|  | //===-- APInt.cpp - Implement APInt class ---------------------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements a class to represent arbitrary precision integer | 
|  | // constant values and provide a variety of arithmetic operations on them. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/ADT/APInt.h" | 
|  | #include "llvm/ADT/ArrayRef.h" | 
|  | #include "llvm/ADT/FoldingSet.h" | 
|  | #include "llvm/ADT/Hashing.h" | 
|  | #include "llvm/ADT/Optional.h" | 
|  | #include "llvm/ADT/SmallString.h" | 
|  | #include "llvm/ADT/StringRef.h" | 
|  | #include "llvm/ADT/bit.h" | 
|  | #include "llvm/Config/llvm-config.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <climits> | 
|  | #include <cmath> | 
|  | #include <cstdlib> | 
|  | #include <cstring> | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "apint" | 
|  |  | 
|  | /// A utility function for allocating memory, checking for allocation failures, | 
|  | /// and ensuring the contents are zeroed. | 
|  | inline static uint64_t* getClearedMemory(unsigned numWords) { | 
|  | uint64_t *result = new uint64_t[numWords]; | 
|  | memset(result, 0, numWords * sizeof(uint64_t)); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /// A utility function for allocating memory and checking for allocation | 
|  | /// failure.  The content is not zeroed. | 
|  | inline static uint64_t* getMemory(unsigned numWords) { | 
|  | return new uint64_t[numWords]; | 
|  | } | 
|  |  | 
|  | /// A utility function that converts a character to a digit. | 
|  | inline static unsigned getDigit(char cdigit, uint8_t radix) { | 
|  | unsigned r; | 
|  |  | 
|  | if (radix == 16 || radix == 36) { | 
|  | r = cdigit - '0'; | 
|  | if (r <= 9) | 
|  | return r; | 
|  |  | 
|  | r = cdigit - 'A'; | 
|  | if (r <= radix - 11U) | 
|  | return r + 10; | 
|  |  | 
|  | r = cdigit - 'a'; | 
|  | if (r <= radix - 11U) | 
|  | return r + 10; | 
|  |  | 
|  | radix = 10; | 
|  | } | 
|  |  | 
|  | r = cdigit - '0'; | 
|  | if (r < radix) | 
|  | return r; | 
|  |  | 
|  | return -1U; | 
|  | } | 
|  |  | 
|  |  | 
|  | void APInt::initSlowCase(uint64_t val, bool isSigned) { | 
|  | U.pVal = getClearedMemory(getNumWords()); | 
|  | U.pVal[0] = val; | 
|  | if (isSigned && int64_t(val) < 0) | 
|  | for (unsigned i = 1; i < getNumWords(); ++i) | 
|  | U.pVal[i] = WORDTYPE_MAX; | 
|  | clearUnusedBits(); | 
|  | } | 
|  |  | 
|  | void APInt::initSlowCase(const APInt& that) { | 
|  | U.pVal = getMemory(getNumWords()); | 
|  | memcpy(U.pVal, that.U.pVal, getNumWords() * APINT_WORD_SIZE); | 
|  | } | 
|  |  | 
|  | void APInt::initFromArray(ArrayRef<uint64_t> bigVal) { | 
|  | assert(BitWidth && "Bitwidth too small"); | 
|  | assert(bigVal.data() && "Null pointer detected!"); | 
|  | if (isSingleWord()) | 
|  | U.VAL = bigVal[0]; | 
|  | else { | 
|  | // Get memory, cleared to 0 | 
|  | U.pVal = getClearedMemory(getNumWords()); | 
|  | // Calculate the number of words to copy | 
|  | unsigned words = std::min<unsigned>(bigVal.size(), getNumWords()); | 
|  | // Copy the words from bigVal to pVal | 
|  | memcpy(U.pVal, bigVal.data(), words * APINT_WORD_SIZE); | 
|  | } | 
|  | // Make sure unused high bits are cleared | 
|  | clearUnusedBits(); | 
|  | } | 
|  |  | 
|  | APInt::APInt(unsigned numBits, ArrayRef<uint64_t> bigVal) | 
|  | : BitWidth(numBits) { | 
|  | initFromArray(bigVal); | 
|  | } | 
|  |  | 
|  | APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]) | 
|  | : BitWidth(numBits) { | 
|  | initFromArray(makeArrayRef(bigVal, numWords)); | 
|  | } | 
|  |  | 
|  | APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix) | 
|  | : BitWidth(numbits) { | 
|  | assert(BitWidth && "Bitwidth too small"); | 
|  | fromString(numbits, Str, radix); | 
|  | } | 
|  |  | 
|  | void APInt::reallocate(unsigned NewBitWidth) { | 
|  | // If the number of words is the same we can just change the width and stop. | 
|  | if (getNumWords() == getNumWords(NewBitWidth)) { | 
|  | BitWidth = NewBitWidth; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If we have an allocation, delete it. | 
|  | if (!isSingleWord()) | 
|  | delete [] U.pVal; | 
|  |  | 
|  | // Update BitWidth. | 
|  | BitWidth = NewBitWidth; | 
|  |  | 
|  | // If we are supposed to have an allocation, create it. | 
|  | if (!isSingleWord()) | 
|  | U.pVal = getMemory(getNumWords()); | 
|  | } | 
|  |  | 
|  | void APInt::AssignSlowCase(const APInt& RHS) { | 
|  | // Don't do anything for X = X | 
|  | if (this == &RHS) | 
|  | return; | 
|  |  | 
|  | // Adjust the bit width and handle allocations as necessary. | 
|  | reallocate(RHS.getBitWidth()); | 
|  |  | 
|  | // Copy the data. | 
|  | if (isSingleWord()) | 
|  | U.VAL = RHS.U.VAL; | 
|  | else | 
|  | memcpy(U.pVal, RHS.U.pVal, getNumWords() * APINT_WORD_SIZE); | 
|  | } | 
|  |  | 
|  | /// This method 'profiles' an APInt for use with FoldingSet. | 
|  | void APInt::Profile(FoldingSetNodeID& ID) const { | 
|  | ID.AddInteger(BitWidth); | 
|  |  | 
|  | if (isSingleWord()) { | 
|  | ID.AddInteger(U.VAL); | 
|  | return; | 
|  | } | 
|  |  | 
|  | unsigned NumWords = getNumWords(); | 
|  | for (unsigned i = 0; i < NumWords; ++i) | 
|  | ID.AddInteger(U.pVal[i]); | 
|  | } | 
|  |  | 
|  | /// Prefix increment operator. Increments the APInt by one. | 
|  | APInt& APInt::operator++() { | 
|  | if (isSingleWord()) | 
|  | ++U.VAL; | 
|  | else | 
|  | tcIncrement(U.pVal, getNumWords()); | 
|  | return clearUnusedBits(); | 
|  | } | 
|  |  | 
|  | /// Prefix decrement operator. Decrements the APInt by one. | 
|  | APInt& APInt::operator--() { | 
|  | if (isSingleWord()) | 
|  | --U.VAL; | 
|  | else | 
|  | tcDecrement(U.pVal, getNumWords()); | 
|  | return clearUnusedBits(); | 
|  | } | 
|  |  | 
|  | /// Adds the RHS APint to this APInt. | 
|  | /// @returns this, after addition of RHS. | 
|  | /// Addition assignment operator. | 
|  | APInt& APInt::operator+=(const APInt& RHS) { | 
|  | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); | 
|  | if (isSingleWord()) | 
|  | U.VAL += RHS.U.VAL; | 
|  | else | 
|  | tcAdd(U.pVal, RHS.U.pVal, 0, getNumWords()); | 
|  | return clearUnusedBits(); | 
|  | } | 
|  |  | 
|  | APInt& APInt::operator+=(uint64_t RHS) { | 
|  | if (isSingleWord()) | 
|  | U.VAL += RHS; | 
|  | else | 
|  | tcAddPart(U.pVal, RHS, getNumWords()); | 
|  | return clearUnusedBits(); | 
|  | } | 
|  |  | 
|  | /// Subtracts the RHS APInt from this APInt | 
|  | /// @returns this, after subtraction | 
|  | /// Subtraction assignment operator. | 
|  | APInt& APInt::operator-=(const APInt& RHS) { | 
|  | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); | 
|  | if (isSingleWord()) | 
|  | U.VAL -= RHS.U.VAL; | 
|  | else | 
|  | tcSubtract(U.pVal, RHS.U.pVal, 0, getNumWords()); | 
|  | return clearUnusedBits(); | 
|  | } | 
|  |  | 
|  | APInt& APInt::operator-=(uint64_t RHS) { | 
|  | if (isSingleWord()) | 
|  | U.VAL -= RHS; | 
|  | else | 
|  | tcSubtractPart(U.pVal, RHS, getNumWords()); | 
|  | return clearUnusedBits(); | 
|  | } | 
|  |  | 
|  | APInt APInt::operator*(const APInt& RHS) const { | 
|  | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); | 
|  | if (isSingleWord()) | 
|  | return APInt(BitWidth, U.VAL * RHS.U.VAL); | 
|  |  | 
|  | APInt Result(getMemory(getNumWords()), getBitWidth()); | 
|  |  | 
|  | tcMultiply(Result.U.pVal, U.pVal, RHS.U.pVal, getNumWords()); | 
|  |  | 
|  | Result.clearUnusedBits(); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | void APInt::AndAssignSlowCase(const APInt& RHS) { | 
|  | tcAnd(U.pVal, RHS.U.pVal, getNumWords()); | 
|  | } | 
|  |  | 
|  | void APInt::OrAssignSlowCase(const APInt& RHS) { | 
|  | tcOr(U.pVal, RHS.U.pVal, getNumWords()); | 
|  | } | 
|  |  | 
|  | void APInt::XorAssignSlowCase(const APInt& RHS) { | 
|  | tcXor(U.pVal, RHS.U.pVal, getNumWords()); | 
|  | } | 
|  |  | 
|  | APInt& APInt::operator*=(const APInt& RHS) { | 
|  | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); | 
|  | *this = *this * RHS; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | APInt& APInt::operator*=(uint64_t RHS) { | 
|  | if (isSingleWord()) { | 
|  | U.VAL *= RHS; | 
|  | } else { | 
|  | unsigned NumWords = getNumWords(); | 
|  | tcMultiplyPart(U.pVal, U.pVal, RHS, 0, NumWords, NumWords, false); | 
|  | } | 
|  | return clearUnusedBits(); | 
|  | } | 
|  |  | 
|  | bool APInt::EqualSlowCase(const APInt& RHS) const { | 
|  | return std::equal(U.pVal, U.pVal + getNumWords(), RHS.U.pVal); | 
|  | } | 
|  |  | 
|  | int APInt::compare(const APInt& RHS) const { | 
|  | assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison"); | 
|  | if (isSingleWord()) | 
|  | return U.VAL < RHS.U.VAL ? -1 : U.VAL > RHS.U.VAL; | 
|  |  | 
|  | return tcCompare(U.pVal, RHS.U.pVal, getNumWords()); | 
|  | } | 
|  |  | 
|  | int APInt::compareSigned(const APInt& RHS) const { | 
|  | assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison"); | 
|  | if (isSingleWord()) { | 
|  | int64_t lhsSext = SignExtend64(U.VAL, BitWidth); | 
|  | int64_t rhsSext = SignExtend64(RHS.U.VAL, BitWidth); | 
|  | return lhsSext < rhsSext ? -1 : lhsSext > rhsSext; | 
|  | } | 
|  |  | 
|  | bool lhsNeg = isNegative(); | 
|  | bool rhsNeg = RHS.isNegative(); | 
|  |  | 
|  | // If the sign bits don't match, then (LHS < RHS) if LHS is negative | 
|  | if (lhsNeg != rhsNeg) | 
|  | return lhsNeg ? -1 : 1; | 
|  |  | 
|  | // Otherwise we can just use an unsigned comparison, because even negative | 
|  | // numbers compare correctly this way if both have the same signed-ness. | 
|  | return tcCompare(U.pVal, RHS.U.pVal, getNumWords()); | 
|  | } | 
|  |  | 
|  | void APInt::setBitsSlowCase(unsigned loBit, unsigned hiBit) { | 
|  | unsigned loWord = whichWord(loBit); | 
|  | unsigned hiWord = whichWord(hiBit); | 
|  |  | 
|  | // Create an initial mask for the low word with zeros below loBit. | 
|  | uint64_t loMask = WORDTYPE_MAX << whichBit(loBit); | 
|  |  | 
|  | // If hiBit is not aligned, we need a high mask. | 
|  | unsigned hiShiftAmt = whichBit(hiBit); | 
|  | if (hiShiftAmt != 0) { | 
|  | // Create a high mask with zeros above hiBit. | 
|  | uint64_t hiMask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - hiShiftAmt); | 
|  | // If loWord and hiWord are equal, then we combine the masks. Otherwise, | 
|  | // set the bits in hiWord. | 
|  | if (hiWord == loWord) | 
|  | loMask &= hiMask; | 
|  | else | 
|  | U.pVal[hiWord] |= hiMask; | 
|  | } | 
|  | // Apply the mask to the low word. | 
|  | U.pVal[loWord] |= loMask; | 
|  |  | 
|  | // Fill any words between loWord and hiWord with all ones. | 
|  | for (unsigned word = loWord + 1; word < hiWord; ++word) | 
|  | U.pVal[word] = WORDTYPE_MAX; | 
|  | } | 
|  |  | 
|  | /// Toggle every bit to its opposite value. | 
|  | void APInt::flipAllBitsSlowCase() { | 
|  | tcComplement(U.pVal, getNumWords()); | 
|  | clearUnusedBits(); | 
|  | } | 
|  |  | 
|  | /// Toggle a given bit to its opposite value whose position is given | 
|  | /// as "bitPosition". | 
|  | /// Toggles a given bit to its opposite value. | 
|  | void APInt::flipBit(unsigned bitPosition) { | 
|  | assert(bitPosition < BitWidth && "Out of the bit-width range!"); | 
|  | if ((*this)[bitPosition]) clearBit(bitPosition); | 
|  | else setBit(bitPosition); | 
|  | } | 
|  |  | 
|  | void APInt::insertBits(const APInt &subBits, unsigned bitPosition) { | 
|  | unsigned subBitWidth = subBits.getBitWidth(); | 
|  | assert(0 < subBitWidth && (subBitWidth + bitPosition) <= BitWidth && | 
|  | "Illegal bit insertion"); | 
|  |  | 
|  | // Insertion is a direct copy. | 
|  | if (subBitWidth == BitWidth) { | 
|  | *this = subBits; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Single word result can be done as a direct bitmask. | 
|  | if (isSingleWord()) { | 
|  | uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth); | 
|  | U.VAL &= ~(mask << bitPosition); | 
|  | U.VAL |= (subBits.U.VAL << bitPosition); | 
|  | return; | 
|  | } | 
|  |  | 
|  | unsigned loBit = whichBit(bitPosition); | 
|  | unsigned loWord = whichWord(bitPosition); | 
|  | unsigned hi1Word = whichWord(bitPosition + subBitWidth - 1); | 
|  |  | 
|  | // Insertion within a single word can be done as a direct bitmask. | 
|  | if (loWord == hi1Word) { | 
|  | uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth); | 
|  | U.pVal[loWord] &= ~(mask << loBit); | 
|  | U.pVal[loWord] |= (subBits.U.VAL << loBit); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Insert on word boundaries. | 
|  | if (loBit == 0) { | 
|  | // Direct copy whole words. | 
|  | unsigned numWholeSubWords = subBitWidth / APINT_BITS_PER_WORD; | 
|  | memcpy(U.pVal + loWord, subBits.getRawData(), | 
|  | numWholeSubWords * APINT_WORD_SIZE); | 
|  |  | 
|  | // Mask+insert remaining bits. | 
|  | unsigned remainingBits = subBitWidth % APINT_BITS_PER_WORD; | 
|  | if (remainingBits != 0) { | 
|  | uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - remainingBits); | 
|  | U.pVal[hi1Word] &= ~mask; | 
|  | U.pVal[hi1Word] |= subBits.getWord(subBitWidth - 1); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | // General case - set/clear individual bits in dst based on src. | 
|  | // TODO - there is scope for optimization here, but at the moment this code | 
|  | // path is barely used so prefer readability over performance. | 
|  | for (unsigned i = 0; i != subBitWidth; ++i) { | 
|  | if (subBits[i]) | 
|  | setBit(bitPosition + i); | 
|  | else | 
|  | clearBit(bitPosition + i); | 
|  | } | 
|  | } | 
|  |  | 
|  | APInt APInt::extractBits(unsigned numBits, unsigned bitPosition) const { | 
|  | assert(numBits > 0 && "Can't extract zero bits"); | 
|  | assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth && | 
|  | "Illegal bit extraction"); | 
|  |  | 
|  | if (isSingleWord()) | 
|  | return APInt(numBits, U.VAL >> bitPosition); | 
|  |  | 
|  | unsigned loBit = whichBit(bitPosition); | 
|  | unsigned loWord = whichWord(bitPosition); | 
|  | unsigned hiWord = whichWord(bitPosition + numBits - 1); | 
|  |  | 
|  | // Single word result extracting bits from a single word source. | 
|  | if (loWord == hiWord) | 
|  | return APInt(numBits, U.pVal[loWord] >> loBit); | 
|  |  | 
|  | // Extracting bits that start on a source word boundary can be done | 
|  | // as a fast memory copy. | 
|  | if (loBit == 0) | 
|  | return APInt(numBits, makeArrayRef(U.pVal + loWord, 1 + hiWord - loWord)); | 
|  |  | 
|  | // General case - shift + copy source words directly into place. | 
|  | APInt Result(numBits, 0); | 
|  | unsigned NumSrcWords = getNumWords(); | 
|  | unsigned NumDstWords = Result.getNumWords(); | 
|  |  | 
|  | uint64_t *DestPtr = Result.isSingleWord() ? &Result.U.VAL : Result.U.pVal; | 
|  | for (unsigned word = 0; word < NumDstWords; ++word) { | 
|  | uint64_t w0 = U.pVal[loWord + word]; | 
|  | uint64_t w1 = | 
|  | (loWord + word + 1) < NumSrcWords ? U.pVal[loWord + word + 1] : 0; | 
|  | DestPtr[word] = (w0 >> loBit) | (w1 << (APINT_BITS_PER_WORD - loBit)); | 
|  | } | 
|  |  | 
|  | return Result.clearUnusedBits(); | 
|  | } | 
|  |  | 
|  | unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) { | 
|  | assert(!str.empty() && "Invalid string length"); | 
|  | assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 || | 
|  | radix == 36) && | 
|  | "Radix should be 2, 8, 10, 16, or 36!"); | 
|  |  | 
|  | size_t slen = str.size(); | 
|  |  | 
|  | // Each computation below needs to know if it's negative. | 
|  | StringRef::iterator p = str.begin(); | 
|  | unsigned isNegative = *p == '-'; | 
|  | if (*p == '-' || *p == '+') { | 
|  | p++; | 
|  | slen--; | 
|  | assert(slen && "String is only a sign, needs a value."); | 
|  | } | 
|  |  | 
|  | // For radixes of power-of-two values, the bits required is accurately and | 
|  | // easily computed | 
|  | if (radix == 2) | 
|  | return slen + isNegative; | 
|  | if (radix == 8) | 
|  | return slen * 3 + isNegative; | 
|  | if (radix == 16) | 
|  | return slen * 4 + isNegative; | 
|  |  | 
|  | // FIXME: base 36 | 
|  |  | 
|  | // This is grossly inefficient but accurate. We could probably do something | 
|  | // with a computation of roughly slen*64/20 and then adjust by the value of | 
|  | // the first few digits. But, I'm not sure how accurate that could be. | 
|  |  | 
|  | // Compute a sufficient number of bits that is always large enough but might | 
|  | // be too large. This avoids the assertion in the constructor. This | 
|  | // calculation doesn't work appropriately for the numbers 0-9, so just use 4 | 
|  | // bits in that case. | 
|  | unsigned sufficient | 
|  | = radix == 10? (slen == 1 ? 4 : slen * 64/18) | 
|  | : (slen == 1 ? 7 : slen * 16/3); | 
|  |  | 
|  | // Convert to the actual binary value. | 
|  | APInt tmp(sufficient, StringRef(p, slen), radix); | 
|  |  | 
|  | // Compute how many bits are required. If the log is infinite, assume we need | 
|  | // just bit. | 
|  | unsigned log = tmp.logBase2(); | 
|  | if (log == (unsigned)-1) { | 
|  | return isNegative + 1; | 
|  | } else { | 
|  | return isNegative + log + 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | hash_code llvm::hash_value(const APInt &Arg) { | 
|  | if (Arg.isSingleWord()) | 
|  | return hash_combine(Arg.U.VAL); | 
|  |  | 
|  | return hash_combine_range(Arg.U.pVal, Arg.U.pVal + Arg.getNumWords()); | 
|  | } | 
|  |  | 
|  | bool APInt::isSplat(unsigned SplatSizeInBits) const { | 
|  | assert(getBitWidth() % SplatSizeInBits == 0 && | 
|  | "SplatSizeInBits must divide width!"); | 
|  | // We can check that all parts of an integer are equal by making use of a | 
|  | // little trick: rotate and check if it's still the same value. | 
|  | return *this == rotl(SplatSizeInBits); | 
|  | } | 
|  |  | 
|  | /// This function returns the high "numBits" bits of this APInt. | 
|  | APInt APInt::getHiBits(unsigned numBits) const { | 
|  | return this->lshr(BitWidth - numBits); | 
|  | } | 
|  |  | 
|  | /// This function returns the low "numBits" bits of this APInt. | 
|  | APInt APInt::getLoBits(unsigned numBits) const { | 
|  | APInt Result(getLowBitsSet(BitWidth, numBits)); | 
|  | Result &= *this; | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | /// Return a value containing V broadcasted over NewLen bits. | 
|  | APInt APInt::getSplat(unsigned NewLen, const APInt &V) { | 
|  | assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!"); | 
|  |  | 
|  | APInt Val = V.zextOrSelf(NewLen); | 
|  | for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1) | 
|  | Val |= Val << I; | 
|  |  | 
|  | return Val; | 
|  | } | 
|  |  | 
|  | unsigned APInt::countLeadingZerosSlowCase() const { | 
|  | unsigned Count = 0; | 
|  | for (int i = getNumWords()-1; i >= 0; --i) { | 
|  | uint64_t V = U.pVal[i]; | 
|  | if (V == 0) | 
|  | Count += APINT_BITS_PER_WORD; | 
|  | else { | 
|  | Count += llvm::countLeadingZeros(V); | 
|  | break; | 
|  | } | 
|  | } | 
|  | // Adjust for unused bits in the most significant word (they are zero). | 
|  | unsigned Mod = BitWidth % APINT_BITS_PER_WORD; | 
|  | Count -= Mod > 0 ? APINT_BITS_PER_WORD - Mod : 0; | 
|  | return Count; | 
|  | } | 
|  |  | 
|  | unsigned APInt::countLeadingOnesSlowCase() const { | 
|  | unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD; | 
|  | unsigned shift; | 
|  | if (!highWordBits) { | 
|  | highWordBits = APINT_BITS_PER_WORD; | 
|  | shift = 0; | 
|  | } else { | 
|  | shift = APINT_BITS_PER_WORD - highWordBits; | 
|  | } | 
|  | int i = getNumWords() - 1; | 
|  | unsigned Count = llvm::countLeadingOnes(U.pVal[i] << shift); | 
|  | if (Count == highWordBits) { | 
|  | for (i--; i >= 0; --i) { | 
|  | if (U.pVal[i] == WORDTYPE_MAX) | 
|  | Count += APINT_BITS_PER_WORD; | 
|  | else { | 
|  | Count += llvm::countLeadingOnes(U.pVal[i]); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | return Count; | 
|  | } | 
|  |  | 
|  | unsigned APInt::countTrailingZerosSlowCase() const { | 
|  | unsigned Count = 0; | 
|  | unsigned i = 0; | 
|  | for (; i < getNumWords() && U.pVal[i] == 0; ++i) | 
|  | Count += APINT_BITS_PER_WORD; | 
|  | if (i < getNumWords()) | 
|  | Count += llvm::countTrailingZeros(U.pVal[i]); | 
|  | return std::min(Count, BitWidth); | 
|  | } | 
|  |  | 
|  | unsigned APInt::countTrailingOnesSlowCase() const { | 
|  | unsigned Count = 0; | 
|  | unsigned i = 0; | 
|  | for (; i < getNumWords() && U.pVal[i] == WORDTYPE_MAX; ++i) | 
|  | Count += APINT_BITS_PER_WORD; | 
|  | if (i < getNumWords()) | 
|  | Count += llvm::countTrailingOnes(U.pVal[i]); | 
|  | assert(Count <= BitWidth); | 
|  | return Count; | 
|  | } | 
|  |  | 
|  | unsigned APInt::countPopulationSlowCase() const { | 
|  | unsigned Count = 0; | 
|  | for (unsigned i = 0; i < getNumWords(); ++i) | 
|  | Count += llvm::countPopulation(U.pVal[i]); | 
|  | return Count; | 
|  | } | 
|  |  | 
|  | bool APInt::intersectsSlowCase(const APInt &RHS) const { | 
|  | for (unsigned i = 0, e = getNumWords(); i != e; ++i) | 
|  | if ((U.pVal[i] & RHS.U.pVal[i]) != 0) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool APInt::isSubsetOfSlowCase(const APInt &RHS) const { | 
|  | for (unsigned i = 0, e = getNumWords(); i != e; ++i) | 
|  | if ((U.pVal[i] & ~RHS.U.pVal[i]) != 0) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | APInt APInt::byteSwap() const { | 
|  | assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!"); | 
|  | if (BitWidth == 16) | 
|  | return APInt(BitWidth, ByteSwap_16(uint16_t(U.VAL))); | 
|  | if (BitWidth == 32) | 
|  | return APInt(BitWidth, ByteSwap_32(unsigned(U.VAL))); | 
|  | if (BitWidth == 48) { | 
|  | unsigned Tmp1 = unsigned(U.VAL >> 16); | 
|  | Tmp1 = ByteSwap_32(Tmp1); | 
|  | uint16_t Tmp2 = uint16_t(U.VAL); | 
|  | Tmp2 = ByteSwap_16(Tmp2); | 
|  | return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1); | 
|  | } | 
|  | if (BitWidth == 64) | 
|  | return APInt(BitWidth, ByteSwap_64(U.VAL)); | 
|  |  | 
|  | APInt Result(getNumWords() * APINT_BITS_PER_WORD, 0); | 
|  | for (unsigned I = 0, N = getNumWords(); I != N; ++I) | 
|  | Result.U.pVal[I] = ByteSwap_64(U.pVal[N - I - 1]); | 
|  | if (Result.BitWidth != BitWidth) { | 
|  | Result.lshrInPlace(Result.BitWidth - BitWidth); | 
|  | Result.BitWidth = BitWidth; | 
|  | } | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | APInt APInt::reverseBits() const { | 
|  | switch (BitWidth) { | 
|  | case 64: | 
|  | return APInt(BitWidth, llvm::reverseBits<uint64_t>(U.VAL)); | 
|  | case 32: | 
|  | return APInt(BitWidth, llvm::reverseBits<uint32_t>(U.VAL)); | 
|  | case 16: | 
|  | return APInt(BitWidth, llvm::reverseBits<uint16_t>(U.VAL)); | 
|  | case 8: | 
|  | return APInt(BitWidth, llvm::reverseBits<uint8_t>(U.VAL)); | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | APInt Val(*this); | 
|  | APInt Reversed(BitWidth, 0); | 
|  | unsigned S = BitWidth; | 
|  |  | 
|  | for (; Val != 0; Val.lshrInPlace(1)) { | 
|  | Reversed <<= 1; | 
|  | Reversed |= Val[0]; | 
|  | --S; | 
|  | } | 
|  |  | 
|  | Reversed <<= S; | 
|  | return Reversed; | 
|  | } | 
|  |  | 
|  | APInt llvm::APIntOps::GreatestCommonDivisor(APInt A, APInt B) { | 
|  | // Fast-path a common case. | 
|  | if (A == B) return A; | 
|  |  | 
|  | // Corner cases: if either operand is zero, the other is the gcd. | 
|  | if (!A) return B; | 
|  | if (!B) return A; | 
|  |  | 
|  | // Count common powers of 2 and remove all other powers of 2. | 
|  | unsigned Pow2; | 
|  | { | 
|  | unsigned Pow2_A = A.countTrailingZeros(); | 
|  | unsigned Pow2_B = B.countTrailingZeros(); | 
|  | if (Pow2_A > Pow2_B) { | 
|  | A.lshrInPlace(Pow2_A - Pow2_B); | 
|  | Pow2 = Pow2_B; | 
|  | } else if (Pow2_B > Pow2_A) { | 
|  | B.lshrInPlace(Pow2_B - Pow2_A); | 
|  | Pow2 = Pow2_A; | 
|  | } else { | 
|  | Pow2 = Pow2_A; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Both operands are odd multiples of 2^Pow_2: | 
|  | // | 
|  | //   gcd(a, b) = gcd(|a - b| / 2^i, min(a, b)) | 
|  | // | 
|  | // This is a modified version of Stein's algorithm, taking advantage of | 
|  | // efficient countTrailingZeros(). | 
|  | while (A != B) { | 
|  | if (A.ugt(B)) { | 
|  | A -= B; | 
|  | A.lshrInPlace(A.countTrailingZeros() - Pow2); | 
|  | } else { | 
|  | B -= A; | 
|  | B.lshrInPlace(B.countTrailingZeros() - Pow2); | 
|  | } | 
|  | } | 
|  |  | 
|  | return A; | 
|  | } | 
|  |  | 
|  | APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) { | 
|  | uint64_t I = bit_cast<uint64_t>(Double); | 
|  |  | 
|  | // Get the sign bit from the highest order bit | 
|  | bool isNeg = I >> 63; | 
|  |  | 
|  | // Get the 11-bit exponent and adjust for the 1023 bit bias | 
|  | int64_t exp = ((I >> 52) & 0x7ff) - 1023; | 
|  |  | 
|  | // If the exponent is negative, the value is < 0 so just return 0. | 
|  | if (exp < 0) | 
|  | return APInt(width, 0u); | 
|  |  | 
|  | // Extract the mantissa by clearing the top 12 bits (sign + exponent). | 
|  | uint64_t mantissa = (I & (~0ULL >> 12)) | 1ULL << 52; | 
|  |  | 
|  | // If the exponent doesn't shift all bits out of the mantissa | 
|  | if (exp < 52) | 
|  | return isNeg ? -APInt(width, mantissa >> (52 - exp)) : | 
|  | APInt(width, mantissa >> (52 - exp)); | 
|  |  | 
|  | // If the client didn't provide enough bits for us to shift the mantissa into | 
|  | // then the result is undefined, just return 0 | 
|  | if (width <= exp - 52) | 
|  | return APInt(width, 0); | 
|  |  | 
|  | // Otherwise, we have to shift the mantissa bits up to the right location | 
|  | APInt Tmp(width, mantissa); | 
|  | Tmp <<= (unsigned)exp - 52; | 
|  | return isNeg ? -Tmp : Tmp; | 
|  | } | 
|  |  | 
|  | /// This function converts this APInt to a double. | 
|  | /// The layout for double is as following (IEEE Standard 754): | 
|  | ///  -------------------------------------- | 
|  | /// |  Sign    Exponent    Fraction    Bias | | 
|  | /// |-------------------------------------- | | 
|  | /// |  1[63]   11[62-52]   52[51-00]   1023 | | 
|  | ///  -------------------------------------- | 
|  | double APInt::roundToDouble(bool isSigned) const { | 
|  |  | 
|  | // Handle the simple case where the value is contained in one uint64_t. | 
|  | // It is wrong to optimize getWord(0) to VAL; there might be more than one word. | 
|  | if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) { | 
|  | if (isSigned) { | 
|  | int64_t sext = SignExtend64(getWord(0), BitWidth); | 
|  | return double(sext); | 
|  | } else | 
|  | return double(getWord(0)); | 
|  | } | 
|  |  | 
|  | // Determine if the value is negative. | 
|  | bool isNeg = isSigned ? (*this)[BitWidth-1] : false; | 
|  |  | 
|  | // Construct the absolute value if we're negative. | 
|  | APInt Tmp(isNeg ? -(*this) : (*this)); | 
|  |  | 
|  | // Figure out how many bits we're using. | 
|  | unsigned n = Tmp.getActiveBits(); | 
|  |  | 
|  | // The exponent (without bias normalization) is just the number of bits | 
|  | // we are using. Note that the sign bit is gone since we constructed the | 
|  | // absolute value. | 
|  | uint64_t exp = n; | 
|  |  | 
|  | // Return infinity for exponent overflow | 
|  | if (exp > 1023) { | 
|  | if (!isSigned || !isNeg) | 
|  | return std::numeric_limits<double>::infinity(); | 
|  | else | 
|  | return -std::numeric_limits<double>::infinity(); | 
|  | } | 
|  | exp += 1023; // Increment for 1023 bias | 
|  |  | 
|  | // Number of bits in mantissa is 52. To obtain the mantissa value, we must | 
|  | // extract the high 52 bits from the correct words in pVal. | 
|  | uint64_t mantissa; | 
|  | unsigned hiWord = whichWord(n-1); | 
|  | if (hiWord == 0) { | 
|  | mantissa = Tmp.U.pVal[0]; | 
|  | if (n > 52) | 
|  | mantissa >>= n - 52; // shift down, we want the top 52 bits. | 
|  | } else { | 
|  | assert(hiWord > 0 && "huh?"); | 
|  | uint64_t hibits = Tmp.U.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD); | 
|  | uint64_t lobits = Tmp.U.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD); | 
|  | mantissa = hibits | lobits; | 
|  | } | 
|  |  | 
|  | // The leading bit of mantissa is implicit, so get rid of it. | 
|  | uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0; | 
|  | uint64_t I = sign | (exp << 52) | mantissa; | 
|  | return bit_cast<double>(I); | 
|  | } | 
|  |  | 
|  | // Truncate to new width. | 
|  | APInt APInt::trunc(unsigned width) const { | 
|  | assert(width < BitWidth && "Invalid APInt Truncate request"); | 
|  | assert(width && "Can't truncate to 0 bits"); | 
|  |  | 
|  | if (width <= APINT_BITS_PER_WORD) | 
|  | return APInt(width, getRawData()[0]); | 
|  |  | 
|  | APInt Result(getMemory(getNumWords(width)), width); | 
|  |  | 
|  | // Copy full words. | 
|  | unsigned i; | 
|  | for (i = 0; i != width / APINT_BITS_PER_WORD; i++) | 
|  | Result.U.pVal[i] = U.pVal[i]; | 
|  |  | 
|  | // Truncate and copy any partial word. | 
|  | unsigned bits = (0 - width) % APINT_BITS_PER_WORD; | 
|  | if (bits != 0) | 
|  | Result.U.pVal[i] = U.pVal[i] << bits >> bits; | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | // Sign extend to a new width. | 
|  | APInt APInt::sext(unsigned Width) const { | 
|  | assert(Width > BitWidth && "Invalid APInt SignExtend request"); | 
|  |  | 
|  | if (Width <= APINT_BITS_PER_WORD) | 
|  | return APInt(Width, SignExtend64(U.VAL, BitWidth)); | 
|  |  | 
|  | APInt Result(getMemory(getNumWords(Width)), Width); | 
|  |  | 
|  | // Copy words. | 
|  | std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE); | 
|  |  | 
|  | // Sign extend the last word since there may be unused bits in the input. | 
|  | Result.U.pVal[getNumWords() - 1] = | 
|  | SignExtend64(Result.U.pVal[getNumWords() - 1], | 
|  | ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1); | 
|  |  | 
|  | // Fill with sign bits. | 
|  | std::memset(Result.U.pVal + getNumWords(), isNegative() ? -1 : 0, | 
|  | (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE); | 
|  | Result.clearUnusedBits(); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | //  Zero extend to a new width. | 
|  | APInt APInt::zext(unsigned width) const { | 
|  | assert(width > BitWidth && "Invalid APInt ZeroExtend request"); | 
|  |  | 
|  | if (width <= APINT_BITS_PER_WORD) | 
|  | return APInt(width, U.VAL); | 
|  |  | 
|  | APInt Result(getMemory(getNumWords(width)), width); | 
|  |  | 
|  | // Copy words. | 
|  | std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE); | 
|  |  | 
|  | // Zero remaining words. | 
|  | std::memset(Result.U.pVal + getNumWords(), 0, | 
|  | (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE); | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | APInt APInt::zextOrTrunc(unsigned width) const { | 
|  | if (BitWidth < width) | 
|  | return zext(width); | 
|  | if (BitWidth > width) | 
|  | return trunc(width); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | APInt APInt::sextOrTrunc(unsigned width) const { | 
|  | if (BitWidth < width) | 
|  | return sext(width); | 
|  | if (BitWidth > width) | 
|  | return trunc(width); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | APInt APInt::zextOrSelf(unsigned width) const { | 
|  | if (BitWidth < width) | 
|  | return zext(width); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | APInt APInt::sextOrSelf(unsigned width) const { | 
|  | if (BitWidth < width) | 
|  | return sext(width); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /// Arithmetic right-shift this APInt by shiftAmt. | 
|  | /// Arithmetic right-shift function. | 
|  | void APInt::ashrInPlace(const APInt &shiftAmt) { | 
|  | ashrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth)); | 
|  | } | 
|  |  | 
|  | /// Arithmetic right-shift this APInt by shiftAmt. | 
|  | /// Arithmetic right-shift function. | 
|  | void APInt::ashrSlowCase(unsigned ShiftAmt) { | 
|  | // Don't bother performing a no-op shift. | 
|  | if (!ShiftAmt) | 
|  | return; | 
|  |  | 
|  | // Save the original sign bit for later. | 
|  | bool Negative = isNegative(); | 
|  |  | 
|  | // WordShift is the inter-part shift; BitShift is intra-part shift. | 
|  | unsigned WordShift = ShiftAmt / APINT_BITS_PER_WORD; | 
|  | unsigned BitShift = ShiftAmt % APINT_BITS_PER_WORD; | 
|  |  | 
|  | unsigned WordsToMove = getNumWords() - WordShift; | 
|  | if (WordsToMove != 0) { | 
|  | // Sign extend the last word to fill in the unused bits. | 
|  | U.pVal[getNumWords() - 1] = SignExtend64( | 
|  | U.pVal[getNumWords() - 1], ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1); | 
|  |  | 
|  | // Fastpath for moving by whole words. | 
|  | if (BitShift == 0) { | 
|  | std::memmove(U.pVal, U.pVal + WordShift, WordsToMove * APINT_WORD_SIZE); | 
|  | } else { | 
|  | // Move the words containing significant bits. | 
|  | for (unsigned i = 0; i != WordsToMove - 1; ++i) | 
|  | U.pVal[i] = (U.pVal[i + WordShift] >> BitShift) | | 
|  | (U.pVal[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift)); | 
|  |  | 
|  | // Handle the last word which has no high bits to copy. | 
|  | U.pVal[WordsToMove - 1] = U.pVal[WordShift + WordsToMove - 1] >> BitShift; | 
|  | // Sign extend one more time. | 
|  | U.pVal[WordsToMove - 1] = | 
|  | SignExtend64(U.pVal[WordsToMove - 1], APINT_BITS_PER_WORD - BitShift); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Fill in the remainder based on the original sign. | 
|  | std::memset(U.pVal + WordsToMove, Negative ? -1 : 0, | 
|  | WordShift * APINT_WORD_SIZE); | 
|  | clearUnusedBits(); | 
|  | } | 
|  |  | 
|  | /// Logical right-shift this APInt by shiftAmt. | 
|  | /// Logical right-shift function. | 
|  | void APInt::lshrInPlace(const APInt &shiftAmt) { | 
|  | lshrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth)); | 
|  | } | 
|  |  | 
|  | /// Logical right-shift this APInt by shiftAmt. | 
|  | /// Logical right-shift function. | 
|  | void APInt::lshrSlowCase(unsigned ShiftAmt) { | 
|  | tcShiftRight(U.pVal, getNumWords(), ShiftAmt); | 
|  | } | 
|  |  | 
|  | /// Left-shift this APInt by shiftAmt. | 
|  | /// Left-shift function. | 
|  | APInt &APInt::operator<<=(const APInt &shiftAmt) { | 
|  | // It's undefined behavior in C to shift by BitWidth or greater. | 
|  | *this <<= (unsigned)shiftAmt.getLimitedValue(BitWidth); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | void APInt::shlSlowCase(unsigned ShiftAmt) { | 
|  | tcShiftLeft(U.pVal, getNumWords(), ShiftAmt); | 
|  | clearUnusedBits(); | 
|  | } | 
|  |  | 
|  | // Calculate the rotate amount modulo the bit width. | 
|  | static unsigned rotateModulo(unsigned BitWidth, const APInt &rotateAmt) { | 
|  | unsigned rotBitWidth = rotateAmt.getBitWidth(); | 
|  | APInt rot = rotateAmt; | 
|  | if (rotBitWidth < BitWidth) { | 
|  | // Extend the rotate APInt, so that the urem doesn't divide by 0. | 
|  | // e.g. APInt(1, 32) would give APInt(1, 0). | 
|  | rot = rotateAmt.zext(BitWidth); | 
|  | } | 
|  | rot = rot.urem(APInt(rot.getBitWidth(), BitWidth)); | 
|  | return rot.getLimitedValue(BitWidth); | 
|  | } | 
|  |  | 
|  | APInt APInt::rotl(const APInt &rotateAmt) const { | 
|  | return rotl(rotateModulo(BitWidth, rotateAmt)); | 
|  | } | 
|  |  | 
|  | APInt APInt::rotl(unsigned rotateAmt) const { | 
|  | rotateAmt %= BitWidth; | 
|  | if (rotateAmt == 0) | 
|  | return *this; | 
|  | return shl(rotateAmt) | lshr(BitWidth - rotateAmt); | 
|  | } | 
|  |  | 
|  | APInt APInt::rotr(const APInt &rotateAmt) const { | 
|  | return rotr(rotateModulo(BitWidth, rotateAmt)); | 
|  | } | 
|  |  | 
|  | APInt APInt::rotr(unsigned rotateAmt) const { | 
|  | rotateAmt %= BitWidth; | 
|  | if (rotateAmt == 0) | 
|  | return *this; | 
|  | return lshr(rotateAmt) | shl(BitWidth - rotateAmt); | 
|  | } | 
|  |  | 
|  | // Square Root - this method computes and returns the square root of "this". | 
|  | // Three mechanisms are used for computation. For small values (<= 5 bits), | 
|  | // a table lookup is done. This gets some performance for common cases. For | 
|  | // values using less than 52 bits, the value is converted to double and then | 
|  | // the libc sqrt function is called. The result is rounded and then converted | 
|  | // back to a uint64_t which is then used to construct the result. Finally, | 
|  | // the Babylonian method for computing square roots is used. | 
|  | APInt APInt::sqrt() const { | 
|  |  | 
|  | // Determine the magnitude of the value. | 
|  | unsigned magnitude = getActiveBits(); | 
|  |  | 
|  | // Use a fast table for some small values. This also gets rid of some | 
|  | // rounding errors in libc sqrt for small values. | 
|  | if (magnitude <= 5) { | 
|  | static const uint8_t results[32] = { | 
|  | /*     0 */ 0, | 
|  | /*  1- 2 */ 1, 1, | 
|  | /*  3- 6 */ 2, 2, 2, 2, | 
|  | /*  7-12 */ 3, 3, 3, 3, 3, 3, | 
|  | /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4, | 
|  | /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, | 
|  | /*    31 */ 6 | 
|  | }; | 
|  | return APInt(BitWidth, results[ (isSingleWord() ? U.VAL : U.pVal[0]) ]); | 
|  | } | 
|  |  | 
|  | // If the magnitude of the value fits in less than 52 bits (the precision of | 
|  | // an IEEE double precision floating point value), then we can use the | 
|  | // libc sqrt function which will probably use a hardware sqrt computation. | 
|  | // This should be faster than the algorithm below. | 
|  | if (magnitude < 52) { | 
|  | return APInt(BitWidth, | 
|  | uint64_t(::round(::sqrt(double(isSingleWord() ? U.VAL | 
|  | : U.pVal[0]))))); | 
|  | } | 
|  |  | 
|  | // Okay, all the short cuts are exhausted. We must compute it. The following | 
|  | // is a classical Babylonian method for computing the square root. This code | 
|  | // was adapted to APInt from a wikipedia article on such computations. | 
|  | // See http://www.wikipedia.org/ and go to the page named | 
|  | // Calculate_an_integer_square_root. | 
|  | unsigned nbits = BitWidth, i = 4; | 
|  | APInt testy(BitWidth, 16); | 
|  | APInt x_old(BitWidth, 1); | 
|  | APInt x_new(BitWidth, 0); | 
|  | APInt two(BitWidth, 2); | 
|  |  | 
|  | // Select a good starting value using binary logarithms. | 
|  | for (;; i += 2, testy = testy.shl(2)) | 
|  | if (i >= nbits || this->ule(testy)) { | 
|  | x_old = x_old.shl(i / 2); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Use the Babylonian method to arrive at the integer square root: | 
|  | for (;;) { | 
|  | x_new = (this->udiv(x_old) + x_old).udiv(two); | 
|  | if (x_old.ule(x_new)) | 
|  | break; | 
|  | x_old = x_new; | 
|  | } | 
|  |  | 
|  | // Make sure we return the closest approximation | 
|  | // NOTE: The rounding calculation below is correct. It will produce an | 
|  | // off-by-one discrepancy with results from pari/gp. That discrepancy has been | 
|  | // determined to be a rounding issue with pari/gp as it begins to use a | 
|  | // floating point representation after 192 bits. There are no discrepancies | 
|  | // between this algorithm and pari/gp for bit widths < 192 bits. | 
|  | APInt square(x_old * x_old); | 
|  | APInt nextSquare((x_old + 1) * (x_old +1)); | 
|  | if (this->ult(square)) | 
|  | return x_old; | 
|  | assert(this->ule(nextSquare) && "Error in APInt::sqrt computation"); | 
|  | APInt midpoint((nextSquare - square).udiv(two)); | 
|  | APInt offset(*this - square); | 
|  | if (offset.ult(midpoint)) | 
|  | return x_old; | 
|  | return x_old + 1; | 
|  | } | 
|  |  | 
|  | /// Computes the multiplicative inverse of this APInt for a given modulo. The | 
|  | /// iterative extended Euclidean algorithm is used to solve for this value, | 
|  | /// however we simplify it to speed up calculating only the inverse, and take | 
|  | /// advantage of div+rem calculations. We also use some tricks to avoid copying | 
|  | /// (potentially large) APInts around. | 
|  | APInt APInt::multiplicativeInverse(const APInt& modulo) const { | 
|  | assert(ult(modulo) && "This APInt must be smaller than the modulo"); | 
|  |  | 
|  | // Using the properties listed at the following web page (accessed 06/21/08): | 
|  | //   http://www.numbertheory.org/php/euclid.html | 
|  | // (especially the properties numbered 3, 4 and 9) it can be proved that | 
|  | // BitWidth bits suffice for all the computations in the algorithm implemented | 
|  | // below. More precisely, this number of bits suffice if the multiplicative | 
|  | // inverse exists, but may not suffice for the general extended Euclidean | 
|  | // algorithm. | 
|  |  | 
|  | APInt r[2] = { modulo, *this }; | 
|  | APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) }; | 
|  | APInt q(BitWidth, 0); | 
|  |  | 
|  | unsigned i; | 
|  | for (i = 0; r[i^1] != 0; i ^= 1) { | 
|  | // An overview of the math without the confusing bit-flipping: | 
|  | // q = r[i-2] / r[i-1] | 
|  | // r[i] = r[i-2] % r[i-1] | 
|  | // t[i] = t[i-2] - t[i-1] * q | 
|  | udivrem(r[i], r[i^1], q, r[i]); | 
|  | t[i] -= t[i^1] * q; | 
|  | } | 
|  |  | 
|  | // If this APInt and the modulo are not coprime, there is no multiplicative | 
|  | // inverse, so return 0. We check this by looking at the next-to-last | 
|  | // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean | 
|  | // algorithm. | 
|  | if (r[i] != 1) | 
|  | return APInt(BitWidth, 0); | 
|  |  | 
|  | // The next-to-last t is the multiplicative inverse.  However, we are | 
|  | // interested in a positive inverse. Calculate a positive one from a negative | 
|  | // one if necessary. A simple addition of the modulo suffices because | 
|  | // abs(t[i]) is known to be less than *this/2 (see the link above). | 
|  | if (t[i].isNegative()) | 
|  | t[i] += modulo; | 
|  |  | 
|  | return std::move(t[i]); | 
|  | } | 
|  |  | 
|  | /// Calculate the magic numbers required to implement a signed integer division | 
|  | /// by a constant as a sequence of multiplies, adds and shifts.  Requires that | 
|  | /// the divisor not be 0, 1, or -1.  Taken from "Hacker's Delight", Henry S. | 
|  | /// Warren, Jr., chapter 10. | 
|  | APInt::ms APInt::magic() const { | 
|  | const APInt& d = *this; | 
|  | unsigned p; | 
|  | APInt ad, anc, delta, q1, r1, q2, r2, t; | 
|  | APInt signedMin = APInt::getSignedMinValue(d.getBitWidth()); | 
|  | struct ms mag; | 
|  |  | 
|  | ad = d.abs(); | 
|  | t = signedMin + (d.lshr(d.getBitWidth() - 1)); | 
|  | anc = t - 1 - t.urem(ad);   // absolute value of nc | 
|  | p = d.getBitWidth() - 1;    // initialize p | 
|  | q1 = signedMin.udiv(anc);   // initialize q1 = 2p/abs(nc) | 
|  | r1 = signedMin - q1*anc;    // initialize r1 = rem(2p,abs(nc)) | 
|  | q2 = signedMin.udiv(ad);    // initialize q2 = 2p/abs(d) | 
|  | r2 = signedMin - q2*ad;     // initialize r2 = rem(2p,abs(d)) | 
|  | do { | 
|  | p = p + 1; | 
|  | q1 = q1<<1;          // update q1 = 2p/abs(nc) | 
|  | r1 = r1<<1;          // update r1 = rem(2p/abs(nc)) | 
|  | if (r1.uge(anc)) {  // must be unsigned comparison | 
|  | q1 = q1 + 1; | 
|  | r1 = r1 - anc; | 
|  | } | 
|  | q2 = q2<<1;          // update q2 = 2p/abs(d) | 
|  | r2 = r2<<1;          // update r2 = rem(2p/abs(d)) | 
|  | if (r2.uge(ad)) {   // must be unsigned comparison | 
|  | q2 = q2 + 1; | 
|  | r2 = r2 - ad; | 
|  | } | 
|  | delta = ad - r2; | 
|  | } while (q1.ult(delta) || (q1 == delta && r1 == 0)); | 
|  |  | 
|  | mag.m = q2 + 1; | 
|  | if (d.isNegative()) mag.m = -mag.m;   // resulting magic number | 
|  | mag.s = p - d.getBitWidth();          // resulting shift | 
|  | return mag; | 
|  | } | 
|  |  | 
|  | /// Calculate the magic numbers required to implement an unsigned integer | 
|  | /// division by a constant as a sequence of multiplies, adds and shifts. | 
|  | /// Requires that the divisor not be 0.  Taken from "Hacker's Delight", Henry | 
|  | /// S. Warren, Jr., chapter 10. | 
|  | /// LeadingZeros can be used to simplify the calculation if the upper bits | 
|  | /// of the divided value are known zero. | 
|  | APInt::mu APInt::magicu(unsigned LeadingZeros) const { | 
|  | const APInt& d = *this; | 
|  | unsigned p; | 
|  | APInt nc, delta, q1, r1, q2, r2; | 
|  | struct mu magu; | 
|  | magu.a = 0;               // initialize "add" indicator | 
|  | APInt allOnes = APInt::getAllOnesValue(d.getBitWidth()).lshr(LeadingZeros); | 
|  | APInt signedMin = APInt::getSignedMinValue(d.getBitWidth()); | 
|  | APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth()); | 
|  |  | 
|  | nc = allOnes - (allOnes - d).urem(d); | 
|  | p = d.getBitWidth() - 1;  // initialize p | 
|  | q1 = signedMin.udiv(nc);  // initialize q1 = 2p/nc | 
|  | r1 = signedMin - q1*nc;   // initialize r1 = rem(2p,nc) | 
|  | q2 = signedMax.udiv(d);   // initialize q2 = (2p-1)/d | 
|  | r2 = signedMax - q2*d;    // initialize r2 = rem((2p-1),d) | 
|  | do { | 
|  | p = p + 1; | 
|  | if (r1.uge(nc - r1)) { | 
|  | q1 = q1 + q1 + 1;  // update q1 | 
|  | r1 = r1 + r1 - nc; // update r1 | 
|  | } | 
|  | else { | 
|  | q1 = q1+q1; // update q1 | 
|  | r1 = r1+r1; // update r1 | 
|  | } | 
|  | if ((r2 + 1).uge(d - r2)) { | 
|  | if (q2.uge(signedMax)) magu.a = 1; | 
|  | q2 = q2+q2 + 1;     // update q2 | 
|  | r2 = r2+r2 + 1 - d; // update r2 | 
|  | } | 
|  | else { | 
|  | if (q2.uge(signedMin)) magu.a = 1; | 
|  | q2 = q2+q2;     // update q2 | 
|  | r2 = r2+r2 + 1; // update r2 | 
|  | } | 
|  | delta = d - 1 - r2; | 
|  | } while (p < d.getBitWidth()*2 && | 
|  | (q1.ult(delta) || (q1 == delta && r1 == 0))); | 
|  | magu.m = q2 + 1; // resulting magic number | 
|  | magu.s = p - d.getBitWidth();  // resulting shift | 
|  | return magu; | 
|  | } | 
|  |  | 
|  | /// Implementation of Knuth's Algorithm D (Division of nonnegative integers) | 
|  | /// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The | 
|  | /// variables here have the same names as in the algorithm. Comments explain | 
|  | /// the algorithm and any deviation from it. | 
|  | static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r, | 
|  | unsigned m, unsigned n) { | 
|  | assert(u && "Must provide dividend"); | 
|  | assert(v && "Must provide divisor"); | 
|  | assert(q && "Must provide quotient"); | 
|  | assert(u != v && u != q && v != q && "Must use different memory"); | 
|  | assert(n>1 && "n must be > 1"); | 
|  |  | 
|  | // b denotes the base of the number system. In our case b is 2^32. | 
|  | const uint64_t b = uint64_t(1) << 32; | 
|  |  | 
|  | // The DEBUG macros here tend to be spam in the debug output if you're not | 
|  | // debugging this code. Disable them unless KNUTH_DEBUG is defined. | 
|  | #ifdef KNUTH_DEBUG | 
|  | #define DEBUG_KNUTH(X) LLVM_DEBUG(X) | 
|  | #else | 
|  | #define DEBUG_KNUTH(X) do {} while(false) | 
|  | #endif | 
|  |  | 
|  | DEBUG_KNUTH(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n'); | 
|  | DEBUG_KNUTH(dbgs() << "KnuthDiv: original:"); | 
|  | DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]); | 
|  | DEBUG_KNUTH(dbgs() << " by"); | 
|  | DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]); | 
|  | DEBUG_KNUTH(dbgs() << '\n'); | 
|  | // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of | 
|  | // u and v by d. Note that we have taken Knuth's advice here to use a power | 
|  | // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of | 
|  | // 2 allows us to shift instead of multiply and it is easy to determine the | 
|  | // shift amount from the leading zeros.  We are basically normalizing the u | 
|  | // and v so that its high bits are shifted to the top of v's range without | 
|  | // overflow. Note that this can require an extra word in u so that u must | 
|  | // be of length m+n+1. | 
|  | unsigned shift = countLeadingZeros(v[n-1]); | 
|  | uint32_t v_carry = 0; | 
|  | uint32_t u_carry = 0; | 
|  | if (shift) { | 
|  | for (unsigned i = 0; i < m+n; ++i) { | 
|  | uint32_t u_tmp = u[i] >> (32 - shift); | 
|  | u[i] = (u[i] << shift) | u_carry; | 
|  | u_carry = u_tmp; | 
|  | } | 
|  | for (unsigned i = 0; i < n; ++i) { | 
|  | uint32_t v_tmp = v[i] >> (32 - shift); | 
|  | v[i] = (v[i] << shift) | v_carry; | 
|  | v_carry = v_tmp; | 
|  | } | 
|  | } | 
|  | u[m+n] = u_carry; | 
|  |  | 
|  | DEBUG_KNUTH(dbgs() << "KnuthDiv:   normal:"); | 
|  | DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]); | 
|  | DEBUG_KNUTH(dbgs() << " by"); | 
|  | DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]); | 
|  | DEBUG_KNUTH(dbgs() << '\n'); | 
|  |  | 
|  | // D2. [Initialize j.]  Set j to m. This is the loop counter over the places. | 
|  | int j = m; | 
|  | do { | 
|  | DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient digit #" << j << '\n'); | 
|  | // D3. [Calculate q'.]. | 
|  | //     Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q') | 
|  | //     Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r') | 
|  | // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease | 
|  | // qp by 1, increase rp by v[n-1], and repeat this test if rp < b. The test | 
|  | // on v[n-2] determines at high speed most of the cases in which the trial | 
|  | // value qp is one too large, and it eliminates all cases where qp is two | 
|  | // too large. | 
|  | uint64_t dividend = Make_64(u[j+n], u[j+n-1]); | 
|  | DEBUG_KNUTH(dbgs() << "KnuthDiv: dividend == " << dividend << '\n'); | 
|  | uint64_t qp = dividend / v[n-1]; | 
|  | uint64_t rp = dividend % v[n-1]; | 
|  | if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) { | 
|  | qp--; | 
|  | rp += v[n-1]; | 
|  | if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2])) | 
|  | qp--; | 
|  | } | 
|  | DEBUG_KNUTH(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n'); | 
|  |  | 
|  | // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with | 
|  | // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation | 
|  | // consists of a simple multiplication by a one-place number, combined with | 
|  | // a subtraction. | 
|  | // The digits (u[j+n]...u[j]) should be kept positive; if the result of | 
|  | // this step is actually negative, (u[j+n]...u[j]) should be left as the | 
|  | // true value plus b**(n+1), namely as the b's complement of | 
|  | // the true value, and a "borrow" to the left should be remembered. | 
|  | int64_t borrow = 0; | 
|  | for (unsigned i = 0; i < n; ++i) { | 
|  | uint64_t p = uint64_t(qp) * uint64_t(v[i]); | 
|  | int64_t subres = int64_t(u[j+i]) - borrow - Lo_32(p); | 
|  | u[j+i] = Lo_32(subres); | 
|  | borrow = Hi_32(p) - Hi_32(subres); | 
|  | DEBUG_KNUTH(dbgs() << "KnuthDiv: u[j+i] = " << u[j + i] | 
|  | << ", borrow = " << borrow << '\n'); | 
|  | } | 
|  | bool isNeg = u[j+n] < borrow; | 
|  | u[j+n] -= Lo_32(borrow); | 
|  |  | 
|  | DEBUG_KNUTH(dbgs() << "KnuthDiv: after subtraction:"); | 
|  | DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]); | 
|  | DEBUG_KNUTH(dbgs() << '\n'); | 
|  |  | 
|  | // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was | 
|  | // negative, go to step D6; otherwise go on to step D7. | 
|  | q[j] = Lo_32(qp); | 
|  | if (isNeg) { | 
|  | // D6. [Add back]. The probability that this step is necessary is very | 
|  | // small, on the order of only 2/b. Make sure that test data accounts for | 
|  | // this possibility. Decrease q[j] by 1 | 
|  | q[j]--; | 
|  | // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]). | 
|  | // A carry will occur to the left of u[j+n], and it should be ignored | 
|  | // since it cancels with the borrow that occurred in D4. | 
|  | bool carry = false; | 
|  | for (unsigned i = 0; i < n; i++) { | 
|  | uint32_t limit = std::min(u[j+i],v[i]); | 
|  | u[j+i] += v[i] + carry; | 
|  | carry = u[j+i] < limit || (carry && u[j+i] == limit); | 
|  | } | 
|  | u[j+n] += carry; | 
|  | } | 
|  | DEBUG_KNUTH(dbgs() << "KnuthDiv: after correction:"); | 
|  | DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]); | 
|  | DEBUG_KNUTH(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n'); | 
|  |  | 
|  | // D7. [Loop on j.]  Decrease j by one. Now if j >= 0, go back to D3. | 
|  | } while (--j >= 0); | 
|  |  | 
|  | DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient:"); | 
|  | DEBUG_KNUTH(for (int i = m; i >= 0; i--) dbgs() << " " << q[i]); | 
|  | DEBUG_KNUTH(dbgs() << '\n'); | 
|  |  | 
|  | // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired | 
|  | // remainder may be obtained by dividing u[...] by d. If r is non-null we | 
|  | // compute the remainder (urem uses this). | 
|  | if (r) { | 
|  | // The value d is expressed by the "shift" value above since we avoided | 
|  | // multiplication by d by using a shift left. So, all we have to do is | 
|  | // shift right here. | 
|  | if (shift) { | 
|  | uint32_t carry = 0; | 
|  | DEBUG_KNUTH(dbgs() << "KnuthDiv: remainder:"); | 
|  | for (int i = n-1; i >= 0; i--) { | 
|  | r[i] = (u[i] >> shift) | carry; | 
|  | carry = u[i] << (32 - shift); | 
|  | DEBUG_KNUTH(dbgs() << " " << r[i]); | 
|  | } | 
|  | } else { | 
|  | for (int i = n-1; i >= 0; i--) { | 
|  | r[i] = u[i]; | 
|  | DEBUG_KNUTH(dbgs() << " " << r[i]); | 
|  | } | 
|  | } | 
|  | DEBUG_KNUTH(dbgs() << '\n'); | 
|  | } | 
|  | DEBUG_KNUTH(dbgs() << '\n'); | 
|  | } | 
|  |  | 
|  | void APInt::divide(const WordType *LHS, unsigned lhsWords, const WordType *RHS, | 
|  | unsigned rhsWords, WordType *Quotient, WordType *Remainder) { | 
|  | assert(lhsWords >= rhsWords && "Fractional result"); | 
|  |  | 
|  | // First, compose the values into an array of 32-bit words instead of | 
|  | // 64-bit words. This is a necessity of both the "short division" algorithm | 
|  | // and the Knuth "classical algorithm" which requires there to be native | 
|  | // operations for +, -, and * on an m bit value with an m*2 bit result. We | 
|  | // can't use 64-bit operands here because we don't have native results of | 
|  | // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't | 
|  | // work on large-endian machines. | 
|  | unsigned n = rhsWords * 2; | 
|  | unsigned m = (lhsWords * 2) - n; | 
|  |  | 
|  | // Allocate space for the temporary values we need either on the stack, if | 
|  | // it will fit, or on the heap if it won't. | 
|  | uint32_t SPACE[128]; | 
|  | uint32_t *U = nullptr; | 
|  | uint32_t *V = nullptr; | 
|  | uint32_t *Q = nullptr; | 
|  | uint32_t *R = nullptr; | 
|  | if ((Remainder?4:3)*n+2*m+1 <= 128) { | 
|  | U = &SPACE[0]; | 
|  | V = &SPACE[m+n+1]; | 
|  | Q = &SPACE[(m+n+1) + n]; | 
|  | if (Remainder) | 
|  | R = &SPACE[(m+n+1) + n + (m+n)]; | 
|  | } else { | 
|  | U = new uint32_t[m + n + 1]; | 
|  | V = new uint32_t[n]; | 
|  | Q = new uint32_t[m+n]; | 
|  | if (Remainder) | 
|  | R = new uint32_t[n]; | 
|  | } | 
|  |  | 
|  | // Initialize the dividend | 
|  | memset(U, 0, (m+n+1)*sizeof(uint32_t)); | 
|  | for (unsigned i = 0; i < lhsWords; ++i) { | 
|  | uint64_t tmp = LHS[i]; | 
|  | U[i * 2] = Lo_32(tmp); | 
|  | U[i * 2 + 1] = Hi_32(tmp); | 
|  | } | 
|  | U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm. | 
|  |  | 
|  | // Initialize the divisor | 
|  | memset(V, 0, (n)*sizeof(uint32_t)); | 
|  | for (unsigned i = 0; i < rhsWords; ++i) { | 
|  | uint64_t tmp = RHS[i]; | 
|  | V[i * 2] = Lo_32(tmp); | 
|  | V[i * 2 + 1] = Hi_32(tmp); | 
|  | } | 
|  |  | 
|  | // initialize the quotient and remainder | 
|  | memset(Q, 0, (m+n) * sizeof(uint32_t)); | 
|  | if (Remainder) | 
|  | memset(R, 0, n * sizeof(uint32_t)); | 
|  |  | 
|  | // Now, adjust m and n for the Knuth division. n is the number of words in | 
|  | // the divisor. m is the number of words by which the dividend exceeds the | 
|  | // divisor (i.e. m+n is the length of the dividend). These sizes must not | 
|  | // contain any zero words or the Knuth algorithm fails. | 
|  | for (unsigned i = n; i > 0 && V[i-1] == 0; i--) { | 
|  | n--; | 
|  | m++; | 
|  | } | 
|  | for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--) | 
|  | m--; | 
|  |  | 
|  | // If we're left with only a single word for the divisor, Knuth doesn't work | 
|  | // so we implement the short division algorithm here. This is much simpler | 
|  | // and faster because we are certain that we can divide a 64-bit quantity | 
|  | // by a 32-bit quantity at hardware speed and short division is simply a | 
|  | // series of such operations. This is just like doing short division but we | 
|  | // are using base 2^32 instead of base 10. | 
|  | assert(n != 0 && "Divide by zero?"); | 
|  | if (n == 1) { | 
|  | uint32_t divisor = V[0]; | 
|  | uint32_t remainder = 0; | 
|  | for (int i = m; i >= 0; i--) { | 
|  | uint64_t partial_dividend = Make_64(remainder, U[i]); | 
|  | if (partial_dividend == 0) { | 
|  | Q[i] = 0; | 
|  | remainder = 0; | 
|  | } else if (partial_dividend < divisor) { | 
|  | Q[i] = 0; | 
|  | remainder = Lo_32(partial_dividend); | 
|  | } else if (partial_dividend == divisor) { | 
|  | Q[i] = 1; | 
|  | remainder = 0; | 
|  | } else { | 
|  | Q[i] = Lo_32(partial_dividend / divisor); | 
|  | remainder = Lo_32(partial_dividend - (Q[i] * divisor)); | 
|  | } | 
|  | } | 
|  | if (R) | 
|  | R[0] = remainder; | 
|  | } else { | 
|  | // Now we're ready to invoke the Knuth classical divide algorithm. In this | 
|  | // case n > 1. | 
|  | KnuthDiv(U, V, Q, R, m, n); | 
|  | } | 
|  |  | 
|  | // If the caller wants the quotient | 
|  | if (Quotient) { | 
|  | for (unsigned i = 0; i < lhsWords; ++i) | 
|  | Quotient[i] = Make_64(Q[i*2+1], Q[i*2]); | 
|  | } | 
|  |  | 
|  | // If the caller wants the remainder | 
|  | if (Remainder) { | 
|  | for (unsigned i = 0; i < rhsWords; ++i) | 
|  | Remainder[i] = Make_64(R[i*2+1], R[i*2]); | 
|  | } | 
|  |  | 
|  | // Clean up the memory we allocated. | 
|  | if (U != &SPACE[0]) { | 
|  | delete [] U; | 
|  | delete [] V; | 
|  | delete [] Q; | 
|  | delete [] R; | 
|  | } | 
|  | } | 
|  |  | 
|  | APInt APInt::udiv(const APInt &RHS) const { | 
|  | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); | 
|  |  | 
|  | // First, deal with the easy case | 
|  | if (isSingleWord()) { | 
|  | assert(RHS.U.VAL != 0 && "Divide by zero?"); | 
|  | return APInt(BitWidth, U.VAL / RHS.U.VAL); | 
|  | } | 
|  |  | 
|  | // Get some facts about the LHS and RHS number of bits and words | 
|  | unsigned lhsWords = getNumWords(getActiveBits()); | 
|  | unsigned rhsBits  = RHS.getActiveBits(); | 
|  | unsigned rhsWords = getNumWords(rhsBits); | 
|  | assert(rhsWords && "Divided by zero???"); | 
|  |  | 
|  | // Deal with some degenerate cases | 
|  | if (!lhsWords) | 
|  | // 0 / X ===> 0 | 
|  | return APInt(BitWidth, 0); | 
|  | if (rhsBits == 1) | 
|  | // X / 1 ===> X | 
|  | return *this; | 
|  | if (lhsWords < rhsWords || this->ult(RHS)) | 
|  | // X / Y ===> 0, iff X < Y | 
|  | return APInt(BitWidth, 0); | 
|  | if (*this == RHS) | 
|  | // X / X ===> 1 | 
|  | return APInt(BitWidth, 1); | 
|  | if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1. | 
|  | // All high words are zero, just use native divide | 
|  | return APInt(BitWidth, this->U.pVal[0] / RHS.U.pVal[0]); | 
|  |  | 
|  | // We have to compute it the hard way. Invoke the Knuth divide algorithm. | 
|  | APInt Quotient(BitWidth, 0); // to hold result. | 
|  | divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal, nullptr); | 
|  | return Quotient; | 
|  | } | 
|  |  | 
|  | APInt APInt::udiv(uint64_t RHS) const { | 
|  | assert(RHS != 0 && "Divide by zero?"); | 
|  |  | 
|  | // First, deal with the easy case | 
|  | if (isSingleWord()) | 
|  | return APInt(BitWidth, U.VAL / RHS); | 
|  |  | 
|  | // Get some facts about the LHS words. | 
|  | unsigned lhsWords = getNumWords(getActiveBits()); | 
|  |  | 
|  | // Deal with some degenerate cases | 
|  | if (!lhsWords) | 
|  | // 0 / X ===> 0 | 
|  | return APInt(BitWidth, 0); | 
|  | if (RHS == 1) | 
|  | // X / 1 ===> X | 
|  | return *this; | 
|  | if (this->ult(RHS)) | 
|  | // X / Y ===> 0, iff X < Y | 
|  | return APInt(BitWidth, 0); | 
|  | if (*this == RHS) | 
|  | // X / X ===> 1 | 
|  | return APInt(BitWidth, 1); | 
|  | if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1. | 
|  | // All high words are zero, just use native divide | 
|  | return APInt(BitWidth, this->U.pVal[0] / RHS); | 
|  |  | 
|  | // We have to compute it the hard way. Invoke the Knuth divide algorithm. | 
|  | APInt Quotient(BitWidth, 0); // to hold result. | 
|  | divide(U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, nullptr); | 
|  | return Quotient; | 
|  | } | 
|  |  | 
|  | APInt APInt::sdiv(const APInt &RHS) const { | 
|  | if (isNegative()) { | 
|  | if (RHS.isNegative()) | 
|  | return (-(*this)).udiv(-RHS); | 
|  | return -((-(*this)).udiv(RHS)); | 
|  | } | 
|  | if (RHS.isNegative()) | 
|  | return -(this->udiv(-RHS)); | 
|  | return this->udiv(RHS); | 
|  | } | 
|  |  | 
|  | APInt APInt::sdiv(int64_t RHS) const { | 
|  | if (isNegative()) { | 
|  | if (RHS < 0) | 
|  | return (-(*this)).udiv(-RHS); | 
|  | return -((-(*this)).udiv(RHS)); | 
|  | } | 
|  | if (RHS < 0) | 
|  | return -(this->udiv(-RHS)); | 
|  | return this->udiv(RHS); | 
|  | } | 
|  |  | 
|  | APInt APInt::urem(const APInt &RHS) const { | 
|  | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); | 
|  | if (isSingleWord()) { | 
|  | assert(RHS.U.VAL != 0 && "Remainder by zero?"); | 
|  | return APInt(BitWidth, U.VAL % RHS.U.VAL); | 
|  | } | 
|  |  | 
|  | // Get some facts about the LHS | 
|  | unsigned lhsWords = getNumWords(getActiveBits()); | 
|  |  | 
|  | // Get some facts about the RHS | 
|  | unsigned rhsBits = RHS.getActiveBits(); | 
|  | unsigned rhsWords = getNumWords(rhsBits); | 
|  | assert(rhsWords && "Performing remainder operation by zero ???"); | 
|  |  | 
|  | // Check the degenerate cases | 
|  | if (lhsWords == 0) | 
|  | // 0 % Y ===> 0 | 
|  | return APInt(BitWidth, 0); | 
|  | if (rhsBits == 1) | 
|  | // X % 1 ===> 0 | 
|  | return APInt(BitWidth, 0); | 
|  | if (lhsWords < rhsWords || this->ult(RHS)) | 
|  | // X % Y ===> X, iff X < Y | 
|  | return *this; | 
|  | if (*this == RHS) | 
|  | // X % X == 0; | 
|  | return APInt(BitWidth, 0); | 
|  | if (lhsWords == 1) | 
|  | // All high words are zero, just use native remainder | 
|  | return APInt(BitWidth, U.pVal[0] % RHS.U.pVal[0]); | 
|  |  | 
|  | // We have to compute it the hard way. Invoke the Knuth divide algorithm. | 
|  | APInt Remainder(BitWidth, 0); | 
|  | divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, nullptr, Remainder.U.pVal); | 
|  | return Remainder; | 
|  | } | 
|  |  | 
|  | uint64_t APInt::urem(uint64_t RHS) const { | 
|  | assert(RHS != 0 && "Remainder by zero?"); | 
|  |  | 
|  | if (isSingleWord()) | 
|  | return U.VAL % RHS; | 
|  |  | 
|  | // Get some facts about the LHS | 
|  | unsigned lhsWords = getNumWords(getActiveBits()); | 
|  |  | 
|  | // Check the degenerate cases | 
|  | if (lhsWords == 0) | 
|  | // 0 % Y ===> 0 | 
|  | return 0; | 
|  | if (RHS == 1) | 
|  | // X % 1 ===> 0 | 
|  | return 0; | 
|  | if (this->ult(RHS)) | 
|  | // X % Y ===> X, iff X < Y | 
|  | return getZExtValue(); | 
|  | if (*this == RHS) | 
|  | // X % X == 0; | 
|  | return 0; | 
|  | if (lhsWords == 1) | 
|  | // All high words are zero, just use native remainder | 
|  | return U.pVal[0] % RHS; | 
|  |  | 
|  | // We have to compute it the hard way. Invoke the Knuth divide algorithm. | 
|  | uint64_t Remainder; | 
|  | divide(U.pVal, lhsWords, &RHS, 1, nullptr, &Remainder); | 
|  | return Remainder; | 
|  | } | 
|  |  | 
|  | APInt APInt::srem(const APInt &RHS) const { | 
|  | if (isNegative()) { | 
|  | if (RHS.isNegative()) | 
|  | return -((-(*this)).urem(-RHS)); | 
|  | return -((-(*this)).urem(RHS)); | 
|  | } | 
|  | if (RHS.isNegative()) | 
|  | return this->urem(-RHS); | 
|  | return this->urem(RHS); | 
|  | } | 
|  |  | 
|  | int64_t APInt::srem(int64_t RHS) const { | 
|  | if (isNegative()) { | 
|  | if (RHS < 0) | 
|  | return -((-(*this)).urem(-RHS)); | 
|  | return -((-(*this)).urem(RHS)); | 
|  | } | 
|  | if (RHS < 0) | 
|  | return this->urem(-RHS); | 
|  | return this->urem(RHS); | 
|  | } | 
|  |  | 
|  | void APInt::udivrem(const APInt &LHS, const APInt &RHS, | 
|  | APInt &Quotient, APInt &Remainder) { | 
|  | assert(LHS.BitWidth == RHS.BitWidth && "Bit widths must be the same"); | 
|  | unsigned BitWidth = LHS.BitWidth; | 
|  |  | 
|  | // First, deal with the easy case | 
|  | if (LHS.isSingleWord()) { | 
|  | assert(RHS.U.VAL != 0 && "Divide by zero?"); | 
|  | uint64_t QuotVal = LHS.U.VAL / RHS.U.VAL; | 
|  | uint64_t RemVal = LHS.U.VAL % RHS.U.VAL; | 
|  | Quotient = APInt(BitWidth, QuotVal); | 
|  | Remainder = APInt(BitWidth, RemVal); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Get some size facts about the dividend and divisor | 
|  | unsigned lhsWords = getNumWords(LHS.getActiveBits()); | 
|  | unsigned rhsBits  = RHS.getActiveBits(); | 
|  | unsigned rhsWords = getNumWords(rhsBits); | 
|  | assert(rhsWords && "Performing divrem operation by zero ???"); | 
|  |  | 
|  | // Check the degenerate cases | 
|  | if (lhsWords == 0) { | 
|  | Quotient = APInt(BitWidth, 0);    // 0 / Y ===> 0 | 
|  | Remainder = APInt(BitWidth, 0);   // 0 % Y ===> 0 | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (rhsBits == 1) { | 
|  | Quotient = LHS;                   // X / 1 ===> X | 
|  | Remainder = APInt(BitWidth, 0);   // X % 1 ===> 0 | 
|  | } | 
|  |  | 
|  | if (lhsWords < rhsWords || LHS.ult(RHS)) { | 
|  | Remainder = LHS;                  // X % Y ===> X, iff X < Y | 
|  | Quotient = APInt(BitWidth, 0);    // X / Y ===> 0, iff X < Y | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (LHS == RHS) { | 
|  | Quotient  = APInt(BitWidth, 1);   // X / X ===> 1 | 
|  | Remainder = APInt(BitWidth, 0);   // X % X ===> 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Make sure there is enough space to hold the results. | 
|  | // NOTE: This assumes that reallocate won't affect any bits if it doesn't | 
|  | // change the size. This is necessary if Quotient or Remainder is aliased | 
|  | // with LHS or RHS. | 
|  | Quotient.reallocate(BitWidth); | 
|  | Remainder.reallocate(BitWidth); | 
|  |  | 
|  | if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1. | 
|  | // There is only one word to consider so use the native versions. | 
|  | uint64_t lhsValue = LHS.U.pVal[0]; | 
|  | uint64_t rhsValue = RHS.U.pVal[0]; | 
|  | Quotient = lhsValue / rhsValue; | 
|  | Remainder = lhsValue % rhsValue; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Okay, lets do it the long way | 
|  | divide(LHS.U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal, | 
|  | Remainder.U.pVal); | 
|  | // Clear the rest of the Quotient and Remainder. | 
|  | std::memset(Quotient.U.pVal + lhsWords, 0, | 
|  | (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE); | 
|  | std::memset(Remainder.U.pVal + rhsWords, 0, | 
|  | (getNumWords(BitWidth) - rhsWords) * APINT_WORD_SIZE); | 
|  | } | 
|  |  | 
|  | void APInt::udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient, | 
|  | uint64_t &Remainder) { | 
|  | assert(RHS != 0 && "Divide by zero?"); | 
|  | unsigned BitWidth = LHS.BitWidth; | 
|  |  | 
|  | // First, deal with the easy case | 
|  | if (LHS.isSingleWord()) { | 
|  | uint64_t QuotVal = LHS.U.VAL / RHS; | 
|  | Remainder = LHS.U.VAL % RHS; | 
|  | Quotient = APInt(BitWidth, QuotVal); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Get some size facts about the dividend and divisor | 
|  | unsigned lhsWords = getNumWords(LHS.getActiveBits()); | 
|  |  | 
|  | // Check the degenerate cases | 
|  | if (lhsWords == 0) { | 
|  | Quotient = APInt(BitWidth, 0);    // 0 / Y ===> 0 | 
|  | Remainder = 0;                    // 0 % Y ===> 0 | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (RHS == 1) { | 
|  | Quotient = LHS;                   // X / 1 ===> X | 
|  | Remainder = 0;                    // X % 1 ===> 0 | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (LHS.ult(RHS)) { | 
|  | Remainder = LHS.getZExtValue();   // X % Y ===> X, iff X < Y | 
|  | Quotient = APInt(BitWidth, 0);    // X / Y ===> 0, iff X < Y | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (LHS == RHS) { | 
|  | Quotient  = APInt(BitWidth, 1);   // X / X ===> 1 | 
|  | Remainder = 0;                    // X % X ===> 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Make sure there is enough space to hold the results. | 
|  | // NOTE: This assumes that reallocate won't affect any bits if it doesn't | 
|  | // change the size. This is necessary if Quotient is aliased with LHS. | 
|  | Quotient.reallocate(BitWidth); | 
|  |  | 
|  | if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1. | 
|  | // There is only one word to consider so use the native versions. | 
|  | uint64_t lhsValue = LHS.U.pVal[0]; | 
|  | Quotient = lhsValue / RHS; | 
|  | Remainder = lhsValue % RHS; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Okay, lets do it the long way | 
|  | divide(LHS.U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, &Remainder); | 
|  | // Clear the rest of the Quotient. | 
|  | std::memset(Quotient.U.pVal + lhsWords, 0, | 
|  | (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE); | 
|  | } | 
|  |  | 
|  | void APInt::sdivrem(const APInt &LHS, const APInt &RHS, | 
|  | APInt &Quotient, APInt &Remainder) { | 
|  | if (LHS.isNegative()) { | 
|  | if (RHS.isNegative()) | 
|  | APInt::udivrem(-LHS, -RHS, Quotient, Remainder); | 
|  | else { | 
|  | APInt::udivrem(-LHS, RHS, Quotient, Remainder); | 
|  | Quotient.negate(); | 
|  | } | 
|  | Remainder.negate(); | 
|  | } else if (RHS.isNegative()) { | 
|  | APInt::udivrem(LHS, -RHS, Quotient, Remainder); | 
|  | Quotient.negate(); | 
|  | } else { | 
|  | APInt::udivrem(LHS, RHS, Quotient, Remainder); | 
|  | } | 
|  | } | 
|  |  | 
|  | void APInt::sdivrem(const APInt &LHS, int64_t RHS, | 
|  | APInt &Quotient, int64_t &Remainder) { | 
|  | uint64_t R = Remainder; | 
|  | if (LHS.isNegative()) { | 
|  | if (RHS < 0) | 
|  | APInt::udivrem(-LHS, -RHS, Quotient, R); | 
|  | else { | 
|  | APInt::udivrem(-LHS, RHS, Quotient, R); | 
|  | Quotient.negate(); | 
|  | } | 
|  | R = -R; | 
|  | } else if (RHS < 0) { | 
|  | APInt::udivrem(LHS, -RHS, Quotient, R); | 
|  | Quotient.negate(); | 
|  | } else { | 
|  | APInt::udivrem(LHS, RHS, Quotient, R); | 
|  | } | 
|  | Remainder = R; | 
|  | } | 
|  |  | 
|  | APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const { | 
|  | APInt Res = *this+RHS; | 
|  | Overflow = isNonNegative() == RHS.isNonNegative() && | 
|  | Res.isNonNegative() != isNonNegative(); | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const { | 
|  | APInt Res = *this+RHS; | 
|  | Overflow = Res.ult(RHS); | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const { | 
|  | APInt Res = *this - RHS; | 
|  | Overflow = isNonNegative() != RHS.isNonNegative() && | 
|  | Res.isNonNegative() != isNonNegative(); | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const { | 
|  | APInt Res = *this-RHS; | 
|  | Overflow = Res.ugt(*this); | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const { | 
|  | // MININT/-1  -->  overflow. | 
|  | Overflow = isMinSignedValue() && RHS.isAllOnesValue(); | 
|  | return sdiv(RHS); | 
|  | } | 
|  |  | 
|  | APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const { | 
|  | APInt Res = *this * RHS; | 
|  |  | 
|  | if (*this != 0 && RHS != 0) | 
|  | Overflow = Res.sdiv(RHS) != *this || Res.sdiv(*this) != RHS; | 
|  | else | 
|  | Overflow = false; | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | APInt APInt::umul_ov(const APInt &RHS, bool &Overflow) const { | 
|  | APInt Res = *this * RHS; | 
|  |  | 
|  | if (*this != 0 && RHS != 0) | 
|  | Overflow = Res.udiv(RHS) != *this || Res.udiv(*this) != RHS; | 
|  | else | 
|  | Overflow = false; | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | APInt APInt::sshl_ov(const APInt &ShAmt, bool &Overflow) const { | 
|  | Overflow = ShAmt.uge(getBitWidth()); | 
|  | if (Overflow) | 
|  | return APInt(BitWidth, 0); | 
|  |  | 
|  | if (isNonNegative()) // Don't allow sign change. | 
|  | Overflow = ShAmt.uge(countLeadingZeros()); | 
|  | else | 
|  | Overflow = ShAmt.uge(countLeadingOnes()); | 
|  |  | 
|  | return *this << ShAmt; | 
|  | } | 
|  |  | 
|  | APInt APInt::ushl_ov(const APInt &ShAmt, bool &Overflow) const { | 
|  | Overflow = ShAmt.uge(getBitWidth()); | 
|  | if (Overflow) | 
|  | return APInt(BitWidth, 0); | 
|  |  | 
|  | Overflow = ShAmt.ugt(countLeadingZeros()); | 
|  |  | 
|  | return *this << ShAmt; | 
|  | } | 
|  |  | 
|  | APInt APInt::sadd_sat(const APInt &RHS) const { | 
|  | bool Overflow; | 
|  | APInt Res = sadd_ov(RHS, Overflow); | 
|  | if (!Overflow) | 
|  | return Res; | 
|  |  | 
|  | return isNegative() ? APInt::getSignedMinValue(BitWidth) | 
|  | : APInt::getSignedMaxValue(BitWidth); | 
|  | } | 
|  |  | 
|  | APInt APInt::uadd_sat(const APInt &RHS) const { | 
|  | bool Overflow; | 
|  | APInt Res = uadd_ov(RHS, Overflow); | 
|  | if (!Overflow) | 
|  | return Res; | 
|  |  | 
|  | return APInt::getMaxValue(BitWidth); | 
|  | } | 
|  |  | 
|  | APInt APInt::ssub_sat(const APInt &RHS) const { | 
|  | bool Overflow; | 
|  | APInt Res = ssub_ov(RHS, Overflow); | 
|  | if (!Overflow) | 
|  | return Res; | 
|  |  | 
|  | return isNegative() ? APInt::getSignedMinValue(BitWidth) | 
|  | : APInt::getSignedMaxValue(BitWidth); | 
|  | } | 
|  |  | 
|  | APInt APInt::usub_sat(const APInt &RHS) const { | 
|  | bool Overflow; | 
|  | APInt Res = usub_ov(RHS, Overflow); | 
|  | if (!Overflow) | 
|  | return Res; | 
|  |  | 
|  | return APInt(BitWidth, 0); | 
|  | } | 
|  |  | 
|  |  | 
|  | void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) { | 
|  | // Check our assumptions here | 
|  | assert(!str.empty() && "Invalid string length"); | 
|  | assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 || | 
|  | radix == 36) && | 
|  | "Radix should be 2, 8, 10, 16, or 36!"); | 
|  |  | 
|  | StringRef::iterator p = str.begin(); | 
|  | size_t slen = str.size(); | 
|  | bool isNeg = *p == '-'; | 
|  | if (*p == '-' || *p == '+') { | 
|  | p++; | 
|  | slen--; | 
|  | assert(slen && "String is only a sign, needs a value."); | 
|  | } | 
|  | assert((slen <= numbits || radix != 2) && "Insufficient bit width"); | 
|  | assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width"); | 
|  | assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width"); | 
|  | assert((((slen-1)*64)/22 <= numbits || radix != 10) && | 
|  | "Insufficient bit width"); | 
|  |  | 
|  | // Allocate memory if needed | 
|  | if (isSingleWord()) | 
|  | U.VAL = 0; | 
|  | else | 
|  | U.pVal = getClearedMemory(getNumWords()); | 
|  |  | 
|  | // Figure out if we can shift instead of multiply | 
|  | unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0); | 
|  |  | 
|  | // Enter digit traversal loop | 
|  | for (StringRef::iterator e = str.end(); p != e; ++p) { | 
|  | unsigned digit = getDigit(*p, radix); | 
|  | assert(digit < radix && "Invalid character in digit string"); | 
|  |  | 
|  | // Shift or multiply the value by the radix | 
|  | if (slen > 1) { | 
|  | if (shift) | 
|  | *this <<= shift; | 
|  | else | 
|  | *this *= radix; | 
|  | } | 
|  |  | 
|  | // Add in the digit we just interpreted | 
|  | *this += digit; | 
|  | } | 
|  | // If its negative, put it in two's complement form | 
|  | if (isNeg) | 
|  | this->negate(); | 
|  | } | 
|  |  | 
|  | void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix, | 
|  | bool Signed, bool formatAsCLiteral) const { | 
|  | assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 || | 
|  | Radix == 36) && | 
|  | "Radix should be 2, 8, 10, 16, or 36!"); | 
|  |  | 
|  | const char *Prefix = ""; | 
|  | if (formatAsCLiteral) { | 
|  | switch (Radix) { | 
|  | case 2: | 
|  | // Binary literals are a non-standard extension added in gcc 4.3: | 
|  | // http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Binary-constants.html | 
|  | Prefix = "0b"; | 
|  | break; | 
|  | case 8: | 
|  | Prefix = "0"; | 
|  | break; | 
|  | case 10: | 
|  | break; // No prefix | 
|  | case 16: | 
|  | Prefix = "0x"; | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("Invalid radix!"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // First, check for a zero value and just short circuit the logic below. | 
|  | if (*this == 0) { | 
|  | while (*Prefix) { | 
|  | Str.push_back(*Prefix); | 
|  | ++Prefix; | 
|  | }; | 
|  | Str.push_back('0'); | 
|  | return; | 
|  | } | 
|  |  | 
|  | static const char Digits[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"; | 
|  |  | 
|  | if (isSingleWord()) { | 
|  | char Buffer[65]; | 
|  | char *BufPtr = std::end(Buffer); | 
|  |  | 
|  | uint64_t N; | 
|  | if (!Signed) { | 
|  | N = getZExtValue(); | 
|  | } else { | 
|  | int64_t I = getSExtValue(); | 
|  | if (I >= 0) { | 
|  | N = I; | 
|  | } else { | 
|  | Str.push_back('-'); | 
|  | N = -(uint64_t)I; | 
|  | } | 
|  | } | 
|  |  | 
|  | while (*Prefix) { | 
|  | Str.push_back(*Prefix); | 
|  | ++Prefix; | 
|  | }; | 
|  |  | 
|  | while (N) { | 
|  | *--BufPtr = Digits[N % Radix]; | 
|  | N /= Radix; | 
|  | } | 
|  | Str.append(BufPtr, std::end(Buffer)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | APInt Tmp(*this); | 
|  |  | 
|  | if (Signed && isNegative()) { | 
|  | // They want to print the signed version and it is a negative value | 
|  | // Flip the bits and add one to turn it into the equivalent positive | 
|  | // value and put a '-' in the result. | 
|  | Tmp.negate(); | 
|  | Str.push_back('-'); | 
|  | } | 
|  |  | 
|  | while (*Prefix) { | 
|  | Str.push_back(*Prefix); | 
|  | ++Prefix; | 
|  | }; | 
|  |  | 
|  | // We insert the digits backward, then reverse them to get the right order. | 
|  | unsigned StartDig = Str.size(); | 
|  |  | 
|  | // For the 2, 8 and 16 bit cases, we can just shift instead of divide | 
|  | // because the number of bits per digit (1, 3 and 4 respectively) divides | 
|  | // equally.  We just shift until the value is zero. | 
|  | if (Radix == 2 || Radix == 8 || Radix == 16) { | 
|  | // Just shift tmp right for each digit width until it becomes zero | 
|  | unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1)); | 
|  | unsigned MaskAmt = Radix - 1; | 
|  |  | 
|  | while (Tmp.getBoolValue()) { | 
|  | unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt; | 
|  | Str.push_back(Digits[Digit]); | 
|  | Tmp.lshrInPlace(ShiftAmt); | 
|  | } | 
|  | } else { | 
|  | while (Tmp.getBoolValue()) { | 
|  | uint64_t Digit; | 
|  | udivrem(Tmp, Radix, Tmp, Digit); | 
|  | assert(Digit < Radix && "divide failed"); | 
|  | Str.push_back(Digits[Digit]); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Reverse the digits before returning. | 
|  | std::reverse(Str.begin()+StartDig, Str.end()); | 
|  | } | 
|  |  | 
|  | /// Returns the APInt as a std::string. Note that this is an inefficient method. | 
|  | /// It is better to pass in a SmallVector/SmallString to the methods above. | 
|  | std::string APInt::toString(unsigned Radix = 10, bool Signed = true) const { | 
|  | SmallString<40> S; | 
|  | toString(S, Radix, Signed, /* formatAsCLiteral = */false); | 
|  | return S.str(); | 
|  | } | 
|  |  | 
|  | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | 
|  | LLVM_DUMP_METHOD void APInt::dump() const { | 
|  | SmallString<40> S, U; | 
|  | this->toStringUnsigned(U); | 
|  | this->toStringSigned(S); | 
|  | dbgs() << "APInt(" << BitWidth << "b, " | 
|  | << U << "u " << S << "s)\n"; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void APInt::print(raw_ostream &OS, bool isSigned) const { | 
|  | SmallString<40> S; | 
|  | this->toString(S, 10, isSigned, /* formatAsCLiteral = */false); | 
|  | OS << S; | 
|  | } | 
|  |  | 
|  | // This implements a variety of operations on a representation of | 
|  | // arbitrary precision, two's-complement, bignum integer values. | 
|  |  | 
|  | // Assumed by lowHalf, highHalf, partMSB and partLSB.  A fairly safe | 
|  | // and unrestricting assumption. | 
|  | static_assert(APInt::APINT_BITS_PER_WORD % 2 == 0, | 
|  | "Part width must be divisible by 2!"); | 
|  |  | 
|  | /* Some handy functions local to this file.  */ | 
|  |  | 
|  | /* Returns the integer part with the least significant BITS set. | 
|  | BITS cannot be zero.  */ | 
|  | static inline APInt::WordType lowBitMask(unsigned bits) { | 
|  | assert(bits != 0 && bits <= APInt::APINT_BITS_PER_WORD); | 
|  |  | 
|  | return ~(APInt::WordType) 0 >> (APInt::APINT_BITS_PER_WORD - bits); | 
|  | } | 
|  |  | 
|  | /* Returns the value of the lower half of PART.  */ | 
|  | static inline APInt::WordType lowHalf(APInt::WordType part) { | 
|  | return part & lowBitMask(APInt::APINT_BITS_PER_WORD / 2); | 
|  | } | 
|  |  | 
|  | /* Returns the value of the upper half of PART.  */ | 
|  | static inline APInt::WordType highHalf(APInt::WordType part) { | 
|  | return part >> (APInt::APINT_BITS_PER_WORD / 2); | 
|  | } | 
|  |  | 
|  | /* Returns the bit number of the most significant set bit of a part. | 
|  | If the input number has no bits set -1U is returned.  */ | 
|  | static unsigned partMSB(APInt::WordType value) { | 
|  | return findLastSet(value, ZB_Max); | 
|  | } | 
|  |  | 
|  | /* Returns the bit number of the least significant set bit of a | 
|  | part.  If the input number has no bits set -1U is returned.  */ | 
|  | static unsigned partLSB(APInt::WordType value) { | 
|  | return findFirstSet(value, ZB_Max); | 
|  | } | 
|  |  | 
|  | /* Sets the least significant part of a bignum to the input value, and | 
|  | zeroes out higher parts.  */ | 
|  | void APInt::tcSet(WordType *dst, WordType part, unsigned parts) { | 
|  | assert(parts > 0); | 
|  |  | 
|  | dst[0] = part; | 
|  | for (unsigned i = 1; i < parts; i++) | 
|  | dst[i] = 0; | 
|  | } | 
|  |  | 
|  | /* Assign one bignum to another.  */ | 
|  | void APInt::tcAssign(WordType *dst, const WordType *src, unsigned parts) { | 
|  | for (unsigned i = 0; i < parts; i++) | 
|  | dst[i] = src[i]; | 
|  | } | 
|  |  | 
|  | /* Returns true if a bignum is zero, false otherwise.  */ | 
|  | bool APInt::tcIsZero(const WordType *src, unsigned parts) { | 
|  | for (unsigned i = 0; i < parts; i++) | 
|  | if (src[i]) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Extract the given bit of a bignum; returns 0 or 1.  */ | 
|  | int APInt::tcExtractBit(const WordType *parts, unsigned bit) { | 
|  | return (parts[whichWord(bit)] & maskBit(bit)) != 0; | 
|  | } | 
|  |  | 
|  | /* Set the given bit of a bignum. */ | 
|  | void APInt::tcSetBit(WordType *parts, unsigned bit) { | 
|  | parts[whichWord(bit)] |= maskBit(bit); | 
|  | } | 
|  |  | 
|  | /* Clears the given bit of a bignum. */ | 
|  | void APInt::tcClearBit(WordType *parts, unsigned bit) { | 
|  | parts[whichWord(bit)] &= ~maskBit(bit); | 
|  | } | 
|  |  | 
|  | /* Returns the bit number of the least significant set bit of a | 
|  | number.  If the input number has no bits set -1U is returned.  */ | 
|  | unsigned APInt::tcLSB(const WordType *parts, unsigned n) { | 
|  | for (unsigned i = 0; i < n; i++) { | 
|  | if (parts[i] != 0) { | 
|  | unsigned lsb = partLSB(parts[i]); | 
|  |  | 
|  | return lsb + i * APINT_BITS_PER_WORD; | 
|  | } | 
|  | } | 
|  |  | 
|  | return -1U; | 
|  | } | 
|  |  | 
|  | /* Returns the bit number of the most significant set bit of a number. | 
|  | If the input number has no bits set -1U is returned.  */ | 
|  | unsigned APInt::tcMSB(const WordType *parts, unsigned n) { | 
|  | do { | 
|  | --n; | 
|  |  | 
|  | if (parts[n] != 0) { | 
|  | unsigned msb = partMSB(parts[n]); | 
|  |  | 
|  | return msb + n * APINT_BITS_PER_WORD; | 
|  | } | 
|  | } while (n); | 
|  |  | 
|  | return -1U; | 
|  | } | 
|  |  | 
|  | /* Copy the bit vector of width srcBITS from SRC, starting at bit | 
|  | srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes | 
|  | the least significant bit of DST.  All high bits above srcBITS in | 
|  | DST are zero-filled.  */ | 
|  | void | 
|  | APInt::tcExtract(WordType *dst, unsigned dstCount, const WordType *src, | 
|  | unsigned srcBits, unsigned srcLSB) { | 
|  | unsigned dstParts = (srcBits + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD; | 
|  | assert(dstParts <= dstCount); | 
|  |  | 
|  | unsigned firstSrcPart = srcLSB / APINT_BITS_PER_WORD; | 
|  | tcAssign (dst, src + firstSrcPart, dstParts); | 
|  |  | 
|  | unsigned shift = srcLSB % APINT_BITS_PER_WORD; | 
|  | tcShiftRight (dst, dstParts, shift); | 
|  |  | 
|  | /* We now have (dstParts * APINT_BITS_PER_WORD - shift) bits from SRC | 
|  | in DST.  If this is less that srcBits, append the rest, else | 
|  | clear the high bits.  */ | 
|  | unsigned n = dstParts * APINT_BITS_PER_WORD - shift; | 
|  | if (n < srcBits) { | 
|  | WordType mask = lowBitMask (srcBits - n); | 
|  | dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask) | 
|  | << n % APINT_BITS_PER_WORD); | 
|  | } else if (n > srcBits) { | 
|  | if (srcBits % APINT_BITS_PER_WORD) | 
|  | dst[dstParts - 1] &= lowBitMask (srcBits % APINT_BITS_PER_WORD); | 
|  | } | 
|  |  | 
|  | /* Clear high parts.  */ | 
|  | while (dstParts < dstCount) | 
|  | dst[dstParts++] = 0; | 
|  | } | 
|  |  | 
|  | /* DST += RHS + C where C is zero or one.  Returns the carry flag.  */ | 
|  | APInt::WordType APInt::tcAdd(WordType *dst, const WordType *rhs, | 
|  | WordType c, unsigned parts) { | 
|  | assert(c <= 1); | 
|  |  | 
|  | for (unsigned i = 0; i < parts; i++) { | 
|  | WordType l = dst[i]; | 
|  | if (c) { | 
|  | dst[i] += rhs[i] + 1; | 
|  | c = (dst[i] <= l); | 
|  | } else { | 
|  | dst[i] += rhs[i]; | 
|  | c = (dst[i] < l); | 
|  | } | 
|  | } | 
|  |  | 
|  | return c; | 
|  | } | 
|  |  | 
|  | /// This function adds a single "word" integer, src, to the multiple | 
|  | /// "word" integer array, dst[]. dst[] is modified to reflect the addition and | 
|  | /// 1 is returned if there is a carry out, otherwise 0 is returned. | 
|  | /// @returns the carry of the addition. | 
|  | APInt::WordType APInt::tcAddPart(WordType *dst, WordType src, | 
|  | unsigned parts) { | 
|  | for (unsigned i = 0; i < parts; ++i) { | 
|  | dst[i] += src; | 
|  | if (dst[i] >= src) | 
|  | return 0; // No need to carry so exit early. | 
|  | src = 1; // Carry one to next digit. | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* DST -= RHS + C where C is zero or one.  Returns the carry flag.  */ | 
|  | APInt::WordType APInt::tcSubtract(WordType *dst, const WordType *rhs, | 
|  | WordType c, unsigned parts) { | 
|  | assert(c <= 1); | 
|  |  | 
|  | for (unsigned i = 0; i < parts; i++) { | 
|  | WordType l = dst[i]; | 
|  | if (c) { | 
|  | dst[i] -= rhs[i] + 1; | 
|  | c = (dst[i] >= l); | 
|  | } else { | 
|  | dst[i] -= rhs[i]; | 
|  | c = (dst[i] > l); | 
|  | } | 
|  | } | 
|  |  | 
|  | return c; | 
|  | } | 
|  |  | 
|  | /// This function subtracts a single "word" (64-bit word), src, from | 
|  | /// the multi-word integer array, dst[], propagating the borrowed 1 value until | 
|  | /// no further borrowing is needed or it runs out of "words" in dst.  The result | 
|  | /// is 1 if "borrowing" exhausted the digits in dst, or 0 if dst was not | 
|  | /// exhausted. In other words, if src > dst then this function returns 1, | 
|  | /// otherwise 0. | 
|  | /// @returns the borrow out of the subtraction | 
|  | APInt::WordType APInt::tcSubtractPart(WordType *dst, WordType src, | 
|  | unsigned parts) { | 
|  | for (unsigned i = 0; i < parts; ++i) { | 
|  | WordType Dst = dst[i]; | 
|  | dst[i] -= src; | 
|  | if (src <= Dst) | 
|  | return 0; // No need to borrow so exit early. | 
|  | src = 1; // We have to "borrow 1" from next "word" | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Negate a bignum in-place.  */ | 
|  | void APInt::tcNegate(WordType *dst, unsigned parts) { | 
|  | tcComplement(dst, parts); | 
|  | tcIncrement(dst, parts); | 
|  | } | 
|  |  | 
|  | /*  DST += SRC * MULTIPLIER + CARRY   if add is true | 
|  | DST  = SRC * MULTIPLIER + CARRY   if add is false | 
|  |  | 
|  | Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC | 
|  | they must start at the same point, i.e. DST == SRC. | 
|  |  | 
|  | If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is | 
|  | returned.  Otherwise DST is filled with the least significant | 
|  | DSTPARTS parts of the result, and if all of the omitted higher | 
|  | parts were zero return zero, otherwise overflow occurred and | 
|  | return one.  */ | 
|  | int APInt::tcMultiplyPart(WordType *dst, const WordType *src, | 
|  | WordType multiplier, WordType carry, | 
|  | unsigned srcParts, unsigned dstParts, | 
|  | bool add) { | 
|  | /* Otherwise our writes of DST kill our later reads of SRC.  */ | 
|  | assert(dst <= src || dst >= src + srcParts); | 
|  | assert(dstParts <= srcParts + 1); | 
|  |  | 
|  | /* N loops; minimum of dstParts and srcParts.  */ | 
|  | unsigned n = std::min(dstParts, srcParts); | 
|  |  | 
|  | for (unsigned i = 0; i < n; i++) { | 
|  | WordType low, mid, high, srcPart; | 
|  |  | 
|  | /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY. | 
|  |  | 
|  | This cannot overflow, because | 
|  |  | 
|  | (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1) | 
|  |  | 
|  | which is less than n^2.  */ | 
|  |  | 
|  | srcPart = src[i]; | 
|  |  | 
|  | if (multiplier == 0 || srcPart == 0) { | 
|  | low = carry; | 
|  | high = 0; | 
|  | } else { | 
|  | low = lowHalf(srcPart) * lowHalf(multiplier); | 
|  | high = highHalf(srcPart) * highHalf(multiplier); | 
|  |  | 
|  | mid = lowHalf(srcPart) * highHalf(multiplier); | 
|  | high += highHalf(mid); | 
|  | mid <<= APINT_BITS_PER_WORD / 2; | 
|  | if (low + mid < low) | 
|  | high++; | 
|  | low += mid; | 
|  |  | 
|  | mid = highHalf(srcPart) * lowHalf(multiplier); | 
|  | high += highHalf(mid); | 
|  | mid <<= APINT_BITS_PER_WORD / 2; | 
|  | if (low + mid < low) | 
|  | high++; | 
|  | low += mid; | 
|  |  | 
|  | /* Now add carry.  */ | 
|  | if (low + carry < low) | 
|  | high++; | 
|  | low += carry; | 
|  | } | 
|  |  | 
|  | if (add) { | 
|  | /* And now DST[i], and store the new low part there.  */ | 
|  | if (low + dst[i] < low) | 
|  | high++; | 
|  | dst[i] += low; | 
|  | } else | 
|  | dst[i] = low; | 
|  |  | 
|  | carry = high; | 
|  | } | 
|  |  | 
|  | if (srcParts < dstParts) { | 
|  | /* Full multiplication, there is no overflow.  */ | 
|  | assert(srcParts + 1 == dstParts); | 
|  | dst[srcParts] = carry; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* We overflowed if there is carry.  */ | 
|  | if (carry) | 
|  | return 1; | 
|  |  | 
|  | /* We would overflow if any significant unwritten parts would be | 
|  | non-zero.  This is true if any remaining src parts are non-zero | 
|  | and the multiplier is non-zero.  */ | 
|  | if (multiplier) | 
|  | for (unsigned i = dstParts; i < srcParts; i++) | 
|  | if (src[i]) | 
|  | return 1; | 
|  |  | 
|  | /* We fitted in the narrow destination.  */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* DST = LHS * RHS, where DST has the same width as the operands and | 
|  | is filled with the least significant parts of the result.  Returns | 
|  | one if overflow occurred, otherwise zero.  DST must be disjoint | 
|  | from both operands.  */ | 
|  | int APInt::tcMultiply(WordType *dst, const WordType *lhs, | 
|  | const WordType *rhs, unsigned parts) { | 
|  | assert(dst != lhs && dst != rhs); | 
|  |  | 
|  | int overflow = 0; | 
|  | tcSet(dst, 0, parts); | 
|  |  | 
|  | for (unsigned i = 0; i < parts; i++) | 
|  | overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts, | 
|  | parts - i, true); | 
|  |  | 
|  | return overflow; | 
|  | } | 
|  |  | 
|  | /// DST = LHS * RHS, where DST has width the sum of the widths of the | 
|  | /// operands. No overflow occurs. DST must be disjoint from both operands. | 
|  | void APInt::tcFullMultiply(WordType *dst, const WordType *lhs, | 
|  | const WordType *rhs, unsigned lhsParts, | 
|  | unsigned rhsParts) { | 
|  | /* Put the narrower number on the LHS for less loops below.  */ | 
|  | if (lhsParts > rhsParts) | 
|  | return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts); | 
|  |  | 
|  | assert(dst != lhs && dst != rhs); | 
|  |  | 
|  | tcSet(dst, 0, rhsParts); | 
|  |  | 
|  | for (unsigned i = 0; i < lhsParts; i++) | 
|  | tcMultiplyPart(&dst[i], rhs, lhs[i], 0, rhsParts, rhsParts + 1, true); | 
|  | } | 
|  |  | 
|  | /* If RHS is zero LHS and REMAINDER are left unchanged, return one. | 
|  | Otherwise set LHS to LHS / RHS with the fractional part discarded, | 
|  | set REMAINDER to the remainder, return zero.  i.e. | 
|  |  | 
|  | OLD_LHS = RHS * LHS + REMAINDER | 
|  |  | 
|  | SCRATCH is a bignum of the same size as the operands and result for | 
|  | use by the routine; its contents need not be initialized and are | 
|  | destroyed.  LHS, REMAINDER and SCRATCH must be distinct. | 
|  | */ | 
|  | int APInt::tcDivide(WordType *lhs, const WordType *rhs, | 
|  | WordType *remainder, WordType *srhs, | 
|  | unsigned parts) { | 
|  | assert(lhs != remainder && lhs != srhs && remainder != srhs); | 
|  |  | 
|  | unsigned shiftCount = tcMSB(rhs, parts) + 1; | 
|  | if (shiftCount == 0) | 
|  | return true; | 
|  |  | 
|  | shiftCount = parts * APINT_BITS_PER_WORD - shiftCount; | 
|  | unsigned n = shiftCount / APINT_BITS_PER_WORD; | 
|  | WordType mask = (WordType) 1 << (shiftCount % APINT_BITS_PER_WORD); | 
|  |  | 
|  | tcAssign(srhs, rhs, parts); | 
|  | tcShiftLeft(srhs, parts, shiftCount); | 
|  | tcAssign(remainder, lhs, parts); | 
|  | tcSet(lhs, 0, parts); | 
|  |  | 
|  | /* Loop, subtracting SRHS if REMAINDER is greater and adding that to | 
|  | the total.  */ | 
|  | for (;;) { | 
|  | int compare = tcCompare(remainder, srhs, parts); | 
|  | if (compare >= 0) { | 
|  | tcSubtract(remainder, srhs, 0, parts); | 
|  | lhs[n] |= mask; | 
|  | } | 
|  |  | 
|  | if (shiftCount == 0) | 
|  | break; | 
|  | shiftCount--; | 
|  | tcShiftRight(srhs, parts, 1); | 
|  | if ((mask >>= 1) == 0) { | 
|  | mask = (WordType) 1 << (APINT_BITS_PER_WORD - 1); | 
|  | n--; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Shift a bignum left Cound bits in-place. Shifted in bits are zero. There are | 
|  | /// no restrictions on Count. | 
|  | void APInt::tcShiftLeft(WordType *Dst, unsigned Words, unsigned Count) { | 
|  | // Don't bother performing a no-op shift. | 
|  | if (!Count) | 
|  | return; | 
|  |  | 
|  | // WordShift is the inter-part shift; BitShift is the intra-part shift. | 
|  | unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words); | 
|  | unsigned BitShift = Count % APINT_BITS_PER_WORD; | 
|  |  | 
|  | // Fastpath for moving by whole words. | 
|  | if (BitShift == 0) { | 
|  | std::memmove(Dst + WordShift, Dst, (Words - WordShift) * APINT_WORD_SIZE); | 
|  | } else { | 
|  | while (Words-- > WordShift) { | 
|  | Dst[Words] = Dst[Words - WordShift] << BitShift; | 
|  | if (Words > WordShift) | 
|  | Dst[Words] |= | 
|  | Dst[Words - WordShift - 1] >> (APINT_BITS_PER_WORD - BitShift); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Fill in the remainder with 0s. | 
|  | std::memset(Dst, 0, WordShift * APINT_WORD_SIZE); | 
|  | } | 
|  |  | 
|  | /// Shift a bignum right Count bits in-place. Shifted in bits are zero. There | 
|  | /// are no restrictions on Count. | 
|  | void APInt::tcShiftRight(WordType *Dst, unsigned Words, unsigned Count) { | 
|  | // Don't bother performing a no-op shift. | 
|  | if (!Count) | 
|  | return; | 
|  |  | 
|  | // WordShift is the inter-part shift; BitShift is the intra-part shift. | 
|  | unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words); | 
|  | unsigned BitShift = Count % APINT_BITS_PER_WORD; | 
|  |  | 
|  | unsigned WordsToMove = Words - WordShift; | 
|  | // Fastpath for moving by whole words. | 
|  | if (BitShift == 0) { | 
|  | std::memmove(Dst, Dst + WordShift, WordsToMove * APINT_WORD_SIZE); | 
|  | } else { | 
|  | for (unsigned i = 0; i != WordsToMove; ++i) { | 
|  | Dst[i] = Dst[i + WordShift] >> BitShift; | 
|  | if (i + 1 != WordsToMove) | 
|  | Dst[i] |= Dst[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Fill in the remainder with 0s. | 
|  | std::memset(Dst + WordsToMove, 0, WordShift * APINT_WORD_SIZE); | 
|  | } | 
|  |  | 
|  | /* Bitwise and of two bignums.  */ | 
|  | void APInt::tcAnd(WordType *dst, const WordType *rhs, unsigned parts) { | 
|  | for (unsigned i = 0; i < parts; i++) | 
|  | dst[i] &= rhs[i]; | 
|  | } | 
|  |  | 
|  | /* Bitwise inclusive or of two bignums.  */ | 
|  | void APInt::tcOr(WordType *dst, const WordType *rhs, unsigned parts) { | 
|  | for (unsigned i = 0; i < parts; i++) | 
|  | dst[i] |= rhs[i]; | 
|  | } | 
|  |  | 
|  | /* Bitwise exclusive or of two bignums.  */ | 
|  | void APInt::tcXor(WordType *dst, const WordType *rhs, unsigned parts) { | 
|  | for (unsigned i = 0; i < parts; i++) | 
|  | dst[i] ^= rhs[i]; | 
|  | } | 
|  |  | 
|  | /* Complement a bignum in-place.  */ | 
|  | void APInt::tcComplement(WordType *dst, unsigned parts) { | 
|  | for (unsigned i = 0; i < parts; i++) | 
|  | dst[i] = ~dst[i]; | 
|  | } | 
|  |  | 
|  | /* Comparison (unsigned) of two bignums.  */ | 
|  | int APInt::tcCompare(const WordType *lhs, const WordType *rhs, | 
|  | unsigned parts) { | 
|  | while (parts) { | 
|  | parts--; | 
|  | if (lhs[parts] != rhs[parts]) | 
|  | return (lhs[parts] > rhs[parts]) ? 1 : -1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Set the least significant BITS bits of a bignum, clear the | 
|  | rest.  */ | 
|  | void APInt::tcSetLeastSignificantBits(WordType *dst, unsigned parts, | 
|  | unsigned bits) { | 
|  | unsigned i = 0; | 
|  | while (bits > APINT_BITS_PER_WORD) { | 
|  | dst[i++] = ~(WordType) 0; | 
|  | bits -= APINT_BITS_PER_WORD; | 
|  | } | 
|  |  | 
|  | if (bits) | 
|  | dst[i++] = ~(WordType) 0 >> (APINT_BITS_PER_WORD - bits); | 
|  |  | 
|  | while (i < parts) | 
|  | dst[i++] = 0; | 
|  | } | 
|  |  | 
|  | APInt llvm::APIntOps::RoundingUDiv(const APInt &A, const APInt &B, | 
|  | APInt::Rounding RM) { | 
|  | // Currently udivrem always rounds down. | 
|  | switch (RM) { | 
|  | case APInt::Rounding::DOWN: | 
|  | case APInt::Rounding::TOWARD_ZERO: | 
|  | return A.udiv(B); | 
|  | case APInt::Rounding::UP: { | 
|  | APInt Quo, Rem; | 
|  | APInt::udivrem(A, B, Quo, Rem); | 
|  | if (Rem == 0) | 
|  | return Quo; | 
|  | return Quo + 1; | 
|  | } | 
|  | } | 
|  | llvm_unreachable("Unknown APInt::Rounding enum"); | 
|  | } | 
|  |  | 
|  | APInt llvm::APIntOps::RoundingSDiv(const APInt &A, const APInt &B, | 
|  | APInt::Rounding RM) { | 
|  | switch (RM) { | 
|  | case APInt::Rounding::DOWN: | 
|  | case APInt::Rounding::UP: { | 
|  | APInt Quo, Rem; | 
|  | APInt::sdivrem(A, B, Quo, Rem); | 
|  | if (Rem == 0) | 
|  | return Quo; | 
|  | // This algorithm deals with arbitrary rounding mode used by sdivrem. | 
|  | // We want to check whether the non-integer part of the mathematical value | 
|  | // is negative or not. If the non-integer part is negative, we need to round | 
|  | // down from Quo; otherwise, if it's positive or 0, we return Quo, as it's | 
|  | // already rounded down. | 
|  | if (RM == APInt::Rounding::DOWN) { | 
|  | if (Rem.isNegative() != B.isNegative()) | 
|  | return Quo - 1; | 
|  | return Quo; | 
|  | } | 
|  | if (Rem.isNegative() != B.isNegative()) | 
|  | return Quo; | 
|  | return Quo + 1; | 
|  | } | 
|  | // Currently sdiv rounds twards zero. | 
|  | case APInt::Rounding::TOWARD_ZERO: | 
|  | return A.sdiv(B); | 
|  | } | 
|  | llvm_unreachable("Unknown APInt::Rounding enum"); | 
|  | } | 
|  |  | 
|  | Optional<APInt> | 
|  | llvm::APIntOps::SolveQuadraticEquationWrap(APInt A, APInt B, APInt C, | 
|  | unsigned RangeWidth) { | 
|  | unsigned CoeffWidth = A.getBitWidth(); | 
|  | assert(CoeffWidth == B.getBitWidth() && CoeffWidth == C.getBitWidth()); | 
|  | assert(RangeWidth <= CoeffWidth && | 
|  | "Value range width should be less than coefficient width"); | 
|  | assert(RangeWidth > 1 && "Value range bit width should be > 1"); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << __func__ << ": solving " << A << "x^2 + " << B | 
|  | << "x + " << C << ", rw:" << RangeWidth << '\n'); | 
|  |  | 
|  | // Identify 0 as a (non)solution immediately. | 
|  | if (C.sextOrTrunc(RangeWidth).isNullValue() ) { | 
|  | LLVM_DEBUG(dbgs() << __func__ << ": zero solution\n"); | 
|  | return APInt(CoeffWidth, 0); | 
|  | } | 
|  |  | 
|  | // The result of APInt arithmetic has the same bit width as the operands, | 
|  | // so it can actually lose high bits. A product of two n-bit integers needs | 
|  | // 2n-1 bits to represent the full value. | 
|  | // The operation done below (on quadratic coefficients) that can produce | 
|  | // the largest value is the evaluation of the equation during bisection, | 
|  | // which needs 3 times the bitwidth of the coefficient, so the total number | 
|  | // of required bits is 3n. | 
|  | // | 
|  | // The purpose of this extension is to simulate the set Z of all integers, | 
|  | // where n+1 > n for all n in Z. In Z it makes sense to talk about positive | 
|  | // and negative numbers (not so much in a modulo arithmetic). The method | 
|  | // used to solve the equation is based on the standard formula for real | 
|  | // numbers, and uses the concepts of "positive" and "negative" with their | 
|  | // usual meanings. | 
|  | CoeffWidth *= 3; | 
|  | A = A.sext(CoeffWidth); | 
|  | B = B.sext(CoeffWidth); | 
|  | C = C.sext(CoeffWidth); | 
|  |  | 
|  | // Make A > 0 for simplicity. Negate cannot overflow at this point because | 
|  | // the bit width has increased. | 
|  | if (A.isNegative()) { | 
|  | A.negate(); | 
|  | B.negate(); | 
|  | C.negate(); | 
|  | } | 
|  |  | 
|  | // Solving an equation q(x) = 0 with coefficients in modular arithmetic | 
|  | // is really solving a set of equations q(x) = kR for k = 0, 1, 2, ..., | 
|  | // and R = 2^BitWidth. | 
|  | // Since we're trying not only to find exact solutions, but also values | 
|  | // that "wrap around", such a set will always have a solution, i.e. an x | 
|  | // that satisfies at least one of the equations, or such that |q(x)| | 
|  | // exceeds kR, while |q(x-1)| for the same k does not. | 
|  | // | 
|  | // We need to find a value k, such that Ax^2 + Bx + C = kR will have a | 
|  | // positive solution n (in the above sense), and also such that the n | 
|  | // will be the least among all solutions corresponding to k = 0, 1, ... | 
|  | // (more precisely, the least element in the set | 
|  | //   { n(k) | k is such that a solution n(k) exists }). | 
|  | // | 
|  | // Consider the parabola (over real numbers) that corresponds to the | 
|  | // quadratic equation. Since A > 0, the arms of the parabola will point | 
|  | // up. Picking different values of k will shift it up and down by R. | 
|  | // | 
|  | // We want to shift the parabola in such a way as to reduce the problem | 
|  | // of solving q(x) = kR to solving shifted_q(x) = 0. | 
|  | // (The interesting solutions are the ceilings of the real number | 
|  | // solutions.) | 
|  | APInt R = APInt::getOneBitSet(CoeffWidth, RangeWidth); | 
|  | APInt TwoA = 2 * A; | 
|  | APInt SqrB = B * B; | 
|  | bool PickLow; | 
|  |  | 
|  | auto RoundUp = [] (const APInt &V, const APInt &A) -> APInt { | 
|  | assert(A.isStrictlyPositive()); | 
|  | APInt T = V.abs().urem(A); | 
|  | if (T.isNullValue()) | 
|  | return V; | 
|  | return V.isNegative() ? V+T : V+(A-T); | 
|  | }; | 
|  |  | 
|  | // The vertex of the parabola is at -B/2A, but since A > 0, it's negative | 
|  | // iff B is positive. | 
|  | if (B.isNonNegative()) { | 
|  | // If B >= 0, the vertex it at a negative location (or at 0), so in | 
|  | // order to have a non-negative solution we need to pick k that makes | 
|  | // C-kR negative. To satisfy all the requirements for the solution | 
|  | // that we are looking for, it needs to be closest to 0 of all k. | 
|  | C = C.srem(R); | 
|  | if (C.isStrictlyPositive()) | 
|  | C -= R; | 
|  | // Pick the greater solution. | 
|  | PickLow = false; | 
|  | } else { | 
|  | // If B < 0, the vertex is at a positive location. For any solution | 
|  | // to exist, the discriminant must be non-negative. This means that | 
|  | // C-kR <= B^2/4A is a necessary condition for k, i.e. there is a | 
|  | // lower bound on values of k: kR >= C - B^2/4A. | 
|  | APInt LowkR = C - SqrB.udiv(2*TwoA); // udiv because all values > 0. | 
|  | // Round LowkR up (towards +inf) to the nearest kR. | 
|  | LowkR = RoundUp(LowkR, R); | 
|  |  | 
|  | // If there exists k meeting the condition above, and such that | 
|  | // C-kR > 0, there will be two positive real number solutions of | 
|  | // q(x) = kR. Out of all such values of k, pick the one that makes | 
|  | // C-kR closest to 0, (i.e. pick maximum k such that C-kR > 0). | 
|  | // In other words, find maximum k such that LowkR <= kR < C. | 
|  | if (C.sgt(LowkR)) { | 
|  | // If LowkR < C, then such a k is guaranteed to exist because | 
|  | // LowkR itself is a multiple of R. | 
|  | C -= -RoundUp(-C, R);      // C = C - RoundDown(C, R) | 
|  | // Pick the smaller solution. | 
|  | PickLow = true; | 
|  | } else { | 
|  | // If C-kR < 0 for all potential k's, it means that one solution | 
|  | // will be negative, while the other will be positive. The positive | 
|  | // solution will shift towards 0 if the parabola is moved up. | 
|  | // Pick the kR closest to the lower bound (i.e. make C-kR closest | 
|  | // to 0, or in other words, out of all parabolas that have solutions, | 
|  | // pick the one that is the farthest "up"). | 
|  | // Since LowkR is itself a multiple of R, simply take C-LowkR. | 
|  | C -= LowkR; | 
|  | // Pick the greater solution. | 
|  | PickLow = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << __func__ << ": updated coefficients " << A << "x^2 + " | 
|  | << B << "x + " << C << ", rw:" << RangeWidth << '\n'); | 
|  |  | 
|  | APInt D = SqrB - 4*A*C; | 
|  | assert(D.isNonNegative() && "Negative discriminant"); | 
|  | APInt SQ = D.sqrt(); | 
|  |  | 
|  | APInt Q = SQ * SQ; | 
|  | bool InexactSQ = Q != D; | 
|  | // The calculated SQ may actually be greater than the exact (non-integer) | 
|  | // value. If that's the case, decremement SQ to get a value that is lower. | 
|  | if (Q.sgt(D)) | 
|  | SQ -= 1; | 
|  |  | 
|  | APInt X; | 
|  | APInt Rem; | 
|  |  | 
|  | // SQ is rounded down (i.e SQ * SQ <= D), so the roots may be inexact. | 
|  | // When using the quadratic formula directly, the calculated low root | 
|  | // may be greater than the exact one, since we would be subtracting SQ. | 
|  | // To make sure that the calculated root is not greater than the exact | 
|  | // one, subtract SQ+1 when calculating the low root (for inexact value | 
|  | // of SQ). | 
|  | if (PickLow) | 
|  | APInt::sdivrem(-B - (SQ+InexactSQ), TwoA, X, Rem); | 
|  | else | 
|  | APInt::sdivrem(-B + SQ, TwoA, X, Rem); | 
|  |  | 
|  | // The updated coefficients should be such that the (exact) solution is | 
|  | // positive. Since APInt division rounds towards 0, the calculated one | 
|  | // can be 0, but cannot be negative. | 
|  | assert(X.isNonNegative() && "Solution should be non-negative"); | 
|  |  | 
|  | if (!InexactSQ && Rem.isNullValue()) { | 
|  | LLVM_DEBUG(dbgs() << __func__ << ": solution (root): " << X << '\n'); | 
|  | return X; | 
|  | } | 
|  |  | 
|  | assert((SQ*SQ).sle(D) && "SQ = |_sqrt(D)_|, so SQ*SQ <= D"); | 
|  | // The exact value of the square root of D should be between SQ and SQ+1. | 
|  | // This implies that the solution should be between that corresponding to | 
|  | // SQ (i.e. X) and that corresponding to SQ+1. | 
|  | // | 
|  | // The calculated X cannot be greater than the exact (real) solution. | 
|  | // Actually it must be strictly less than the exact solution, while | 
|  | // X+1 will be greater than or equal to it. | 
|  |  | 
|  | APInt VX = (A*X + B)*X + C; | 
|  | APInt VY = VX + TwoA*X + A + B; | 
|  | bool SignChange = VX.isNegative() != VY.isNegative() || | 
|  | VX.isNullValue() != VY.isNullValue(); | 
|  | // If the sign did not change between X and X+1, X is not a valid solution. | 
|  | // This could happen when the actual (exact) roots don't have an integer | 
|  | // between them, so they would both be contained between X and X+1. | 
|  | if (!SignChange) { | 
|  | LLVM_DEBUG(dbgs() << __func__ << ": no valid solution\n"); | 
|  | return None; | 
|  | } | 
|  |  | 
|  | X += 1; | 
|  | LLVM_DEBUG(dbgs() << __func__ << ": solution (wrap): " << X << '\n'); | 
|  | return X; | 
|  | } |