|  | //===- Relocations.cpp ----------------------------------------------------===// | 
|  | // | 
|  | //                             The LLVM Linker | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file contains platform-independent functions to process relocations. | 
|  | // I'll describe the overview of this file here. | 
|  | // | 
|  | // Simple relocations are easy to handle for the linker. For example, | 
|  | // for R_X86_64_PC64 relocs, the linker just has to fix up locations | 
|  | // with the relative offsets to the target symbols. It would just be | 
|  | // reading records from relocation sections and applying them to output. | 
|  | // | 
|  | // But not all relocations are that easy to handle. For example, for | 
|  | // R_386_GOTOFF relocs, the linker has to create new GOT entries for | 
|  | // symbols if they don't exist, and fix up locations with GOT entry | 
|  | // offsets from the beginning of GOT section. So there is more than | 
|  | // fixing addresses in relocation processing. | 
|  | // | 
|  | // ELF defines a large number of complex relocations. | 
|  | // | 
|  | // The functions in this file analyze relocations and do whatever needs | 
|  | // to be done. It includes, but not limited to, the following. | 
|  | // | 
|  | //  - create GOT/PLT entries | 
|  | //  - create new relocations in .dynsym to let the dynamic linker resolve | 
|  | //    them at runtime (since ELF supports dynamic linking, not all | 
|  | //    relocations can be resolved at link-time) | 
|  | //  - create COPY relocs and reserve space in .bss | 
|  | //  - replace expensive relocs (in terms of runtime cost) with cheap ones | 
|  | //  - error out infeasible combinations such as PIC and non-relative relocs | 
|  | // | 
|  | // Note that the functions in this file don't actually apply relocations | 
|  | // because it doesn't know about the output file nor the output file buffer. | 
|  | // It instead stores Relocation objects to InputSection's Relocations | 
|  | // vector to let it apply later in InputSection::writeTo. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "Relocations.h" | 
|  | #include "Config.h" | 
|  | #include "OutputSections.h" | 
|  | #include "SymbolTable.h" | 
|  | #include "Target.h" | 
|  | #include "Thunks.h" | 
|  |  | 
|  | #include "llvm/Support/Endian.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  |  | 
|  | using namespace llvm; | 
|  | using namespace llvm::ELF; | 
|  | using namespace llvm::object; | 
|  | using namespace llvm::support::endian; | 
|  |  | 
|  | namespace lld { | 
|  | namespace elf { | 
|  |  | 
|  | static bool refersToGotEntry(RelExpr Expr) { | 
|  | return Expr == R_GOT || Expr == R_GOT_OFF || Expr == R_MIPS_GOT_LOCAL_PAGE || | 
|  | Expr == R_MIPS_GOT_OFF || Expr == R_MIPS_TLSGD || | 
|  | Expr == R_MIPS_TLSLD || Expr == R_GOT_PAGE_PC || Expr == R_GOT_PC || | 
|  | Expr == R_GOT_FROM_END || Expr == R_TLSGD || Expr == R_TLSGD_PC || | 
|  | Expr == R_TLSDESC || Expr == R_TLSDESC_PAGE; | 
|  | } | 
|  |  | 
|  | static bool isPreemptible(const SymbolBody &Body, uint32_t Type) { | 
|  | // In case of MIPS GP-relative relocations always resolve to a definition | 
|  | // in a regular input file, ignoring the one-definition rule. So we, | 
|  | // for example, should not attempt to create a dynamic relocation even | 
|  | // if the target symbol is preemptible. There are two two MIPS GP-relative | 
|  | // relocations R_MIPS_GPREL16 and R_MIPS_GPREL32. But only R_MIPS_GPREL16 | 
|  | // can be against a preemptible symbol. | 
|  | // To get MIPS relocation type we apply 0xff mask. In case of O32 ABI all | 
|  | // relocation types occupy eight bit. In case of N64 ABI we extract first | 
|  | // relocation from 3-in-1 packet because only the first relocation can | 
|  | // be against a real symbol. | 
|  | if (Config->EMachine == EM_MIPS && (Type & 0xff) == R_MIPS_GPREL16) | 
|  | return false; | 
|  | return Body.isPreemptible(); | 
|  | } | 
|  |  | 
|  | // This function is similar to the `handleTlsRelocation`. ARM and MIPS do not | 
|  | // support any relaxations for TLS relocations so by factoring out ARM and MIPS | 
|  | // handling in to the separate function we can simplify the code and do not | 
|  | // pollute `handleTlsRelocation` by ARM and MIPS `ifs` statements. | 
|  | // FIXME: The ARM implementation always adds the module index dynamic | 
|  | // relocation even for non-preemptible symbols in applications. For static | 
|  | // linking support we must either resolve the module index relocation at static | 
|  | // link time, or hard code the module index (1) for the application in the GOT. | 
|  | template <class ELFT> | 
|  | static unsigned handleNoRelaxTlsRelocation(uint32_t Type, SymbolBody &Body, | 
|  | InputSectionBase<ELFT> &C, | 
|  | typename ELFT::uint Offset, | 
|  | typename ELFT::uint Addend, | 
|  | RelExpr Expr) { | 
|  | if (Expr == R_MIPS_TLSLD || Expr == R_TLSLD_PC) { | 
|  | if (Out<ELFT>::Got->addTlsIndex() && | 
|  | (Config->Pic || Config->EMachine == EM_ARM)) | 
|  | Out<ELFT>::RelaDyn->addReloc({Target->TlsModuleIndexRel, Out<ELFT>::Got, | 
|  | Out<ELFT>::Got->getTlsIndexOff(), false, | 
|  | nullptr, 0}); | 
|  | C.Relocations.push_back({Expr, Type, Offset, Addend, &Body}); | 
|  | return 1; | 
|  | } | 
|  | typedef typename ELFT::uint uintX_t; | 
|  | if (Target->isTlsGlobalDynamicRel(Type)) { | 
|  | if (Out<ELFT>::Got->addDynTlsEntry(Body) && | 
|  | (Body.isPreemptible() || Config->EMachine == EM_ARM)) { | 
|  | uintX_t Off = Out<ELFT>::Got->getGlobalDynOffset(Body); | 
|  | Out<ELFT>::RelaDyn->addReloc( | 
|  | {Target->TlsModuleIndexRel, Out<ELFT>::Got, Off, false, &Body, 0}); | 
|  | if (Body.isPreemptible()) | 
|  | Out<ELFT>::RelaDyn->addReloc({Target->TlsOffsetRel, Out<ELFT>::Got, | 
|  | Off + (uintX_t)sizeof(uintX_t), false, | 
|  | &Body, 0}); | 
|  | } | 
|  | C.Relocations.push_back({Expr, Type, Offset, Addend, &Body}); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Returns the number of relocations processed. | 
|  | template <class ELFT> | 
|  | static unsigned handleTlsRelocation(uint32_t Type, SymbolBody &Body, | 
|  | InputSectionBase<ELFT> &C, | 
|  | typename ELFT::uint Offset, | 
|  | typename ELFT::uint Addend, RelExpr Expr) { | 
|  | if (!(C.getSectionHdr()->sh_flags & SHF_ALLOC)) | 
|  | return 0; | 
|  |  | 
|  | if (!Body.isTls()) | 
|  | return 0; | 
|  |  | 
|  | typedef typename ELFT::uint uintX_t; | 
|  |  | 
|  | if (Config->EMachine == EM_MIPS || Config->EMachine == EM_ARM) | 
|  | return handleNoRelaxTlsRelocation<ELFT>(Type, Body, C, Offset, Addend, | 
|  | Expr); | 
|  |  | 
|  | if ((Expr == R_TLSDESC || Expr == R_TLSDESC_PAGE || Expr == R_HINT) && | 
|  | Config->Shared) { | 
|  | if (Out<ELFT>::Got->addDynTlsEntry(Body)) { | 
|  | uintX_t Off = Out<ELFT>::Got->getGlobalDynOffset(Body); | 
|  | Out<ELFT>::RelaDyn->addReloc( | 
|  | {Target->TlsDescRel, Out<ELFT>::Got, Off, false, &Body, 0}); | 
|  | } | 
|  | if (Expr != R_HINT) | 
|  | C.Relocations.push_back({Expr, Type, Offset, Addend, &Body}); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (Expr == R_TLSLD_PC || Expr == R_TLSLD) { | 
|  | // Local-Dynamic relocs can be relaxed to Local-Exec. | 
|  | if (!Config->Shared) { | 
|  | C.Relocations.push_back( | 
|  | {R_RELAX_TLS_LD_TO_LE, Type, Offset, Addend, &Body}); | 
|  | return 2; | 
|  | } | 
|  | if (Out<ELFT>::Got->addTlsIndex()) | 
|  | Out<ELFT>::RelaDyn->addReloc({Target->TlsModuleIndexRel, Out<ELFT>::Got, | 
|  | Out<ELFT>::Got->getTlsIndexOff(), false, | 
|  | nullptr, 0}); | 
|  | C.Relocations.push_back({Expr, Type, Offset, Addend, &Body}); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // Local-Dynamic relocs can be relaxed to Local-Exec. | 
|  | if (Target->isTlsLocalDynamicRel(Type) && !Config->Shared) { | 
|  | C.Relocations.push_back( | 
|  | {R_RELAX_TLS_LD_TO_LE, Type, Offset, Addend, &Body}); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (Expr == R_TLSDESC_PAGE || Expr == R_TLSDESC || Expr == R_HINT || | 
|  | Target->isTlsGlobalDynamicRel(Type)) { | 
|  | if (Config->Shared) { | 
|  | if (Out<ELFT>::Got->addDynTlsEntry(Body)) { | 
|  | uintX_t Off = Out<ELFT>::Got->getGlobalDynOffset(Body); | 
|  | Out<ELFT>::RelaDyn->addReloc( | 
|  | {Target->TlsModuleIndexRel, Out<ELFT>::Got, Off, false, &Body, 0}); | 
|  |  | 
|  | // If the symbol is preemptible we need the dynamic linker to write | 
|  | // the offset too. | 
|  | if (isPreemptible(Body, Type)) | 
|  | Out<ELFT>::RelaDyn->addReloc({Target->TlsOffsetRel, Out<ELFT>::Got, | 
|  | Off + (uintX_t)sizeof(uintX_t), false, | 
|  | &Body, 0}); | 
|  | } | 
|  | C.Relocations.push_back({Expr, Type, Offset, Addend, &Body}); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // Global-Dynamic relocs can be relaxed to Initial-Exec or Local-Exec | 
|  | // depending on the symbol being locally defined or not. | 
|  | if (isPreemptible(Body, Type)) { | 
|  | C.Relocations.push_back( | 
|  | {Target->adjustRelaxExpr(Type, nullptr, R_RELAX_TLS_GD_TO_IE), Type, | 
|  | Offset, Addend, &Body}); | 
|  | if (!Body.isInGot()) { | 
|  | Out<ELFT>::Got->addEntry(Body); | 
|  | Out<ELFT>::RelaDyn->addReloc({Target->TlsGotRel, Out<ELFT>::Got, | 
|  | Body.getGotOffset<ELFT>(), false, &Body, | 
|  | 0}); | 
|  | } | 
|  | return Target->TlsGdRelaxSkip; | 
|  | } | 
|  | C.Relocations.push_back( | 
|  | {Target->adjustRelaxExpr(Type, nullptr, R_RELAX_TLS_GD_TO_LE), Type, | 
|  | Offset, Addend, &Body}); | 
|  | return Target->TlsGdRelaxSkip; | 
|  | } | 
|  |  | 
|  | // Initial-Exec relocs can be relaxed to Local-Exec if the symbol is locally | 
|  | // defined. | 
|  | if (Target->isTlsInitialExecRel(Type) && !Config->Shared && | 
|  | !isPreemptible(Body, Type)) { | 
|  | C.Relocations.push_back( | 
|  | {R_RELAX_TLS_IE_TO_LE, Type, Offset, Addend, &Body}); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | template <endianness E> static int16_t readSignedLo16(const uint8_t *Loc) { | 
|  | return read32<E>(Loc) & 0xffff; | 
|  | } | 
|  |  | 
|  | template <class RelTy> | 
|  | static uint32_t getMipsPairType(const RelTy *Rel, const SymbolBody &Sym) { | 
|  | switch (Rel->getType(Config->Mips64EL)) { | 
|  | case R_MIPS_HI16: | 
|  | return R_MIPS_LO16; | 
|  | case R_MIPS_GOT16: | 
|  | return Sym.isLocal() ? R_MIPS_LO16 : R_MIPS_NONE; | 
|  | case R_MIPS_PCHI16: | 
|  | return R_MIPS_PCLO16; | 
|  | case R_MICROMIPS_HI16: | 
|  | return R_MICROMIPS_LO16; | 
|  | default: | 
|  | return R_MIPS_NONE; | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class ELFT, class RelTy> | 
|  | static int32_t findMipsPairedAddend(const uint8_t *Buf, const uint8_t *BufLoc, | 
|  | SymbolBody &Sym, const RelTy *Rel, | 
|  | const RelTy *End) { | 
|  | uint32_t SymIndex = Rel->getSymbol(Config->Mips64EL); | 
|  | uint32_t Type = getMipsPairType(Rel, Sym); | 
|  |  | 
|  | // Some MIPS relocations use addend calculated from addend of the relocation | 
|  | // itself and addend of paired relocation. ABI requires to compute such | 
|  | // combined addend in case of REL relocation record format only. | 
|  | // See p. 4-17 at ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf | 
|  | if (RelTy::IsRela || Type == R_MIPS_NONE) | 
|  | return 0; | 
|  |  | 
|  | for (const RelTy *RI = Rel; RI != End; ++RI) { | 
|  | if (RI->getType(Config->Mips64EL) != Type) | 
|  | continue; | 
|  | if (RI->getSymbol(Config->Mips64EL) != SymIndex) | 
|  | continue; | 
|  | const endianness E = ELFT::TargetEndianness; | 
|  | return ((read32<E>(BufLoc) & 0xffff) << 16) + | 
|  | readSignedLo16<E>(Buf + RI->r_offset); | 
|  | } | 
|  | warn("can't find matching " + getRelName(Type) + " relocation for " + | 
|  | getRelName(Rel->getType(Config->Mips64EL))); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // True if non-preemptable symbol always has the same value regardless of where | 
|  | // the DSO is loaded. | 
|  | template <class ELFT> static bool isAbsolute(const SymbolBody &Body) { | 
|  | if (Body.isUndefined()) | 
|  | return !Body.isLocal() && Body.symbol()->isWeak(); | 
|  | if (const auto *DR = dyn_cast<DefinedRegular<ELFT>>(&Body)) | 
|  | return DR->Section == nullptr; // Absolute symbol. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool needsPlt(RelExpr Expr) { | 
|  | return Expr == R_PLT_PC || Expr == R_PPC_PLT_OPD || Expr == R_PLT || | 
|  | Expr == R_PLT_PAGE_PC || Expr == R_THUNK_PLT_PC; | 
|  | } | 
|  |  | 
|  | // True if this expression is of the form Sym - X, where X is a position in the | 
|  | // file (PC, or GOT for example). | 
|  | static bool isRelExpr(RelExpr Expr) { | 
|  | return Expr == R_PC || Expr == R_GOTREL || Expr == R_GOTREL_FROM_END || | 
|  | Expr == R_PAGE_PC || Expr == R_RELAX_GOT_PC || Expr == R_THUNK_PC || | 
|  | Expr == R_THUNK_PLT_PC; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | static bool isStaticLinkTimeConstant(RelExpr E, uint32_t Type, | 
|  | const SymbolBody &Body) { | 
|  | // These expressions always compute a constant | 
|  | if (E == R_SIZE || E == R_GOT_FROM_END || E == R_GOT_OFF || | 
|  | E == R_MIPS_GOT_LOCAL_PAGE || E == R_MIPS_GOT_OFF || E == R_MIPS_TLSGD || | 
|  | E == R_GOT_PAGE_PC || E == R_GOT_PC || E == R_PLT_PC || E == R_TLSGD_PC || | 
|  | E == R_TLSGD || E == R_PPC_PLT_OPD || E == R_TLSDESC_PAGE || | 
|  | E == R_HINT || E == R_THUNK_PC || E == R_THUNK_PLT_PC) | 
|  | return true; | 
|  |  | 
|  | // These never do, except if the entire file is position dependent or if | 
|  | // only the low bits are used. | 
|  | if (E == R_GOT || E == R_PLT || E == R_TLSDESC) | 
|  | return Target->usesOnlyLowPageBits(Type) || !Config->Pic; | 
|  |  | 
|  | if (isPreemptible(Body, Type)) | 
|  | return false; | 
|  |  | 
|  | if (!Config->Pic) | 
|  | return true; | 
|  |  | 
|  | bool AbsVal = isAbsolute<ELFT>(Body) || Body.isTls(); | 
|  | bool RelE = isRelExpr(E); | 
|  | if (AbsVal && !RelE) | 
|  | return true; | 
|  | if (!AbsVal && RelE) | 
|  | return true; | 
|  |  | 
|  | // Relative relocation to an absolute value. This is normally unrepresentable, | 
|  | // but if the relocation refers to a weak undefined symbol, we allow it to | 
|  | // resolve to the image base. This is a little strange, but it allows us to | 
|  | // link function calls to such symbols. Normally such a call will be guarded | 
|  | // with a comparison, which will load a zero from the GOT. | 
|  | if (AbsVal && RelE) { | 
|  | if (Body.isUndefined() && !Body.isLocal() && Body.symbol()->isWeak()) | 
|  | return true; | 
|  | error("relocation " + getRelName(Type) + | 
|  | " cannot refer to absolute symbol " + Body.getName()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return Target->usesOnlyLowPageBits(Type); | 
|  | } | 
|  |  | 
|  | static RelExpr toPlt(RelExpr Expr) { | 
|  | if (Expr == R_PPC_OPD) | 
|  | return R_PPC_PLT_OPD; | 
|  | if (Expr == R_PC) | 
|  | return R_PLT_PC; | 
|  | if (Expr == R_PAGE_PC) | 
|  | return R_PLT_PAGE_PC; | 
|  | if (Expr == R_ABS) | 
|  | return R_PLT; | 
|  | return Expr; | 
|  | } | 
|  |  | 
|  | static RelExpr fromPlt(RelExpr Expr) { | 
|  | // We decided not to use a plt. Optimize a reference to the plt to a | 
|  | // reference to the symbol itself. | 
|  | if (Expr == R_PLT_PC) | 
|  | return R_PC; | 
|  | if (Expr == R_PPC_PLT_OPD) | 
|  | return R_PPC_OPD; | 
|  | if (Expr == R_PLT) | 
|  | return R_ABS; | 
|  | return Expr; | 
|  | } | 
|  |  | 
|  | template <class ELFT> static uint32_t getAlignment(SharedSymbol<ELFT> *SS) { | 
|  | typedef typename ELFT::uint uintX_t; | 
|  |  | 
|  | uintX_t SecAlign = SS->file()->getSection(SS->Sym)->sh_addralign; | 
|  | uintX_t SymValue = SS->Sym.st_value; | 
|  | int TrailingZeros = | 
|  | std::min(countTrailingZeros(SecAlign), countTrailingZeros(SymValue)); | 
|  | return 1 << TrailingZeros; | 
|  | } | 
|  |  | 
|  | // Reserve space in .bss for copy relocation. | 
|  | template <class ELFT> static void addCopyRelSymbol(SharedSymbol<ELFT> *SS) { | 
|  | typedef typename ELFT::uint uintX_t; | 
|  | typedef typename ELFT::Sym Elf_Sym; | 
|  |  | 
|  | // Copy relocation against zero-sized symbol doesn't make sense. | 
|  | uintX_t SymSize = SS->template getSize<ELFT>(); | 
|  | if (SymSize == 0) | 
|  | fatal("cannot create a copy relocation for symbol " + SS->getName()); | 
|  |  | 
|  | uintX_t Alignment = getAlignment(SS); | 
|  | uintX_t Off = alignTo(Out<ELFT>::Bss->getSize(), Alignment); | 
|  | Out<ELFT>::Bss->setSize(Off + SymSize); | 
|  | Out<ELFT>::Bss->updateAlignment(Alignment); | 
|  | uintX_t Shndx = SS->Sym.st_shndx; | 
|  | uintX_t Value = SS->Sym.st_value; | 
|  | // Look through the DSO's dynamic symbol table for aliases and create a | 
|  | // dynamic symbol for each one. This causes the copy relocation to correctly | 
|  | // interpose any aliases. | 
|  | for (const Elf_Sym &S : SS->file()->getElfSymbols(true)) { | 
|  | if (S.st_shndx != Shndx || S.st_value != Value) | 
|  | continue; | 
|  | auto *Alias = dyn_cast_or_null<SharedSymbol<ELFT>>( | 
|  | Symtab<ELFT>::X->find(check(S.getName(SS->file()->getStringTable())))); | 
|  | if (!Alias) | 
|  | continue; | 
|  | Alias->OffsetInBss = Off; | 
|  | Alias->NeedsCopyOrPltAddr = true; | 
|  | Alias->symbol()->IsUsedInRegularObj = true; | 
|  | } | 
|  | Out<ELFT>::RelaDyn->addReloc( | 
|  | {Target->CopyRel, Out<ELFT>::Bss, SS->OffsetInBss, false, SS, 0}); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | static StringRef getSymbolName(const elf::ObjectFile<ELFT> &File, | 
|  | SymbolBody &Body) { | 
|  | if (Body.isLocal() && Body.getNameOffset()) | 
|  | return File.getStringTable().data() + Body.getNameOffset(); | 
|  | if (!Body.isLocal()) | 
|  | return Body.getName(); | 
|  | return ""; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | static RelExpr adjustExpr(const elf::ObjectFile<ELFT> &File, SymbolBody &Body, | 
|  | bool IsWrite, RelExpr Expr, uint32_t Type, | 
|  | const uint8_t *Data) { | 
|  | bool Preemptible = isPreemptible(Body, Type); | 
|  | if (Body.isGnuIFunc()) { | 
|  | Expr = toPlt(Expr); | 
|  | } else if (!Preemptible) { | 
|  | if (needsPlt(Expr)) | 
|  | Expr = fromPlt(Expr); | 
|  | if (Expr == R_GOT_PC) | 
|  | Expr = Target->adjustRelaxExpr(Type, Data, Expr); | 
|  | } | 
|  | Expr = Target->getThunkExpr(Expr, Type, File, Body); | 
|  |  | 
|  | if (IsWrite || isStaticLinkTimeConstant<ELFT>(Expr, Type, Body)) | 
|  | return Expr; | 
|  |  | 
|  | // This relocation would require the dynamic linker to write a value to read | 
|  | // only memory. We can hack around it if we are producing an executable and | 
|  | // the refered symbol can be preemepted to refer to the executable. | 
|  | if (Config->Shared || (Config->Pic && !isRelExpr(Expr))) { | 
|  | StringRef Name = getSymbolName(File, Body); | 
|  | error("can't create dynamic relocation " + getRelName(Type) + | 
|  | " against " + (Name.empty() ? "readonly segment" : "symbol " + Name)); | 
|  | return Expr; | 
|  | } | 
|  | if (Body.getVisibility() != STV_DEFAULT) { | 
|  | error("cannot preempt symbol " + Body.getName()); | 
|  | return Expr; | 
|  | } | 
|  | if (Body.isObject()) { | 
|  | // Produce a copy relocation. | 
|  | auto *B = cast<SharedSymbol<ELFT>>(&Body); | 
|  | if (!B->needsCopy()) | 
|  | addCopyRelSymbol(B); | 
|  | return Expr; | 
|  | } | 
|  | if (Body.isFunc()) { | 
|  | // This handles a non PIC program call to function in a shared library. In | 
|  | // an ideal world, we could just report an error saying the relocation can | 
|  | // overflow at runtime. In the real world with glibc, crt1.o has a | 
|  | // R_X86_64_PC32 pointing to libc.so. | 
|  | // | 
|  | // The general idea on how to handle such cases is to create a PLT entry and | 
|  | // use that as the function value. | 
|  | // | 
|  | // For the static linking part, we just return a plt expr and everything | 
|  | // else will use the the PLT entry as the address. | 
|  | // | 
|  | // The remaining problem is making sure pointer equality still works. We | 
|  | // need the help of the dynamic linker for that. We let it know that we have | 
|  | // a direct reference to a so symbol by creating an undefined symbol with a | 
|  | // non zero st_value. Seeing that, the dynamic linker resolves the symbol to | 
|  | // the value of the symbol we created. This is true even for got entries, so | 
|  | // pointer equality is maintained. To avoid an infinite loop, the only entry | 
|  | // that points to the real function is a dedicated got entry used by the | 
|  | // plt. That is identified by special relocation types (R_X86_64_JUMP_SLOT, | 
|  | // R_386_JMP_SLOT, etc). | 
|  | Body.NeedsCopyOrPltAddr = true; | 
|  | return toPlt(Expr); | 
|  | } | 
|  | error("symbol " + Body.getName() + " is missing type"); | 
|  |  | 
|  | return Expr; | 
|  | } | 
|  |  | 
|  | template <class ELFT, class RelTy> | 
|  | static typename ELFT::uint computeAddend(const elf::ObjectFile<ELFT> &File, | 
|  | const uint8_t *SectionData, | 
|  | const RelTy *End, const RelTy &RI, | 
|  | RelExpr Expr, SymbolBody &Body) { | 
|  | typedef typename ELFT::uint uintX_t; | 
|  |  | 
|  | uint32_t Type = RI.getType(Config->Mips64EL); | 
|  | uintX_t Addend = getAddend<ELFT>(RI); | 
|  | const uint8_t *BufLoc = SectionData + RI.r_offset; | 
|  | if (!RelTy::IsRela) | 
|  | Addend += Target->getImplicitAddend(BufLoc, Type); | 
|  | if (Config->EMachine == EM_MIPS) { | 
|  | Addend += findMipsPairedAddend<ELFT>(SectionData, BufLoc, Body, &RI, End); | 
|  | if (Type == R_MIPS_LO16 && Expr == R_PC) | 
|  | // R_MIPS_LO16 expression has R_PC type iif the target is _gp_disp | 
|  | // symbol. In that case we should use the following formula for | 
|  | // calculation "AHL + GP - P + 4". Let's add 4 right here. | 
|  | // For details see p. 4-19 at | 
|  | // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf | 
|  | Addend += 4; | 
|  | if (Expr == R_GOTREL) { | 
|  | Addend -= MipsGPOffset; | 
|  | if (Body.isLocal()) | 
|  | Addend += File.getMipsGp0(); | 
|  | } | 
|  | } | 
|  | if (Config->Pic && Config->EMachine == EM_PPC64 && Type == R_PPC64_TOC) | 
|  | Addend += getPPC64TocBase(); | 
|  | return Addend; | 
|  | } | 
|  |  | 
|  | // The reason we have to do this early scan is as follows | 
|  | // * To mmap the output file, we need to know the size | 
|  | // * For that, we need to know how many dynamic relocs we will have. | 
|  | // It might be possible to avoid this by outputting the file with write: | 
|  | // * Write the allocated output sections, computing addresses. | 
|  | // * Apply relocations, recording which ones require a dynamic reloc. | 
|  | // * Write the dynamic relocations. | 
|  | // * Write the rest of the file. | 
|  | // This would have some drawbacks. For example, we would only know if .rela.dyn | 
|  | // is needed after applying relocations. If it is, it will go after rw and rx | 
|  | // sections. Given that it is ro, we will need an extra PT_LOAD. This | 
|  | // complicates things for the dynamic linker and means we would have to reserve | 
|  | // space for the extra PT_LOAD even if we end up not using it. | 
|  | template <class ELFT, class RelTy> | 
|  | static void scanRelocs(InputSectionBase<ELFT> &C, ArrayRef<RelTy> Rels) { | 
|  | typedef typename ELFT::uint uintX_t; | 
|  |  | 
|  | bool IsWrite = C.getSectionHdr()->sh_flags & SHF_WRITE; | 
|  |  | 
|  | auto AddDyn = [=](const DynamicReloc<ELFT> &Reloc) { | 
|  | Out<ELFT>::RelaDyn->addReloc(Reloc); | 
|  | }; | 
|  |  | 
|  | const elf::ObjectFile<ELFT> &File = *C.getFile(); | 
|  | ArrayRef<uint8_t> SectionData = C.Data; | 
|  | const uint8_t *Buf = SectionData.begin(); | 
|  |  | 
|  | ArrayRef<EhSectionPiece> Pieces; | 
|  | if (auto *Eh = dyn_cast<EhInputSection<ELFT>>(&C)) | 
|  | Pieces = Eh->Pieces; | 
|  |  | 
|  | ArrayRef<EhSectionPiece>::iterator PieceI = Pieces.begin(); | 
|  | ArrayRef<EhSectionPiece>::iterator PieceE = Pieces.end(); | 
|  |  | 
|  | for (auto I = Rels.begin(), E = Rels.end(); I != E; ++I) { | 
|  | const RelTy &RI = *I; | 
|  | SymbolBody &Body = File.getRelocTargetSym(RI); | 
|  | uint32_t Type = RI.getType(Config->Mips64EL); | 
|  |  | 
|  | RelExpr Expr = Target->getRelExpr(Type, Body); | 
|  | bool Preemptible = isPreemptible(Body, Type); | 
|  | Expr = adjustExpr(File, Body, IsWrite, Expr, Type, Buf + RI.r_offset); | 
|  | if (HasError) | 
|  | continue; | 
|  |  | 
|  | // Skip a relocation that points to a dead piece | 
|  | // in a eh_frame section. | 
|  | while (PieceI != PieceE && | 
|  | (PieceI->InputOff + PieceI->size() <= RI.r_offset)) | 
|  | ++PieceI; | 
|  |  | 
|  | // Compute the offset of this section in the output section. We do it here | 
|  | // to try to compute it only once. | 
|  | uintX_t Offset; | 
|  | if (PieceI != PieceE) { | 
|  | assert(PieceI->InputOff <= RI.r_offset && "Relocation not in any piece"); | 
|  | if (PieceI->OutputOff == (size_t)-1) | 
|  | continue; | 
|  | Offset = PieceI->OutputOff + RI.r_offset - PieceI->InputOff; | 
|  | } else { | 
|  | Offset = RI.r_offset; | 
|  | } | 
|  |  | 
|  | // This relocation does not require got entry, but it is relative to got and | 
|  | // needs it to be created. Here we request for that. | 
|  | if (Expr == R_GOTONLY_PC || Expr == R_GOTONLY_PC_FROM_END || | 
|  | Expr == R_GOTREL || Expr == R_GOTREL_FROM_END || Expr == R_PPC_TOC) | 
|  | Out<ELFT>::Got->HasGotOffRel = true; | 
|  |  | 
|  | uintX_t Addend = computeAddend(File, Buf, E, RI, Expr, Body); | 
|  |  | 
|  | if (unsigned Processed = | 
|  | handleTlsRelocation<ELFT>(Type, Body, C, Offset, Addend, Expr)) { | 
|  | I += (Processed - 1); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Ignore "hint" relocation because it is for optional code optimization. | 
|  | if (Expr == R_HINT) | 
|  | continue; | 
|  |  | 
|  | if (needsPlt(Expr) || Expr == R_THUNK_ABS || Expr == R_THUNK_PC || | 
|  | Expr == R_THUNK_PLT_PC || refersToGotEntry(Expr) || | 
|  | !isPreemptible(Body, Type)) { | 
|  | // If the relocation points to something in the file, we can process it. | 
|  | bool Constant = isStaticLinkTimeConstant<ELFT>(Expr, Type, Body); | 
|  |  | 
|  | // If the output being produced is position independent, the final value | 
|  | // is still not known. In that case we still need some help from the | 
|  | // dynamic linker. We can however do better than just copying the incoming | 
|  | // relocation. We can process some of it and and just ask the dynamic | 
|  | // linker to add the load address. | 
|  | if (!Constant) | 
|  | AddDyn({Target->RelativeRel, &C, Offset, true, &Body, Addend}); | 
|  |  | 
|  | // If the produced value is a constant, we just remember to write it | 
|  | // when outputting this section. We also have to do it if the format | 
|  | // uses Elf_Rel, since in that case the written value is the addend. | 
|  | if (Constant || !RelTy::IsRela) | 
|  | C.Relocations.push_back({Expr, Type, Offset, Addend, &Body}); | 
|  | } else { | 
|  | // We don't know anything about the finaly symbol. Just ask the dynamic | 
|  | // linker to handle the relocation for us. | 
|  | AddDyn({Target->getDynRel(Type), &C, Offset, false, &Body, Addend}); | 
|  | // MIPS ABI turns using of GOT and dynamic relocations inside out. | 
|  | // While regular ABI uses dynamic relocations to fill up GOT entries | 
|  | // MIPS ABI requires dynamic linker to fills up GOT entries using | 
|  | // specially sorted dynamic symbol table. This affects even dynamic | 
|  | // relocations against symbols which do not require GOT entries | 
|  | // creation explicitly, i.e. do not have any GOT-relocations. So if | 
|  | // a preemptible symbol has a dynamic relocation we anyway have | 
|  | // to create a GOT entry for it. | 
|  | // If a non-preemptible symbol has a dynamic relocation against it, | 
|  | // dynamic linker takes it st_value, adds offset and writes down | 
|  | // result of the dynamic relocation. In case of preemptible symbol | 
|  | // dynamic linker performs symbol resolution, writes the symbol value | 
|  | // to the GOT entry and reads the GOT entry when it needs to perform | 
|  | // a dynamic relocation. | 
|  | // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf p.4-19 | 
|  | if (Config->EMachine == EM_MIPS) | 
|  | Out<ELFT>::Got->addMipsEntry(Body, Addend, Expr); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // At this point we are done with the relocated position. Some relocations | 
|  | // also require us to create a got or plt entry. | 
|  |  | 
|  | // If a relocation needs PLT, we create a PLT and a GOT slot for the symbol. | 
|  | if (needsPlt(Expr)) { | 
|  | if (Body.isInPlt()) | 
|  | continue; | 
|  | Out<ELFT>::Plt->addEntry(Body); | 
|  |  | 
|  | uint32_t Rel; | 
|  | if (Body.isGnuIFunc() && !Preemptible) | 
|  | Rel = Target->IRelativeRel; | 
|  | else | 
|  | Rel = Target->PltRel; | 
|  |  | 
|  | Out<ELFT>::GotPlt->addEntry(Body); | 
|  | Out<ELFT>::RelaPlt->addReloc({Rel, Out<ELFT>::GotPlt, | 
|  | Body.getGotPltOffset<ELFT>(), !Preemptible, | 
|  | &Body, 0}); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (refersToGotEntry(Expr)) { | 
|  | if (Config->EMachine == EM_MIPS) { | 
|  | // MIPS ABI has special rules to process GOT entries and doesn't | 
|  | // require relocation entries for them. A special case is TLS | 
|  | // relocations. In that case dynamic loader applies dynamic | 
|  | // relocations to initialize TLS GOT entries. | 
|  | // See "Global Offset Table" in Chapter 5 in the following document | 
|  | // for detailed description: | 
|  | // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf | 
|  | Out<ELFT>::Got->addMipsEntry(Body, Addend, Expr); | 
|  | if (Body.isTls() && Body.isPreemptible()) | 
|  | AddDyn({Target->TlsGotRel, Out<ELFT>::Got, Body.getGotOffset<ELFT>(), | 
|  | false, &Body, 0}); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (Body.isInGot()) | 
|  | continue; | 
|  |  | 
|  | Out<ELFT>::Got->addEntry(Body); | 
|  | if (Preemptible || (Config->Pic && !isAbsolute<ELFT>(Body))) { | 
|  | uint32_t DynType; | 
|  | if (Body.isTls()) | 
|  | DynType = Target->TlsGotRel; | 
|  | else if (Preemptible) | 
|  | DynType = Target->GotRel; | 
|  | else | 
|  | DynType = Target->RelativeRel; | 
|  | AddDyn({DynType, Out<ELFT>::Got, Body.getGotOffset<ELFT>(), | 
|  | !Preemptible, &Body, 0}); | 
|  | } | 
|  | continue; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void scanRelocations(InputSectionBase<ELFT> &S, | 
|  | const typename ELFT::Shdr &RelSec) { | 
|  | ELFFile<ELFT> &EObj = S.getFile()->getObj(); | 
|  | if (RelSec.sh_type == SHT_RELA) | 
|  | scanRelocs(S, EObj.relas(&RelSec)); | 
|  | else | 
|  | scanRelocs(S, EObj.rels(&RelSec)); | 
|  | } | 
|  |  | 
|  | template <class ELFT, class RelTy> | 
|  | static void createThunks(InputSectionBase<ELFT> &C, ArrayRef<RelTy> Rels) { | 
|  | const elf::ObjectFile<ELFT> &File = *C.getFile(); | 
|  | for (const RelTy &Rel : Rels) { | 
|  | SymbolBody &Body = File.getRelocTargetSym(Rel); | 
|  | uint32_t Type = Rel.getType(Config->Mips64EL); | 
|  | RelExpr Expr = Target->getRelExpr(Type, Body); | 
|  | if (!isPreemptible(Body, Type) && needsPlt(Expr)) | 
|  | Expr = fromPlt(Expr); | 
|  | Expr = Target->getThunkExpr(Expr, Type, File, Body); | 
|  | // Some targets might require creation of thunks for relocations. | 
|  | // Now we support only MIPS which requires LA25 thunk to call PIC | 
|  | // code from non-PIC one, and ARM which requires interworking. | 
|  | if (Expr == R_THUNK_ABS || Expr == R_THUNK_PC || Expr == R_THUNK_PLT_PC) { | 
|  | auto *Sec = cast<InputSection<ELFT>>(&C); | 
|  | addThunk<ELFT>(Type, Body, *Sec); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void createThunks(InputSectionBase<ELFT> &S, | 
|  | const typename ELFT::Shdr &RelSec) { | 
|  | ELFFile<ELFT> &EObj = S.getFile()->getObj(); | 
|  | if (RelSec.sh_type == SHT_RELA) | 
|  | createThunks(S, EObj.relas(&RelSec)); | 
|  | else | 
|  | createThunks(S, EObj.rels(&RelSec)); | 
|  | } | 
|  |  | 
|  | template void scanRelocations<ELF32LE>(InputSectionBase<ELF32LE> &, | 
|  | const ELF32LE::Shdr &); | 
|  | template void scanRelocations<ELF32BE>(InputSectionBase<ELF32BE> &, | 
|  | const ELF32BE::Shdr &); | 
|  | template void scanRelocations<ELF64LE>(InputSectionBase<ELF64LE> &, | 
|  | const ELF64LE::Shdr &); | 
|  | template void scanRelocations<ELF64BE>(InputSectionBase<ELF64BE> &, | 
|  | const ELF64BE::Shdr &); | 
|  |  | 
|  | template void createThunks<ELF32LE>(InputSectionBase<ELF32LE> &, | 
|  | const ELF32LE::Shdr &); | 
|  | template void createThunks<ELF32BE>(InputSectionBase<ELF32BE> &, | 
|  | const ELF32BE::Shdr &); | 
|  | template void createThunks<ELF64LE>(InputSectionBase<ELF64LE> &, | 
|  | const ELF64LE::Shdr &); | 
|  | template void createThunks<ELF64BE>(InputSectionBase<ELF64BE> &, | 
|  | const ELF64BE::Shdr &); | 
|  | } | 
|  | } |