|  | //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===// | 
|  | // | 
|  | //                      The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the SampleProfileLoader transformation. This pass | 
|  | // reads a profile file generated by a sampling profiler (e.g. Linux Perf - | 
|  | // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the | 
|  | // profile information in the given profile. | 
|  | // | 
|  | // This pass generates branch weight annotations on the IR: | 
|  | // | 
|  | // - prof: Represents branch weights. This annotation is added to branches | 
|  | //      to indicate the weights of each edge coming out of the branch. | 
|  | //      The weight of each edge is the weight of the target block for | 
|  | //      that edge. The weight of a block B is computed as the maximum | 
|  | //      number of samples found in B. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Transforms/IPO/SampleProfile.h" | 
|  | #include "llvm/ADT/ArrayRef.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/DenseSet.h" | 
|  | #include "llvm/ADT/None.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/StringMap.h" | 
|  | #include "llvm/ADT/StringRef.h" | 
|  | #include "llvm/ADT/Twine.h" | 
|  | #include "llvm/Analysis/AssumptionCache.h" | 
|  | #include "llvm/Analysis/InlineCost.h" | 
|  | #include "llvm/Analysis/LoopInfo.h" | 
|  | #include "llvm/Analysis/OptimizationRemarkEmitter.h" | 
|  | #include "llvm/Analysis/PostDominators.h" | 
|  | #include "llvm/Analysis/ProfileSummaryInfo.h" | 
|  | #include "llvm/Analysis/TargetTransformInfo.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/CFG.h" | 
|  | #include "llvm/IR/CallSite.h" | 
|  | #include "llvm/IR/DebugInfoMetadata.h" | 
|  | #include "llvm/IR/DebugLoc.h" | 
|  | #include "llvm/IR/DiagnosticInfo.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/GlobalValue.h" | 
|  | #include "llvm/IR/InstrTypes.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/IR/MDBuilder.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/IR/PassManager.h" | 
|  | #include "llvm/IR/ValueSymbolTable.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/ProfileData/InstrProf.h" | 
|  | #include "llvm/ProfileData/SampleProf.h" | 
|  | #include "llvm/ProfileData/SampleProfReader.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/ErrorOr.h" | 
|  | #include "llvm/Support/GenericDomTree.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Transforms/IPO.h" | 
|  | #include "llvm/Transforms/Instrumentation.h" | 
|  | #include "llvm/Transforms/Utils/CallPromotionUtils.h" | 
|  | #include "llvm/Transforms/Utils/Cloning.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <cstdint> | 
|  | #include <functional> | 
|  | #include <limits> | 
|  | #include <map> | 
|  | #include <memory> | 
|  | #include <string> | 
|  | #include <system_error> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | using namespace llvm; | 
|  | using namespace sampleprof; | 
|  | using ProfileCount = Function::ProfileCount; | 
|  | #define DEBUG_TYPE "sample-profile" | 
|  |  | 
|  | // Command line option to specify the file to read samples from. This is | 
|  | // mainly used for debugging. | 
|  | static cl::opt<std::string> SampleProfileFile( | 
|  | "sample-profile-file", cl::init(""), cl::value_desc("filename"), | 
|  | cl::desc("Profile file loaded by -sample-profile"), cl::Hidden); | 
|  |  | 
|  | static cl::opt<unsigned> SampleProfileMaxPropagateIterations( | 
|  | "sample-profile-max-propagate-iterations", cl::init(100), | 
|  | cl::desc("Maximum number of iterations to go through when propagating " | 
|  | "sample block/edge weights through the CFG.")); | 
|  |  | 
|  | static cl::opt<unsigned> SampleProfileRecordCoverage( | 
|  | "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"), | 
|  | cl::desc("Emit a warning if less than N% of records in the input profile " | 
|  | "are matched to the IR.")); | 
|  |  | 
|  | static cl::opt<unsigned> SampleProfileSampleCoverage( | 
|  | "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"), | 
|  | cl::desc("Emit a warning if less than N% of samples in the input profile " | 
|  | "are matched to the IR.")); | 
|  |  | 
|  | static cl::opt<bool> NoWarnSampleUnused( | 
|  | "no-warn-sample-unused", cl::init(false), cl::Hidden, | 
|  | cl::desc("Use this option to turn off/on warnings about function with " | 
|  | "samples but without debug information to use those samples. ")); | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | using BlockWeightMap = DenseMap<const BasicBlock *, uint64_t>; | 
|  | using EquivalenceClassMap = DenseMap<const BasicBlock *, const BasicBlock *>; | 
|  | using Edge = std::pair<const BasicBlock *, const BasicBlock *>; | 
|  | using EdgeWeightMap = DenseMap<Edge, uint64_t>; | 
|  | using BlockEdgeMap = | 
|  | DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>; | 
|  |  | 
|  | class SampleCoverageTracker { | 
|  | public: | 
|  | SampleCoverageTracker() = default; | 
|  |  | 
|  | bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset, | 
|  | uint32_t Discriminator, uint64_t Samples); | 
|  | unsigned computeCoverage(unsigned Used, unsigned Total) const; | 
|  | unsigned countUsedRecords(const FunctionSamples *FS, | 
|  | ProfileSummaryInfo *PSI) const; | 
|  | unsigned countBodyRecords(const FunctionSamples *FS, | 
|  | ProfileSummaryInfo *PSI) const; | 
|  | uint64_t getTotalUsedSamples() const { return TotalUsedSamples; } | 
|  | uint64_t countBodySamples(const FunctionSamples *FS, | 
|  | ProfileSummaryInfo *PSI) const; | 
|  |  | 
|  | void clear() { | 
|  | SampleCoverage.clear(); | 
|  | TotalUsedSamples = 0; | 
|  | } | 
|  |  | 
|  | private: | 
|  | using BodySampleCoverageMap = std::map<LineLocation, unsigned>; | 
|  | using FunctionSamplesCoverageMap = | 
|  | DenseMap<const FunctionSamples *, BodySampleCoverageMap>; | 
|  |  | 
|  | /// Coverage map for sampling records. | 
|  | /// | 
|  | /// This map keeps a record of sampling records that have been matched to | 
|  | /// an IR instruction. This is used to detect some form of staleness in | 
|  | /// profiles (see flag -sample-profile-check-coverage). | 
|  | /// | 
|  | /// Each entry in the map corresponds to a FunctionSamples instance.  This is | 
|  | /// another map that counts how many times the sample record at the | 
|  | /// given location has been used. | 
|  | FunctionSamplesCoverageMap SampleCoverage; | 
|  |  | 
|  | /// Number of samples used from the profile. | 
|  | /// | 
|  | /// When a sampling record is used for the first time, the samples from | 
|  | /// that record are added to this accumulator.  Coverage is later computed | 
|  | /// based on the total number of samples available in this function and | 
|  | /// its callsites. | 
|  | /// | 
|  | /// Note that this accumulator tracks samples used from a single function | 
|  | /// and all the inlined callsites. Strictly, we should have a map of counters | 
|  | /// keyed by FunctionSamples pointers, but these stats are cleared after | 
|  | /// every function, so we just need to keep a single counter. | 
|  | uint64_t TotalUsedSamples = 0; | 
|  | }; | 
|  |  | 
|  | /// Sample profile pass. | 
|  | /// | 
|  | /// This pass reads profile data from the file specified by | 
|  | /// -sample-profile-file and annotates every affected function with the | 
|  | /// profile information found in that file. | 
|  | class SampleProfileLoader { | 
|  | public: | 
|  | SampleProfileLoader( | 
|  | StringRef Name, bool IsThinLTOPreLink, | 
|  | std::function<AssumptionCache &(Function &)> GetAssumptionCache, | 
|  | std::function<TargetTransformInfo &(Function &)> GetTargetTransformInfo) | 
|  | : GetAC(std::move(GetAssumptionCache)), | 
|  | GetTTI(std::move(GetTargetTransformInfo)), Filename(Name), | 
|  | IsThinLTOPreLink(IsThinLTOPreLink) {} | 
|  |  | 
|  | bool doInitialization(Module &M); | 
|  | bool runOnModule(Module &M, ModuleAnalysisManager *AM, | 
|  | ProfileSummaryInfo *_PSI); | 
|  |  | 
|  | void dump() { Reader->dump(); } | 
|  |  | 
|  | protected: | 
|  | bool runOnFunction(Function &F, ModuleAnalysisManager *AM); | 
|  | unsigned getFunctionLoc(Function &F); | 
|  | bool emitAnnotations(Function &F); | 
|  | ErrorOr<uint64_t> getInstWeight(const Instruction &I); | 
|  | ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB); | 
|  | const FunctionSamples *findCalleeFunctionSamples(const Instruction &I) const; | 
|  | std::vector<const FunctionSamples *> | 
|  | findIndirectCallFunctionSamples(const Instruction &I, uint64_t &Sum) const; | 
|  | const FunctionSamples *findFunctionSamples(const Instruction &I) const; | 
|  | bool inlineCallInstruction(Instruction *I); | 
|  | bool inlineHotFunctions(Function &F, | 
|  | DenseSet<GlobalValue::GUID> &InlinedGUIDs); | 
|  | void printEdgeWeight(raw_ostream &OS, Edge E); | 
|  | void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const; | 
|  | void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB); | 
|  | bool computeBlockWeights(Function &F); | 
|  | void findEquivalenceClasses(Function &F); | 
|  | template <bool IsPostDom> | 
|  | void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, | 
|  | DominatorTreeBase<BasicBlock, IsPostDom> *DomTree); | 
|  |  | 
|  | void propagateWeights(Function &F); | 
|  | uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge); | 
|  | void buildEdges(Function &F); | 
|  | bool propagateThroughEdges(Function &F, bool UpdateBlockCount); | 
|  | void computeDominanceAndLoopInfo(Function &F); | 
|  | void clearFunctionData(); | 
|  |  | 
|  | /// Map basic blocks to their computed weights. | 
|  | /// | 
|  | /// The weight of a basic block is defined to be the maximum | 
|  | /// of all the instruction weights in that block. | 
|  | BlockWeightMap BlockWeights; | 
|  |  | 
|  | /// Map edges to their computed weights. | 
|  | /// | 
|  | /// Edge weights are computed by propagating basic block weights in | 
|  | /// SampleProfile::propagateWeights. | 
|  | EdgeWeightMap EdgeWeights; | 
|  |  | 
|  | /// Set of visited blocks during propagation. | 
|  | SmallPtrSet<const BasicBlock *, 32> VisitedBlocks; | 
|  |  | 
|  | /// Set of visited edges during propagation. | 
|  | SmallSet<Edge, 32> VisitedEdges; | 
|  |  | 
|  | /// Equivalence classes for block weights. | 
|  | /// | 
|  | /// Two blocks BB1 and BB2 are in the same equivalence class if they | 
|  | /// dominate and post-dominate each other, and they are in the same loop | 
|  | /// nest. When this happens, the two blocks are guaranteed to execute | 
|  | /// the same number of times. | 
|  | EquivalenceClassMap EquivalenceClass; | 
|  |  | 
|  | /// Map from function name to Function *. Used to find the function from | 
|  | /// the function name. If the function name contains suffix, additional | 
|  | /// entry is added to map from the stripped name to the function if there | 
|  | /// is one-to-one mapping. | 
|  | StringMap<Function *> SymbolMap; | 
|  |  | 
|  | /// Dominance, post-dominance and loop information. | 
|  | std::unique_ptr<DominatorTree> DT; | 
|  | std::unique_ptr<PostDominatorTree> PDT; | 
|  | std::unique_ptr<LoopInfo> LI; | 
|  |  | 
|  | std::function<AssumptionCache &(Function &)> GetAC; | 
|  | std::function<TargetTransformInfo &(Function &)> GetTTI; | 
|  |  | 
|  | /// Predecessors for each basic block in the CFG. | 
|  | BlockEdgeMap Predecessors; | 
|  |  | 
|  | /// Successors for each basic block in the CFG. | 
|  | BlockEdgeMap Successors; | 
|  |  | 
|  | SampleCoverageTracker CoverageTracker; | 
|  |  | 
|  | /// Profile reader object. | 
|  | std::unique_ptr<SampleProfileReader> Reader; | 
|  |  | 
|  | /// Samples collected for the body of this function. | 
|  | FunctionSamples *Samples = nullptr; | 
|  |  | 
|  | /// Name of the profile file to load. | 
|  | std::string Filename; | 
|  |  | 
|  | /// Flag indicating whether the profile input loaded successfully. | 
|  | bool ProfileIsValid = false; | 
|  |  | 
|  | /// Flag indicating if the pass is invoked in ThinLTO compile phase. | 
|  | /// | 
|  | /// In this phase, in annotation, we should not promote indirect calls. | 
|  | /// Instead, we will mark GUIDs that needs to be annotated to the function. | 
|  | bool IsThinLTOPreLink; | 
|  |  | 
|  | /// Profile Summary Info computed from sample profile. | 
|  | ProfileSummaryInfo *PSI = nullptr; | 
|  |  | 
|  | /// Total number of samples collected in this profile. | 
|  | /// | 
|  | /// This is the sum of all the samples collected in all the functions executed | 
|  | /// at runtime. | 
|  | uint64_t TotalCollectedSamples = 0; | 
|  |  | 
|  | /// Optimization Remark Emitter used to emit diagnostic remarks. | 
|  | OptimizationRemarkEmitter *ORE = nullptr; | 
|  | }; | 
|  |  | 
|  | class SampleProfileLoaderLegacyPass : public ModulePass { | 
|  | public: | 
|  | // Class identification, replacement for typeinfo | 
|  | static char ID; | 
|  |  | 
|  | SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile, | 
|  | bool IsThinLTOPreLink = false) | 
|  | : ModulePass(ID), SampleLoader(Name, IsThinLTOPreLink, | 
|  | [&](Function &F) -> AssumptionCache & { | 
|  | return ACT->getAssumptionCache(F); | 
|  | }, | 
|  | [&](Function &F) -> TargetTransformInfo & { | 
|  | return TTIWP->getTTI(F); | 
|  | }) { | 
|  | initializeSampleProfileLoaderLegacyPassPass( | 
|  | *PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | void dump() { SampleLoader.dump(); } | 
|  |  | 
|  | bool doInitialization(Module &M) override { | 
|  | return SampleLoader.doInitialization(M); | 
|  | } | 
|  |  | 
|  | StringRef getPassName() const override { return "Sample profile pass"; } | 
|  | bool runOnModule(Module &M) override; | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.addRequired<AssumptionCacheTracker>(); | 
|  | AU.addRequired<TargetTransformInfoWrapperPass>(); | 
|  | AU.addRequired<ProfileSummaryInfoWrapperPass>(); | 
|  | } | 
|  |  | 
|  | private: | 
|  | SampleProfileLoader SampleLoader; | 
|  | AssumptionCacheTracker *ACT = nullptr; | 
|  | TargetTransformInfoWrapperPass *TTIWP = nullptr; | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | /// Return true if the given callsite is hot wrt to hot cutoff threshold. | 
|  | /// | 
|  | /// Functions that were inlined in the original binary will be represented | 
|  | /// in the inline stack in the sample profile. If the profile shows that | 
|  | /// the original inline decision was "good" (i.e., the callsite is executed | 
|  | /// frequently), then we will recreate the inline decision and apply the | 
|  | /// profile from the inlined callsite. | 
|  | /// | 
|  | /// To decide whether an inlined callsite is hot, we compare the callsite | 
|  | /// sample count with the hot cutoff computed by ProfileSummaryInfo, it is | 
|  | /// regarded as hot if the count is above the cutoff value. | 
|  | static bool callsiteIsHot(const FunctionSamples *CallsiteFS, | 
|  | ProfileSummaryInfo *PSI) { | 
|  | if (!CallsiteFS) | 
|  | return false; // The callsite was not inlined in the original binary. | 
|  |  | 
|  | assert(PSI && "PSI is expected to be non null"); | 
|  | uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples(); | 
|  | return PSI->isHotCount(CallsiteTotalSamples); | 
|  | } | 
|  |  | 
|  | /// Mark as used the sample record for the given function samples at | 
|  | /// (LineOffset, Discriminator). | 
|  | /// | 
|  | /// \returns true if this is the first time we mark the given record. | 
|  | bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS, | 
|  | uint32_t LineOffset, | 
|  | uint32_t Discriminator, | 
|  | uint64_t Samples) { | 
|  | LineLocation Loc(LineOffset, Discriminator); | 
|  | unsigned &Count = SampleCoverage[FS][Loc]; | 
|  | bool FirstTime = (++Count == 1); | 
|  | if (FirstTime) | 
|  | TotalUsedSamples += Samples; | 
|  | return FirstTime; | 
|  | } | 
|  |  | 
|  | /// Return the number of sample records that were applied from this profile. | 
|  | /// | 
|  | /// This count does not include records from cold inlined callsites. | 
|  | unsigned | 
|  | SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS, | 
|  | ProfileSummaryInfo *PSI) const { | 
|  | auto I = SampleCoverage.find(FS); | 
|  |  | 
|  | // The size of the coverage map for FS represents the number of records | 
|  | // that were marked used at least once. | 
|  | unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0; | 
|  |  | 
|  | // If there are inlined callsites in this function, count the samples found | 
|  | // in the respective bodies. However, do not bother counting callees with 0 | 
|  | // total samples, these are callees that were never invoked at runtime. | 
|  | for (const auto &I : FS->getCallsiteSamples()) | 
|  | for (const auto &J : I.second) { | 
|  | const FunctionSamples *CalleeSamples = &J.second; | 
|  | if (callsiteIsHot(CalleeSamples, PSI)) | 
|  | Count += countUsedRecords(CalleeSamples, PSI); | 
|  | } | 
|  |  | 
|  | return Count; | 
|  | } | 
|  |  | 
|  | /// Return the number of sample records in the body of this profile. | 
|  | /// | 
|  | /// This count does not include records from cold inlined callsites. | 
|  | unsigned | 
|  | SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS, | 
|  | ProfileSummaryInfo *PSI) const { | 
|  | unsigned Count = FS->getBodySamples().size(); | 
|  |  | 
|  | // Only count records in hot callsites. | 
|  | for (const auto &I : FS->getCallsiteSamples()) | 
|  | for (const auto &J : I.second) { | 
|  | const FunctionSamples *CalleeSamples = &J.second; | 
|  | if (callsiteIsHot(CalleeSamples, PSI)) | 
|  | Count += countBodyRecords(CalleeSamples, PSI); | 
|  | } | 
|  |  | 
|  | return Count; | 
|  | } | 
|  |  | 
|  | /// Return the number of samples collected in the body of this profile. | 
|  | /// | 
|  | /// This count does not include samples from cold inlined callsites. | 
|  | uint64_t | 
|  | SampleCoverageTracker::countBodySamples(const FunctionSamples *FS, | 
|  | ProfileSummaryInfo *PSI) const { | 
|  | uint64_t Total = 0; | 
|  | for (const auto &I : FS->getBodySamples()) | 
|  | Total += I.second.getSamples(); | 
|  |  | 
|  | // Only count samples in hot callsites. | 
|  | for (const auto &I : FS->getCallsiteSamples()) | 
|  | for (const auto &J : I.second) { | 
|  | const FunctionSamples *CalleeSamples = &J.second; | 
|  | if (callsiteIsHot(CalleeSamples, PSI)) | 
|  | Total += countBodySamples(CalleeSamples, PSI); | 
|  | } | 
|  |  | 
|  | return Total; | 
|  | } | 
|  |  | 
|  | /// Return the fraction of sample records used in this profile. | 
|  | /// | 
|  | /// The returned value is an unsigned integer in the range 0-100 indicating | 
|  | /// the percentage of sample records that were used while applying this | 
|  | /// profile to the associated function. | 
|  | unsigned SampleCoverageTracker::computeCoverage(unsigned Used, | 
|  | unsigned Total) const { | 
|  | assert(Used <= Total && | 
|  | "number of used records cannot exceed the total number of records"); | 
|  | return Total > 0 ? Used * 100 / Total : 100; | 
|  | } | 
|  |  | 
|  | /// Clear all the per-function data used to load samples and propagate weights. | 
|  | void SampleProfileLoader::clearFunctionData() { | 
|  | BlockWeights.clear(); | 
|  | EdgeWeights.clear(); | 
|  | VisitedBlocks.clear(); | 
|  | VisitedEdges.clear(); | 
|  | EquivalenceClass.clear(); | 
|  | DT = nullptr; | 
|  | PDT = nullptr; | 
|  | LI = nullptr; | 
|  | Predecessors.clear(); | 
|  | Successors.clear(); | 
|  | CoverageTracker.clear(); | 
|  | } | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | /// Print the weight of edge \p E on stream \p OS. | 
|  | /// | 
|  | /// \param OS  Stream to emit the output to. | 
|  | /// \param E  Edge to print. | 
|  | void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) { | 
|  | OS << "weight[" << E.first->getName() << "->" << E.second->getName() | 
|  | << "]: " << EdgeWeights[E] << "\n"; | 
|  | } | 
|  |  | 
|  | /// Print the equivalence class of block \p BB on stream \p OS. | 
|  | /// | 
|  | /// \param OS  Stream to emit the output to. | 
|  | /// \param BB  Block to print. | 
|  | void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS, | 
|  | const BasicBlock *BB) { | 
|  | const BasicBlock *Equiv = EquivalenceClass[BB]; | 
|  | OS << "equivalence[" << BB->getName() | 
|  | << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n"; | 
|  | } | 
|  |  | 
|  | /// Print the weight of block \p BB on stream \p OS. | 
|  | /// | 
|  | /// \param OS  Stream to emit the output to. | 
|  | /// \param BB  Block to print. | 
|  | void SampleProfileLoader::printBlockWeight(raw_ostream &OS, | 
|  | const BasicBlock *BB) const { | 
|  | const auto &I = BlockWeights.find(BB); | 
|  | uint64_t W = (I == BlockWeights.end() ? 0 : I->second); | 
|  | OS << "weight[" << BB->getName() << "]: " << W << "\n"; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /// Get the weight for an instruction. | 
|  | /// | 
|  | /// The "weight" of an instruction \p Inst is the number of samples | 
|  | /// collected on that instruction at runtime. To retrieve it, we | 
|  | /// need to compute the line number of \p Inst relative to the start of its | 
|  | /// function. We use HeaderLineno to compute the offset. We then | 
|  | /// look up the samples collected for \p Inst using BodySamples. | 
|  | /// | 
|  | /// \param Inst Instruction to query. | 
|  | /// | 
|  | /// \returns the weight of \p Inst. | 
|  | ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) { | 
|  | const DebugLoc &DLoc = Inst.getDebugLoc(); | 
|  | if (!DLoc) | 
|  | return std::error_code(); | 
|  |  | 
|  | const FunctionSamples *FS = findFunctionSamples(Inst); | 
|  | if (!FS) | 
|  | return std::error_code(); | 
|  |  | 
|  | // Ignore all intrinsics and branch instructions. | 
|  | // Branch instruction usually contains debug info from sources outside of | 
|  | // the residing basic block, thus we ignore them during annotation. | 
|  | if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst)) | 
|  | return std::error_code(); | 
|  |  | 
|  | // If a direct call/invoke instruction is inlined in profile | 
|  | // (findCalleeFunctionSamples returns non-empty result), but not inlined here, | 
|  | // it means that the inlined callsite has no sample, thus the call | 
|  | // instruction should have 0 count. | 
|  | if ((isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) && | 
|  | !ImmutableCallSite(&Inst).isIndirectCall() && | 
|  | findCalleeFunctionSamples(Inst)) | 
|  | return 0; | 
|  |  | 
|  | const DILocation *DIL = DLoc; | 
|  | uint32_t LineOffset = FunctionSamples::getOffset(DIL); | 
|  | uint32_t Discriminator = DIL->getBaseDiscriminator(); | 
|  | ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator); | 
|  | if (R) { | 
|  | bool FirstMark = | 
|  | CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get()); | 
|  | if (FirstMark) { | 
|  | ORE->emit([&]() { | 
|  | OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "AppliedSamples", &Inst); | 
|  | Remark << "Applied " << ore::NV("NumSamples", *R); | 
|  | Remark << " samples from profile (offset: "; | 
|  | Remark << ore::NV("LineOffset", LineOffset); | 
|  | if (Discriminator) { | 
|  | Remark << "."; | 
|  | Remark << ore::NV("Discriminator", Discriminator); | 
|  | } | 
|  | Remark << ")"; | 
|  | return Remark; | 
|  | }); | 
|  | } | 
|  | LLVM_DEBUG(dbgs() << "    " << DLoc.getLine() << "." | 
|  | << DIL->getBaseDiscriminator() << ":" << Inst | 
|  | << " (line offset: " << LineOffset << "." | 
|  | << DIL->getBaseDiscriminator() << " - weight: " << R.get() | 
|  | << ")\n"); | 
|  | } | 
|  | return R; | 
|  | } | 
|  |  | 
|  | /// Compute the weight of a basic block. | 
|  | /// | 
|  | /// The weight of basic block \p BB is the maximum weight of all the | 
|  | /// instructions in BB. | 
|  | /// | 
|  | /// \param BB The basic block to query. | 
|  | /// | 
|  | /// \returns the weight for \p BB. | 
|  | ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) { | 
|  | uint64_t Max = 0; | 
|  | bool HasWeight = false; | 
|  | for (auto &I : BB->getInstList()) { | 
|  | const ErrorOr<uint64_t> &R = getInstWeight(I); | 
|  | if (R) { | 
|  | Max = std::max(Max, R.get()); | 
|  | HasWeight = true; | 
|  | } | 
|  | } | 
|  | return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code(); | 
|  | } | 
|  |  | 
|  | /// Compute and store the weights of every basic block. | 
|  | /// | 
|  | /// This populates the BlockWeights map by computing | 
|  | /// the weights of every basic block in the CFG. | 
|  | /// | 
|  | /// \param F The function to query. | 
|  | bool SampleProfileLoader::computeBlockWeights(Function &F) { | 
|  | bool Changed = false; | 
|  | LLVM_DEBUG(dbgs() << "Block weights\n"); | 
|  | for (const auto &BB : F) { | 
|  | ErrorOr<uint64_t> Weight = getBlockWeight(&BB); | 
|  | if (Weight) { | 
|  | BlockWeights[&BB] = Weight.get(); | 
|  | VisitedBlocks.insert(&BB); | 
|  | Changed = true; | 
|  | } | 
|  | LLVM_DEBUG(printBlockWeight(dbgs(), &BB)); | 
|  | } | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | /// Get the FunctionSamples for a call instruction. | 
|  | /// | 
|  | /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined | 
|  | /// instance in which that call instruction is calling to. It contains | 
|  | /// all samples that resides in the inlined instance. We first find the | 
|  | /// inlined instance in which the call instruction is from, then we | 
|  | /// traverse its children to find the callsite with the matching | 
|  | /// location. | 
|  | /// | 
|  | /// \param Inst Call/Invoke instruction to query. | 
|  | /// | 
|  | /// \returns The FunctionSamples pointer to the inlined instance. | 
|  | const FunctionSamples * | 
|  | SampleProfileLoader::findCalleeFunctionSamples(const Instruction &Inst) const { | 
|  | const DILocation *DIL = Inst.getDebugLoc(); | 
|  | if (!DIL) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | StringRef CalleeName; | 
|  | if (const CallInst *CI = dyn_cast<CallInst>(&Inst)) | 
|  | if (Function *Callee = CI->getCalledFunction()) | 
|  | CalleeName = Callee->getName(); | 
|  |  | 
|  | const FunctionSamples *FS = findFunctionSamples(Inst); | 
|  | if (FS == nullptr) | 
|  | return nullptr; | 
|  |  | 
|  | return FS->findFunctionSamplesAt(LineLocation(FunctionSamples::getOffset(DIL), | 
|  | DIL->getBaseDiscriminator()), | 
|  | CalleeName); | 
|  | } | 
|  |  | 
|  | /// Returns a vector of FunctionSamples that are the indirect call targets | 
|  | /// of \p Inst. The vector is sorted by the total number of samples. Stores | 
|  | /// the total call count of the indirect call in \p Sum. | 
|  | std::vector<const FunctionSamples *> | 
|  | SampleProfileLoader::findIndirectCallFunctionSamples( | 
|  | const Instruction &Inst, uint64_t &Sum) const { | 
|  | const DILocation *DIL = Inst.getDebugLoc(); | 
|  | std::vector<const FunctionSamples *> R; | 
|  |  | 
|  | if (!DIL) { | 
|  | return R; | 
|  | } | 
|  |  | 
|  | const FunctionSamples *FS = findFunctionSamples(Inst); | 
|  | if (FS == nullptr) | 
|  | return R; | 
|  |  | 
|  | uint32_t LineOffset = FunctionSamples::getOffset(DIL); | 
|  | uint32_t Discriminator = DIL->getBaseDiscriminator(); | 
|  |  | 
|  | auto T = FS->findCallTargetMapAt(LineOffset, Discriminator); | 
|  | Sum = 0; | 
|  | if (T) | 
|  | for (const auto &T_C : T.get()) | 
|  | Sum += T_C.second; | 
|  | if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt(LineLocation( | 
|  | FunctionSamples::getOffset(DIL), DIL->getBaseDiscriminator()))) { | 
|  | if (M->empty()) | 
|  | return R; | 
|  | for (const auto &NameFS : *M) { | 
|  | Sum += NameFS.second.getEntrySamples(); | 
|  | R.push_back(&NameFS.second); | 
|  | } | 
|  | llvm::sort(R, [](const FunctionSamples *L, const FunctionSamples *R) { | 
|  | if (L->getEntrySamples() != R->getEntrySamples()) | 
|  | return L->getEntrySamples() > R->getEntrySamples(); | 
|  | return FunctionSamples::getGUID(L->getName()) < | 
|  | FunctionSamples::getGUID(R->getName()); | 
|  | }); | 
|  | } | 
|  | return R; | 
|  | } | 
|  |  | 
|  | /// Get the FunctionSamples for an instruction. | 
|  | /// | 
|  | /// The FunctionSamples of an instruction \p Inst is the inlined instance | 
|  | /// in which that instruction is coming from. We traverse the inline stack | 
|  | /// of that instruction, and match it with the tree nodes in the profile. | 
|  | /// | 
|  | /// \param Inst Instruction to query. | 
|  | /// | 
|  | /// \returns the FunctionSamples pointer to the inlined instance. | 
|  | const FunctionSamples * | 
|  | SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const { | 
|  | SmallVector<std::pair<LineLocation, StringRef>, 10> S; | 
|  | const DILocation *DIL = Inst.getDebugLoc(); | 
|  | if (!DIL) | 
|  | return Samples; | 
|  |  | 
|  | return Samples->findFunctionSamples(DIL); | 
|  | } | 
|  |  | 
|  | bool SampleProfileLoader::inlineCallInstruction(Instruction *I) { | 
|  | assert(isa<CallInst>(I) || isa<InvokeInst>(I)); | 
|  | CallSite CS(I); | 
|  | Function *CalledFunction = CS.getCalledFunction(); | 
|  | assert(CalledFunction); | 
|  | DebugLoc DLoc = I->getDebugLoc(); | 
|  | BasicBlock *BB = I->getParent(); | 
|  | InlineParams Params = getInlineParams(); | 
|  | Params.ComputeFullInlineCost = true; | 
|  | // Checks if there is anything in the reachable portion of the callee at | 
|  | // this callsite that makes this inlining potentially illegal. Need to | 
|  | // set ComputeFullInlineCost, otherwise getInlineCost may return early | 
|  | // when cost exceeds threshold without checking all IRs in the callee. | 
|  | // The acutal cost does not matter because we only checks isNever() to | 
|  | // see if it is legal to inline the callsite. | 
|  | InlineCost Cost = getInlineCost(CS, Params, GetTTI(*CalledFunction), GetAC, | 
|  | None, nullptr, nullptr); | 
|  | if (Cost.isNever()) { | 
|  | ORE->emit(OptimizationRemark(DEBUG_TYPE, "Not inline", DLoc, BB) | 
|  | << "incompatible inlining"); | 
|  | return false; | 
|  | } | 
|  | InlineFunctionInfo IFI(nullptr, &GetAC); | 
|  | if (InlineFunction(CS, IFI)) { | 
|  | // The call to InlineFunction erases I, so we can't pass it here. | 
|  | ORE->emit(OptimizationRemark(DEBUG_TYPE, "HotInline", DLoc, BB) | 
|  | << "inlined hot callee '" << ore::NV("Callee", CalledFunction) | 
|  | << "' into '" << ore::NV("Caller", BB->getParent()) << "'"); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Iteratively inline hot callsites of a function. | 
|  | /// | 
|  | /// Iteratively traverse all callsites of the function \p F, and find if | 
|  | /// the corresponding inlined instance exists and is hot in profile. If | 
|  | /// it is hot enough, inline the callsites and adds new callsites of the | 
|  | /// callee into the caller. If the call is an indirect call, first promote | 
|  | /// it to direct call. Each indirect call is limited with a single target. | 
|  | /// | 
|  | /// \param F function to perform iterative inlining. | 
|  | /// \param InlinedGUIDs a set to be updated to include all GUIDs that are | 
|  | ///     inlined in the profiled binary. | 
|  | /// | 
|  | /// \returns True if there is any inline happened. | 
|  | bool SampleProfileLoader::inlineHotFunctions( | 
|  | Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) { | 
|  | DenseSet<Instruction *> PromotedInsns; | 
|  | bool Changed = false; | 
|  | while (true) { | 
|  | bool LocalChanged = false; | 
|  | SmallVector<Instruction *, 10> CIS; | 
|  | for (auto &BB : F) { | 
|  | bool Hot = false; | 
|  | SmallVector<Instruction *, 10> Candidates; | 
|  | for (auto &I : BB.getInstList()) { | 
|  | const FunctionSamples *FS = nullptr; | 
|  | if ((isa<CallInst>(I) || isa<InvokeInst>(I)) && | 
|  | !isa<IntrinsicInst>(I) && (FS = findCalleeFunctionSamples(I))) { | 
|  | Candidates.push_back(&I); | 
|  | if (callsiteIsHot(FS, PSI)) | 
|  | Hot = true; | 
|  | } | 
|  | } | 
|  | if (Hot) { | 
|  | CIS.insert(CIS.begin(), Candidates.begin(), Candidates.end()); | 
|  | } | 
|  | } | 
|  | for (auto I : CIS) { | 
|  | Function *CalledFunction = CallSite(I).getCalledFunction(); | 
|  | // Do not inline recursive calls. | 
|  | if (CalledFunction == &F) | 
|  | continue; | 
|  | if (CallSite(I).isIndirectCall()) { | 
|  | if (PromotedInsns.count(I)) | 
|  | continue; | 
|  | uint64_t Sum; | 
|  | for (const auto *FS : findIndirectCallFunctionSamples(*I, Sum)) { | 
|  | if (IsThinLTOPreLink) { | 
|  | FS->findInlinedFunctions(InlinedGUIDs, F.getParent(), | 
|  | PSI->getOrCompHotCountThreshold()); | 
|  | continue; | 
|  | } | 
|  | auto CalleeFunctionName = FS->getFuncNameInModule(F.getParent()); | 
|  | // If it is a recursive call, we do not inline it as it could bloat | 
|  | // the code exponentially. There is way to better handle this, e.g. | 
|  | // clone the caller first, and inline the cloned caller if it is | 
|  | // recursive. As llvm does not inline recursive calls, we will | 
|  | // simply ignore it instead of handling it explicitly. | 
|  | if (CalleeFunctionName == F.getName()) | 
|  | continue; | 
|  |  | 
|  | const char *Reason = "Callee function not available"; | 
|  | auto R = SymbolMap.find(CalleeFunctionName); | 
|  | if (R != SymbolMap.end() && R->getValue() && | 
|  | !R->getValue()->isDeclaration() && | 
|  | R->getValue()->getSubprogram() && | 
|  | isLegalToPromote(CallSite(I), R->getValue(), &Reason)) { | 
|  | uint64_t C = FS->getEntrySamples(); | 
|  | Instruction *DI = | 
|  | pgo::promoteIndirectCall(I, R->getValue(), C, Sum, false, ORE); | 
|  | Sum -= C; | 
|  | PromotedInsns.insert(I); | 
|  | // If profile mismatches, we should not attempt to inline DI. | 
|  | if ((isa<CallInst>(DI) || isa<InvokeInst>(DI)) && | 
|  | inlineCallInstruction(DI)) | 
|  | LocalChanged = true; | 
|  | } else { | 
|  | LLVM_DEBUG(dbgs() | 
|  | << "\nFailed to promote indirect call to " | 
|  | << CalleeFunctionName << " because " << Reason << "\n"); | 
|  | } | 
|  | } | 
|  | } else if (CalledFunction && CalledFunction->getSubprogram() && | 
|  | !CalledFunction->isDeclaration()) { | 
|  | if (inlineCallInstruction(I)) | 
|  | LocalChanged = true; | 
|  | } else if (IsThinLTOPreLink) { | 
|  | findCalleeFunctionSamples(*I)->findInlinedFunctions( | 
|  | InlinedGUIDs, F.getParent(), PSI->getOrCompHotCountThreshold()); | 
|  | } | 
|  | } | 
|  | if (LocalChanged) { | 
|  | Changed = true; | 
|  | } else { | 
|  | break; | 
|  | } | 
|  | } | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | /// Find equivalence classes for the given block. | 
|  | /// | 
|  | /// This finds all the blocks that are guaranteed to execute the same | 
|  | /// number of times as \p BB1. To do this, it traverses all the | 
|  | /// descendants of \p BB1 in the dominator or post-dominator tree. | 
|  | /// | 
|  | /// A block BB2 will be in the same equivalence class as \p BB1 if | 
|  | /// the following holds: | 
|  | /// | 
|  | /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2 | 
|  | ///    is a descendant of \p BB1 in the dominator tree, then BB2 should | 
|  | ///    dominate BB1 in the post-dominator tree. | 
|  | /// | 
|  | /// 2- Both BB2 and \p BB1 must be in the same loop. | 
|  | /// | 
|  | /// For every block BB2 that meets those two requirements, we set BB2's | 
|  | /// equivalence class to \p BB1. | 
|  | /// | 
|  | /// \param BB1  Block to check. | 
|  | /// \param Descendants  Descendants of \p BB1 in either the dom or pdom tree. | 
|  | /// \param DomTree  Opposite dominator tree. If \p Descendants is filled | 
|  | ///                 with blocks from \p BB1's dominator tree, then | 
|  | ///                 this is the post-dominator tree, and vice versa. | 
|  | template <bool IsPostDom> | 
|  | void SampleProfileLoader::findEquivalencesFor( | 
|  | BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, | 
|  | DominatorTreeBase<BasicBlock, IsPostDom> *DomTree) { | 
|  | const BasicBlock *EC = EquivalenceClass[BB1]; | 
|  | uint64_t Weight = BlockWeights[EC]; | 
|  | for (const auto *BB2 : Descendants) { | 
|  | bool IsDomParent = DomTree->dominates(BB2, BB1); | 
|  | bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2); | 
|  | if (BB1 != BB2 && IsDomParent && IsInSameLoop) { | 
|  | EquivalenceClass[BB2] = EC; | 
|  | // If BB2 is visited, then the entire EC should be marked as visited. | 
|  | if (VisitedBlocks.count(BB2)) { | 
|  | VisitedBlocks.insert(EC); | 
|  | } | 
|  |  | 
|  | // If BB2 is heavier than BB1, make BB2 have the same weight | 
|  | // as BB1. | 
|  | // | 
|  | // Note that we don't worry about the opposite situation here | 
|  | // (when BB2 is lighter than BB1). We will deal with this | 
|  | // during the propagation phase. Right now, we just want to | 
|  | // make sure that BB1 has the largest weight of all the | 
|  | // members of its equivalence set. | 
|  | Weight = std::max(Weight, BlockWeights[BB2]); | 
|  | } | 
|  | } | 
|  | if (EC == &EC->getParent()->getEntryBlock()) { | 
|  | BlockWeights[EC] = Samples->getHeadSamples() + 1; | 
|  | } else { | 
|  | BlockWeights[EC] = Weight; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Find equivalence classes. | 
|  | /// | 
|  | /// Since samples may be missing from blocks, we can fill in the gaps by setting | 
|  | /// the weights of all the blocks in the same equivalence class to the same | 
|  | /// weight. To compute the concept of equivalence, we use dominance and loop | 
|  | /// information. Two blocks B1 and B2 are in the same equivalence class if B1 | 
|  | /// dominates B2, B2 post-dominates B1 and both are in the same loop. | 
|  | /// | 
|  | /// \param F The function to query. | 
|  | void SampleProfileLoader::findEquivalenceClasses(Function &F) { | 
|  | SmallVector<BasicBlock *, 8> DominatedBBs; | 
|  | LLVM_DEBUG(dbgs() << "\nBlock equivalence classes\n"); | 
|  | // Find equivalence sets based on dominance and post-dominance information. | 
|  | for (auto &BB : F) { | 
|  | BasicBlock *BB1 = &BB; | 
|  |  | 
|  | // Compute BB1's equivalence class once. | 
|  | if (EquivalenceClass.count(BB1)) { | 
|  | LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // By default, blocks are in their own equivalence class. | 
|  | EquivalenceClass[BB1] = BB1; | 
|  |  | 
|  | // Traverse all the blocks dominated by BB1. We are looking for | 
|  | // every basic block BB2 such that: | 
|  | // | 
|  | // 1- BB1 dominates BB2. | 
|  | // 2- BB2 post-dominates BB1. | 
|  | // 3- BB1 and BB2 are in the same loop nest. | 
|  | // | 
|  | // If all those conditions hold, it means that BB2 is executed | 
|  | // as many times as BB1, so they are placed in the same equivalence | 
|  | // class by making BB2's equivalence class be BB1. | 
|  | DominatedBBs.clear(); | 
|  | DT->getDescendants(BB1, DominatedBBs); | 
|  | findEquivalencesFor(BB1, DominatedBBs, PDT.get()); | 
|  |  | 
|  | LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1)); | 
|  | } | 
|  |  | 
|  | // Assign weights to equivalence classes. | 
|  | // | 
|  | // All the basic blocks in the same equivalence class will execute | 
|  | // the same number of times. Since we know that the head block in | 
|  | // each equivalence class has the largest weight, assign that weight | 
|  | // to all the blocks in that equivalence class. | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "\nAssign the same weight to all blocks in the same class\n"); | 
|  | for (auto &BI : F) { | 
|  | const BasicBlock *BB = &BI; | 
|  | const BasicBlock *EquivBB = EquivalenceClass[BB]; | 
|  | if (BB != EquivBB) | 
|  | BlockWeights[BB] = BlockWeights[EquivBB]; | 
|  | LLVM_DEBUG(printBlockWeight(dbgs(), BB)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Visit the given edge to decide if it has a valid weight. | 
|  | /// | 
|  | /// If \p E has not been visited before, we copy to \p UnknownEdge | 
|  | /// and increment the count of unknown edges. | 
|  | /// | 
|  | /// \param E  Edge to visit. | 
|  | /// \param NumUnknownEdges  Current number of unknown edges. | 
|  | /// \param UnknownEdge  Set if E has not been visited before. | 
|  | /// | 
|  | /// \returns E's weight, if known. Otherwise, return 0. | 
|  | uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges, | 
|  | Edge *UnknownEdge) { | 
|  | if (!VisitedEdges.count(E)) { | 
|  | (*NumUnknownEdges)++; | 
|  | *UnknownEdge = E; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return EdgeWeights[E]; | 
|  | } | 
|  |  | 
|  | /// Propagate weights through incoming/outgoing edges. | 
|  | /// | 
|  | /// If the weight of a basic block is known, and there is only one edge | 
|  | /// with an unknown weight, we can calculate the weight of that edge. | 
|  | /// | 
|  | /// Similarly, if all the edges have a known count, we can calculate the | 
|  | /// count of the basic block, if needed. | 
|  | /// | 
|  | /// \param F  Function to process. | 
|  | /// \param UpdateBlockCount  Whether we should update basic block counts that | 
|  | ///                          has already been annotated. | 
|  | /// | 
|  | /// \returns  True if new weights were assigned to edges or blocks. | 
|  | bool SampleProfileLoader::propagateThroughEdges(Function &F, | 
|  | bool UpdateBlockCount) { | 
|  | bool Changed = false; | 
|  | LLVM_DEBUG(dbgs() << "\nPropagation through edges\n"); | 
|  | for (const auto &BI : F) { | 
|  | const BasicBlock *BB = &BI; | 
|  | const BasicBlock *EC = EquivalenceClass[BB]; | 
|  |  | 
|  | // Visit all the predecessor and successor edges to determine | 
|  | // which ones have a weight assigned already. Note that it doesn't | 
|  | // matter that we only keep track of a single unknown edge. The | 
|  | // only case we are interested in handling is when only a single | 
|  | // edge is unknown (see setEdgeOrBlockWeight). | 
|  | for (unsigned i = 0; i < 2; i++) { | 
|  | uint64_t TotalWeight = 0; | 
|  | unsigned NumUnknownEdges = 0, NumTotalEdges = 0; | 
|  | Edge UnknownEdge, SelfReferentialEdge, SingleEdge; | 
|  |  | 
|  | if (i == 0) { | 
|  | // First, visit all predecessor edges. | 
|  | NumTotalEdges = Predecessors[BB].size(); | 
|  | for (auto *Pred : Predecessors[BB]) { | 
|  | Edge E = std::make_pair(Pred, BB); | 
|  | TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); | 
|  | if (E.first == E.second) | 
|  | SelfReferentialEdge = E; | 
|  | } | 
|  | if (NumTotalEdges == 1) { | 
|  | SingleEdge = std::make_pair(Predecessors[BB][0], BB); | 
|  | } | 
|  | } else { | 
|  | // On the second round, visit all successor edges. | 
|  | NumTotalEdges = Successors[BB].size(); | 
|  | for (auto *Succ : Successors[BB]) { | 
|  | Edge E = std::make_pair(BB, Succ); | 
|  | TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); | 
|  | } | 
|  | if (NumTotalEdges == 1) { | 
|  | SingleEdge = std::make_pair(BB, Successors[BB][0]); | 
|  | } | 
|  | } | 
|  |  | 
|  | // After visiting all the edges, there are three cases that we | 
|  | // can handle immediately: | 
|  | // | 
|  | // - All the edge weights are known (i.e., NumUnknownEdges == 0). | 
|  | //   In this case, we simply check that the sum of all the edges | 
|  | //   is the same as BB's weight. If not, we change BB's weight | 
|  | //   to match. Additionally, if BB had not been visited before, | 
|  | //   we mark it visited. | 
|  | // | 
|  | // - Only one edge is unknown and BB has already been visited. | 
|  | //   In this case, we can compute the weight of the edge by | 
|  | //   subtracting the total block weight from all the known | 
|  | //   edge weights. If the edges weight more than BB, then the | 
|  | //   edge of the last remaining edge is set to zero. | 
|  | // | 
|  | // - There exists a self-referential edge and the weight of BB is | 
|  | //   known. In this case, this edge can be based on BB's weight. | 
|  | //   We add up all the other known edges and set the weight on | 
|  | //   the self-referential edge as we did in the previous case. | 
|  | // | 
|  | // In any other case, we must continue iterating. Eventually, | 
|  | // all edges will get a weight, or iteration will stop when | 
|  | // it reaches SampleProfileMaxPropagateIterations. | 
|  | if (NumUnknownEdges <= 1) { | 
|  | uint64_t &BBWeight = BlockWeights[EC]; | 
|  | if (NumUnknownEdges == 0) { | 
|  | if (!VisitedBlocks.count(EC)) { | 
|  | // If we already know the weight of all edges, the weight of the | 
|  | // basic block can be computed. It should be no larger than the sum | 
|  | // of all edge weights. | 
|  | if (TotalWeight > BBWeight) { | 
|  | BBWeight = TotalWeight; | 
|  | Changed = true; | 
|  | LLVM_DEBUG(dbgs() << "All edge weights for " << BB->getName() | 
|  | << " known. Set weight for block: "; | 
|  | printBlockWeight(dbgs(), BB);); | 
|  | } | 
|  | } else if (NumTotalEdges == 1 && | 
|  | EdgeWeights[SingleEdge] < BlockWeights[EC]) { | 
|  | // If there is only one edge for the visited basic block, use the | 
|  | // block weight to adjust edge weight if edge weight is smaller. | 
|  | EdgeWeights[SingleEdge] = BlockWeights[EC]; | 
|  | Changed = true; | 
|  | } | 
|  | } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) { | 
|  | // If there is a single unknown edge and the block has been | 
|  | // visited, then we can compute E's weight. | 
|  | if (BBWeight >= TotalWeight) | 
|  | EdgeWeights[UnknownEdge] = BBWeight - TotalWeight; | 
|  | else | 
|  | EdgeWeights[UnknownEdge] = 0; | 
|  | const BasicBlock *OtherEC; | 
|  | if (i == 0) | 
|  | OtherEC = EquivalenceClass[UnknownEdge.first]; | 
|  | else | 
|  | OtherEC = EquivalenceClass[UnknownEdge.second]; | 
|  | // Edge weights should never exceed the BB weights it connects. | 
|  | if (VisitedBlocks.count(OtherEC) && | 
|  | EdgeWeights[UnknownEdge] > BlockWeights[OtherEC]) | 
|  | EdgeWeights[UnknownEdge] = BlockWeights[OtherEC]; | 
|  | VisitedEdges.insert(UnknownEdge); | 
|  | Changed = true; | 
|  | LLVM_DEBUG(dbgs() << "Set weight for edge: "; | 
|  | printEdgeWeight(dbgs(), UnknownEdge)); | 
|  | } | 
|  | } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) { | 
|  | // If a block Weights 0, all its in/out edges should weight 0. | 
|  | if (i == 0) { | 
|  | for (auto *Pred : Predecessors[BB]) { | 
|  | Edge E = std::make_pair(Pred, BB); | 
|  | EdgeWeights[E] = 0; | 
|  | VisitedEdges.insert(E); | 
|  | } | 
|  | } else { | 
|  | for (auto *Succ : Successors[BB]) { | 
|  | Edge E = std::make_pair(BB, Succ); | 
|  | EdgeWeights[E] = 0; | 
|  | VisitedEdges.insert(E); | 
|  | } | 
|  | } | 
|  | } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) { | 
|  | uint64_t &BBWeight = BlockWeights[BB]; | 
|  | // We have a self-referential edge and the weight of BB is known. | 
|  | if (BBWeight >= TotalWeight) | 
|  | EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight; | 
|  | else | 
|  | EdgeWeights[SelfReferentialEdge] = 0; | 
|  | VisitedEdges.insert(SelfReferentialEdge); | 
|  | Changed = true; | 
|  | LLVM_DEBUG(dbgs() << "Set self-referential edge weight to: "; | 
|  | printEdgeWeight(dbgs(), SelfReferentialEdge)); | 
|  | } | 
|  | if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) { | 
|  | BlockWeights[EC] = TotalWeight; | 
|  | VisitedBlocks.insert(EC); | 
|  | Changed = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | /// Build in/out edge lists for each basic block in the CFG. | 
|  | /// | 
|  | /// We are interested in unique edges. If a block B1 has multiple | 
|  | /// edges to another block B2, we only add a single B1->B2 edge. | 
|  | void SampleProfileLoader::buildEdges(Function &F) { | 
|  | for (auto &BI : F) { | 
|  | BasicBlock *B1 = &BI; | 
|  |  | 
|  | // Add predecessors for B1. | 
|  | SmallPtrSet<BasicBlock *, 16> Visited; | 
|  | if (!Predecessors[B1].empty()) | 
|  | llvm_unreachable("Found a stale predecessors list in a basic block."); | 
|  | for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) { | 
|  | BasicBlock *B2 = *PI; | 
|  | if (Visited.insert(B2).second) | 
|  | Predecessors[B1].push_back(B2); | 
|  | } | 
|  |  | 
|  | // Add successors for B1. | 
|  | Visited.clear(); | 
|  | if (!Successors[B1].empty()) | 
|  | llvm_unreachable("Found a stale successors list in a basic block."); | 
|  | for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) { | 
|  | BasicBlock *B2 = *SI; | 
|  | if (Visited.insert(B2).second) | 
|  | Successors[B1].push_back(B2); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Returns the sorted CallTargetMap \p M by count in descending order. | 
|  | static SmallVector<InstrProfValueData, 2> SortCallTargets( | 
|  | const SampleRecord::CallTargetMap &M) { | 
|  | SmallVector<InstrProfValueData, 2> R; | 
|  | for (auto I = M.begin(); I != M.end(); ++I) | 
|  | R.push_back({FunctionSamples::getGUID(I->getKey()), I->getValue()}); | 
|  | llvm::sort(R, [](const InstrProfValueData &L, const InstrProfValueData &R) { | 
|  | if (L.Count == R.Count) | 
|  | return L.Value > R.Value; | 
|  | else | 
|  | return L.Count > R.Count; | 
|  | }); | 
|  | return R; | 
|  | } | 
|  |  | 
|  | /// Propagate weights into edges | 
|  | /// | 
|  | /// The following rules are applied to every block BB in the CFG: | 
|  | /// | 
|  | /// - If BB has a single predecessor/successor, then the weight | 
|  | ///   of that edge is the weight of the block. | 
|  | /// | 
|  | /// - If all incoming or outgoing edges are known except one, and the | 
|  | ///   weight of the block is already known, the weight of the unknown | 
|  | ///   edge will be the weight of the block minus the sum of all the known | 
|  | ///   edges. If the sum of all the known edges is larger than BB's weight, | 
|  | ///   we set the unknown edge weight to zero. | 
|  | /// | 
|  | /// - If there is a self-referential edge, and the weight of the block is | 
|  | ///   known, the weight for that edge is set to the weight of the block | 
|  | ///   minus the weight of the other incoming edges to that block (if | 
|  | ///   known). | 
|  | void SampleProfileLoader::propagateWeights(Function &F) { | 
|  | bool Changed = true; | 
|  | unsigned I = 0; | 
|  |  | 
|  | // If BB weight is larger than its corresponding loop's header BB weight, | 
|  | // use the BB weight to replace the loop header BB weight. | 
|  | for (auto &BI : F) { | 
|  | BasicBlock *BB = &BI; | 
|  | Loop *L = LI->getLoopFor(BB); | 
|  | if (!L) { | 
|  | continue; | 
|  | } | 
|  | BasicBlock *Header = L->getHeader(); | 
|  | if (Header && BlockWeights[BB] > BlockWeights[Header]) { | 
|  | BlockWeights[Header] = BlockWeights[BB]; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Before propagation starts, build, for each block, a list of | 
|  | // unique predecessors and successors. This is necessary to handle | 
|  | // identical edges in multiway branches. Since we visit all blocks and all | 
|  | // edges of the CFG, it is cleaner to build these lists once at the start | 
|  | // of the pass. | 
|  | buildEdges(F); | 
|  |  | 
|  | // Propagate until we converge or we go past the iteration limit. | 
|  | while (Changed && I++ < SampleProfileMaxPropagateIterations) { | 
|  | Changed = propagateThroughEdges(F, false); | 
|  | } | 
|  |  | 
|  | // The first propagation propagates BB counts from annotated BBs to unknown | 
|  | // BBs. The 2nd propagation pass resets edges weights, and use all BB weights | 
|  | // to propagate edge weights. | 
|  | VisitedEdges.clear(); | 
|  | Changed = true; | 
|  | while (Changed && I++ < SampleProfileMaxPropagateIterations) { | 
|  | Changed = propagateThroughEdges(F, false); | 
|  | } | 
|  |  | 
|  | // The 3rd propagation pass allows adjust annotated BB weights that are | 
|  | // obviously wrong. | 
|  | Changed = true; | 
|  | while (Changed && I++ < SampleProfileMaxPropagateIterations) { | 
|  | Changed = propagateThroughEdges(F, true); | 
|  | } | 
|  |  | 
|  | // Generate MD_prof metadata for every branch instruction using the | 
|  | // edge weights computed during propagation. | 
|  | LLVM_DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n"); | 
|  | LLVMContext &Ctx = F.getContext(); | 
|  | MDBuilder MDB(Ctx); | 
|  | for (auto &BI : F) { | 
|  | BasicBlock *BB = &BI; | 
|  |  | 
|  | if (BlockWeights[BB]) { | 
|  | for (auto &I : BB->getInstList()) { | 
|  | if (!isa<CallInst>(I) && !isa<InvokeInst>(I)) | 
|  | continue; | 
|  | CallSite CS(&I); | 
|  | if (!CS.getCalledFunction()) { | 
|  | const DebugLoc &DLoc = I.getDebugLoc(); | 
|  | if (!DLoc) | 
|  | continue; | 
|  | const DILocation *DIL = DLoc; | 
|  | uint32_t LineOffset = FunctionSamples::getOffset(DIL); | 
|  | uint32_t Discriminator = DIL->getBaseDiscriminator(); | 
|  |  | 
|  | const FunctionSamples *FS = findFunctionSamples(I); | 
|  | if (!FS) | 
|  | continue; | 
|  | auto T = FS->findCallTargetMapAt(LineOffset, Discriminator); | 
|  | if (!T || T.get().empty()) | 
|  | continue; | 
|  | SmallVector<InstrProfValueData, 2> SortedCallTargets = | 
|  | SortCallTargets(T.get()); | 
|  | uint64_t Sum; | 
|  | findIndirectCallFunctionSamples(I, Sum); | 
|  | annotateValueSite(*I.getParent()->getParent()->getParent(), I, | 
|  | SortedCallTargets, Sum, IPVK_IndirectCallTarget, | 
|  | SortedCallTargets.size()); | 
|  | } else if (!dyn_cast<IntrinsicInst>(&I)) { | 
|  | SmallVector<uint32_t, 1> Weights; | 
|  | Weights.push_back(BlockWeights[BB]); | 
|  | I.setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(Weights)); | 
|  | } | 
|  | } | 
|  | } | 
|  | TerminatorInst *TI = BB->getTerminator(); | 
|  | if (TI->getNumSuccessors() == 1) | 
|  | continue; | 
|  | if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI)) | 
|  | continue; | 
|  |  | 
|  | DebugLoc BranchLoc = TI->getDebugLoc(); | 
|  | LLVM_DEBUG(dbgs() << "\nGetting weights for branch at line " | 
|  | << ((BranchLoc) ? Twine(BranchLoc.getLine()) | 
|  | : Twine("<UNKNOWN LOCATION>")) | 
|  | << ".\n"); | 
|  | SmallVector<uint32_t, 4> Weights; | 
|  | uint32_t MaxWeight = 0; | 
|  | Instruction *MaxDestInst; | 
|  | for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) { | 
|  | BasicBlock *Succ = TI->getSuccessor(I); | 
|  | Edge E = std::make_pair(BB, Succ); | 
|  | uint64_t Weight = EdgeWeights[E]; | 
|  | LLVM_DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E)); | 
|  | // Use uint32_t saturated arithmetic to adjust the incoming weights, | 
|  | // if needed. Sample counts in profiles are 64-bit unsigned values, | 
|  | // but internally branch weights are expressed as 32-bit values. | 
|  | if (Weight > std::numeric_limits<uint32_t>::max()) { | 
|  | LLVM_DEBUG(dbgs() << " (saturated due to uint32_t overflow)"); | 
|  | Weight = std::numeric_limits<uint32_t>::max(); | 
|  | } | 
|  | // Weight is added by one to avoid propagation errors introduced by | 
|  | // 0 weights. | 
|  | Weights.push_back(static_cast<uint32_t>(Weight + 1)); | 
|  | if (Weight != 0) { | 
|  | if (Weight > MaxWeight) { | 
|  | MaxWeight = Weight; | 
|  | MaxDestInst = Succ->getFirstNonPHIOrDbgOrLifetime(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | uint64_t TempWeight; | 
|  | // Only set weights if there is at least one non-zero weight. | 
|  | // In any other case, let the analyzer set weights. | 
|  | // Do not set weights if the weights are present. In ThinLTO, the profile | 
|  | // annotation is done twice. If the first annotation already set the | 
|  | // weights, the second pass does not need to set it. | 
|  | if (MaxWeight > 0 && !TI->extractProfTotalWeight(TempWeight)) { | 
|  | LLVM_DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n"); | 
|  | TI->setMetadata(LLVMContext::MD_prof, | 
|  | MDB.createBranchWeights(Weights)); | 
|  | ORE->emit([&]() { | 
|  | return OptimizationRemark(DEBUG_TYPE, "PopularDest", MaxDestInst) | 
|  | << "most popular destination for conditional branches at " | 
|  | << ore::NV("CondBranchesLoc", BranchLoc); | 
|  | }); | 
|  | } else { | 
|  | LLVM_DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Get the line number for the function header. | 
|  | /// | 
|  | /// This looks up function \p F in the current compilation unit and | 
|  | /// retrieves the line number where the function is defined. This is | 
|  | /// line 0 for all the samples read from the profile file. Every line | 
|  | /// number is relative to this line. | 
|  | /// | 
|  | /// \param F  Function object to query. | 
|  | /// | 
|  | /// \returns the line number where \p F is defined. If it returns 0, | 
|  | ///          it means that there is no debug information available for \p F. | 
|  | unsigned SampleProfileLoader::getFunctionLoc(Function &F) { | 
|  | if (DISubprogram *S = F.getSubprogram()) | 
|  | return S->getLine(); | 
|  |  | 
|  | if (NoWarnSampleUnused) | 
|  | return 0; | 
|  |  | 
|  | // If the start of \p F is missing, emit a diagnostic to inform the user | 
|  | // about the missed opportunity. | 
|  | F.getContext().diagnose(DiagnosticInfoSampleProfile( | 
|  | "No debug information found in function " + F.getName() + | 
|  | ": Function profile not used", | 
|  | DS_Warning)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) { | 
|  | DT.reset(new DominatorTree); | 
|  | DT->recalculate(F); | 
|  |  | 
|  | PDT.reset(new PostDominatorTree(F)); | 
|  |  | 
|  | LI.reset(new LoopInfo); | 
|  | LI->analyze(*DT); | 
|  | } | 
|  |  | 
|  | /// Generate branch weight metadata for all branches in \p F. | 
|  | /// | 
|  | /// Branch weights are computed out of instruction samples using a | 
|  | /// propagation heuristic. Propagation proceeds in 3 phases: | 
|  | /// | 
|  | /// 1- Assignment of block weights. All the basic blocks in the function | 
|  | ///    are initial assigned the same weight as their most frequently | 
|  | ///    executed instruction. | 
|  | /// | 
|  | /// 2- Creation of equivalence classes. Since samples may be missing from | 
|  | ///    blocks, we can fill in the gaps by setting the weights of all the | 
|  | ///    blocks in the same equivalence class to the same weight. To compute | 
|  | ///    the concept of equivalence, we use dominance and loop information. | 
|  | ///    Two blocks B1 and B2 are in the same equivalence class if B1 | 
|  | ///    dominates B2, B2 post-dominates B1 and both are in the same loop. | 
|  | /// | 
|  | /// 3- Propagation of block weights into edges. This uses a simple | 
|  | ///    propagation heuristic. The following rules are applied to every | 
|  | ///    block BB in the CFG: | 
|  | /// | 
|  | ///    - If BB has a single predecessor/successor, then the weight | 
|  | ///      of that edge is the weight of the block. | 
|  | /// | 
|  | ///    - If all the edges are known except one, and the weight of the | 
|  | ///      block is already known, the weight of the unknown edge will | 
|  | ///      be the weight of the block minus the sum of all the known | 
|  | ///      edges. If the sum of all the known edges is larger than BB's weight, | 
|  | ///      we set the unknown edge weight to zero. | 
|  | /// | 
|  | ///    - If there is a self-referential edge, and the weight of the block is | 
|  | ///      known, the weight for that edge is set to the weight of the block | 
|  | ///      minus the weight of the other incoming edges to that block (if | 
|  | ///      known). | 
|  | /// | 
|  | /// Since this propagation is not guaranteed to finalize for every CFG, we | 
|  | /// only allow it to proceed for a limited number of iterations (controlled | 
|  | /// by -sample-profile-max-propagate-iterations). | 
|  | /// | 
|  | /// FIXME: Try to replace this propagation heuristic with a scheme | 
|  | /// that is guaranteed to finalize. A work-list approach similar to | 
|  | /// the standard value propagation algorithm used by SSA-CCP might | 
|  | /// work here. | 
|  | /// | 
|  | /// Once all the branch weights are computed, we emit the MD_prof | 
|  | /// metadata on BB using the computed values for each of its branches. | 
|  | /// | 
|  | /// \param F The function to query. | 
|  | /// | 
|  | /// \returns true if \p F was modified. Returns false, otherwise. | 
|  | bool SampleProfileLoader::emitAnnotations(Function &F) { | 
|  | bool Changed = false; | 
|  |  | 
|  | if (getFunctionLoc(F) == 0) | 
|  | return false; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Line number for the first instruction in " | 
|  | << F.getName() << ": " << getFunctionLoc(F) << "\n"); | 
|  |  | 
|  | DenseSet<GlobalValue::GUID> InlinedGUIDs; | 
|  | Changed |= inlineHotFunctions(F, InlinedGUIDs); | 
|  |  | 
|  | // Compute basic block weights. | 
|  | Changed |= computeBlockWeights(F); | 
|  |  | 
|  | if (Changed) { | 
|  | // Add an entry count to the function using the samples gathered at the | 
|  | // function entry. | 
|  | // Sets the GUIDs that are inlined in the profiled binary. This is used | 
|  | // for ThinLink to make correct liveness analysis, and also make the IR | 
|  | // match the profiled binary before annotation. | 
|  | F.setEntryCount( | 
|  | ProfileCount(Samples->getHeadSamples() + 1, Function::PCT_Real), | 
|  | &InlinedGUIDs); | 
|  |  | 
|  | // Compute dominance and loop info needed for propagation. | 
|  | computeDominanceAndLoopInfo(F); | 
|  |  | 
|  | // Find equivalence classes. | 
|  | findEquivalenceClasses(F); | 
|  |  | 
|  | // Propagate weights to all edges. | 
|  | propagateWeights(F); | 
|  | } | 
|  |  | 
|  | // If coverage checking was requested, compute it now. | 
|  | if (SampleProfileRecordCoverage) { | 
|  | unsigned Used = CoverageTracker.countUsedRecords(Samples, PSI); | 
|  | unsigned Total = CoverageTracker.countBodyRecords(Samples, PSI); | 
|  | unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); | 
|  | if (Coverage < SampleProfileRecordCoverage) { | 
|  | F.getContext().diagnose(DiagnosticInfoSampleProfile( | 
|  | F.getSubprogram()->getFilename(), getFunctionLoc(F), | 
|  | Twine(Used) + " of " + Twine(Total) + " available profile records (" + | 
|  | Twine(Coverage) + "%) were applied", | 
|  | DS_Warning)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (SampleProfileSampleCoverage) { | 
|  | uint64_t Used = CoverageTracker.getTotalUsedSamples(); | 
|  | uint64_t Total = CoverageTracker.countBodySamples(Samples, PSI); | 
|  | unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); | 
|  | if (Coverage < SampleProfileSampleCoverage) { | 
|  | F.getContext().diagnose(DiagnosticInfoSampleProfile( | 
|  | F.getSubprogram()->getFilename(), getFunctionLoc(F), | 
|  | Twine(Used) + " of " + Twine(Total) + " available profile samples (" + | 
|  | Twine(Coverage) + "%) were applied", | 
|  | DS_Warning)); | 
|  | } | 
|  | } | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | char SampleProfileLoaderLegacyPass::ID = 0; | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile", | 
|  | "Sample Profile loader", false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) | 
|  | INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) | 
|  | INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile", | 
|  | "Sample Profile loader", false, false) | 
|  |  | 
|  | bool SampleProfileLoader::doInitialization(Module &M) { | 
|  | auto &Ctx = M.getContext(); | 
|  | auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx); | 
|  | if (std::error_code EC = ReaderOrErr.getError()) { | 
|  | std::string Msg = "Could not open profile: " + EC.message(); | 
|  | Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg)); | 
|  | return false; | 
|  | } | 
|  | Reader = std::move(ReaderOrErr.get()); | 
|  | Reader->collectFuncsToUse(M); | 
|  | ProfileIsValid = (Reader->read() == sampleprof_error::success); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | ModulePass *llvm::createSampleProfileLoaderPass() { | 
|  | return new SampleProfileLoaderLegacyPass(SampleProfileFile); | 
|  | } | 
|  |  | 
|  | ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) { | 
|  | return new SampleProfileLoaderLegacyPass(Name); | 
|  | } | 
|  |  | 
|  | bool SampleProfileLoader::runOnModule(Module &M, ModuleAnalysisManager *AM, | 
|  | ProfileSummaryInfo *_PSI) { | 
|  | FunctionSamples::GUIDToFuncNameMapper Mapper(M); | 
|  | if (!ProfileIsValid) | 
|  | return false; | 
|  |  | 
|  | PSI = _PSI; | 
|  | if (M.getProfileSummary() == nullptr) | 
|  | M.setProfileSummary(Reader->getSummary().getMD(M.getContext())); | 
|  |  | 
|  | // Compute the total number of samples collected in this profile. | 
|  | for (const auto &I : Reader->getProfiles()) | 
|  | TotalCollectedSamples += I.second.getTotalSamples(); | 
|  |  | 
|  | // Populate the symbol map. | 
|  | for (const auto &N_F : M.getValueSymbolTable()) { | 
|  | StringRef OrigName = N_F.getKey(); | 
|  | Function *F = dyn_cast<Function>(N_F.getValue()); | 
|  | if (F == nullptr) | 
|  | continue; | 
|  | SymbolMap[OrigName] = F; | 
|  | auto pos = OrigName.find('.'); | 
|  | if (pos != StringRef::npos) { | 
|  | StringRef NewName = OrigName.substr(0, pos); | 
|  | auto r = SymbolMap.insert(std::make_pair(NewName, F)); | 
|  | // Failiing to insert means there is already an entry in SymbolMap, | 
|  | // thus there are multiple functions that are mapped to the same | 
|  | // stripped name. In this case of name conflicting, set the value | 
|  | // to nullptr to avoid confusion. | 
|  | if (!r.second) | 
|  | r.first->second = nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool retval = false; | 
|  | for (auto &F : M) | 
|  | if (!F.isDeclaration()) { | 
|  | clearFunctionData(); | 
|  | retval |= runOnFunction(F, AM); | 
|  | } | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) { | 
|  | ACT = &getAnalysis<AssumptionCacheTracker>(); | 
|  | TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>(); | 
|  | ProfileSummaryInfo *PSI = | 
|  | getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); | 
|  | return SampleLoader.runOnModule(M, nullptr, PSI); | 
|  | } | 
|  |  | 
|  | bool SampleProfileLoader::runOnFunction(Function &F, ModuleAnalysisManager *AM) { | 
|  | // Initialize the entry count to -1, which will be treated conservatively | 
|  | // by getEntryCount as the same as unknown (None). If we have samples this | 
|  | // will be overwritten in emitAnnotations. | 
|  | F.setEntryCount(ProfileCount(-1, Function::PCT_Real)); | 
|  | std::unique_ptr<OptimizationRemarkEmitter> OwnedORE; | 
|  | if (AM) { | 
|  | auto &FAM = | 
|  | AM->getResult<FunctionAnalysisManagerModuleProxy>(*F.getParent()) | 
|  | .getManager(); | 
|  | ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); | 
|  | } else { | 
|  | OwnedORE = make_unique<OptimizationRemarkEmitter>(&F); | 
|  | ORE = OwnedORE.get(); | 
|  | } | 
|  | Samples = Reader->getSamplesFor(F); | 
|  | if (Samples && !Samples->empty()) | 
|  | return emitAnnotations(F); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | PreservedAnalyses SampleProfileLoaderPass::run(Module &M, | 
|  | ModuleAnalysisManager &AM) { | 
|  | FunctionAnalysisManager &FAM = | 
|  | AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); | 
|  |  | 
|  | auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & { | 
|  | return FAM.getResult<AssumptionAnalysis>(F); | 
|  | }; | 
|  | auto GetTTI = [&](Function &F) -> TargetTransformInfo & { | 
|  | return FAM.getResult<TargetIRAnalysis>(F); | 
|  | }; | 
|  |  | 
|  | SampleProfileLoader SampleLoader( | 
|  | ProfileFileName.empty() ? SampleProfileFile : ProfileFileName, | 
|  | IsThinLTOPreLink, GetAssumptionCache, GetTTI); | 
|  |  | 
|  | SampleLoader.doInitialization(M); | 
|  |  | 
|  | ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M); | 
|  | if (!SampleLoader.runOnModule(M, &AM, PSI)) | 
|  | return PreservedAnalyses::all(); | 
|  |  | 
|  | return PreservedAnalyses::none(); | 
|  | } |