|  | //===-- ConstantFolding.cpp - Fold instructions into constants ------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file defines routines for folding instructions into constants. | 
|  | // | 
|  | // Also, to supplement the basic VMCore ConstantExpr simplifications, | 
|  | // this file defines some additional folding routines that can make use of | 
|  | // TargetData information. These functions cannot go in VMCore due to library | 
|  | // dependency issues. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Analysis/ConstantFolding.h" | 
|  | #include "llvm/Constants.h" | 
|  | #include "llvm/DerivedTypes.h" | 
|  | #include "llvm/Function.h" | 
|  | #include "llvm/GlobalVariable.h" | 
|  | #include "llvm/Instructions.h" | 
|  | #include "llvm/Intrinsics.h" | 
|  | #include "llvm/LLVMContext.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/StringMap.h" | 
|  | #include "llvm/Target/TargetData.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/GetElementPtrTypeIterator.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include <cerrno> | 
|  | #include <cmath> | 
|  | using namespace llvm; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Constant Folding internal helper functions | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// IsConstantOffsetFromGlobal - If this constant is actually a constant offset | 
|  | /// from a global, return the global and the constant.  Because of | 
|  | /// constantexprs, this function is recursive. | 
|  | static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV, | 
|  | int64_t &Offset, const TargetData &TD) { | 
|  | // Trivial case, constant is the global. | 
|  | if ((GV = dyn_cast<GlobalValue>(C))) { | 
|  | Offset = 0; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Otherwise, if this isn't a constant expr, bail out. | 
|  | ConstantExpr *CE = dyn_cast<ConstantExpr>(C); | 
|  | if (!CE) return false; | 
|  |  | 
|  | // Look through ptr->int and ptr->ptr casts. | 
|  | if (CE->getOpcode() == Instruction::PtrToInt || | 
|  | CE->getOpcode() == Instruction::BitCast) | 
|  | return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD); | 
|  |  | 
|  | // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5) | 
|  | if (CE->getOpcode() == Instruction::GetElementPtr) { | 
|  | // Cannot compute this if the element type of the pointer is missing size | 
|  | // info. | 
|  | if (!cast<PointerType>(CE->getOperand(0)->getType()) | 
|  | ->getElementType()->isSized()) | 
|  | return false; | 
|  |  | 
|  | // If the base isn't a global+constant, we aren't either. | 
|  | if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD)) | 
|  | return false; | 
|  |  | 
|  | // Otherwise, add any offset that our operands provide. | 
|  | gep_type_iterator GTI = gep_type_begin(CE); | 
|  | for (User::const_op_iterator i = CE->op_begin() + 1, e = CE->op_end(); | 
|  | i != e; ++i, ++GTI) { | 
|  | ConstantInt *CI = dyn_cast<ConstantInt>(*i); | 
|  | if (!CI) return false;  // Index isn't a simple constant? | 
|  | if (CI->getZExtValue() == 0) continue;  // Not adding anything. | 
|  |  | 
|  | if (const StructType *ST = dyn_cast<StructType>(*GTI)) { | 
|  | // N = N + Offset | 
|  | Offset += TD.getStructLayout(ST)->getElementOffset(CI->getZExtValue()); | 
|  | } else { | 
|  | const SequentialType *SQT = cast<SequentialType>(*GTI); | 
|  | Offset += TD.getTypeAllocSize(SQT->getElementType())*CI->getSExtValue(); | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// SymbolicallyEvaluateBinop - One of Op0/Op1 is a constant expression. | 
|  | /// Attempt to symbolically evaluate the result of a binary operator merging | 
|  | /// these together.  If target data info is available, it is provided as TD, | 
|  | /// otherwise TD is null. | 
|  | static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, | 
|  | Constant *Op1, const TargetData *TD, | 
|  | LLVMContext &Context){ | 
|  | // SROA | 
|  |  | 
|  | // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl. | 
|  | // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute | 
|  | // bits. | 
|  |  | 
|  |  | 
|  | // If the constant expr is something like &A[123] - &A[4].f, fold this into a | 
|  | // constant.  This happens frequently when iterating over a global array. | 
|  | if (Opc == Instruction::Sub && TD) { | 
|  | GlobalValue *GV1, *GV2; | 
|  | int64_t Offs1, Offs2; | 
|  |  | 
|  | if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, *TD)) | 
|  | if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, *TD) && | 
|  | GV1 == GV2) { | 
|  | // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow. | 
|  | return ConstantInt::get(Op0->getType(), Offs1-Offs2); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// SymbolicallyEvaluateGEP - If we can symbolically evaluate the specified GEP | 
|  | /// constant expression, do so. | 
|  | static Constant *SymbolicallyEvaluateGEP(Constant* const* Ops, unsigned NumOps, | 
|  | const Type *ResultTy, | 
|  | LLVMContext &Context, | 
|  | const TargetData *TD) { | 
|  | Constant *Ptr = Ops[0]; | 
|  | if (!TD || !cast<PointerType>(Ptr->getType())->getElementType()->isSized()) | 
|  | return 0; | 
|  |  | 
|  | unsigned BitWidth = TD->getTypeSizeInBits(TD->getIntPtrType(Context)); | 
|  | APInt BasePtr(BitWidth, 0); | 
|  | bool BaseIsInt = true; | 
|  | if (!Ptr->isNullValue()) { | 
|  | // If this is a inttoptr from a constant int, we can fold this as the base, | 
|  | // otherwise we can't. | 
|  | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) | 
|  | if (CE->getOpcode() == Instruction::IntToPtr) | 
|  | if (ConstantInt *Base = dyn_cast<ConstantInt>(CE->getOperand(0))) { | 
|  | BasePtr = Base->getValue(); | 
|  | BasePtr.zextOrTrunc(BitWidth); | 
|  | } | 
|  |  | 
|  | if (BasePtr == 0) | 
|  | BaseIsInt = false; | 
|  | } | 
|  |  | 
|  | // If this is a constant expr gep that is effectively computing an | 
|  | // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12' | 
|  | for (unsigned i = 1; i != NumOps; ++i) | 
|  | if (!isa<ConstantInt>(Ops[i])) | 
|  | return 0; | 
|  |  | 
|  | APInt Offset = APInt(BitWidth, | 
|  | TD->getIndexedOffset(Ptr->getType(), | 
|  | (Value**)Ops+1, NumOps-1)); | 
|  | // If the base value for this address is a literal integer value, fold the | 
|  | // getelementptr to the resulting integer value casted to the pointer type. | 
|  | if (BaseIsInt) { | 
|  | Constant *C = ConstantInt::get(Context, Offset+BasePtr); | 
|  | return ConstantExpr::getIntToPtr(C, ResultTy); | 
|  | } | 
|  |  | 
|  | // Otherwise form a regular getelementptr. Recompute the indices so that | 
|  | // we eliminate over-indexing of the notional static type array bounds. | 
|  | // This makes it easy to determine if the getelementptr is "inbounds". | 
|  | // Also, this helps GlobalOpt do SROA on GlobalVariables. | 
|  | const Type *Ty = Ptr->getType(); | 
|  | SmallVector<Constant*, 32> NewIdxs; | 
|  | do { | 
|  | if (const SequentialType *ATy = dyn_cast<SequentialType>(Ty)) { | 
|  | // The only pointer indexing we'll do is on the first index of the GEP. | 
|  | if (isa<PointerType>(ATy) && !NewIdxs.empty()) | 
|  | break; | 
|  | // Determine which element of the array the offset points into. | 
|  | APInt ElemSize(BitWidth, TD->getTypeAllocSize(ATy->getElementType())); | 
|  | if (ElemSize == 0) | 
|  | return 0; | 
|  | APInt NewIdx = Offset.udiv(ElemSize); | 
|  | Offset -= NewIdx * ElemSize; | 
|  | NewIdxs.push_back(ConstantInt::get(TD->getIntPtrType(Context), NewIdx)); | 
|  | Ty = ATy->getElementType(); | 
|  | } else if (const StructType *STy = dyn_cast<StructType>(Ty)) { | 
|  | // Determine which field of the struct the offset points into. The | 
|  | // getZExtValue is at least as safe as the StructLayout API because we | 
|  | // know the offset is within the struct at this point. | 
|  | const StructLayout &SL = *TD->getStructLayout(STy); | 
|  | unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue()); | 
|  | NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Context), ElIdx)); | 
|  | Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx)); | 
|  | Ty = STy->getTypeAtIndex(ElIdx); | 
|  | } else { | 
|  | // We've reached some non-indexable type. | 
|  | break; | 
|  | } | 
|  | } while (Ty != cast<PointerType>(ResultTy)->getElementType()); | 
|  |  | 
|  | // If we haven't used up the entire offset by descending the static | 
|  | // type, then the offset is pointing into the middle of an indivisible | 
|  | // member, so we can't simplify it. | 
|  | if (Offset != 0) | 
|  | return 0; | 
|  |  | 
|  | // Create a GEP. | 
|  | Constant *C = | 
|  | ConstantExpr::getGetElementPtr(Ptr, &NewIdxs[0], NewIdxs.size()); | 
|  | assert(cast<PointerType>(C->getType())->getElementType() == Ty && | 
|  | "Computed GetElementPtr has unexpected type!"); | 
|  |  | 
|  | // If we ended up indexing a member with a type that doesn't match | 
|  | // the type of what the original indices indexed, add a cast. | 
|  | if (Ty != cast<PointerType>(ResultTy)->getElementType()) | 
|  | C = ConstantExpr::getBitCast(C, ResultTy); | 
|  |  | 
|  | return C; | 
|  | } | 
|  |  | 
|  | /// FoldBitCast - Constant fold bitcast, symbolically evaluating it with | 
|  | /// targetdata.  Return 0 if unfoldable. | 
|  | static Constant *FoldBitCast(Constant *C, const Type *DestTy, | 
|  | const TargetData &TD, LLVMContext &Context) { | 
|  | // If this is a bitcast from constant vector -> vector, fold it. | 
|  | if (ConstantVector *CV = dyn_cast<ConstantVector>(C)) { | 
|  | if (const VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) { | 
|  | // If the element types match, VMCore can fold it. | 
|  | unsigned NumDstElt = DestVTy->getNumElements(); | 
|  | unsigned NumSrcElt = CV->getNumOperands(); | 
|  | if (NumDstElt == NumSrcElt) | 
|  | return 0; | 
|  |  | 
|  | const Type *SrcEltTy = CV->getType()->getElementType(); | 
|  | const Type *DstEltTy = DestVTy->getElementType(); | 
|  |  | 
|  | // Otherwise, we're changing the number of elements in a vector, which | 
|  | // requires endianness information to do the right thing.  For example, | 
|  | //    bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>) | 
|  | // folds to (little endian): | 
|  | //    <4 x i32> <i32 0, i32 0, i32 1, i32 0> | 
|  | // and to (big endian): | 
|  | //    <4 x i32> <i32 0, i32 0, i32 0, i32 1> | 
|  |  | 
|  | // First thing is first.  We only want to think about integer here, so if | 
|  | // we have something in FP form, recast it as integer. | 
|  | if (DstEltTy->isFloatingPoint()) { | 
|  | // Fold to an vector of integers with same size as our FP type. | 
|  | unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits(); | 
|  | const Type *DestIVTy = VectorType::get( | 
|  | IntegerType::get(Context, FPWidth), NumDstElt); | 
|  | // Recursively handle this integer conversion, if possible. | 
|  | C = FoldBitCast(C, DestIVTy, TD, Context); | 
|  | if (!C) return 0; | 
|  |  | 
|  | // Finally, VMCore can handle this now that #elts line up. | 
|  | return ConstantExpr::getBitCast(C, DestTy); | 
|  | } | 
|  |  | 
|  | // Okay, we know the destination is integer, if the input is FP, convert | 
|  | // it to integer first. | 
|  | if (SrcEltTy->isFloatingPoint()) { | 
|  | unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits(); | 
|  | const Type *SrcIVTy = VectorType::get( | 
|  | IntegerType::get(Context, FPWidth), NumSrcElt); | 
|  | // Ask VMCore to do the conversion now that #elts line up. | 
|  | C = ConstantExpr::getBitCast(C, SrcIVTy); | 
|  | CV = dyn_cast<ConstantVector>(C); | 
|  | if (!CV) return 0;  // If VMCore wasn't able to fold it, bail out. | 
|  | } | 
|  |  | 
|  | // Now we know that the input and output vectors are both integer vectors | 
|  | // of the same size, and that their #elements is not the same.  Do the | 
|  | // conversion here, which depends on whether the input or output has | 
|  | // more elements. | 
|  | bool isLittleEndian = TD.isLittleEndian(); | 
|  |  | 
|  | SmallVector<Constant*, 32> Result; | 
|  | if (NumDstElt < NumSrcElt) { | 
|  | // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>) | 
|  | Constant *Zero = Constant::getNullValue(DstEltTy); | 
|  | unsigned Ratio = NumSrcElt/NumDstElt; | 
|  | unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits(); | 
|  | unsigned SrcElt = 0; | 
|  | for (unsigned i = 0; i != NumDstElt; ++i) { | 
|  | // Build each element of the result. | 
|  | Constant *Elt = Zero; | 
|  | unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1); | 
|  | for (unsigned j = 0; j != Ratio; ++j) { | 
|  | Constant *Src = dyn_cast<ConstantInt>(CV->getOperand(SrcElt++)); | 
|  | if (!Src) return 0;  // Reject constantexpr elements. | 
|  |  | 
|  | // Zero extend the element to the right size. | 
|  | Src = ConstantExpr::getZExt(Src, Elt->getType()); | 
|  |  | 
|  | // Shift it to the right place, depending on endianness. | 
|  | Src = ConstantExpr::getShl(Src, | 
|  | ConstantInt::get(Src->getType(), ShiftAmt)); | 
|  | ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize; | 
|  |  | 
|  | // Mix it in. | 
|  | Elt = ConstantExpr::getOr(Elt, Src); | 
|  | } | 
|  | Result.push_back(Elt); | 
|  | } | 
|  | } else { | 
|  | // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>) | 
|  | unsigned Ratio = NumDstElt/NumSrcElt; | 
|  | unsigned DstBitSize = DstEltTy->getPrimitiveSizeInBits(); | 
|  |  | 
|  | // Loop over each source value, expanding into multiple results. | 
|  | for (unsigned i = 0; i != NumSrcElt; ++i) { | 
|  | Constant *Src = dyn_cast<ConstantInt>(CV->getOperand(i)); | 
|  | if (!Src) return 0;  // Reject constantexpr elements. | 
|  |  | 
|  | unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1); | 
|  | for (unsigned j = 0; j != Ratio; ++j) { | 
|  | // Shift the piece of the value into the right place, depending on | 
|  | // endianness. | 
|  | Constant *Elt = ConstantExpr::getLShr(Src, | 
|  | ConstantInt::get(Src->getType(), ShiftAmt)); | 
|  | ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize; | 
|  |  | 
|  | // Truncate and remember this piece. | 
|  | Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return ConstantVector::get(Result.data(), Result.size()); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Constant Folding public APIs | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  |  | 
|  | /// ConstantFoldInstruction - Attempt to constant fold the specified | 
|  | /// instruction.  If successful, the constant result is returned, if not, null | 
|  | /// is returned.  Note that this function can only fail when attempting to fold | 
|  | /// instructions like loads and stores, which have no constant expression form. | 
|  | /// | 
|  | Constant *llvm::ConstantFoldInstruction(Instruction *I, LLVMContext &Context, | 
|  | const TargetData *TD) { | 
|  | if (PHINode *PN = dyn_cast<PHINode>(I)) { | 
|  | if (PN->getNumIncomingValues() == 0) | 
|  | return UndefValue::get(PN->getType()); | 
|  |  | 
|  | Constant *Result = dyn_cast<Constant>(PN->getIncomingValue(0)); | 
|  | if (Result == 0) return 0; | 
|  |  | 
|  | // Handle PHI nodes specially here... | 
|  | for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) | 
|  | if (PN->getIncomingValue(i) != Result && PN->getIncomingValue(i) != PN) | 
|  | return 0;   // Not all the same incoming constants... | 
|  |  | 
|  | // If we reach here, all incoming values are the same constant. | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | // Scan the operand list, checking to see if they are all constants, if so, | 
|  | // hand off to ConstantFoldInstOperands. | 
|  | SmallVector<Constant*, 8> Ops; | 
|  | for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) | 
|  | if (Constant *Op = dyn_cast<Constant>(*i)) | 
|  | Ops.push_back(Op); | 
|  | else | 
|  | return 0;  // All operands not constant! | 
|  |  | 
|  | if (const CmpInst *CI = dyn_cast<CmpInst>(I)) | 
|  | return ConstantFoldCompareInstOperands(CI->getPredicate(), | 
|  | Ops.data(), Ops.size(), | 
|  | Context, TD); | 
|  |  | 
|  | return ConstantFoldInstOperands(I->getOpcode(), I->getType(), | 
|  | Ops.data(), Ops.size(), Context, TD); | 
|  | } | 
|  |  | 
|  | /// ConstantFoldConstantExpression - Attempt to fold the constant expression | 
|  | /// using the specified TargetData.  If successful, the constant result is | 
|  | /// result is returned, if not, null is returned. | 
|  | Constant *llvm::ConstantFoldConstantExpression(ConstantExpr *CE, | 
|  | LLVMContext &Context, | 
|  | const TargetData *TD) { | 
|  | SmallVector<Constant*, 8> Ops; | 
|  | for (User::op_iterator i = CE->op_begin(), e = CE->op_end(); i != e; ++i) | 
|  | Ops.push_back(cast<Constant>(*i)); | 
|  |  | 
|  | if (CE->isCompare()) | 
|  | return ConstantFoldCompareInstOperands(CE->getPredicate(), | 
|  | Ops.data(), Ops.size(), | 
|  | Context, TD); | 
|  | return ConstantFoldInstOperands(CE->getOpcode(), CE->getType(), | 
|  | Ops.data(), Ops.size(), Context, TD); | 
|  | } | 
|  |  | 
|  | /// ConstantFoldInstOperands - Attempt to constant fold an instruction with the | 
|  | /// specified opcode and operands.  If successful, the constant result is | 
|  | /// returned, if not, null is returned.  Note that this function can fail when | 
|  | /// attempting to fold instructions like loads and stores, which have no | 
|  | /// constant expression form. | 
|  | /// | 
|  | Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy, | 
|  | Constant* const* Ops, unsigned NumOps, | 
|  | LLVMContext &Context, | 
|  | const TargetData *TD) { | 
|  | // Handle easy binops first. | 
|  | if (Instruction::isBinaryOp(Opcode)) { | 
|  | if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1])) | 
|  | if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], TD, | 
|  | Context)) | 
|  | return C; | 
|  |  | 
|  | return ConstantExpr::get(Opcode, Ops[0], Ops[1]); | 
|  | } | 
|  |  | 
|  | switch (Opcode) { | 
|  | default: return 0; | 
|  | case Instruction::Call: | 
|  | if (Function *F = dyn_cast<Function>(Ops[0])) | 
|  | if (canConstantFoldCallTo(F)) | 
|  | return ConstantFoldCall(F, Ops+1, NumOps-1); | 
|  | return 0; | 
|  | case Instruction::ICmp: | 
|  | case Instruction::FCmp: | 
|  | llvm_unreachable("This function is invalid for compares: no predicate specified"); | 
|  | case Instruction::PtrToInt: | 
|  | // If the input is a inttoptr, eliminate the pair.  This requires knowing | 
|  | // the width of a pointer, so it can't be done in ConstantExpr::getCast. | 
|  | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) { | 
|  | if (TD && CE->getOpcode() == Instruction::IntToPtr) { | 
|  | Constant *Input = CE->getOperand(0); | 
|  | unsigned InWidth = Input->getType()->getScalarSizeInBits(); | 
|  | if (TD->getPointerSizeInBits() < InWidth) { | 
|  | Constant *Mask = | 
|  | ConstantInt::get(Context, APInt::getLowBitsSet(InWidth, | 
|  | TD->getPointerSizeInBits())); | 
|  | Input = ConstantExpr::getAnd(Input, Mask); | 
|  | } | 
|  | // Do a zext or trunc to get to the dest size. | 
|  | return ConstantExpr::getIntegerCast(Input, DestTy, false); | 
|  | } | 
|  | } | 
|  | return ConstantExpr::getCast(Opcode, Ops[0], DestTy); | 
|  | case Instruction::IntToPtr: | 
|  | // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if | 
|  | // the int size is >= the ptr size.  This requires knowing the width of a | 
|  | // pointer, so it can't be done in ConstantExpr::getCast. | 
|  | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) { | 
|  | if (TD && | 
|  | TD->getPointerSizeInBits() <= | 
|  | CE->getType()->getScalarSizeInBits()) { | 
|  | if (CE->getOpcode() == Instruction::PtrToInt) { | 
|  | Constant *Input = CE->getOperand(0); | 
|  | Constant *C = FoldBitCast(Input, DestTy, *TD, Context); | 
|  | return C ? C : ConstantExpr::getBitCast(Input, DestTy); | 
|  | } | 
|  | // If there's a constant offset added to the integer value before | 
|  | // it is casted back to a pointer, see if the expression can be | 
|  | // converted into a GEP. | 
|  | if (CE->getOpcode() == Instruction::Add) | 
|  | if (ConstantInt *L = dyn_cast<ConstantInt>(CE->getOperand(0))) | 
|  | if (ConstantExpr *R = dyn_cast<ConstantExpr>(CE->getOperand(1))) | 
|  | if (R->getOpcode() == Instruction::PtrToInt) | 
|  | if (GlobalVariable *GV = | 
|  | dyn_cast<GlobalVariable>(R->getOperand(0))) { | 
|  | const PointerType *GVTy = cast<PointerType>(GV->getType()); | 
|  | if (const ArrayType *AT = | 
|  | dyn_cast<ArrayType>(GVTy->getElementType())) { | 
|  | const Type *ElTy = AT->getElementType(); | 
|  | uint64_t AllocSize = TD->getTypeAllocSize(ElTy); | 
|  | APInt PSA(L->getValue().getBitWidth(), AllocSize); | 
|  | if (ElTy == cast<PointerType>(DestTy)->getElementType() && | 
|  | L->getValue().urem(PSA) == 0) { | 
|  | APInt ElemIdx = L->getValue().udiv(PSA); | 
|  | if (ElemIdx.ult(APInt(ElemIdx.getBitWidth(), | 
|  | AT->getNumElements()))) { | 
|  | Constant *Index[] = { | 
|  | Constant::getNullValue(CE->getType()), | 
|  | ConstantInt::get(Context, ElemIdx) | 
|  | }; | 
|  | return | 
|  | ConstantExpr::getGetElementPtr(GV, &Index[0], 2); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | return ConstantExpr::getCast(Opcode, Ops[0], DestTy); | 
|  | case Instruction::Trunc: | 
|  | case Instruction::ZExt: | 
|  | case Instruction::SExt: | 
|  | case Instruction::FPTrunc: | 
|  | case Instruction::FPExt: | 
|  | case Instruction::UIToFP: | 
|  | case Instruction::SIToFP: | 
|  | case Instruction::FPToUI: | 
|  | case Instruction::FPToSI: | 
|  | return ConstantExpr::getCast(Opcode, Ops[0], DestTy); | 
|  | case Instruction::BitCast: | 
|  | if (TD) | 
|  | if (Constant *C = FoldBitCast(Ops[0], DestTy, *TD, Context)) | 
|  | return C; | 
|  | return ConstantExpr::getBitCast(Ops[0], DestTy); | 
|  | case Instruction::Select: | 
|  | return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]); | 
|  | case Instruction::ExtractElement: | 
|  | return ConstantExpr::getExtractElement(Ops[0], Ops[1]); | 
|  | case Instruction::InsertElement: | 
|  | return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]); | 
|  | case Instruction::ShuffleVector: | 
|  | return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]); | 
|  | case Instruction::GetElementPtr: | 
|  | if (Constant *C = SymbolicallyEvaluateGEP(Ops, NumOps, DestTy, Context, TD)) | 
|  | return C; | 
|  |  | 
|  | return ConstantExpr::getGetElementPtr(Ops[0], Ops+1, NumOps-1); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// ConstantFoldCompareInstOperands - Attempt to constant fold a compare | 
|  | /// instruction (icmp/fcmp) with the specified operands.  If it fails, it | 
|  | /// returns a constant expression of the specified operands. | 
|  | /// | 
|  | Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate, | 
|  | Constant*const * Ops, | 
|  | unsigned NumOps, | 
|  | LLVMContext &Context, | 
|  | const TargetData *TD) { | 
|  | // fold: icmp (inttoptr x), null         -> icmp x, 0 | 
|  | // fold: icmp (ptrtoint x), 0            -> icmp x, null | 
|  | // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y | 
|  | // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y | 
|  | // | 
|  | // ConstantExpr::getCompare cannot do this, because it doesn't have TD | 
|  | // around to know if bit truncation is happening. | 
|  | if (ConstantExpr *CE0 = dyn_cast<ConstantExpr>(Ops[0])) { | 
|  | if (TD && Ops[1]->isNullValue()) { | 
|  | const Type *IntPtrTy = TD->getIntPtrType(Context); | 
|  | if (CE0->getOpcode() == Instruction::IntToPtr) { | 
|  | // Convert the integer value to the right size to ensure we get the | 
|  | // proper extension or truncation. | 
|  | Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0), | 
|  | IntPtrTy, false); | 
|  | Constant *NewOps[] = { C, Constant::getNullValue(C->getType()) }; | 
|  | return ConstantFoldCompareInstOperands(Predicate, NewOps, 2, | 
|  | Context, TD); | 
|  | } | 
|  |  | 
|  | // Only do this transformation if the int is intptrty in size, otherwise | 
|  | // there is a truncation or extension that we aren't modeling. | 
|  | if (CE0->getOpcode() == Instruction::PtrToInt && | 
|  | CE0->getType() == IntPtrTy) { | 
|  | Constant *C = CE0->getOperand(0); | 
|  | Constant *NewOps[] = { C, Constant::getNullValue(C->getType()) }; | 
|  | // FIXME! | 
|  | return ConstantFoldCompareInstOperands(Predicate, NewOps, 2, | 
|  | Context, TD); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(Ops[1])) { | 
|  | if (TD && CE0->getOpcode() == CE1->getOpcode()) { | 
|  | const Type *IntPtrTy = TD->getIntPtrType(Context); | 
|  |  | 
|  | if (CE0->getOpcode() == Instruction::IntToPtr) { | 
|  | // Convert the integer value to the right size to ensure we get the | 
|  | // proper extension or truncation. | 
|  | Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0), | 
|  | IntPtrTy, false); | 
|  | Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0), | 
|  | IntPtrTy, false); | 
|  | Constant *NewOps[] = { C0, C1 }; | 
|  | return ConstantFoldCompareInstOperands(Predicate, NewOps, 2, | 
|  | Context, TD); | 
|  | } | 
|  |  | 
|  | // Only do this transformation if the int is intptrty in size, otherwise | 
|  | // there is a truncation or extension that we aren't modeling. | 
|  | if ((CE0->getOpcode() == Instruction::PtrToInt && | 
|  | CE0->getType() == IntPtrTy && | 
|  | CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType())) { | 
|  | Constant *NewOps[] = { | 
|  | CE0->getOperand(0), CE1->getOperand(0) | 
|  | }; | 
|  | return ConstantFoldCompareInstOperands(Predicate, NewOps, 2, | 
|  | Context, TD); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | return ConstantExpr::getCompare(Predicate, Ops[0], Ops[1]); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// ConstantFoldLoadThroughGEPConstantExpr - Given a constant and a | 
|  | /// getelementptr constantexpr, return the constant value being addressed by the | 
|  | /// constant expression, or null if something is funny and we can't decide. | 
|  | Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C, | 
|  | ConstantExpr *CE, | 
|  | LLVMContext &Context) { | 
|  | if (CE->getOperand(1) != Constant::getNullValue(CE->getOperand(1)->getType())) | 
|  | return 0;  // Do not allow stepping over the value! | 
|  |  | 
|  | // Loop over all of the operands, tracking down which value we are | 
|  | // addressing... | 
|  | gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE); | 
|  | for (++I; I != E; ++I) | 
|  | if (const StructType *STy = dyn_cast<StructType>(*I)) { | 
|  | ConstantInt *CU = cast<ConstantInt>(I.getOperand()); | 
|  | assert(CU->getZExtValue() < STy->getNumElements() && | 
|  | "Struct index out of range!"); | 
|  | unsigned El = (unsigned)CU->getZExtValue(); | 
|  | if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) { | 
|  | C = CS->getOperand(El); | 
|  | } else if (isa<ConstantAggregateZero>(C)) { | 
|  | C = Constant::getNullValue(STy->getElementType(El)); | 
|  | } else if (isa<UndefValue>(C)) { | 
|  | C = UndefValue::get(STy->getElementType(El)); | 
|  | } else { | 
|  | return 0; | 
|  | } | 
|  | } else if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand())) { | 
|  | if (const ArrayType *ATy = dyn_cast<ArrayType>(*I)) { | 
|  | if (CI->getZExtValue() >= ATy->getNumElements()) | 
|  | return 0; | 
|  | if (ConstantArray *CA = dyn_cast<ConstantArray>(C)) | 
|  | C = CA->getOperand(CI->getZExtValue()); | 
|  | else if (isa<ConstantAggregateZero>(C)) | 
|  | C = Constant::getNullValue(ATy->getElementType()); | 
|  | else if (isa<UndefValue>(C)) | 
|  | C = UndefValue::get(ATy->getElementType()); | 
|  | else | 
|  | return 0; | 
|  | } else if (const VectorType *PTy = dyn_cast<VectorType>(*I)) { | 
|  | if (CI->getZExtValue() >= PTy->getNumElements()) | 
|  | return 0; | 
|  | if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) | 
|  | C = CP->getOperand(CI->getZExtValue()); | 
|  | else if (isa<ConstantAggregateZero>(C)) | 
|  | C = Constant::getNullValue(PTy->getElementType()); | 
|  | else if (isa<UndefValue>(C)) | 
|  | C = UndefValue::get(PTy->getElementType()); | 
|  | else | 
|  | return 0; | 
|  | } else { | 
|  | return 0; | 
|  | } | 
|  | } else { | 
|  | return 0; | 
|  | } | 
|  | return C; | 
|  | } | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  Constant Folding for Calls | 
|  | // | 
|  |  | 
|  | /// canConstantFoldCallTo - Return true if its even possible to fold a call to | 
|  | /// the specified function. | 
|  | bool | 
|  | llvm::canConstantFoldCallTo(const Function *F) { | 
|  | switch (F->getIntrinsicID()) { | 
|  | case Intrinsic::sqrt: | 
|  | case Intrinsic::powi: | 
|  | case Intrinsic::bswap: | 
|  | case Intrinsic::ctpop: | 
|  | case Intrinsic::ctlz: | 
|  | case Intrinsic::cttz: | 
|  | return true; | 
|  | default: break; | 
|  | } | 
|  |  | 
|  | if (!F->hasName()) return false; | 
|  | StringRef Name = F->getName(); | 
|  |  | 
|  | // In these cases, the check of the length is required.  We don't want to | 
|  | // return true for a name like "cos\0blah" which strcmp would return equal to | 
|  | // "cos", but has length 8. | 
|  | switch (Name[0]) { | 
|  | default: return false; | 
|  | case 'a': | 
|  | return Name == "acos" || Name == "asin" || | 
|  | Name == "atan" || Name == "atan2"; | 
|  | case 'c': | 
|  | return Name == "cos" || Name == "ceil" || Name == "cosf" || Name == "cosh"; | 
|  | case 'e': | 
|  | return Name == "exp"; | 
|  | case 'f': | 
|  | return Name == "fabs" || Name == "fmod" || Name == "floor"; | 
|  | case 'l': | 
|  | return Name == "log" || Name == "log10"; | 
|  | case 'p': | 
|  | return Name == "pow"; | 
|  | case 's': | 
|  | return Name == "sin" || Name == "sinh" || Name == "sqrt" || | 
|  | Name == "sinf" || Name == "sqrtf"; | 
|  | case 't': | 
|  | return Name == "tan" || Name == "tanh"; | 
|  | } | 
|  | } | 
|  |  | 
|  | static Constant *ConstantFoldFP(double (*NativeFP)(double), double V, | 
|  | const Type *Ty, LLVMContext &Context) { | 
|  | errno = 0; | 
|  | V = NativeFP(V); | 
|  | if (errno != 0) { | 
|  | errno = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (Ty == Type::getFloatTy(Context)) | 
|  | return ConstantFP::get(Context, APFloat((float)V)); | 
|  | if (Ty == Type::getDoubleTy(Context)) | 
|  | return ConstantFP::get(Context, APFloat(V)); | 
|  | llvm_unreachable("Can only constant fold float/double"); | 
|  | return 0; // dummy return to suppress warning | 
|  | } | 
|  |  | 
|  | static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double), | 
|  | double V, double W, | 
|  | const Type *Ty, | 
|  | LLVMContext &Context) { | 
|  | errno = 0; | 
|  | V = NativeFP(V, W); | 
|  | if (errno != 0) { | 
|  | errno = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (Ty == Type::getFloatTy(Context)) | 
|  | return ConstantFP::get(Context, APFloat((float)V)); | 
|  | if (Ty == Type::getDoubleTy(Context)) | 
|  | return ConstantFP::get(Context, APFloat(V)); | 
|  | llvm_unreachable("Can only constant fold float/double"); | 
|  | return 0; // dummy return to suppress warning | 
|  | } | 
|  |  | 
|  | /// ConstantFoldCall - Attempt to constant fold a call to the specified function | 
|  | /// with the specified arguments, returning null if unsuccessful. | 
|  |  | 
|  | Constant * | 
|  | llvm::ConstantFoldCall(Function *F, | 
|  | Constant* const* Operands, unsigned NumOperands) { | 
|  | if (!F->hasName()) return 0; | 
|  | LLVMContext &Context = F->getContext(); | 
|  | StringRef Name = F->getName(); | 
|  |  | 
|  | const Type *Ty = F->getReturnType(); | 
|  | if (NumOperands == 1) { | 
|  | if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) { | 
|  | if (Ty!=Type::getFloatTy(F->getContext()) && | 
|  | Ty!=Type::getDoubleTy(Context)) | 
|  | return 0; | 
|  | /// Currently APFloat versions of these functions do not exist, so we use | 
|  | /// the host native double versions.  Float versions are not called | 
|  | /// directly but for all these it is true (float)(f((double)arg)) == | 
|  | /// f(arg).  Long double not supported yet. | 
|  | double V = Ty==Type::getFloatTy(F->getContext()) ? | 
|  | (double)Op->getValueAPF().convertToFloat(): | 
|  | Op->getValueAPF().convertToDouble(); | 
|  | switch (Name[0]) { | 
|  | case 'a': | 
|  | if (Name == "acos") | 
|  | return ConstantFoldFP(acos, V, Ty, Context); | 
|  | else if (Name == "asin") | 
|  | return ConstantFoldFP(asin, V, Ty, Context); | 
|  | else if (Name == "atan") | 
|  | return ConstantFoldFP(atan, V, Ty, Context); | 
|  | break; | 
|  | case 'c': | 
|  | if (Name == "ceil") | 
|  | return ConstantFoldFP(ceil, V, Ty, Context); | 
|  | else if (Name == "cos") | 
|  | return ConstantFoldFP(cos, V, Ty, Context); | 
|  | else if (Name == "cosh") | 
|  | return ConstantFoldFP(cosh, V, Ty, Context); | 
|  | else if (Name == "cosf") | 
|  | return ConstantFoldFP(cos, V, Ty, Context); | 
|  | break; | 
|  | case 'e': | 
|  | if (Name == "exp") | 
|  | return ConstantFoldFP(exp, V, Ty, Context); | 
|  | break; | 
|  | case 'f': | 
|  | if (Name == "fabs") | 
|  | return ConstantFoldFP(fabs, V, Ty, Context); | 
|  | else if (Name == "floor") | 
|  | return ConstantFoldFP(floor, V, Ty, Context); | 
|  | break; | 
|  | case 'l': | 
|  | if (Name == "log" && V > 0) | 
|  | return ConstantFoldFP(log, V, Ty, Context); | 
|  | else if (Name == "log10" && V > 0) | 
|  | return ConstantFoldFP(log10, V, Ty, Context); | 
|  | else if (Name == "llvm.sqrt.f32" || | 
|  | Name == "llvm.sqrt.f64") { | 
|  | if (V >= -0.0) | 
|  | return ConstantFoldFP(sqrt, V, Ty, Context); | 
|  | else // Undefined | 
|  | return Constant::getNullValue(Ty); | 
|  | } | 
|  | break; | 
|  | case 's': | 
|  | if (Name == "sin") | 
|  | return ConstantFoldFP(sin, V, Ty, Context); | 
|  | else if (Name == "sinh") | 
|  | return ConstantFoldFP(sinh, V, Ty, Context); | 
|  | else if (Name == "sqrt" && V >= 0) | 
|  | return ConstantFoldFP(sqrt, V, Ty, Context); | 
|  | else if (Name == "sqrtf" && V >= 0) | 
|  | return ConstantFoldFP(sqrt, V, Ty, Context); | 
|  | else if (Name == "sinf") | 
|  | return ConstantFoldFP(sin, V, Ty, Context); | 
|  | break; | 
|  | case 't': | 
|  | if (Name == "tan") | 
|  | return ConstantFoldFP(tan, V, Ty, Context); | 
|  | else if (Name == "tanh") | 
|  | return ConstantFoldFP(tanh, V, Ty, Context); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } else if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) { | 
|  | if (Name.startswith("llvm.bswap")) | 
|  | return ConstantInt::get(Context, Op->getValue().byteSwap()); | 
|  | else if (Name.startswith("llvm.ctpop")) | 
|  | return ConstantInt::get(Ty, Op->getValue().countPopulation()); | 
|  | else if (Name.startswith("llvm.cttz")) | 
|  | return ConstantInt::get(Ty, Op->getValue().countTrailingZeros()); | 
|  | else if (Name.startswith("llvm.ctlz")) | 
|  | return ConstantInt::get(Ty, Op->getValue().countLeadingZeros()); | 
|  | } | 
|  | } else if (NumOperands == 2) { | 
|  | if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) { | 
|  | if (Ty!=Type::getFloatTy(F->getContext()) && | 
|  | Ty!=Type::getDoubleTy(Context)) | 
|  | return 0; | 
|  | double Op1V = Ty==Type::getFloatTy(F->getContext()) ? | 
|  | (double)Op1->getValueAPF().convertToFloat(): | 
|  | Op1->getValueAPF().convertToDouble(); | 
|  | if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) { | 
|  | double Op2V = Ty==Type::getFloatTy(F->getContext()) ? | 
|  | (double)Op2->getValueAPF().convertToFloat(): | 
|  | Op2->getValueAPF().convertToDouble(); | 
|  |  | 
|  | if (Name == "pow") { | 
|  | return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty, Context); | 
|  | } else if (Name == "fmod") { | 
|  | return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty, Context); | 
|  | } else if (Name == "atan2") { | 
|  | return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty, Context); | 
|  | } | 
|  | } else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) { | 
|  | if (Name == "llvm.powi.f32") { | 
|  | return ConstantFP::get(Context, APFloat((float)std::pow((float)Op1V, | 
|  | (int)Op2C->getZExtValue()))); | 
|  | } else if (Name == "llvm.powi.f64") { | 
|  | return ConstantFP::get(Context, APFloat((double)std::pow((double)Op1V, | 
|  | (int)Op2C->getZExtValue()))); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  |