|  | //===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | /// | 
|  | /// \file | 
|  | /// \brief Implements semantic analysis for C++ expressions. | 
|  | /// | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "clang/Sema/SemaInternal.h" | 
|  | #include "TreeTransform.h" | 
|  | #include "TypeLocBuilder.h" | 
|  | #include "clang/AST/ASTContext.h" | 
|  | #include "clang/AST/ASTLambda.h" | 
|  | #include "clang/AST/CXXInheritance.h" | 
|  | #include "clang/AST/CharUnits.h" | 
|  | #include "clang/AST/DeclObjC.h" | 
|  | #include "clang/AST/EvaluatedExprVisitor.h" | 
|  | #include "clang/AST/ExprCXX.h" | 
|  | #include "clang/AST/ExprObjC.h" | 
|  | #include "clang/AST/RecursiveASTVisitor.h" | 
|  | #include "clang/AST/TypeLoc.h" | 
|  | #include "clang/Basic/PartialDiagnostic.h" | 
|  | #include "clang/Basic/TargetInfo.h" | 
|  | #include "clang/Lex/Preprocessor.h" | 
|  | #include "clang/Sema/DeclSpec.h" | 
|  | #include "clang/Sema/Initialization.h" | 
|  | #include "clang/Sema/Lookup.h" | 
|  | #include "clang/Sema/ParsedTemplate.h" | 
|  | #include "clang/Sema/Scope.h" | 
|  | #include "clang/Sema/ScopeInfo.h" | 
|  | #include "clang/Sema/SemaLambda.h" | 
|  | #include "clang/Sema/TemplateDeduction.h" | 
|  | #include "llvm/ADT/APInt.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | using namespace clang; | 
|  | using namespace sema; | 
|  |  | 
|  | /// \brief Handle the result of the special case name lookup for inheriting | 
|  | /// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as | 
|  | /// constructor names in member using declarations, even if 'X' is not the | 
|  | /// name of the corresponding type. | 
|  | ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS, | 
|  | SourceLocation NameLoc, | 
|  | IdentifierInfo &Name) { | 
|  | NestedNameSpecifier *NNS = SS.getScopeRep(); | 
|  |  | 
|  | // Convert the nested-name-specifier into a type. | 
|  | QualType Type; | 
|  | switch (NNS->getKind()) { | 
|  | case NestedNameSpecifier::TypeSpec: | 
|  | case NestedNameSpecifier::TypeSpecWithTemplate: | 
|  | Type = QualType(NNS->getAsType(), 0); | 
|  | break; | 
|  |  | 
|  | case NestedNameSpecifier::Identifier: | 
|  | // Strip off the last layer of the nested-name-specifier and build a | 
|  | // typename type for it. | 
|  | assert(NNS->getAsIdentifier() == &Name && "not a constructor name"); | 
|  | Type = Context.getDependentNameType(ETK_None, NNS->getPrefix(), | 
|  | NNS->getAsIdentifier()); | 
|  | break; | 
|  |  | 
|  | case NestedNameSpecifier::Global: | 
|  | case NestedNameSpecifier::Super: | 
|  | case NestedNameSpecifier::Namespace: | 
|  | case NestedNameSpecifier::NamespaceAlias: | 
|  | llvm_unreachable("Nested name specifier is not a type for inheriting ctor"); | 
|  | } | 
|  |  | 
|  | // This reference to the type is located entirely at the location of the | 
|  | // final identifier in the qualified-id. | 
|  | return CreateParsedType(Type, | 
|  | Context.getTrivialTypeSourceInfo(Type, NameLoc)); | 
|  | } | 
|  |  | 
|  | ParsedType Sema::getDestructorName(SourceLocation TildeLoc, | 
|  | IdentifierInfo &II, | 
|  | SourceLocation NameLoc, | 
|  | Scope *S, CXXScopeSpec &SS, | 
|  | ParsedType ObjectTypePtr, | 
|  | bool EnteringContext) { | 
|  | // Determine where to perform name lookup. | 
|  |  | 
|  | // FIXME: This area of the standard is very messy, and the current | 
|  | // wording is rather unclear about which scopes we search for the | 
|  | // destructor name; see core issues 399 and 555. Issue 399 in | 
|  | // particular shows where the current description of destructor name | 
|  | // lookup is completely out of line with existing practice, e.g., | 
|  | // this appears to be ill-formed: | 
|  | // | 
|  | //   namespace N { | 
|  | //     template <typename T> struct S { | 
|  | //       ~S(); | 
|  | //     }; | 
|  | //   } | 
|  | // | 
|  | //   void f(N::S<int>* s) { | 
|  | //     s->N::S<int>::~S(); | 
|  | //   } | 
|  | // | 
|  | // See also PR6358 and PR6359. | 
|  | // For this reason, we're currently only doing the C++03 version of this | 
|  | // code; the C++0x version has to wait until we get a proper spec. | 
|  | QualType SearchType; | 
|  | DeclContext *LookupCtx = nullptr; | 
|  | bool isDependent = false; | 
|  | bool LookInScope = false; | 
|  |  | 
|  | if (SS.isInvalid()) | 
|  | return ParsedType(); | 
|  |  | 
|  | // If we have an object type, it's because we are in a | 
|  | // pseudo-destructor-expression or a member access expression, and | 
|  | // we know what type we're looking for. | 
|  | if (ObjectTypePtr) | 
|  | SearchType = GetTypeFromParser(ObjectTypePtr); | 
|  |  | 
|  | if (SS.isSet()) { | 
|  | NestedNameSpecifier *NNS = SS.getScopeRep(); | 
|  |  | 
|  | bool AlreadySearched = false; | 
|  | bool LookAtPrefix = true; | 
|  | // C++11 [basic.lookup.qual]p6: | 
|  | //   If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier, | 
|  | //   the type-names are looked up as types in the scope designated by the | 
|  | //   nested-name-specifier. Similarly, in a qualified-id of the form: | 
|  | // | 
|  | //     nested-name-specifier[opt] class-name :: ~ class-name | 
|  | // | 
|  | //   the second class-name is looked up in the same scope as the first. | 
|  | // | 
|  | // Here, we determine whether the code below is permitted to look at the | 
|  | // prefix of the nested-name-specifier. | 
|  | DeclContext *DC = computeDeclContext(SS, EnteringContext); | 
|  | if (DC && DC->isFileContext()) { | 
|  | AlreadySearched = true; | 
|  | LookupCtx = DC; | 
|  | isDependent = false; | 
|  | } else if (DC && isa<CXXRecordDecl>(DC)) { | 
|  | LookAtPrefix = false; | 
|  | LookInScope = true; | 
|  | } | 
|  |  | 
|  | // The second case from the C++03 rules quoted further above. | 
|  | NestedNameSpecifier *Prefix = nullptr; | 
|  | if (AlreadySearched) { | 
|  | // Nothing left to do. | 
|  | } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) { | 
|  | CXXScopeSpec PrefixSS; | 
|  | PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data())); | 
|  | LookupCtx = computeDeclContext(PrefixSS, EnteringContext); | 
|  | isDependent = isDependentScopeSpecifier(PrefixSS); | 
|  | } else if (ObjectTypePtr) { | 
|  | LookupCtx = computeDeclContext(SearchType); | 
|  | isDependent = SearchType->isDependentType(); | 
|  | } else { | 
|  | LookupCtx = computeDeclContext(SS, EnteringContext); | 
|  | isDependent = LookupCtx && LookupCtx->isDependentContext(); | 
|  | } | 
|  | } else if (ObjectTypePtr) { | 
|  | // C++ [basic.lookup.classref]p3: | 
|  | //   If the unqualified-id is ~type-name, the type-name is looked up | 
|  | //   in the context of the entire postfix-expression. If the type T | 
|  | //   of the object expression is of a class type C, the type-name is | 
|  | //   also looked up in the scope of class C. At least one of the | 
|  | //   lookups shall find a name that refers to (possibly | 
|  | //   cv-qualified) T. | 
|  | LookupCtx = computeDeclContext(SearchType); | 
|  | isDependent = SearchType->isDependentType(); | 
|  | assert((isDependent || !SearchType->isIncompleteType()) && | 
|  | "Caller should have completed object type"); | 
|  |  | 
|  | LookInScope = true; | 
|  | } else { | 
|  | // Perform lookup into the current scope (only). | 
|  | LookInScope = true; | 
|  | } | 
|  |  | 
|  | TypeDecl *NonMatchingTypeDecl = nullptr; | 
|  | LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName); | 
|  | for (unsigned Step = 0; Step != 2; ++Step) { | 
|  | // Look for the name first in the computed lookup context (if we | 
|  | // have one) and, if that fails to find a match, in the scope (if | 
|  | // we're allowed to look there). | 
|  | Found.clear(); | 
|  | if (Step == 0 && LookupCtx) | 
|  | LookupQualifiedName(Found, LookupCtx); | 
|  | else if (Step == 1 && LookInScope && S) | 
|  | LookupName(Found, S); | 
|  | else | 
|  | continue; | 
|  |  | 
|  | // FIXME: Should we be suppressing ambiguities here? | 
|  | if (Found.isAmbiguous()) | 
|  | return ParsedType(); | 
|  |  | 
|  | if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) { | 
|  | QualType T = Context.getTypeDeclType(Type); | 
|  | MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false); | 
|  |  | 
|  | if (SearchType.isNull() || SearchType->isDependentType() || | 
|  | Context.hasSameUnqualifiedType(T, SearchType)) { | 
|  | // We found our type! | 
|  |  | 
|  | return CreateParsedType(T, | 
|  | Context.getTrivialTypeSourceInfo(T, NameLoc)); | 
|  | } | 
|  |  | 
|  | if (!SearchType.isNull()) | 
|  | NonMatchingTypeDecl = Type; | 
|  | } | 
|  |  | 
|  | // If the name that we found is a class template name, and it is | 
|  | // the same name as the template name in the last part of the | 
|  | // nested-name-specifier (if present) or the object type, then | 
|  | // this is the destructor for that class. | 
|  | // FIXME: This is a workaround until we get real drafting for core | 
|  | // issue 399, for which there isn't even an obvious direction. | 
|  | if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) { | 
|  | QualType MemberOfType; | 
|  | if (SS.isSet()) { | 
|  | if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) { | 
|  | // Figure out the type of the context, if it has one. | 
|  | if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) | 
|  | MemberOfType = Context.getTypeDeclType(Record); | 
|  | } | 
|  | } | 
|  | if (MemberOfType.isNull()) | 
|  | MemberOfType = SearchType; | 
|  |  | 
|  | if (MemberOfType.isNull()) | 
|  | continue; | 
|  |  | 
|  | // We're referring into a class template specialization. If the | 
|  | // class template we found is the same as the template being | 
|  | // specialized, we found what we are looking for. | 
|  | if (const RecordType *Record = MemberOfType->getAs<RecordType>()) { | 
|  | if (ClassTemplateSpecializationDecl *Spec | 
|  | = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) { | 
|  | if (Spec->getSpecializedTemplate()->getCanonicalDecl() == | 
|  | Template->getCanonicalDecl()) | 
|  | return CreateParsedType( | 
|  | MemberOfType, | 
|  | Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc)); | 
|  | } | 
|  |  | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // We're referring to an unresolved class template | 
|  | // specialization. Determine whether we class template we found | 
|  | // is the same as the template being specialized or, if we don't | 
|  | // know which template is being specialized, that it at least | 
|  | // has the same name. | 
|  | if (const TemplateSpecializationType *SpecType | 
|  | = MemberOfType->getAs<TemplateSpecializationType>()) { | 
|  | TemplateName SpecName = SpecType->getTemplateName(); | 
|  |  | 
|  | // The class template we found is the same template being | 
|  | // specialized. | 
|  | if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) { | 
|  | if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl()) | 
|  | return CreateParsedType( | 
|  | MemberOfType, | 
|  | Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc)); | 
|  |  | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // The class template we found has the same name as the | 
|  | // (dependent) template name being specialized. | 
|  | if (DependentTemplateName *DepTemplate | 
|  | = SpecName.getAsDependentTemplateName()) { | 
|  | if (DepTemplate->isIdentifier() && | 
|  | DepTemplate->getIdentifier() == Template->getIdentifier()) | 
|  | return CreateParsedType( | 
|  | MemberOfType, | 
|  | Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc)); | 
|  |  | 
|  | continue; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (isDependent) { | 
|  | // We didn't find our type, but that's okay: it's dependent | 
|  | // anyway. | 
|  |  | 
|  | // FIXME: What if we have no nested-name-specifier? | 
|  | QualType T = CheckTypenameType(ETK_None, SourceLocation(), | 
|  | SS.getWithLocInContext(Context), | 
|  | II, NameLoc); | 
|  | return ParsedType::make(T); | 
|  | } | 
|  |  | 
|  | if (NonMatchingTypeDecl) { | 
|  | QualType T = Context.getTypeDeclType(NonMatchingTypeDecl); | 
|  | Diag(NameLoc, diag::err_destructor_expr_type_mismatch) | 
|  | << T << SearchType; | 
|  | Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here) | 
|  | << T; | 
|  | } else if (ObjectTypePtr) | 
|  | Diag(NameLoc, diag::err_ident_in_dtor_not_a_type) | 
|  | << &II; | 
|  | else { | 
|  | SemaDiagnosticBuilder DtorDiag = Diag(NameLoc, | 
|  | diag::err_destructor_class_name); | 
|  | if (S) { | 
|  | const DeclContext *Ctx = S->getEntity(); | 
|  | if (const CXXRecordDecl *Class = dyn_cast_or_null<CXXRecordDecl>(Ctx)) | 
|  | DtorDiag << FixItHint::CreateReplacement(SourceRange(NameLoc), | 
|  | Class->getNameAsString()); | 
|  | } | 
|  | } | 
|  |  | 
|  | return ParsedType(); | 
|  | } | 
|  |  | 
|  | ParsedType Sema::getDestructorType(const DeclSpec& DS, ParsedType ObjectType) { | 
|  | if (DS.getTypeSpecType() == DeclSpec::TST_error || !ObjectType) | 
|  | return ParsedType(); | 
|  | assert(DS.getTypeSpecType() == DeclSpec::TST_decltype | 
|  | && "only get destructor types from declspecs"); | 
|  | QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc()); | 
|  | QualType SearchType = GetTypeFromParser(ObjectType); | 
|  | if (SearchType->isDependentType() || Context.hasSameUnqualifiedType(SearchType, T)) { | 
|  | return ParsedType::make(T); | 
|  | } | 
|  |  | 
|  | Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch) | 
|  | << T << SearchType; | 
|  | return ParsedType(); | 
|  | } | 
|  |  | 
|  | bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS, | 
|  | const UnqualifiedId &Name) { | 
|  | assert(Name.getKind() == UnqualifiedId::IK_LiteralOperatorId); | 
|  |  | 
|  | if (!SS.isValid()) | 
|  | return false; | 
|  |  | 
|  | switch (SS.getScopeRep()->getKind()) { | 
|  | case NestedNameSpecifier::Identifier: | 
|  | case NestedNameSpecifier::TypeSpec: | 
|  | case NestedNameSpecifier::TypeSpecWithTemplate: | 
|  | // Per C++11 [over.literal]p2, literal operators can only be declared at | 
|  | // namespace scope. Therefore, this unqualified-id cannot name anything. | 
|  | // Reject it early, because we have no AST representation for this in the | 
|  | // case where the scope is dependent. | 
|  | Diag(Name.getLocStart(), diag::err_literal_operator_id_outside_namespace) | 
|  | << SS.getScopeRep(); | 
|  | return true; | 
|  |  | 
|  | case NestedNameSpecifier::Global: | 
|  | case NestedNameSpecifier::Super: | 
|  | case NestedNameSpecifier::Namespace: | 
|  | case NestedNameSpecifier::NamespaceAlias: | 
|  | return false; | 
|  | } | 
|  |  | 
|  | llvm_unreachable("unknown nested name specifier kind"); | 
|  | } | 
|  |  | 
|  | /// \brief Build a C++ typeid expression with a type operand. | 
|  | ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType, | 
|  | SourceLocation TypeidLoc, | 
|  | TypeSourceInfo *Operand, | 
|  | SourceLocation RParenLoc) { | 
|  | // C++ [expr.typeid]p4: | 
|  | //   The top-level cv-qualifiers of the lvalue expression or the type-id | 
|  | //   that is the operand of typeid are always ignored. | 
|  | //   If the type of the type-id is a class type or a reference to a class | 
|  | //   type, the class shall be completely-defined. | 
|  | Qualifiers Quals; | 
|  | QualType T | 
|  | = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(), | 
|  | Quals); | 
|  | if (T->getAs<RecordType>() && | 
|  | RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid)) | 
|  | return ExprError(); | 
|  |  | 
|  | if (T->isVariablyModifiedType()) | 
|  | return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) << T); | 
|  |  | 
|  | return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand, | 
|  | SourceRange(TypeidLoc, RParenLoc)); | 
|  | } | 
|  |  | 
|  | /// \brief Build a C++ typeid expression with an expression operand. | 
|  | ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType, | 
|  | SourceLocation TypeidLoc, | 
|  | Expr *E, | 
|  | SourceLocation RParenLoc) { | 
|  | bool WasEvaluated = false; | 
|  | if (E && !E->isTypeDependent()) { | 
|  | if (E->getType()->isPlaceholderType()) { | 
|  | ExprResult result = CheckPlaceholderExpr(E); | 
|  | if (result.isInvalid()) return ExprError(); | 
|  | E = result.get(); | 
|  | } | 
|  |  | 
|  | QualType T = E->getType(); | 
|  | if (const RecordType *RecordT = T->getAs<RecordType>()) { | 
|  | CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl()); | 
|  | // C++ [expr.typeid]p3: | 
|  | //   [...] If the type of the expression is a class type, the class | 
|  | //   shall be completely-defined. | 
|  | if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid)) | 
|  | return ExprError(); | 
|  |  | 
|  | // C++ [expr.typeid]p3: | 
|  | //   When typeid is applied to an expression other than an glvalue of a | 
|  | //   polymorphic class type [...] [the] expression is an unevaluated | 
|  | //   operand. [...] | 
|  | if (RecordD->isPolymorphic() && E->isGLValue()) { | 
|  | // The subexpression is potentially evaluated; switch the context | 
|  | // and recheck the subexpression. | 
|  | ExprResult Result = TransformToPotentiallyEvaluated(E); | 
|  | if (Result.isInvalid()) return ExprError(); | 
|  | E = Result.get(); | 
|  |  | 
|  | // We require a vtable to query the type at run time. | 
|  | MarkVTableUsed(TypeidLoc, RecordD); | 
|  | WasEvaluated = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++ [expr.typeid]p4: | 
|  | //   [...] If the type of the type-id is a reference to a possibly | 
|  | //   cv-qualified type, the result of the typeid expression refers to a | 
|  | //   std::type_info object representing the cv-unqualified referenced | 
|  | //   type. | 
|  | Qualifiers Quals; | 
|  | QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals); | 
|  | if (!Context.hasSameType(T, UnqualT)) { | 
|  | T = UnqualT; | 
|  | E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (E->getType()->isVariablyModifiedType()) | 
|  | return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) | 
|  | << E->getType()); | 
|  | else if (ActiveTemplateInstantiations.empty() && | 
|  | E->HasSideEffects(Context, WasEvaluated)) { | 
|  | // The expression operand for typeid is in an unevaluated expression | 
|  | // context, so side effects could result in unintended consequences. | 
|  | Diag(E->getExprLoc(), WasEvaluated | 
|  | ? diag::warn_side_effects_typeid | 
|  | : diag::warn_side_effects_unevaluated_context); | 
|  | } | 
|  |  | 
|  | return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E, | 
|  | SourceRange(TypeidLoc, RParenLoc)); | 
|  | } | 
|  |  | 
|  | /// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression); | 
|  | ExprResult | 
|  | Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc, | 
|  | bool isType, void *TyOrExpr, SourceLocation RParenLoc) { | 
|  | // Find the std::type_info type. | 
|  | if (!getStdNamespace()) | 
|  | return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid)); | 
|  |  | 
|  | if (!CXXTypeInfoDecl) { | 
|  | IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info"); | 
|  | LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName); | 
|  | LookupQualifiedName(R, getStdNamespace()); | 
|  | CXXTypeInfoDecl = R.getAsSingle<RecordDecl>(); | 
|  | // Microsoft's typeinfo doesn't have type_info in std but in the global | 
|  | // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153. | 
|  | if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) { | 
|  | LookupQualifiedName(R, Context.getTranslationUnitDecl()); | 
|  | CXXTypeInfoDecl = R.getAsSingle<RecordDecl>(); | 
|  | } | 
|  | if (!CXXTypeInfoDecl) | 
|  | return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid)); | 
|  | } | 
|  |  | 
|  | if (!getLangOpts().RTTI) { | 
|  | return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti)); | 
|  | } | 
|  |  | 
|  | QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl); | 
|  |  | 
|  | if (isType) { | 
|  | // The operand is a type; handle it as such. | 
|  | TypeSourceInfo *TInfo = nullptr; | 
|  | QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr), | 
|  | &TInfo); | 
|  | if (T.isNull()) | 
|  | return ExprError(); | 
|  |  | 
|  | if (!TInfo) | 
|  | TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc); | 
|  |  | 
|  | return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc); | 
|  | } | 
|  |  | 
|  | // The operand is an expression. | 
|  | return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc); | 
|  | } | 
|  |  | 
|  | /// \brief Build a Microsoft __uuidof expression with a type operand. | 
|  | ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType, | 
|  | SourceLocation TypeidLoc, | 
|  | TypeSourceInfo *Operand, | 
|  | SourceLocation RParenLoc) { | 
|  | if (!Operand->getType()->isDependentType()) { | 
|  | bool HasMultipleGUIDs = false; | 
|  | if (!CXXUuidofExpr::GetUuidAttrOfType(Operand->getType(), | 
|  | &HasMultipleGUIDs)) { | 
|  | if (HasMultipleGUIDs) | 
|  | return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids)); | 
|  | else | 
|  | return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid)); | 
|  | } | 
|  | } | 
|  |  | 
|  | return new (Context) CXXUuidofExpr(TypeInfoType.withConst(), Operand, | 
|  | SourceRange(TypeidLoc, RParenLoc)); | 
|  | } | 
|  |  | 
|  | /// \brief Build a Microsoft __uuidof expression with an expression operand. | 
|  | ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType, | 
|  | SourceLocation TypeidLoc, | 
|  | Expr *E, | 
|  | SourceLocation RParenLoc) { | 
|  | if (!E->getType()->isDependentType()) { | 
|  | bool HasMultipleGUIDs = false; | 
|  | if (!CXXUuidofExpr::GetUuidAttrOfType(E->getType(), &HasMultipleGUIDs) && | 
|  | !E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { | 
|  | if (HasMultipleGUIDs) | 
|  | return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids)); | 
|  | else | 
|  | return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid)); | 
|  | } | 
|  | } | 
|  |  | 
|  | return new (Context) CXXUuidofExpr(TypeInfoType.withConst(), E, | 
|  | SourceRange(TypeidLoc, RParenLoc)); | 
|  | } | 
|  |  | 
|  | /// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression); | 
|  | ExprResult | 
|  | Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc, | 
|  | bool isType, void *TyOrExpr, SourceLocation RParenLoc) { | 
|  | // If MSVCGuidDecl has not been cached, do the lookup. | 
|  | if (!MSVCGuidDecl) { | 
|  | IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID"); | 
|  | LookupResult R(*this, GuidII, SourceLocation(), LookupTagName); | 
|  | LookupQualifiedName(R, Context.getTranslationUnitDecl()); | 
|  | MSVCGuidDecl = R.getAsSingle<RecordDecl>(); | 
|  | if (!MSVCGuidDecl) | 
|  | return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof)); | 
|  | } | 
|  |  | 
|  | QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl); | 
|  |  | 
|  | if (isType) { | 
|  | // The operand is a type; handle it as such. | 
|  | TypeSourceInfo *TInfo = nullptr; | 
|  | QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr), | 
|  | &TInfo); | 
|  | if (T.isNull()) | 
|  | return ExprError(); | 
|  |  | 
|  | if (!TInfo) | 
|  | TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc); | 
|  |  | 
|  | return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc); | 
|  | } | 
|  |  | 
|  | // The operand is an expression. | 
|  | return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc); | 
|  | } | 
|  |  | 
|  | /// ActOnCXXBoolLiteral - Parse {true,false} literals. | 
|  | ExprResult | 
|  | Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) { | 
|  | assert((Kind == tok::kw_true || Kind == tok::kw_false) && | 
|  | "Unknown C++ Boolean value!"); | 
|  | return new (Context) | 
|  | CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc); | 
|  | } | 
|  |  | 
|  | /// ActOnCXXNullPtrLiteral - Parse 'nullptr'. | 
|  | ExprResult | 
|  | Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) { | 
|  | return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc); | 
|  | } | 
|  |  | 
|  | /// ActOnCXXThrow - Parse throw expressions. | 
|  | ExprResult | 
|  | Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) { | 
|  | bool IsThrownVarInScope = false; | 
|  | if (Ex) { | 
|  | // C++0x [class.copymove]p31: | 
|  | //   When certain criteria are met, an implementation is allowed to omit the | 
|  | //   copy/move construction of a class object [...] | 
|  | // | 
|  | //     - in a throw-expression, when the operand is the name of a | 
|  | //       non-volatile automatic object (other than a function or catch- | 
|  | //       clause parameter) whose scope does not extend beyond the end of the | 
|  | //       innermost enclosing try-block (if there is one), the copy/move | 
|  | //       operation from the operand to the exception object (15.1) can be | 
|  | //       omitted by constructing the automatic object directly into the | 
|  | //       exception object | 
|  | if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens())) | 
|  | if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) { | 
|  | if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) { | 
|  | for( ; S; S = S->getParent()) { | 
|  | if (S->isDeclScope(Var)) { | 
|  | IsThrownVarInScope = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (S->getFlags() & | 
|  | (Scope::FnScope | Scope::ClassScope | Scope::BlockScope | | 
|  | Scope::FunctionPrototypeScope | Scope::ObjCMethodScope | | 
|  | Scope::TryScope)) | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope); | 
|  | } | 
|  |  | 
|  | ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex, | 
|  | bool IsThrownVarInScope) { | 
|  | // Don't report an error if 'throw' is used in system headers. | 
|  | if (!getLangOpts().CXXExceptions && | 
|  | !getSourceManager().isInSystemHeader(OpLoc)) | 
|  | Diag(OpLoc, diag::err_exceptions_disabled) << "throw"; | 
|  |  | 
|  | if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope()) | 
|  | Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw"; | 
|  |  | 
|  | if (Ex && !Ex->isTypeDependent()) { | 
|  | ExprResult ExRes = CheckCXXThrowOperand(OpLoc, Ex, IsThrownVarInScope); | 
|  | if (ExRes.isInvalid()) | 
|  | return ExprError(); | 
|  | Ex = ExRes.get(); | 
|  | } | 
|  |  | 
|  | return new (Context) | 
|  | CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope); | 
|  | } | 
|  |  | 
|  | /// CheckCXXThrowOperand - Validate the operand of a throw. | 
|  | ExprResult Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *E, | 
|  | bool IsThrownVarInScope) { | 
|  | // C++ [except.throw]p3: | 
|  | //   A throw-expression initializes a temporary object, called the exception | 
|  | //   object, the type of which is determined by removing any top-level | 
|  | //   cv-qualifiers from the static type of the operand of throw and adjusting | 
|  | //   the type from "array of T" or "function returning T" to "pointer to T" | 
|  | //   or "pointer to function returning T", [...] | 
|  | if (E->getType().hasQualifiers()) | 
|  | E = ImpCastExprToType(E, E->getType().getUnqualifiedType(), CK_NoOp, | 
|  | E->getValueKind()).get(); | 
|  |  | 
|  | ExprResult Res = DefaultFunctionArrayConversion(E); | 
|  | if (Res.isInvalid()) | 
|  | return ExprError(); | 
|  | E = Res.get(); | 
|  |  | 
|  | //   If the type of the exception would be an incomplete type or a pointer | 
|  | //   to an incomplete type other than (cv) void the program is ill-formed. | 
|  | QualType Ty = E->getType(); | 
|  | bool isPointer = false; | 
|  | if (const PointerType* Ptr = Ty->getAs<PointerType>()) { | 
|  | Ty = Ptr->getPointeeType(); | 
|  | isPointer = true; | 
|  | } | 
|  | if (!isPointer || !Ty->isVoidType()) { | 
|  | if (RequireCompleteType(ThrowLoc, Ty, | 
|  | isPointer? diag::err_throw_incomplete_ptr | 
|  | : diag::err_throw_incomplete, | 
|  | E->getSourceRange())) | 
|  | return ExprError(); | 
|  |  | 
|  | if (RequireNonAbstractType(ThrowLoc, E->getType(), | 
|  | diag::err_throw_abstract_type, E)) | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | // Initialize the exception result.  This implicitly weeds out | 
|  | // abstract types or types with inaccessible copy constructors. | 
|  |  | 
|  | // C++0x [class.copymove]p31: | 
|  | //   When certain criteria are met, an implementation is allowed to omit the | 
|  | //   copy/move construction of a class object [...] | 
|  | // | 
|  | //     - in a throw-expression, when the operand is the name of a | 
|  | //       non-volatile automatic object (other than a function or catch-clause | 
|  | //       parameter) whose scope does not extend beyond the end of the | 
|  | //       innermost enclosing try-block (if there is one), the copy/move | 
|  | //       operation from the operand to the exception object (15.1) can be | 
|  | //       omitted by constructing the automatic object directly into the | 
|  | //       exception object | 
|  | const VarDecl *NRVOVariable = nullptr; | 
|  | if (IsThrownVarInScope) | 
|  | NRVOVariable = getCopyElisionCandidate(QualType(), E, false); | 
|  |  | 
|  | InitializedEntity Entity = | 
|  | InitializedEntity::InitializeException(ThrowLoc, E->getType(), | 
|  | /*NRVO=*/NRVOVariable != nullptr); | 
|  | Res = PerformMoveOrCopyInitialization(Entity, NRVOVariable, | 
|  | QualType(), E, | 
|  | IsThrownVarInScope); | 
|  | if (Res.isInvalid()) | 
|  | return ExprError(); | 
|  | E = Res.get(); | 
|  |  | 
|  | // If the exception has class type, we need additional handling. | 
|  | const RecordType *RecordTy = Ty->getAs<RecordType>(); | 
|  | if (!RecordTy) | 
|  | return E; | 
|  | CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl()); | 
|  |  | 
|  | // If we are throwing a polymorphic class type or pointer thereof, | 
|  | // exception handling will make use of the vtable. | 
|  | MarkVTableUsed(ThrowLoc, RD); | 
|  |  | 
|  | // If a pointer is thrown, the referenced object will not be destroyed. | 
|  | if (isPointer) | 
|  | return E; | 
|  |  | 
|  | // If the class has a destructor, we must be able to call it. | 
|  | if (RD->hasIrrelevantDestructor()) | 
|  | return E; | 
|  |  | 
|  | CXXDestructorDecl *Destructor = LookupDestructor(RD); | 
|  | if (!Destructor) | 
|  | return E; | 
|  |  | 
|  | MarkFunctionReferenced(E->getExprLoc(), Destructor); | 
|  | CheckDestructorAccess(E->getExprLoc(), Destructor, | 
|  | PDiag(diag::err_access_dtor_exception) << Ty); | 
|  | if (DiagnoseUseOfDecl(Destructor, E->getExprLoc())) | 
|  | return ExprError(); | 
|  | return E; | 
|  | } | 
|  |  | 
|  | QualType Sema::getCurrentThisType() { | 
|  | DeclContext *DC = getFunctionLevelDeclContext(); | 
|  | QualType ThisTy = CXXThisTypeOverride; | 
|  | if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) { | 
|  | if (method && method->isInstance()) | 
|  | ThisTy = method->getThisType(Context); | 
|  | } | 
|  | if (ThisTy.isNull()) { | 
|  | if (isGenericLambdaCallOperatorSpecialization(CurContext) && | 
|  | CurContext->getParent()->getParent()->isRecord()) { | 
|  | // This is a generic lambda call operator that is being instantiated | 
|  | // within a default initializer - so use the enclosing class as 'this'. | 
|  | // There is no enclosing member function to retrieve the 'this' pointer | 
|  | // from. | 
|  | QualType ClassTy = Context.getTypeDeclType( | 
|  | cast<CXXRecordDecl>(CurContext->getParent()->getParent())); | 
|  | // There are no cv-qualifiers for 'this' within default initializers, | 
|  | // per [expr.prim.general]p4. | 
|  | return Context.getPointerType(ClassTy); | 
|  | } | 
|  | } | 
|  | return ThisTy; | 
|  | } | 
|  |  | 
|  | Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S, | 
|  | Decl *ContextDecl, | 
|  | unsigned CXXThisTypeQuals, | 
|  | bool Enabled) | 
|  | : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false) | 
|  | { | 
|  | if (!Enabled || !ContextDecl) | 
|  | return; | 
|  |  | 
|  | CXXRecordDecl *Record = nullptr; | 
|  | if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl)) | 
|  | Record = Template->getTemplatedDecl(); | 
|  | else | 
|  | Record = cast<CXXRecordDecl>(ContextDecl); | 
|  |  | 
|  | S.CXXThisTypeOverride | 
|  | = S.Context.getPointerType( | 
|  | S.Context.getRecordType(Record).withCVRQualifiers(CXXThisTypeQuals)); | 
|  |  | 
|  | this->Enabled = true; | 
|  | } | 
|  |  | 
|  |  | 
|  | Sema::CXXThisScopeRAII::~CXXThisScopeRAII() { | 
|  | if (Enabled) { | 
|  | S.CXXThisTypeOverride = OldCXXThisTypeOverride; | 
|  | } | 
|  | } | 
|  |  | 
|  | static Expr *captureThis(ASTContext &Context, RecordDecl *RD, | 
|  | QualType ThisTy, SourceLocation Loc) { | 
|  | FieldDecl *Field | 
|  | = FieldDecl::Create(Context, RD, Loc, Loc, nullptr, ThisTy, | 
|  | Context.getTrivialTypeSourceInfo(ThisTy, Loc), | 
|  | nullptr, false, ICIS_NoInit); | 
|  | Field->setImplicit(true); | 
|  | Field->setAccess(AS_private); | 
|  | RD->addDecl(Field); | 
|  | return new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit*/true); | 
|  | } | 
|  |  | 
|  | bool Sema::CheckCXXThisCapture(SourceLocation Loc, bool Explicit, | 
|  | bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt) { | 
|  | // We don't need to capture this in an unevaluated context. | 
|  | if (isUnevaluatedContext() && !Explicit) | 
|  | return true; | 
|  |  | 
|  | const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt ? | 
|  | *FunctionScopeIndexToStopAt : FunctionScopes.size() - 1; | 
|  | // Otherwise, check that we can capture 'this'. | 
|  | unsigned NumClosures = 0; | 
|  | for (unsigned idx = MaxFunctionScopesIndex; idx != 0; idx--) { | 
|  | if (CapturingScopeInfo *CSI = | 
|  | dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) { | 
|  | if (CSI->CXXThisCaptureIndex != 0) { | 
|  | // 'this' is already being captured; there isn't anything more to do. | 
|  | break; | 
|  | } | 
|  | LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI); | 
|  | if (LSI && isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) { | 
|  | // This context can't implicitly capture 'this'; fail out. | 
|  | if (BuildAndDiagnose) | 
|  | Diag(Loc, diag::err_this_capture) << Explicit; | 
|  | return true; | 
|  | } | 
|  | if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref || | 
|  | CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval || | 
|  | CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block || | 
|  | CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion || | 
|  | Explicit) { | 
|  | // This closure can capture 'this'; continue looking upwards. | 
|  | NumClosures++; | 
|  | Explicit = false; | 
|  | continue; | 
|  | } | 
|  | // This context can't implicitly capture 'this'; fail out. | 
|  | if (BuildAndDiagnose) | 
|  | Diag(Loc, diag::err_this_capture) << Explicit; | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | if (!BuildAndDiagnose) return false; | 
|  | // Mark that we're implicitly capturing 'this' in all the scopes we skipped. | 
|  | // FIXME: We need to delay this marking in PotentiallyPotentiallyEvaluated | 
|  | // contexts. | 
|  | for (unsigned idx = MaxFunctionScopesIndex; NumClosures; | 
|  | --idx, --NumClosures) { | 
|  | CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]); | 
|  | Expr *ThisExpr = nullptr; | 
|  | QualType ThisTy = getCurrentThisType(); | 
|  | if (LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI)) | 
|  | // For lambda expressions, build a field and an initializing expression. | 
|  | ThisExpr = captureThis(Context, LSI->Lambda, ThisTy, Loc); | 
|  | else if (CapturedRegionScopeInfo *RSI | 
|  | = dyn_cast<CapturedRegionScopeInfo>(FunctionScopes[idx])) | 
|  | ThisExpr = captureThis(Context, RSI->TheRecordDecl, ThisTy, Loc); | 
|  |  | 
|  | bool isNested = NumClosures > 1; | 
|  | CSI->addThisCapture(isNested, Loc, ThisTy, ThisExpr); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | ExprResult Sema::ActOnCXXThis(SourceLocation Loc) { | 
|  | /// C++ 9.3.2: In the body of a non-static member function, the keyword this | 
|  | /// is a non-lvalue expression whose value is the address of the object for | 
|  | /// which the function is called. | 
|  |  | 
|  | QualType ThisTy = getCurrentThisType(); | 
|  | if (ThisTy.isNull()) return Diag(Loc, diag::err_invalid_this_use); | 
|  |  | 
|  | CheckCXXThisCapture(Loc); | 
|  | return new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/false); | 
|  | } | 
|  |  | 
|  | bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) { | 
|  | // If we're outside the body of a member function, then we'll have a specified | 
|  | // type for 'this'. | 
|  | if (CXXThisTypeOverride.isNull()) | 
|  | return false; | 
|  |  | 
|  | // Determine whether we're looking into a class that's currently being | 
|  | // defined. | 
|  | CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl(); | 
|  | return Class && Class->isBeingDefined(); | 
|  | } | 
|  |  | 
|  | ExprResult | 
|  | Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep, | 
|  | SourceLocation LParenLoc, | 
|  | MultiExprArg exprs, | 
|  | SourceLocation RParenLoc) { | 
|  | if (!TypeRep) | 
|  | return ExprError(); | 
|  |  | 
|  | TypeSourceInfo *TInfo; | 
|  | QualType Ty = GetTypeFromParser(TypeRep, &TInfo); | 
|  | if (!TInfo) | 
|  | TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation()); | 
|  |  | 
|  | return BuildCXXTypeConstructExpr(TInfo, LParenLoc, exprs, RParenLoc); | 
|  | } | 
|  |  | 
|  | /// ActOnCXXTypeConstructExpr - Parse construction of a specified type. | 
|  | /// Can be interpreted either as function-style casting ("int(x)") | 
|  | /// or class type construction ("ClassType(x,y,z)") | 
|  | /// or creation of a value-initialized type ("int()"). | 
|  | ExprResult | 
|  | Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo, | 
|  | SourceLocation LParenLoc, | 
|  | MultiExprArg Exprs, | 
|  | SourceLocation RParenLoc) { | 
|  | QualType Ty = TInfo->getType(); | 
|  | SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc(); | 
|  |  | 
|  | if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs)) { | 
|  | return CXXUnresolvedConstructExpr::Create(Context, TInfo, LParenLoc, Exprs, | 
|  | RParenLoc); | 
|  | } | 
|  |  | 
|  | bool ListInitialization = LParenLoc.isInvalid(); | 
|  | assert((!ListInitialization || (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) | 
|  | && "List initialization must have initializer list as expression."); | 
|  | SourceRange FullRange = SourceRange(TyBeginLoc, | 
|  | ListInitialization ? Exprs[0]->getSourceRange().getEnd() : RParenLoc); | 
|  |  | 
|  | // C++ [expr.type.conv]p1: | 
|  | // If the expression list is a single expression, the type conversion | 
|  | // expression is equivalent (in definedness, and if defined in meaning) to the | 
|  | // corresponding cast expression. | 
|  | if (Exprs.size() == 1 && !ListInitialization) { | 
|  | Expr *Arg = Exprs[0]; | 
|  | return BuildCXXFunctionalCastExpr(TInfo, LParenLoc, Arg, RParenLoc); | 
|  | } | 
|  |  | 
|  | QualType ElemTy = Ty; | 
|  | if (Ty->isArrayType()) { | 
|  | if (!ListInitialization) | 
|  | return ExprError(Diag(TyBeginLoc, | 
|  | diag::err_value_init_for_array_type) << FullRange); | 
|  | ElemTy = Context.getBaseElementType(Ty); | 
|  | } | 
|  |  | 
|  | if (!Ty->isVoidType() && | 
|  | RequireCompleteType(TyBeginLoc, ElemTy, | 
|  | diag::err_invalid_incomplete_type_use, FullRange)) | 
|  | return ExprError(); | 
|  |  | 
|  | if (RequireNonAbstractType(TyBeginLoc, Ty, | 
|  | diag::err_allocation_of_abstract_type)) | 
|  | return ExprError(); | 
|  |  | 
|  | InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo); | 
|  | InitializationKind Kind = | 
|  | Exprs.size() ? ListInitialization | 
|  | ? InitializationKind::CreateDirectList(TyBeginLoc) | 
|  | : InitializationKind::CreateDirect(TyBeginLoc, LParenLoc, RParenLoc) | 
|  | : InitializationKind::CreateValue(TyBeginLoc, LParenLoc, RParenLoc); | 
|  | InitializationSequence InitSeq(*this, Entity, Kind, Exprs); | 
|  | ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs); | 
|  |  | 
|  | if (Result.isInvalid() || !ListInitialization) | 
|  | return Result; | 
|  |  | 
|  | Expr *Inner = Result.get(); | 
|  | if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner)) | 
|  | Inner = BTE->getSubExpr(); | 
|  | if (!isa<CXXTemporaryObjectExpr>(Inner)) { | 
|  | // If we created a CXXTemporaryObjectExpr, that node also represents the | 
|  | // functional cast. Otherwise, create an explicit cast to represent | 
|  | // the syntactic form of a functional-style cast that was used here. | 
|  | // | 
|  | // FIXME: Creating a CXXFunctionalCastExpr around a CXXConstructExpr | 
|  | // would give a more consistent AST representation than using a | 
|  | // CXXTemporaryObjectExpr. It's also weird that the functional cast | 
|  | // is sometimes handled by initialization and sometimes not. | 
|  | QualType ResultType = Result.get()->getType(); | 
|  | Result = CXXFunctionalCastExpr::Create( | 
|  | Context, ResultType, Expr::getValueKindForType(TInfo->getType()), TInfo, | 
|  | CK_NoOp, Result.get(), /*Path=*/nullptr, LParenLoc, RParenLoc); | 
|  | } | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | /// doesUsualArrayDeleteWantSize - Answers whether the usual | 
|  | /// operator delete[] for the given type has a size_t parameter. | 
|  | static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc, | 
|  | QualType allocType) { | 
|  | const RecordType *record = | 
|  | allocType->getBaseElementTypeUnsafe()->getAs<RecordType>(); | 
|  | if (!record) return false; | 
|  |  | 
|  | // Try to find an operator delete[] in class scope. | 
|  |  | 
|  | DeclarationName deleteName = | 
|  | S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete); | 
|  | LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName); | 
|  | S.LookupQualifiedName(ops, record->getDecl()); | 
|  |  | 
|  | // We're just doing this for information. | 
|  | ops.suppressDiagnostics(); | 
|  |  | 
|  | // Very likely: there's no operator delete[]. | 
|  | if (ops.empty()) return false; | 
|  |  | 
|  | // If it's ambiguous, it should be illegal to call operator delete[] | 
|  | // on this thing, so it doesn't matter if we allocate extra space or not. | 
|  | if (ops.isAmbiguous()) return false; | 
|  |  | 
|  | LookupResult::Filter filter = ops.makeFilter(); | 
|  | while (filter.hasNext()) { | 
|  | NamedDecl *del = filter.next()->getUnderlyingDecl(); | 
|  |  | 
|  | // C++0x [basic.stc.dynamic.deallocation]p2: | 
|  | //   A template instance is never a usual deallocation function, | 
|  | //   regardless of its signature. | 
|  | if (isa<FunctionTemplateDecl>(del)) { | 
|  | filter.erase(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // C++0x [basic.stc.dynamic.deallocation]p2: | 
|  | //   If class T does not declare [an operator delete[] with one | 
|  | //   parameter] but does declare a member deallocation function | 
|  | //   named operator delete[] with exactly two parameters, the | 
|  | //   second of which has type std::size_t, then this function | 
|  | //   is a usual deallocation function. | 
|  | if (!cast<CXXMethodDecl>(del)->isUsualDeallocationFunction()) { | 
|  | filter.erase(); | 
|  | continue; | 
|  | } | 
|  | } | 
|  | filter.done(); | 
|  |  | 
|  | if (!ops.isSingleResult()) return false; | 
|  |  | 
|  | const FunctionDecl *del = cast<FunctionDecl>(ops.getFoundDecl()); | 
|  | return (del->getNumParams() == 2); | 
|  | } | 
|  |  | 
|  | /// \brief Parsed a C++ 'new' expression (C++ 5.3.4). | 
|  | /// | 
|  | /// E.g.: | 
|  | /// @code new (memory) int[size][4] @endcode | 
|  | /// or | 
|  | /// @code ::new Foo(23, "hello") @endcode | 
|  | /// | 
|  | /// \param StartLoc The first location of the expression. | 
|  | /// \param UseGlobal True if 'new' was prefixed with '::'. | 
|  | /// \param PlacementLParen Opening paren of the placement arguments. | 
|  | /// \param PlacementArgs Placement new arguments. | 
|  | /// \param PlacementRParen Closing paren of the placement arguments. | 
|  | /// \param TypeIdParens If the type is in parens, the source range. | 
|  | /// \param D The type to be allocated, as well as array dimensions. | 
|  | /// \param Initializer The initializing expression or initializer-list, or null | 
|  | ///   if there is none. | 
|  | ExprResult | 
|  | Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal, | 
|  | SourceLocation PlacementLParen, MultiExprArg PlacementArgs, | 
|  | SourceLocation PlacementRParen, SourceRange TypeIdParens, | 
|  | Declarator &D, Expr *Initializer) { | 
|  | bool TypeContainsAuto = D.getDeclSpec().containsPlaceholderType(); | 
|  |  | 
|  | Expr *ArraySize = nullptr; | 
|  | // If the specified type is an array, unwrap it and save the expression. | 
|  | if (D.getNumTypeObjects() > 0 && | 
|  | D.getTypeObject(0).Kind == DeclaratorChunk::Array) { | 
|  | DeclaratorChunk &Chunk = D.getTypeObject(0); | 
|  | if (TypeContainsAuto) | 
|  | return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto) | 
|  | << D.getSourceRange()); | 
|  | if (Chunk.Arr.hasStatic) | 
|  | return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new) | 
|  | << D.getSourceRange()); | 
|  | if (!Chunk.Arr.NumElts) | 
|  | return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size) | 
|  | << D.getSourceRange()); | 
|  |  | 
|  | ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts); | 
|  | D.DropFirstTypeObject(); | 
|  | } | 
|  |  | 
|  | // Every dimension shall be of constant size. | 
|  | if (ArraySize) { | 
|  | for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) { | 
|  | if (D.getTypeObject(I).Kind != DeclaratorChunk::Array) | 
|  | break; | 
|  |  | 
|  | DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr; | 
|  | if (Expr *NumElts = (Expr *)Array.NumElts) { | 
|  | if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) { | 
|  | if (getLangOpts().CPlusPlus14) { | 
|  | // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator | 
|  | //   shall be a converted constant expression (5.19) of type std::size_t | 
|  | //   and shall evaluate to a strictly positive value. | 
|  | unsigned IntWidth = Context.getTargetInfo().getIntWidth(); | 
|  | assert(IntWidth && "Builtin type of size 0?"); | 
|  | llvm::APSInt Value(IntWidth); | 
|  | Array.NumElts | 
|  | = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value, | 
|  | CCEK_NewExpr) | 
|  | .get(); | 
|  | } else { | 
|  | Array.NumElts | 
|  | = VerifyIntegerConstantExpression(NumElts, nullptr, | 
|  | diag::err_new_array_nonconst) | 
|  | .get(); | 
|  | } | 
|  | if (!Array.NumElts) | 
|  | return ExprError(); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/nullptr); | 
|  | QualType AllocType = TInfo->getType(); | 
|  | if (D.isInvalidType()) | 
|  | return ExprError(); | 
|  |  | 
|  | SourceRange DirectInitRange; | 
|  | if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) | 
|  | DirectInitRange = List->getSourceRange(); | 
|  |  | 
|  | return BuildCXXNew(SourceRange(StartLoc, D.getLocEnd()), UseGlobal, | 
|  | PlacementLParen, | 
|  | PlacementArgs, | 
|  | PlacementRParen, | 
|  | TypeIdParens, | 
|  | AllocType, | 
|  | TInfo, | 
|  | ArraySize, | 
|  | DirectInitRange, | 
|  | Initializer, | 
|  | TypeContainsAuto); | 
|  | } | 
|  |  | 
|  | static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style, | 
|  | Expr *Init) { | 
|  | if (!Init) | 
|  | return true; | 
|  | if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) | 
|  | return PLE->getNumExprs() == 0; | 
|  | if (isa<ImplicitValueInitExpr>(Init)) | 
|  | return true; | 
|  | else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) | 
|  | return !CCE->isListInitialization() && | 
|  | CCE->getConstructor()->isDefaultConstructor(); | 
|  | else if (Style == CXXNewExpr::ListInit) { | 
|  | assert(isa<InitListExpr>(Init) && | 
|  | "Shouldn't create list CXXConstructExprs for arrays."); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | ExprResult | 
|  | Sema::BuildCXXNew(SourceRange Range, bool UseGlobal, | 
|  | SourceLocation PlacementLParen, | 
|  | MultiExprArg PlacementArgs, | 
|  | SourceLocation PlacementRParen, | 
|  | SourceRange TypeIdParens, | 
|  | QualType AllocType, | 
|  | TypeSourceInfo *AllocTypeInfo, | 
|  | Expr *ArraySize, | 
|  | SourceRange DirectInitRange, | 
|  | Expr *Initializer, | 
|  | bool TypeMayContainAuto) { | 
|  | SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange(); | 
|  | SourceLocation StartLoc = Range.getBegin(); | 
|  |  | 
|  | CXXNewExpr::InitializationStyle initStyle; | 
|  | if (DirectInitRange.isValid()) { | 
|  | assert(Initializer && "Have parens but no initializer."); | 
|  | initStyle = CXXNewExpr::CallInit; | 
|  | } else if (Initializer && isa<InitListExpr>(Initializer)) | 
|  | initStyle = CXXNewExpr::ListInit; | 
|  | else { | 
|  | assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) || | 
|  | isa<CXXConstructExpr>(Initializer)) && | 
|  | "Initializer expression that cannot have been implicitly created."); | 
|  | initStyle = CXXNewExpr::NoInit; | 
|  | } | 
|  |  | 
|  | Expr **Inits = &Initializer; | 
|  | unsigned NumInits = Initializer ? 1 : 0; | 
|  | if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) { | 
|  | assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init"); | 
|  | Inits = List->getExprs(); | 
|  | NumInits = List->getNumExprs(); | 
|  | } | 
|  |  | 
|  | // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for. | 
|  | if (TypeMayContainAuto && AllocType->isUndeducedType()) { | 
|  | if (initStyle == CXXNewExpr::NoInit || NumInits == 0) | 
|  | return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg) | 
|  | << AllocType << TypeRange); | 
|  | if (initStyle == CXXNewExpr::ListInit || | 
|  | (NumInits == 1 && isa<InitListExpr>(Inits[0]))) | 
|  | return ExprError(Diag(Inits[0]->getLocStart(), | 
|  | diag::err_auto_new_list_init) | 
|  | << AllocType << TypeRange); | 
|  | if (NumInits > 1) { | 
|  | Expr *FirstBad = Inits[1]; | 
|  | return ExprError(Diag(FirstBad->getLocStart(), | 
|  | diag::err_auto_new_ctor_multiple_expressions) | 
|  | << AllocType << TypeRange); | 
|  | } | 
|  | Expr *Deduce = Inits[0]; | 
|  | QualType DeducedType; | 
|  | if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == DAR_Failed) | 
|  | return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure) | 
|  | << AllocType << Deduce->getType() | 
|  | << TypeRange << Deduce->getSourceRange()); | 
|  | if (DeducedType.isNull()) | 
|  | return ExprError(); | 
|  | AllocType = DeducedType; | 
|  | } | 
|  |  | 
|  | // Per C++0x [expr.new]p5, the type being constructed may be a | 
|  | // typedef of an array type. | 
|  | if (!ArraySize) { | 
|  | if (const ConstantArrayType *Array | 
|  | = Context.getAsConstantArrayType(AllocType)) { | 
|  | ArraySize = IntegerLiteral::Create(Context, Array->getSize(), | 
|  | Context.getSizeType(), | 
|  | TypeRange.getEnd()); | 
|  | AllocType = Array->getElementType(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange)) | 
|  | return ExprError(); | 
|  |  | 
|  | if (initStyle == CXXNewExpr::ListInit && | 
|  | isStdInitializerList(AllocType, nullptr)) { | 
|  | Diag(AllocTypeInfo->getTypeLoc().getBeginLoc(), | 
|  | diag::warn_dangling_std_initializer_list) | 
|  | << /*at end of FE*/0 << Inits[0]->getSourceRange(); | 
|  | } | 
|  |  | 
|  | // In ARC, infer 'retaining' for the allocated | 
|  | if (getLangOpts().ObjCAutoRefCount && | 
|  | AllocType.getObjCLifetime() == Qualifiers::OCL_None && | 
|  | AllocType->isObjCLifetimeType()) { | 
|  | AllocType = Context.getLifetimeQualifiedType(AllocType, | 
|  | AllocType->getObjCARCImplicitLifetime()); | 
|  | } | 
|  |  | 
|  | QualType ResultType = Context.getPointerType(AllocType); | 
|  |  | 
|  | if (ArraySize && ArraySize->getType()->isNonOverloadPlaceholderType()) { | 
|  | ExprResult result = CheckPlaceholderExpr(ArraySize); | 
|  | if (result.isInvalid()) return ExprError(); | 
|  | ArraySize = result.get(); | 
|  | } | 
|  | // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have | 
|  | //   integral or enumeration type with a non-negative value." | 
|  | // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped | 
|  | //   enumeration type, or a class type for which a single non-explicit | 
|  | //   conversion function to integral or unscoped enumeration type exists. | 
|  | // C++1y [expr.new]p6: The expression [...] is implicitly converted to | 
|  | //   std::size_t. | 
|  | if (ArraySize && !ArraySize->isTypeDependent()) { | 
|  | ExprResult ConvertedSize; | 
|  | if (getLangOpts().CPlusPlus14) { | 
|  | assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?"); | 
|  |  | 
|  | ConvertedSize = PerformImplicitConversion(ArraySize, Context.getSizeType(), | 
|  | AA_Converting); | 
|  |  | 
|  | if (!ConvertedSize.isInvalid() && | 
|  | ArraySize->getType()->getAs<RecordType>()) | 
|  | // Diagnose the compatibility of this conversion. | 
|  | Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion) | 
|  | << ArraySize->getType() << 0 << "'size_t'"; | 
|  | } else { | 
|  | class SizeConvertDiagnoser : public ICEConvertDiagnoser { | 
|  | protected: | 
|  | Expr *ArraySize; | 
|  |  | 
|  | public: | 
|  | SizeConvertDiagnoser(Expr *ArraySize) | 
|  | : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false), | 
|  | ArraySize(ArraySize) {} | 
|  |  | 
|  | SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc, | 
|  | QualType T) override { | 
|  | return S.Diag(Loc, diag::err_array_size_not_integral) | 
|  | << S.getLangOpts().CPlusPlus11 << T; | 
|  | } | 
|  |  | 
|  | SemaDiagnosticBuilder diagnoseIncomplete( | 
|  | Sema &S, SourceLocation Loc, QualType T) override { | 
|  | return S.Diag(Loc, diag::err_array_size_incomplete_type) | 
|  | << T << ArraySize->getSourceRange(); | 
|  | } | 
|  |  | 
|  | SemaDiagnosticBuilder diagnoseExplicitConv( | 
|  | Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override { | 
|  | return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy; | 
|  | } | 
|  |  | 
|  | SemaDiagnosticBuilder noteExplicitConv( | 
|  | Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { | 
|  | return S.Diag(Conv->getLocation(), diag::note_array_size_conversion) | 
|  | << ConvTy->isEnumeralType() << ConvTy; | 
|  | } | 
|  |  | 
|  | SemaDiagnosticBuilder diagnoseAmbiguous( | 
|  | Sema &S, SourceLocation Loc, QualType T) override { | 
|  | return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T; | 
|  | } | 
|  |  | 
|  | SemaDiagnosticBuilder noteAmbiguous( | 
|  | Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { | 
|  | return S.Diag(Conv->getLocation(), diag::note_array_size_conversion) | 
|  | << ConvTy->isEnumeralType() << ConvTy; | 
|  | } | 
|  |  | 
|  | virtual SemaDiagnosticBuilder diagnoseConversion( | 
|  | Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override { | 
|  | return S.Diag(Loc, | 
|  | S.getLangOpts().CPlusPlus11 | 
|  | ? diag::warn_cxx98_compat_array_size_conversion | 
|  | : diag::ext_array_size_conversion) | 
|  | << T << ConvTy->isEnumeralType() << ConvTy; | 
|  | } | 
|  | } SizeDiagnoser(ArraySize); | 
|  |  | 
|  | ConvertedSize = PerformContextualImplicitConversion(StartLoc, ArraySize, | 
|  | SizeDiagnoser); | 
|  | } | 
|  | if (ConvertedSize.isInvalid()) | 
|  | return ExprError(); | 
|  |  | 
|  | ArraySize = ConvertedSize.get(); | 
|  | QualType SizeType = ArraySize->getType(); | 
|  |  | 
|  | if (!SizeType->isIntegralOrUnscopedEnumerationType()) | 
|  | return ExprError(); | 
|  |  | 
|  | // C++98 [expr.new]p7: | 
|  | //   The expression in a direct-new-declarator shall have integral type | 
|  | //   with a non-negative value. | 
|  | // | 
|  | // Let's see if this is a constant < 0. If so, we reject it out of | 
|  | // hand. Otherwise, if it's not a constant, we must have an unparenthesized | 
|  | // array type. | 
|  | // | 
|  | // Note: such a construct has well-defined semantics in C++11: it throws | 
|  | // std::bad_array_new_length. | 
|  | if (!ArraySize->isValueDependent()) { | 
|  | llvm::APSInt Value; | 
|  | // We've already performed any required implicit conversion to integer or | 
|  | // unscoped enumeration type. | 
|  | if (ArraySize->isIntegerConstantExpr(Value, Context)) { | 
|  | if (Value < llvm::APSInt( | 
|  | llvm::APInt::getNullValue(Value.getBitWidth()), | 
|  | Value.isUnsigned())) { | 
|  | if (getLangOpts().CPlusPlus11) | 
|  | Diag(ArraySize->getLocStart(), | 
|  | diag::warn_typecheck_negative_array_new_size) | 
|  | << ArraySize->getSourceRange(); | 
|  | else | 
|  | return ExprError(Diag(ArraySize->getLocStart(), | 
|  | diag::err_typecheck_negative_array_size) | 
|  | << ArraySize->getSourceRange()); | 
|  | } else if (!AllocType->isDependentType()) { | 
|  | unsigned ActiveSizeBits = | 
|  | ConstantArrayType::getNumAddressingBits(Context, AllocType, Value); | 
|  | if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) { | 
|  | if (getLangOpts().CPlusPlus11) | 
|  | Diag(ArraySize->getLocStart(), | 
|  | diag::warn_array_new_too_large) | 
|  | << Value.toString(10) | 
|  | << ArraySize->getSourceRange(); | 
|  | else | 
|  | return ExprError(Diag(ArraySize->getLocStart(), | 
|  | diag::err_array_too_large) | 
|  | << Value.toString(10) | 
|  | << ArraySize->getSourceRange()); | 
|  | } | 
|  | } | 
|  | } else if (TypeIdParens.isValid()) { | 
|  | // Can't have dynamic array size when the type-id is in parentheses. | 
|  | Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst) | 
|  | << ArraySize->getSourceRange() | 
|  | << FixItHint::CreateRemoval(TypeIdParens.getBegin()) | 
|  | << FixItHint::CreateRemoval(TypeIdParens.getEnd()); | 
|  |  | 
|  | TypeIdParens = SourceRange(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Note that we do *not* convert the argument in any way.  It can | 
|  | // be signed, larger than size_t, whatever. | 
|  | } | 
|  |  | 
|  | FunctionDecl *OperatorNew = nullptr; | 
|  | FunctionDecl *OperatorDelete = nullptr; | 
|  |  | 
|  | if (!AllocType->isDependentType() && | 
|  | !Expr::hasAnyTypeDependentArguments(PlacementArgs) && | 
|  | FindAllocationFunctions(StartLoc, | 
|  | SourceRange(PlacementLParen, PlacementRParen), | 
|  | UseGlobal, AllocType, ArraySize, PlacementArgs, | 
|  | OperatorNew, OperatorDelete)) | 
|  | return ExprError(); | 
|  |  | 
|  | // If this is an array allocation, compute whether the usual array | 
|  | // deallocation function for the type has a size_t parameter. | 
|  | bool UsualArrayDeleteWantsSize = false; | 
|  | if (ArraySize && !AllocType->isDependentType()) | 
|  | UsualArrayDeleteWantsSize | 
|  | = doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType); | 
|  |  | 
|  | SmallVector<Expr *, 8> AllPlaceArgs; | 
|  | if (OperatorNew) { | 
|  | const FunctionProtoType *Proto = | 
|  | OperatorNew->getType()->getAs<FunctionProtoType>(); | 
|  | VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction | 
|  | : VariadicDoesNotApply; | 
|  |  | 
|  | // We've already converted the placement args, just fill in any default | 
|  | // arguments. Skip the first parameter because we don't have a corresponding | 
|  | // argument. | 
|  | if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto, 1, | 
|  | PlacementArgs, AllPlaceArgs, CallType)) | 
|  | return ExprError(); | 
|  |  | 
|  | if (!AllPlaceArgs.empty()) | 
|  | PlacementArgs = AllPlaceArgs; | 
|  |  | 
|  | // FIXME: This is wrong: PlacementArgs misses out the first (size) argument. | 
|  | DiagnoseSentinelCalls(OperatorNew, PlacementLParen, PlacementArgs); | 
|  |  | 
|  | // FIXME: Missing call to CheckFunctionCall or equivalent | 
|  | } | 
|  |  | 
|  | // Warn if the type is over-aligned and is being allocated by global operator | 
|  | // new. | 
|  | if (PlacementArgs.empty() && OperatorNew && | 
|  | (OperatorNew->isImplicit() || | 
|  | getSourceManager().isInSystemHeader(OperatorNew->getLocStart()))) { | 
|  | if (unsigned Align = Context.getPreferredTypeAlign(AllocType.getTypePtr())){ | 
|  | unsigned SuitableAlign = Context.getTargetInfo().getSuitableAlign(); | 
|  | if (Align > SuitableAlign) | 
|  | Diag(StartLoc, diag::warn_overaligned_type) | 
|  | << AllocType | 
|  | << unsigned(Align / Context.getCharWidth()) | 
|  | << unsigned(SuitableAlign / Context.getCharWidth()); | 
|  | } | 
|  | } | 
|  |  | 
|  | QualType InitType = AllocType; | 
|  | // Array 'new' can't have any initializers except empty parentheses. | 
|  | // Initializer lists are also allowed, in C++11. Rely on the parser for the | 
|  | // dialect distinction. | 
|  | if (ResultType->isArrayType() || ArraySize) { | 
|  | if (!isLegalArrayNewInitializer(initStyle, Initializer)) { | 
|  | SourceRange InitRange(Inits[0]->getLocStart(), | 
|  | Inits[NumInits - 1]->getLocEnd()); | 
|  | Diag(StartLoc, diag::err_new_array_init_args) << InitRange; | 
|  | return ExprError(); | 
|  | } | 
|  | if (InitListExpr *ILE = dyn_cast_or_null<InitListExpr>(Initializer)) { | 
|  | // We do the initialization typechecking against the array type | 
|  | // corresponding to the number of initializers + 1 (to also check | 
|  | // default-initialization). | 
|  | unsigned NumElements = ILE->getNumInits() + 1; | 
|  | InitType = Context.getConstantArrayType(AllocType, | 
|  | llvm::APInt(Context.getTypeSize(Context.getSizeType()), NumElements), | 
|  | ArrayType::Normal, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we can perform the initialization, and we've not already done so, | 
|  | // do it now. | 
|  | if (!AllocType->isDependentType() && | 
|  | !Expr::hasAnyTypeDependentArguments( | 
|  | llvm::makeArrayRef(Inits, NumInits))) { | 
|  | // C++11 [expr.new]p15: | 
|  | //   A new-expression that creates an object of type T initializes that | 
|  | //   object as follows: | 
|  | InitializationKind Kind | 
|  | //     - If the new-initializer is omitted, the object is default- | 
|  | //       initialized (8.5); if no initialization is performed, | 
|  | //       the object has indeterminate value | 
|  | = initStyle == CXXNewExpr::NoInit | 
|  | ? InitializationKind::CreateDefault(TypeRange.getBegin()) | 
|  | //     - Otherwise, the new-initializer is interpreted according to the | 
|  | //       initialization rules of 8.5 for direct-initialization. | 
|  | : initStyle == CXXNewExpr::ListInit | 
|  | ? InitializationKind::CreateDirectList(TypeRange.getBegin()) | 
|  | : InitializationKind::CreateDirect(TypeRange.getBegin(), | 
|  | DirectInitRange.getBegin(), | 
|  | DirectInitRange.getEnd()); | 
|  |  | 
|  | InitializedEntity Entity | 
|  | = InitializedEntity::InitializeNew(StartLoc, InitType); | 
|  | InitializationSequence InitSeq(*this, Entity, Kind, MultiExprArg(Inits, NumInits)); | 
|  | ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind, | 
|  | MultiExprArg(Inits, NumInits)); | 
|  | if (FullInit.isInvalid()) | 
|  | return ExprError(); | 
|  |  | 
|  | // FullInit is our initializer; strip off CXXBindTemporaryExprs, because | 
|  | // we don't want the initialized object to be destructed. | 
|  | if (CXXBindTemporaryExpr *Binder = | 
|  | dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get())) | 
|  | FullInit = Binder->getSubExpr(); | 
|  |  | 
|  | Initializer = FullInit.get(); | 
|  | } | 
|  |  | 
|  | // Mark the new and delete operators as referenced. | 
|  | if (OperatorNew) { | 
|  | if (DiagnoseUseOfDecl(OperatorNew, StartLoc)) | 
|  | return ExprError(); | 
|  | MarkFunctionReferenced(StartLoc, OperatorNew); | 
|  | } | 
|  | if (OperatorDelete) { | 
|  | if (DiagnoseUseOfDecl(OperatorDelete, StartLoc)) | 
|  | return ExprError(); | 
|  | MarkFunctionReferenced(StartLoc, OperatorDelete); | 
|  | } | 
|  |  | 
|  | // C++0x [expr.new]p17: | 
|  | //   If the new expression creates an array of objects of class type, | 
|  | //   access and ambiguity control are done for the destructor. | 
|  | QualType BaseAllocType = Context.getBaseElementType(AllocType); | 
|  | if (ArraySize && !BaseAllocType->isDependentType()) { | 
|  | if (const RecordType *BaseRecordType = BaseAllocType->getAs<RecordType>()) { | 
|  | if (CXXDestructorDecl *dtor = LookupDestructor( | 
|  | cast<CXXRecordDecl>(BaseRecordType->getDecl()))) { | 
|  | MarkFunctionReferenced(StartLoc, dtor); | 
|  | CheckDestructorAccess(StartLoc, dtor, | 
|  | PDiag(diag::err_access_dtor) | 
|  | << BaseAllocType); | 
|  | if (DiagnoseUseOfDecl(dtor, StartLoc)) | 
|  | return ExprError(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return new (Context) | 
|  | CXXNewExpr(Context, UseGlobal, OperatorNew, OperatorDelete, | 
|  | UsualArrayDeleteWantsSize, PlacementArgs, TypeIdParens, | 
|  | ArraySize, initStyle, Initializer, ResultType, AllocTypeInfo, | 
|  | Range, DirectInitRange); | 
|  | } | 
|  |  | 
|  | /// \brief Checks that a type is suitable as the allocated type | 
|  | /// in a new-expression. | 
|  | bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc, | 
|  | SourceRange R) { | 
|  | // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an | 
|  | //   abstract class type or array thereof. | 
|  | if (AllocType->isFunctionType()) | 
|  | return Diag(Loc, diag::err_bad_new_type) | 
|  | << AllocType << 0 << R; | 
|  | else if (AllocType->isReferenceType()) | 
|  | return Diag(Loc, diag::err_bad_new_type) | 
|  | << AllocType << 1 << R; | 
|  | else if (!AllocType->isDependentType() && | 
|  | RequireCompleteType(Loc, AllocType, diag::err_new_incomplete_type,R)) | 
|  | return true; | 
|  | else if (RequireNonAbstractType(Loc, AllocType, | 
|  | diag::err_allocation_of_abstract_type)) | 
|  | return true; | 
|  | else if (AllocType->isVariablyModifiedType()) | 
|  | return Diag(Loc, diag::err_variably_modified_new_type) | 
|  | << AllocType; | 
|  | else if (unsigned AddressSpace = AllocType.getAddressSpace()) | 
|  | return Diag(Loc, diag::err_address_space_qualified_new) | 
|  | << AllocType.getUnqualifiedType() << AddressSpace; | 
|  | else if (getLangOpts().ObjCAutoRefCount) { | 
|  | if (const ArrayType *AT = Context.getAsArrayType(AllocType)) { | 
|  | QualType BaseAllocType = Context.getBaseElementType(AT); | 
|  | if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None && | 
|  | BaseAllocType->isObjCLifetimeType()) | 
|  | return Diag(Loc, diag::err_arc_new_array_without_ownership) | 
|  | << BaseAllocType; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// \brief Determine whether the given function is a non-placement | 
|  | /// deallocation function. | 
|  | static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) { | 
|  | if (FD->isInvalidDecl()) | 
|  | return false; | 
|  |  | 
|  | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD)) | 
|  | return Method->isUsualDeallocationFunction(); | 
|  |  | 
|  | if (FD->getOverloadedOperator() != OO_Delete && | 
|  | FD->getOverloadedOperator() != OO_Array_Delete) | 
|  | return false; | 
|  |  | 
|  | if (FD->getNumParams() == 1) | 
|  | return true; | 
|  |  | 
|  | return S.getLangOpts().SizedDeallocation && FD->getNumParams() == 2 && | 
|  | S.Context.hasSameUnqualifiedType(FD->getParamDecl(1)->getType(), | 
|  | S.Context.getSizeType()); | 
|  | } | 
|  |  | 
|  | /// FindAllocationFunctions - Finds the overloads of operator new and delete | 
|  | /// that are appropriate for the allocation. | 
|  | bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range, | 
|  | bool UseGlobal, QualType AllocType, | 
|  | bool IsArray, MultiExprArg PlaceArgs, | 
|  | FunctionDecl *&OperatorNew, | 
|  | FunctionDecl *&OperatorDelete) { | 
|  | // --- Choosing an allocation function --- | 
|  | // C++ 5.3.4p8 - 14 & 18 | 
|  | // 1) If UseGlobal is true, only look in the global scope. Else, also look | 
|  | //   in the scope of the allocated class. | 
|  | // 2) If an array size is given, look for operator new[], else look for | 
|  | //   operator new. | 
|  | // 3) The first argument is always size_t. Append the arguments from the | 
|  | //   placement form. | 
|  |  | 
|  | SmallVector<Expr*, 8> AllocArgs(1 + PlaceArgs.size()); | 
|  | // We don't care about the actual value of this argument. | 
|  | // FIXME: Should the Sema create the expression and embed it in the syntax | 
|  | // tree? Or should the consumer just recalculate the value? | 
|  | IntegerLiteral Size(Context, llvm::APInt::getNullValue( | 
|  | Context.getTargetInfo().getPointerWidth(0)), | 
|  | Context.getSizeType(), | 
|  | SourceLocation()); | 
|  | AllocArgs[0] = &Size; | 
|  | std::copy(PlaceArgs.begin(), PlaceArgs.end(), AllocArgs.begin() + 1); | 
|  |  | 
|  | // C++ [expr.new]p8: | 
|  | //   If the allocated type is a non-array type, the allocation | 
|  | //   function's name is operator new and the deallocation function's | 
|  | //   name is operator delete. If the allocated type is an array | 
|  | //   type, the allocation function's name is operator new[] and the | 
|  | //   deallocation function's name is operator delete[]. | 
|  | DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName( | 
|  | IsArray ? OO_Array_New : OO_New); | 
|  | DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName( | 
|  | IsArray ? OO_Array_Delete : OO_Delete); | 
|  |  | 
|  | QualType AllocElemType = Context.getBaseElementType(AllocType); | 
|  |  | 
|  | if (AllocElemType->isRecordType() && !UseGlobal) { | 
|  | CXXRecordDecl *Record | 
|  | = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl()); | 
|  | if (FindAllocationOverload(StartLoc, Range, NewName, AllocArgs, Record, | 
|  | /*AllowMissing=*/true, OperatorNew)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (!OperatorNew) { | 
|  | // Didn't find a member overload. Look for a global one. | 
|  | DeclareGlobalNewDelete(); | 
|  | DeclContext *TUDecl = Context.getTranslationUnitDecl(); | 
|  | bool FallbackEnabled = IsArray && Context.getLangOpts().MSVCCompat; | 
|  | if (FindAllocationOverload(StartLoc, Range, NewName, AllocArgs, TUDecl, | 
|  | /*AllowMissing=*/FallbackEnabled, OperatorNew, | 
|  | /*Diagnose=*/!FallbackEnabled)) { | 
|  | if (!FallbackEnabled) | 
|  | return true; | 
|  |  | 
|  | // MSVC will fall back on trying to find a matching global operator new | 
|  | // if operator new[] cannot be found.  Also, MSVC will leak by not | 
|  | // generating a call to operator delete or operator delete[], but we | 
|  | // will not replicate that bug. | 
|  | NewName = Context.DeclarationNames.getCXXOperatorName(OO_New); | 
|  | DeleteName = Context.DeclarationNames.getCXXOperatorName(OO_Delete); | 
|  | if (FindAllocationOverload(StartLoc, Range, NewName, AllocArgs, TUDecl, | 
|  | /*AllowMissing=*/false, OperatorNew)) | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // We don't need an operator delete if we're running under | 
|  | // -fno-exceptions. | 
|  | if (!getLangOpts().Exceptions) { | 
|  | OperatorDelete = nullptr; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // C++ [expr.new]p19: | 
|  | // | 
|  | //   If the new-expression begins with a unary :: operator, the | 
|  | //   deallocation function's name is looked up in the global | 
|  | //   scope. Otherwise, if the allocated type is a class type T or an | 
|  | //   array thereof, the deallocation function's name is looked up in | 
|  | //   the scope of T. If this lookup fails to find the name, or if | 
|  | //   the allocated type is not a class type or array thereof, the | 
|  | //   deallocation function's name is looked up in the global scope. | 
|  | LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName); | 
|  | if (AllocElemType->isRecordType() && !UseGlobal) { | 
|  | CXXRecordDecl *RD | 
|  | = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl()); | 
|  | LookupQualifiedName(FoundDelete, RD); | 
|  | } | 
|  | if (FoundDelete.isAmbiguous()) | 
|  | return true; // FIXME: clean up expressions? | 
|  |  | 
|  | if (FoundDelete.empty()) { | 
|  | DeclareGlobalNewDelete(); | 
|  | LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl()); | 
|  | } | 
|  |  | 
|  | FoundDelete.suppressDiagnostics(); | 
|  |  | 
|  | SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches; | 
|  |  | 
|  | // Whether we're looking for a placement operator delete is dictated | 
|  | // by whether we selected a placement operator new, not by whether | 
|  | // we had explicit placement arguments.  This matters for things like | 
|  | //   struct A { void *operator new(size_t, int = 0); ... }; | 
|  | //   A *a = new A() | 
|  | bool isPlacementNew = (!PlaceArgs.empty() || OperatorNew->param_size() != 1); | 
|  |  | 
|  | if (isPlacementNew) { | 
|  | // C++ [expr.new]p20: | 
|  | //   A declaration of a placement deallocation function matches the | 
|  | //   declaration of a placement allocation function if it has the | 
|  | //   same number of parameters and, after parameter transformations | 
|  | //   (8.3.5), all parameter types except the first are | 
|  | //   identical. [...] | 
|  | // | 
|  | // To perform this comparison, we compute the function type that | 
|  | // the deallocation function should have, and use that type both | 
|  | // for template argument deduction and for comparison purposes. | 
|  | // | 
|  | // FIXME: this comparison should ignore CC and the like. | 
|  | QualType ExpectedFunctionType; | 
|  | { | 
|  | const FunctionProtoType *Proto | 
|  | = OperatorNew->getType()->getAs<FunctionProtoType>(); | 
|  |  | 
|  | SmallVector<QualType, 4> ArgTypes; | 
|  | ArgTypes.push_back(Context.VoidPtrTy); | 
|  | for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I) | 
|  | ArgTypes.push_back(Proto->getParamType(I)); | 
|  |  | 
|  | FunctionProtoType::ExtProtoInfo EPI; | 
|  | EPI.Variadic = Proto->isVariadic(); | 
|  |  | 
|  | ExpectedFunctionType | 
|  | = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI); | 
|  | } | 
|  |  | 
|  | for (LookupResult::iterator D = FoundDelete.begin(), | 
|  | DEnd = FoundDelete.end(); | 
|  | D != DEnd; ++D) { | 
|  | FunctionDecl *Fn = nullptr; | 
|  | if (FunctionTemplateDecl *FnTmpl | 
|  | = dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) { | 
|  | // Perform template argument deduction to try to match the | 
|  | // expected function type. | 
|  | TemplateDeductionInfo Info(StartLoc); | 
|  | if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn, | 
|  | Info)) | 
|  | continue; | 
|  | } else | 
|  | Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl()); | 
|  |  | 
|  | if (Context.hasSameType(Fn->getType(), ExpectedFunctionType)) | 
|  | Matches.push_back(std::make_pair(D.getPair(), Fn)); | 
|  | } | 
|  | } else { | 
|  | // C++ [expr.new]p20: | 
|  | //   [...] Any non-placement deallocation function matches a | 
|  | //   non-placement allocation function. [...] | 
|  | for (LookupResult::iterator D = FoundDelete.begin(), | 
|  | DEnd = FoundDelete.end(); | 
|  | D != DEnd; ++D) { | 
|  | if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl())) | 
|  | if (isNonPlacementDeallocationFunction(*this, Fn)) | 
|  | Matches.push_back(std::make_pair(D.getPair(), Fn)); | 
|  | } | 
|  |  | 
|  | // C++1y [expr.new]p22: | 
|  | //   For a non-placement allocation function, the normal deallocation | 
|  | //   function lookup is used | 
|  | // C++1y [expr.delete]p?: | 
|  | //   If [...] deallocation function lookup finds both a usual deallocation | 
|  | //   function with only a pointer parameter and a usual deallocation | 
|  | //   function with both a pointer parameter and a size parameter, then the | 
|  | //   selected deallocation function shall be the one with two parameters. | 
|  | //   Otherwise, the selected deallocation function shall be the function | 
|  | //   with one parameter. | 
|  | if (getLangOpts().SizedDeallocation && Matches.size() == 2) { | 
|  | if (Matches[0].second->getNumParams() == 1) | 
|  | Matches.erase(Matches.begin()); | 
|  | else | 
|  | Matches.erase(Matches.begin() + 1); | 
|  | assert(Matches[0].second->getNumParams() == 2 && | 
|  | "found an unexpected usual deallocation function"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++ [expr.new]p20: | 
|  | //   [...] If the lookup finds a single matching deallocation | 
|  | //   function, that function will be called; otherwise, no | 
|  | //   deallocation function will be called. | 
|  | if (Matches.size() == 1) { | 
|  | OperatorDelete = Matches[0].second; | 
|  |  | 
|  | // C++0x [expr.new]p20: | 
|  | //   If the lookup finds the two-parameter form of a usual | 
|  | //   deallocation function (3.7.4.2) and that function, considered | 
|  | //   as a placement deallocation function, would have been | 
|  | //   selected as a match for the allocation function, the program | 
|  | //   is ill-formed. | 
|  | if (!PlaceArgs.empty() && getLangOpts().CPlusPlus11 && | 
|  | isNonPlacementDeallocationFunction(*this, OperatorDelete)) { | 
|  | Diag(StartLoc, diag::err_placement_new_non_placement_delete) | 
|  | << SourceRange(PlaceArgs.front()->getLocStart(), | 
|  | PlaceArgs.back()->getLocEnd()); | 
|  | if (!OperatorDelete->isImplicit()) | 
|  | Diag(OperatorDelete->getLocation(), diag::note_previous_decl) | 
|  | << DeleteName; | 
|  | } else { | 
|  | CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(), | 
|  | Matches[0].first); | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// \brief Find an fitting overload for the allocation function | 
|  | /// in the specified scope. | 
|  | /// | 
|  | /// \param StartLoc The location of the 'new' token. | 
|  | /// \param Range The range of the placement arguments. | 
|  | /// \param Name The name of the function ('operator new' or 'operator new[]'). | 
|  | /// \param Args The placement arguments specified. | 
|  | /// \param Ctx The scope in which we should search; either a class scope or the | 
|  | ///        translation unit. | 
|  | /// \param AllowMissing If \c true, report an error if we can't find any | 
|  | ///        allocation functions. Otherwise, succeed but don't fill in \p | 
|  | ///        Operator. | 
|  | /// \param Operator Filled in with the found allocation function. Unchanged if | 
|  | ///        no allocation function was found. | 
|  | /// \param Diagnose If \c true, issue errors if the allocation function is not | 
|  | ///        usable. | 
|  | bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range, | 
|  | DeclarationName Name, MultiExprArg Args, | 
|  | DeclContext *Ctx, | 
|  | bool AllowMissing, FunctionDecl *&Operator, | 
|  | bool Diagnose) { | 
|  | LookupResult R(*this, Name, StartLoc, LookupOrdinaryName); | 
|  | LookupQualifiedName(R, Ctx); | 
|  | if (R.empty()) { | 
|  | if (AllowMissing || !Diagnose) | 
|  | return false; | 
|  | return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call) | 
|  | << Name << Range; | 
|  | } | 
|  |  | 
|  | if (R.isAmbiguous()) | 
|  | return true; | 
|  |  | 
|  | R.suppressDiagnostics(); | 
|  |  | 
|  | OverloadCandidateSet Candidates(StartLoc, OverloadCandidateSet::CSK_Normal); | 
|  | for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end(); | 
|  | Alloc != AllocEnd; ++Alloc) { | 
|  | // Even member operator new/delete are implicitly treated as | 
|  | // static, so don't use AddMemberCandidate. | 
|  | NamedDecl *D = (*Alloc)->getUnderlyingDecl(); | 
|  |  | 
|  | if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) { | 
|  | AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(), | 
|  | /*ExplicitTemplateArgs=*/nullptr, | 
|  | Args, Candidates, | 
|  | /*SuppressUserConversions=*/false); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | FunctionDecl *Fn = cast<FunctionDecl>(D); | 
|  | AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates, | 
|  | /*SuppressUserConversions=*/false); | 
|  | } | 
|  |  | 
|  | // Do the resolution. | 
|  | OverloadCandidateSet::iterator Best; | 
|  | switch (Candidates.BestViableFunction(*this, StartLoc, Best)) { | 
|  | case OR_Success: { | 
|  | // Got one! | 
|  | FunctionDecl *FnDecl = Best->Function; | 
|  | if (CheckAllocationAccess(StartLoc, Range, R.getNamingClass(), | 
|  | Best->FoundDecl, Diagnose) == AR_inaccessible) | 
|  | return true; | 
|  |  | 
|  | Operator = FnDecl; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | case OR_No_Viable_Function: | 
|  | if (Diagnose) { | 
|  | Diag(StartLoc, diag::err_ovl_no_viable_function_in_call) | 
|  | << Name << Range; | 
|  | Candidates.NoteCandidates(*this, OCD_AllCandidates, Args); | 
|  | } | 
|  | return true; | 
|  |  | 
|  | case OR_Ambiguous: | 
|  | if (Diagnose) { | 
|  | Diag(StartLoc, diag::err_ovl_ambiguous_call) | 
|  | << Name << Range; | 
|  | Candidates.NoteCandidates(*this, OCD_ViableCandidates, Args); | 
|  | } | 
|  | return true; | 
|  |  | 
|  | case OR_Deleted: { | 
|  | if (Diagnose) { | 
|  | Diag(StartLoc, diag::err_ovl_deleted_call) | 
|  | << Best->Function->isDeleted() | 
|  | << Name | 
|  | << getDeletedOrUnavailableSuffix(Best->Function) | 
|  | << Range; | 
|  | Candidates.NoteCandidates(*this, OCD_AllCandidates, Args); | 
|  | } | 
|  | return true; | 
|  | } | 
|  | } | 
|  | llvm_unreachable("Unreachable, bad result from BestViableFunction"); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// DeclareGlobalNewDelete - Declare the global forms of operator new and | 
|  | /// delete. These are: | 
|  | /// @code | 
|  | ///   // C++03: | 
|  | ///   void* operator new(std::size_t) throw(std::bad_alloc); | 
|  | ///   void* operator new[](std::size_t) throw(std::bad_alloc); | 
|  | ///   void operator delete(void *) throw(); | 
|  | ///   void operator delete[](void *) throw(); | 
|  | ///   // C++11: | 
|  | ///   void* operator new(std::size_t); | 
|  | ///   void* operator new[](std::size_t); | 
|  | ///   void operator delete(void *) noexcept; | 
|  | ///   void operator delete[](void *) noexcept; | 
|  | ///   // C++1y: | 
|  | ///   void* operator new(std::size_t); | 
|  | ///   void* operator new[](std::size_t); | 
|  | ///   void operator delete(void *) noexcept; | 
|  | ///   void operator delete[](void *) noexcept; | 
|  | ///   void operator delete(void *, std::size_t) noexcept; | 
|  | ///   void operator delete[](void *, std::size_t) noexcept; | 
|  | /// @endcode | 
|  | /// Note that the placement and nothrow forms of new are *not* implicitly | 
|  | /// declared. Their use requires including \<new\>. | 
|  | void Sema::DeclareGlobalNewDelete() { | 
|  | if (GlobalNewDeleteDeclared) | 
|  | return; | 
|  |  | 
|  | // C++ [basic.std.dynamic]p2: | 
|  | //   [...] The following allocation and deallocation functions (18.4) are | 
|  | //   implicitly declared in global scope in each translation unit of a | 
|  | //   program | 
|  | // | 
|  | //     C++03: | 
|  | //     void* operator new(std::size_t) throw(std::bad_alloc); | 
|  | //     void* operator new[](std::size_t) throw(std::bad_alloc); | 
|  | //     void  operator delete(void*) throw(); | 
|  | //     void  operator delete[](void*) throw(); | 
|  | //     C++11: | 
|  | //     void* operator new(std::size_t); | 
|  | //     void* operator new[](std::size_t); | 
|  | //     void  operator delete(void*) noexcept; | 
|  | //     void  operator delete[](void*) noexcept; | 
|  | //     C++1y: | 
|  | //     void* operator new(std::size_t); | 
|  | //     void* operator new[](std::size_t); | 
|  | //     void  operator delete(void*) noexcept; | 
|  | //     void  operator delete[](void*) noexcept; | 
|  | //     void  operator delete(void*, std::size_t) noexcept; | 
|  | //     void  operator delete[](void*, std::size_t) noexcept; | 
|  | // | 
|  | //   These implicit declarations introduce only the function names operator | 
|  | //   new, operator new[], operator delete, operator delete[]. | 
|  | // | 
|  | // Here, we need to refer to std::bad_alloc, so we will implicitly declare | 
|  | // "std" or "bad_alloc" as necessary to form the exception specification. | 
|  | // However, we do not make these implicit declarations visible to name | 
|  | // lookup. | 
|  | if (!StdBadAlloc && !getLangOpts().CPlusPlus11) { | 
|  | // The "std::bad_alloc" class has not yet been declared, so build it | 
|  | // implicitly. | 
|  | StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class, | 
|  | getOrCreateStdNamespace(), | 
|  | SourceLocation(), SourceLocation(), | 
|  | &PP.getIdentifierTable().get("bad_alloc"), | 
|  | nullptr); | 
|  | getStdBadAlloc()->setImplicit(true); | 
|  | } | 
|  |  | 
|  | GlobalNewDeleteDeclared = true; | 
|  |  | 
|  | QualType VoidPtr = Context.getPointerType(Context.VoidTy); | 
|  | QualType SizeT = Context.getSizeType(); | 
|  | bool AssumeSaneOperatorNew = getLangOpts().AssumeSaneOperatorNew; | 
|  |  | 
|  | DeclareGlobalAllocationFunction( | 
|  | Context.DeclarationNames.getCXXOperatorName(OO_New), | 
|  | VoidPtr, SizeT, QualType(), AssumeSaneOperatorNew); | 
|  | DeclareGlobalAllocationFunction( | 
|  | Context.DeclarationNames.getCXXOperatorName(OO_Array_New), | 
|  | VoidPtr, SizeT, QualType(), AssumeSaneOperatorNew); | 
|  | DeclareGlobalAllocationFunction( | 
|  | Context.DeclarationNames.getCXXOperatorName(OO_Delete), | 
|  | Context.VoidTy, VoidPtr); | 
|  | DeclareGlobalAllocationFunction( | 
|  | Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete), | 
|  | Context.VoidTy, VoidPtr); | 
|  | if (getLangOpts().SizedDeallocation) { | 
|  | DeclareGlobalAllocationFunction( | 
|  | Context.DeclarationNames.getCXXOperatorName(OO_Delete), | 
|  | Context.VoidTy, VoidPtr, Context.getSizeType()); | 
|  | DeclareGlobalAllocationFunction( | 
|  | Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete), | 
|  | Context.VoidTy, VoidPtr, Context.getSizeType()); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// DeclareGlobalAllocationFunction - Declares a single implicit global | 
|  | /// allocation function if it doesn't already exist. | 
|  | void Sema::DeclareGlobalAllocationFunction(DeclarationName Name, | 
|  | QualType Return, | 
|  | QualType Param1, QualType Param2, | 
|  | bool AddRestrictAttr) { | 
|  | DeclContext *GlobalCtx = Context.getTranslationUnitDecl(); | 
|  | unsigned NumParams = Param2.isNull() ? 1 : 2; | 
|  |  | 
|  | // Check if this function is already declared. | 
|  | DeclContext::lookup_result R = GlobalCtx->lookup(Name); | 
|  | for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end(); | 
|  | Alloc != AllocEnd; ++Alloc) { | 
|  | // Only look at non-template functions, as it is the predefined, | 
|  | // non-templated allocation function we are trying to declare here. | 
|  | if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) { | 
|  | if (Func->getNumParams() == NumParams) { | 
|  | QualType InitialParam1Type = | 
|  | Context.getCanonicalType(Func->getParamDecl(0) | 
|  | ->getType().getUnqualifiedType()); | 
|  | QualType InitialParam2Type = | 
|  | NumParams == 2 | 
|  | ? Context.getCanonicalType(Func->getParamDecl(1) | 
|  | ->getType().getUnqualifiedType()) | 
|  | : QualType(); | 
|  | // FIXME: Do we need to check for default arguments here? | 
|  | if (InitialParam1Type == Param1 && | 
|  | (NumParams == 1 || InitialParam2Type == Param2)) { | 
|  | if (AddRestrictAttr && !Func->hasAttr<RestrictAttr>()) | 
|  | Func->addAttr(RestrictAttr::CreateImplicit( | 
|  | Context, RestrictAttr::GNU_malloc)); | 
|  | // Make the function visible to name lookup, even if we found it in | 
|  | // an unimported module. It either is an implicitly-declared global | 
|  | // allocation function, or is suppressing that function. | 
|  | Func->setHidden(false); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | FunctionProtoType::ExtProtoInfo EPI; | 
|  |  | 
|  | QualType BadAllocType; | 
|  | bool HasBadAllocExceptionSpec | 
|  | = (Name.getCXXOverloadedOperator() == OO_New || | 
|  | Name.getCXXOverloadedOperator() == OO_Array_New); | 
|  | if (HasBadAllocExceptionSpec) { | 
|  | if (!getLangOpts().CPlusPlus11) { | 
|  | BadAllocType = Context.getTypeDeclType(getStdBadAlloc()); | 
|  | assert(StdBadAlloc && "Must have std::bad_alloc declared"); | 
|  | EPI.ExceptionSpec.Type = EST_Dynamic; | 
|  | EPI.ExceptionSpec.Exceptions = llvm::makeArrayRef(BadAllocType); | 
|  | } | 
|  | } else { | 
|  | EPI.ExceptionSpec = | 
|  | getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone; | 
|  | } | 
|  |  | 
|  | QualType Params[] = { Param1, Param2 }; | 
|  |  | 
|  | QualType FnType = Context.getFunctionType( | 
|  | Return, llvm::makeArrayRef(Params, NumParams), EPI); | 
|  | FunctionDecl *Alloc = | 
|  | FunctionDecl::Create(Context, GlobalCtx, SourceLocation(), | 
|  | SourceLocation(), Name, | 
|  | FnType, /*TInfo=*/nullptr, SC_None, false, true); | 
|  | Alloc->setImplicit(); | 
|  |  | 
|  | // Implicit sized deallocation functions always have default visibility. | 
|  | Alloc->addAttr(VisibilityAttr::CreateImplicit(Context, | 
|  | VisibilityAttr::Default)); | 
|  |  | 
|  | if (AddRestrictAttr) | 
|  | Alloc->addAttr( | 
|  | RestrictAttr::CreateImplicit(Context, RestrictAttr::GNU_malloc)); | 
|  |  | 
|  | ParmVarDecl *ParamDecls[2]; | 
|  | for (unsigned I = 0; I != NumParams; ++I) { | 
|  | ParamDecls[I] = ParmVarDecl::Create(Context, Alloc, SourceLocation(), | 
|  | SourceLocation(), nullptr, | 
|  | Params[I], /*TInfo=*/nullptr, | 
|  | SC_None, nullptr); | 
|  | ParamDecls[I]->setImplicit(); | 
|  | } | 
|  | Alloc->setParams(llvm::makeArrayRef(ParamDecls, NumParams)); | 
|  |  | 
|  | Context.getTranslationUnitDecl()->addDecl(Alloc); | 
|  | IdResolver.tryAddTopLevelDecl(Alloc, Name); | 
|  | } | 
|  |  | 
|  | FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc, | 
|  | bool CanProvideSize, | 
|  | DeclarationName Name) { | 
|  | DeclareGlobalNewDelete(); | 
|  |  | 
|  | LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName); | 
|  | LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl()); | 
|  |  | 
|  | // C++ [expr.new]p20: | 
|  | //   [...] Any non-placement deallocation function matches a | 
|  | //   non-placement allocation function. [...] | 
|  | llvm::SmallVector<FunctionDecl*, 2> Matches; | 
|  | for (LookupResult::iterator D = FoundDelete.begin(), | 
|  | DEnd = FoundDelete.end(); | 
|  | D != DEnd; ++D) { | 
|  | if (FunctionDecl *Fn = dyn_cast<FunctionDecl>(*D)) | 
|  | if (isNonPlacementDeallocationFunction(*this, Fn)) | 
|  | Matches.push_back(Fn); | 
|  | } | 
|  |  | 
|  | // C++1y [expr.delete]p?: | 
|  | //   If the type is complete and deallocation function lookup finds both a | 
|  | //   usual deallocation function with only a pointer parameter and a usual | 
|  | //   deallocation function with both a pointer parameter and a size | 
|  | //   parameter, then the selected deallocation function shall be the one | 
|  | //   with two parameters.  Otherwise, the selected deallocation function | 
|  | //   shall be the function with one parameter. | 
|  | if (getLangOpts().SizedDeallocation && Matches.size() == 2) { | 
|  | unsigned NumArgs = CanProvideSize ? 2 : 1; | 
|  | if (Matches[0]->getNumParams() != NumArgs) | 
|  | Matches.erase(Matches.begin()); | 
|  | else | 
|  | Matches.erase(Matches.begin() + 1); | 
|  | assert(Matches[0]->getNumParams() == NumArgs && | 
|  | "found an unexpected usual deallocation function"); | 
|  | } | 
|  |  | 
|  | assert(Matches.size() == 1 && | 
|  | "unexpectedly have multiple usual deallocation functions"); | 
|  | return Matches.front(); | 
|  | } | 
|  |  | 
|  | bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD, | 
|  | DeclarationName Name, | 
|  | FunctionDecl* &Operator, bool Diagnose) { | 
|  | LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName); | 
|  | // Try to find operator delete/operator delete[] in class scope. | 
|  | LookupQualifiedName(Found, RD); | 
|  |  | 
|  | if (Found.isAmbiguous()) | 
|  | return true; | 
|  |  | 
|  | Found.suppressDiagnostics(); | 
|  |  | 
|  | SmallVector<DeclAccessPair,4> Matches; | 
|  | for (LookupResult::iterator F = Found.begin(), FEnd = Found.end(); | 
|  | F != FEnd; ++F) { | 
|  | NamedDecl *ND = (*F)->getUnderlyingDecl(); | 
|  |  | 
|  | // Ignore template operator delete members from the check for a usual | 
|  | // deallocation function. | 
|  | if (isa<FunctionTemplateDecl>(ND)) | 
|  | continue; | 
|  |  | 
|  | if (cast<CXXMethodDecl>(ND)->isUsualDeallocationFunction()) | 
|  | Matches.push_back(F.getPair()); | 
|  | } | 
|  |  | 
|  | // There's exactly one suitable operator;  pick it. | 
|  | if (Matches.size() == 1) { | 
|  | Operator = cast<CXXMethodDecl>(Matches[0]->getUnderlyingDecl()); | 
|  |  | 
|  | if (Operator->isDeleted()) { | 
|  | if (Diagnose) { | 
|  | Diag(StartLoc, diag::err_deleted_function_use); | 
|  | NoteDeletedFunction(Operator); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(), | 
|  | Matches[0], Diagnose) == AR_inaccessible) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  |  | 
|  | // We found multiple suitable operators;  complain about the ambiguity. | 
|  | } else if (!Matches.empty()) { | 
|  | if (Diagnose) { | 
|  | Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found) | 
|  | << Name << RD; | 
|  |  | 
|  | for (SmallVectorImpl<DeclAccessPair>::iterator | 
|  | F = Matches.begin(), FEnd = Matches.end(); F != FEnd; ++F) | 
|  | Diag((*F)->getUnderlyingDecl()->getLocation(), | 
|  | diag::note_member_declared_here) << Name; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // We did find operator delete/operator delete[] declarations, but | 
|  | // none of them were suitable. | 
|  | if (!Found.empty()) { | 
|  | if (Diagnose) { | 
|  | Diag(StartLoc, diag::err_no_suitable_delete_member_function_found) | 
|  | << Name << RD; | 
|  |  | 
|  | for (LookupResult::iterator F = Found.begin(), FEnd = Found.end(); | 
|  | F != FEnd; ++F) | 
|  | Diag((*F)->getUnderlyingDecl()->getLocation(), | 
|  | diag::note_member_declared_here) << Name; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | Operator = nullptr; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in: | 
|  | /// @code ::delete ptr; @endcode | 
|  | /// or | 
|  | /// @code delete [] ptr; @endcode | 
|  | ExprResult | 
|  | Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal, | 
|  | bool ArrayForm, Expr *ExE) { | 
|  | // C++ [expr.delete]p1: | 
|  | //   The operand shall have a pointer type, or a class type having a single | 
|  | //   non-explicit conversion function to a pointer type. The result has type | 
|  | //   void. | 
|  | // | 
|  | // DR599 amends "pointer type" to "pointer to object type" in both cases. | 
|  |  | 
|  | ExprResult Ex = ExE; | 
|  | FunctionDecl *OperatorDelete = nullptr; | 
|  | bool ArrayFormAsWritten = ArrayForm; | 
|  | bool UsualArrayDeleteWantsSize = false; | 
|  |  | 
|  | if (!Ex.get()->isTypeDependent()) { | 
|  | // Perform lvalue-to-rvalue cast, if needed. | 
|  | Ex = DefaultLvalueConversion(Ex.get()); | 
|  | if (Ex.isInvalid()) | 
|  | return ExprError(); | 
|  |  | 
|  | QualType Type = Ex.get()->getType(); | 
|  |  | 
|  | class DeleteConverter : public ContextualImplicitConverter { | 
|  | public: | 
|  | DeleteConverter() : ContextualImplicitConverter(false, true) {} | 
|  |  | 
|  | bool match(QualType ConvType) override { | 
|  | // FIXME: If we have an operator T* and an operator void*, we must pick | 
|  | // the operator T*. | 
|  | if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) | 
|  | if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType()) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc, | 
|  | QualType T) override { | 
|  | return S.Diag(Loc, diag::err_delete_operand) << T; | 
|  | } | 
|  |  | 
|  | SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc, | 
|  | QualType T) override { | 
|  | return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T; | 
|  | } | 
|  |  | 
|  | SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc, | 
|  | QualType T, | 
|  | QualType ConvTy) override { | 
|  | return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy; | 
|  | } | 
|  |  | 
|  | SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv, | 
|  | QualType ConvTy) override { | 
|  | return S.Diag(Conv->getLocation(), diag::note_delete_conversion) | 
|  | << ConvTy; | 
|  | } | 
|  |  | 
|  | SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc, | 
|  | QualType T) override { | 
|  | return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T; | 
|  | } | 
|  |  | 
|  | SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv, | 
|  | QualType ConvTy) override { | 
|  | return S.Diag(Conv->getLocation(), diag::note_delete_conversion) | 
|  | << ConvTy; | 
|  | } | 
|  |  | 
|  | SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc, | 
|  | QualType T, | 
|  | QualType ConvTy) override { | 
|  | llvm_unreachable("conversion functions are permitted"); | 
|  | } | 
|  | } Converter; | 
|  |  | 
|  | Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter); | 
|  | if (Ex.isInvalid()) | 
|  | return ExprError(); | 
|  | Type = Ex.get()->getType(); | 
|  | if (!Converter.match(Type)) | 
|  | // FIXME: PerformContextualImplicitConversion should return ExprError | 
|  | //        itself in this case. | 
|  | return ExprError(); | 
|  |  | 
|  | QualType Pointee = Type->getAs<PointerType>()->getPointeeType(); | 
|  | QualType PointeeElem = Context.getBaseElementType(Pointee); | 
|  |  | 
|  | if (unsigned AddressSpace = Pointee.getAddressSpace()) | 
|  | return Diag(Ex.get()->getLocStart(), | 
|  | diag::err_address_space_qualified_delete) | 
|  | << Pointee.getUnqualifiedType() << AddressSpace; | 
|  |  | 
|  | CXXRecordDecl *PointeeRD = nullptr; | 
|  | if (Pointee->isVoidType() && !isSFINAEContext()) { | 
|  | // The C++ standard bans deleting a pointer to a non-object type, which | 
|  | // effectively bans deletion of "void*". However, most compilers support | 
|  | // this, so we treat it as a warning unless we're in a SFINAE context. | 
|  | Diag(StartLoc, diag::ext_delete_void_ptr_operand) | 
|  | << Type << Ex.get()->getSourceRange(); | 
|  | } else if (Pointee->isFunctionType() || Pointee->isVoidType()) { | 
|  | return ExprError(Diag(StartLoc, diag::err_delete_operand) | 
|  | << Type << Ex.get()->getSourceRange()); | 
|  | } else if (!Pointee->isDependentType()) { | 
|  | if (!RequireCompleteType(StartLoc, Pointee, | 
|  | diag::warn_delete_incomplete, Ex.get())) { | 
|  | if (const RecordType *RT = PointeeElem->getAs<RecordType>()) | 
|  | PointeeRD = cast<CXXRecordDecl>(RT->getDecl()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++ [expr.delete]p2: | 
|  | //   [Note: a pointer to a const type can be the operand of a | 
|  | //   delete-expression; it is not necessary to cast away the constness | 
|  | //   (5.2.11) of the pointer expression before it is used as the operand | 
|  | //   of the delete-expression. ] | 
|  |  | 
|  | if (Pointee->isArrayType() && !ArrayForm) { | 
|  | Diag(StartLoc, diag::warn_delete_array_type) | 
|  | << Type << Ex.get()->getSourceRange() | 
|  | << FixItHint::CreateInsertion(PP.getLocForEndOfToken(StartLoc), "[]"); | 
|  | ArrayForm = true; | 
|  | } | 
|  |  | 
|  | DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName( | 
|  | ArrayForm ? OO_Array_Delete : OO_Delete); | 
|  |  | 
|  | if (PointeeRD) { | 
|  | if (!UseGlobal && | 
|  | FindDeallocationFunction(StartLoc, PointeeRD, DeleteName, | 
|  | OperatorDelete)) | 
|  | return ExprError(); | 
|  |  | 
|  | // If we're allocating an array of records, check whether the | 
|  | // usual operator delete[] has a size_t parameter. | 
|  | if (ArrayForm) { | 
|  | // If the user specifically asked to use the global allocator, | 
|  | // we'll need to do the lookup into the class. | 
|  | if (UseGlobal) | 
|  | UsualArrayDeleteWantsSize = | 
|  | doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem); | 
|  |  | 
|  | // Otherwise, the usual operator delete[] should be the | 
|  | // function we just found. | 
|  | else if (OperatorDelete && isa<CXXMethodDecl>(OperatorDelete)) | 
|  | UsualArrayDeleteWantsSize = (OperatorDelete->getNumParams() == 2); | 
|  | } | 
|  |  | 
|  | if (!PointeeRD->hasIrrelevantDestructor()) | 
|  | if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) { | 
|  | MarkFunctionReferenced(StartLoc, | 
|  | const_cast<CXXDestructorDecl*>(Dtor)); | 
|  | if (DiagnoseUseOfDecl(Dtor, StartLoc)) | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | // C++ [expr.delete]p3: | 
|  | //   In the first alternative (delete object), if the static type of the | 
|  | //   object to be deleted is different from its dynamic type, the static | 
|  | //   type shall be a base class of the dynamic type of the object to be | 
|  | //   deleted and the static type shall have a virtual destructor or the | 
|  | //   behavior is undefined. | 
|  | // | 
|  | // Note: a final class cannot be derived from, no issue there | 
|  | if (PointeeRD->isPolymorphic() && !PointeeRD->hasAttr<FinalAttr>()) { | 
|  | CXXDestructorDecl *dtor = PointeeRD->getDestructor(); | 
|  | if (dtor && !dtor->isVirtual()) { | 
|  | if (PointeeRD->isAbstract()) { | 
|  | // If the class is abstract, we warn by default, because we're | 
|  | // sure the code has undefined behavior. | 
|  | Diag(StartLoc, diag::warn_delete_abstract_non_virtual_dtor) | 
|  | << PointeeElem; | 
|  | } else if (!ArrayForm) { | 
|  | // Otherwise, if this is not an array delete, it's a bit suspect, | 
|  | // but not necessarily wrong. | 
|  | Diag(StartLoc, diag::warn_delete_non_virtual_dtor) << PointeeElem; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | if (!OperatorDelete) | 
|  | // Look for a global declaration. | 
|  | OperatorDelete = FindUsualDeallocationFunction( | 
|  | StartLoc, !RequireCompleteType(StartLoc, Pointee, 0) && | 
|  | (!ArrayForm || UsualArrayDeleteWantsSize || | 
|  | Pointee.isDestructedType()), | 
|  | DeleteName); | 
|  |  | 
|  | MarkFunctionReferenced(StartLoc, OperatorDelete); | 
|  |  | 
|  | // Check access and ambiguity of operator delete and destructor. | 
|  | if (PointeeRD) { | 
|  | if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) { | 
|  | CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor, | 
|  | PDiag(diag::err_access_dtor) << PointeeElem); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return new (Context) CXXDeleteExpr( | 
|  | Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten, | 
|  | UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc); | 
|  | } | 
|  |  | 
|  | /// \brief Check the use of the given variable as a C++ condition in an if, | 
|  | /// while, do-while, or switch statement. | 
|  | ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar, | 
|  | SourceLocation StmtLoc, | 
|  | bool ConvertToBoolean) { | 
|  | if (ConditionVar->isInvalidDecl()) | 
|  | return ExprError(); | 
|  |  | 
|  | QualType T = ConditionVar->getType(); | 
|  |  | 
|  | // C++ [stmt.select]p2: | 
|  | //   The declarator shall not specify a function or an array. | 
|  | if (T->isFunctionType()) | 
|  | return ExprError(Diag(ConditionVar->getLocation(), | 
|  | diag::err_invalid_use_of_function_type) | 
|  | << ConditionVar->getSourceRange()); | 
|  | else if (T->isArrayType()) | 
|  | return ExprError(Diag(ConditionVar->getLocation(), | 
|  | diag::err_invalid_use_of_array_type) | 
|  | << ConditionVar->getSourceRange()); | 
|  |  | 
|  | ExprResult Condition = DeclRefExpr::Create( | 
|  | Context, NestedNameSpecifierLoc(), SourceLocation(), ConditionVar, | 
|  | /*enclosing*/ false, ConditionVar->getLocation(), | 
|  | ConditionVar->getType().getNonReferenceType(), VK_LValue); | 
|  |  | 
|  | MarkDeclRefReferenced(cast<DeclRefExpr>(Condition.get())); | 
|  |  | 
|  | if (ConvertToBoolean) { | 
|  | Condition = CheckBooleanCondition(Condition.get(), StmtLoc); | 
|  | if (Condition.isInvalid()) | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | return Condition; | 
|  | } | 
|  |  | 
|  | /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid. | 
|  | ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr) { | 
|  | // C++ 6.4p4: | 
|  | // The value of a condition that is an initialized declaration in a statement | 
|  | // other than a switch statement is the value of the declared variable | 
|  | // implicitly converted to type bool. If that conversion is ill-formed, the | 
|  | // program is ill-formed. | 
|  | // The value of a condition that is an expression is the value of the | 
|  | // expression, implicitly converted to bool. | 
|  | // | 
|  | return PerformContextuallyConvertToBool(CondExpr); | 
|  | } | 
|  |  | 
|  | /// Helper function to determine whether this is the (deprecated) C++ | 
|  | /// conversion from a string literal to a pointer to non-const char or | 
|  | /// non-const wchar_t (for narrow and wide string literals, | 
|  | /// respectively). | 
|  | bool | 
|  | Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) { | 
|  | // Look inside the implicit cast, if it exists. | 
|  | if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From)) | 
|  | From = Cast->getSubExpr(); | 
|  |  | 
|  | // A string literal (2.13.4) that is not a wide string literal can | 
|  | // be converted to an rvalue of type "pointer to char"; a wide | 
|  | // string literal can be converted to an rvalue of type "pointer | 
|  | // to wchar_t" (C++ 4.2p2). | 
|  | if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens())) | 
|  | if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) | 
|  | if (const BuiltinType *ToPointeeType | 
|  | = ToPtrType->getPointeeType()->getAs<BuiltinType>()) { | 
|  | // This conversion is considered only when there is an | 
|  | // explicit appropriate pointer target type (C++ 4.2p2). | 
|  | if (!ToPtrType->getPointeeType().hasQualifiers()) { | 
|  | switch (StrLit->getKind()) { | 
|  | case StringLiteral::UTF8: | 
|  | case StringLiteral::UTF16: | 
|  | case StringLiteral::UTF32: | 
|  | // We don't allow UTF literals to be implicitly converted | 
|  | break; | 
|  | case StringLiteral::Ascii: | 
|  | return (ToPointeeType->getKind() == BuiltinType::Char_U || | 
|  | ToPointeeType->getKind() == BuiltinType::Char_S); | 
|  | case StringLiteral::Wide: | 
|  | return ToPointeeType->isWideCharType(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static ExprResult BuildCXXCastArgument(Sema &S, | 
|  | SourceLocation CastLoc, | 
|  | QualType Ty, | 
|  | CastKind Kind, | 
|  | CXXMethodDecl *Method, | 
|  | DeclAccessPair FoundDecl, | 
|  | bool HadMultipleCandidates, | 
|  | Expr *From) { | 
|  | switch (Kind) { | 
|  | default: llvm_unreachable("Unhandled cast kind!"); | 
|  | case CK_ConstructorConversion: { | 
|  | CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method); | 
|  | SmallVector<Expr*, 8> ConstructorArgs; | 
|  |  | 
|  | if (S.RequireNonAbstractType(CastLoc, Ty, | 
|  | diag::err_allocation_of_abstract_type)) | 
|  | return ExprError(); | 
|  |  | 
|  | if (S.CompleteConstructorCall(Constructor, From, CastLoc, ConstructorArgs)) | 
|  | return ExprError(); | 
|  |  | 
|  | S.CheckConstructorAccess(CastLoc, Constructor, | 
|  | InitializedEntity::InitializeTemporary(Ty), | 
|  | Constructor->getAccess()); | 
|  |  | 
|  | ExprResult Result = S.BuildCXXConstructExpr( | 
|  | CastLoc, Ty, cast<CXXConstructorDecl>(Method), | 
|  | ConstructorArgs, HadMultipleCandidates, | 
|  | /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, | 
|  | CXXConstructExpr::CK_Complete, SourceRange()); | 
|  | if (Result.isInvalid()) | 
|  | return ExprError(); | 
|  |  | 
|  | return S.MaybeBindToTemporary(Result.getAs<Expr>()); | 
|  | } | 
|  |  | 
|  | case CK_UserDefinedConversion: { | 
|  | assert(!From->getType()->isPointerType() && "Arg can't have pointer type!"); | 
|  |  | 
|  | // Create an implicit call expr that calls it. | 
|  | CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method); | 
|  | ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv, | 
|  | HadMultipleCandidates); | 
|  | if (Result.isInvalid()) | 
|  | return ExprError(); | 
|  | // Record usage of conversion in an implicit cast. | 
|  | Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(), | 
|  | CK_UserDefinedConversion, Result.get(), | 
|  | nullptr, Result.get()->getValueKind()); | 
|  |  | 
|  | S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl); | 
|  |  | 
|  | return S.MaybeBindToTemporary(Result.get()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// PerformImplicitConversion - Perform an implicit conversion of the | 
|  | /// expression From to the type ToType using the pre-computed implicit | 
|  | /// conversion sequence ICS. Returns the converted | 
|  | /// expression. Action is the kind of conversion we're performing, | 
|  | /// used in the error message. | 
|  | ExprResult | 
|  | Sema::PerformImplicitConversion(Expr *From, QualType ToType, | 
|  | const ImplicitConversionSequence &ICS, | 
|  | AssignmentAction Action, | 
|  | CheckedConversionKind CCK) { | 
|  | switch (ICS.getKind()) { | 
|  | case ImplicitConversionSequence::StandardConversion: { | 
|  | ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard, | 
|  | Action, CCK); | 
|  | if (Res.isInvalid()) | 
|  | return ExprError(); | 
|  | From = Res.get(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ImplicitConversionSequence::UserDefinedConversion: { | 
|  |  | 
|  | FunctionDecl *FD = ICS.UserDefined.ConversionFunction; | 
|  | CastKind CastKind; | 
|  | QualType BeforeToType; | 
|  | assert(FD && "FIXME: aggregate initialization from init list"); | 
|  | if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) { | 
|  | CastKind = CK_UserDefinedConversion; | 
|  |  | 
|  | // If the user-defined conversion is specified by a conversion function, | 
|  | // the initial standard conversion sequence converts the source type to | 
|  | // the implicit object parameter of the conversion function. | 
|  | BeforeToType = Context.getTagDeclType(Conv->getParent()); | 
|  | } else { | 
|  | const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD); | 
|  | CastKind = CK_ConstructorConversion; | 
|  | // Do no conversion if dealing with ... for the first conversion. | 
|  | if (!ICS.UserDefined.EllipsisConversion) { | 
|  | // If the user-defined conversion is specified by a constructor, the | 
|  | // initial standard conversion sequence converts the source type to | 
|  | // the type required by the argument of the constructor | 
|  | BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType(); | 
|  | } | 
|  | } | 
|  | // Watch out for ellipsis conversion. | 
|  | if (!ICS.UserDefined.EllipsisConversion) { | 
|  | ExprResult Res = | 
|  | PerformImplicitConversion(From, BeforeToType, | 
|  | ICS.UserDefined.Before, AA_Converting, | 
|  | CCK); | 
|  | if (Res.isInvalid()) | 
|  | return ExprError(); | 
|  | From = Res.get(); | 
|  | } | 
|  |  | 
|  | ExprResult CastArg | 
|  | = BuildCXXCastArgument(*this, | 
|  | From->getLocStart(), | 
|  | ToType.getNonReferenceType(), | 
|  | CastKind, cast<CXXMethodDecl>(FD), | 
|  | ICS.UserDefined.FoundConversionFunction, | 
|  | ICS.UserDefined.HadMultipleCandidates, | 
|  | From); | 
|  |  | 
|  | if (CastArg.isInvalid()) | 
|  | return ExprError(); | 
|  |  | 
|  | From = CastArg.get(); | 
|  |  | 
|  | return PerformImplicitConversion(From, ToType, ICS.UserDefined.After, | 
|  | AA_Converting, CCK); | 
|  | } | 
|  |  | 
|  | case ImplicitConversionSequence::AmbiguousConversion: | 
|  | ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(), | 
|  | PDiag(diag::err_typecheck_ambiguous_condition) | 
|  | << From->getSourceRange()); | 
|  | return ExprError(); | 
|  |  | 
|  | case ImplicitConversionSequence::EllipsisConversion: | 
|  | llvm_unreachable("Cannot perform an ellipsis conversion"); | 
|  |  | 
|  | case ImplicitConversionSequence::BadConversion: | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | // Everything went well. | 
|  | return From; | 
|  | } | 
|  |  | 
|  | /// PerformImplicitConversion - Perform an implicit conversion of the | 
|  | /// expression From to the type ToType by following the standard | 
|  | /// conversion sequence SCS. Returns the converted | 
|  | /// expression. Flavor is the context in which we're performing this | 
|  | /// conversion, for use in error messages. | 
|  | ExprResult | 
|  | Sema::PerformImplicitConversion(Expr *From, QualType ToType, | 
|  | const StandardConversionSequence& SCS, | 
|  | AssignmentAction Action, | 
|  | CheckedConversionKind CCK) { | 
|  | bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast); | 
|  |  | 
|  | // Overall FIXME: we are recomputing too many types here and doing far too | 
|  | // much extra work. What this means is that we need to keep track of more | 
|  | // information that is computed when we try the implicit conversion initially, | 
|  | // so that we don't need to recompute anything here. | 
|  | QualType FromType = From->getType(); | 
|  |  | 
|  | if (SCS.CopyConstructor) { | 
|  | // FIXME: When can ToType be a reference type? | 
|  | assert(!ToType->isReferenceType()); | 
|  | if (SCS.Second == ICK_Derived_To_Base) { | 
|  | SmallVector<Expr*, 8> ConstructorArgs; | 
|  | if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor), | 
|  | From, /*FIXME:ConstructLoc*/SourceLocation(), | 
|  | ConstructorArgs)) | 
|  | return ExprError(); | 
|  | return BuildCXXConstructExpr( | 
|  | /*FIXME:ConstructLoc*/ SourceLocation(), ToType, SCS.CopyConstructor, | 
|  | ConstructorArgs, /*HadMultipleCandidates*/ false, | 
|  | /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, | 
|  | CXXConstructExpr::CK_Complete, SourceRange()); | 
|  | } | 
|  | return BuildCXXConstructExpr( | 
|  | /*FIXME:ConstructLoc*/ SourceLocation(), ToType, SCS.CopyConstructor, | 
|  | From, /*HadMultipleCandidates*/ false, | 
|  | /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, | 
|  | CXXConstructExpr::CK_Complete, SourceRange()); | 
|  | } | 
|  |  | 
|  | // Resolve overloaded function references. | 
|  | if (Context.hasSameType(FromType, Context.OverloadTy)) { | 
|  | DeclAccessPair Found; | 
|  | FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType, | 
|  | true, Found); | 
|  | if (!Fn) | 
|  | return ExprError(); | 
|  |  | 
|  | if (DiagnoseUseOfDecl(Fn, From->getLocStart())) | 
|  | return ExprError(); | 
|  |  | 
|  | From = FixOverloadedFunctionReference(From, Found, Fn); | 
|  | FromType = From->getType(); | 
|  | } | 
|  |  | 
|  | // If we're converting to an atomic type, first convert to the corresponding | 
|  | // non-atomic type. | 
|  | QualType ToAtomicType; | 
|  | if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) { | 
|  | ToAtomicType = ToType; | 
|  | ToType = ToAtomic->getValueType(); | 
|  | } | 
|  |  | 
|  | // Perform the first implicit conversion. | 
|  | switch (SCS.First) { | 
|  | case ICK_Identity: | 
|  | if (const AtomicType *FromAtomic = FromType->getAs<AtomicType>()) { | 
|  | FromType = FromAtomic->getValueType().getUnqualifiedType(); | 
|  | From = ImplicitCastExpr::Create(Context, FromType, CK_AtomicToNonAtomic, | 
|  | From, /*BasePath=*/nullptr, VK_RValue); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case ICK_Lvalue_To_Rvalue: { | 
|  | assert(From->getObjectKind() != OK_ObjCProperty); | 
|  | ExprResult FromRes = DefaultLvalueConversion(From); | 
|  | assert(!FromRes.isInvalid() && "Can't perform deduced conversion?!"); | 
|  | From = FromRes.get(); | 
|  | FromType = From->getType(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ICK_Array_To_Pointer: | 
|  | FromType = Context.getArrayDecayedType(FromType); | 
|  | From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay, | 
|  | VK_RValue, /*BasePath=*/nullptr, CCK).get(); | 
|  | break; | 
|  |  | 
|  | case ICK_Function_To_Pointer: | 
|  | FromType = Context.getPointerType(FromType); | 
|  | From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay, | 
|  | VK_RValue, /*BasePath=*/nullptr, CCK).get(); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | llvm_unreachable("Improper first standard conversion"); | 
|  | } | 
|  |  | 
|  | // Perform the second implicit conversion | 
|  | switch (SCS.Second) { | 
|  | case ICK_Identity: | 
|  | // C++ [except.spec]p5: | 
|  | //   [For] assignment to and initialization of pointers to functions, | 
|  | //   pointers to member functions, and references to functions: the | 
|  | //   target entity shall allow at least the exceptions allowed by the | 
|  | //   source value in the assignment or initialization. | 
|  | switch (Action) { | 
|  | case AA_Assigning: | 
|  | case AA_Initializing: | 
|  | // Note, function argument passing and returning are initialization. | 
|  | case AA_Passing: | 
|  | case AA_Returning: | 
|  | case AA_Sending: | 
|  | case AA_Passing_CFAudited: | 
|  | if (CheckExceptionSpecCompatibility(From, ToType)) | 
|  | return ExprError(); | 
|  | break; | 
|  |  | 
|  | case AA_Casting: | 
|  | case AA_Converting: | 
|  | // Casts and implicit conversions are not initialization, so are not | 
|  | // checked for exception specification mismatches. | 
|  | break; | 
|  | } | 
|  | // Nothing else to do. | 
|  | break; | 
|  |  | 
|  | case ICK_NoReturn_Adjustment: | 
|  | // If both sides are functions (or pointers/references to them), there could | 
|  | // be incompatible exception declarations. | 
|  | if (CheckExceptionSpecCompatibility(From, ToType)) | 
|  | return ExprError(); | 
|  |  | 
|  | From = ImpCastExprToType(From, ToType, CK_NoOp, | 
|  | VK_RValue, /*BasePath=*/nullptr, CCK).get(); | 
|  | break; | 
|  |  | 
|  | case ICK_Integral_Promotion: | 
|  | case ICK_Integral_Conversion: | 
|  | if (ToType->isBooleanType()) { | 
|  | assert(FromType->castAs<EnumType>()->getDecl()->isFixed() && | 
|  | SCS.Second == ICK_Integral_Promotion && | 
|  | "only enums with fixed underlying type can promote to bool"); | 
|  | From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean, | 
|  | VK_RValue, /*BasePath=*/nullptr, CCK).get(); | 
|  | } else { | 
|  | From = ImpCastExprToType(From, ToType, CK_IntegralCast, | 
|  | VK_RValue, /*BasePath=*/nullptr, CCK).get(); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case ICK_Floating_Promotion: | 
|  | case ICK_Floating_Conversion: | 
|  | From = ImpCastExprToType(From, ToType, CK_FloatingCast, | 
|  | VK_RValue, /*BasePath=*/nullptr, CCK).get(); | 
|  | break; | 
|  |  | 
|  | case ICK_Complex_Promotion: | 
|  | case ICK_Complex_Conversion: { | 
|  | QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType(); | 
|  | QualType ToEl = ToType->getAs<ComplexType>()->getElementType(); | 
|  | CastKind CK; | 
|  | if (FromEl->isRealFloatingType()) { | 
|  | if (ToEl->isRealFloatingType()) | 
|  | CK = CK_FloatingComplexCast; | 
|  | else | 
|  | CK = CK_FloatingComplexToIntegralComplex; | 
|  | } else if (ToEl->isRealFloatingType()) { | 
|  | CK = CK_IntegralComplexToFloatingComplex; | 
|  | } else { | 
|  | CK = CK_IntegralComplexCast; | 
|  | } | 
|  | From = ImpCastExprToType(From, ToType, CK, | 
|  | VK_RValue, /*BasePath=*/nullptr, CCK).get(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ICK_Floating_Integral: | 
|  | if (ToType->isRealFloatingType()) | 
|  | From = ImpCastExprToType(From, ToType, CK_IntegralToFloating, | 
|  | VK_RValue, /*BasePath=*/nullptr, CCK).get(); | 
|  | else | 
|  | From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral, | 
|  | VK_RValue, /*BasePath=*/nullptr, CCK).get(); | 
|  | break; | 
|  |  | 
|  | case ICK_Compatible_Conversion: | 
|  | From = ImpCastExprToType(From, ToType, CK_NoOp, | 
|  | VK_RValue, /*BasePath=*/nullptr, CCK).get(); | 
|  | break; | 
|  |  | 
|  | case ICK_Writeback_Conversion: | 
|  | case ICK_Pointer_Conversion: { | 
|  | if (SCS.IncompatibleObjC && Action != AA_Casting) { | 
|  | // Diagnose incompatible Objective-C conversions | 
|  | if (Action == AA_Initializing || Action == AA_Assigning) | 
|  | Diag(From->getLocStart(), | 
|  | diag::ext_typecheck_convert_incompatible_pointer) | 
|  | << ToType << From->getType() << Action | 
|  | << From->getSourceRange() << 0; | 
|  | else | 
|  | Diag(From->getLocStart(), | 
|  | diag::ext_typecheck_convert_incompatible_pointer) | 
|  | << From->getType() << ToType << Action | 
|  | << From->getSourceRange() << 0; | 
|  |  | 
|  | if (From->getType()->isObjCObjectPointerType() && | 
|  | ToType->isObjCObjectPointerType()) | 
|  | EmitRelatedResultTypeNote(From); | 
|  | } | 
|  | else if (getLangOpts().ObjCAutoRefCount && | 
|  | !CheckObjCARCUnavailableWeakConversion(ToType, | 
|  | From->getType())) { | 
|  | if (Action == AA_Initializing) | 
|  | Diag(From->getLocStart(), | 
|  | diag::err_arc_weak_unavailable_assign); | 
|  | else | 
|  | Diag(From->getLocStart(), | 
|  | diag::err_arc_convesion_of_weak_unavailable) | 
|  | << (Action == AA_Casting) << From->getType() << ToType | 
|  | << From->getSourceRange(); | 
|  | } | 
|  |  | 
|  | CastKind Kind = CK_Invalid; | 
|  | CXXCastPath BasePath; | 
|  | if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle)) | 
|  | return ExprError(); | 
|  |  | 
|  | // Make sure we extend blocks if necessary. | 
|  | // FIXME: doing this here is really ugly. | 
|  | if (Kind == CK_BlockPointerToObjCPointerCast) { | 
|  | ExprResult E = From; | 
|  | (void) PrepareCastToObjCObjectPointer(E); | 
|  | From = E.get(); | 
|  | } | 
|  | if (getLangOpts().ObjCAutoRefCount) | 
|  | CheckObjCARCConversion(SourceRange(), ToType, From, CCK); | 
|  | From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK) | 
|  | .get(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ICK_Pointer_Member: { | 
|  | CastKind Kind = CK_Invalid; | 
|  | CXXCastPath BasePath; | 
|  | if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle)) | 
|  | return ExprError(); | 
|  | if (CheckExceptionSpecCompatibility(From, ToType)) | 
|  | return ExprError(); | 
|  |  | 
|  | // We may not have been able to figure out what this member pointer resolved | 
|  | // to up until this exact point.  Attempt to lock-in it's inheritance model. | 
|  | QualType FromType = From->getType(); | 
|  | if (FromType->isMemberPointerType()) | 
|  | if (Context.getTargetInfo().getCXXABI().isMicrosoft()) | 
|  | RequireCompleteType(From->getExprLoc(), FromType, 0); | 
|  |  | 
|  | From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK) | 
|  | .get(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ICK_Boolean_Conversion: | 
|  | // Perform half-to-boolean conversion via float. | 
|  | if (From->getType()->isHalfType()) { | 
|  | From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get(); | 
|  | FromType = Context.FloatTy; | 
|  | } | 
|  |  | 
|  | From = ImpCastExprToType(From, Context.BoolTy, | 
|  | ScalarTypeToBooleanCastKind(FromType), | 
|  | VK_RValue, /*BasePath=*/nullptr, CCK).get(); | 
|  | break; | 
|  |  | 
|  | case ICK_Derived_To_Base: { | 
|  | CXXCastPath BasePath; | 
|  | if (CheckDerivedToBaseConversion(From->getType(), | 
|  | ToType.getNonReferenceType(), | 
|  | From->getLocStart(), | 
|  | From->getSourceRange(), | 
|  | &BasePath, | 
|  | CStyle)) | 
|  | return ExprError(); | 
|  |  | 
|  | From = ImpCastExprToType(From, ToType.getNonReferenceType(), | 
|  | CK_DerivedToBase, From->getValueKind(), | 
|  | &BasePath, CCK).get(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ICK_Vector_Conversion: | 
|  | From = ImpCastExprToType(From, ToType, CK_BitCast, | 
|  | VK_RValue, /*BasePath=*/nullptr, CCK).get(); | 
|  | break; | 
|  |  | 
|  | case ICK_Vector_Splat: | 
|  | From = ImpCastExprToType(From, ToType, CK_VectorSplat, | 
|  | VK_RValue, /*BasePath=*/nullptr, CCK).get(); | 
|  | break; | 
|  |  | 
|  | case ICK_Complex_Real: | 
|  | // Case 1.  x -> _Complex y | 
|  | if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) { | 
|  | QualType ElType = ToComplex->getElementType(); | 
|  | bool isFloatingComplex = ElType->isRealFloatingType(); | 
|  |  | 
|  | // x -> y | 
|  | if (Context.hasSameUnqualifiedType(ElType, From->getType())) { | 
|  | // do nothing | 
|  | } else if (From->getType()->isRealFloatingType()) { | 
|  | From = ImpCastExprToType(From, ElType, | 
|  | isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get(); | 
|  | } else { | 
|  | assert(From->getType()->isIntegerType()); | 
|  | From = ImpCastExprToType(From, ElType, | 
|  | isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get(); | 
|  | } | 
|  | // y -> _Complex y | 
|  | From = ImpCastExprToType(From, ToType, | 
|  | isFloatingComplex ? CK_FloatingRealToComplex | 
|  | : CK_IntegralRealToComplex).get(); | 
|  |  | 
|  | // Case 2.  _Complex x -> y | 
|  | } else { | 
|  | const ComplexType *FromComplex = From->getType()->getAs<ComplexType>(); | 
|  | assert(FromComplex); | 
|  |  | 
|  | QualType ElType = FromComplex->getElementType(); | 
|  | bool isFloatingComplex = ElType->isRealFloatingType(); | 
|  |  | 
|  | // _Complex x -> x | 
|  | From = ImpCastExprToType(From, ElType, | 
|  | isFloatingComplex ? CK_FloatingComplexToReal | 
|  | : CK_IntegralComplexToReal, | 
|  | VK_RValue, /*BasePath=*/nullptr, CCK).get(); | 
|  |  | 
|  | // x -> y | 
|  | if (Context.hasSameUnqualifiedType(ElType, ToType)) { | 
|  | // do nothing | 
|  | } else if (ToType->isRealFloatingType()) { | 
|  | From = ImpCastExprToType(From, ToType, | 
|  | isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating, | 
|  | VK_RValue, /*BasePath=*/nullptr, CCK).get(); | 
|  | } else { | 
|  | assert(ToType->isIntegerType()); | 
|  | From = ImpCastExprToType(From, ToType, | 
|  | isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast, | 
|  | VK_RValue, /*BasePath=*/nullptr, CCK).get(); | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case ICK_Block_Pointer_Conversion: { | 
|  | From = ImpCastExprToType(From, ToType.getUnqualifiedType(), CK_BitCast, | 
|  | VK_RValue, /*BasePath=*/nullptr, CCK).get(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ICK_TransparentUnionConversion: { | 
|  | ExprResult FromRes = From; | 
|  | Sema::AssignConvertType ConvTy = | 
|  | CheckTransparentUnionArgumentConstraints(ToType, FromRes); | 
|  | if (FromRes.isInvalid()) | 
|  | return ExprError(); | 
|  | From = FromRes.get(); | 
|  | assert ((ConvTy == Sema::Compatible) && | 
|  | "Improper transparent union conversion"); | 
|  | (void)ConvTy; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ICK_Zero_Event_Conversion: | 
|  | From = ImpCastExprToType(From, ToType, | 
|  | CK_ZeroToOCLEvent, | 
|  | From->getValueKind()).get(); | 
|  | break; | 
|  |  | 
|  | case ICK_Lvalue_To_Rvalue: | 
|  | case ICK_Array_To_Pointer: | 
|  | case ICK_Function_To_Pointer: | 
|  | case ICK_Qualification: | 
|  | case ICK_Num_Conversion_Kinds: | 
|  | llvm_unreachable("Improper second standard conversion"); | 
|  | } | 
|  |  | 
|  | switch (SCS.Third) { | 
|  | case ICK_Identity: | 
|  | // Nothing to do. | 
|  | break; | 
|  |  | 
|  | case ICK_Qualification: { | 
|  | // The qualification keeps the category of the inner expression, unless the | 
|  | // target type isn't a reference. | 
|  | ExprValueKind VK = ToType->isReferenceType() ? | 
|  | From->getValueKind() : VK_RValue; | 
|  | From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context), | 
|  | CK_NoOp, VK, /*BasePath=*/nullptr, CCK).get(); | 
|  |  | 
|  | if (SCS.DeprecatedStringLiteralToCharPtr && | 
|  | !getLangOpts().WritableStrings) { | 
|  | Diag(From->getLocStart(), getLangOpts().CPlusPlus11 | 
|  | ? diag::ext_deprecated_string_literal_conversion | 
|  | : diag::warn_deprecated_string_literal_conversion) | 
|  | << ToType.getNonReferenceType(); | 
|  | } | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | default: | 
|  | llvm_unreachable("Improper third standard conversion"); | 
|  | } | 
|  |  | 
|  | // If this conversion sequence involved a scalar -> atomic conversion, perform | 
|  | // that conversion now. | 
|  | if (!ToAtomicType.isNull()) { | 
|  | assert(Context.hasSameType( | 
|  | ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType())); | 
|  | From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic, | 
|  | VK_RValue, nullptr, CCK).get(); | 
|  | } | 
|  |  | 
|  | return From; | 
|  | } | 
|  |  | 
|  | /// \brief Check the completeness of a type in a unary type trait. | 
|  | /// | 
|  | /// If the particular type trait requires a complete type, tries to complete | 
|  | /// it. If completing the type fails, a diagnostic is emitted and false | 
|  | /// returned. If completing the type succeeds or no completion was required, | 
|  | /// returns true. | 
|  | static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT, | 
|  | SourceLocation Loc, | 
|  | QualType ArgTy) { | 
|  | // C++0x [meta.unary.prop]p3: | 
|  | //   For all of the class templates X declared in this Clause, instantiating | 
|  | //   that template with a template argument that is a class template | 
|  | //   specialization may result in the implicit instantiation of the template | 
|  | //   argument if and only if the semantics of X require that the argument | 
|  | //   must be a complete type. | 
|  | // We apply this rule to all the type trait expressions used to implement | 
|  | // these class templates. We also try to follow any GCC documented behavior | 
|  | // in these expressions to ensure portability of standard libraries. | 
|  | switch (UTT) { | 
|  | default: llvm_unreachable("not a UTT"); | 
|  | // is_complete_type somewhat obviously cannot require a complete type. | 
|  | case UTT_IsCompleteType: | 
|  | // Fall-through | 
|  |  | 
|  | // These traits are modeled on the type predicates in C++0x | 
|  | // [meta.unary.cat] and [meta.unary.comp]. They are not specified as | 
|  | // requiring a complete type, as whether or not they return true cannot be | 
|  | // impacted by the completeness of the type. | 
|  | case UTT_IsVoid: | 
|  | case UTT_IsIntegral: | 
|  | case UTT_IsFloatingPoint: | 
|  | case UTT_IsArray: | 
|  | case UTT_IsPointer: | 
|  | case UTT_IsLvalueReference: | 
|  | case UTT_IsRvalueReference: | 
|  | case UTT_IsMemberFunctionPointer: | 
|  | case UTT_IsMemberObjectPointer: | 
|  | case UTT_IsEnum: | 
|  | case UTT_IsUnion: | 
|  | case UTT_IsClass: | 
|  | case UTT_IsFunction: | 
|  | case UTT_IsReference: | 
|  | case UTT_IsArithmetic: | 
|  | case UTT_IsFundamental: | 
|  | case UTT_IsObject: | 
|  | case UTT_IsScalar: | 
|  | case UTT_IsCompound: | 
|  | case UTT_IsMemberPointer: | 
|  | // Fall-through | 
|  |  | 
|  | // These traits are modeled on type predicates in C++0x [meta.unary.prop] | 
|  | // which requires some of its traits to have the complete type. However, | 
|  | // the completeness of the type cannot impact these traits' semantics, and | 
|  | // so they don't require it. This matches the comments on these traits in | 
|  | // Table 49. | 
|  | case UTT_IsConst: | 
|  | case UTT_IsVolatile: | 
|  | case UTT_IsSigned: | 
|  | case UTT_IsUnsigned: | 
|  | return true; | 
|  |  | 
|  | // C++0x [meta.unary.prop] Table 49 requires the following traits to be | 
|  | // applied to a complete type. | 
|  | case UTT_IsTrivial: | 
|  | case UTT_IsTriviallyCopyable: | 
|  | case UTT_IsStandardLayout: | 
|  | case UTT_IsPOD: | 
|  | case UTT_IsLiteral: | 
|  | case UTT_IsEmpty: | 
|  | case UTT_IsPolymorphic: | 
|  | case UTT_IsAbstract: | 
|  | case UTT_IsInterfaceClass: | 
|  | case UTT_IsDestructible: | 
|  | case UTT_IsNothrowDestructible: | 
|  | // Fall-through | 
|  |  | 
|  | // These traits require a complete type. | 
|  | case UTT_IsFinal: | 
|  | case UTT_IsSealed: | 
|  |  | 
|  | // These trait expressions are designed to help implement predicates in | 
|  | // [meta.unary.prop] despite not being named the same. They are specified | 
|  | // by both GCC and the Embarcadero C++ compiler, and require the complete | 
|  | // type due to the overarching C++0x type predicates being implemented | 
|  | // requiring the complete type. | 
|  | case UTT_HasNothrowAssign: | 
|  | case UTT_HasNothrowMoveAssign: | 
|  | case UTT_HasNothrowConstructor: | 
|  | case UTT_HasNothrowCopy: | 
|  | case UTT_HasTrivialAssign: | 
|  | case UTT_HasTrivialMoveAssign: | 
|  | case UTT_HasTrivialDefaultConstructor: | 
|  | case UTT_HasTrivialMoveConstructor: | 
|  | case UTT_HasTrivialCopy: | 
|  | case UTT_HasTrivialDestructor: | 
|  | case UTT_HasVirtualDestructor: | 
|  | // Arrays of unknown bound are expressly allowed. | 
|  | QualType ElTy = ArgTy; | 
|  | if (ArgTy->isIncompleteArrayType()) | 
|  | ElTy = S.Context.getAsArrayType(ArgTy)->getElementType(); | 
|  |  | 
|  | // The void type is expressly allowed. | 
|  | if (ElTy->isVoidType()) | 
|  | return true; | 
|  |  | 
|  | return !S.RequireCompleteType( | 
|  | Loc, ElTy, diag::err_incomplete_type_used_in_type_trait_expr); | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op, | 
|  | Sema &Self, SourceLocation KeyLoc, ASTContext &C, | 
|  | bool (CXXRecordDecl::*HasTrivial)() const, | 
|  | bool (CXXRecordDecl::*HasNonTrivial)() const, | 
|  | bool (CXXMethodDecl::*IsDesiredOp)() const) | 
|  | { | 
|  | CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); | 
|  | if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)()) | 
|  | return true; | 
|  |  | 
|  | DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op); | 
|  | DeclarationNameInfo NameInfo(Name, KeyLoc); | 
|  | LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName); | 
|  | if (Self.LookupQualifiedName(Res, RD)) { | 
|  | bool FoundOperator = false; | 
|  | Res.suppressDiagnostics(); | 
|  | for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end(); | 
|  | Op != OpEnd; ++Op) { | 
|  | if (isa<FunctionTemplateDecl>(*Op)) | 
|  | continue; | 
|  |  | 
|  | CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op); | 
|  | if((Operator->*IsDesiredOp)()) { | 
|  | FoundOperator = true; | 
|  | const FunctionProtoType *CPT = | 
|  | Operator->getType()->getAs<FunctionProtoType>(); | 
|  | CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); | 
|  | if (!CPT || !CPT->isNothrow(C)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return FoundOperator; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT, | 
|  | SourceLocation KeyLoc, QualType T) { | 
|  | assert(!T->isDependentType() && "Cannot evaluate traits of dependent type"); | 
|  |  | 
|  | ASTContext &C = Self.Context; | 
|  | switch(UTT) { | 
|  | default: llvm_unreachable("not a UTT"); | 
|  | // Type trait expressions corresponding to the primary type category | 
|  | // predicates in C++0x [meta.unary.cat]. | 
|  | case UTT_IsVoid: | 
|  | return T->isVoidType(); | 
|  | case UTT_IsIntegral: | 
|  | return T->isIntegralType(C); | 
|  | case UTT_IsFloatingPoint: | 
|  | return T->isFloatingType(); | 
|  | case UTT_IsArray: | 
|  | return T->isArrayType(); | 
|  | case UTT_IsPointer: | 
|  | return T->isPointerType(); | 
|  | case UTT_IsLvalueReference: | 
|  | return T->isLValueReferenceType(); | 
|  | case UTT_IsRvalueReference: | 
|  | return T->isRValueReferenceType(); | 
|  | case UTT_IsMemberFunctionPointer: | 
|  | return T->isMemberFunctionPointerType(); | 
|  | case UTT_IsMemberObjectPointer: | 
|  | return T->isMemberDataPointerType(); | 
|  | case UTT_IsEnum: | 
|  | return T->isEnumeralType(); | 
|  | case UTT_IsUnion: | 
|  | return T->isUnionType(); | 
|  | case UTT_IsClass: | 
|  | return T->isClassType() || T->isStructureType() || T->isInterfaceType(); | 
|  | case UTT_IsFunction: | 
|  | return T->isFunctionType(); | 
|  |  | 
|  | // Type trait expressions which correspond to the convenient composition | 
|  | // predicates in C++0x [meta.unary.comp]. | 
|  | case UTT_IsReference: | 
|  | return T->isReferenceType(); | 
|  | case UTT_IsArithmetic: | 
|  | return T->isArithmeticType() && !T->isEnumeralType(); | 
|  | case UTT_IsFundamental: | 
|  | return T->isFundamentalType(); | 
|  | case UTT_IsObject: | 
|  | return T->isObjectType(); | 
|  | case UTT_IsScalar: | 
|  | // Note: semantic analysis depends on Objective-C lifetime types to be | 
|  | // considered scalar types. However, such types do not actually behave | 
|  | // like scalar types at run time (since they may require retain/release | 
|  | // operations), so we report them as non-scalar. | 
|  | if (T->isObjCLifetimeType()) { | 
|  | switch (T.getObjCLifetime()) { | 
|  | case Qualifiers::OCL_None: | 
|  | case Qualifiers::OCL_ExplicitNone: | 
|  | return true; | 
|  |  | 
|  | case Qualifiers::OCL_Strong: | 
|  | case Qualifiers::OCL_Weak: | 
|  | case Qualifiers::OCL_Autoreleasing: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return T->isScalarType(); | 
|  | case UTT_IsCompound: | 
|  | return T->isCompoundType(); | 
|  | case UTT_IsMemberPointer: | 
|  | return T->isMemberPointerType(); | 
|  |  | 
|  | // Type trait expressions which correspond to the type property predicates | 
|  | // in C++0x [meta.unary.prop]. | 
|  | case UTT_IsConst: | 
|  | return T.isConstQualified(); | 
|  | case UTT_IsVolatile: | 
|  | return T.isVolatileQualified(); | 
|  | case UTT_IsTrivial: | 
|  | return T.isTrivialType(Self.Context); | 
|  | case UTT_IsTriviallyCopyable: | 
|  | return T.isTriviallyCopyableType(Self.Context); | 
|  | case UTT_IsStandardLayout: | 
|  | return T->isStandardLayoutType(); | 
|  | case UTT_IsPOD: | 
|  | return T.isPODType(Self.Context); | 
|  | case UTT_IsLiteral: | 
|  | return T->isLiteralType(Self.Context); | 
|  | case UTT_IsEmpty: | 
|  | if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) | 
|  | return !RD->isUnion() && RD->isEmpty(); | 
|  | return false; | 
|  | case UTT_IsPolymorphic: | 
|  | if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) | 
|  | return RD->isPolymorphic(); | 
|  | return false; | 
|  | case UTT_IsAbstract: | 
|  | if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) | 
|  | return RD->isAbstract(); | 
|  | return false; | 
|  | case UTT_IsInterfaceClass: | 
|  | if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) | 
|  | return RD->isInterface(); | 
|  | return false; | 
|  | case UTT_IsFinal: | 
|  | if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) | 
|  | return RD->hasAttr<FinalAttr>(); | 
|  | return false; | 
|  | case UTT_IsSealed: | 
|  | if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) | 
|  | if (FinalAttr *FA = RD->getAttr<FinalAttr>()) | 
|  | return FA->isSpelledAsSealed(); | 
|  | return false; | 
|  | case UTT_IsSigned: | 
|  | return T->isSignedIntegerType(); | 
|  | case UTT_IsUnsigned: | 
|  | return T->isUnsignedIntegerType(); | 
|  |  | 
|  | // Type trait expressions which query classes regarding their construction, | 
|  | // destruction, and copying. Rather than being based directly on the | 
|  | // related type predicates in the standard, they are specified by both | 
|  | // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those | 
|  | // specifications. | 
|  | // | 
|  | //   1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html | 
|  | //   2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index | 
|  | // | 
|  | // Note that these builtins do not behave as documented in g++: if a class | 
|  | // has both a trivial and a non-trivial special member of a particular kind, | 
|  | // they return false! For now, we emulate this behavior. | 
|  | // FIXME: This appears to be a g++ bug: more complex cases reveal that it | 
|  | // does not correctly compute triviality in the presence of multiple special | 
|  | // members of the same kind. Revisit this once the g++ bug is fixed. | 
|  | case UTT_HasTrivialDefaultConstructor: | 
|  | // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: | 
|  | //   If __is_pod (type) is true then the trait is true, else if type is | 
|  | //   a cv class or union type (or array thereof) with a trivial default | 
|  | //   constructor ([class.ctor]) then the trait is true, else it is false. | 
|  | if (T.isPODType(Self.Context)) | 
|  | return true; | 
|  | if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) | 
|  | return RD->hasTrivialDefaultConstructor() && | 
|  | !RD->hasNonTrivialDefaultConstructor(); | 
|  | return false; | 
|  | case UTT_HasTrivialMoveConstructor: | 
|  | //  This trait is implemented by MSVC 2012 and needed to parse the | 
|  | //  standard library headers. Specifically this is used as the logic | 
|  | //  behind std::is_trivially_move_constructible (20.9.4.3). | 
|  | if (T.isPODType(Self.Context)) | 
|  | return true; | 
|  | if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) | 
|  | return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor(); | 
|  | return false; | 
|  | case UTT_HasTrivialCopy: | 
|  | // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: | 
|  | //   If __is_pod (type) is true or type is a reference type then | 
|  | //   the trait is true, else if type is a cv class or union type | 
|  | //   with a trivial copy constructor ([class.copy]) then the trait | 
|  | //   is true, else it is false. | 
|  | if (T.isPODType(Self.Context) || T->isReferenceType()) | 
|  | return true; | 
|  | if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) | 
|  | return RD->hasTrivialCopyConstructor() && | 
|  | !RD->hasNonTrivialCopyConstructor(); | 
|  | return false; | 
|  | case UTT_HasTrivialMoveAssign: | 
|  | //  This trait is implemented by MSVC 2012 and needed to parse the | 
|  | //  standard library headers. Specifically it is used as the logic | 
|  | //  behind std::is_trivially_move_assignable (20.9.4.3) | 
|  | if (T.isPODType(Self.Context)) | 
|  | return true; | 
|  | if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) | 
|  | return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment(); | 
|  | return false; | 
|  | case UTT_HasTrivialAssign: | 
|  | // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: | 
|  | //   If type is const qualified or is a reference type then the | 
|  | //   trait is false. Otherwise if __is_pod (type) is true then the | 
|  | //   trait is true, else if type is a cv class or union type with | 
|  | //   a trivial copy assignment ([class.copy]) then the trait is | 
|  | //   true, else it is false. | 
|  | // Note: the const and reference restrictions are interesting, | 
|  | // given that const and reference members don't prevent a class | 
|  | // from having a trivial copy assignment operator (but do cause | 
|  | // errors if the copy assignment operator is actually used, q.v. | 
|  | // [class.copy]p12). | 
|  |  | 
|  | if (T.isConstQualified()) | 
|  | return false; | 
|  | if (T.isPODType(Self.Context)) | 
|  | return true; | 
|  | if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) | 
|  | return RD->hasTrivialCopyAssignment() && | 
|  | !RD->hasNonTrivialCopyAssignment(); | 
|  | return false; | 
|  | case UTT_IsDestructible: | 
|  | case UTT_IsNothrowDestructible: | 
|  | // FIXME: Implement UTT_IsDestructible and UTT_IsNothrowDestructible. | 
|  | // For now, let's fall through. | 
|  | case UTT_HasTrivialDestructor: | 
|  | // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html | 
|  | //   If __is_pod (type) is true or type is a reference type | 
|  | //   then the trait is true, else if type is a cv class or union | 
|  | //   type (or array thereof) with a trivial destructor | 
|  | //   ([class.dtor]) then the trait is true, else it is | 
|  | //   false. | 
|  | if (T.isPODType(Self.Context) || T->isReferenceType()) | 
|  | return true; | 
|  |  | 
|  | // Objective-C++ ARC: autorelease types don't require destruction. | 
|  | if (T->isObjCLifetimeType() && | 
|  | T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) | 
|  | return true; | 
|  |  | 
|  | if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) | 
|  | return RD->hasTrivialDestructor(); | 
|  | return false; | 
|  | // TODO: Propagate nothrowness for implicitly declared special members. | 
|  | case UTT_HasNothrowAssign: | 
|  | // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: | 
|  | //   If type is const qualified or is a reference type then the | 
|  | //   trait is false. Otherwise if __has_trivial_assign (type) | 
|  | //   is true then the trait is true, else if type is a cv class | 
|  | //   or union type with copy assignment operators that are known | 
|  | //   not to throw an exception then the trait is true, else it is | 
|  | //   false. | 
|  | if (C.getBaseElementType(T).isConstQualified()) | 
|  | return false; | 
|  | if (T->isReferenceType()) | 
|  | return false; | 
|  | if (T.isPODType(Self.Context) || T->isObjCLifetimeType()) | 
|  | return true; | 
|  |  | 
|  | if (const RecordType *RT = T->getAs<RecordType>()) | 
|  | return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C, | 
|  | &CXXRecordDecl::hasTrivialCopyAssignment, | 
|  | &CXXRecordDecl::hasNonTrivialCopyAssignment, | 
|  | &CXXMethodDecl::isCopyAssignmentOperator); | 
|  | return false; | 
|  | case UTT_HasNothrowMoveAssign: | 
|  | //  This trait is implemented by MSVC 2012 and needed to parse the | 
|  | //  standard library headers. Specifically this is used as the logic | 
|  | //  behind std::is_nothrow_move_assignable (20.9.4.3). | 
|  | if (T.isPODType(Self.Context)) | 
|  | return true; | 
|  |  | 
|  | if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>()) | 
|  | return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C, | 
|  | &CXXRecordDecl::hasTrivialMoveAssignment, | 
|  | &CXXRecordDecl::hasNonTrivialMoveAssignment, | 
|  | &CXXMethodDecl::isMoveAssignmentOperator); | 
|  | return false; | 
|  | case UTT_HasNothrowCopy: | 
|  | // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: | 
|  | //   If __has_trivial_copy (type) is true then the trait is true, else | 
|  | //   if type is a cv class or union type with copy constructors that are | 
|  | //   known not to throw an exception then the trait is true, else it is | 
|  | //   false. | 
|  | if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType()) | 
|  | return true; | 
|  | if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) { | 
|  | if (RD->hasTrivialCopyConstructor() && | 
|  | !RD->hasNonTrivialCopyConstructor()) | 
|  | return true; | 
|  |  | 
|  | bool FoundConstructor = false; | 
|  | unsigned FoundTQs; | 
|  | DeclContext::lookup_const_result R = Self.LookupConstructors(RD); | 
|  | for (DeclContext::lookup_const_iterator Con = R.begin(), | 
|  | ConEnd = R.end(); Con != ConEnd; ++Con) { | 
|  | // A template constructor is never a copy constructor. | 
|  | // FIXME: However, it may actually be selected at the actual overload | 
|  | // resolution point. | 
|  | if (isa<FunctionTemplateDecl>(*Con)) | 
|  | continue; | 
|  | CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con); | 
|  | if (Constructor->isCopyConstructor(FoundTQs)) { | 
|  | FoundConstructor = true; | 
|  | const FunctionProtoType *CPT | 
|  | = Constructor->getType()->getAs<FunctionProtoType>(); | 
|  | CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); | 
|  | if (!CPT) | 
|  | return false; | 
|  | // TODO: check whether evaluating default arguments can throw. | 
|  | // For now, we'll be conservative and assume that they can throw. | 
|  | if (!CPT->isNothrow(Self.Context) || CPT->getNumParams() > 1) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return FoundConstructor; | 
|  | } | 
|  | return false; | 
|  | case UTT_HasNothrowConstructor: | 
|  | // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html | 
|  | //   If __has_trivial_constructor (type) is true then the trait is | 
|  | //   true, else if type is a cv class or union type (or array | 
|  | //   thereof) with a default constructor that is known not to | 
|  | //   throw an exception then the trait is true, else it is false. | 
|  | if (T.isPODType(C) || T->isObjCLifetimeType()) | 
|  | return true; | 
|  | if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) { | 
|  | if (RD->hasTrivialDefaultConstructor() && | 
|  | !RD->hasNonTrivialDefaultConstructor()) | 
|  | return true; | 
|  |  | 
|  | bool FoundConstructor = false; | 
|  | DeclContext::lookup_const_result R = Self.LookupConstructors(RD); | 
|  | for (DeclContext::lookup_const_iterator Con = R.begin(), | 
|  | ConEnd = R.end(); Con != ConEnd; ++Con) { | 
|  | // FIXME: In C++0x, a constructor template can be a default constructor. | 
|  | if (isa<FunctionTemplateDecl>(*Con)) | 
|  | continue; | 
|  | CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con); | 
|  | if (Constructor->isDefaultConstructor()) { | 
|  | FoundConstructor = true; | 
|  | const FunctionProtoType *CPT | 
|  | = Constructor->getType()->getAs<FunctionProtoType>(); | 
|  | CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); | 
|  | if (!CPT) | 
|  | return false; | 
|  | // FIXME: check whether evaluating default arguments can throw. | 
|  | // For now, we'll be conservative and assume that they can throw. | 
|  | if (!CPT->isNothrow(Self.Context) || CPT->getNumParams() > 0) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return FoundConstructor; | 
|  | } | 
|  | return false; | 
|  | case UTT_HasVirtualDestructor: | 
|  | // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: | 
|  | //   If type is a class type with a virtual destructor ([class.dtor]) | 
|  | //   then the trait is true, else it is false. | 
|  | if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) | 
|  | if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD)) | 
|  | return Destructor->isVirtual(); | 
|  | return false; | 
|  |  | 
|  | // These type trait expressions are modeled on the specifications for the | 
|  | // Embarcadero C++0x type trait functions: | 
|  | //   http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index | 
|  | case UTT_IsCompleteType: | 
|  | // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_): | 
|  | //   Returns True if and only if T is a complete type at the point of the | 
|  | //   function call. | 
|  | return !T->isIncompleteType(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// \brief Determine whether T has a non-trivial Objective-C lifetime in | 
|  | /// ARC mode. | 
|  | static bool hasNontrivialObjCLifetime(QualType T) { | 
|  | switch (T.getObjCLifetime()) { | 
|  | case Qualifiers::OCL_ExplicitNone: | 
|  | return false; | 
|  |  | 
|  | case Qualifiers::OCL_Strong: | 
|  | case Qualifiers::OCL_Weak: | 
|  | case Qualifiers::OCL_Autoreleasing: | 
|  | return true; | 
|  |  | 
|  | case Qualifiers::OCL_None: | 
|  | return T->isObjCLifetimeType(); | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Unknown ObjC lifetime qualifier"); | 
|  | } | 
|  |  | 
|  | static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT, | 
|  | QualType RhsT, SourceLocation KeyLoc); | 
|  |  | 
|  | static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc, | 
|  | ArrayRef<TypeSourceInfo *> Args, | 
|  | SourceLocation RParenLoc) { | 
|  | if (Kind <= UTT_Last) | 
|  | return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]->getType()); | 
|  |  | 
|  | if (Kind <= BTT_Last) | 
|  | return EvaluateBinaryTypeTrait(S, Kind, Args[0]->getType(), | 
|  | Args[1]->getType(), RParenLoc); | 
|  |  | 
|  | switch (Kind) { | 
|  | case clang::TT_IsConstructible: | 
|  | case clang::TT_IsNothrowConstructible: | 
|  | case clang::TT_IsTriviallyConstructible: { | 
|  | // C++11 [meta.unary.prop]: | 
|  | //   is_trivially_constructible is defined as: | 
|  | // | 
|  | //     is_constructible<T, Args...>::value is true and the variable | 
|  | //     definition for is_constructible, as defined below, is known to call | 
|  | //     no operation that is not trivial. | 
|  | // | 
|  | //   The predicate condition for a template specialization | 
|  | //   is_constructible<T, Args...> shall be satisfied if and only if the | 
|  | //   following variable definition would be well-formed for some invented | 
|  | //   variable t: | 
|  | // | 
|  | //     T t(create<Args>()...); | 
|  | assert(!Args.empty()); | 
|  |  | 
|  | // Precondition: T and all types in the parameter pack Args shall be | 
|  | // complete types, (possibly cv-qualified) void, or arrays of | 
|  | // unknown bound. | 
|  | for (unsigned I = 0, N = Args.size(); I != N; ++I) { | 
|  | QualType ArgTy = Args[I]->getType(); | 
|  | if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType()) | 
|  | continue; | 
|  |  | 
|  | if (S.RequireCompleteType(KWLoc, ArgTy, | 
|  | diag::err_incomplete_type_used_in_type_trait_expr)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Make sure the first argument is a complete type. | 
|  | if (Args[0]->getType()->isIncompleteType()) | 
|  | return false; | 
|  |  | 
|  | // Make sure the first argument is not an abstract type. | 
|  | CXXRecordDecl *RD = Args[0]->getType()->getAsCXXRecordDecl(); | 
|  | if (RD && RD->isAbstract()) | 
|  | return false; | 
|  |  | 
|  | SmallVector<OpaqueValueExpr, 2> OpaqueArgExprs; | 
|  | SmallVector<Expr *, 2> ArgExprs; | 
|  | ArgExprs.reserve(Args.size() - 1); | 
|  | for (unsigned I = 1, N = Args.size(); I != N; ++I) { | 
|  | QualType T = Args[I]->getType(); | 
|  | if (T->isObjectType() || T->isFunctionType()) | 
|  | T = S.Context.getRValueReferenceType(T); | 
|  | OpaqueArgExprs.push_back( | 
|  | OpaqueValueExpr(Args[I]->getTypeLoc().getLocStart(), | 
|  | T.getNonLValueExprType(S.Context), | 
|  | Expr::getValueKindForType(T))); | 
|  | } | 
|  | for (Expr &E : OpaqueArgExprs) | 
|  | ArgExprs.push_back(&E); | 
|  |  | 
|  | // Perform the initialization in an unevaluated context within a SFINAE | 
|  | // trap at translation unit scope. | 
|  | EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated); | 
|  | Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true); | 
|  | Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl()); | 
|  | InitializedEntity To(InitializedEntity::InitializeTemporary(Args[0])); | 
|  | InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc, | 
|  | RParenLoc)); | 
|  | InitializationSequence Init(S, To, InitKind, ArgExprs); | 
|  | if (Init.Failed()) | 
|  | return false; | 
|  |  | 
|  | ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs); | 
|  | if (Result.isInvalid() || SFINAE.hasErrorOccurred()) | 
|  | return false; | 
|  |  | 
|  | if (Kind == clang::TT_IsConstructible) | 
|  | return true; | 
|  |  | 
|  | if (Kind == clang::TT_IsNothrowConstructible) | 
|  | return S.canThrow(Result.get()) == CT_Cannot; | 
|  |  | 
|  | if (Kind == clang::TT_IsTriviallyConstructible) { | 
|  | // Under Objective-C ARC, if the destination has non-trivial Objective-C | 
|  | // lifetime, this is a non-trivial construction. | 
|  | if (S.getLangOpts().ObjCAutoRefCount && | 
|  | hasNontrivialObjCLifetime(Args[0]->getType().getNonReferenceType())) | 
|  | return false; | 
|  |  | 
|  | // The initialization succeeded; now make sure there are no non-trivial | 
|  | // calls. | 
|  | return !Result.get()->hasNonTrivialCall(S.Context); | 
|  | } | 
|  |  | 
|  | llvm_unreachable("unhandled type trait"); | 
|  | return false; | 
|  | } | 
|  | default: llvm_unreachable("not a TT"); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc, | 
|  | ArrayRef<TypeSourceInfo *> Args, | 
|  | SourceLocation RParenLoc) { | 
|  | QualType ResultType = Context.getLogicalOperationType(); | 
|  |  | 
|  | if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness( | 
|  | *this, Kind, KWLoc, Args[0]->getType())) | 
|  | return ExprError(); | 
|  |  | 
|  | bool Dependent = false; | 
|  | for (unsigned I = 0, N = Args.size(); I != N; ++I) { | 
|  | if (Args[I]->getType()->isDependentType()) { | 
|  | Dependent = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool Result = false; | 
|  | if (!Dependent) | 
|  | Result = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc); | 
|  |  | 
|  | return TypeTraitExpr::Create(Context, ResultType, KWLoc, Kind, Args, | 
|  | RParenLoc, Result); | 
|  | } | 
|  |  | 
|  | ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc, | 
|  | ArrayRef<ParsedType> Args, | 
|  | SourceLocation RParenLoc) { | 
|  | SmallVector<TypeSourceInfo *, 4> ConvertedArgs; | 
|  | ConvertedArgs.reserve(Args.size()); | 
|  |  | 
|  | for (unsigned I = 0, N = Args.size(); I != N; ++I) { | 
|  | TypeSourceInfo *TInfo; | 
|  | QualType T = GetTypeFromParser(Args[I], &TInfo); | 
|  | if (!TInfo) | 
|  | TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc); | 
|  |  | 
|  | ConvertedArgs.push_back(TInfo); | 
|  | } | 
|  |  | 
|  | return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc); | 
|  | } | 
|  |  | 
|  | static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT, | 
|  | QualType RhsT, SourceLocation KeyLoc) { | 
|  | assert(!LhsT->isDependentType() && !RhsT->isDependentType() && | 
|  | "Cannot evaluate traits of dependent types"); | 
|  |  | 
|  | switch(BTT) { | 
|  | case BTT_IsBaseOf: { | 
|  | // C++0x [meta.rel]p2 | 
|  | // Base is a base class of Derived without regard to cv-qualifiers or | 
|  | // Base and Derived are not unions and name the same class type without | 
|  | // regard to cv-qualifiers. | 
|  |  | 
|  | const RecordType *lhsRecord = LhsT->getAs<RecordType>(); | 
|  | if (!lhsRecord) return false; | 
|  |  | 
|  | const RecordType *rhsRecord = RhsT->getAs<RecordType>(); | 
|  | if (!rhsRecord) return false; | 
|  |  | 
|  | assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT) | 
|  | == (lhsRecord == rhsRecord)); | 
|  |  | 
|  | if (lhsRecord == rhsRecord) | 
|  | return !lhsRecord->getDecl()->isUnion(); | 
|  |  | 
|  | // C++0x [meta.rel]p2: | 
|  | //   If Base and Derived are class types and are different types | 
|  | //   (ignoring possible cv-qualifiers) then Derived shall be a | 
|  | //   complete type. | 
|  | if (Self.RequireCompleteType(KeyLoc, RhsT, | 
|  | diag::err_incomplete_type_used_in_type_trait_expr)) | 
|  | return false; | 
|  |  | 
|  | return cast<CXXRecordDecl>(rhsRecord->getDecl()) | 
|  | ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl())); | 
|  | } | 
|  | case BTT_IsSame: | 
|  | return Self.Context.hasSameType(LhsT, RhsT); | 
|  | case BTT_TypeCompatible: | 
|  | return Self.Context.typesAreCompatible(LhsT.getUnqualifiedType(), | 
|  | RhsT.getUnqualifiedType()); | 
|  | case BTT_IsConvertible: | 
|  | case BTT_IsConvertibleTo: { | 
|  | // C++0x [meta.rel]p4: | 
|  | //   Given the following function prototype: | 
|  | // | 
|  | //     template <class T> | 
|  | //       typename add_rvalue_reference<T>::type create(); | 
|  | // | 
|  | //   the predicate condition for a template specialization | 
|  | //   is_convertible<From, To> shall be satisfied if and only if | 
|  | //   the return expression in the following code would be | 
|  | //   well-formed, including any implicit conversions to the return | 
|  | //   type of the function: | 
|  | // | 
|  | //     To test() { | 
|  | //       return create<From>(); | 
|  | //     } | 
|  | // | 
|  | //   Access checking is performed as if in a context unrelated to To and | 
|  | //   From. Only the validity of the immediate context of the expression | 
|  | //   of the return-statement (including conversions to the return type) | 
|  | //   is considered. | 
|  | // | 
|  | // We model the initialization as a copy-initialization of a temporary | 
|  | // of the appropriate type, which for this expression is identical to the | 
|  | // return statement (since NRVO doesn't apply). | 
|  |  | 
|  | // Functions aren't allowed to return function or array types. | 
|  | if (RhsT->isFunctionType() || RhsT->isArrayType()) | 
|  | return false; | 
|  |  | 
|  | // A return statement in a void function must have void type. | 
|  | if (RhsT->isVoidType()) | 
|  | return LhsT->isVoidType(); | 
|  |  | 
|  | // A function definition requires a complete, non-abstract return type. | 
|  | if (Self.RequireCompleteType(KeyLoc, RhsT, 0) || | 
|  | Self.RequireNonAbstractType(KeyLoc, RhsT, 0)) | 
|  | return false; | 
|  |  | 
|  | // Compute the result of add_rvalue_reference. | 
|  | if (LhsT->isObjectType() || LhsT->isFunctionType()) | 
|  | LhsT = Self.Context.getRValueReferenceType(LhsT); | 
|  |  | 
|  | // Build a fake source and destination for initialization. | 
|  | InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT)); | 
|  | OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context), | 
|  | Expr::getValueKindForType(LhsT)); | 
|  | Expr *FromPtr = &From; | 
|  | InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc, | 
|  | SourceLocation())); | 
|  |  | 
|  | // Perform the initialization in an unevaluated context within a SFINAE | 
|  | // trap at translation unit scope. | 
|  | EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated); | 
|  | Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true); | 
|  | Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl()); | 
|  | InitializationSequence Init(Self, To, Kind, FromPtr); | 
|  | if (Init.Failed()) | 
|  | return false; | 
|  |  | 
|  | ExprResult Result = Init.Perform(Self, To, Kind, FromPtr); | 
|  | return !Result.isInvalid() && !SFINAE.hasErrorOccurred(); | 
|  | } | 
|  |  | 
|  | case BTT_IsNothrowAssignable: | 
|  | case BTT_IsTriviallyAssignable: { | 
|  | // C++11 [meta.unary.prop]p3: | 
|  | //   is_trivially_assignable is defined as: | 
|  | //     is_assignable<T, U>::value is true and the assignment, as defined by | 
|  | //     is_assignable, is known to call no operation that is not trivial | 
|  | // | 
|  | //   is_assignable is defined as: | 
|  | //     The expression declval<T>() = declval<U>() is well-formed when | 
|  | //     treated as an unevaluated operand (Clause 5). | 
|  | // | 
|  | //   For both, T and U shall be complete types, (possibly cv-qualified) | 
|  | //   void, or arrays of unknown bound. | 
|  | if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() && | 
|  | Self.RequireCompleteType(KeyLoc, LhsT, | 
|  | diag::err_incomplete_type_used_in_type_trait_expr)) | 
|  | return false; | 
|  | if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() && | 
|  | Self.RequireCompleteType(KeyLoc, RhsT, | 
|  | diag::err_incomplete_type_used_in_type_trait_expr)) | 
|  | return false; | 
|  |  | 
|  | // cv void is never assignable. | 
|  | if (LhsT->isVoidType() || RhsT->isVoidType()) | 
|  | return false; | 
|  |  | 
|  | // Build expressions that emulate the effect of declval<T>() and | 
|  | // declval<U>(). | 
|  | if (LhsT->isObjectType() || LhsT->isFunctionType()) | 
|  | LhsT = Self.Context.getRValueReferenceType(LhsT); | 
|  | if (RhsT->isObjectType() || RhsT->isFunctionType()) | 
|  | RhsT = Self.Context.getRValueReferenceType(RhsT); | 
|  | OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context), | 
|  | Expr::getValueKindForType(LhsT)); | 
|  | OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context), | 
|  | Expr::getValueKindForType(RhsT)); | 
|  |  | 
|  | // Attempt the assignment in an unevaluated context within a SFINAE | 
|  | // trap at translation unit scope. | 
|  | EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated); | 
|  | Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true); | 
|  | Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl()); | 
|  | ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs, | 
|  | &Rhs); | 
|  | if (Result.isInvalid() || SFINAE.hasErrorOccurred()) | 
|  | return false; | 
|  |  | 
|  | if (BTT == BTT_IsNothrowAssignable) | 
|  | return Self.canThrow(Result.get()) == CT_Cannot; | 
|  |  | 
|  | if (BTT == BTT_IsTriviallyAssignable) { | 
|  | // Under Objective-C ARC, if the destination has non-trivial Objective-C | 
|  | // lifetime, this is a non-trivial assignment. | 
|  | if (Self.getLangOpts().ObjCAutoRefCount && | 
|  | hasNontrivialObjCLifetime(LhsT.getNonReferenceType())) | 
|  | return false; | 
|  |  | 
|  | return !Result.get()->hasNonTrivialCall(Self.Context); | 
|  | } | 
|  |  | 
|  | llvm_unreachable("unhandled type trait"); | 
|  | return false; | 
|  | } | 
|  | default: llvm_unreachable("not a BTT"); | 
|  | } | 
|  | llvm_unreachable("Unknown type trait or not implemented"); | 
|  | } | 
|  |  | 
|  | ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT, | 
|  | SourceLocation KWLoc, | 
|  | ParsedType Ty, | 
|  | Expr* DimExpr, | 
|  | SourceLocation RParen) { | 
|  | TypeSourceInfo *TSInfo; | 
|  | QualType T = GetTypeFromParser(Ty, &TSInfo); | 
|  | if (!TSInfo) | 
|  | TSInfo = Context.getTrivialTypeSourceInfo(T); | 
|  |  | 
|  | return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen); | 
|  | } | 
|  |  | 
|  | static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT, | 
|  | QualType T, Expr *DimExpr, | 
|  | SourceLocation KeyLoc) { | 
|  | assert(!T->isDependentType() && "Cannot evaluate traits of dependent type"); | 
|  |  | 
|  | switch(ATT) { | 
|  | case ATT_ArrayRank: | 
|  | if (T->isArrayType()) { | 
|  | unsigned Dim = 0; | 
|  | while (const ArrayType *AT = Self.Context.getAsArrayType(T)) { | 
|  | ++Dim; | 
|  | T = AT->getElementType(); | 
|  | } | 
|  | return Dim; | 
|  | } | 
|  | return 0; | 
|  |  | 
|  | case ATT_ArrayExtent: { | 
|  | llvm::APSInt Value; | 
|  | uint64_t Dim; | 
|  | if (Self.VerifyIntegerConstantExpression(DimExpr, &Value, | 
|  | diag::err_dimension_expr_not_constant_integer, | 
|  | false).isInvalid()) | 
|  | return 0; | 
|  | if (Value.isSigned() && Value.isNegative()) { | 
|  | Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer) | 
|  | << DimExpr->getSourceRange(); | 
|  | return 0; | 
|  | } | 
|  | Dim = Value.getLimitedValue(); | 
|  |  | 
|  | if (T->isArrayType()) { | 
|  | unsigned D = 0; | 
|  | bool Matched = false; | 
|  | while (const ArrayType *AT = Self.Context.getAsArrayType(T)) { | 
|  | if (Dim == D) { | 
|  | Matched = true; | 
|  | break; | 
|  | } | 
|  | ++D; | 
|  | T = AT->getElementType(); | 
|  | } | 
|  |  | 
|  | if (Matched && T->isArrayType()) { | 
|  | if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T)) | 
|  | return CAT->getSize().getLimitedValue(); | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | llvm_unreachable("Unknown type trait or not implemented"); | 
|  | } | 
|  |  | 
|  | ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT, | 
|  | SourceLocation KWLoc, | 
|  | TypeSourceInfo *TSInfo, | 
|  | Expr* DimExpr, | 
|  | SourceLocation RParen) { | 
|  | QualType T = TSInfo->getType(); | 
|  |  | 
|  | // FIXME: This should likely be tracked as an APInt to remove any host | 
|  | // assumptions about the width of size_t on the target. | 
|  | uint64_t Value = 0; | 
|  | if (!T->isDependentType()) | 
|  | Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc); | 
|  |  | 
|  | // While the specification for these traits from the Embarcadero C++ | 
|  | // compiler's documentation says the return type is 'unsigned int', Clang | 
|  | // returns 'size_t'. On Windows, the primary platform for the Embarcadero | 
|  | // compiler, there is no difference. On several other platforms this is an | 
|  | // important distinction. | 
|  | return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr, | 
|  | RParen, Context.getSizeType()); | 
|  | } | 
|  |  | 
|  | ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET, | 
|  | SourceLocation KWLoc, | 
|  | Expr *Queried, | 
|  | SourceLocation RParen) { | 
|  | // If error parsing the expression, ignore. | 
|  | if (!Queried) | 
|  | return ExprError(); | 
|  |  | 
|  | ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen); | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) { | 
|  | switch (ET) { | 
|  | case ET_IsLValueExpr: return E->isLValue(); | 
|  | case ET_IsRValueExpr: return E->isRValue(); | 
|  | } | 
|  | llvm_unreachable("Expression trait not covered by switch"); | 
|  | } | 
|  |  | 
|  | ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET, | 
|  | SourceLocation KWLoc, | 
|  | Expr *Queried, | 
|  | SourceLocation RParen) { | 
|  | if (Queried->isTypeDependent()) { | 
|  | // Delay type-checking for type-dependent expressions. | 
|  | } else if (Queried->getType()->isPlaceholderType()) { | 
|  | ExprResult PE = CheckPlaceholderExpr(Queried); | 
|  | if (PE.isInvalid()) return ExprError(); | 
|  | return BuildExpressionTrait(ET, KWLoc, PE.get(), RParen); | 
|  | } | 
|  |  | 
|  | bool Value = EvaluateExpressionTrait(ET, Queried); | 
|  |  | 
|  | return new (Context) | 
|  | ExpressionTraitExpr(KWLoc, ET, Queried, Value, RParen, Context.BoolTy); | 
|  | } | 
|  |  | 
|  | QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS, | 
|  | ExprValueKind &VK, | 
|  | SourceLocation Loc, | 
|  | bool isIndirect) { | 
|  | assert(!LHS.get()->getType()->isPlaceholderType() && | 
|  | !RHS.get()->getType()->isPlaceholderType() && | 
|  | "placeholders should have been weeded out by now"); | 
|  |  | 
|  | // The LHS undergoes lvalue conversions if this is ->*. | 
|  | if (isIndirect) { | 
|  | LHS = DefaultLvalueConversion(LHS.get()); | 
|  | if (LHS.isInvalid()) return QualType(); | 
|  | } | 
|  |  | 
|  | // The RHS always undergoes lvalue conversions. | 
|  | RHS = DefaultLvalueConversion(RHS.get()); | 
|  | if (RHS.isInvalid()) return QualType(); | 
|  |  | 
|  | const char *OpSpelling = isIndirect ? "->*" : ".*"; | 
|  | // C++ 5.5p2 | 
|  | //   The binary operator .* [p3: ->*] binds its second operand, which shall | 
|  | //   be of type "pointer to member of T" (where T is a completely-defined | 
|  | //   class type) [...] | 
|  | QualType RHSType = RHS.get()->getType(); | 
|  | const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>(); | 
|  | if (!MemPtr) { | 
|  | Diag(Loc, diag::err_bad_memptr_rhs) | 
|  | << OpSpelling << RHSType << RHS.get()->getSourceRange(); | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | QualType Class(MemPtr->getClass(), 0); | 
|  |  | 
|  | // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the | 
|  | // member pointer points must be completely-defined. However, there is no | 
|  | // reason for this semantic distinction, and the rule is not enforced by | 
|  | // other compilers. Therefore, we do not check this property, as it is | 
|  | // likely to be considered a defect. | 
|  |  | 
|  | // C++ 5.5p2 | 
|  | //   [...] to its first operand, which shall be of class T or of a class of | 
|  | //   which T is an unambiguous and accessible base class. [p3: a pointer to | 
|  | //   such a class] | 
|  | QualType LHSType = LHS.get()->getType(); | 
|  | if (isIndirect) { | 
|  | if (const PointerType *Ptr = LHSType->getAs<PointerType>()) | 
|  | LHSType = Ptr->getPointeeType(); | 
|  | else { | 
|  | Diag(Loc, diag::err_bad_memptr_lhs) | 
|  | << OpSpelling << 1 << LHSType | 
|  | << FixItHint::CreateReplacement(SourceRange(Loc), ".*"); | 
|  | return QualType(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!Context.hasSameUnqualifiedType(Class, LHSType)) { | 
|  | // If we want to check the hierarchy, we need a complete type. | 
|  | if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs, | 
|  | OpSpelling, (int)isIndirect)) { | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | if (!IsDerivedFrom(LHSType, Class)) { | 
|  | Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling | 
|  | << (int)isIndirect << LHS.get()->getType(); | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | CXXCastPath BasePath; | 
|  | if (CheckDerivedToBaseConversion(LHSType, Class, Loc, | 
|  | SourceRange(LHS.get()->getLocStart(), | 
|  | RHS.get()->getLocEnd()), | 
|  | &BasePath)) | 
|  | return QualType(); | 
|  |  | 
|  | // Cast LHS to type of use. | 
|  | QualType UseType = isIndirect ? Context.getPointerType(Class) : Class; | 
|  | ExprValueKind VK = isIndirect ? VK_RValue : LHS.get()->getValueKind(); | 
|  | LHS = ImpCastExprToType(LHS.get(), UseType, CK_DerivedToBase, VK, | 
|  | &BasePath); | 
|  | } | 
|  |  | 
|  | if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) { | 
|  | // Diagnose use of pointer-to-member type which when used as | 
|  | // the functional cast in a pointer-to-member expression. | 
|  | Diag(Loc, diag::err_pointer_to_member_type) << isIndirect; | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | // C++ 5.5p2 | 
|  | //   The result is an object or a function of the type specified by the | 
|  | //   second operand. | 
|  | // The cv qualifiers are the union of those in the pointer and the left side, | 
|  | // in accordance with 5.5p5 and 5.2.5. | 
|  | QualType Result = MemPtr->getPointeeType(); | 
|  | Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers()); | 
|  |  | 
|  | // C++0x [expr.mptr.oper]p6: | 
|  | //   In a .* expression whose object expression is an rvalue, the program is | 
|  | //   ill-formed if the second operand is a pointer to member function with | 
|  | //   ref-qualifier &. In a ->* expression or in a .* expression whose object | 
|  | //   expression is an lvalue, the program is ill-formed if the second operand | 
|  | //   is a pointer to member function with ref-qualifier &&. | 
|  | if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) { | 
|  | switch (Proto->getRefQualifier()) { | 
|  | case RQ_None: | 
|  | // Do nothing | 
|  | break; | 
|  |  | 
|  | case RQ_LValue: | 
|  | if (!isIndirect && !LHS.get()->Classify(Context).isLValue()) | 
|  | Diag(Loc, diag::err_pointer_to_member_oper_value_classify) | 
|  | << RHSType << 1 << LHS.get()->getSourceRange(); | 
|  | break; | 
|  |  | 
|  | case RQ_RValue: | 
|  | if (isIndirect || !LHS.get()->Classify(Context).isRValue()) | 
|  | Diag(Loc, diag::err_pointer_to_member_oper_value_classify) | 
|  | << RHSType << 0 << LHS.get()->getSourceRange(); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++ [expr.mptr.oper]p6: | 
|  | //   The result of a .* expression whose second operand is a pointer | 
|  | //   to a data member is of the same value category as its | 
|  | //   first operand. The result of a .* expression whose second | 
|  | //   operand is a pointer to a member function is a prvalue. The | 
|  | //   result of an ->* expression is an lvalue if its second operand | 
|  | //   is a pointer to data member and a prvalue otherwise. | 
|  | if (Result->isFunctionType()) { | 
|  | VK = VK_RValue; | 
|  | return Context.BoundMemberTy; | 
|  | } else if (isIndirect) { | 
|  | VK = VK_LValue; | 
|  | } else { | 
|  | VK = LHS.get()->getValueKind(); | 
|  | } | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | /// \brief Try to convert a type to another according to C++0x 5.16p3. | 
|  | /// | 
|  | /// This is part of the parameter validation for the ? operator. If either | 
|  | /// value operand is a class type, the two operands are attempted to be | 
|  | /// converted to each other. This function does the conversion in one direction. | 
|  | /// It returns true if the program is ill-formed and has already been diagnosed | 
|  | /// as such. | 
|  | static bool TryClassUnification(Sema &Self, Expr *From, Expr *To, | 
|  | SourceLocation QuestionLoc, | 
|  | bool &HaveConversion, | 
|  | QualType &ToType) { | 
|  | HaveConversion = false; | 
|  | ToType = To->getType(); | 
|  |  | 
|  | InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(), | 
|  | SourceLocation()); | 
|  | // C++0x 5.16p3 | 
|  | //   The process for determining whether an operand expression E1 of type T1 | 
|  | //   can be converted to match an operand expression E2 of type T2 is defined | 
|  | //   as follows: | 
|  | //   -- If E2 is an lvalue: | 
|  | bool ToIsLvalue = To->isLValue(); | 
|  | if (ToIsLvalue) { | 
|  | //   E1 can be converted to match E2 if E1 can be implicitly converted to | 
|  | //   type "lvalue reference to T2", subject to the constraint that in the | 
|  | //   conversion the reference must bind directly to E1. | 
|  | QualType T = Self.Context.getLValueReferenceType(ToType); | 
|  | InitializedEntity Entity = InitializedEntity::InitializeTemporary(T); | 
|  |  | 
|  | InitializationSequence InitSeq(Self, Entity, Kind, From); | 
|  | if (InitSeq.isDirectReferenceBinding()) { | 
|  | ToType = T; | 
|  | HaveConversion = true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (InitSeq.isAmbiguous()) | 
|  | return InitSeq.Diagnose(Self, Entity, Kind, From); | 
|  | } | 
|  |  | 
|  | //   -- If E2 is an rvalue, or if the conversion above cannot be done: | 
|  | //      -- if E1 and E2 have class type, and the underlying class types are | 
|  | //         the same or one is a base class of the other: | 
|  | QualType FTy = From->getType(); | 
|  | QualType TTy = To->getType(); | 
|  | const RecordType *FRec = FTy->getAs<RecordType>(); | 
|  | const RecordType *TRec = TTy->getAs<RecordType>(); | 
|  | bool FDerivedFromT = FRec && TRec && FRec != TRec && | 
|  | Self.IsDerivedFrom(FTy, TTy); | 
|  | if (FRec && TRec && | 
|  | (FRec == TRec || FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) { | 
|  | //         E1 can be converted to match E2 if the class of T2 is the | 
|  | //         same type as, or a base class of, the class of T1, and | 
|  | //         [cv2 > cv1]. | 
|  | if (FRec == TRec || FDerivedFromT) { | 
|  | if (TTy.isAtLeastAsQualifiedAs(FTy)) { | 
|  | InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy); | 
|  | InitializationSequence InitSeq(Self, Entity, Kind, From); | 
|  | if (InitSeq) { | 
|  | HaveConversion = true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (InitSeq.isAmbiguous()) | 
|  | return InitSeq.Diagnose(Self, Entity, Kind, From); | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | //     -- Otherwise: E1 can be converted to match E2 if E1 can be | 
|  | //        implicitly converted to the type that expression E2 would have | 
|  | //        if E2 were converted to an rvalue (or the type it has, if E2 is | 
|  | //        an rvalue). | 
|  | // | 
|  | // This actually refers very narrowly to the lvalue-to-rvalue conversion, not | 
|  | // to the array-to-pointer or function-to-pointer conversions. | 
|  | if (!TTy->getAs<TagType>()) | 
|  | TTy = TTy.getUnqualifiedType(); | 
|  |  | 
|  | InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy); | 
|  | InitializationSequence InitSeq(Self, Entity, Kind, From); | 
|  | HaveConversion = !InitSeq.Failed(); | 
|  | ToType = TTy; | 
|  | if (InitSeq.isAmbiguous()) | 
|  | return InitSeq.Diagnose(Self, Entity, Kind, From); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// \brief Try to find a common type for two according to C++0x 5.16p5. | 
|  | /// | 
|  | /// This is part of the parameter validation for the ? operator. If either | 
|  | /// value operand is a class type, overload resolution is used to find a | 
|  | /// conversion to a common type. | 
|  | static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS, | 
|  | SourceLocation QuestionLoc) { | 
|  | Expr *Args[2] = { LHS.get(), RHS.get() }; | 
|  | OverloadCandidateSet CandidateSet(QuestionLoc, | 
|  | OverloadCandidateSet::CSK_Operator); | 
|  | Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args, | 
|  | CandidateSet); | 
|  |  | 
|  | OverloadCandidateSet::iterator Best; | 
|  | switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) { | 
|  | case OR_Success: { | 
|  | // We found a match. Perform the conversions on the arguments and move on. | 
|  | ExprResult LHSRes = | 
|  | Self.PerformImplicitConversion(LHS.get(), Best->BuiltinTypes.ParamTypes[0], | 
|  | Best->Conversions[0], Sema::AA_Converting); | 
|  | if (LHSRes.isInvalid()) | 
|  | break; | 
|  | LHS = LHSRes; | 
|  |  | 
|  | ExprResult RHSRes = | 
|  | Self.PerformImplicitConversion(RHS.get(), Best->BuiltinTypes.ParamTypes[1], | 
|  | Best->Conversions[1], Sema::AA_Converting); | 
|  | if (RHSRes.isInvalid()) | 
|  | break; | 
|  | RHS = RHSRes; | 
|  | if (Best->Function) | 
|  | Self.MarkFunctionReferenced(QuestionLoc, Best->Function); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | case OR_No_Viable_Function: | 
|  |  | 
|  | // Emit a better diagnostic if one of the expressions is a null pointer | 
|  | // constant and the other is a pointer type. In this case, the user most | 
|  | // likely forgot to take the address of the other expression. | 
|  | if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc)) | 
|  | return true; | 
|  |  | 
|  | Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) | 
|  | << LHS.get()->getType() << RHS.get()->getType() | 
|  | << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); | 
|  | return true; | 
|  |  | 
|  | case OR_Ambiguous: | 
|  | Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl) | 
|  | << LHS.get()->getType() << RHS.get()->getType() | 
|  | << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); | 
|  | // FIXME: Print the possible common types by printing the return types of | 
|  | // the viable candidates. | 
|  | break; | 
|  |  | 
|  | case OR_Deleted: | 
|  | llvm_unreachable("Conditional operator has only built-in overloads"); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// \brief Perform an "extended" implicit conversion as returned by | 
|  | /// TryClassUnification. | 
|  | static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) { | 
|  | InitializedEntity Entity = InitializedEntity::InitializeTemporary(T); | 
|  | InitializationKind Kind = InitializationKind::CreateCopy(E.get()->getLocStart(), | 
|  | SourceLocation()); | 
|  | Expr *Arg = E.get(); | 
|  | InitializationSequence InitSeq(Self, Entity, Kind, Arg); | 
|  | ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg); | 
|  | if (Result.isInvalid()) | 
|  | return true; | 
|  |  | 
|  | E = Result; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// \brief Check the operands of ?: under C++ semantics. | 
|  | /// | 
|  | /// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y | 
|  | /// extension. In this case, LHS == Cond. (But they're not aliases.) | 
|  | QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS, | 
|  | ExprResult &RHS, ExprValueKind &VK, | 
|  | ExprObjectKind &OK, | 
|  | SourceLocation QuestionLoc) { | 
|  | // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++ | 
|  | // interface pointers. | 
|  |  | 
|  | // C++11 [expr.cond]p1 | 
|  | //   The first expression is contextually converted to bool. | 
|  | if (!Cond.get()->isTypeDependent()) { | 
|  | ExprResult CondRes = CheckCXXBooleanCondition(Cond.get()); | 
|  | if (CondRes.isInvalid()) | 
|  | return QualType(); | 
|  | Cond = CondRes; | 
|  | } | 
|  |  | 
|  | // Assume r-value. | 
|  | VK = VK_RValue; | 
|  | OK = OK_Ordinary; | 
|  |  | 
|  | // Either of the arguments dependent? | 
|  | if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent()) | 
|  | return Context.DependentTy; | 
|  |  | 
|  | // C++11 [expr.cond]p2 | 
|  | //   If either the second or the third operand has type (cv) void, ... | 
|  | QualType LTy = LHS.get()->getType(); | 
|  | QualType RTy = RHS.get()->getType(); | 
|  | bool LVoid = LTy->isVoidType(); | 
|  | bool RVoid = RTy->isVoidType(); | 
|  | if (LVoid || RVoid) { | 
|  | //   ... one of the following shall hold: | 
|  | //   -- The second or the third operand (but not both) is a (possibly | 
|  | //      parenthesized) throw-expression; the result is of the type | 
|  | //      and value category of the other. | 
|  | bool LThrow = isa<CXXThrowExpr>(LHS.get()->IgnoreParenImpCasts()); | 
|  | bool RThrow = isa<CXXThrowExpr>(RHS.get()->IgnoreParenImpCasts()); | 
|  | if (LThrow != RThrow) { | 
|  | Expr *NonThrow = LThrow ? RHS.get() : LHS.get(); | 
|  | VK = NonThrow->getValueKind(); | 
|  | // DR (no number yet): the result is a bit-field if the | 
|  | // non-throw-expression operand is a bit-field. | 
|  | OK = NonThrow->getObjectKind(); | 
|  | return NonThrow->getType(); | 
|  | } | 
|  |  | 
|  | //   -- Both the second and third operands have type void; the result is of | 
|  | //      type void and is a prvalue. | 
|  | if (LVoid && RVoid) | 
|  | return Context.VoidTy; | 
|  |  | 
|  | // Neither holds, error. | 
|  | Diag(QuestionLoc, diag::err_conditional_void_nonvoid) | 
|  | << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1) | 
|  | << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | // Neither is void. | 
|  |  | 
|  | // C++11 [expr.cond]p3 | 
|  | //   Otherwise, if the second and third operand have different types, and | 
|  | //   either has (cv) class type [...] an attempt is made to convert each of | 
|  | //   those operands to the type of the other. | 
|  | if (!Context.hasSameType(LTy, RTy) && | 
|  | (LTy->isRecordType() || RTy->isRecordType())) { | 
|  | // These return true if a single direction is already ambiguous. | 
|  | QualType L2RType, R2LType; | 
|  | bool HaveL2R, HaveR2L; | 
|  | if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType)) | 
|  | return QualType(); | 
|  | if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType)) | 
|  | return QualType(); | 
|  |  | 
|  | //   If both can be converted, [...] the program is ill-formed. | 
|  | if (HaveL2R && HaveR2L) { | 
|  | Diag(QuestionLoc, diag::err_conditional_ambiguous) | 
|  | << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | //   If exactly one conversion is possible, that conversion is applied to | 
|  | //   the chosen operand and the converted operands are used in place of the | 
|  | //   original operands for the remainder of this section. | 
|  | if (HaveL2R) { | 
|  | if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid()) | 
|  | return QualType(); | 
|  | LTy = LHS.get()->getType(); | 
|  | } else if (HaveR2L) { | 
|  | if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid()) | 
|  | return QualType(); | 
|  | RTy = RHS.get()->getType(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++11 [expr.cond]p3 | 
|  | //   if both are glvalues of the same value category and the same type except | 
|  | //   for cv-qualification, an attempt is made to convert each of those | 
|  | //   operands to the type of the other. | 
|  | ExprValueKind LVK = LHS.get()->getValueKind(); | 
|  | ExprValueKind RVK = RHS.get()->getValueKind(); | 
|  | if (!Context.hasSameType(LTy, RTy) && | 
|  | Context.hasSameUnqualifiedType(LTy, RTy) && | 
|  | LVK == RVK && LVK != VK_RValue) { | 
|  | // Since the unqualified types are reference-related and we require the | 
|  | // result to be as if a reference bound directly, the only conversion | 
|  | // we can perform is to add cv-qualifiers. | 
|  | Qualifiers LCVR = Qualifiers::fromCVRMask(LTy.getCVRQualifiers()); | 
|  | Qualifiers RCVR = Qualifiers::fromCVRMask(RTy.getCVRQualifiers()); | 
|  | if (RCVR.isStrictSupersetOf(LCVR)) { | 
|  | LHS = ImpCastExprToType(LHS.get(), RTy, CK_NoOp, LVK); | 
|  | LTy = LHS.get()->getType(); | 
|  | } | 
|  | else if (LCVR.isStrictSupersetOf(RCVR)) { | 
|  | RHS = ImpCastExprToType(RHS.get(), LTy, CK_NoOp, RVK); | 
|  | RTy = RHS.get()->getType(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++11 [expr.cond]p4 | 
|  | //   If the second and third operands are glvalues of the same value | 
|  | //   category and have the same type, the result is of that type and | 
|  | //   value category and it is a bit-field if the second or the third | 
|  | //   operand is a bit-field, or if both are bit-fields. | 
|  | // We only extend this to bitfields, not to the crazy other kinds of | 
|  | // l-values. | 
|  | bool Same = Context.hasSameType(LTy, RTy); | 
|  | if (Same && LVK == RVK && LVK != VK_RValue && | 
|  | LHS.get()->isOrdinaryOrBitFieldObject() && | 
|  | RHS.get()->isOrdinaryOrBitFieldObject()) { | 
|  | VK = LHS.get()->getValueKind(); | 
|  | if (LHS.get()->getObjectKind() == OK_BitField || | 
|  | RHS.get()->getObjectKind() == OK_BitField) | 
|  | OK = OK_BitField; | 
|  | return LTy; | 
|  | } | 
|  |  | 
|  | // C++11 [expr.cond]p5 | 
|  | //   Otherwise, the result is a prvalue. If the second and third operands | 
|  | //   do not have the same type, and either has (cv) class type, ... | 
|  | if (!Same && (LTy->isRecordType() || RTy->isRecordType())) { | 
|  | //   ... overload resolution is used to determine the conversions (if any) | 
|  | //   to be applied to the operands. If the overload resolution fails, the | 
|  | //   program is ill-formed. | 
|  | if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc)) | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | // C++11 [expr.cond]p6 | 
|  | //   Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard | 
|  | //   conversions are performed on the second and third operands. | 
|  | LHS = DefaultFunctionArrayLvalueConversion(LHS.get()); | 
|  | RHS = DefaultFunctionArrayLvalueConversion(RHS.get()); | 
|  | if (LHS.isInvalid() || RHS.isInvalid()) | 
|  | return QualType(); | 
|  | LTy = LHS.get()->getType(); | 
|  | RTy = RHS.get()->getType(); | 
|  |  | 
|  | //   After those conversions, one of the following shall hold: | 
|  | //   -- The second and third operands have the same type; the result | 
|  | //      is of that type. If the operands have class type, the result | 
|  | //      is a prvalue temporary of the result type, which is | 
|  | //      copy-initialized from either the second operand or the third | 
|  | //      operand depending on the value of the first operand. | 
|  | if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) { | 
|  | if (LTy->isRecordType()) { | 
|  | // The operands have class type. Make a temporary copy. | 
|  | if (RequireNonAbstractType(QuestionLoc, LTy, | 
|  | diag::err_allocation_of_abstract_type)) | 
|  | return QualType(); | 
|  | InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy); | 
|  |  | 
|  | ExprResult LHSCopy = PerformCopyInitialization(Entity, | 
|  | SourceLocation(), | 
|  | LHS); | 
|  | if (LHSCopy.isInvalid()) | 
|  | return QualType(); | 
|  |  | 
|  | ExprResult RHSCopy = PerformCopyInitialization(Entity, | 
|  | SourceLocation(), | 
|  | RHS); | 
|  | if (RHSCopy.isInvalid()) | 
|  | return QualType(); | 
|  |  | 
|  | LHS = LHSCopy; | 
|  | RHS = RHSCopy; | 
|  | } | 
|  |  | 
|  | return LTy; | 
|  | } | 
|  |  | 
|  | // Extension: conditional operator involving vector types. | 
|  | if (LTy->isVectorType() || RTy->isVectorType()) | 
|  | return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false); | 
|  |  | 
|  | //   -- The second and third operands have arithmetic or enumeration type; | 
|  | //      the usual arithmetic conversions are performed to bring them to a | 
|  | //      common type, and the result is of that type. | 
|  | if (LTy->isArithmeticType() && RTy->isArithmeticType()) { | 
|  | QualType ResTy = UsualArithmeticConversions(LHS, RHS); | 
|  | if (LHS.isInvalid() || RHS.isInvalid()) | 
|  | return QualType(); | 
|  |  | 
|  | LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy)); | 
|  | RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy)); | 
|  |  | 
|  | return ResTy; | 
|  | } | 
|  |  | 
|  | //   -- The second and third operands have pointer type, or one has pointer | 
|  | //      type and the other is a null pointer constant, or both are null | 
|  | //      pointer constants, at least one of which is non-integral; pointer | 
|  | //      conversions and qualification conversions are performed to bring them | 
|  | //      to their composite pointer type. The result is of the composite | 
|  | //      pointer type. | 
|  | //   -- The second and third operands have pointer to member type, or one has | 
|  | //      pointer to member type and the other is a null pointer constant; | 
|  | //      pointer to member conversions and qualification conversions are | 
|  | //      performed to bring them to a common type, whose cv-qualification | 
|  | //      shall match the cv-qualification of either the second or the third | 
|  | //      operand. The result is of the common type. | 
|  | bool NonStandardCompositeType = false; | 
|  | QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS, | 
|  | isSFINAEContext() ? nullptr | 
|  | : &NonStandardCompositeType); | 
|  | if (!Composite.isNull()) { | 
|  | if (NonStandardCompositeType) | 
|  | Diag(QuestionLoc, | 
|  | diag::ext_typecheck_cond_incompatible_operands_nonstandard) | 
|  | << LTy << RTy << Composite | 
|  | << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); | 
|  |  | 
|  | return Composite; | 
|  | } | 
|  |  | 
|  | // Similarly, attempt to find composite type of two objective-c pointers. | 
|  | Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc); | 
|  | if (!Composite.isNull()) | 
|  | return Composite; | 
|  |  | 
|  | // Check if we are using a null with a non-pointer type. | 
|  | if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc)) | 
|  | return QualType(); | 
|  |  | 
|  | Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) | 
|  | << LHS.get()->getType() << RHS.get()->getType() | 
|  | << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | /// \brief Find a merged pointer type and convert the two expressions to it. | 
|  | /// | 
|  | /// This finds the composite pointer type (or member pointer type) for @p E1 | 
|  | /// and @p E2 according to C++11 5.9p2. It converts both expressions to this | 
|  | /// type and returns it. | 
|  | /// It does not emit diagnostics. | 
|  | /// | 
|  | /// \param Loc The location of the operator requiring these two expressions to | 
|  | /// be converted to the composite pointer type. | 
|  | /// | 
|  | /// If \p NonStandardCompositeType is non-NULL, then we are permitted to find | 
|  | /// a non-standard (but still sane) composite type to which both expressions | 
|  | /// can be converted. When such a type is chosen, \c *NonStandardCompositeType | 
|  | /// will be set true. | 
|  | QualType Sema::FindCompositePointerType(SourceLocation Loc, | 
|  | Expr *&E1, Expr *&E2, | 
|  | bool *NonStandardCompositeType) { | 
|  | if (NonStandardCompositeType) | 
|  | *NonStandardCompositeType = false; | 
|  |  | 
|  | assert(getLangOpts().CPlusPlus && "This function assumes C++"); | 
|  | QualType T1 = E1->getType(), T2 = E2->getType(); | 
|  |  | 
|  | // C++11 5.9p2 | 
|  | //   Pointer conversions and qualification conversions are performed on | 
|  | //   pointer operands to bring them to their composite pointer type. If | 
|  | //   one operand is a null pointer constant, the composite pointer type is | 
|  | //   std::nullptr_t if the other operand is also a null pointer constant or, | 
|  | //   if the other operand is a pointer, the type of the other operand. | 
|  | if (!T1->isAnyPointerType() && !T1->isMemberPointerType() && | 
|  | !T2->isAnyPointerType() && !T2->isMemberPointerType()) { | 
|  | if (T1->isNullPtrType() && | 
|  | E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { | 
|  | E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).get(); | 
|  | return T1; | 
|  | } | 
|  | if (T2->isNullPtrType() && | 
|  | E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { | 
|  | E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).get(); | 
|  | return T2; | 
|  | } | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { | 
|  | if (T2->isMemberPointerType()) | 
|  | E1 = ImpCastExprToType(E1, T2, CK_NullToMemberPointer).get(); | 
|  | else | 
|  | E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).get(); | 
|  | return T2; | 
|  | } | 
|  | if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { | 
|  | if (T1->isMemberPointerType()) | 
|  | E2 = ImpCastExprToType(E2, T1, CK_NullToMemberPointer).get(); | 
|  | else | 
|  | E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).get(); | 
|  | return T1; | 
|  | } | 
|  |  | 
|  | // Now both have to be pointers or member pointers. | 
|  | if ((!T1->isPointerType() && !T1->isMemberPointerType()) || | 
|  | (!T2->isPointerType() && !T2->isMemberPointerType())) | 
|  | return QualType(); | 
|  |  | 
|  | //   Otherwise, of one of the operands has type "pointer to cv1 void," then | 
|  | //   the other has type "pointer to cv2 T" and the composite pointer type is | 
|  | //   "pointer to cv12 void," where cv12 is the union of cv1 and cv2. | 
|  | //   Otherwise, the composite pointer type is a pointer type similar to the | 
|  | //   type of one of the operands, with a cv-qualification signature that is | 
|  | //   the union of the cv-qualification signatures of the operand types. | 
|  | // In practice, the first part here is redundant; it's subsumed by the second. | 
|  | // What we do here is, we build the two possible composite types, and try the | 
|  | // conversions in both directions. If only one works, or if the two composite | 
|  | // types are the same, we have succeeded. | 
|  | // FIXME: extended qualifiers? | 
|  | typedef SmallVector<unsigned, 4> QualifierVector; | 
|  | QualifierVector QualifierUnion; | 
|  | typedef SmallVector<std::pair<const Type *, const Type *>, 4> | 
|  | ContainingClassVector; | 
|  | ContainingClassVector MemberOfClass; | 
|  | QualType Composite1 = Context.getCanonicalType(T1), | 
|  | Composite2 = Context.getCanonicalType(T2); | 
|  | unsigned NeedConstBefore = 0; | 
|  | do { | 
|  | const PointerType *Ptr1, *Ptr2; | 
|  | if ((Ptr1 = Composite1->getAs<PointerType>()) && | 
|  | (Ptr2 = Composite2->getAs<PointerType>())) { | 
|  | Composite1 = Ptr1->getPointeeType(); | 
|  | Composite2 = Ptr2->getPointeeType(); | 
|  |  | 
|  | // If we're allowed to create a non-standard composite type, keep track | 
|  | // of where we need to fill in additional 'const' qualifiers. | 
|  | if (NonStandardCompositeType && | 
|  | Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers()) | 
|  | NeedConstBefore = QualifierUnion.size(); | 
|  |  | 
|  | QualifierUnion.push_back( | 
|  | Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers()); | 
|  | MemberOfClass.push_back(std::make_pair(nullptr, nullptr)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | const MemberPointerType *MemPtr1, *MemPtr2; | 
|  | if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) && | 
|  | (MemPtr2 = Composite2->getAs<MemberPointerType>())) { | 
|  | Composite1 = MemPtr1->getPointeeType(); | 
|  | Composite2 = MemPtr2->getPointeeType(); | 
|  |  | 
|  | // If we're allowed to create a non-standard composite type, keep track | 
|  | // of where we need to fill in additional 'const' qualifiers. | 
|  | if (NonStandardCompositeType && | 
|  | Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers()) | 
|  | NeedConstBefore = QualifierUnion.size(); | 
|  |  | 
|  | QualifierUnion.push_back( | 
|  | Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers()); | 
|  | MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(), | 
|  | MemPtr2->getClass())); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // FIXME: block pointer types? | 
|  |  | 
|  | // Cannot unwrap any more types. | 
|  | break; | 
|  | } while (true); | 
|  |  | 
|  | if (NeedConstBefore && NonStandardCompositeType) { | 
|  | // Extension: Add 'const' to qualifiers that come before the first qualifier | 
|  | // mismatch, so that our (non-standard!) composite type meets the | 
|  | // requirements of C++ [conv.qual]p4 bullet 3. | 
|  | for (unsigned I = 0; I != NeedConstBefore; ++I) { | 
|  | if ((QualifierUnion[I] & Qualifiers::Const) == 0) { | 
|  | QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const; | 
|  | *NonStandardCompositeType = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Rewrap the composites as pointers or member pointers with the union CVRs. | 
|  | ContainingClassVector::reverse_iterator MOC | 
|  | = MemberOfClass.rbegin(); | 
|  | for (QualifierVector::reverse_iterator | 
|  | I = QualifierUnion.rbegin(), | 
|  | E = QualifierUnion.rend(); | 
|  | I != E; (void)++I, ++MOC) { | 
|  | Qualifiers Quals = Qualifiers::fromCVRMask(*I); | 
|  | if (MOC->first && MOC->second) { | 
|  | // Rebuild member pointer type | 
|  | Composite1 = Context.getMemberPointerType( | 
|  | Context.getQualifiedType(Composite1, Quals), | 
|  | MOC->first); | 
|  | Composite2 = Context.getMemberPointerType( | 
|  | Context.getQualifiedType(Composite2, Quals), | 
|  | MOC->second); | 
|  | } else { | 
|  | // Rebuild pointer type | 
|  | Composite1 | 
|  | = Context.getPointerType(Context.getQualifiedType(Composite1, Quals)); | 
|  | Composite2 | 
|  | = Context.getPointerType(Context.getQualifiedType(Composite2, Quals)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Try to convert to the first composite pointer type. | 
|  | InitializedEntity Entity1 | 
|  | = InitializedEntity::InitializeTemporary(Composite1); | 
|  | InitializationKind Kind | 
|  | = InitializationKind::CreateCopy(Loc, SourceLocation()); | 
|  | InitializationSequence E1ToC1(*this, Entity1, Kind, E1); | 
|  | InitializationSequence E2ToC1(*this, Entity1, Kind, E2); | 
|  |  | 
|  | if (E1ToC1 && E2ToC1) { | 
|  | // Conversion to Composite1 is viable. | 
|  | if (!Context.hasSameType(Composite1, Composite2)) { | 
|  | // Composite2 is a different type from Composite1. Check whether | 
|  | // Composite2 is also viable. | 
|  | InitializedEntity Entity2 | 
|  | = InitializedEntity::InitializeTemporary(Composite2); | 
|  | InitializationSequence E1ToC2(*this, Entity2, Kind, E1); | 
|  | InitializationSequence E2ToC2(*this, Entity2, Kind, E2); | 
|  | if (E1ToC2 && E2ToC2) { | 
|  | // Both Composite1 and Composite2 are viable and are different; | 
|  | // this is an ambiguity. | 
|  | return QualType(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Convert E1 to Composite1 | 
|  | ExprResult E1Result | 
|  | = E1ToC1.Perform(*this, Entity1, Kind, E1); | 
|  | if (E1Result.isInvalid()) | 
|  | return QualType(); | 
|  | E1 = E1Result.getAs<Expr>(); | 
|  |  | 
|  | // Convert E2 to Composite1 | 
|  | ExprResult E2Result | 
|  | = E2ToC1.Perform(*this, Entity1, Kind, E2); | 
|  | if (E2Result.isInvalid()) | 
|  | return QualType(); | 
|  | E2 = E2Result.getAs<Expr>(); | 
|  |  | 
|  | return Composite1; | 
|  | } | 
|  |  | 
|  | // Check whether Composite2 is viable. | 
|  | InitializedEntity Entity2 | 
|  | = InitializedEntity::InitializeTemporary(Composite2); | 
|  | InitializationSequence E1ToC2(*this, Entity2, Kind, E1); | 
|  | InitializationSequence E2ToC2(*this, Entity2, Kind, E2); | 
|  | if (!E1ToC2 || !E2ToC2) | 
|  | return QualType(); | 
|  |  | 
|  | // Convert E1 to Composite2 | 
|  | ExprResult E1Result | 
|  | = E1ToC2.Perform(*this, Entity2, Kind, E1); | 
|  | if (E1Result.isInvalid()) | 
|  | return QualType(); | 
|  | E1 = E1Result.getAs<Expr>(); | 
|  |  | 
|  | // Convert E2 to Composite2 | 
|  | ExprResult E2Result | 
|  | = E2ToC2.Perform(*this, Entity2, Kind, E2); | 
|  | if (E2Result.isInvalid()) | 
|  | return QualType(); | 
|  | E2 = E2Result.getAs<Expr>(); | 
|  |  | 
|  | return Composite2; | 
|  | } | 
|  |  | 
|  | ExprResult Sema::MaybeBindToTemporary(Expr *E) { | 
|  | if (!E) | 
|  | return ExprError(); | 
|  |  | 
|  | assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?"); | 
|  |  | 
|  | // If the result is a glvalue, we shouldn't bind it. | 
|  | if (!E->isRValue()) | 
|  | return E; | 
|  |  | 
|  | // In ARC, calls that return a retainable type can return retained, | 
|  | // in which case we have to insert a consuming cast. | 
|  | if (getLangOpts().ObjCAutoRefCount && | 
|  | E->getType()->isObjCRetainableType()) { | 
|  |  | 
|  | bool ReturnsRetained; | 
|  |  | 
|  | // For actual calls, we compute this by examining the type of the | 
|  | // called value. | 
|  | if (CallExpr *Call = dyn_cast<CallExpr>(E)) { | 
|  | Expr *Callee = Call->getCallee()->IgnoreParens(); | 
|  | QualType T = Callee->getType(); | 
|  |  | 
|  | if (T == Context.BoundMemberTy) { | 
|  | // Handle pointer-to-members. | 
|  | if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee)) | 
|  | T = BinOp->getRHS()->getType(); | 
|  | else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee)) | 
|  | T = Mem->getMemberDecl()->getType(); | 
|  | } | 
|  |  | 
|  | if (const PointerType *Ptr = T->getAs<PointerType>()) | 
|  | T = Ptr->getPointeeType(); | 
|  | else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>()) | 
|  | T = Ptr->getPointeeType(); | 
|  | else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>()) | 
|  | T = MemPtr->getPointeeType(); | 
|  |  | 
|  | const FunctionType *FTy = T->getAs<FunctionType>(); | 
|  | assert(FTy && "call to value not of function type?"); | 
|  | ReturnsRetained = FTy->getExtInfo().getProducesResult(); | 
|  |  | 
|  | // ActOnStmtExpr arranges things so that StmtExprs of retainable | 
|  | // type always produce a +1 object. | 
|  | } else if (isa<StmtExpr>(E)) { | 
|  | ReturnsRetained = true; | 
|  |  | 
|  | // We hit this case with the lambda conversion-to-block optimization; | 
|  | // we don't want any extra casts here. | 
|  | } else if (isa<CastExpr>(E) && | 
|  | isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) { | 
|  | return E; | 
|  |  | 
|  | // For message sends and property references, we try to find an | 
|  | // actual method.  FIXME: we should infer retention by selector in | 
|  | // cases where we don't have an actual method. | 
|  | } else { | 
|  | ObjCMethodDecl *D = nullptr; | 
|  | if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) { | 
|  | D = Send->getMethodDecl(); | 
|  | } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) { | 
|  | D = BoxedExpr->getBoxingMethod(); | 
|  | } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) { | 
|  | D = ArrayLit->getArrayWithObjectsMethod(); | 
|  | } else if (ObjCDictionaryLiteral *DictLit | 
|  | = dyn_cast<ObjCDictionaryLiteral>(E)) { | 
|  | D = DictLit->getDictWithObjectsMethod(); | 
|  | } | 
|  |  | 
|  | ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>()); | 
|  |  | 
|  | // Don't do reclaims on performSelector calls; despite their | 
|  | // return type, the invoked method doesn't necessarily actually | 
|  | // return an object. | 
|  | if (!ReturnsRetained && | 
|  | D && D->getMethodFamily() == OMF_performSelector) | 
|  | return E; | 
|  | } | 
|  |  | 
|  | // Don't reclaim an object of Class type. | 
|  | if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType()) | 
|  | return E; | 
|  |  | 
|  | ExprNeedsCleanups = true; | 
|  |  | 
|  | CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject | 
|  | : CK_ARCReclaimReturnedObject); | 
|  | return ImplicitCastExpr::Create(Context, E->getType(), ck, E, nullptr, | 
|  | VK_RValue); | 
|  | } | 
|  |  | 
|  | if (!getLangOpts().CPlusPlus) | 
|  | return E; | 
|  |  | 
|  | // Search for the base element type (cf. ASTContext::getBaseElementType) with | 
|  | // a fast path for the common case that the type is directly a RecordType. | 
|  | const Type *T = Context.getCanonicalType(E->getType().getTypePtr()); | 
|  | const RecordType *RT = nullptr; | 
|  | while (!RT) { | 
|  | switch (T->getTypeClass()) { | 
|  | case Type::Record: | 
|  | RT = cast<RecordType>(T); | 
|  | break; | 
|  | case Type::ConstantArray: | 
|  | case Type::IncompleteArray: | 
|  | case Type::VariableArray: | 
|  | case Type::DependentSizedArray: | 
|  | T = cast<ArrayType>(T)->getElementType().getTypePtr(); | 
|  | break; | 
|  | default: | 
|  | return E; | 
|  | } | 
|  | } | 
|  |  | 
|  | // That should be enough to guarantee that this type is complete, if we're | 
|  | // not processing a decltype expression. | 
|  | CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); | 
|  | if (RD->isInvalidDecl() || RD->isDependentContext()) | 
|  | return E; | 
|  |  | 
|  | bool IsDecltype = ExprEvalContexts.back().IsDecltype; | 
|  | CXXDestructorDecl *Destructor = IsDecltype ? nullptr : LookupDestructor(RD); | 
|  |  | 
|  | if (Destructor) { | 
|  | MarkFunctionReferenced(E->getExprLoc(), Destructor); | 
|  | CheckDestructorAccess(E->getExprLoc(), Destructor, | 
|  | PDiag(diag::err_access_dtor_temp) | 
|  | << E->getType()); | 
|  | if (DiagnoseUseOfDecl(Destructor, E->getExprLoc())) | 
|  | return ExprError(); | 
|  |  | 
|  | // If destructor is trivial, we can avoid the extra copy. | 
|  | if (Destructor->isTrivial()) | 
|  | return E; | 
|  |  | 
|  | // We need a cleanup, but we don't need to remember the temporary. | 
|  | ExprNeedsCleanups = true; | 
|  | } | 
|  |  | 
|  | CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor); | 
|  | CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E); | 
|  |  | 
|  | if (IsDecltype) | 
|  | ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind); | 
|  |  | 
|  | return Bind; | 
|  | } | 
|  |  | 
|  | ExprResult | 
|  | Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) { | 
|  | if (SubExpr.isInvalid()) | 
|  | return ExprError(); | 
|  |  | 
|  | return MaybeCreateExprWithCleanups(SubExpr.get()); | 
|  | } | 
|  |  | 
|  | Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) { | 
|  | assert(SubExpr && "subexpression can't be null!"); | 
|  |  | 
|  | CleanupVarDeclMarking(); | 
|  |  | 
|  | unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects; | 
|  | assert(ExprCleanupObjects.size() >= FirstCleanup); | 
|  | assert(ExprNeedsCleanups || ExprCleanupObjects.size() == FirstCleanup); | 
|  | if (!ExprNeedsCleanups) | 
|  | return SubExpr; | 
|  |  | 
|  | auto Cleanups = llvm::makeArrayRef(ExprCleanupObjects.begin() + FirstCleanup, | 
|  | ExprCleanupObjects.size() - FirstCleanup); | 
|  |  | 
|  | Expr *E = ExprWithCleanups::Create(Context, SubExpr, Cleanups); | 
|  | DiscardCleanupsInEvaluationContext(); | 
|  |  | 
|  | return E; | 
|  | } | 
|  |  | 
|  | Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) { | 
|  | assert(SubStmt && "sub-statement can't be null!"); | 
|  |  | 
|  | CleanupVarDeclMarking(); | 
|  |  | 
|  | if (!ExprNeedsCleanups) | 
|  | return SubStmt; | 
|  |  | 
|  | // FIXME: In order to attach the temporaries, wrap the statement into | 
|  | // a StmtExpr; currently this is only used for asm statements. | 
|  | // This is hacky, either create a new CXXStmtWithTemporaries statement or | 
|  | // a new AsmStmtWithTemporaries. | 
|  | CompoundStmt *CompStmt = new (Context) CompoundStmt(Context, SubStmt, | 
|  | SourceLocation(), | 
|  | SourceLocation()); | 
|  | Expr *E = new (Context) StmtExpr(CompStmt, Context.VoidTy, SourceLocation(), | 
|  | SourceLocation()); | 
|  | return MaybeCreateExprWithCleanups(E); | 
|  | } | 
|  |  | 
|  | /// Process the expression contained within a decltype. For such expressions, | 
|  | /// certain semantic checks on temporaries are delayed until this point, and | 
|  | /// are omitted for the 'topmost' call in the decltype expression. If the | 
|  | /// topmost call bound a temporary, strip that temporary off the expression. | 
|  | ExprResult Sema::ActOnDecltypeExpression(Expr *E) { | 
|  | assert(ExprEvalContexts.back().IsDecltype && "not in a decltype expression"); | 
|  |  | 
|  | // C++11 [expr.call]p11: | 
|  | //   If a function call is a prvalue of object type, | 
|  | // -- if the function call is either | 
|  | //   -- the operand of a decltype-specifier, or | 
|  | //   -- the right operand of a comma operator that is the operand of a | 
|  | //      decltype-specifier, | 
|  | //   a temporary object is not introduced for the prvalue. | 
|  |  | 
|  | // Recursively rebuild ParenExprs and comma expressions to strip out the | 
|  | // outermost CXXBindTemporaryExpr, if any. | 
|  | if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { | 
|  | ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr()); | 
|  | if (SubExpr.isInvalid()) | 
|  | return ExprError(); | 
|  | if (SubExpr.get() == PE->getSubExpr()) | 
|  | return E; | 
|  | return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.get()); | 
|  | } | 
|  | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { | 
|  | if (BO->getOpcode() == BO_Comma) { | 
|  | ExprResult RHS = ActOnDecltypeExpression(BO->getRHS()); | 
|  | if (RHS.isInvalid()) | 
|  | return ExprError(); | 
|  | if (RHS.get() == BO->getRHS()) | 
|  | return E; | 
|  | return new (Context) BinaryOperator( | 
|  | BO->getLHS(), RHS.get(), BO_Comma, BO->getType(), BO->getValueKind(), | 
|  | BO->getObjectKind(), BO->getOperatorLoc(), BO->isFPContractable()); | 
|  | } | 
|  | } | 
|  |  | 
|  | CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E); | 
|  | CallExpr *TopCall = TopBind ? dyn_cast<CallExpr>(TopBind->getSubExpr()) | 
|  | : nullptr; | 
|  | if (TopCall) | 
|  | E = TopCall; | 
|  | else | 
|  | TopBind = nullptr; | 
|  |  | 
|  | // Disable the special decltype handling now. | 
|  | ExprEvalContexts.back().IsDecltype = false; | 
|  |  | 
|  | // In MS mode, don't perform any extra checking of call return types within a | 
|  | // decltype expression. | 
|  | if (getLangOpts().MSVCCompat) | 
|  | return E; | 
|  |  | 
|  | // Perform the semantic checks we delayed until this point. | 
|  | for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size(); | 
|  | I != N; ++I) { | 
|  | CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I]; | 
|  | if (Call == TopCall) | 
|  | continue; | 
|  |  | 
|  | if (CheckCallReturnType(Call->getCallReturnType(), | 
|  | Call->getLocStart(), | 
|  | Call, Call->getDirectCallee())) | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | // Now all relevant types are complete, check the destructors are accessible | 
|  | // and non-deleted, and annotate them on the temporaries. | 
|  | for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size(); | 
|  | I != N; ++I) { | 
|  | CXXBindTemporaryExpr *Bind = | 
|  | ExprEvalContexts.back().DelayedDecltypeBinds[I]; | 
|  | if (Bind == TopBind) | 
|  | continue; | 
|  |  | 
|  | CXXTemporary *Temp = Bind->getTemporary(); | 
|  |  | 
|  | CXXRecordDecl *RD = | 
|  | Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); | 
|  | CXXDestructorDecl *Destructor = LookupDestructor(RD); | 
|  | Temp->setDestructor(Destructor); | 
|  |  | 
|  | MarkFunctionReferenced(Bind->getExprLoc(), Destructor); | 
|  | CheckDestructorAccess(Bind->getExprLoc(), Destructor, | 
|  | PDiag(diag::err_access_dtor_temp) | 
|  | << Bind->getType()); | 
|  | if (DiagnoseUseOfDecl(Destructor, Bind->getExprLoc())) | 
|  | return ExprError(); | 
|  |  | 
|  | // We need a cleanup, but we don't need to remember the temporary. | 
|  | ExprNeedsCleanups = true; | 
|  | } | 
|  |  | 
|  | // Possibly strip off the top CXXBindTemporaryExpr. | 
|  | return E; | 
|  | } | 
|  |  | 
|  | /// Note a set of 'operator->' functions that were used for a member access. | 
|  | static void noteOperatorArrows(Sema &S, | 
|  | ArrayRef<FunctionDecl *> OperatorArrows) { | 
|  | unsigned SkipStart = OperatorArrows.size(), SkipCount = 0; | 
|  | // FIXME: Make this configurable? | 
|  | unsigned Limit = 9; | 
|  | if (OperatorArrows.size() > Limit) { | 
|  | // Produce Limit-1 normal notes and one 'skipping' note. | 
|  | SkipStart = (Limit - 1) / 2 + (Limit - 1) % 2; | 
|  | SkipCount = OperatorArrows.size() - (Limit - 1); | 
|  | } | 
|  |  | 
|  | for (unsigned I = 0; I < OperatorArrows.size(); /**/) { | 
|  | if (I == SkipStart) { | 
|  | S.Diag(OperatorArrows[I]->getLocation(), | 
|  | diag::note_operator_arrows_suppressed) | 
|  | << SkipCount; | 
|  | I += SkipCount; | 
|  | } else { | 
|  | S.Diag(OperatorArrows[I]->getLocation(), diag::note_operator_arrow_here) | 
|  | << OperatorArrows[I]->getCallResultType(); | 
|  | ++I; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | ExprResult | 
|  | Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, SourceLocation OpLoc, | 
|  | tok::TokenKind OpKind, ParsedType &ObjectType, | 
|  | bool &MayBePseudoDestructor) { | 
|  | // Since this might be a postfix expression, get rid of ParenListExprs. | 
|  | ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base); | 
|  | if (Result.isInvalid()) return ExprError(); | 
|  | Base = Result.get(); | 
|  |  | 
|  | Result = CheckPlaceholderExpr(Base); | 
|  | if (Result.isInvalid()) return ExprError(); | 
|  | Base = Result.get(); | 
|  |  | 
|  | QualType BaseType = Base->getType(); | 
|  | MayBePseudoDestructor = false; | 
|  | if (BaseType->isDependentType()) { | 
|  | // If we have a pointer to a dependent type and are using the -> operator, | 
|  | // the object type is the type that the pointer points to. We might still | 
|  | // have enough information about that type to do something useful. | 
|  | if (OpKind == tok::arrow) | 
|  | if (const PointerType *Ptr = BaseType->getAs<PointerType>()) | 
|  | BaseType = Ptr->getPointeeType(); | 
|  |  | 
|  | ObjectType = ParsedType::make(BaseType); | 
|  | MayBePseudoDestructor = true; | 
|  | return Base; | 
|  | } | 
|  |  | 
|  | // C++ [over.match.oper]p8: | 
|  | //   [...] When operator->returns, the operator-> is applied  to the value | 
|  | //   returned, with the original second operand. | 
|  | if (OpKind == tok::arrow) { | 
|  | QualType StartingType = BaseType; | 
|  | bool NoArrowOperatorFound = false; | 
|  | bool FirstIteration = true; | 
|  | FunctionDecl *CurFD = dyn_cast<FunctionDecl>(CurContext); | 
|  | // The set of types we've considered so far. | 
|  | llvm::SmallPtrSet<CanQualType,8> CTypes; | 
|  | SmallVector<FunctionDecl*, 8> OperatorArrows; | 
|  | CTypes.insert(Context.getCanonicalType(BaseType)); | 
|  |  | 
|  | while (BaseType->isRecordType()) { | 
|  | if (OperatorArrows.size() >= getLangOpts().ArrowDepth) { | 
|  | Diag(OpLoc, diag::err_operator_arrow_depth_exceeded) | 
|  | << StartingType << getLangOpts().ArrowDepth << Base->getSourceRange(); | 
|  | noteOperatorArrows(*this, OperatorArrows); | 
|  | Diag(OpLoc, diag::note_operator_arrow_depth) | 
|  | << getLangOpts().ArrowDepth; | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | Result = BuildOverloadedArrowExpr( | 
|  | S, Base, OpLoc, | 
|  | // When in a template specialization and on the first loop iteration, | 
|  | // potentially give the default diagnostic (with the fixit in a | 
|  | // separate note) instead of having the error reported back to here | 
|  | // and giving a diagnostic with a fixit attached to the error itself. | 
|  | (FirstIteration && CurFD && CurFD->isFunctionTemplateSpecialization()) | 
|  | ? nullptr | 
|  | : &NoArrowOperatorFound); | 
|  | if (Result.isInvalid()) { | 
|  | if (NoArrowOperatorFound) { | 
|  | if (FirstIteration) { | 
|  | Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) | 
|  | << BaseType << 1 << Base->getSourceRange() | 
|  | << FixItHint::CreateReplacement(OpLoc, "."); | 
|  | OpKind = tok::period; | 
|  | break; | 
|  | } | 
|  | Diag(OpLoc, diag::err_typecheck_member_reference_arrow) | 
|  | << BaseType << Base->getSourceRange(); | 
|  | CallExpr *CE = dyn_cast<CallExpr>(Base); | 
|  | if (Decl *CD = (CE ? CE->getCalleeDecl() : nullptr)) { | 
|  | Diag(CD->getLocStart(), | 
|  | diag::note_member_reference_arrow_from_operator_arrow); | 
|  | } | 
|  | } | 
|  | return ExprError(); | 
|  | } | 
|  | Base = Result.get(); | 
|  | if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base)) | 
|  | OperatorArrows.push_back(OpCall->getDirectCallee()); | 
|  | BaseType = Base->getType(); | 
|  | CanQualType CBaseType = Context.getCanonicalType(BaseType); | 
|  | if (!CTypes.insert(CBaseType).second) { | 
|  | Diag(OpLoc, diag::err_operator_arrow_circular) << StartingType; | 
|  | noteOperatorArrows(*this, OperatorArrows); | 
|  | return ExprError(); | 
|  | } | 
|  | FirstIteration = false; | 
|  | } | 
|  |  | 
|  | if (OpKind == tok::arrow && | 
|  | (BaseType->isPointerType() || BaseType->isObjCObjectPointerType())) | 
|  | BaseType = BaseType->getPointeeType(); | 
|  | } | 
|  |  | 
|  | // Objective-C properties allow "." access on Objective-C pointer types, | 
|  | // so adjust the base type to the object type itself. | 
|  | if (BaseType->isObjCObjectPointerType()) | 
|  | BaseType = BaseType->getPointeeType(); | 
|  |  | 
|  | // C++ [basic.lookup.classref]p2: | 
|  | //   [...] If the type of the object expression is of pointer to scalar | 
|  | //   type, the unqualified-id is looked up in the context of the complete | 
|  | //   postfix-expression. | 
|  | // | 
|  | // This also indicates that we could be parsing a pseudo-destructor-name. | 
|  | // Note that Objective-C class and object types can be pseudo-destructor | 
|  | // expressions or normal member (ivar or property) access expressions. | 
|  | if (BaseType->isObjCObjectOrInterfaceType()) { | 
|  | MayBePseudoDestructor = true; | 
|  | } else if (!BaseType->isRecordType()) { | 
|  | ObjectType = ParsedType(); | 
|  | MayBePseudoDestructor = true; | 
|  | return Base; | 
|  | } | 
|  |  | 
|  | // The object type must be complete (or dependent), or | 
|  | // C++11 [expr.prim.general]p3: | 
|  | //   Unlike the object expression in other contexts, *this is not required to | 
|  | //   be of complete type for purposes of class member access (5.2.5) outside | 
|  | //   the member function body. | 
|  | if (!BaseType->isDependentType() && | 
|  | !isThisOutsideMemberFunctionBody(BaseType) && | 
|  | RequireCompleteType(OpLoc, BaseType, diag::err_incomplete_member_access)) | 
|  | return ExprError(); | 
|  |  | 
|  | // C++ [basic.lookup.classref]p2: | 
|  | //   If the id-expression in a class member access (5.2.5) is an | 
|  | //   unqualified-id, and the type of the object expression is of a class | 
|  | //   type C (or of pointer to a class type C), the unqualified-id is looked | 
|  | //   up in the scope of class C. [...] | 
|  | ObjectType = ParsedType::make(BaseType); | 
|  | return Base; | 
|  | } | 
|  |  | 
|  | ExprResult Sema::DiagnoseDtorReference(SourceLocation NameLoc, | 
|  | Expr *MemExpr) { | 
|  | SourceLocation ExpectedLParenLoc = PP.getLocForEndOfToken(NameLoc); | 
|  | Diag(MemExpr->getLocStart(), diag::err_dtor_expr_without_call) | 
|  | << isa<CXXPseudoDestructorExpr>(MemExpr) | 
|  | << FixItHint::CreateInsertion(ExpectedLParenLoc, "()"); | 
|  |  | 
|  | return ActOnCallExpr(/*Scope*/ nullptr, | 
|  | MemExpr, | 
|  | /*LPLoc*/ ExpectedLParenLoc, | 
|  | None, | 
|  | /*RPLoc*/ ExpectedLParenLoc); | 
|  | } | 
|  |  | 
|  | static bool CheckArrow(Sema& S, QualType& ObjectType, Expr *&Base, | 
|  | tok::TokenKind& OpKind, SourceLocation OpLoc) { | 
|  | if (Base->hasPlaceholderType()) { | 
|  | ExprResult result = S.CheckPlaceholderExpr(Base); | 
|  | if (result.isInvalid()) return true; | 
|  | Base = result.get(); | 
|  | } | 
|  | ObjectType = Base->getType(); | 
|  |  | 
|  | // C++ [expr.pseudo]p2: | 
|  | //   The left-hand side of the dot operator shall be of scalar type. The | 
|  | //   left-hand side of the arrow operator shall be of pointer to scalar type. | 
|  | //   This scalar type is the object type. | 
|  | // Note that this is rather different from the normal handling for the | 
|  | // arrow operator. | 
|  | if (OpKind == tok::arrow) { | 
|  | if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) { | 
|  | ObjectType = Ptr->getPointeeType(); | 
|  | } else if (!Base->isTypeDependent()) { | 
|  | // The user wrote "p->" when she probably meant "p."; fix it. | 
|  | S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) | 
|  | << ObjectType << true | 
|  | << FixItHint::CreateReplacement(OpLoc, "."); | 
|  | if (S.isSFINAEContext()) | 
|  | return true; | 
|  |  | 
|  | OpKind = tok::period; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base, | 
|  | SourceLocation OpLoc, | 
|  | tok::TokenKind OpKind, | 
|  | const CXXScopeSpec &SS, | 
|  | TypeSourceInfo *ScopeTypeInfo, | 
|  | SourceLocation CCLoc, | 
|  | SourceLocation TildeLoc, | 
|  | PseudoDestructorTypeStorage Destructed, | 
|  | bool HasTrailingLParen) { | 
|  | TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo(); | 
|  |  | 
|  | QualType ObjectType; | 
|  | if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc)) | 
|  | return ExprError(); | 
|  |  | 
|  | if (!ObjectType->isDependentType() && !ObjectType->isScalarType() && | 
|  | !ObjectType->isVectorType()) { | 
|  | if (getLangOpts().MSVCCompat && ObjectType->isVoidType()) | 
|  | Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange(); | 
|  | else { | 
|  | Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar) | 
|  | << ObjectType << Base->getSourceRange(); | 
|  | return ExprError(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++ [expr.pseudo]p2: | 
|  | //   [...] The cv-unqualified versions of the object type and of the type | 
|  | //   designated by the pseudo-destructor-name shall be the same type. | 
|  | if (DestructedTypeInfo) { | 
|  | QualType DestructedType = DestructedTypeInfo->getType(); | 
|  | SourceLocation DestructedTypeStart | 
|  | = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(); | 
|  | if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) { | 
|  | if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) { | 
|  | Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch) | 
|  | << ObjectType << DestructedType << Base->getSourceRange() | 
|  | << DestructedTypeInfo->getTypeLoc().getLocalSourceRange(); | 
|  |  | 
|  | // Recover by setting the destructed type to the object type. | 
|  | DestructedType = ObjectType; | 
|  | DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType, | 
|  | DestructedTypeStart); | 
|  | Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); | 
|  | } else if (DestructedType.getObjCLifetime() != | 
|  | ObjectType.getObjCLifetime()) { | 
|  |  | 
|  | if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) { | 
|  | // Okay: just pretend that the user provided the correctly-qualified | 
|  | // type. | 
|  | } else { | 
|  | Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals) | 
|  | << ObjectType << DestructedType << Base->getSourceRange() | 
|  | << DestructedTypeInfo->getTypeLoc().getLocalSourceRange(); | 
|  | } | 
|  |  | 
|  | // Recover by setting the destructed type to the object type. | 
|  | DestructedType = ObjectType; | 
|  | DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType, | 
|  | DestructedTypeStart); | 
|  | Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++ [expr.pseudo]p2: | 
|  | //   [...] Furthermore, the two type-names in a pseudo-destructor-name of the | 
|  | //   form | 
|  | // | 
|  | //     ::[opt] nested-name-specifier[opt] type-name :: ~ type-name | 
|  | // | 
|  | //   shall designate the same scalar type. | 
|  | if (ScopeTypeInfo) { | 
|  | QualType ScopeType = ScopeTypeInfo->getType(); | 
|  | if (!ScopeType->isDependentType() && !ObjectType->isDependentType() && | 
|  | !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) { | 
|  |  | 
|  | Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(), | 
|  | diag::err_pseudo_dtor_type_mismatch) | 
|  | << ObjectType << ScopeType << Base->getSourceRange() | 
|  | << ScopeTypeInfo->getTypeLoc().getLocalSourceRange(); | 
|  |  | 
|  | ScopeType = QualType(); | 
|  | ScopeTypeInfo = nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | Expr *Result | 
|  | = new (Context) CXXPseudoDestructorExpr(Context, Base, | 
|  | OpKind == tok::arrow, OpLoc, | 
|  | SS.getWithLocInContext(Context), | 
|  | ScopeTypeInfo, | 
|  | CCLoc, | 
|  | TildeLoc, | 
|  | Destructed); | 
|  |  | 
|  | if (HasTrailingLParen) | 
|  | return Result; | 
|  |  | 
|  | return DiagnoseDtorReference(Destructed.getLocation(), Result); | 
|  | } | 
|  |  | 
|  | ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base, | 
|  | SourceLocation OpLoc, | 
|  | tok::TokenKind OpKind, | 
|  | CXXScopeSpec &SS, | 
|  | UnqualifiedId &FirstTypeName, | 
|  | SourceLocation CCLoc, | 
|  | SourceLocation TildeLoc, | 
|  | UnqualifiedId &SecondTypeName, | 
|  | bool HasTrailingLParen) { | 
|  | assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId || | 
|  | FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) && | 
|  | "Invalid first type name in pseudo-destructor"); | 
|  | assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId || | 
|  | SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) && | 
|  | "Invalid second type name in pseudo-destructor"); | 
|  |  | 
|  | QualType ObjectType; | 
|  | if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc)) | 
|  | return ExprError(); | 
|  |  | 
|  | // Compute the object type that we should use for name lookup purposes. Only | 
|  | // record types and dependent types matter. | 
|  | ParsedType ObjectTypePtrForLookup; | 
|  | if (!SS.isSet()) { | 
|  | if (ObjectType->isRecordType()) | 
|  | ObjectTypePtrForLookup = ParsedType::make(ObjectType); | 
|  | else if (ObjectType->isDependentType()) | 
|  | ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy); | 
|  | } | 
|  |  | 
|  | // Convert the name of the type being destructed (following the ~) into a | 
|  | // type (with source-location information). | 
|  | QualType DestructedType; | 
|  | TypeSourceInfo *DestructedTypeInfo = nullptr; | 
|  | PseudoDestructorTypeStorage Destructed; | 
|  | if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) { | 
|  | ParsedType T = getTypeName(*SecondTypeName.Identifier, | 
|  | SecondTypeName.StartLocation, | 
|  | S, &SS, true, false, ObjectTypePtrForLookup); | 
|  | if (!T && | 
|  | ((SS.isSet() && !computeDeclContext(SS, false)) || | 
|  | (!SS.isSet() && ObjectType->isDependentType()))) { | 
|  | // The name of the type being destroyed is a dependent name, and we | 
|  | // couldn't find anything useful in scope. Just store the identifier and | 
|  | // it's location, and we'll perform (qualified) name lookup again at | 
|  | // template instantiation time. | 
|  | Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier, | 
|  | SecondTypeName.StartLocation); | 
|  | } else if (!T) { | 
|  | Diag(SecondTypeName.StartLocation, | 
|  | diag::err_pseudo_dtor_destructor_non_type) | 
|  | << SecondTypeName.Identifier << ObjectType; | 
|  | if (isSFINAEContext()) | 
|  | return ExprError(); | 
|  |  | 
|  | // Recover by assuming we had the right type all along. | 
|  | DestructedType = ObjectType; | 
|  | } else | 
|  | DestructedType = GetTypeFromParser(T, &DestructedTypeInfo); | 
|  | } else { | 
|  | // Resolve the template-id to a type. | 
|  | TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId; | 
|  | ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), | 
|  | TemplateId->NumArgs); | 
|  | TypeResult T = ActOnTemplateIdType(TemplateId->SS, | 
|  | TemplateId->TemplateKWLoc, | 
|  | TemplateId->Template, | 
|  | TemplateId->TemplateNameLoc, | 
|  | TemplateId->LAngleLoc, | 
|  | TemplateArgsPtr, | 
|  | TemplateId->RAngleLoc); | 
|  | if (T.isInvalid() || !T.get()) { | 
|  | // Recover by assuming we had the right type all along. | 
|  | DestructedType = ObjectType; | 
|  | } else | 
|  | DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo); | 
|  | } | 
|  |  | 
|  | // If we've performed some kind of recovery, (re-)build the type source | 
|  | // information. | 
|  | if (!DestructedType.isNull()) { | 
|  | if (!DestructedTypeInfo) | 
|  | DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType, | 
|  | SecondTypeName.StartLocation); | 
|  | Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); | 
|  | } | 
|  |  | 
|  | // Convert the name of the scope type (the type prior to '::') into a type. | 
|  | TypeSourceInfo *ScopeTypeInfo = nullptr; | 
|  | QualType ScopeType; | 
|  | if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId || | 
|  | FirstTypeName.Identifier) { | 
|  | if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) { | 
|  | ParsedType T = getTypeName(*FirstTypeName.Identifier, | 
|  | FirstTypeName.StartLocation, | 
|  | S, &SS, true, false, ObjectTypePtrForLookup); | 
|  | if (!T) { | 
|  | Diag(FirstTypeName.StartLocation, | 
|  | diag::err_pseudo_dtor_destructor_non_type) | 
|  | << FirstTypeName.Identifier << ObjectType; | 
|  |  | 
|  | if (isSFINAEContext()) | 
|  | return ExprError(); | 
|  |  | 
|  | // Just drop this type. It's unnecessary anyway. | 
|  | ScopeType = QualType(); | 
|  | } else | 
|  | ScopeType = GetTypeFromParser(T, &ScopeTypeInfo); | 
|  | } else { | 
|  | // Resolve the template-id to a type. | 
|  | TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId; | 
|  | ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), | 
|  | TemplateId->NumArgs); | 
|  | TypeResult T = ActOnTemplateIdType(TemplateId->SS, | 
|  | TemplateId->TemplateKWLoc, | 
|  | TemplateId->Template, | 
|  | TemplateId->TemplateNameLoc, | 
|  | TemplateId->LAngleLoc, | 
|  | TemplateArgsPtr, | 
|  | TemplateId->RAngleLoc); | 
|  | if (T.isInvalid() || !T.get()) { | 
|  | // Recover by dropping this type. | 
|  | ScopeType = QualType(); | 
|  | } else | 
|  | ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!ScopeType.isNull() && !ScopeTypeInfo) | 
|  | ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType, | 
|  | FirstTypeName.StartLocation); | 
|  |  | 
|  |  | 
|  | return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS, | 
|  | ScopeTypeInfo, CCLoc, TildeLoc, | 
|  | Destructed, HasTrailingLParen); | 
|  | } | 
|  |  | 
|  | ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base, | 
|  | SourceLocation OpLoc, | 
|  | tok::TokenKind OpKind, | 
|  | SourceLocation TildeLoc, | 
|  | const DeclSpec& DS, | 
|  | bool HasTrailingLParen) { | 
|  | QualType ObjectType; | 
|  | if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc)) | 
|  | return ExprError(); | 
|  |  | 
|  | QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc(), | 
|  | false); | 
|  |  | 
|  | TypeLocBuilder TLB; | 
|  | DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T); | 
|  | DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc()); | 
|  | TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T); | 
|  | PseudoDestructorTypeStorage Destructed(DestructedTypeInfo); | 
|  |  | 
|  | return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(), | 
|  | nullptr, SourceLocation(), TildeLoc, | 
|  | Destructed, HasTrailingLParen); | 
|  | } | 
|  |  | 
|  | ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl, | 
|  | CXXConversionDecl *Method, | 
|  | bool HadMultipleCandidates) { | 
|  | if (Method->getParent()->isLambda() && | 
|  | Method->getConversionType()->isBlockPointerType()) { | 
|  | // This is a lambda coversion to block pointer; check if the argument | 
|  | // is a LambdaExpr. | 
|  | Expr *SubE = E; | 
|  | CastExpr *CE = dyn_cast<CastExpr>(SubE); | 
|  | if (CE && CE->getCastKind() == CK_NoOp) | 
|  | SubE = CE->getSubExpr(); | 
|  | SubE = SubE->IgnoreParens(); | 
|  | if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE)) | 
|  | SubE = BE->getSubExpr(); | 
|  | if (isa<LambdaExpr>(SubE)) { | 
|  | // For the conversion to block pointer on a lambda expression, we | 
|  | // construct a special BlockLiteral instead; this doesn't really make | 
|  | // a difference in ARC, but outside of ARC the resulting block literal | 
|  | // follows the normal lifetime rules for block literals instead of being | 
|  | // autoreleased. | 
|  | DiagnosticErrorTrap Trap(Diags); | 
|  | ExprResult Exp = BuildBlockForLambdaConversion(E->getExprLoc(), | 
|  | E->getExprLoc(), | 
|  | Method, E); | 
|  | if (Exp.isInvalid()) | 
|  | Diag(E->getExprLoc(), diag::note_lambda_to_block_conv); | 
|  | return Exp; | 
|  | } | 
|  | } | 
|  |  | 
|  | ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/nullptr, | 
|  | FoundDecl, Method); | 
|  | if (Exp.isInvalid()) | 
|  | return true; | 
|  |  | 
|  | MemberExpr *ME = | 
|  | new (Context) MemberExpr(Exp.get(), /*IsArrow=*/false, Method, | 
|  | SourceLocation(), Context.BoundMemberTy, | 
|  | VK_RValue, OK_Ordinary); | 
|  | if (HadMultipleCandidates) | 
|  | ME->setHadMultipleCandidates(true); | 
|  | MarkMemberReferenced(ME); | 
|  |  | 
|  | QualType ResultType = Method->getReturnType(); | 
|  | ExprValueKind VK = Expr::getValueKindForType(ResultType); | 
|  | ResultType = ResultType.getNonLValueExprType(Context); | 
|  |  | 
|  | CXXMemberCallExpr *CE = | 
|  | new (Context) CXXMemberCallExpr(Context, ME, None, ResultType, VK, | 
|  | Exp.get()->getLocEnd()); | 
|  | return CE; | 
|  | } | 
|  |  | 
|  | ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand, | 
|  | SourceLocation RParen) { | 
|  | if (ActiveTemplateInstantiations.empty() && | 
|  | Operand->HasSideEffects(Context, false)) { | 
|  | // The expression operand for noexcept is in an unevaluated expression | 
|  | // context, so side effects could result in unintended consequences. | 
|  | Diag(Operand->getExprLoc(), diag::warn_side_effects_unevaluated_context); | 
|  | } | 
|  |  | 
|  | CanThrowResult CanThrow = canThrow(Operand); | 
|  | return new (Context) | 
|  | CXXNoexceptExpr(Context.BoolTy, Operand, CanThrow, KeyLoc, RParen); | 
|  | } | 
|  |  | 
|  | ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation, | 
|  | Expr *Operand, SourceLocation RParen) { | 
|  | return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen); | 
|  | } | 
|  |  | 
|  | static bool IsSpecialDiscardedValue(Expr *E) { | 
|  | // In C++11, discarded-value expressions of a certain form are special, | 
|  | // according to [expr]p10: | 
|  | //   The lvalue-to-rvalue conversion (4.1) is applied only if the | 
|  | //   expression is an lvalue of volatile-qualified type and it has | 
|  | //   one of the following forms: | 
|  | E = E->IgnoreParens(); | 
|  |  | 
|  | //   - id-expression (5.1.1), | 
|  | if (isa<DeclRefExpr>(E)) | 
|  | return true; | 
|  |  | 
|  | //   - subscripting (5.2.1), | 
|  | if (isa<ArraySubscriptExpr>(E)) | 
|  | return true; | 
|  |  | 
|  | //   - class member access (5.2.5), | 
|  | if (isa<MemberExpr>(E)) | 
|  | return true; | 
|  |  | 
|  | //   - indirection (5.3.1), | 
|  | if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) | 
|  | if (UO->getOpcode() == UO_Deref) | 
|  | return true; | 
|  |  | 
|  | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { | 
|  | //   - pointer-to-member operation (5.5), | 
|  | if (BO->isPtrMemOp()) | 
|  | return true; | 
|  |  | 
|  | //   - comma expression (5.18) where the right operand is one of the above. | 
|  | if (BO->getOpcode() == BO_Comma) | 
|  | return IsSpecialDiscardedValue(BO->getRHS()); | 
|  | } | 
|  |  | 
|  | //   - conditional expression (5.16) where both the second and the third | 
|  | //     operands are one of the above, or | 
|  | if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) | 
|  | return IsSpecialDiscardedValue(CO->getTrueExpr()) && | 
|  | IsSpecialDiscardedValue(CO->getFalseExpr()); | 
|  | // The related edge case of "*x ?: *x". | 
|  | if (BinaryConditionalOperator *BCO = | 
|  | dyn_cast<BinaryConditionalOperator>(E)) { | 
|  | if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr())) | 
|  | return IsSpecialDiscardedValue(OVE->getSourceExpr()) && | 
|  | IsSpecialDiscardedValue(BCO->getFalseExpr()); | 
|  | } | 
|  |  | 
|  | // Objective-C++ extensions to the rule. | 
|  | if (isa<PseudoObjectExpr>(E) || isa<ObjCIvarRefExpr>(E)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Perform the conversions required for an expression used in a | 
|  | /// context that ignores the result. | 
|  | ExprResult Sema::IgnoredValueConversions(Expr *E) { | 
|  | if (E->hasPlaceholderType()) { | 
|  | ExprResult result = CheckPlaceholderExpr(E); | 
|  | if (result.isInvalid()) return E; | 
|  | E = result.get(); | 
|  | } | 
|  |  | 
|  | // C99 6.3.2.1: | 
|  | //   [Except in specific positions,] an lvalue that does not have | 
|  | //   array type is converted to the value stored in the | 
|  | //   designated object (and is no longer an lvalue). | 
|  | if (E->isRValue()) { | 
|  | // In C, function designators (i.e. expressions of function type) | 
|  | // are r-values, but we still want to do function-to-pointer decay | 
|  | // on them.  This is both technically correct and convenient for | 
|  | // some clients. | 
|  | if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType()) | 
|  | return DefaultFunctionArrayConversion(E); | 
|  |  | 
|  | return E; | 
|  | } | 
|  |  | 
|  | if (getLangOpts().CPlusPlus)  { | 
|  | // The C++11 standard defines the notion of a discarded-value expression; | 
|  | // normally, we don't need to do anything to handle it, but if it is a | 
|  | // volatile lvalue with a special form, we perform an lvalue-to-rvalue | 
|  | // conversion. | 
|  | if (getLangOpts().CPlusPlus11 && E->isGLValue() && | 
|  | E->getType().isVolatileQualified() && | 
|  | IsSpecialDiscardedValue(E)) { | 
|  | ExprResult Res = DefaultLvalueConversion(E); | 
|  | if (Res.isInvalid()) | 
|  | return E; | 
|  | E = Res.get(); | 
|  | } | 
|  | return E; | 
|  | } | 
|  |  | 
|  | // GCC seems to also exclude expressions of incomplete enum type. | 
|  | if (const EnumType *T = E->getType()->getAs<EnumType>()) { | 
|  | if (!T->getDecl()->isComplete()) { | 
|  | // FIXME: stupid workaround for a codegen bug! | 
|  | E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).get(); | 
|  | return E; | 
|  | } | 
|  | } | 
|  |  | 
|  | ExprResult Res = DefaultFunctionArrayLvalueConversion(E); | 
|  | if (Res.isInvalid()) | 
|  | return E; | 
|  | E = Res.get(); | 
|  |  | 
|  | if (!E->getType()->isVoidType()) | 
|  | RequireCompleteType(E->getExprLoc(), E->getType(), | 
|  | diag::err_incomplete_type); | 
|  | return E; | 
|  | } | 
|  |  | 
|  | // If we can unambiguously determine whether Var can never be used | 
|  | // in a constant expression, return true. | 
|  | //  - if the variable and its initializer are non-dependent, then | 
|  | //    we can unambiguously check if the variable is a constant expression. | 
|  | //  - if the initializer is not value dependent - we can determine whether | 
|  | //    it can be used to initialize a constant expression.  If Init can not | 
|  | //    be used to initialize a constant expression we conclude that Var can | 
|  | //    never be a constant expression. | 
|  | //  - FXIME: if the initializer is dependent, we can still do some analysis and | 
|  | //    identify certain cases unambiguously as non-const by using a Visitor: | 
|  | //      - such as those that involve odr-use of a ParmVarDecl, involve a new | 
|  | //        delete, lambda-expr, dynamic-cast, reinterpret-cast etc... | 
|  | static inline bool VariableCanNeverBeAConstantExpression(VarDecl *Var, | 
|  | ASTContext &Context) { | 
|  | if (isa<ParmVarDecl>(Var)) return true; | 
|  | const VarDecl *DefVD = nullptr; | 
|  |  | 
|  | // If there is no initializer - this can not be a constant expression. | 
|  | if (!Var->getAnyInitializer(DefVD)) return true; | 
|  | assert(DefVD); | 
|  | if (DefVD->isWeak()) return false; | 
|  | EvaluatedStmt *Eval = DefVD->ensureEvaluatedStmt(); | 
|  |  | 
|  | Expr *Init = cast<Expr>(Eval->Value); | 
|  |  | 
|  | if (Var->getType()->isDependentType() || Init->isValueDependent()) { | 
|  | // FIXME: Teach the constant evaluator to deal with the non-dependent parts | 
|  | // of value-dependent expressions, and use it here to determine whether the | 
|  | // initializer is a potential constant expression. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return !IsVariableAConstantExpression(Var, Context); | 
|  | } | 
|  |  | 
|  | /// \brief Check if the current lambda has any potential captures | 
|  | /// that must be captured by any of its enclosing lambdas that are ready to | 
|  | /// capture. If there is a lambda that can capture a nested | 
|  | /// potential-capture, go ahead and do so.  Also, check to see if any | 
|  | /// variables are uncaptureable or do not involve an odr-use so do not | 
|  | /// need to be captured. | 
|  |  | 
|  | static void CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures( | 
|  | Expr *const FE, LambdaScopeInfo *const CurrentLSI, Sema &S) { | 
|  |  | 
|  | assert(!S.isUnevaluatedContext()); | 
|  | assert(S.CurContext->isDependentContext()); | 
|  | assert(CurrentLSI->CallOperator == S.CurContext && | 
|  | "The current call operator must be synchronized with Sema's CurContext"); | 
|  |  | 
|  | const bool IsFullExprInstantiationDependent = FE->isInstantiationDependent(); | 
|  |  | 
|  | ArrayRef<const FunctionScopeInfo *> FunctionScopesArrayRef( | 
|  | S.FunctionScopes.data(), S.FunctionScopes.size()); | 
|  |  | 
|  | // All the potentially captureable variables in the current nested | 
|  | // lambda (within a generic outer lambda), must be captured by an | 
|  | // outer lambda that is enclosed within a non-dependent context. | 
|  | const unsigned NumPotentialCaptures = | 
|  | CurrentLSI->getNumPotentialVariableCaptures(); | 
|  | for (unsigned I = 0; I != NumPotentialCaptures; ++I) { | 
|  | Expr *VarExpr = nullptr; | 
|  | VarDecl *Var = nullptr; | 
|  | CurrentLSI->getPotentialVariableCapture(I, Var, VarExpr); | 
|  | // If the variable is clearly identified as non-odr-used and the full | 
|  | // expression is not instantiation dependent, only then do we not | 
|  | // need to check enclosing lambda's for speculative captures. | 
|  | // For e.g.: | 
|  | // Even though 'x' is not odr-used, it should be captured. | 
|  | // int test() { | 
|  | //   const int x = 10; | 
|  | //   auto L = [=](auto a) { | 
|  | //     (void) +x + a; | 
|  | //   }; | 
|  | // } | 
|  | if (CurrentLSI->isVariableExprMarkedAsNonODRUsed(VarExpr) && | 
|  | !IsFullExprInstantiationDependent) | 
|  | continue; | 
|  |  | 
|  | // If we have a capture-capable lambda for the variable, go ahead and | 
|  | // capture the variable in that lambda (and all its enclosing lambdas). | 
|  | if (const Optional<unsigned> Index = | 
|  | getStackIndexOfNearestEnclosingCaptureCapableLambda( | 
|  | FunctionScopesArrayRef, Var, S)) { | 
|  | const unsigned FunctionScopeIndexOfCapturableLambda = Index.getValue(); | 
|  | MarkVarDeclODRUsed(Var, VarExpr->getExprLoc(), S, | 
|  | &FunctionScopeIndexOfCapturableLambda); | 
|  | } | 
|  | const bool IsVarNeverAConstantExpression = | 
|  | VariableCanNeverBeAConstantExpression(Var, S.Context); | 
|  | if (!IsFullExprInstantiationDependent || IsVarNeverAConstantExpression) { | 
|  | // This full expression is not instantiation dependent or the variable | 
|  | // can not be used in a constant expression - which means | 
|  | // this variable must be odr-used here, so diagnose a | 
|  | // capture violation early, if the variable is un-captureable. | 
|  | // This is purely for diagnosing errors early.  Otherwise, this | 
|  | // error would get diagnosed when the lambda becomes capture ready. | 
|  | QualType CaptureType, DeclRefType; | 
|  | SourceLocation ExprLoc = VarExpr->getExprLoc(); | 
|  | if (S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit, | 
|  | /*EllipsisLoc*/ SourceLocation(), | 
|  | /*BuildAndDiagnose*/false, CaptureType, | 
|  | DeclRefType, nullptr)) { | 
|  | // We will never be able to capture this variable, and we need | 
|  | // to be able to in any and all instantiations, so diagnose it. | 
|  | S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit, | 
|  | /*EllipsisLoc*/ SourceLocation(), | 
|  | /*BuildAndDiagnose*/true, CaptureType, | 
|  | DeclRefType, nullptr); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check if 'this' needs to be captured. | 
|  | if (CurrentLSI->hasPotentialThisCapture()) { | 
|  | // If we have a capture-capable lambda for 'this', go ahead and capture | 
|  | // 'this' in that lambda (and all its enclosing lambdas). | 
|  | if (const Optional<unsigned> Index = | 
|  | getStackIndexOfNearestEnclosingCaptureCapableLambda( | 
|  | FunctionScopesArrayRef, /*0 is 'this'*/ nullptr, S)) { | 
|  | const unsigned FunctionScopeIndexOfCapturableLambda = Index.getValue(); | 
|  | S.CheckCXXThisCapture(CurrentLSI->PotentialThisCaptureLocation, | 
|  | /*Explicit*/ false, /*BuildAndDiagnose*/ true, | 
|  | &FunctionScopeIndexOfCapturableLambda); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Reset all the potential captures at the end of each full-expression. | 
|  | CurrentLSI->clearPotentialCaptures(); | 
|  | } | 
|  |  | 
|  | static ExprResult attemptRecovery(Sema &SemaRef, | 
|  | const TypoCorrectionConsumer &Consumer, | 
|  | TypoCorrection TC) { | 
|  | LookupResult R(SemaRef, Consumer.getLookupResult().getLookupNameInfo(), | 
|  | Consumer.getLookupResult().getLookupKind()); | 
|  | const CXXScopeSpec *SS = Consumer.getSS(); | 
|  | CXXScopeSpec NewSS; | 
|  |  | 
|  | // Use an approprate CXXScopeSpec for building the expr. | 
|  | if (auto *NNS = TC.getCorrectionSpecifier()) | 
|  | NewSS.MakeTrivial(SemaRef.Context, NNS, TC.getCorrectionRange()); | 
|  | else if (SS && !TC.WillReplaceSpecifier()) | 
|  | NewSS = *SS; | 
|  |  | 
|  | if (auto *ND = TC.getCorrectionDecl()) { | 
|  | R.setLookupName(ND->getDeclName()); | 
|  | R.addDecl(ND); | 
|  | if (ND->isCXXClassMember()) { | 
|  | // Figure out the correct naming class to add to the LookupResult. | 
|  | CXXRecordDecl *Record = nullptr; | 
|  | if (auto *NNS = TC.getCorrectionSpecifier()) | 
|  | Record = NNS->getAsType()->getAsCXXRecordDecl(); | 
|  | if (!Record) | 
|  | Record = | 
|  | dyn_cast<CXXRecordDecl>(ND->getDeclContext()->getRedeclContext()); | 
|  | if (Record) | 
|  | R.setNamingClass(Record); | 
|  |  | 
|  | // Detect and handle the case where the decl might be an implicit | 
|  | // member. | 
|  | bool MightBeImplicitMember; | 
|  | if (!Consumer.isAddressOfOperand()) | 
|  | MightBeImplicitMember = true; | 
|  | else if (!NewSS.isEmpty()) | 
|  | MightBeImplicitMember = false; | 
|  | else if (R.isOverloadedResult()) | 
|  | MightBeImplicitMember = false; | 
|  | else if (R.isUnresolvableResult()) | 
|  | MightBeImplicitMember = true; | 
|  | else | 
|  | MightBeImplicitMember = isa<FieldDecl>(ND) || | 
|  | isa<IndirectFieldDecl>(ND) || | 
|  | isa<MSPropertyDecl>(ND); | 
|  |  | 
|  | if (MightBeImplicitMember) | 
|  | return SemaRef.BuildPossibleImplicitMemberExpr( | 
|  | NewSS, /*TemplateKWLoc*/ SourceLocation(), R, | 
|  | /*TemplateArgs*/ nullptr); | 
|  | } else if (auto *Ivar = dyn_cast<ObjCIvarDecl>(ND)) { | 
|  | return SemaRef.LookupInObjCMethod(R, Consumer.getScope(), | 
|  | Ivar->getIdentifier()); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SemaRef.BuildDeclarationNameExpr(NewSS, R, /*NeedsADL*/ false, | 
|  | /*AcceptInvalidDecl*/ true); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | class FindTypoExprs : public RecursiveASTVisitor<FindTypoExprs> { | 
|  | llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs; | 
|  |  | 
|  | public: | 
|  | explicit FindTypoExprs(llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs) | 
|  | : TypoExprs(TypoExprs) {} | 
|  | bool VisitTypoExpr(TypoExpr *TE) { | 
|  | TypoExprs.insert(TE); | 
|  | return true; | 
|  | } | 
|  | }; | 
|  |  | 
|  | class TransformTypos : public TreeTransform<TransformTypos> { | 
|  | typedef TreeTransform<TransformTypos> BaseTransform; | 
|  |  | 
|  | llvm::function_ref<ExprResult(Expr *)> ExprFilter; | 
|  | llvm::SmallSetVector<TypoExpr *, 2> TypoExprs, AmbiguousTypoExprs; | 
|  | llvm::SmallDenseMap<TypoExpr *, ExprResult, 2> TransformCache; | 
|  | llvm::SmallDenseMap<OverloadExpr *, Expr *, 4> OverloadResolution; | 
|  |  | 
|  | /// \brief Emit diagnostics for all of the TypoExprs encountered. | 
|  | /// If the TypoExprs were successfully corrected, then the diagnostics should | 
|  | /// suggest the corrections. Otherwise the diagnostics will not suggest | 
|  | /// anything (having been passed an empty TypoCorrection). | 
|  | void EmitAllDiagnostics() { | 
|  | for (auto E : TypoExprs) { | 
|  | TypoExpr *TE = cast<TypoExpr>(E); | 
|  | auto &State = SemaRef.getTypoExprState(TE); | 
|  | if (State.DiagHandler) { | 
|  | TypoCorrection TC = State.Consumer->getCurrentCorrection(); | 
|  | ExprResult Replacement = TransformCache[TE]; | 
|  |  | 
|  | // Extract the NamedDecl from the transformed TypoExpr and add it to the | 
|  | // TypoCorrection, replacing the existing decls. This ensures the right | 
|  | // NamedDecl is used in diagnostics e.g. in the case where overload | 
|  | // resolution was used to select one from several possible decls that | 
|  | // had been stored in the TypoCorrection. | 
|  | if (auto *ND = getDeclFromExpr( | 
|  | Replacement.isInvalid() ? nullptr : Replacement.get())) | 
|  | TC.setCorrectionDecl(ND); | 
|  |  | 
|  | State.DiagHandler(TC); | 
|  | } | 
|  | SemaRef.clearDelayedTypo(TE); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// \brief If corrections for the first TypoExpr have been exhausted for a | 
|  | /// given combination of the other TypoExprs, retry those corrections against | 
|  | /// the next combination of substitutions for the other TypoExprs by advancing | 
|  | /// to the next potential correction of the second TypoExpr. For the second | 
|  | /// and subsequent TypoExprs, if its stream of corrections has been exhausted, | 
|  | /// the stream is reset and the next TypoExpr's stream is advanced by one (a | 
|  | /// TypoExpr's correction stream is advanced by removing the TypoExpr from the | 
|  | /// TransformCache). Returns true if there is still any untried combinations | 
|  | /// of corrections. | 
|  | bool CheckAndAdvanceTypoExprCorrectionStreams() { | 
|  | for (auto TE : TypoExprs) { | 
|  | auto &State = SemaRef.getTypoExprState(TE); | 
|  | TransformCache.erase(TE); | 
|  | if (!State.Consumer->finished()) | 
|  | return true; | 
|  | State.Consumer->resetCorrectionStream(); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | NamedDecl *getDeclFromExpr(Expr *E) { | 
|  | if (auto *OE = dyn_cast_or_null<OverloadExpr>(E)) | 
|  | E = OverloadResolution[OE]; | 
|  |  | 
|  | if (!E) | 
|  | return nullptr; | 
|  | if (auto *DRE = dyn_cast<DeclRefExpr>(E)) | 
|  | return DRE->getDecl(); | 
|  | if (auto *ME = dyn_cast<MemberExpr>(E)) | 
|  | return ME->getMemberDecl(); | 
|  | // FIXME: Add any other expr types that could be be seen by the delayed typo | 
|  | // correction TreeTransform for which the corresponding TypoCorrection could | 
|  | // contain multiple decls. | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | ExprResult TryTransform(Expr *E) { | 
|  | Sema::SFINAETrap Trap(SemaRef); | 
|  | ExprResult Res = TransformExpr(E); | 
|  | if (Trap.hasErrorOccurred() || Res.isInvalid()) | 
|  | return ExprError(); | 
|  |  | 
|  | return ExprFilter(Res.get()); | 
|  | } | 
|  |  | 
|  | public: | 
|  | TransformTypos(Sema &SemaRef, llvm::function_ref<ExprResult(Expr *)> Filter) | 
|  | : BaseTransform(SemaRef), ExprFilter(Filter) {} | 
|  |  | 
|  | ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc, | 
|  | MultiExprArg Args, | 
|  | SourceLocation RParenLoc, | 
|  | Expr *ExecConfig = nullptr) { | 
|  | auto Result = BaseTransform::RebuildCallExpr(Callee, LParenLoc, Args, | 
|  | RParenLoc, ExecConfig); | 
|  | if (auto *OE = dyn_cast<OverloadExpr>(Callee)) { | 
|  | if (Result.isUsable()) { | 
|  | Expr *ResultCall = Result.get(); | 
|  | if (auto *BE = dyn_cast<CXXBindTemporaryExpr>(ResultCall)) | 
|  | ResultCall = BE->getSubExpr(); | 
|  | if (auto *CE = dyn_cast<CallExpr>(ResultCall)) | 
|  | OverloadResolution[OE] = CE->getCallee(); | 
|  | } | 
|  | } | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | ExprResult TransformLambdaExpr(LambdaExpr *E) { return Owned(E); } | 
|  |  | 
|  | ExprResult Transform(Expr *E) { | 
|  | ExprResult Res; | 
|  | while (true) { | 
|  | Res = TryTransform(E); | 
|  |  | 
|  | // Exit if either the transform was valid or if there were no TypoExprs | 
|  | // to transform that still have any untried correction candidates.. | 
|  | if (!Res.isInvalid() || | 
|  | !CheckAndAdvanceTypoExprCorrectionStreams()) | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Ensure none of the TypoExprs have multiple typo correction candidates | 
|  | // with the same edit length that pass all the checks and filters. | 
|  | // TODO: Properly handle various permutations of possible corrections when | 
|  | // there is more than one potentially ambiguous typo correction. | 
|  | while (!AmbiguousTypoExprs.empty()) { | 
|  | auto TE  = AmbiguousTypoExprs.back(); | 
|  | auto Cached = TransformCache[TE]; | 
|  | auto &State = SemaRef.getTypoExprState(TE); | 
|  | State.Consumer->saveCurrentPosition(); | 
|  | TransformCache.erase(TE); | 
|  | if (!TryTransform(E).isInvalid()) { | 
|  | State.Consumer->resetCorrectionStream(); | 
|  | TransformCache.erase(TE); | 
|  | Res = ExprError(); | 
|  | break; | 
|  | } | 
|  | AmbiguousTypoExprs.remove(TE); | 
|  | State.Consumer->restoreSavedPosition(); | 
|  | TransformCache[TE] = Cached; | 
|  | } | 
|  |  | 
|  | // Ensure that all of the TypoExprs within the current Expr have been found. | 
|  | if (!Res.isUsable()) | 
|  | FindTypoExprs(TypoExprs).TraverseStmt(E); | 
|  |  | 
|  | EmitAllDiagnostics(); | 
|  |  | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | ExprResult TransformTypoExpr(TypoExpr *E) { | 
|  | // If the TypoExpr hasn't been seen before, record it. Otherwise, return the | 
|  | // cached transformation result if there is one and the TypoExpr isn't the | 
|  | // first one that was encountered. | 
|  | auto &CacheEntry = TransformCache[E]; | 
|  | if (!TypoExprs.insert(E) && !CacheEntry.isUnset()) { | 
|  | return CacheEntry; | 
|  | } | 
|  |  | 
|  | auto &State = SemaRef.getTypoExprState(E); | 
|  | assert(State.Consumer && "Cannot transform a cleared TypoExpr"); | 
|  |  | 
|  | // For the first TypoExpr and an uncached TypoExpr, find the next likely | 
|  | // typo correction and return it. | 
|  | while (TypoCorrection TC = State.Consumer->getNextCorrection()) { | 
|  | ExprResult NE = State.RecoveryHandler ? | 
|  | State.RecoveryHandler(SemaRef, E, TC) : | 
|  | attemptRecovery(SemaRef, *State.Consumer, TC); | 
|  | if (!NE.isInvalid()) { | 
|  | // Check whether there may be a second viable correction with the same | 
|  | // edit distance; if so, remember this TypoExpr may have an ambiguous | 
|  | // correction so it can be more thoroughly vetted later. | 
|  | TypoCorrection Next; | 
|  | if ((Next = State.Consumer->peekNextCorrection()) && | 
|  | Next.getEditDistance(false) == TC.getEditDistance(false)) { | 
|  | AmbiguousTypoExprs.insert(E); | 
|  | } else { | 
|  | AmbiguousTypoExprs.remove(E); | 
|  | } | 
|  | assert(!NE.isUnset() && | 
|  | "Typo was transformed into a valid-but-null ExprResult"); | 
|  | return CacheEntry = NE; | 
|  | } | 
|  | } | 
|  | return CacheEntry = ExprError(); | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | ExprResult Sema::CorrectDelayedTyposInExpr( | 
|  | Expr *E, llvm::function_ref<ExprResult(Expr *)> Filter) { | 
|  | // If the current evaluation context indicates there are uncorrected typos | 
|  | // and the current expression isn't guaranteed to not have typos, try to | 
|  | // resolve any TypoExpr nodes that might be in the expression. | 
|  | if (E && !ExprEvalContexts.empty() && ExprEvalContexts.back().NumTypos && | 
|  | (E->isTypeDependent() || E->isValueDependent() || | 
|  | E->isInstantiationDependent())) { | 
|  | auto TyposInContext = ExprEvalContexts.back().NumTypos; | 
|  | assert(TyposInContext < ~0U && "Recursive call of CorrectDelayedTyposInExpr"); | 
|  | ExprEvalContexts.back().NumTypos = ~0U; | 
|  | auto TyposResolved = DelayedTypos.size(); | 
|  | auto Result = TransformTypos(*this, Filter).Transform(E); | 
|  | ExprEvalContexts.back().NumTypos = TyposInContext; | 
|  | TyposResolved -= DelayedTypos.size(); | 
|  | if (Result.isInvalid() || Result.get() != E) { | 
|  | ExprEvalContexts.back().NumTypos -= TyposResolved; | 
|  | return Result; | 
|  | } | 
|  | assert(TyposResolved == 0 && "Corrected typo but got same Expr back?"); | 
|  | } | 
|  | return E; | 
|  | } | 
|  |  | 
|  | ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC, | 
|  | bool DiscardedValue, | 
|  | bool IsConstexpr, | 
|  | bool IsLambdaInitCaptureInitializer) { | 
|  | ExprResult FullExpr = FE; | 
|  |  | 
|  | if (!FullExpr.get()) | 
|  | return ExprError(); | 
|  |  | 
|  | // If we are an init-expression in a lambdas init-capture, we should not | 
|  | // diagnose an unexpanded pack now (will be diagnosed once lambda-expr | 
|  | // containing full-expression is done). | 
|  | // template<class ... Ts> void test(Ts ... t) { | 
|  | //   test([&a(t)]() { <-- (t) is an init-expr that shouldn't be diagnosed now. | 
|  | //     return a; | 
|  | //   }() ...); | 
|  | // } | 
|  | // FIXME: This is a hack. It would be better if we pushed the lambda scope | 
|  | // when we parse the lambda introducer, and teach capturing (but not | 
|  | // unexpanded pack detection) to walk over LambdaScopeInfos which don't have a | 
|  | // corresponding class yet (that is, have LambdaScopeInfo either represent a | 
|  | // lambda where we've entered the introducer but not the body, or represent a | 
|  | // lambda where we've entered the body, depending on where the | 
|  | // parser/instantiation has got to). | 
|  | if (!IsLambdaInitCaptureInitializer && | 
|  | DiagnoseUnexpandedParameterPack(FullExpr.get())) | 
|  | return ExprError(); | 
|  |  | 
|  | // Top-level expressions default to 'id' when we're in a debugger. | 
|  | if (DiscardedValue && getLangOpts().DebuggerCastResultToId && | 
|  | FullExpr.get()->getType() == Context.UnknownAnyTy) { | 
|  | FullExpr = forceUnknownAnyToType(FullExpr.get(), Context.getObjCIdType()); | 
|  | if (FullExpr.isInvalid()) | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | if (DiscardedValue) { | 
|  | FullExpr = CheckPlaceholderExpr(FullExpr.get()); | 
|  | if (FullExpr.isInvalid()) | 
|  | return ExprError(); | 
|  |  | 
|  | FullExpr = IgnoredValueConversions(FullExpr.get()); | 
|  | if (FullExpr.isInvalid()) | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | FullExpr = CorrectDelayedTyposInExpr(FullExpr.get()); | 
|  | if (FullExpr.isInvalid()) | 
|  | return ExprError(); | 
|  |  | 
|  | CheckCompletedExpr(FullExpr.get(), CC, IsConstexpr); | 
|  |  | 
|  | // At the end of this full expression (which could be a deeply nested | 
|  | // lambda), if there is a potential capture within the nested lambda, | 
|  | // have the outer capture-able lambda try and capture it. | 
|  | // Consider the following code: | 
|  | // void f(int, int); | 
|  | // void f(const int&, double); | 
|  | // void foo() { | 
|  | //  const int x = 10, y = 20; | 
|  | //  auto L = [=](auto a) { | 
|  | //      auto M = [=](auto b) { | 
|  | //         f(x, b); <-- requires x to be captured by L and M | 
|  | //         f(y, a); <-- requires y to be captured by L, but not all Ms | 
|  | //      }; | 
|  | //   }; | 
|  | // } | 
|  |  | 
|  | // FIXME: Also consider what happens for something like this that involves | 
|  | // the gnu-extension statement-expressions or even lambda-init-captures: | 
|  | //   void f() { | 
|  | //     const int n = 0; | 
|  | //     auto L =  [&](auto a) { | 
|  | //       +n + ({ 0; a; }); | 
|  | //     }; | 
|  | //   } | 
|  | // | 
|  | // Here, we see +n, and then the full-expression 0; ends, so we don't | 
|  | // capture n (and instead remove it from our list of potential captures), | 
|  | // and then the full-expression +n + ({ 0; }); ends, but it's too late | 
|  | // for us to see that we need to capture n after all. | 
|  |  | 
|  | LambdaScopeInfo *const CurrentLSI = getCurLambda(); | 
|  | // FIXME: PR 17877 showed that getCurLambda() can return a valid pointer | 
|  | // even if CurContext is not a lambda call operator. Refer to that Bug Report | 
|  | // for an example of the code that might cause this asynchrony. | 
|  | // By ensuring we are in the context of a lambda's call operator | 
|  | // we can fix the bug (we only need to check whether we need to capture | 
|  | // if we are within a lambda's body); but per the comments in that | 
|  | // PR, a proper fix would entail : | 
|  | //   "Alternative suggestion: | 
|  | //   - Add to Sema an integer holding the smallest (outermost) scope | 
|  | //     index that we are *lexically* within, and save/restore/set to | 
|  | //     FunctionScopes.size() in InstantiatingTemplate's | 
|  | //     constructor/destructor. | 
|  | //  - Teach the handful of places that iterate over FunctionScopes to | 
|  | //    stop at the outermost enclosing lexical scope." | 
|  | const bool IsInLambdaDeclContext = isLambdaCallOperator(CurContext); | 
|  | if (IsInLambdaDeclContext && CurrentLSI && | 
|  | CurrentLSI->hasPotentialCaptures() && !FullExpr.isInvalid()) | 
|  | CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(FE, CurrentLSI, | 
|  | *this); | 
|  | return MaybeCreateExprWithCleanups(FullExpr); | 
|  | } | 
|  |  | 
|  | StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) { | 
|  | if (!FullStmt) return StmtError(); | 
|  |  | 
|  | return MaybeCreateStmtWithCleanups(FullStmt); | 
|  | } | 
|  |  | 
|  | Sema::IfExistsResult | 
|  | Sema::CheckMicrosoftIfExistsSymbol(Scope *S, | 
|  | CXXScopeSpec &SS, | 
|  | const DeclarationNameInfo &TargetNameInfo) { | 
|  | DeclarationName TargetName = TargetNameInfo.getName(); | 
|  | if (!TargetName) | 
|  | return IER_DoesNotExist; | 
|  |  | 
|  | // If the name itself is dependent, then the result is dependent. | 
|  | if (TargetName.isDependentName()) | 
|  | return IER_Dependent; | 
|  |  | 
|  | // Do the redeclaration lookup in the current scope. | 
|  | LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName, | 
|  | Sema::NotForRedeclaration); | 
|  | LookupParsedName(R, S, &SS); | 
|  | R.suppressDiagnostics(); | 
|  |  | 
|  | switch (R.getResultKind()) { | 
|  | case LookupResult::Found: | 
|  | case LookupResult::FoundOverloaded: | 
|  | case LookupResult::FoundUnresolvedValue: | 
|  | case LookupResult::Ambiguous: | 
|  | return IER_Exists; | 
|  |  | 
|  | case LookupResult::NotFound: | 
|  | return IER_DoesNotExist; | 
|  |  | 
|  | case LookupResult::NotFoundInCurrentInstantiation: | 
|  | return IER_Dependent; | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Invalid LookupResult Kind!"); | 
|  | } | 
|  |  | 
|  | Sema::IfExistsResult | 
|  | Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc, | 
|  | bool IsIfExists, CXXScopeSpec &SS, | 
|  | UnqualifiedId &Name) { | 
|  | DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name); | 
|  |  | 
|  | // Check for unexpanded parameter packs. | 
|  | SmallVector<UnexpandedParameterPack, 4> Unexpanded; | 
|  | collectUnexpandedParameterPacks(SS, Unexpanded); | 
|  | collectUnexpandedParameterPacks(TargetNameInfo, Unexpanded); | 
|  | if (!Unexpanded.empty()) { | 
|  | DiagnoseUnexpandedParameterPacks(KeywordLoc, | 
|  | IsIfExists? UPPC_IfExists | 
|  | : UPPC_IfNotExists, | 
|  | Unexpanded); | 
|  | return IER_Error; | 
|  | } | 
|  |  | 
|  | return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo); | 
|  | } |