|  | //===-- SpillPlacement.cpp - Optimal Spill Code Placement -----------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the spill code placement analysis. | 
|  | // | 
|  | // Each edge bundle corresponds to a node in a Hopfield network. Constraints on | 
|  | // basic blocks are weighted by the block frequency and added to become the node | 
|  | // bias. | 
|  | // | 
|  | // Transparent basic blocks have the variable live through, but don't care if it | 
|  | // is spilled or in a register. These blocks become connections in the Hopfield | 
|  | // network, again weighted by block frequency. | 
|  | // | 
|  | // The Hopfield network minimizes (possibly locally) its energy function: | 
|  | // | 
|  | //   E = -sum_n V_n * ( B_n + sum_{n, m linked by b} V_m * F_b ) | 
|  | // | 
|  | // The energy function represents the expected spill code execution frequency, | 
|  | // or the cost of spilling. This is a Lyapunov function which never increases | 
|  | // when a node is updated. It is guaranteed to converge to a local minimum. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #define DEBUG_TYPE "spillplacement" | 
|  | #include "SpillPlacement.h" | 
|  | #include "llvm/CodeGen/EdgeBundles.h" | 
|  | #include "llvm/CodeGen/LiveIntervalAnalysis.h" | 
|  | #include "llvm/CodeGen/MachineBasicBlock.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineLoopInfo.h" | 
|  | #include "llvm/CodeGen/Passes.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/Format.h" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | char SpillPlacement::ID = 0; | 
|  | INITIALIZE_PASS_BEGIN(SpillPlacement, "spill-code-placement", | 
|  | "Spill Code Placement Analysis", true, true) | 
|  | INITIALIZE_PASS_DEPENDENCY(EdgeBundles) | 
|  | INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) | 
|  | INITIALIZE_PASS_END(SpillPlacement, "spill-code-placement", | 
|  | "Spill Code Placement Analysis", true, true) | 
|  |  | 
|  | char &llvm::SpillPlacementID = SpillPlacement::ID; | 
|  |  | 
|  | void SpillPlacement::getAnalysisUsage(AnalysisUsage &AU) const { | 
|  | AU.setPreservesAll(); | 
|  | AU.addRequiredTransitive<EdgeBundles>(); | 
|  | AU.addRequiredTransitive<MachineLoopInfo>(); | 
|  | MachineFunctionPass::getAnalysisUsage(AU); | 
|  | } | 
|  |  | 
|  | /// Node - Each edge bundle corresponds to a Hopfield node. | 
|  | /// | 
|  | /// The node contains precomputed frequency data that only depends on the CFG, | 
|  | /// but Bias and Links are computed each time placeSpills is called. | 
|  | /// | 
|  | /// The node Value is positive when the variable should be in a register. The | 
|  | /// value can change when linked nodes change, but convergence is very fast | 
|  | /// because all weights are positive. | 
|  | /// | 
|  | struct SpillPlacement::Node { | 
|  | /// Scale - Inverse block frequency feeding into[0] or out of[1] the bundle. | 
|  | /// Ideally, these two numbers should be identical, but inaccuracies in the | 
|  | /// block frequency estimates means that we need to normalize ingoing and | 
|  | /// outgoing frequencies separately so they are commensurate. | 
|  | float Scale[2]; | 
|  |  | 
|  | /// Bias - Normalized contributions from non-transparent blocks. | 
|  | /// A bundle connected to a MustSpill block has a huge negative bias, | 
|  | /// otherwise it is a number in the range [-2;2]. | 
|  | float Bias; | 
|  |  | 
|  | /// Value - Output value of this node computed from the Bias and links. | 
|  | /// This is always in the range [-1;1]. A positive number means the variable | 
|  | /// should go in a register through this bundle. | 
|  | float Value; | 
|  |  | 
|  | typedef SmallVector<std::pair<float, unsigned>, 4> LinkVector; | 
|  |  | 
|  | /// Links - (Weight, BundleNo) for all transparent blocks connecting to other | 
|  | /// bundles. The weights are all positive and add up to at most 2, weights | 
|  | /// from ingoing and outgoing nodes separately add up to a most 1. The weight | 
|  | /// sum can be less than 2 when the variable is not live into / out of some | 
|  | /// connected basic blocks. | 
|  | LinkVector Links; | 
|  |  | 
|  | /// preferReg - Return true when this node prefers to be in a register. | 
|  | bool preferReg() const { | 
|  | // Undecided nodes (Value==0) go on the stack. | 
|  | return Value > 0; | 
|  | } | 
|  |  | 
|  | /// mustSpill - Return True if this node is so biased that it must spill. | 
|  | bool mustSpill() const { | 
|  | // Actually, we must spill if Bias < sum(weights). | 
|  | // It may be worth it to compute the weight sum here? | 
|  | return Bias < -2.0f; | 
|  | } | 
|  |  | 
|  | /// Node - Create a blank Node. | 
|  | Node() { | 
|  | Scale[0] = Scale[1] = 0; | 
|  | } | 
|  |  | 
|  | /// clear - Reset per-query data, but preserve frequencies that only depend on | 
|  | // the CFG. | 
|  | void clear() { | 
|  | Bias = Value = 0; | 
|  | Links.clear(); | 
|  | } | 
|  |  | 
|  | /// addLink - Add a link to bundle b with weight w. | 
|  | /// out=0 for an ingoing link, and 1 for an outgoing link. | 
|  | void addLink(unsigned b, float w, bool out) { | 
|  | // Normalize w relative to all connected blocks from that direction. | 
|  | w *= Scale[out]; | 
|  |  | 
|  | // There can be multiple links to the same bundle, add them up. | 
|  | for (LinkVector::iterator I = Links.begin(), E = Links.end(); I != E; ++I) | 
|  | if (I->second == b) { | 
|  | I->first += w; | 
|  | return; | 
|  | } | 
|  | // This must be the first link to b. | 
|  | Links.push_back(std::make_pair(w, b)); | 
|  | } | 
|  |  | 
|  | /// addBias - Bias this node from an ingoing[0] or outgoing[1] link. | 
|  | /// Return the change to the total number of positive biases. | 
|  | void addBias(float w, bool out) { | 
|  | // Normalize w relative to all connected blocks from that direction. | 
|  | w *= Scale[out]; | 
|  | Bias += w; | 
|  | } | 
|  |  | 
|  | /// update - Recompute Value from Bias and Links. Return true when node | 
|  | /// preference changes. | 
|  | bool update(const Node nodes[]) { | 
|  | // Compute the weighted sum of inputs. | 
|  | float Sum = Bias; | 
|  | for (LinkVector::iterator I = Links.begin(), E = Links.end(); I != E; ++I) | 
|  | Sum += I->first * nodes[I->second].Value; | 
|  |  | 
|  | // The weighted sum is going to be in the range [-2;2]. Ideally, we should | 
|  | // simply set Value = sign(Sum), but we will add a dead zone around 0 for | 
|  | // two reasons: | 
|  | //  1. It avoids arbitrary bias when all links are 0 as is possible during | 
|  | //     initial iterations. | 
|  | //  2. It helps tame rounding errors when the links nominally sum to 0. | 
|  | const float Thres = 1e-4f; | 
|  | bool Before = preferReg(); | 
|  | if (Sum < -Thres) | 
|  | Value = -1; | 
|  | else if (Sum > Thres) | 
|  | Value = 1; | 
|  | else | 
|  | Value = 0; | 
|  | return Before != preferReg(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | bool SpillPlacement::runOnMachineFunction(MachineFunction &mf) { | 
|  | MF = &mf; | 
|  | bundles = &getAnalysis<EdgeBundles>(); | 
|  | loops = &getAnalysis<MachineLoopInfo>(); | 
|  |  | 
|  | assert(!nodes && "Leaking node array"); | 
|  | nodes = new Node[bundles->getNumBundles()]; | 
|  |  | 
|  | // Compute total ingoing and outgoing block frequencies for all bundles. | 
|  | BlockFrequency.resize(mf.getNumBlockIDs()); | 
|  | for (MachineFunction::iterator I = mf.begin(), E = mf.end(); I != E; ++I) { | 
|  | float Freq = LiveIntervals::getSpillWeight(true, false, | 
|  | loops->getLoopDepth(I)); | 
|  | unsigned Num = I->getNumber(); | 
|  | BlockFrequency[Num] = Freq; | 
|  | nodes[bundles->getBundle(Num, 1)].Scale[0] += Freq; | 
|  | nodes[bundles->getBundle(Num, 0)].Scale[1] += Freq; | 
|  | } | 
|  |  | 
|  | // Scales are reciprocal frequencies. | 
|  | for (unsigned i = 0, e = bundles->getNumBundles(); i != e; ++i) | 
|  | for (unsigned d = 0; d != 2; ++d) | 
|  | if (nodes[i].Scale[d] > 0) | 
|  | nodes[i].Scale[d] = 1 / nodes[i].Scale[d]; | 
|  |  | 
|  | // We never change the function. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void SpillPlacement::releaseMemory() { | 
|  | delete[] nodes; | 
|  | nodes = 0; | 
|  | } | 
|  |  | 
|  | /// activate - mark node n as active if it wasn't already. | 
|  | void SpillPlacement::activate(unsigned n) { | 
|  | if (ActiveNodes->test(n)) | 
|  | return; | 
|  | ActiveNodes->set(n); | 
|  | nodes[n].clear(); | 
|  |  | 
|  | // Very large bundles usually come from big switches, indirect branches, | 
|  | // landing pads, or loops with many 'continue' statements. It is difficult to | 
|  | // allocate registers when so many different blocks are involved. | 
|  | // | 
|  | // Give a small negative bias to large bundles such that 1/32 of the | 
|  | // connected blocks need to be interested before we consider expanding the | 
|  | // region through the bundle. This helps compile time by limiting the number | 
|  | // of blocks visited and the number of links in the Hopfield network. | 
|  | if (bundles->getBlocks(n).size() > 100) | 
|  | nodes[n].Bias = -0.0625f; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// addConstraints - Compute node biases and weights from a set of constraints. | 
|  | /// Set a bit in NodeMask for each active node. | 
|  | void SpillPlacement::addConstraints(ArrayRef<BlockConstraint> LiveBlocks) { | 
|  | for (ArrayRef<BlockConstraint>::iterator I = LiveBlocks.begin(), | 
|  | E = LiveBlocks.end(); I != E; ++I) { | 
|  | float Freq = getBlockFrequency(I->Number); | 
|  | const float Bias[] = { | 
|  | 0,           // DontCare, | 
|  | 1,           // PrefReg, | 
|  | -1,          // PrefSpill | 
|  | 0,           // PrefBoth | 
|  | -HUGE_VALF   // MustSpill | 
|  | }; | 
|  |  | 
|  | // Live-in to block? | 
|  | if (I->Entry != DontCare) { | 
|  | unsigned ib = bundles->getBundle(I->Number, 0); | 
|  | activate(ib); | 
|  | nodes[ib].addBias(Freq * Bias[I->Entry], 1); | 
|  | } | 
|  |  | 
|  | // Live-out from block? | 
|  | if (I->Exit != DontCare) { | 
|  | unsigned ob = bundles->getBundle(I->Number, 1); | 
|  | activate(ob); | 
|  | nodes[ob].addBias(Freq * Bias[I->Exit], 0); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// addPrefSpill - Same as addConstraints(PrefSpill) | 
|  | void SpillPlacement::addPrefSpill(ArrayRef<unsigned> Blocks, bool Strong) { | 
|  | for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end(); | 
|  | I != E; ++I) { | 
|  | float Freq = getBlockFrequency(*I); | 
|  | if (Strong) | 
|  | Freq += Freq; | 
|  | unsigned ib = bundles->getBundle(*I, 0); | 
|  | unsigned ob = bundles->getBundle(*I, 1); | 
|  | activate(ib); | 
|  | activate(ob); | 
|  | nodes[ib].addBias(-Freq, 1); | 
|  | nodes[ob].addBias(-Freq, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | void SpillPlacement::addLinks(ArrayRef<unsigned> Links) { | 
|  | for (ArrayRef<unsigned>::iterator I = Links.begin(), E = Links.end(); I != E; | 
|  | ++I) { | 
|  | unsigned Number = *I; | 
|  | unsigned ib = bundles->getBundle(Number, 0); | 
|  | unsigned ob = bundles->getBundle(Number, 1); | 
|  |  | 
|  | // Ignore self-loops. | 
|  | if (ib == ob) | 
|  | continue; | 
|  | activate(ib); | 
|  | activate(ob); | 
|  | if (nodes[ib].Links.empty() && !nodes[ib].mustSpill()) | 
|  | Linked.push_back(ib); | 
|  | if (nodes[ob].Links.empty() && !nodes[ob].mustSpill()) | 
|  | Linked.push_back(ob); | 
|  | float Freq = getBlockFrequency(Number); | 
|  | nodes[ib].addLink(ob, Freq, 1); | 
|  | nodes[ob].addLink(ib, Freq, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool SpillPlacement::scanActiveBundles() { | 
|  | Linked.clear(); | 
|  | RecentPositive.clear(); | 
|  | for (int n = ActiveNodes->find_first(); n>=0; n = ActiveNodes->find_next(n)) { | 
|  | nodes[n].update(nodes); | 
|  | // A node that must spill, or a node without any links is not going to | 
|  | // change its value ever again, so exclude it from iterations. | 
|  | if (nodes[n].mustSpill()) | 
|  | continue; | 
|  | if (!nodes[n].Links.empty()) | 
|  | Linked.push_back(n); | 
|  | if (nodes[n].preferReg()) | 
|  | RecentPositive.push_back(n); | 
|  | } | 
|  | return !RecentPositive.empty(); | 
|  | } | 
|  |  | 
|  | /// iterate - Repeatedly update the Hopfield nodes until stability or the | 
|  | /// maximum number of iterations is reached. | 
|  | /// @param Linked - Numbers of linked nodes that need updating. | 
|  | void SpillPlacement::iterate() { | 
|  | // First update the recently positive nodes. They have likely received new | 
|  | // negative bias that will turn them off. | 
|  | while (!RecentPositive.empty()) | 
|  | nodes[RecentPositive.pop_back_val()].update(nodes); | 
|  |  | 
|  | if (Linked.empty()) | 
|  | return; | 
|  |  | 
|  | // Run up to 10 iterations. The edge bundle numbering is closely related to | 
|  | // basic block numbering, so there is a strong tendency towards chains of | 
|  | // linked nodes with sequential numbers. By scanning the linked nodes | 
|  | // backwards and forwards, we make it very likely that a single node can | 
|  | // affect the entire network in a single iteration. That means very fast | 
|  | // convergence, usually in a single iteration. | 
|  | for (unsigned iteration = 0; iteration != 10; ++iteration) { | 
|  | // Scan backwards, skipping the last node which was just updated. | 
|  | bool Changed = false; | 
|  | for (SmallVectorImpl<unsigned>::const_reverse_iterator I = | 
|  | llvm::next(Linked.rbegin()), E = Linked.rend(); I != E; ++I) { | 
|  | unsigned n = *I; | 
|  | if (nodes[n].update(nodes)) { | 
|  | Changed = true; | 
|  | if (nodes[n].preferReg()) | 
|  | RecentPositive.push_back(n); | 
|  | } | 
|  | } | 
|  | if (!Changed || !RecentPositive.empty()) | 
|  | return; | 
|  |  | 
|  | // Scan forwards, skipping the first node which was just updated. | 
|  | Changed = false; | 
|  | for (SmallVectorImpl<unsigned>::const_iterator I = | 
|  | llvm::next(Linked.begin()), E = Linked.end(); I != E; ++I) { | 
|  | unsigned n = *I; | 
|  | if (nodes[n].update(nodes)) { | 
|  | Changed = true; | 
|  | if (nodes[n].preferReg()) | 
|  | RecentPositive.push_back(n); | 
|  | } | 
|  | } | 
|  | if (!Changed || !RecentPositive.empty()) | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | void SpillPlacement::prepare(BitVector &RegBundles) { | 
|  | Linked.clear(); | 
|  | RecentPositive.clear(); | 
|  | // Reuse RegBundles as our ActiveNodes vector. | 
|  | ActiveNodes = &RegBundles; | 
|  | ActiveNodes->clear(); | 
|  | ActiveNodes->resize(bundles->getNumBundles()); | 
|  | } | 
|  |  | 
|  | bool | 
|  | SpillPlacement::finish() { | 
|  | assert(ActiveNodes && "Call prepare() first"); | 
|  |  | 
|  | // Write preferences back to ActiveNodes. | 
|  | bool Perfect = true; | 
|  | for (int n = ActiveNodes->find_first(); n>=0; n = ActiveNodes->find_next(n)) | 
|  | if (!nodes[n].preferReg()) { | 
|  | ActiveNodes->reset(n); | 
|  | Perfect = false; | 
|  | } | 
|  | ActiveNodes = 0; | 
|  | return Perfect; | 
|  | } |