|  | //===- TopDownClosure.cpp - Compute the top-down interprocedure closure ---===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file was developed by the LLVM research group and is distributed under | 
|  | // the University of Illinois Open Source License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the TDDataStructures class, which represents the | 
|  | // Top-down Interprocedural closure of the data structure graph over the | 
|  | // program.  This is useful (but not strictly necessary?) for applications | 
|  | // like pointer analysis. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Analysis/DataStructure/DataStructure.h" | 
|  | #include "llvm/Module.h" | 
|  | #include "llvm/DerivedTypes.h" | 
|  | #include "llvm/Analysis/DataStructure/DSGraph.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/Timer.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | #if 0 | 
|  | #define TIME_REGION(VARNAME, DESC) \ | 
|  | NamedRegionTimer VARNAME(DESC) | 
|  | #else | 
|  | #define TIME_REGION(VARNAME, DESC) | 
|  | #endif | 
|  |  | 
|  | namespace { | 
|  | RegisterAnalysis<TDDataStructures>   // Register the pass | 
|  | Y("tddatastructure", "Top-down Data Structure Analysis"); | 
|  |  | 
|  | Statistic<> NumTDInlines("tddatastructures", "Number of graphs inlined"); | 
|  | } | 
|  |  | 
|  | void TDDataStructures::markReachableFunctionsExternallyAccessible(DSNode *N, | 
|  | hash_set<DSNode*> &Visited) { | 
|  | if (!N || Visited.count(N)) return; | 
|  | Visited.insert(N); | 
|  |  | 
|  | for (unsigned i = 0, e = N->getNumLinks(); i != e; ++i) { | 
|  | DSNodeHandle &NH = N->getLink(i*N->getPointerSize()); | 
|  | if (DSNode *NN = NH.getNode()) { | 
|  | std::vector<Function*> Functions; | 
|  | NN->addFullFunctionList(Functions); | 
|  | ArgsRemainIncomplete.insert(Functions.begin(), Functions.end()); | 
|  | markReachableFunctionsExternallyAccessible(NN, Visited); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | // run - Calculate the top down data structure graphs for each function in the | 
|  | // program. | 
|  | // | 
|  | bool TDDataStructures::runOnModule(Module &M) { | 
|  | BUInfo = &getAnalysis<BUDataStructures>(); | 
|  | GlobalECs = BUInfo->getGlobalECs(); | 
|  | GlobalsGraph = new DSGraph(BUInfo->getGlobalsGraph(), GlobalECs); | 
|  | GlobalsGraph->setPrintAuxCalls(); | 
|  |  | 
|  | // Figure out which functions must not mark their arguments complete because | 
|  | // they are accessible outside this compilation unit.  Currently, these | 
|  | // arguments are functions which are reachable by global variables in the | 
|  | // globals graph. | 
|  | const DSScalarMap &GGSM = GlobalsGraph->getScalarMap(); | 
|  | hash_set<DSNode*> Visited; | 
|  | for (DSScalarMap::global_iterator I=GGSM.global_begin(), E=GGSM.global_end(); | 
|  | I != E; ++I) { | 
|  | DSNode *N = GGSM.find(*I)->second.getNode(); | 
|  | if (N->isIncomplete()) | 
|  | markReachableFunctionsExternallyAccessible(N, Visited); | 
|  | } | 
|  |  | 
|  | // Loop over unresolved call nodes.  Any functions passed into (but not | 
|  | // returned!) from unresolvable call nodes may be invoked outside of the | 
|  | // current module. | 
|  | for (DSGraph::afc_iterator I = GlobalsGraph->afc_begin(), | 
|  | E = GlobalsGraph->afc_end(); I != E; ++I) | 
|  | for (unsigned arg = 0, e = I->getNumPtrArgs(); arg != e; ++arg) | 
|  | markReachableFunctionsExternallyAccessible(I->getPtrArg(arg).getNode(), | 
|  | Visited); | 
|  | Visited.clear(); | 
|  |  | 
|  | // Functions without internal linkage also have unknown incoming arguments! | 
|  | for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) | 
|  | if (!I->isExternal() && !I->hasInternalLinkage()) | 
|  | ArgsRemainIncomplete.insert(I); | 
|  |  | 
|  | // We want to traverse the call graph in reverse post-order.  To do this, we | 
|  | // calculate a post-order traversal, then reverse it. | 
|  | hash_set<DSGraph*> VisitedGraph; | 
|  | std::vector<DSGraph*> PostOrder; | 
|  |  | 
|  | #if 0 | 
|  | {TIME_REGION(XXX, "td:Copy graphs"); | 
|  |  | 
|  | // Visit each of the graphs in reverse post-order now! | 
|  | for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) | 
|  | if (!I->isExternal()) | 
|  | getOrCreateDSGraph(*I); | 
|  | return false; | 
|  | } | 
|  | #endif | 
|  |  | 
|  |  | 
|  | {TIME_REGION(XXX, "td:Compute postorder"); | 
|  |  | 
|  | // Calculate top-down from main... | 
|  | if (Function *F = M.getMainFunction()) | 
|  | ComputePostOrder(*F, VisitedGraph, PostOrder); | 
|  |  | 
|  | // Next calculate the graphs for each unreachable function... | 
|  | for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) | 
|  | ComputePostOrder(*I, VisitedGraph, PostOrder); | 
|  |  | 
|  | VisitedGraph.clear();   // Release memory! | 
|  | } | 
|  |  | 
|  | {TIME_REGION(XXX, "td:Inline stuff"); | 
|  |  | 
|  | // Visit each of the graphs in reverse post-order now! | 
|  | while (!PostOrder.empty()) { | 
|  | InlineCallersIntoGraph(*PostOrder.back()); | 
|  | PostOrder.pop_back(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Free the IndCallMap. | 
|  | while (!IndCallMap.empty()) { | 
|  | delete IndCallMap.begin()->second; | 
|  | IndCallMap.erase(IndCallMap.begin()); | 
|  | } | 
|  |  | 
|  |  | 
|  | ArgsRemainIncomplete.clear(); | 
|  | GlobalsGraph->removeTriviallyDeadNodes(); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | DSGraph &TDDataStructures::getOrCreateDSGraph(Function &F) { | 
|  | DSGraph *&G = DSInfo[&F]; | 
|  | if (G == 0) { // Not created yet?  Clone BU graph... | 
|  | G = new DSGraph(getAnalysis<BUDataStructures>().getDSGraph(F), GlobalECs, | 
|  | DSGraph::DontCloneAuxCallNodes); | 
|  | assert(G->getAuxFunctionCalls().empty() && "Cloned aux calls?"); | 
|  | G->setPrintAuxCalls(); | 
|  | G->setGlobalsGraph(GlobalsGraph); | 
|  |  | 
|  | // Note that this graph is the graph for ALL of the function in the SCC, not | 
|  | // just F. | 
|  | for (DSGraph::retnodes_iterator RI = G->retnodes_begin(), | 
|  | E = G->retnodes_end(); RI != E; ++RI) | 
|  | if (RI->first != &F) | 
|  | DSInfo[RI->first] = G; | 
|  | } | 
|  | return *G; | 
|  | } | 
|  |  | 
|  |  | 
|  | void TDDataStructures::ComputePostOrder(Function &F,hash_set<DSGraph*> &Visited, | 
|  | std::vector<DSGraph*> &PostOrder) { | 
|  | if (F.isExternal()) return; | 
|  | DSGraph &G = getOrCreateDSGraph(F); | 
|  | if (Visited.count(&G)) return; | 
|  | Visited.insert(&G); | 
|  |  | 
|  | // Recursively traverse all of the callee graphs. | 
|  | for (DSGraph::fc_iterator CI = G.fc_begin(), CE = G.fc_end(); CI != CE; ++CI){ | 
|  | Instruction *CallI = CI->getCallSite().getInstruction(); | 
|  | for (BUDataStructures::callee_iterator I = BUInfo->callee_begin(CallI), | 
|  | E = BUInfo->callee_end(CallI); I != E; ++I) | 
|  | ComputePostOrder(*I->second, Visited, PostOrder); | 
|  | } | 
|  |  | 
|  | PostOrder.push_back(&G); | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  | // releaseMemory - If the pass pipeline is done with this pass, we can release | 
|  | // our memory... here... | 
|  | // | 
|  | // FIXME: This should be releaseMemory and will work fine, except that LoadVN | 
|  | // has no way to extend the lifetime of the pass, which screws up ds-aa. | 
|  | // | 
|  | void TDDataStructures::releaseMyMemory() { | 
|  | for (hash_map<Function*, DSGraph*>::iterator I = DSInfo.begin(), | 
|  | E = DSInfo.end(); I != E; ++I) { | 
|  | I->second->getReturnNodes().erase(I->first); | 
|  | if (I->second->getReturnNodes().empty()) | 
|  | delete I->second; | 
|  | } | 
|  |  | 
|  | // Empty map so next time memory is released, data structures are not | 
|  | // re-deleted. | 
|  | DSInfo.clear(); | 
|  | delete GlobalsGraph; | 
|  | GlobalsGraph = 0; | 
|  | } | 
|  |  | 
|  | /// InlineCallersIntoGraph - Inline all of the callers of the specified DS graph | 
|  | /// into it, then recompute completeness of nodes in the resultant graph. | 
|  | void TDDataStructures::InlineCallersIntoGraph(DSGraph &DSG) { | 
|  | // Inline caller graphs into this graph.  First step, get the list of call | 
|  | // sites that call into this graph. | 
|  | std::vector<CallerCallEdge> EdgesFromCaller; | 
|  | std::map<DSGraph*, std::vector<CallerCallEdge> >::iterator | 
|  | CEI = CallerEdges.find(&DSG); | 
|  | if (CEI != CallerEdges.end()) { | 
|  | std::swap(CEI->second, EdgesFromCaller); | 
|  | CallerEdges.erase(CEI); | 
|  | } | 
|  |  | 
|  | // Sort the caller sites to provide a by-caller-graph ordering. | 
|  | std::sort(EdgesFromCaller.begin(), EdgesFromCaller.end()); | 
|  |  | 
|  |  | 
|  | // Merge information from the globals graph into this graph.  FIXME: This is | 
|  | // stupid.  Instead of us cloning information from the GG into this graph, | 
|  | // then having RemoveDeadNodes clone it back, we should do all of this as a | 
|  | // post-pass over all of the graphs.  We need to take cloning out of | 
|  | // removeDeadNodes and gut removeDeadNodes at the same time first though. :( | 
|  | { | 
|  | DSGraph &GG = *DSG.getGlobalsGraph(); | 
|  | ReachabilityCloner RC(DSG, GG, | 
|  | DSGraph::DontCloneCallNodes | | 
|  | DSGraph::DontCloneAuxCallNodes); | 
|  | for (DSScalarMap::global_iterator | 
|  | GI = DSG.getScalarMap().global_begin(), | 
|  | E = DSG.getScalarMap().global_end(); GI != E; ++GI) | 
|  | RC.getClonedNH(GG.getNodeForValue(*GI)); | 
|  | } | 
|  |  | 
|  | DEBUG(std::cerr << "[TD] Inlining callers into '" << DSG.getFunctionNames() | 
|  | << "'\n"); | 
|  |  | 
|  | // Iteratively inline caller graphs into this graph. | 
|  | while (!EdgesFromCaller.empty()) { | 
|  | DSGraph &CallerGraph = *EdgesFromCaller.back().CallerGraph; | 
|  |  | 
|  | // Iterate through all of the call sites of this graph, cloning and merging | 
|  | // any nodes required by the call. | 
|  | ReachabilityCloner RC(DSG, CallerGraph, | 
|  | DSGraph::DontCloneCallNodes | | 
|  | DSGraph::DontCloneAuxCallNodes); | 
|  |  | 
|  | // Inline all call sites from this caller graph. | 
|  | do { | 
|  | const DSCallSite &CS = *EdgesFromCaller.back().CS; | 
|  | Function &CF = *EdgesFromCaller.back().CalledFunction; | 
|  | DEBUG(std::cerr << "   [TD] Inlining graph into Fn '" | 
|  | << CF.getName() << "' from "); | 
|  | if (CallerGraph.getReturnNodes().empty()) | 
|  | DEBUG(std::cerr << "SYNTHESIZED INDIRECT GRAPH"); | 
|  | else | 
|  | DEBUG (std::cerr << "Fn '" | 
|  | << CS.getCallSite().getInstruction()-> | 
|  | getParent()->getParent()->getName() << "'"); | 
|  | DEBUG(std::cerr << ": " << CF.getFunctionType()->getNumParams() | 
|  | << " args\n"); | 
|  |  | 
|  | // Get the formal argument and return nodes for the called function and | 
|  | // merge them with the cloned subgraph. | 
|  | DSCallSite T1 = DSG.getCallSiteForArguments(CF); | 
|  | RC.mergeCallSite(T1, CS); | 
|  | ++NumTDInlines; | 
|  |  | 
|  | EdgesFromCaller.pop_back(); | 
|  | } while (!EdgesFromCaller.empty() && | 
|  | EdgesFromCaller.back().CallerGraph == &CallerGraph); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Next, now that this graph is finalized, we need to recompute the | 
|  | // incompleteness markers for this graph and remove unreachable nodes. | 
|  | DSG.maskIncompleteMarkers(); | 
|  |  | 
|  | // If any of the functions has incomplete incoming arguments, don't mark any | 
|  | // of them as complete. | 
|  | bool HasIncompleteArgs = false; | 
|  | for (DSGraph::retnodes_iterator I = DSG.retnodes_begin(), | 
|  | E = DSG.retnodes_end(); I != E; ++I) | 
|  | if (ArgsRemainIncomplete.count(I->first)) { | 
|  | HasIncompleteArgs = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Recompute the Incomplete markers.  Depends on whether args are complete | 
|  | unsigned Flags | 
|  | = HasIncompleteArgs ? DSGraph::MarkFormalArgs : DSGraph::IgnoreFormalArgs; | 
|  | DSG.markIncompleteNodes(Flags | DSGraph::IgnoreGlobals); | 
|  |  | 
|  | // Delete dead nodes.  Treat globals that are unreachable as dead also. | 
|  | DSG.removeDeadNodes(DSGraph::RemoveUnreachableGlobals); | 
|  |  | 
|  | // We are done with computing the current TD Graph!  Finally, before we can | 
|  | // finish processing this function, we figure out which functions it calls and | 
|  | // records these call graph edges, so that we have them when we process the | 
|  | // callee graphs. | 
|  | if (DSG.fc_begin() == DSG.fc_end()) return; | 
|  |  | 
|  | // Loop over all the call sites and all the callees at each call site, and add | 
|  | // edges to the CallerEdges structure for each callee. | 
|  | for (DSGraph::fc_iterator CI = DSG.fc_begin(), E = DSG.fc_end(); | 
|  | CI != E; ++CI) { | 
|  |  | 
|  | // Handle direct calls efficiently. | 
|  | if (CI->isDirectCall()) { | 
|  | if (!CI->getCalleeFunc()->isExternal() && | 
|  | !DSG.getReturnNodes().count(CI->getCalleeFunc())) | 
|  | CallerEdges[&getDSGraph(*CI->getCalleeFunc())] | 
|  | .push_back(CallerCallEdge(&DSG, &*CI, CI->getCalleeFunc())); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | Instruction *CallI = CI->getCallSite().getInstruction(); | 
|  | // For each function in the invoked function list at this call site... | 
|  | BUDataStructures::callee_iterator IPI = | 
|  | BUInfo->callee_begin(CallI), IPE = BUInfo->callee_end(CallI); | 
|  |  | 
|  | // Skip over all calls to this graph (SCC calls). | 
|  | while (IPI != IPE && &getDSGraph(*IPI->second) == &DSG) | 
|  | ++IPI; | 
|  |  | 
|  | // All SCC calls? | 
|  | if (IPI == IPE) continue; | 
|  |  | 
|  | Function *FirstCallee = IPI->second; | 
|  | ++IPI; | 
|  |  | 
|  | // Skip over more SCC calls. | 
|  | while (IPI != IPE && &getDSGraph(*IPI->second) == &DSG) | 
|  | ++IPI; | 
|  |  | 
|  | // If there is exactly one callee from this call site, remember the edge in | 
|  | // CallerEdges. | 
|  | if (IPI == IPE) { | 
|  | if (!FirstCallee->isExternal()) | 
|  | CallerEdges[&getDSGraph(*FirstCallee)] | 
|  | .push_back(CallerCallEdge(&DSG, &*CI, FirstCallee)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Otherwise, there are multiple callees from this call site, so it must be | 
|  | // an indirect call.  Chances are that there will be other call sites with | 
|  | // this set of targets.  If so, we don't want to do M*N inlining operations, | 
|  | // so we build up a new, private, graph that represents the calls of all | 
|  | // calls to this set of functions. | 
|  | std::vector<Function*> Callees; | 
|  | for (BUDataStructures::ActualCalleesTy::const_iterator I = | 
|  | BUInfo->callee_begin(CallI), E = BUInfo->callee_end(CallI); | 
|  | I != E; ++I) | 
|  | if (!I->second->isExternal()) | 
|  | Callees.push_back(I->second); | 
|  | std::sort(Callees.begin(), Callees.end()); | 
|  |  | 
|  | std::map<std::vector<Function*>, DSGraph*>::iterator IndCallRecI = | 
|  | IndCallMap.lower_bound(Callees); | 
|  |  | 
|  | DSGraph *IndCallGraph; | 
|  |  | 
|  | // If we already have this graph, recycle it. | 
|  | if (IndCallRecI != IndCallMap.end() && IndCallRecI->first == Callees) { | 
|  | std::cerr << "  [TD] *** Reuse of indcall graph for " << Callees.size() | 
|  | << " callees!\n"; | 
|  | IndCallGraph = IndCallRecI->second; | 
|  | } else { | 
|  | // Otherwise, create a new DSGraph to represent this. | 
|  | IndCallGraph = new DSGraph(DSG.getGlobalECs(), DSG.getTargetData()); | 
|  |  | 
|  | // Make a nullary dummy call site, which will eventually get some content | 
|  | // merged into it.  The actual callee function doesn't matter here, so we | 
|  | // just pass it something to keep the ctor happy. | 
|  | std::vector<DSNodeHandle> ArgDummyVec; | 
|  | DSCallSite DummyCS(CI->getCallSite(), DSNodeHandle(), Callees[0]/*dummy*/, | 
|  | ArgDummyVec); | 
|  | IndCallGraph->getFunctionCalls().push_back(DummyCS); | 
|  |  | 
|  | IndCallRecI = IndCallMap.insert(IndCallRecI, | 
|  | std::make_pair(Callees, IndCallGraph)); | 
|  |  | 
|  | // Additionally, make sure that each of the callees inlines this graph | 
|  | // exactly once. | 
|  | DSCallSite *NCS = &IndCallGraph->getFunctionCalls().front(); | 
|  | for (unsigned i = 0, e = Callees.size(); i != e; ++i) { | 
|  | DSGraph& CalleeGraph = getDSGraph(*Callees[i]); | 
|  | if (&CalleeGraph != &DSG) | 
|  | CallerEdges[&CalleeGraph].push_back(CallerCallEdge(IndCallGraph, NCS, | 
|  | Callees[i])); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Now that we know which graph to use for this, merge the caller | 
|  | // information into the graph, based on information from the call site. | 
|  | ReachabilityCloner RC(*IndCallGraph, DSG, 0); | 
|  | RC.mergeCallSite(IndCallGraph->getFunctionCalls().front(), *CI); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | static const Function *getFnForValue(const Value *V) { | 
|  | if (const Instruction *I = dyn_cast<Instruction>(V)) | 
|  | return I->getParent()->getParent(); | 
|  | else if (const Argument *A = dyn_cast<Argument>(V)) | 
|  | return A->getParent(); | 
|  | else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V)) | 
|  | return BB->getParent(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void TDDataStructures::deleteValue(Value *V) { | 
|  | if (const Function *F = getFnForValue(V)) {  // Function local value? | 
|  | // If this is a function local value, just delete it from the scalar map! | 
|  | getDSGraph(*F).getScalarMap().eraseIfExists(V); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (Function *F = dyn_cast<Function>(V)) { | 
|  | assert(getDSGraph(*F).getReturnNodes().size() == 1 && | 
|  | "cannot handle scc's"); | 
|  | delete DSInfo[F]; | 
|  | DSInfo.erase(F); | 
|  | return; | 
|  | } | 
|  |  | 
|  | assert(!isa<GlobalVariable>(V) && "Do not know how to delete GV's yet!"); | 
|  | } | 
|  |  | 
|  | void TDDataStructures::copyValue(Value *From, Value *To) { | 
|  | if (From == To) return; | 
|  | if (const Function *F = getFnForValue(From)) {  // Function local value? | 
|  | // If this is a function local value, just delete it from the scalar map! | 
|  | getDSGraph(*F).getScalarMap().copyScalarIfExists(From, To); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (Function *FromF = dyn_cast<Function>(From)) { | 
|  | Function *ToF = cast<Function>(To); | 
|  | assert(!DSInfo.count(ToF) && "New Function already exists!"); | 
|  | DSGraph *NG = new DSGraph(getDSGraph(*FromF), GlobalECs); | 
|  | DSInfo[ToF] = NG; | 
|  | assert(NG->getReturnNodes().size() == 1 && "Cannot copy SCC's yet!"); | 
|  |  | 
|  | // Change the Function* is the returnnodes map to the ToF. | 
|  | DSNodeHandle Ret = NG->retnodes_begin()->second; | 
|  | NG->getReturnNodes().clear(); | 
|  | NG->getReturnNodes()[ToF] = Ret; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (const Function *F = getFnForValue(To)) { | 
|  | DSGraph &G = getDSGraph(*F); | 
|  | G.getScalarMap().copyScalarIfExists(From, To); | 
|  | return; | 
|  | } | 
|  |  | 
|  | std::cerr << *From; | 
|  | std::cerr << *To; | 
|  | assert(0 && "Do not know how to copy this yet!"); | 
|  | abort(); | 
|  | } |