  | return EvaluateAsRValue(Info, E, Result.Val); | 
|  | } | 
|  |  | 
|  | static bool EvaluateAsInt(const Expr *E, Expr::EvalResult &ExprResult, | 
|  | const ASTContext &Ctx, | 
|  | Expr::SideEffectsKind AllowSideEffects, | 
|  | EvalInfo &Info) { | 
|  | if (!E->getType()->isIntegralOrEnumerationType()) | 
|  | return false; | 
|  |  | 
|  | if (!::EvaluateAsRValue(E, ExprResult, Ctx, Info) || | 
|  | !ExprResult.Val.isInt() || | 
|  | hasUnacceptableSideEffect(ExprResult, AllowSideEffects)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool EvaluateAsFixedPoint(const Expr *E, Expr::EvalResult &ExprResult, | 
|  | const ASTContext &Ctx, | 
|  | Expr::SideEffectsKind AllowSideEffects, | 
|  | EvalInfo &Info) { | 
|  | if (!E->getType()->isFixedPointType()) | 
|  | return false; | 
|  |  | 
|  | if (!::EvaluateAsRValue(E, ExprResult, Ctx, Info)) | 
|  | return false; | 
|  |  | 
|  | if (!ExprResult.Val.isFixedPoint() || | 
|  | hasUnacceptableSideEffect(ExprResult, AllowSideEffects)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// EvaluateAsRValue - Return true if this is a constant which we can fold using | 
|  | /// any crazy technique (that has nothing to do with language standards) that | 
|  | /// we want to.  If this function returns true, it returns the folded constant | 
|  | /// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion | 
|  | /// will be applied to the result. | 
|  | bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx, | 
|  | bool InConstantContext) const { | 
|  | EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects); | 
|  | Info.InConstantContext = InConstantContext; | 
|  | return ::EvaluateAsRValue(this, Result, Ctx, Info); | 
|  | } | 
|  |  | 
|  | bool Expr::EvaluateAsBooleanCondition(bool &Result, | 
|  | const ASTContext &Ctx) const { | 
|  | EvalResult Scratch; | 
|  | return EvaluateAsRValue(Scratch, Ctx) && | 
|  | HandleConversionToBool(Scratch.Val, Result); | 
|  | } | 
|  |  | 
|  | bool Expr::EvaluateAsInt(EvalResult &Result, const ASTContext &Ctx, | 
|  | SideEffectsKind AllowSideEffects) const { | 
|  | EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects); | 
|  | return ::EvaluateAsInt(this, Result, Ctx, AllowSideEffects, Info); | 
|  | } | 
|  |  | 
|  | bool Expr::EvaluateAsFixedPoint(EvalResult &Result, const ASTContext &Ctx, | 
|  | SideEffectsKind AllowSideEffects) const { | 
|  | EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects); | 
|  | return ::EvaluateAsFixedPoint(this, Result, Ctx, AllowSideEffects, Info); | 
|  | } | 
|  |  | 
|  | bool Expr::EvaluateAsFloat(APFloat &Result, const ASTContext &Ctx, | 
|  | SideEffectsKind AllowSideEffects) const { | 
|  | if (!getType()->isRealFloatingType()) | 
|  | return false; | 
|  |  | 
|  | EvalResult ExprResult; | 
|  | if (!EvaluateAsRValue(ExprResult, Ctx) || !ExprResult.Val.isFloat() || | 
|  | hasUnacceptableSideEffect(ExprResult, AllowSideEffects)) | 
|  | return false; | 
|  |  | 
|  | Result = ExprResult.Val.getFloat(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const { | 
|  | EvalInfo Info(Ctx, Result, EvalInfo::EM_ConstantFold); | 
|  |  | 
|  | LValue LV; | 
|  | if (!EvaluateLValue(this, LV, Info) || Result.HasSideEffects || | 
|  | !CheckLValueConstantExpression(Info, getExprLoc(), | 
|  | Ctx.getLValueReferenceType(getType()), LV, | 
|  | Expr::EvaluateForCodeGen)) | 
|  | return false; | 
|  |  | 
|  | LV.moveInto(Result.Val); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool Expr::EvaluateAsConstantExpr(EvalResult &Result, ConstExprUsage Usage, | 
|  | const ASTContext &Ctx) const { | 
|  | EvalInfo::EvaluationMode EM = EvalInfo::EM_ConstantExpression; | 
|  | EvalInfo Info(Ctx, Result, EM); | 
|  | Info.InConstantContext = true; | 
|  |  | 
|  | if (!::Evaluate(Result.Val, Info, this)) | 
|  | return false; | 
|  |  | 
|  | return CheckConstantExpression(Info, getExprLoc(), getType(), Result.Val, | 
|  | Usage); | 
|  | } | 
|  |  | 
|  | bool Expr::EvaluateAsInitializer(APValue &Value, const ASTContext &Ctx, | 
|  | const VarDecl *VD, | 
|  | SmallVectorImpl<PartialDiagnosticAt> &Notes) const { | 
|  | // FIXME: Evaluating initializers for large array and record types can cause | 
|  | // performance problems. Only do so in C++11 for now. | 
|  | if (isRValue() && (getType()->isArrayType() || getType()->isRecordType()) && | 
|  | !Ctx.getLangOpts().CPlusPlus11) | 
|  | return false; | 
|  |  | 
|  | Expr::EvalStatus EStatus; | 
|  | EStatus.Diag = &Notes; | 
|  |  | 
|  | EvalInfo InitInfo(Ctx, EStatus, VD->isConstexpr() | 
|  | ? EvalInfo::EM_ConstantExpression | 
|  | : EvalInfo::EM_ConstantFold); | 
|  | InitInfo.setEvaluatingDecl(VD, Value); | 
|  | InitInfo.InConstantContext = true; | 
|  |  | 
|  | LValue LVal; | 
|  | LVal.set(VD); | 
|  |  | 
|  | // C++11 [basic.start.init]p2: | 
|  | //  Variables with static storage duration or thread storage duration shall be | 
|  | //  zero-initialized before any other initialization takes place. | 
|  | // This behavior is not present in C. | 
|  | if (Ctx.getLangOpts().CPlusPlus && !VD->hasLocalStorage() && | 
|  | !VD->getType()->isReferenceType()) { | 
|  | ImplicitValueInitExpr VIE(VD->getType()); | 
|  | if (!EvaluateInPlace(Value, InitInfo, LVal, &VIE, | 
|  | /*AllowNonLiteralTypes=*/true)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!EvaluateInPlace(Value, InitInfo, LVal, this, | 
|  | /*AllowNonLiteralTypes=*/true) || | 
|  | EStatus.HasSideEffects) | 
|  | return false; | 
|  |  | 
|  | return CheckConstantExpression(InitInfo, VD->getLocation(), VD->getType(), | 
|  | Value); | 
|  | } | 
|  |  | 
|  | /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be | 
|  | /// constant folded, but discard the result. | 
|  | bool Expr::isEvaluatable(const ASTContext &Ctx, SideEffectsKind SEK) const { | 
|  | EvalResult Result; | 
|  | return EvaluateAsRValue(Result, Ctx, /* in constant context */ true) && | 
|  | !hasUnacceptableSideEffect(Result, SEK); | 
|  | } | 
|  |  | 
|  | APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx, | 
|  | SmallVectorImpl<PartialDiagnosticAt> *Diag) const { | 
|  | EvalResult EVResult; | 
|  | EVResult.Diag = Diag; | 
|  | EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects); | 
|  | Info.InConstantContext = true; | 
|  |  | 
|  | bool Result = ::EvaluateAsRValue(this, EVResult, Ctx, Info); | 
|  | (void)Result; | 
|  | assert(Result && "Could not evaluate expression"); | 
|  | assert(EVResult.Val.isInt() && "Expression did not evaluate to integer"); | 
|  |  | 
|  | return EVResult.Val.getInt(); | 
|  | } | 
|  |  | 
|  | APSInt Expr::EvaluateKnownConstIntCheckOverflow( | 
|  | const ASTContext &Ctx, SmallVectorImpl<PartialDiagnosticAt> *Diag) const { | 
|  | EvalResult EVResult; | 
|  | EVResult.Diag = Diag; | 
|  | EvalInfo Info(Ctx, EVResult, EvalInfo::EM_EvaluateForOverflow); | 
|  | Info.InConstantContext = true; | 
|  |  | 
|  | bool Result = ::EvaluateAsRValue(Info, this, EVResult.Val); | 
|  | (void)Result; | 
|  | assert(Result && "Could not evaluate expression"); | 
|  | assert(EVResult.Val.isInt() && "Expression did not evaluate to integer"); | 
|  |  | 
|  | return EVResult.Val.getInt(); | 
|  | } | 
|  |  | 
|  | void Expr::EvaluateForOverflow(const ASTContext &Ctx) const { | 
|  | bool IsConst; | 
|  | EvalResult EVResult; | 
|  | if (!FastEvaluateAsRValue(this, EVResult, Ctx, IsConst)) { | 
|  | EvalInfo Info(Ctx, EVResult, EvalInfo::EM_EvaluateForOverflow); | 
|  | (void)::EvaluateAsRValue(Info, this, EVResult.Val); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool Expr::EvalResult::isGlobalLValue() const { | 
|  | assert(Val.isLValue()); | 
|  | return IsGlobalLValue(Val.getLValueBase()); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// isIntegerConstantExpr - this recursive routine will test if an expression is | 
|  | /// an integer constant expression. | 
|  |  | 
|  | /// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero, | 
|  | /// comma, etc | 
|  |  | 
|  | // CheckICE - This function does the fundamental ICE checking: the returned | 
|  | // ICEDiag contains an ICEKind indicating whether the expression is an ICE, | 
|  | // and a (possibly null) SourceLocation indicating the location of the problem. | 
|  | // | 
|  | // Note that to reduce code duplication, this helper does no evaluation | 
|  | // itself; the caller checks whether the expression is evaluatable, and | 
|  | // in the rare cases where CheckICE actually cares about the evaluated | 
|  | // value, it calls into Evaluate. | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | enum ICEKind { | 
|  | /// This expression is an ICE. | 
|  | IK_ICE, | 
|  | /// This expression is not an ICE, but if it isn't evaluated, it's | 
|  | /// a legal subexpression for an ICE. This return value is used to handle | 
|  | /// the comma operator in C99 mode, and non-constant subexpressions. | 
|  | IK_ICEIfUnevaluated, | 
|  | /// This expression is not an ICE, and is not a legal subexpression for one. | 
|  | IK_NotICE | 
|  | }; | 
|  |  | 
|  | struct ICEDiag { | 
|  | ICEKind Kind; | 
|  | SourceLocation Loc; | 
|  |  | 
|  | ICEDiag(ICEKind IK, SourceLocation l) : Kind(IK), Loc(l) {} | 
|  | }; | 
|  |  | 
|  | } | 
|  |  | 
|  | static ICEDiag NoDiag() { return ICEDiag(IK_ICE, SourceLocation()); } | 
|  |  | 
|  | static ICEDiag Worst(ICEDiag A, ICEDiag B) { return A.Kind >= B.Kind ? A : B; } | 
|  |  | 
|  | static ICEDiag CheckEvalInICE(const Expr* E, const ASTContext &Ctx) { | 
|  | Expr::EvalResult EVResult; | 
|  | Expr::EvalStatus Status; | 
|  | EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression); | 
|  |  | 
|  | Info.InConstantContext = true; | 
|  | if (!::EvaluateAsRValue(E, EVResult, Ctx, Info) || EVResult.HasSideEffects || | 
|  | !EVResult.Val.isInt()) | 
|  | return ICEDiag(IK_NotICE, E->getBeginLoc()); | 
|  |  | 
|  | return NoDiag(); | 
|  | } | 
|  |  | 
|  | static ICEDiag CheckICE(const Expr* E, const ASTContext &Ctx) { | 
|  | assert(!E->isValueDependent() && "Should not see value dependent exprs!"); | 
|  | if (!E->getType()->isIntegralOrEnumerationType()) | 
|  | return ICEDiag(IK_NotICE, E->getBeginLoc()); | 
|  |  | 
|  | switch (E->getStmtClass()) { | 
|  | #define ABSTRACT_STMT(Node) | 
|  | #define STMT(Node, Base) case Expr::Node##Class: | 
|  | #define EXPR(Node, Base) | 
|  | #include "clang/AST/StmtNodes.inc" | 
|  | case Expr::PredefinedExprClass: | 
|  | case Expr::FloatingLiteralClass: | 
|  | case Expr::ImaginaryLiteralClass: | 
|  | case Expr::StringLiteralClass: | 
|  | case Expr::ArraySubscriptExprClass: | 
|  | case Expr::OMPArraySectionExprClass: | 
|  | case Expr::MemberExprClass: | 
|  | case Expr::CompoundAssignOperatorClass: | 
|  | case Expr::CompoundLiteralExprClass: | 
|  | case Expr::ExtVectorElementExprClass: | 
|  | case Expr::DesignatedInitExprClass: | 
|  | case Expr::ArrayInitLoopExprClass: | 
|  | case Expr::ArrayInitIndexExprClass: | 
|  | case Expr::NoInitExprClass: | 
|  | case Expr::DesignatedInitUpdateExprClass: | 
|  | case Expr::ImplicitValueInitExprClass: | 
|  | case Expr::ParenListExprClass: | 
|  | case Expr::VAArgExprClass: | 
|  | case Expr::AddrLabelExprClass: | 
|  | case Expr::StmtExprClass: | 
|  | case Expr::CXXMemberCallExprClass: | 
|  | case Expr::CUDAKernelCallExprClass: | 
|  | case Expr::CXXDynamicCastExprClass: | 
|  | case Expr::CXXTypeidExprClass: | 
|  | case Expr::CXXUuidofExprClass: | 
|  | case Expr::MSPropertyRefExprClass: | 
|  | case Expr::MSPropertySubscriptExprClass: | 
|  | case Expr::CXXNullPtrLiteralExprClass: | 
|  | case Expr::UserDefinedLiteralClass: | 
|  | case Expr::CXXThisExprClass: | 
|  | case Expr::CXXThrowExprClass: | 
|  | case Expr::CXXNewExprClass: | 
|  | case Expr::CXXDeleteExprClass: | 
|  | case Expr::CXXPseudoDestructorExprClass: | 
|  | case Expr::UnresolvedLookupExprClass: | 
|  | case Expr::TypoExprClass: | 
|  | case Expr::DependentScopeDeclRefExprClass: | 
|  | case Expr::CXXConstructExprClass: | 
|  | case Expr::CXXInheritedCtorInitExprClass: | 
|  | case Expr::CXXStdInitializerListExprClass: | 
|  | case Expr::CXXBindTemporaryExprClass: | 
|  | case Expr::ExprWithCleanupsClass: | 
|  | case Expr::CXXTemporaryObjectExprClass: | 
|  | case Expr::CXXUnresolvedConstructExprClass: | 
|  | case Expr::CXXDependentScopeMemberExprClass: | 
|  | case Expr::UnresolvedMemberExprClass: | 
|  | case Expr::ObjCStringLiteralClass: | 
|  | case Expr::ObjCBoxedExprClass: | 
|  | case Expr::ObjCArrayLiteralClass: | 
|  | case Expr::ObjCDictionaryLiteralClass: | 
|  | case Expr::ObjCEncodeExprClass: | 
|  | case Expr::ObjCMessageExprClass: | 
|  | case Expr::ObjCSelectorExprClass: | 
|  | case Expr::ObjCProtocolExprClass: | 
|  | case Expr::ObjCIvarRefExprClass: | 
|  | case Expr::ObjCPropertyRefExprClass: | 
|  | case Expr::ObjCSubscriptRefExprClass: | 
|  | case Expr::ObjCIsaExprClass: | 
|  | case Expr::ObjCAvailabilityCheckExprClass: | 
|  | case Expr::ShuffleVectorExprClass: | 
|  | case Expr::ConvertVectorExprClass: | 
|  | case Expr::BlockExprClass: | 
|  | case Expr::NoStmtClass: | 
|  | case Expr::OpaqueValueExprClass: | 
|  | case Expr::PackExpansionExprClass: | 
|  | case Expr::SubstNonTypeTemplateParmPackExprClass: | 
|  | case Expr::FunctionParmPackExprClass: | 
|  | case Expr::AsTypeExprClass: | 
|  | case Expr::ObjCIndirectCopyRestoreExprClass: | 
|  | case Expr::MaterializeTemporaryExprClass: | 
|  | case Expr::PseudoObjectExprClass: | 
|  | case Expr::AtomicExprClass: | 
|  | case Expr::LambdaExprClass: | 
|  | case Expr::CXXFoldExprClass: | 
|  | case Expr::CoawaitExprClass: | 
|  | case Expr::DependentCoawaitExprClass: | 
|  | case Expr::CoyieldExprClass: | 
|  | return ICEDiag(IK_NotICE, E->getBeginLoc()); | 
|  |  | 
|  | case Expr::InitListExprClass: { | 
|  | // C++03 [dcl.init]p13: If T is a scalar type, then a declaration of the | 
|  | // form "T x = { a };" is equivalent to "T x = a;". | 
|  | // Unless we're initializing a reference, T is a scalar as it is known to be | 
|  | // of integral or enumeration type. | 
|  | if (E->isRValue()) | 
|  | if (cast<InitListExpr>(E)->getNumInits() == 1) | 
|  | return CheckICE(cast<InitListExpr>(E)->getInit(0), Ctx); | 
|  | return ICEDiag(IK_NotICE, E->getBeginLoc()); | 
|  | } | 
|  |  | 
|  | case Expr::SizeOfPackExprClass: | 
|  | case Expr::GNUNullExprClass: | 
|  | // GCC considers the GNU __null value to be an integral constant expression. | 
|  | return NoDiag(); | 
|  |  | 
|  | case Expr::SubstNonTypeTemplateParmExprClass: | 
|  | return | 
|  | CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx); | 
|  |  | 
|  | case Expr::ConstantExprClass: | 
|  | return CheckICE(cast<ConstantExpr>(E)->getSubExpr(), Ctx); | 
|  |  | 
|  | case Expr::ParenExprClass: | 
|  | return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx); | 
|  | case Expr::GenericSelectionExprClass: | 
|  | return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx); | 
|  | case Expr::IntegerLiteralClass: | 
|  | case Expr::FixedPointLiteralClass: | 
|  | case Expr::CharacterLiteralClass: | 
|  | case Expr::ObjCBoolLiteralExprClass: | 
|  | case Expr::CXXBoolLiteralExprClass: | 
|  | case Expr::CXXScalarValueInitExprClass: | 
|  | case Expr::TypeTraitExprClass: | 
|  | case Expr::ArrayTypeTraitExprClass: | 
|  | case Expr::ExpressionTraitExprClass: | 
|  | case Expr::CXXNoexceptExprClass: | 
|  | return NoDiag(); | 
|  | case Expr::CallExprClass: | 
|  | case Expr::CXXOperatorCallExprClass: { | 
|  | // C99 6.6/3 allows function calls within unevaluated subexpressions of | 
|  | // constant expressions, but they can never be ICEs because an ICE cannot | 
|  | // contain an operand of (pointer to) function type. | 
|  | const CallExpr *CE = cast<CallExpr>(E); | 
|  | if (CE->getBuiltinCallee()) | 
|  | return CheckEvalInICE(E, Ctx); | 
|  | return ICEDiag(IK_NotICE, E->getBeginLoc()); | 
|  | } | 
|  | case Expr::DeclRefExprClass: { | 
|  | if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl())) | 
|  | return NoDiag(); | 
|  | const ValueDecl *D = cast<DeclRefExpr>(E)->getDecl(); | 
|  | if (Ctx.getLangOpts().CPlusPlus && | 
|  | D && IsConstNonVolatile(D->getType())) { | 
|  | // Parameter variables are never constants.  Without this check, | 
|  | // getAnyInitializer() can find a default argument, which leads | 
|  | // to chaos. | 
|  | if (isa<ParmVarDecl>(D)) | 
|  | return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation()); | 
|  |  | 
|  | // C++ 7.1.5.1p2 | 
|  | //   A variable of non-volatile const-qualified integral or enumeration | 
|  | //   type initialized by an ICE can be used in ICEs. | 
|  | if (const VarDecl *Dcl = dyn_cast<VarDecl>(D)) { | 
|  | if (!Dcl->getType()->isIntegralOrEnumerationType()) | 
|  | return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation()); | 
|  |  | 
|  | const VarDecl *VD; | 
|  | // Look for a declaration of this variable that has an initializer, and | 
|  | // check whether it is an ICE. | 
|  | if (Dcl->getAnyInitializer(VD) && VD->checkInitIsICE()) | 
|  | return NoDiag(); | 
|  | else | 
|  | return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation()); | 
|  | } | 
|  | } | 
|  | return ICEDiag(IK_NotICE, E->getBeginLoc()); | 
|  | } | 
|  | case Expr::UnaryOperatorClass: { | 
|  | const UnaryOperator *Exp = cast<UnaryOperator>(E); | 
|  | switch (Exp->getOpcode()) { | 
|  | case UO_PostInc: | 
|  | case UO_PostDec: | 
|  | case UO_PreInc: | 
|  | case UO_PreDec: | 
|  | case UO_AddrOf: | 
|  | case UO_Deref: | 
|  | case UO_Coawait: | 
|  | // C99 6.6/3 allows increment and decrement within unevaluated | 
|  | // subexpressions of constant expressions, but they can never be ICEs | 
|  | // because an ICE cannot contain an lvalue operand. | 
|  | return ICEDiag(IK_NotICE, E->getBeginLoc()); | 
|  | case UO_Extension: | 
|  | case UO_LNot: | 
|  | case UO_Plus: | 
|  | case UO_Minus: | 
|  | case UO_Not: | 
|  | case UO_Real: | 
|  | case UO_Imag: | 
|  | return CheckICE(Exp->getSubExpr(), Ctx); | 
|  | } | 
|  | llvm_unreachable("invalid unary operator class"); | 
|  | } | 
|  | case Expr::OffsetOfExprClass: { | 
|  | // Note that per C99, offsetof must be an ICE. And AFAIK, using | 
|  | // EvaluateAsRValue matches the proposed gcc behavior for cases like | 
|  | // "offsetof(struct s{int x[4];}, x[1.0])".  This doesn't affect | 
|  | // compliance: we should warn earlier for offsetof expressions with | 
|  | // array subscripts that aren't ICEs, and if the array subscripts | 
|  | // are ICEs, the value of the offsetof must be an integer constant. | 
|  | return CheckEvalInICE(E, Ctx); | 
|  | } | 
|  | case Expr::UnaryExprOrTypeTraitExprClass: { | 
|  | const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E); | 
|  | if ((Exp->getKind() ==  UETT_SizeOf) && | 
|  | Exp->getTypeOfArgument()->isVariableArrayType()) | 
|  | return ICEDiag(IK_NotICE, E->getBeginLoc()); | 
|  | return NoDiag(); | 
|  | } | 
|  | case Expr::BinaryOperatorClass: { | 
|  | const BinaryOperator *Exp = cast<BinaryOperator>(E); | 
|  | switch (Exp->getOpcode()) { | 
|  | case BO_PtrMemD: | 
|  | case BO_PtrMemI: | 
|  | case BO_Assign: | 
|  | case BO_MulAssign: | 
|  | case BO_DivAssign: | 
|  | case BO_RemAssign: | 
|  | case BO_AddAssign: | 
|  | case BO_SubAssign: | 
|  | case BO_ShlAssign: | 
|  | case BO_ShrAssign: | 
|  | case BO_AndAssign: | 
|  | case BO_XorAssign: | 
|  | case BO_OrAssign: | 
|  | // C99 6.6/3 allows assignments within unevaluated subexpressions of | 
|  | // constant expressions, but they can never be ICEs because an ICE cannot | 
|  | // contain an lvalue operand. | 
|  | return ICEDiag(IK_NotICE, E->getBeginLoc()); | 
|  |  | 
|  | case BO_Mul: | 
|  | case BO_Div: | 
|  | case BO_Rem: | 
|  | case BO_Add: | 
|  | case BO_Sub: | 
|  | case BO_Shl: | 
|  | case BO_Shr: | 
|  | case BO_LT: | 
|  | case BO_GT: | 
|  | case BO_LE: | 
|  | case BO_GE: | 
|  | case BO_EQ: | 
|  | case BO_NE: | 
|  | case BO_And: | 
|  | case BO_Xor: | 
|  | case BO_Or: | 
|  | case BO_Comma: | 
|  | case BO_Cmp: { | 
|  | ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx); | 
|  | ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx); | 
|  | if (Exp->getOpcode() == BO_Div || | 
|  | Exp->getOpcode() == BO_Rem) { | 
|  | // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure | 
|  | // we don't evaluate one. | 
|  | if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) { | 
|  | llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx); | 
|  | if (REval == 0) | 
|  | return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc()); | 
|  | if (REval.isSigned() && REval.isAllOnesValue()) { | 
|  | llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx); | 
|  | if (LEval.isMinSignedValue()) | 
|  | return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc()); | 
|  | } | 
|  | } | 
|  | } | 
|  | if (Exp->getOpcode() == BO_Comma) { | 
|  | if (Ctx.getLangOpts().C99) { | 
|  | // C99 6.6p3 introduces a strange edge case: comma can be in an ICE | 
|  | // if it isn't evaluated. | 
|  | if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) | 
|  | return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc()); | 
|  | } else { | 
|  | // In both C89 and C++, commas in ICEs are illegal. | 
|  | return ICEDiag(IK_NotICE, E->getBeginLoc()); | 
|  | } | 
|  | } | 
|  | return Worst(LHSResult, RHSResult); | 
|  | } | 
|  | case BO_LAnd: | 
|  | case BO_LOr: { | 
|  | ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx); | 
|  | ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx); | 
|  | if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICEIfUnevaluated) { | 
|  | // Rare case where the RHS has a comma "side-effect"; we need | 
|  | // to actually check the condition to see whether the side | 
|  | // with the comma is evaluated. | 
|  | if ((Exp->getOpcode() == BO_LAnd) != | 
|  | (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0)) | 
|  | return RHSResult; | 
|  | return NoDiag(); | 
|  | } | 
|  |  | 
|  | return Worst(LHSResult, RHSResult); | 
|  | } | 
|  | } | 
|  | llvm_unreachable("invalid binary operator kind"); | 
|  | } | 
|  | case Expr::ImplicitCastExprClass: | 
|  | case Expr::CStyleCastExprClass: | 
|  | case Expr::CXXFunctionalCastExprClass: | 
|  | case Expr::CXXStaticCastExprClass: | 
|  | case Expr::CXXReinterpretCastExprClass: | 
|  | case Expr::CXXConstCastExprClass: | 
|  | case Expr::ObjCBridgedCastExprClass: { | 
|  | const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr(); | 
|  | if (isa<ExplicitCastExpr>(E)) { | 
|  | if (const FloatingLiteral *FL | 
|  | = dyn_cast<FloatingLiteral>(SubExpr->IgnoreParenImpCasts())) { | 
|  | unsigned DestWidth = Ctx.getIntWidth(E->getType()); | 
|  | bool DestSigned = E->getType()->isSignedIntegerOrEnumerationType(); | 
|  | APSInt IgnoredVal(DestWidth, !DestSigned); | 
|  | bool Ignored; | 
|  | // If the value does not fit in the destination type, the behavior is | 
|  | // undefined, so we are not required to treat it as a constant | 
|  | // expression. | 
|  | if (FL->getValue().convertToInteger(IgnoredVal, | 
|  | llvm::APFloat::rmTowardZero, | 
|  | &Ignored) & APFloat::opInvalidOp) | 
|  | return ICEDiag(IK_NotICE, E->getBeginLoc()); | 
|  | return NoDiag(); | 
|  | } | 
|  | } | 
|  | switch (cast<CastExpr>(E)->getCastKind()) { | 
|  | case CK_LValueToRValue: | 
|  | case CK_AtomicToNonAtomic: | 
|  | case CK_NonAtomicToAtomic: | 
|  | case CK_NoOp: | 
|  | case CK_IntegralToBoolean: | 
|  | case CK_IntegralCast: | 
|  | return CheckICE(SubExpr, Ctx); | 
|  | default: | 
|  | return ICEDiag(IK_NotICE, E->getBeginLoc()); | 
|  | } | 
|  | } | 
|  | case Expr::BinaryConditionalOperatorClass: { | 
|  | const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E); | 
|  | ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx); | 
|  | if (CommonResult.Kind == IK_NotICE) return CommonResult; | 
|  | ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx); | 
|  | if (FalseResult.Kind == IK_NotICE) return FalseResult; | 
|  | if (CommonResult.Kind == IK_ICEIfUnevaluated) return CommonResult; | 
|  | if (FalseResult.Kind == IK_ICEIfUnevaluated && | 
|  | Exp->getCommon()->EvaluateKnownConstInt(Ctx) != 0) return NoDiag(); | 
|  | return FalseResult; | 
|  | } | 
|  | case Expr::ConditionalOperatorClass: { | 
|  | const ConditionalOperator *Exp = cast<ConditionalOperator>(E); | 
|  | // If the condition (ignoring parens) is a __builtin_constant_p call, | 
|  | // then only the true side is actually considered in an integer constant | 
|  | // expression, and it is fully evaluated.  This is an important GNU | 
|  | // extension.  See GCC PR38377 for discussion. | 
|  | if (const CallExpr *CallCE | 
|  | = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts())) | 
|  | if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p) | 
|  | return CheckEvalInICE(E, Ctx); | 
|  | ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx); | 
|  | if (CondResult.Kind == IK_NotICE) | 
|  | return CondResult; | 
|  |  | 
|  | ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx); | 
|  | ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx); | 
|  |  | 
|  | if (TrueResult.Kind == IK_NotICE) | 
|  | return TrueResult; | 
|  | if (FalseResult.Kind == IK_NotICE) | 
|  | return FalseResult; | 
|  | if (CondResult.Kind == IK_ICEIfUnevaluated) | 
|  | return CondResult; | 
|  | if (TrueResult.Kind == IK_ICE && FalseResult.Kind == IK_ICE) | 
|  | return NoDiag(); | 
|  | // Rare case where the diagnostics depend on which side is evaluated | 
|  | // Note that if we get here, CondResult is 0, and at least one of | 
|  | // TrueResult and FalseResult is non-zero. | 
|  | if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0) | 
|  | return FalseResult; | 
|  | return TrueResult; | 
|  | } | 
|  | case Expr::CXXDefaultArgExprClass: | 
|  | return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx); | 
|  | case Expr::CXXDefaultInitExprClass: | 
|  | return CheckICE(cast<CXXDefaultInitExpr>(E)->getExpr(), Ctx); | 
|  | case Expr::ChooseExprClass: { | 
|  | return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(), Ctx); | 
|  | } | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Invalid StmtClass!"); | 
|  | } | 
|  |  | 
|  | /// Evaluate an expression as a C++11 integral constant expression. | 
|  | static bool EvaluateCPlusPlus11IntegralConstantExpr(const ASTContext &Ctx, | 
|  | const Expr *E, | 
|  | llvm::APSInt *Value, | 
|  | SourceLocation *Loc) { | 
|  | if (!E->getType()->isIntegralOrUnscopedEnumerationType()) { | 
|  | if (Loc) *Loc = E->getExprLoc(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | APValue Result; | 
|  | if (!E->isCXX11ConstantExpr(Ctx, &Result, Loc)) | 
|  | return false; | 
|  |  | 
|  | if (!Result.isInt()) { | 
|  | if (Loc) *Loc = E->getExprLoc(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (Value) *Value = Result.getInt(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool Expr::isIntegerConstantExpr(const ASTContext &Ctx, | 
|  | SourceLocation *Loc) const { | 
|  | if (Ctx.getLangOpts().CPlusPlus11) | 
|  | return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, nullptr, Loc); | 
|  |  | 
|  | ICEDiag D = CheckICE(this, Ctx); | 
|  | if (D.Kind != IK_ICE) { | 
|  | if (Loc) *Loc = D.Loc; | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool Expr::isIntegerConstantExpr(llvm::APSInt &Value, const ASTContext &Ctx, | 
|  | SourceLocation *Loc, bool isEvaluated) const { | 
|  | if (Ctx.getLangOpts().CPlusPlus11) | 
|  | return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, &Value, Loc); | 
|  |  | 
|  | if (!isIntegerConstantExpr(Ctx, Loc)) | 
|  | return false; | 
|  |  | 
|  | // The only possible side-effects here are due to UB discovered in the | 
|  | // evaluation (for instance, INT_MAX + 1). In such a case, we are still | 
|  | // required to treat the expression as an ICE, so we produce the folded | 
|  | // value. | 
|  | EvalResult ExprResult; | 
|  | Expr::EvalStatus Status; | 
|  | EvalInfo Info(Ctx, Status, EvalInfo::EM_IgnoreSideEffects); | 
|  | Info.InConstantContext = true; | 
|  |  | 
|  | if (!::EvaluateAsInt(this, ExprResult, Ctx, SE_AllowSideEffects, Info)) | 
|  | llvm_unreachable("ICE cannot be evaluated!"); | 
|  |  | 
|  | Value = ExprResult.Val.getInt(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool Expr::isCXX98IntegralConstantExpr(const ASTContext &Ctx) const { | 
|  | return CheckICE(this, Ctx).Kind == IK_ICE; | 
|  | } | 
|  |  | 
|  | bool Expr::isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result, | 
|  | SourceLocation *Loc) const { | 
|  | // We support this checking in C++98 mode in order to diagnose compatibility | 
|  | // issues. | 
|  | assert(Ctx.getLangOpts().CPlusPlus); | 
|  |  | 
|  | // Build evaluation settings. | 
|  | Expr::EvalStatus Status; | 
|  | SmallVector<PartialDiagnosticAt, 8> Diags; | 
|  | Status.Diag = &Diags; | 
|  | EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression); | 
|  |  | 
|  | APValue Scratch; | 
|  | bool IsConstExpr = ::EvaluateAsRValue(Info, this, Result ? *Result : Scratch); | 
|  |  | 
|  | if (!Diags.empty()) { | 
|  | IsConstExpr = false; | 
|  | if (Loc) *Loc = Diags[0].first; | 
|  | } else if (!IsConstExpr) { | 
|  | // FIXME: This shouldn't happen. | 
|  | if (Loc) *Loc = getExprLoc(); | 
|  | } | 
|  |  | 
|  | return IsConstExpr; | 
|  | } | 
|  |  | 
|  | bool Expr::EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx, | 
|  | const FunctionDecl *Callee, | 
|  | ArrayRef<const Expr*> Args, | 
|  | const Expr *This) const { | 
|  | Expr::EvalStatus Status; | 
|  | EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpressionUnevaluated); | 
|  | Info.InConstantContext = true; | 
|  |  | 
|  | LValue ThisVal; | 
|  | const LValue *ThisPtr = nullptr; | 
|  | if (This) { | 
|  | #ifndef NDEBUG | 
|  | auto *MD = dyn_cast<CXXMethodDecl>(Callee); | 
|  | assert(MD && "Don't provide `this` for non-methods."); | 
|  | assert(!MD->isStatic() && "Don't provide `this` for static methods."); | 
|  | #endif | 
|  | if (EvaluateObjectArgument(Info, This, ThisVal)) | 
|  | ThisPtr = &ThisVal; | 
|  | if (Info.EvalStatus.HasSideEffects) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | ArgVector ArgValues(Args.size()); | 
|  | for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end(); | 
|  | I != E; ++I) { | 
|  | if ((*I)->isValueDependent() || | 
|  | !Evaluate(ArgValues[I - Args.begin()], Info, *I)) | 
|  | // If evaluation fails, throw away the argument entirely. | 
|  | ArgValues[I - Args.begin()] = APValue(); | 
|  | if (Info.EvalStatus.HasSideEffects) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Build fake call to Callee. | 
|  | CallStackFrame Frame(Info, Callee->getLocation(), Callee, ThisPtr, | 
|  | ArgValues.data()); | 
|  | return Evaluate(Value, Info, this) && !Info.EvalStatus.HasSideEffects; | 
|  | } | 
|  |  | 
|  | bool Expr::isPotentialConstantExpr(const FunctionDecl *FD, | 
|  | SmallVectorImpl< | 
|  | PartialDiagnosticAt> &Diags) { | 
|  | // FIXME: It would be useful to check constexpr function templates, but at the | 
|  | // moment the constant expression evaluator cannot cope with the non-rigorous | 
|  | // ASTs which we build for dependent expressions. | 
|  | if (FD->isDependentContext()) | 
|  | return true; | 
|  |  | 
|  | Expr::EvalStatus Status; | 
|  | Status.Diag = &Diags; | 
|  |  | 
|  | EvalInfo Info(FD->getASTContext(), Status, | 
|  | EvalInfo::EM_PotentialConstantExpression); | 
|  | Info.InConstantContext = true; | 
|  |  | 
|  | const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); | 
|  | const CXXRecordDecl *RD = MD ? MD->getParent()->getCanonicalDecl() : nullptr; | 
|  |  | 
|  | // Fabricate an arbitrary expression on the stack and pretend that it | 
|  | // is a temporary being used as the 'this' pointer. | 
|  | LValue This; | 
|  | ImplicitValueInitExpr VIE(RD ? Info.Ctx.getRecordType(RD) : Info.Ctx.IntTy); | 
|  | This.set({&VIE, Info.CurrentCall->Index}); | 
|  |  | 
|  | ArrayRef<const Expr*> Args; | 
|  |  | 
|  | APValue Scratch; | 
|  | if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { | 
|  | // Evaluate the call as a constant initializer, to allow the construction | 
|  | // of objects of non-literal types. | 
|  | Info.setEvaluatingDecl(This.getLValueBase(), Scratch); | 
|  | HandleConstructorCall(&VIE, This, Args, CD, Info, Scratch); | 
|  | } else { | 
|  | SourceLocation Loc = FD->getLocation(); | 
|  | HandleFunctionCall(Loc, FD, (MD && MD->isInstance()) ? &This : nullptr, | 
|  | Args, FD->getBody(), Info, Scratch, nullptr); | 
|  | } | 
|  |  | 
|  | return Diags.empty(); | 
|  | } | 
|  |  | 
|  | bool Expr::isPotentialConstantExprUnevaluated(Expr *E, | 
|  | const FunctionDecl *FD, | 
|  | SmallVectorImpl< | 
|  | PartialDiagnosticAt> &Diags) { | 
|  | Expr::EvalStatus Status; | 
|  | Status.Diag = &Diags; | 
|  |  | 
|  | EvalInfo Info(FD->getASTContext(), Status, | 
|  | EvalInfo::EM_PotentialConstantExpressionUnevaluated); | 
|  | Info.InConstantContext = true; | 
|  |  | 
|  | // Fabricate a call stack frame to give the arguments a plausible cover story. | 
|  | ArrayRef<const Expr*> Args; | 
|  | ArgVector ArgValues(0); | 
|  | bool Success = EvaluateArgs(Args, ArgValues, Info); | 
|  | (void)Success; | 
|  | assert(Success && | 
|  | "Failed to set up arguments for potential constant evaluation"); | 
|  | CallStackFrame Frame(Info, SourceLocation(), FD, nullptr, ArgValues.data()); | 
|  |  | 
|  | APValue ResultScratch; | 
|  | Evaluate(ResultScratch, Info, E); | 
|  | return Diags.empty(); | 
|  | } | 
|  |  | 
|  | bool Expr::tryEvaluateObjectSize(uint64_t &Result, ASTContext &Ctx, | 
|  | unsigned Type) const { | 
|  | if (!getType()->isPointerType()) | 
|  | return false; | 
|  |  | 
|  | Expr::EvalStatus Status; | 
|  | EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold); | 
|  | return tryEvaluateBuiltinObjectSize(this, Type, Info, Result); | 
|  | } |