|  | //===- FastISel.cpp - Implementation of the FastISel class ----------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file contains the implementation of the FastISel class. | 
|  | // | 
|  | // "Fast" instruction selection is designed to emit very poor code quickly. | 
|  | // Also, it is not designed to be able to do much lowering, so most illegal | 
|  | // types (e.g. i64 on 32-bit targets) and operations are not supported.  It is | 
|  | // also not intended to be able to do much optimization, except in a few cases | 
|  | // where doing optimizations reduces overall compile time.  For example, folding | 
|  | // constants into immediate fields is often done, because it's cheap and it | 
|  | // reduces the number of instructions later phases have to examine. | 
|  | // | 
|  | // "Fast" instruction selection is able to fail gracefully and transfer | 
|  | // control to the SelectionDAG selector for operations that it doesn't | 
|  | // support.  In many cases, this allows us to avoid duplicating a lot of | 
|  | // the complicated lowering logic that SelectionDAG currently has. | 
|  | // | 
|  | // The intended use for "fast" instruction selection is "-O0" mode | 
|  | // compilation, where the quality of the generated code is irrelevant when | 
|  | // weighed against the speed at which the code can be generated.  Also, | 
|  | // at -O0, the LLVM optimizers are not running, and this makes the | 
|  | // compile time of codegen a much higher portion of the overall compile | 
|  | // time.  Despite its limitations, "fast" instruction selection is able to | 
|  | // handle enough code on its own to provide noticeable overall speedups | 
|  | // in -O0 compiles. | 
|  | // | 
|  | // Basic operations are supported in a target-independent way, by reading | 
|  | // the same instruction descriptions that the SelectionDAG selector reads, | 
|  | // and identifying simple arithmetic operations that can be directly selected | 
|  | // from simple operators.  More complicated operations currently require | 
|  | // target-specific code. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/ADT/APFloat.h" | 
|  | #include "llvm/ADT/APSInt.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/Optional.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallString.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Analysis/BranchProbabilityInfo.h" | 
|  | #include "llvm/Analysis/TargetLibraryInfo.h" | 
|  | #include "llvm/CodeGen/Analysis.h" | 
|  | #include "llvm/CodeGen/FastISel.h" | 
|  | #include "llvm/CodeGen/FunctionLoweringInfo.h" | 
|  | #include "llvm/CodeGen/ISDOpcodes.h" | 
|  | #include "llvm/CodeGen/MachineBasicBlock.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineInstr.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineMemOperand.h" | 
|  | #include "llvm/CodeGen/MachineModuleInfo.h" | 
|  | #include "llvm/CodeGen/MachineOperand.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/MachineValueType.h" | 
|  | #include "llvm/CodeGen/StackMaps.h" | 
|  | #include "llvm/CodeGen/ValueTypes.h" | 
|  | #include "llvm/IR/Argument.h" | 
|  | #include "llvm/IR/Attributes.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/CallSite.h" | 
|  | #include "llvm/IR/CallingConv.h" | 
|  | #include "llvm/IR/Constant.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DebugInfo.h" | 
|  | #include "llvm/IR/DebugLoc.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/GetElementPtrTypeIterator.h" | 
|  | #include "llvm/IR/GlobalValue.h" | 
|  | #include "llvm/IR/InlineAsm.h" | 
|  | #include "llvm/IR/InstrTypes.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/IR/Mangler.h" | 
|  | #include "llvm/IR/Metadata.h" | 
|  | #include "llvm/IR/Operator.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/IR/User.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/MC/MCContext.h" | 
|  | #include "llvm/MC/MCInstrDesc.h" | 
|  | #include "llvm/MC/MCRegisterInfo.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Target/TargetInstrInfo.h" | 
|  | #include "llvm/Target/TargetLowering.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include "llvm/Target/TargetOptions.h" | 
|  | #include "llvm/Target/TargetSubtargetInfo.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <cstdint> | 
|  | #include <iterator> | 
|  | #include <utility> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "isel" | 
|  |  | 
|  | STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by " | 
|  | "target-independent selector"); | 
|  | STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by " | 
|  | "target-specific selector"); | 
|  | STATISTIC(NumFastIselDead, "Number of dead insts removed on failure"); | 
|  |  | 
|  | /// Set the current block to which generated machine instructions will be | 
|  | /// appended, and clear the local CSE map. | 
|  | void FastISel::startNewBlock() { | 
|  | LocalValueMap.clear(); | 
|  |  | 
|  | // Instructions are appended to FuncInfo.MBB. If the basic block already | 
|  | // contains labels or copies, use the last instruction as the last local | 
|  | // value. | 
|  | EmitStartPt = nullptr; | 
|  | if (!FuncInfo.MBB->empty()) | 
|  | EmitStartPt = &FuncInfo.MBB->back(); | 
|  | LastLocalValue = EmitStartPt; | 
|  | } | 
|  |  | 
|  | bool FastISel::lowerArguments() { | 
|  | if (!FuncInfo.CanLowerReturn) | 
|  | // Fallback to SDISel argument lowering code to deal with sret pointer | 
|  | // parameter. | 
|  | return false; | 
|  |  | 
|  | if (!fastLowerArguments()) | 
|  | return false; | 
|  |  | 
|  | // Enter arguments into ValueMap for uses in non-entry BBs. | 
|  | for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(), | 
|  | E = FuncInfo.Fn->arg_end(); | 
|  | I != E; ++I) { | 
|  | DenseMap<const Value *, unsigned>::iterator VI = LocalValueMap.find(&*I); | 
|  | assert(VI != LocalValueMap.end() && "Missed an argument?"); | 
|  | FuncInfo.ValueMap[&*I] = VI->second; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void FastISel::flushLocalValueMap() { | 
|  | LocalValueMap.clear(); | 
|  | LastLocalValue = EmitStartPt; | 
|  | recomputeInsertPt(); | 
|  | SavedInsertPt = FuncInfo.InsertPt; | 
|  | } | 
|  |  | 
|  | bool FastISel::hasTrivialKill(const Value *V) { | 
|  | // Don't consider constants or arguments to have trivial kills. | 
|  | const Instruction *I = dyn_cast<Instruction>(V); | 
|  | if (!I) | 
|  | return false; | 
|  |  | 
|  | // No-op casts are trivially coalesced by fast-isel. | 
|  | if (const auto *Cast = dyn_cast<CastInst>(I)) | 
|  | if (Cast->isNoopCast(DL.getIntPtrType(Cast->getContext())) && | 
|  | !hasTrivialKill(Cast->getOperand(0))) | 
|  | return false; | 
|  |  | 
|  | // Even the value might have only one use in the LLVM IR, it is possible that | 
|  | // FastISel might fold the use into another instruction and now there is more | 
|  | // than one use at the Machine Instruction level. | 
|  | unsigned Reg = lookUpRegForValue(V); | 
|  | if (Reg && !MRI.use_empty(Reg)) | 
|  | return false; | 
|  |  | 
|  | // GEPs with all zero indices are trivially coalesced by fast-isel. | 
|  | if (const auto *GEP = dyn_cast<GetElementPtrInst>(I)) | 
|  | if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0))) | 
|  | return false; | 
|  |  | 
|  | // Only instructions with a single use in the same basic block are considered | 
|  | // to have trivial kills. | 
|  | return I->hasOneUse() && | 
|  | !(I->getOpcode() == Instruction::BitCast || | 
|  | I->getOpcode() == Instruction::PtrToInt || | 
|  | I->getOpcode() == Instruction::IntToPtr) && | 
|  | cast<Instruction>(*I->user_begin())->getParent() == I->getParent(); | 
|  | } | 
|  |  | 
|  | unsigned FastISel::getRegForValue(const Value *V) { | 
|  | EVT RealVT = TLI.getValueType(DL, V->getType(), /*AllowUnknown=*/true); | 
|  | // Don't handle non-simple values in FastISel. | 
|  | if (!RealVT.isSimple()) | 
|  | return 0; | 
|  |  | 
|  | // Ignore illegal types. We must do this before looking up the value | 
|  | // in ValueMap because Arguments are given virtual registers regardless | 
|  | // of whether FastISel can handle them. | 
|  | MVT VT = RealVT.getSimpleVT(); | 
|  | if (!TLI.isTypeLegal(VT)) { | 
|  | // Handle integer promotions, though, because they're common and easy. | 
|  | if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) | 
|  | VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT(); | 
|  | else | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Look up the value to see if we already have a register for it. | 
|  | unsigned Reg = lookUpRegForValue(V); | 
|  | if (Reg) | 
|  | return Reg; | 
|  |  | 
|  | // In bottom-up mode, just create the virtual register which will be used | 
|  | // to hold the value. It will be materialized later. | 
|  | if (isa<Instruction>(V) && | 
|  | (!isa<AllocaInst>(V) || | 
|  | !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V)))) | 
|  | return FuncInfo.InitializeRegForValue(V); | 
|  |  | 
|  | SavePoint SaveInsertPt = enterLocalValueArea(); | 
|  |  | 
|  | // Materialize the value in a register. Emit any instructions in the | 
|  | // local value area. | 
|  | Reg = materializeRegForValue(V, VT); | 
|  |  | 
|  | leaveLocalValueArea(SaveInsertPt); | 
|  |  | 
|  | return Reg; | 
|  | } | 
|  |  | 
|  | unsigned FastISel::materializeConstant(const Value *V, MVT VT) { | 
|  | unsigned Reg = 0; | 
|  | if (const auto *CI = dyn_cast<ConstantInt>(V)) { | 
|  | if (CI->getValue().getActiveBits() <= 64) | 
|  | Reg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue()); | 
|  | } else if (isa<AllocaInst>(V)) | 
|  | Reg = fastMaterializeAlloca(cast<AllocaInst>(V)); | 
|  | else if (isa<ConstantPointerNull>(V)) | 
|  | // Translate this as an integer zero so that it can be | 
|  | // local-CSE'd with actual integer zeros. | 
|  | Reg = getRegForValue( | 
|  | Constant::getNullValue(DL.getIntPtrType(V->getContext()))); | 
|  | else if (const auto *CF = dyn_cast<ConstantFP>(V)) { | 
|  | if (CF->isNullValue()) | 
|  | Reg = fastMaterializeFloatZero(CF); | 
|  | else | 
|  | // Try to emit the constant directly. | 
|  | Reg = fastEmit_f(VT, VT, ISD::ConstantFP, CF); | 
|  |  | 
|  | if (!Reg) { | 
|  | // Try to emit the constant by using an integer constant with a cast. | 
|  | const APFloat &Flt = CF->getValueAPF(); | 
|  | EVT IntVT = TLI.getPointerTy(DL); | 
|  | uint32_t IntBitWidth = IntVT.getSizeInBits(); | 
|  | APSInt SIntVal(IntBitWidth, /*isUnsigned=*/false); | 
|  | bool isExact; | 
|  | (void)Flt.convertToInteger(SIntVal, APFloat::rmTowardZero, &isExact); | 
|  | if (isExact) { | 
|  | unsigned IntegerReg = | 
|  | getRegForValue(ConstantInt::get(V->getContext(), SIntVal)); | 
|  | if (IntegerReg != 0) | 
|  | Reg = fastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg, | 
|  | /*Kill=*/false); | 
|  | } | 
|  | } | 
|  | } else if (const auto *Op = dyn_cast<Operator>(V)) { | 
|  | if (!selectOperator(Op, Op->getOpcode())) | 
|  | if (!isa<Instruction>(Op) || | 
|  | !fastSelectInstruction(cast<Instruction>(Op))) | 
|  | return 0; | 
|  | Reg = lookUpRegForValue(Op); | 
|  | } else if (isa<UndefValue>(V)) { | 
|  | Reg = createResultReg(TLI.getRegClassFor(VT)); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(TargetOpcode::IMPLICIT_DEF), Reg); | 
|  | } | 
|  | return Reg; | 
|  | } | 
|  |  | 
|  | /// Helper for getRegForValue. This function is called when the value isn't | 
|  | /// already available in a register and must be materialized with new | 
|  | /// instructions. | 
|  | unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) { | 
|  | unsigned Reg = 0; | 
|  | // Give the target-specific code a try first. | 
|  | if (isa<Constant>(V)) | 
|  | Reg = fastMaterializeConstant(cast<Constant>(V)); | 
|  |  | 
|  | // If target-specific code couldn't or didn't want to handle the value, then | 
|  | // give target-independent code a try. | 
|  | if (!Reg) | 
|  | Reg = materializeConstant(V, VT); | 
|  |  | 
|  | // Don't cache constant materializations in the general ValueMap. | 
|  | // To do so would require tracking what uses they dominate. | 
|  | if (Reg) { | 
|  | LocalValueMap[V] = Reg; | 
|  | LastLocalValue = MRI.getVRegDef(Reg); | 
|  | } | 
|  | return Reg; | 
|  | } | 
|  |  | 
|  | unsigned FastISel::lookUpRegForValue(const Value *V) { | 
|  | // Look up the value to see if we already have a register for it. We | 
|  | // cache values defined by Instructions across blocks, and other values | 
|  | // only locally. This is because Instructions already have the SSA | 
|  | // def-dominates-use requirement enforced. | 
|  | DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V); | 
|  | if (I != FuncInfo.ValueMap.end()) | 
|  | return I->second; | 
|  | return LocalValueMap[V]; | 
|  | } | 
|  |  | 
|  | void FastISel::updateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) { | 
|  | if (!isa<Instruction>(I)) { | 
|  | LocalValueMap[I] = Reg; | 
|  | return; | 
|  | } | 
|  |  | 
|  | unsigned &AssignedReg = FuncInfo.ValueMap[I]; | 
|  | if (AssignedReg == 0) | 
|  | // Use the new register. | 
|  | AssignedReg = Reg; | 
|  | else if (Reg != AssignedReg) { | 
|  | // Arrange for uses of AssignedReg to be replaced by uses of Reg. | 
|  | for (unsigned i = 0; i < NumRegs; i++) | 
|  | FuncInfo.RegFixups[AssignedReg + i] = Reg + i; | 
|  |  | 
|  | AssignedReg = Reg; | 
|  | } | 
|  | } | 
|  |  | 
|  | std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) { | 
|  | unsigned IdxN = getRegForValue(Idx); | 
|  | if (IdxN == 0) | 
|  | // Unhandled operand. Halt "fast" selection and bail. | 
|  | return std::pair<unsigned, bool>(0, false); | 
|  |  | 
|  | bool IdxNIsKill = hasTrivialKill(Idx); | 
|  |  | 
|  | // If the index is smaller or larger than intptr_t, truncate or extend it. | 
|  | MVT PtrVT = TLI.getPointerTy(DL); | 
|  | EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false); | 
|  | if (IdxVT.bitsLT(PtrVT)) { | 
|  | IdxN = fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN, | 
|  | IdxNIsKill); | 
|  | IdxNIsKill = true; | 
|  | } else if (IdxVT.bitsGT(PtrVT)) { | 
|  | IdxN = | 
|  | fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN, IdxNIsKill); | 
|  | IdxNIsKill = true; | 
|  | } | 
|  | return std::pair<unsigned, bool>(IdxN, IdxNIsKill); | 
|  | } | 
|  |  | 
|  | void FastISel::recomputeInsertPt() { | 
|  | if (getLastLocalValue()) { | 
|  | FuncInfo.InsertPt = getLastLocalValue(); | 
|  | FuncInfo.MBB = FuncInfo.InsertPt->getParent(); | 
|  | ++FuncInfo.InsertPt; | 
|  | } else | 
|  | FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI(); | 
|  |  | 
|  | // Now skip past any EH_LABELs, which must remain at the beginning. | 
|  | while (FuncInfo.InsertPt != FuncInfo.MBB->end() && | 
|  | FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL) | 
|  | ++FuncInfo.InsertPt; | 
|  | } | 
|  |  | 
|  | void FastISel::removeDeadCode(MachineBasicBlock::iterator I, | 
|  | MachineBasicBlock::iterator E) { | 
|  | assert(I.isValid() && E.isValid() && std::distance(I, E) > 0 && | 
|  | "Invalid iterator!"); | 
|  | while (I != E) { | 
|  | MachineInstr *Dead = &*I; | 
|  | ++I; | 
|  | Dead->eraseFromParent(); | 
|  | ++NumFastIselDead; | 
|  | } | 
|  | recomputeInsertPt(); | 
|  | } | 
|  |  | 
|  | FastISel::SavePoint FastISel::enterLocalValueArea() { | 
|  | MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt; | 
|  | DebugLoc OldDL = DbgLoc; | 
|  | recomputeInsertPt(); | 
|  | DbgLoc = DebugLoc(); | 
|  | SavePoint SP = {OldInsertPt, OldDL}; | 
|  | return SP; | 
|  | } | 
|  |  | 
|  | void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) { | 
|  | if (FuncInfo.InsertPt != FuncInfo.MBB->begin()) | 
|  | LastLocalValue = &*std::prev(FuncInfo.InsertPt); | 
|  |  | 
|  | // Restore the previous insert position. | 
|  | FuncInfo.InsertPt = OldInsertPt.InsertPt; | 
|  | DbgLoc = OldInsertPt.DL; | 
|  | } | 
|  |  | 
|  | bool FastISel::selectBinaryOp(const User *I, unsigned ISDOpcode) { | 
|  | EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true); | 
|  | if (VT == MVT::Other || !VT.isSimple()) | 
|  | // Unhandled type. Halt "fast" selection and bail. | 
|  | return false; | 
|  |  | 
|  | // We only handle legal types. For example, on x86-32 the instruction | 
|  | // selector contains all of the 64-bit instructions from x86-64, | 
|  | // under the assumption that i64 won't be used if the target doesn't | 
|  | // support it. | 
|  | if (!TLI.isTypeLegal(VT)) { | 
|  | // MVT::i1 is special. Allow AND, OR, or XOR because they | 
|  | // don't require additional zeroing, which makes them easy. | 
|  | if (VT == MVT::i1 && (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR || | 
|  | ISDOpcode == ISD::XOR)) | 
|  | VT = TLI.getTypeToTransformTo(I->getContext(), VT); | 
|  | else | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Check if the first operand is a constant, and handle it as "ri".  At -O0, | 
|  | // we don't have anything that canonicalizes operand order. | 
|  | if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(0))) | 
|  | if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) { | 
|  | unsigned Op1 = getRegForValue(I->getOperand(1)); | 
|  | if (!Op1) | 
|  | return false; | 
|  | bool Op1IsKill = hasTrivialKill(I->getOperand(1)); | 
|  |  | 
|  | unsigned ResultReg = | 
|  | fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, Op1IsKill, | 
|  | CI->getZExtValue(), VT.getSimpleVT()); | 
|  | if (!ResultReg) | 
|  | return false; | 
|  |  | 
|  | // We successfully emitted code for the given LLVM Instruction. | 
|  | updateValueMap(I, ResultReg); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | unsigned Op0 = getRegForValue(I->getOperand(0)); | 
|  | if (!Op0) // Unhandled operand. Halt "fast" selection and bail. | 
|  | return false; | 
|  | bool Op0IsKill = hasTrivialKill(I->getOperand(0)); | 
|  |  | 
|  | // Check if the second operand is a constant and handle it appropriately. | 
|  | if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { | 
|  | uint64_t Imm = CI->getSExtValue(); | 
|  |  | 
|  | // Transform "sdiv exact X, 8" -> "sra X, 3". | 
|  | if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) && | 
|  | cast<BinaryOperator>(I)->isExact() && isPowerOf2_64(Imm)) { | 
|  | Imm = Log2_64(Imm); | 
|  | ISDOpcode = ISD::SRA; | 
|  | } | 
|  |  | 
|  | // Transform "urem x, pow2" -> "and x, pow2-1". | 
|  | if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) && | 
|  | isPowerOf2_64(Imm)) { | 
|  | --Imm; | 
|  | ISDOpcode = ISD::AND; | 
|  | } | 
|  |  | 
|  | unsigned ResultReg = fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0, | 
|  | Op0IsKill, Imm, VT.getSimpleVT()); | 
|  | if (!ResultReg) | 
|  | return false; | 
|  |  | 
|  | // We successfully emitted code for the given LLVM Instruction. | 
|  | updateValueMap(I, ResultReg); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | unsigned Op1 = getRegForValue(I->getOperand(1)); | 
|  | if (!Op1) // Unhandled operand. Halt "fast" selection and bail. | 
|  | return false; | 
|  | bool Op1IsKill = hasTrivialKill(I->getOperand(1)); | 
|  |  | 
|  | // Now we have both operands in registers. Emit the instruction. | 
|  | unsigned ResultReg = fastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(), | 
|  | ISDOpcode, Op0, Op0IsKill, Op1, Op1IsKill); | 
|  | if (!ResultReg) | 
|  | // Target-specific code wasn't able to find a machine opcode for | 
|  | // the given ISD opcode and type. Halt "fast" selection and bail. | 
|  | return false; | 
|  |  | 
|  | // We successfully emitted code for the given LLVM Instruction. | 
|  | updateValueMap(I, ResultReg); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool FastISel::selectGetElementPtr(const User *I) { | 
|  | unsigned N = getRegForValue(I->getOperand(0)); | 
|  | if (!N) // Unhandled operand. Halt "fast" selection and bail. | 
|  | return false; | 
|  | bool NIsKill = hasTrivialKill(I->getOperand(0)); | 
|  |  | 
|  | // Keep a running tab of the total offset to coalesce multiple N = N + Offset | 
|  | // into a single N = N + TotalOffset. | 
|  | uint64_t TotalOffs = 0; | 
|  | // FIXME: What's a good SWAG number for MaxOffs? | 
|  | uint64_t MaxOffs = 2048; | 
|  | MVT VT = TLI.getPointerTy(DL); | 
|  | for (gep_type_iterator GTI = gep_type_begin(I), E = gep_type_end(I); | 
|  | GTI != E; ++GTI) { | 
|  | const Value *Idx = GTI.getOperand(); | 
|  | if (StructType *StTy = GTI.getStructTypeOrNull()) { | 
|  | uint64_t Field = cast<ConstantInt>(Idx)->getZExtValue(); | 
|  | if (Field) { | 
|  | // N = N + Offset | 
|  | TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field); | 
|  | if (TotalOffs >= MaxOffs) { | 
|  | N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); | 
|  | if (!N) // Unhandled operand. Halt "fast" selection and bail. | 
|  | return false; | 
|  | NIsKill = true; | 
|  | TotalOffs = 0; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | Type *Ty = GTI.getIndexedType(); | 
|  |  | 
|  | // If this is a constant subscript, handle it quickly. | 
|  | if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { | 
|  | if (CI->isZero()) | 
|  | continue; | 
|  | // N = N + Offset | 
|  | uint64_t IdxN = CI->getValue().sextOrTrunc(64).getSExtValue(); | 
|  | TotalOffs += DL.getTypeAllocSize(Ty) * IdxN; | 
|  | if (TotalOffs >= MaxOffs) { | 
|  | N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); | 
|  | if (!N) // Unhandled operand. Halt "fast" selection and bail. | 
|  | return false; | 
|  | NIsKill = true; | 
|  | TotalOffs = 0; | 
|  | } | 
|  | continue; | 
|  | } | 
|  | if (TotalOffs) { | 
|  | N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); | 
|  | if (!N) // Unhandled operand. Halt "fast" selection and bail. | 
|  | return false; | 
|  | NIsKill = true; | 
|  | TotalOffs = 0; | 
|  | } | 
|  |  | 
|  | // N = N + Idx * ElementSize; | 
|  | uint64_t ElementSize = DL.getTypeAllocSize(Ty); | 
|  | std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx); | 
|  | unsigned IdxN = Pair.first; | 
|  | bool IdxNIsKill = Pair.second; | 
|  | if (!IdxN) // Unhandled operand. Halt "fast" selection and bail. | 
|  | return false; | 
|  |  | 
|  | if (ElementSize != 1) { | 
|  | IdxN = fastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT); | 
|  | if (!IdxN) // Unhandled operand. Halt "fast" selection and bail. | 
|  | return false; | 
|  | IdxNIsKill = true; | 
|  | } | 
|  | N = fastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill); | 
|  | if (!N) // Unhandled operand. Halt "fast" selection and bail. | 
|  | return false; | 
|  | } | 
|  | } | 
|  | if (TotalOffs) { | 
|  | N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); | 
|  | if (!N) // Unhandled operand. Halt "fast" selection and bail. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // We successfully emitted code for the given LLVM Instruction. | 
|  | updateValueMap(I, N); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops, | 
|  | const CallInst *CI, unsigned StartIdx) { | 
|  | for (unsigned i = StartIdx, e = CI->getNumArgOperands(); i != e; ++i) { | 
|  | Value *Val = CI->getArgOperand(i); | 
|  | // Check for constants and encode them with a StackMaps::ConstantOp prefix. | 
|  | if (const auto *C = dyn_cast<ConstantInt>(Val)) { | 
|  | Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); | 
|  | Ops.push_back(MachineOperand::CreateImm(C->getSExtValue())); | 
|  | } else if (isa<ConstantPointerNull>(Val)) { | 
|  | Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); | 
|  | Ops.push_back(MachineOperand::CreateImm(0)); | 
|  | } else if (auto *AI = dyn_cast<AllocaInst>(Val)) { | 
|  | // Values coming from a stack location also require a special encoding, | 
|  | // but that is added later on by the target specific frame index | 
|  | // elimination implementation. | 
|  | auto SI = FuncInfo.StaticAllocaMap.find(AI); | 
|  | if (SI != FuncInfo.StaticAllocaMap.end()) | 
|  | Ops.push_back(MachineOperand::CreateFI(SI->second)); | 
|  | else | 
|  | return false; | 
|  | } else { | 
|  | unsigned Reg = getRegForValue(Val); | 
|  | if (!Reg) | 
|  | return false; | 
|  | Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false)); | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool FastISel::selectStackmap(const CallInst *I) { | 
|  | // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, | 
|  | //                                  [live variables...]) | 
|  | assert(I->getCalledFunction()->getReturnType()->isVoidTy() && | 
|  | "Stackmap cannot return a value."); | 
|  |  | 
|  | // The stackmap intrinsic only records the live variables (the arguments | 
|  | // passed to it) and emits NOPS (if requested). Unlike the patchpoint | 
|  | // intrinsic, this won't be lowered to a function call. This means we don't | 
|  | // have to worry about calling conventions and target-specific lowering code. | 
|  | // Instead we perform the call lowering right here. | 
|  | // | 
|  | // CALLSEQ_START(0, 0...) | 
|  | // STACKMAP(id, nbytes, ...) | 
|  | // CALLSEQ_END(0, 0) | 
|  | // | 
|  | SmallVector<MachineOperand, 32> Ops; | 
|  |  | 
|  | // Add the <id> and <numBytes> constants. | 
|  | assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) && | 
|  | "Expected a constant integer."); | 
|  | const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)); | 
|  | Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue())); | 
|  |  | 
|  | assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) && | 
|  | "Expected a constant integer."); | 
|  | const auto *NumBytes = | 
|  | cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)); | 
|  | Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue())); | 
|  |  | 
|  | // Push live variables for the stack map (skipping the first two arguments | 
|  | // <id> and <numBytes>). | 
|  | if (!addStackMapLiveVars(Ops, I, 2)) | 
|  | return false; | 
|  |  | 
|  | // We are not adding any register mask info here, because the stackmap doesn't | 
|  | // clobber anything. | 
|  |  | 
|  | // Add scratch registers as implicit def and early clobber. | 
|  | CallingConv::ID CC = I->getCallingConv(); | 
|  | const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); | 
|  | for (unsigned i = 0; ScratchRegs[i]; ++i) | 
|  | Ops.push_back(MachineOperand::CreateReg( | 
|  | ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false, | 
|  | /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true)); | 
|  |  | 
|  | // Issue CALLSEQ_START | 
|  | unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); | 
|  | auto Builder = | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown)); | 
|  | const MCInstrDesc &MCID = Builder.getInstr()->getDesc(); | 
|  | for (unsigned I = 0, E = MCID.getNumOperands(); I < E; ++I) | 
|  | Builder.addImm(0); | 
|  |  | 
|  | // Issue STACKMAP. | 
|  | MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(TargetOpcode::STACKMAP)); | 
|  | for (auto const &MO : Ops) | 
|  | MIB.add(MO); | 
|  |  | 
|  | // Issue CALLSEQ_END | 
|  | unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp)) | 
|  | .addImm(0) | 
|  | .addImm(0); | 
|  |  | 
|  | // Inform the Frame Information that we have a stackmap in this function. | 
|  | FuncInfo.MF->getFrameInfo().setHasStackMap(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// \brief Lower an argument list according to the target calling convention. | 
|  | /// | 
|  | /// This is a helper for lowering intrinsics that follow a target calling | 
|  | /// convention or require stack pointer adjustment. Only a subset of the | 
|  | /// intrinsic's operands need to participate in the calling convention. | 
|  | bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx, | 
|  | unsigned NumArgs, const Value *Callee, | 
|  | bool ForceRetVoidTy, CallLoweringInfo &CLI) { | 
|  | ArgListTy Args; | 
|  | Args.reserve(NumArgs); | 
|  |  | 
|  | // Populate the argument list. | 
|  | ImmutableCallSite CS(CI); | 
|  | for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; ArgI != ArgE; ++ArgI) { | 
|  | Value *V = CI->getOperand(ArgI); | 
|  |  | 
|  | assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); | 
|  |  | 
|  | ArgListEntry Entry; | 
|  | Entry.Val = V; | 
|  | Entry.Ty = V->getType(); | 
|  | Entry.setAttributes(&CS, ArgIdx); | 
|  | Args.push_back(Entry); | 
|  | } | 
|  |  | 
|  | Type *RetTy = ForceRetVoidTy ? Type::getVoidTy(CI->getType()->getContext()) | 
|  | : CI->getType(); | 
|  | CLI.setCallee(CI->getCallingConv(), RetTy, Callee, std::move(Args), NumArgs); | 
|  |  | 
|  | return lowerCallTo(CLI); | 
|  | } | 
|  |  | 
|  | FastISel::CallLoweringInfo &FastISel::CallLoweringInfo::setCallee( | 
|  | const DataLayout &DL, MCContext &Ctx, CallingConv::ID CC, Type *ResultTy, | 
|  | StringRef Target, ArgListTy &&ArgsList, unsigned FixedArgs) { | 
|  | SmallString<32> MangledName; | 
|  | Mangler::getNameWithPrefix(MangledName, Target, DL); | 
|  | MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName); | 
|  | return setCallee(CC, ResultTy, Sym, std::move(ArgsList), FixedArgs); | 
|  | } | 
|  |  | 
|  | bool FastISel::selectPatchpoint(const CallInst *I) { | 
|  | // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, | 
|  | //                                                 i32 <numBytes>, | 
|  | //                                                 i8* <target>, | 
|  | //                                                 i32 <numArgs>, | 
|  | //                                                 [Args...], | 
|  | //                                                 [live variables...]) | 
|  | CallingConv::ID CC = I->getCallingConv(); | 
|  | bool IsAnyRegCC = CC == CallingConv::AnyReg; | 
|  | bool HasDef = !I->getType()->isVoidTy(); | 
|  | Value *Callee = I->getOperand(PatchPointOpers::TargetPos)->stripPointerCasts(); | 
|  |  | 
|  | // Get the real number of arguments participating in the call <numArgs> | 
|  | assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)) && | 
|  | "Expected a constant integer."); | 
|  | const auto *NumArgsVal = | 
|  | cast<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)); | 
|  | unsigned NumArgs = NumArgsVal->getZExtValue(); | 
|  |  | 
|  | // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> | 
|  | // This includes all meta-operands up to but not including CC. | 
|  | unsigned NumMetaOpers = PatchPointOpers::CCPos; | 
|  | assert(I->getNumArgOperands() >= NumMetaOpers + NumArgs && | 
|  | "Not enough arguments provided to the patchpoint intrinsic"); | 
|  |  | 
|  | // For AnyRegCC the arguments are lowered later on manually. | 
|  | unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; | 
|  | CallLoweringInfo CLI; | 
|  | CLI.setIsPatchPoint(); | 
|  | if (!lowerCallOperands(I, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, CLI)) | 
|  | return false; | 
|  |  | 
|  | assert(CLI.Call && "No call instruction specified."); | 
|  |  | 
|  | SmallVector<MachineOperand, 32> Ops; | 
|  |  | 
|  | // Add an explicit result reg if we use the anyreg calling convention. | 
|  | if (IsAnyRegCC && HasDef) { | 
|  | assert(CLI.NumResultRegs == 0 && "Unexpected result register."); | 
|  | CLI.ResultReg = createResultReg(TLI.getRegClassFor(MVT::i64)); | 
|  | CLI.NumResultRegs = 1; | 
|  | Ops.push_back(MachineOperand::CreateReg(CLI.ResultReg, /*IsDef=*/true)); | 
|  | } | 
|  |  | 
|  | // Add the <id> and <numBytes> constants. | 
|  | assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) && | 
|  | "Expected a constant integer."); | 
|  | const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)); | 
|  | Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue())); | 
|  |  | 
|  | assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) && | 
|  | "Expected a constant integer."); | 
|  | const auto *NumBytes = | 
|  | cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)); | 
|  | Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue())); | 
|  |  | 
|  | // Add the call target. | 
|  | if (const auto *C = dyn_cast<IntToPtrInst>(Callee)) { | 
|  | uint64_t CalleeConstAddr = | 
|  | cast<ConstantInt>(C->getOperand(0))->getZExtValue(); | 
|  | Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr)); | 
|  | } else if (const auto *C = dyn_cast<ConstantExpr>(Callee)) { | 
|  | if (C->getOpcode() == Instruction::IntToPtr) { | 
|  | uint64_t CalleeConstAddr = | 
|  | cast<ConstantInt>(C->getOperand(0))->getZExtValue(); | 
|  | Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr)); | 
|  | } else | 
|  | llvm_unreachable("Unsupported ConstantExpr."); | 
|  | } else if (const auto *GV = dyn_cast<GlobalValue>(Callee)) { | 
|  | Ops.push_back(MachineOperand::CreateGA(GV, 0)); | 
|  | } else if (isa<ConstantPointerNull>(Callee)) | 
|  | Ops.push_back(MachineOperand::CreateImm(0)); | 
|  | else | 
|  | llvm_unreachable("Unsupported callee address."); | 
|  |  | 
|  | // Adjust <numArgs> to account for any arguments that have been passed on | 
|  | // the stack instead. | 
|  | unsigned NumCallRegArgs = IsAnyRegCC ? NumArgs : CLI.OutRegs.size(); | 
|  | Ops.push_back(MachineOperand::CreateImm(NumCallRegArgs)); | 
|  |  | 
|  | // Add the calling convention | 
|  | Ops.push_back(MachineOperand::CreateImm((unsigned)CC)); | 
|  |  | 
|  | // Add the arguments we omitted previously. The register allocator should | 
|  | // place these in any free register. | 
|  | if (IsAnyRegCC) { | 
|  | for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) { | 
|  | unsigned Reg = getRegForValue(I->getArgOperand(i)); | 
|  | if (!Reg) | 
|  | return false; | 
|  | Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Push the arguments from the call instruction. | 
|  | for (auto Reg : CLI.OutRegs) | 
|  | Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false)); | 
|  |  | 
|  | // Push live variables for the stack map. | 
|  | if (!addStackMapLiveVars(Ops, I, NumMetaOpers + NumArgs)) | 
|  | return false; | 
|  |  | 
|  | // Push the register mask info. | 
|  | Ops.push_back(MachineOperand::CreateRegMask( | 
|  | TRI.getCallPreservedMask(*FuncInfo.MF, CC))); | 
|  |  | 
|  | // Add scratch registers as implicit def and early clobber. | 
|  | const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); | 
|  | for (unsigned i = 0; ScratchRegs[i]; ++i) | 
|  | Ops.push_back(MachineOperand::CreateReg( | 
|  | ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false, | 
|  | /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true)); | 
|  |  | 
|  | // Add implicit defs (return values). | 
|  | for (auto Reg : CLI.InRegs) | 
|  | Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/true, | 
|  | /*IsImpl=*/true)); | 
|  |  | 
|  | // Insert the patchpoint instruction before the call generated by the target. | 
|  | MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, CLI.Call, DbgLoc, | 
|  | TII.get(TargetOpcode::PATCHPOINT)); | 
|  |  | 
|  | for (auto &MO : Ops) | 
|  | MIB.add(MO); | 
|  |  | 
|  | MIB->setPhysRegsDeadExcept(CLI.InRegs, TRI); | 
|  |  | 
|  | // Delete the original call instruction. | 
|  | CLI.Call->eraseFromParent(); | 
|  |  | 
|  | // Inform the Frame Information that we have a patchpoint in this function. | 
|  | FuncInfo.MF->getFrameInfo().setHasPatchPoint(); | 
|  |  | 
|  | if (CLI.NumResultRegs) | 
|  | updateValueMap(I, CLI.ResultReg, CLI.NumResultRegs); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool FastISel::selectXRayCustomEvent(const CallInst *I) { | 
|  | const auto &Triple = TM.getTargetTriple(); | 
|  | if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) | 
|  | return true; // don't do anything to this instruction. | 
|  | SmallVector<MachineOperand, 8> Ops; | 
|  | Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)), | 
|  | /*IsDef=*/false)); | 
|  | Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)), | 
|  | /*IsDef=*/false)); | 
|  | MachineInstrBuilder MIB = | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(TargetOpcode::PATCHABLE_EVENT_CALL)); | 
|  | for (auto &MO : Ops) | 
|  | MIB.add(MO); | 
|  | // Insert the Patchable Event Call instruction, that gets lowered properly. | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// Returns an AttributeList representing the attributes applied to the return | 
|  | /// value of the given call. | 
|  | static AttributeList getReturnAttrs(FastISel::CallLoweringInfo &CLI) { | 
|  | SmallVector<Attribute::AttrKind, 2> Attrs; | 
|  | if (CLI.RetSExt) | 
|  | Attrs.push_back(Attribute::SExt); | 
|  | if (CLI.RetZExt) | 
|  | Attrs.push_back(Attribute::ZExt); | 
|  | if (CLI.IsInReg) | 
|  | Attrs.push_back(Attribute::InReg); | 
|  |  | 
|  | return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, | 
|  | Attrs); | 
|  | } | 
|  |  | 
|  | bool FastISel::lowerCallTo(const CallInst *CI, const char *SymName, | 
|  | unsigned NumArgs) { | 
|  | MCContext &Ctx = MF->getContext(); | 
|  | SmallString<32> MangledName; | 
|  | Mangler::getNameWithPrefix(MangledName, SymName, DL); | 
|  | MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName); | 
|  | return lowerCallTo(CI, Sym, NumArgs); | 
|  | } | 
|  |  | 
|  | bool FastISel::lowerCallTo(const CallInst *CI, MCSymbol *Symbol, | 
|  | unsigned NumArgs) { | 
|  | ImmutableCallSite CS(CI); | 
|  |  | 
|  | FunctionType *FTy = CS.getFunctionType(); | 
|  | Type *RetTy = CS.getType(); | 
|  |  | 
|  | ArgListTy Args; | 
|  | Args.reserve(NumArgs); | 
|  |  | 
|  | // Populate the argument list. | 
|  | // Attributes for args start at offset 1, after the return attribute. | 
|  | for (unsigned ArgI = 0; ArgI != NumArgs; ++ArgI) { | 
|  | Value *V = CI->getOperand(ArgI); | 
|  |  | 
|  | assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); | 
|  |  | 
|  | ArgListEntry Entry; | 
|  | Entry.Val = V; | 
|  | Entry.Ty = V->getType(); | 
|  | Entry.setAttributes(&CS, ArgI); | 
|  | Args.push_back(Entry); | 
|  | } | 
|  | TLI.markLibCallAttributes(MF, CS.getCallingConv(), Args); | 
|  |  | 
|  | CallLoweringInfo CLI; | 
|  | CLI.setCallee(RetTy, FTy, Symbol, std::move(Args), CS, NumArgs); | 
|  |  | 
|  | return lowerCallTo(CLI); | 
|  | } | 
|  |  | 
|  | bool FastISel::lowerCallTo(CallLoweringInfo &CLI) { | 
|  | // Handle the incoming return values from the call. | 
|  | CLI.clearIns(); | 
|  | SmallVector<EVT, 4> RetTys; | 
|  | ComputeValueVTs(TLI, DL, CLI.RetTy, RetTys); | 
|  |  | 
|  | SmallVector<ISD::OutputArg, 4> Outs; | 
|  | GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, TLI, DL); | 
|  |  | 
|  | bool CanLowerReturn = TLI.CanLowerReturn( | 
|  | CLI.CallConv, *FuncInfo.MF, CLI.IsVarArg, Outs, CLI.RetTy->getContext()); | 
|  |  | 
|  | // FIXME: sret demotion isn't supported yet - bail out. | 
|  | if (!CanLowerReturn) | 
|  | return false; | 
|  |  | 
|  | for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { | 
|  | EVT VT = RetTys[I]; | 
|  | MVT RegisterVT = TLI.getRegisterType(CLI.RetTy->getContext(), VT); | 
|  | unsigned NumRegs = TLI.getNumRegisters(CLI.RetTy->getContext(), VT); | 
|  | for (unsigned i = 0; i != NumRegs; ++i) { | 
|  | ISD::InputArg MyFlags; | 
|  | MyFlags.VT = RegisterVT; | 
|  | MyFlags.ArgVT = VT; | 
|  | MyFlags.Used = CLI.IsReturnValueUsed; | 
|  | if (CLI.RetSExt) | 
|  | MyFlags.Flags.setSExt(); | 
|  | if (CLI.RetZExt) | 
|  | MyFlags.Flags.setZExt(); | 
|  | if (CLI.IsInReg) | 
|  | MyFlags.Flags.setInReg(); | 
|  | CLI.Ins.push_back(MyFlags); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Handle all of the outgoing arguments. | 
|  | CLI.clearOuts(); | 
|  | for (auto &Arg : CLI.getArgs()) { | 
|  | Type *FinalType = Arg.Ty; | 
|  | if (Arg.IsByVal) | 
|  | FinalType = cast<PointerType>(Arg.Ty)->getElementType(); | 
|  | bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( | 
|  | FinalType, CLI.CallConv, CLI.IsVarArg); | 
|  |  | 
|  | ISD::ArgFlagsTy Flags; | 
|  | if (Arg.IsZExt) | 
|  | Flags.setZExt(); | 
|  | if (Arg.IsSExt) | 
|  | Flags.setSExt(); | 
|  | if (Arg.IsInReg) | 
|  | Flags.setInReg(); | 
|  | if (Arg.IsSRet) | 
|  | Flags.setSRet(); | 
|  | if (Arg.IsSwiftSelf) | 
|  | Flags.setSwiftSelf(); | 
|  | if (Arg.IsSwiftError) | 
|  | Flags.setSwiftError(); | 
|  | if (Arg.IsByVal) | 
|  | Flags.setByVal(); | 
|  | if (Arg.IsInAlloca) { | 
|  | Flags.setInAlloca(); | 
|  | // Set the byval flag for CCAssignFn callbacks that don't know about | 
|  | // inalloca. This way we can know how many bytes we should've allocated | 
|  | // and how many bytes a callee cleanup function will pop.  If we port | 
|  | // inalloca to more targets, we'll have to add custom inalloca handling in | 
|  | // the various CC lowering callbacks. | 
|  | Flags.setByVal(); | 
|  | } | 
|  | if (Arg.IsByVal || Arg.IsInAlloca) { | 
|  | PointerType *Ty = cast<PointerType>(Arg.Ty); | 
|  | Type *ElementTy = Ty->getElementType(); | 
|  | unsigned FrameSize = DL.getTypeAllocSize(ElementTy); | 
|  | // For ByVal, alignment should come from FE. BE will guess if this info is | 
|  | // not there, but there are cases it cannot get right. | 
|  | unsigned FrameAlign = Arg.Alignment; | 
|  | if (!FrameAlign) | 
|  | FrameAlign = TLI.getByValTypeAlignment(ElementTy, DL); | 
|  | Flags.setByValSize(FrameSize); | 
|  | Flags.setByValAlign(FrameAlign); | 
|  | } | 
|  | if (Arg.IsNest) | 
|  | Flags.setNest(); | 
|  | if (NeedsRegBlock) | 
|  | Flags.setInConsecutiveRegs(); | 
|  | unsigned OriginalAlignment = DL.getABITypeAlignment(Arg.Ty); | 
|  | Flags.setOrigAlign(OriginalAlignment); | 
|  |  | 
|  | CLI.OutVals.push_back(Arg.Val); | 
|  | CLI.OutFlags.push_back(Flags); | 
|  | } | 
|  |  | 
|  | if (!fastLowerCall(CLI)) | 
|  | return false; | 
|  |  | 
|  | // Set all unused physreg defs as dead. | 
|  | assert(CLI.Call && "No call instruction specified."); | 
|  | CLI.Call->setPhysRegsDeadExcept(CLI.InRegs, TRI); | 
|  |  | 
|  | if (CLI.NumResultRegs && CLI.CS) | 
|  | updateValueMap(CLI.CS->getInstruction(), CLI.ResultReg, CLI.NumResultRegs); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool FastISel::lowerCall(const CallInst *CI) { | 
|  | ImmutableCallSite CS(CI); | 
|  |  | 
|  | FunctionType *FuncTy = CS.getFunctionType(); | 
|  | Type *RetTy = CS.getType(); | 
|  |  | 
|  | ArgListTy Args; | 
|  | ArgListEntry Entry; | 
|  | Args.reserve(CS.arg_size()); | 
|  |  | 
|  | for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); | 
|  | i != e; ++i) { | 
|  | Value *V = *i; | 
|  |  | 
|  | // Skip empty types | 
|  | if (V->getType()->isEmptyTy()) | 
|  | continue; | 
|  |  | 
|  | Entry.Val = V; | 
|  | Entry.Ty = V->getType(); | 
|  |  | 
|  | // Skip the first return-type Attribute to get to params. | 
|  | Entry.setAttributes(&CS, i - CS.arg_begin()); | 
|  | Args.push_back(Entry); | 
|  | } | 
|  |  | 
|  | // Check if target-independent constraints permit a tail call here. | 
|  | // Target-dependent constraints are checked within fastLowerCall. | 
|  | bool IsTailCall = CI->isTailCall(); | 
|  | if (IsTailCall && !isInTailCallPosition(CS, TM)) | 
|  | IsTailCall = false; | 
|  |  | 
|  | CallLoweringInfo CLI; | 
|  | CLI.setCallee(RetTy, FuncTy, CI->getCalledValue(), std::move(Args), CS) | 
|  | .setTailCall(IsTailCall); | 
|  |  | 
|  | return lowerCallTo(CLI); | 
|  | } | 
|  |  | 
|  | bool FastISel::selectCall(const User *I) { | 
|  | const CallInst *Call = cast<CallInst>(I); | 
|  |  | 
|  | // Handle simple inline asms. | 
|  | if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledValue())) { | 
|  | // If the inline asm has side effects, then make sure that no local value | 
|  | // lives across by flushing the local value map. | 
|  | if (IA->hasSideEffects()) | 
|  | flushLocalValueMap(); | 
|  |  | 
|  | // Don't attempt to handle constraints. | 
|  | if (!IA->getConstraintString().empty()) | 
|  | return false; | 
|  |  | 
|  | unsigned ExtraInfo = 0; | 
|  | if (IA->hasSideEffects()) | 
|  | ExtraInfo |= InlineAsm::Extra_HasSideEffects; | 
|  | if (IA->isAlignStack()) | 
|  | ExtraInfo |= InlineAsm::Extra_IsAlignStack; | 
|  |  | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(TargetOpcode::INLINEASM)) | 
|  | .addExternalSymbol(IA->getAsmString().c_str()) | 
|  | .addImm(ExtraInfo); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | MachineModuleInfo &MMI = FuncInfo.MF->getMMI(); | 
|  | computeUsesVAFloatArgument(*Call, MMI); | 
|  |  | 
|  | // Handle intrinsic function calls. | 
|  | if (const auto *II = dyn_cast<IntrinsicInst>(Call)) | 
|  | return selectIntrinsicCall(II); | 
|  |  | 
|  | // Usually, it does not make sense to initialize a value, | 
|  | // make an unrelated function call and use the value, because | 
|  | // it tends to be spilled on the stack. So, we move the pointer | 
|  | // to the last local value to the beginning of the block, so that | 
|  | // all the values which have already been materialized, | 
|  | // appear after the call. It also makes sense to skip intrinsics | 
|  | // since they tend to be inlined. | 
|  | flushLocalValueMap(); | 
|  |  | 
|  | return lowerCall(Call); | 
|  | } | 
|  |  | 
|  | bool FastISel::selectIntrinsicCall(const IntrinsicInst *II) { | 
|  | switch (II->getIntrinsicID()) { | 
|  | default: | 
|  | break; | 
|  | // At -O0 we don't care about the lifetime intrinsics. | 
|  | case Intrinsic::lifetime_start: | 
|  | case Intrinsic::lifetime_end: | 
|  | // The donothing intrinsic does, well, nothing. | 
|  | case Intrinsic::donothing: | 
|  | // Neither does the assume intrinsic; it's also OK not to codegen its operand. | 
|  | case Intrinsic::assume: | 
|  | return true; | 
|  | case Intrinsic::dbg_declare: { | 
|  | const DbgDeclareInst *DI = cast<DbgDeclareInst>(II); | 
|  | assert(DI->getVariable() && "Missing variable"); | 
|  | if (!FuncInfo.MF->getMMI().hasDebugInfo()) { | 
|  | DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | const Value *Address = DI->getAddress(); | 
|  | if (!Address || isa<UndefValue>(Address)) { | 
|  | DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | unsigned Offset = 0; | 
|  | Optional<MachineOperand> Op; | 
|  | if (const auto *Arg = dyn_cast<Argument>(Address)) | 
|  | // Some arguments' frame index is recorded during argument lowering. | 
|  | Offset = FuncInfo.getArgumentFrameIndex(Arg); | 
|  | if (Offset) | 
|  | Op = MachineOperand::CreateFI(Offset); | 
|  | if (!Op) | 
|  | if (unsigned Reg = lookUpRegForValue(Address)) | 
|  | Op = MachineOperand::CreateReg(Reg, false); | 
|  |  | 
|  | // If we have a VLA that has a "use" in a metadata node that's then used | 
|  | // here but it has no other uses, then we have a problem. E.g., | 
|  | // | 
|  | //   int foo (const int *x) { | 
|  | //     char a[*x]; | 
|  | //     return 0; | 
|  | //   } | 
|  | // | 
|  | // If we assign 'a' a vreg and fast isel later on has to use the selection | 
|  | // DAG isel, it will want to copy the value to the vreg. However, there are | 
|  | // no uses, which goes counter to what selection DAG isel expects. | 
|  | if (!Op && !Address->use_empty() && isa<Instruction>(Address) && | 
|  | (!isa<AllocaInst>(Address) || | 
|  | !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address)))) | 
|  | Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address), | 
|  | false); | 
|  |  | 
|  | if (Op) { | 
|  | assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) && | 
|  | "Expected inlined-at fields to agree"); | 
|  | if (Op->isReg()) { | 
|  | Op->setIsDebug(true); | 
|  | // A dbg.declare describes the address of a source variable, so lower it | 
|  | // into an indirect DBG_VALUE. | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(TargetOpcode::DBG_VALUE), /*IsIndirect*/ true, | 
|  | Op->getReg(), 0, DI->getVariable(), DI->getExpression()); | 
|  | } else | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(TargetOpcode::DBG_VALUE)) | 
|  | .add(*Op) | 
|  | .addImm(0) | 
|  | .addMetadata(DI->getVariable()) | 
|  | .addMetadata(DI->getExpression()); | 
|  | } else { | 
|  | // We can't yet handle anything else here because it would require | 
|  | // generating code, thus altering codegen because of debug info. | 
|  | DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); | 
|  | } | 
|  | return true; | 
|  | } | 
|  | case Intrinsic::dbg_value: { | 
|  | // This form of DBG_VALUE is target-independent. | 
|  | const DbgValueInst *DI = cast<DbgValueInst>(II); | 
|  | const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); | 
|  | const Value *V = DI->getValue(); | 
|  | assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) && | 
|  | "Expected inlined-at fields to agree"); | 
|  | if (!V) { | 
|  | // Currently the optimizer can produce this; insert an undef to | 
|  | // help debugging.  Probably the optimizer should not do this. | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) | 
|  | .addReg(0U) | 
|  | .addImm(DI->getOffset()) | 
|  | .addMetadata(DI->getVariable()) | 
|  | .addMetadata(DI->getExpression()); | 
|  | } else if (const auto *CI = dyn_cast<ConstantInt>(V)) { | 
|  | if (CI->getBitWidth() > 64) | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) | 
|  | .addCImm(CI) | 
|  | .addImm(DI->getOffset()) | 
|  | .addMetadata(DI->getVariable()) | 
|  | .addMetadata(DI->getExpression()); | 
|  | else | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) | 
|  | .addImm(CI->getZExtValue()) | 
|  | .addImm(DI->getOffset()) | 
|  | .addMetadata(DI->getVariable()) | 
|  | .addMetadata(DI->getExpression()); | 
|  | } else if (const auto *CF = dyn_cast<ConstantFP>(V)) { | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) | 
|  | .addFPImm(CF) | 
|  | .addImm(DI->getOffset()) | 
|  | .addMetadata(DI->getVariable()) | 
|  | .addMetadata(DI->getExpression()); | 
|  | } else if (unsigned Reg = lookUpRegForValue(V)) { | 
|  | // FIXME: This does not handle register-indirect values at offset 0. | 
|  | bool IsIndirect = DI->getOffset() != 0; | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, IsIndirect, Reg, | 
|  | DI->getOffset(), DI->getVariable(), DI->getExpression()); | 
|  | } else { | 
|  | // We can't yet handle anything else here because it would require | 
|  | // generating code, thus altering codegen because of debug info. | 
|  | DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); | 
|  | } | 
|  | return true; | 
|  | } | 
|  | case Intrinsic::objectsize: { | 
|  | ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1)); | 
|  | unsigned long long Res = CI->isZero() ? -1ULL : 0; | 
|  | Constant *ResCI = ConstantInt::get(II->getType(), Res); | 
|  | unsigned ResultReg = getRegForValue(ResCI); | 
|  | if (!ResultReg) | 
|  | return false; | 
|  | updateValueMap(II, ResultReg); | 
|  | return true; | 
|  | } | 
|  | case Intrinsic::invariant_group_barrier: | 
|  | case Intrinsic::expect: { | 
|  | unsigned ResultReg = getRegForValue(II->getArgOperand(0)); | 
|  | if (!ResultReg) | 
|  | return false; | 
|  | updateValueMap(II, ResultReg); | 
|  | return true; | 
|  | } | 
|  | case Intrinsic::experimental_stackmap: | 
|  | return selectStackmap(II); | 
|  | case Intrinsic::experimental_patchpoint_void: | 
|  | case Intrinsic::experimental_patchpoint_i64: | 
|  | return selectPatchpoint(II); | 
|  |  | 
|  | case Intrinsic::xray_customevent: | 
|  | return selectXRayCustomEvent(II); | 
|  | } | 
|  |  | 
|  | return fastLowerIntrinsicCall(II); | 
|  | } | 
|  |  | 
|  | bool FastISel::selectCast(const User *I, unsigned Opcode) { | 
|  | EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); | 
|  | EVT DstVT = TLI.getValueType(DL, I->getType()); | 
|  |  | 
|  | if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other || | 
|  | !DstVT.isSimple()) | 
|  | // Unhandled type. Halt "fast" selection and bail. | 
|  | return false; | 
|  |  | 
|  | // Check if the destination type is legal. | 
|  | if (!TLI.isTypeLegal(DstVT)) | 
|  | return false; | 
|  |  | 
|  | // Check if the source operand is legal. | 
|  | if (!TLI.isTypeLegal(SrcVT)) | 
|  | return false; | 
|  |  | 
|  | unsigned InputReg = getRegForValue(I->getOperand(0)); | 
|  | if (!InputReg) | 
|  | // Unhandled operand.  Halt "fast" selection and bail. | 
|  | return false; | 
|  |  | 
|  | bool InputRegIsKill = hasTrivialKill(I->getOperand(0)); | 
|  |  | 
|  | unsigned ResultReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), | 
|  | Opcode, InputReg, InputRegIsKill); | 
|  | if (!ResultReg) | 
|  | return false; | 
|  |  | 
|  | updateValueMap(I, ResultReg); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool FastISel::selectBitCast(const User *I) { | 
|  | // If the bitcast doesn't change the type, just use the operand value. | 
|  | if (I->getType() == I->getOperand(0)->getType()) { | 
|  | unsigned Reg = getRegForValue(I->getOperand(0)); | 
|  | if (!Reg) | 
|  | return false; | 
|  | updateValueMap(I, Reg); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Bitcasts of other values become reg-reg copies or BITCAST operators. | 
|  | EVT SrcEVT = TLI.getValueType(DL, I->getOperand(0)->getType()); | 
|  | EVT DstEVT = TLI.getValueType(DL, I->getType()); | 
|  | if (SrcEVT == MVT::Other || DstEVT == MVT::Other || | 
|  | !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT)) | 
|  | // Unhandled type. Halt "fast" selection and bail. | 
|  | return false; | 
|  |  | 
|  | MVT SrcVT = SrcEVT.getSimpleVT(); | 
|  | MVT DstVT = DstEVT.getSimpleVT(); | 
|  | unsigned Op0 = getRegForValue(I->getOperand(0)); | 
|  | if (!Op0) // Unhandled operand. Halt "fast" selection and bail. | 
|  | return false; | 
|  | bool Op0IsKill = hasTrivialKill(I->getOperand(0)); | 
|  |  | 
|  | // First, try to perform the bitcast by inserting a reg-reg copy. | 
|  | unsigned ResultReg = 0; | 
|  | if (SrcVT == DstVT) { | 
|  | const TargetRegisterClass *SrcClass = TLI.getRegClassFor(SrcVT); | 
|  | const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT); | 
|  | // Don't attempt a cross-class copy. It will likely fail. | 
|  | if (SrcClass == DstClass) { | 
|  | ResultReg = createResultReg(DstClass); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(TargetOpcode::COPY), ResultReg).addReg(Op0); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the reg-reg copy failed, select a BITCAST opcode. | 
|  | if (!ResultReg) | 
|  | ResultReg = fastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0, Op0IsKill); | 
|  |  | 
|  | if (!ResultReg) | 
|  | return false; | 
|  |  | 
|  | updateValueMap(I, ResultReg); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Remove local value instructions starting from the instruction after | 
|  | // SavedLastLocalValue to the current function insert point. | 
|  | void FastISel::removeDeadLocalValueCode(MachineInstr *SavedLastLocalValue) | 
|  | { | 
|  | MachineInstr *CurLastLocalValue = getLastLocalValue(); | 
|  | if (CurLastLocalValue != SavedLastLocalValue) { | 
|  | // Find the first local value instruction to be deleted. | 
|  | // This is the instruction after SavedLastLocalValue if it is non-NULL. | 
|  | // Otherwise it's the first instruction in the block. | 
|  | MachineBasicBlock::iterator FirstDeadInst(SavedLastLocalValue); | 
|  | if (SavedLastLocalValue) | 
|  | ++FirstDeadInst; | 
|  | else | 
|  | FirstDeadInst = FuncInfo.MBB->getFirstNonPHI(); | 
|  | setLastLocalValue(SavedLastLocalValue); | 
|  | removeDeadCode(FirstDeadInst, FuncInfo.InsertPt); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool FastISel::selectInstruction(const Instruction *I) { | 
|  | MachineInstr *SavedLastLocalValue = getLastLocalValue(); | 
|  | // Just before the terminator instruction, insert instructions to | 
|  | // feed PHI nodes in successor blocks. | 
|  | if (isa<TerminatorInst>(I)) { | 
|  | if (!handlePHINodesInSuccessorBlocks(I->getParent())) { | 
|  | // PHI node handling may have generated local value instructions, | 
|  | // even though it failed to handle all PHI nodes. | 
|  | // We remove these instructions because SelectionDAGISel will generate | 
|  | // them again. | 
|  | removeDeadLocalValueCode(SavedLastLocalValue); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // FastISel does not handle any operand bundles except OB_funclet. | 
|  | if (ImmutableCallSite CS = ImmutableCallSite(I)) | 
|  | for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) | 
|  | if (CS.getOperandBundleAt(i).getTagID() != LLVMContext::OB_funclet) | 
|  | return false; | 
|  |  | 
|  | DbgLoc = I->getDebugLoc(); | 
|  |  | 
|  | SavedInsertPt = FuncInfo.InsertPt; | 
|  |  | 
|  | if (const auto *Call = dyn_cast<CallInst>(I)) { | 
|  | const Function *F = Call->getCalledFunction(); | 
|  | LibFunc Func; | 
|  |  | 
|  | // As a special case, don't handle calls to builtin library functions that | 
|  | // may be translated directly to target instructions. | 
|  | if (F && !F->hasLocalLinkage() && F->hasName() && | 
|  | LibInfo->getLibFunc(F->getName(), Func) && | 
|  | LibInfo->hasOptimizedCodeGen(Func)) | 
|  | return false; | 
|  |  | 
|  | // Don't handle Intrinsic::trap if a trap function is specified. | 
|  | if (F && F->getIntrinsicID() == Intrinsic::trap && | 
|  | Call->hasFnAttr("trap-func-name")) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // First, try doing target-independent selection. | 
|  | if (!SkipTargetIndependentISel) { | 
|  | if (selectOperator(I, I->getOpcode())) { | 
|  | ++NumFastIselSuccessIndependent; | 
|  | DbgLoc = DebugLoc(); | 
|  | return true; | 
|  | } | 
|  | // Remove dead code. | 
|  | recomputeInsertPt(); | 
|  | if (SavedInsertPt != FuncInfo.InsertPt) | 
|  | removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); | 
|  | SavedInsertPt = FuncInfo.InsertPt; | 
|  | } | 
|  | // Next, try calling the target to attempt to handle the instruction. | 
|  | if (fastSelectInstruction(I)) { | 
|  | ++NumFastIselSuccessTarget; | 
|  | DbgLoc = DebugLoc(); | 
|  | return true; | 
|  | } | 
|  | // Remove dead code. | 
|  | recomputeInsertPt(); | 
|  | if (SavedInsertPt != FuncInfo.InsertPt) | 
|  | removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); | 
|  |  | 
|  | DbgLoc = DebugLoc(); | 
|  | // Undo phi node updates, because they will be added again by SelectionDAG. | 
|  | if (isa<TerminatorInst>(I)) { | 
|  | // PHI node handling may have generated local value instructions. | 
|  | // We remove them because SelectionDAGISel will generate them again. | 
|  | removeDeadLocalValueCode(SavedLastLocalValue); | 
|  | FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Emit an unconditional branch to the given block, unless it is the immediate | 
|  | /// (fall-through) successor, and update the CFG. | 
|  | void FastISel::fastEmitBranch(MachineBasicBlock *MSucc, | 
|  | const DebugLoc &DbgLoc) { | 
|  | if (FuncInfo.MBB->getBasicBlock()->size() > 1 && | 
|  | FuncInfo.MBB->isLayoutSuccessor(MSucc)) { | 
|  | // For more accurate line information if this is the only instruction | 
|  | // in the block then emit it, otherwise we have the unconditional | 
|  | // fall-through case, which needs no instructions. | 
|  | } else { | 
|  | // The unconditional branch case. | 
|  | TII.insertBranch(*FuncInfo.MBB, MSucc, nullptr, | 
|  | SmallVector<MachineOperand, 0>(), DbgLoc); | 
|  | } | 
|  | if (FuncInfo.BPI) { | 
|  | auto BranchProbability = FuncInfo.BPI->getEdgeProbability( | 
|  | FuncInfo.MBB->getBasicBlock(), MSucc->getBasicBlock()); | 
|  | FuncInfo.MBB->addSuccessor(MSucc, BranchProbability); | 
|  | } else | 
|  | FuncInfo.MBB->addSuccessorWithoutProb(MSucc); | 
|  | } | 
|  |  | 
|  | void FastISel::finishCondBranch(const BasicBlock *BranchBB, | 
|  | MachineBasicBlock *TrueMBB, | 
|  | MachineBasicBlock *FalseMBB) { | 
|  | // Add TrueMBB as successor unless it is equal to the FalseMBB: This can | 
|  | // happen in degenerate IR and MachineIR forbids to have a block twice in the | 
|  | // successor/predecessor lists. | 
|  | if (TrueMBB != FalseMBB) { | 
|  | if (FuncInfo.BPI) { | 
|  | auto BranchProbability = | 
|  | FuncInfo.BPI->getEdgeProbability(BranchBB, TrueMBB->getBasicBlock()); | 
|  | FuncInfo.MBB->addSuccessor(TrueMBB, BranchProbability); | 
|  | } else | 
|  | FuncInfo.MBB->addSuccessorWithoutProb(TrueMBB); | 
|  | } | 
|  |  | 
|  | fastEmitBranch(FalseMBB, DbgLoc); | 
|  | } | 
|  |  | 
|  | /// Emit an FNeg operation. | 
|  | bool FastISel::selectFNeg(const User *I) { | 
|  | unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I)); | 
|  | if (!OpReg) | 
|  | return false; | 
|  | bool OpRegIsKill = hasTrivialKill(I); | 
|  |  | 
|  | // If the target has ISD::FNEG, use it. | 
|  | EVT VT = TLI.getValueType(DL, I->getType()); | 
|  | unsigned ResultReg = fastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), ISD::FNEG, | 
|  | OpReg, OpRegIsKill); | 
|  | if (ResultReg) { | 
|  | updateValueMap(I, ResultReg); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Bitcast the value to integer, twiddle the sign bit with xor, | 
|  | // and then bitcast it back to floating-point. | 
|  | if (VT.getSizeInBits() > 64) | 
|  | return false; | 
|  | EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits()); | 
|  | if (!TLI.isTypeLegal(IntVT)) | 
|  | return false; | 
|  |  | 
|  | unsigned IntReg = fastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(), | 
|  | ISD::BITCAST, OpReg, OpRegIsKill); | 
|  | if (!IntReg) | 
|  | return false; | 
|  |  | 
|  | unsigned IntResultReg = fastEmit_ri_( | 
|  | IntVT.getSimpleVT(), ISD::XOR, IntReg, /*IsKill=*/true, | 
|  | UINT64_C(1) << (VT.getSizeInBits() - 1), IntVT.getSimpleVT()); | 
|  | if (!IntResultReg) | 
|  | return false; | 
|  |  | 
|  | ResultReg = fastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), ISD::BITCAST, | 
|  | IntResultReg, /*IsKill=*/true); | 
|  | if (!ResultReg) | 
|  | return false; | 
|  |  | 
|  | updateValueMap(I, ResultReg); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool FastISel::selectExtractValue(const User *U) { | 
|  | const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U); | 
|  | if (!EVI) | 
|  | return false; | 
|  |  | 
|  | // Make sure we only try to handle extracts with a legal result.  But also | 
|  | // allow i1 because it's easy. | 
|  | EVT RealVT = TLI.getValueType(DL, EVI->getType(), /*AllowUnknown=*/true); | 
|  | if (!RealVT.isSimple()) | 
|  | return false; | 
|  | MVT VT = RealVT.getSimpleVT(); | 
|  | if (!TLI.isTypeLegal(VT) && VT != MVT::i1) | 
|  | return false; | 
|  |  | 
|  | const Value *Op0 = EVI->getOperand(0); | 
|  | Type *AggTy = Op0->getType(); | 
|  |  | 
|  | // Get the base result register. | 
|  | unsigned ResultReg; | 
|  | DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0); | 
|  | if (I != FuncInfo.ValueMap.end()) | 
|  | ResultReg = I->second; | 
|  | else if (isa<Instruction>(Op0)) | 
|  | ResultReg = FuncInfo.InitializeRegForValue(Op0); | 
|  | else | 
|  | return false; // fast-isel can't handle aggregate constants at the moment | 
|  |  | 
|  | // Get the actual result register, which is an offset from the base register. | 
|  | unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices()); | 
|  |  | 
|  | SmallVector<EVT, 4> AggValueVTs; | 
|  | ComputeValueVTs(TLI, DL, AggTy, AggValueVTs); | 
|  |  | 
|  | for (unsigned i = 0; i < VTIndex; i++) | 
|  | ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]); | 
|  |  | 
|  | updateValueMap(EVI, ResultReg); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool FastISel::selectOperator(const User *I, unsigned Opcode) { | 
|  | switch (Opcode) { | 
|  | case Instruction::Add: | 
|  | return selectBinaryOp(I, ISD::ADD); | 
|  | case Instruction::FAdd: | 
|  | return selectBinaryOp(I, ISD::FADD); | 
|  | case Instruction::Sub: | 
|  | return selectBinaryOp(I, ISD::SUB); | 
|  | case Instruction::FSub: | 
|  | // FNeg is currently represented in LLVM IR as a special case of FSub. | 
|  | if (BinaryOperator::isFNeg(I)) | 
|  | return selectFNeg(I); | 
|  | return selectBinaryOp(I, ISD::FSUB); | 
|  | case Instruction::Mul: | 
|  | return selectBinaryOp(I, ISD::MUL); | 
|  | case Instruction::FMul: | 
|  | return selectBinaryOp(I, ISD::FMUL); | 
|  | case Instruction::SDiv: | 
|  | return selectBinaryOp(I, ISD::SDIV); | 
|  | case Instruction::UDiv: | 
|  | return selectBinaryOp(I, ISD::UDIV); | 
|  | case Instruction::FDiv: | 
|  | return selectBinaryOp(I, ISD::FDIV); | 
|  | case Instruction::SRem: | 
|  | return selectBinaryOp(I, ISD::SREM); | 
|  | case Instruction::URem: | 
|  | return selectBinaryOp(I, ISD::UREM); | 
|  | case Instruction::FRem: | 
|  | return selectBinaryOp(I, ISD::FREM); | 
|  | case Instruction::Shl: | 
|  | return selectBinaryOp(I, ISD::SHL); | 
|  | case Instruction::LShr: | 
|  | return selectBinaryOp(I, ISD::SRL); | 
|  | case Instruction::AShr: | 
|  | return selectBinaryOp(I, ISD::SRA); | 
|  | case Instruction::And: | 
|  | return selectBinaryOp(I, ISD::AND); | 
|  | case Instruction::Or: | 
|  | return selectBinaryOp(I, ISD::OR); | 
|  | case Instruction::Xor: | 
|  | return selectBinaryOp(I, ISD::XOR); | 
|  |  | 
|  | case Instruction::GetElementPtr: | 
|  | return selectGetElementPtr(I); | 
|  |  | 
|  | case Instruction::Br: { | 
|  | const BranchInst *BI = cast<BranchInst>(I); | 
|  |  | 
|  | if (BI->isUnconditional()) { | 
|  | const BasicBlock *LLVMSucc = BI->getSuccessor(0); | 
|  | MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc]; | 
|  | fastEmitBranch(MSucc, BI->getDebugLoc()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Conditional branches are not handed yet. | 
|  | // Halt "fast" selection and bail. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | case Instruction::Unreachable: | 
|  | if (TM.Options.TrapUnreachable) | 
|  | return fastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0; | 
|  | else | 
|  | return true; | 
|  |  | 
|  | case Instruction::Alloca: | 
|  | // FunctionLowering has the static-sized case covered. | 
|  | if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I))) | 
|  | return true; | 
|  |  | 
|  | // Dynamic-sized alloca is not handled yet. | 
|  | return false; | 
|  |  | 
|  | case Instruction::Call: | 
|  | return selectCall(I); | 
|  |  | 
|  | case Instruction::BitCast: | 
|  | return selectBitCast(I); | 
|  |  | 
|  | case Instruction::FPToSI: | 
|  | return selectCast(I, ISD::FP_TO_SINT); | 
|  | case Instruction::ZExt: | 
|  | return selectCast(I, ISD::ZERO_EXTEND); | 
|  | case Instruction::SExt: | 
|  | return selectCast(I, ISD::SIGN_EXTEND); | 
|  | case Instruction::Trunc: | 
|  | return selectCast(I, ISD::TRUNCATE); | 
|  | case Instruction::SIToFP: | 
|  | return selectCast(I, ISD::SINT_TO_FP); | 
|  |  | 
|  | case Instruction::IntToPtr: // Deliberate fall-through. | 
|  | case Instruction::PtrToInt: { | 
|  | EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); | 
|  | EVT DstVT = TLI.getValueType(DL, I->getType()); | 
|  | if (DstVT.bitsGT(SrcVT)) | 
|  | return selectCast(I, ISD::ZERO_EXTEND); | 
|  | if (DstVT.bitsLT(SrcVT)) | 
|  | return selectCast(I, ISD::TRUNCATE); | 
|  | unsigned Reg = getRegForValue(I->getOperand(0)); | 
|  | if (!Reg) | 
|  | return false; | 
|  | updateValueMap(I, Reg); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case Instruction::ExtractValue: | 
|  | return selectExtractValue(I); | 
|  |  | 
|  | case Instruction::PHI: | 
|  | llvm_unreachable("FastISel shouldn't visit PHI nodes!"); | 
|  |  | 
|  | default: | 
|  | // Unhandled instruction. Halt "fast" selection and bail. | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | FastISel::FastISel(FunctionLoweringInfo &FuncInfo, | 
|  | const TargetLibraryInfo *LibInfo, | 
|  | bool SkipTargetIndependentISel) | 
|  | : FuncInfo(FuncInfo), MF(FuncInfo.MF), MRI(FuncInfo.MF->getRegInfo()), | 
|  | MFI(FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()), | 
|  | TM(FuncInfo.MF->getTarget()), DL(MF->getDataLayout()), | 
|  | TII(*MF->getSubtarget().getInstrInfo()), | 
|  | TLI(*MF->getSubtarget().getTargetLowering()), | 
|  | TRI(*MF->getSubtarget().getRegisterInfo()), LibInfo(LibInfo), | 
|  | SkipTargetIndependentISel(SkipTargetIndependentISel) {} | 
|  |  | 
|  | FastISel::~FastISel() = default; | 
|  |  | 
|  | bool FastISel::fastLowerArguments() { return false; } | 
|  |  | 
|  | bool FastISel::fastLowerCall(CallLoweringInfo & /*CLI*/) { return false; } | 
|  |  | 
|  | bool FastISel::fastLowerIntrinsicCall(const IntrinsicInst * /*II*/) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | unsigned FastISel::fastEmit_(MVT, MVT, unsigned) { return 0; } | 
|  |  | 
|  | unsigned FastISel::fastEmit_r(MVT, MVT, unsigned, unsigned /*Op0*/, | 
|  | bool /*Op0IsKill*/) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | unsigned FastISel::fastEmit_rr(MVT, MVT, unsigned, unsigned /*Op0*/, | 
|  | bool /*Op0IsKill*/, unsigned /*Op1*/, | 
|  | bool /*Op1IsKill*/) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | unsigned FastISel::fastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | unsigned FastISel::fastEmit_f(MVT, MVT, unsigned, | 
|  | const ConstantFP * /*FPImm*/) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | unsigned FastISel::fastEmit_ri(MVT, MVT, unsigned, unsigned /*Op0*/, | 
|  | bool /*Op0IsKill*/, uint64_t /*Imm*/) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// This method is a wrapper of fastEmit_ri. It first tries to emit an | 
|  | /// instruction with an immediate operand using fastEmit_ri. | 
|  | /// If that fails, it materializes the immediate into a register and try | 
|  | /// fastEmit_rr instead. | 
|  | unsigned FastISel::fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0, | 
|  | bool Op0IsKill, uint64_t Imm, MVT ImmType) { | 
|  | // If this is a multiply by a power of two, emit this as a shift left. | 
|  | if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) { | 
|  | Opcode = ISD::SHL; | 
|  | Imm = Log2_64(Imm); | 
|  | } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) { | 
|  | // div x, 8 -> srl x, 3 | 
|  | Opcode = ISD::SRL; | 
|  | Imm = Log2_64(Imm); | 
|  | } | 
|  |  | 
|  | // Horrible hack (to be removed), check to make sure shift amounts are | 
|  | // in-range. | 
|  | if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) && | 
|  | Imm >= VT.getSizeInBits()) | 
|  | return 0; | 
|  |  | 
|  | // First check if immediate type is legal. If not, we can't use the ri form. | 
|  | unsigned ResultReg = fastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm); | 
|  | if (ResultReg) | 
|  | return ResultReg; | 
|  | unsigned MaterialReg = fastEmit_i(ImmType, ImmType, ISD::Constant, Imm); | 
|  | bool IsImmKill = true; | 
|  | if (!MaterialReg) { | 
|  | // This is a bit ugly/slow, but failing here means falling out of | 
|  | // fast-isel, which would be very slow. | 
|  | IntegerType *ITy = | 
|  | IntegerType::get(FuncInfo.Fn->getContext(), VT.getSizeInBits()); | 
|  | MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm)); | 
|  | if (!MaterialReg) | 
|  | return 0; | 
|  | // FIXME: If the materialized register here has no uses yet then this | 
|  | // will be the first use and we should be able to mark it as killed. | 
|  | // However, the local value area for materialising constant expressions | 
|  | // grows down, not up, which means that any constant expressions we generate | 
|  | // later which also use 'Imm' could be after this instruction and therefore | 
|  | // after this kill. | 
|  | IsImmKill = false; | 
|  | } | 
|  | return fastEmit_rr(VT, VT, Opcode, Op0, Op0IsKill, MaterialReg, IsImmKill); | 
|  | } | 
|  |  | 
|  | unsigned FastISel::createResultReg(const TargetRegisterClass *RC) { | 
|  | return MRI.createVirtualRegister(RC); | 
|  | } | 
|  |  | 
|  | unsigned FastISel::constrainOperandRegClass(const MCInstrDesc &II, unsigned Op, | 
|  | unsigned OpNum) { | 
|  | if (TargetRegisterInfo::isVirtualRegister(Op)) { | 
|  | const TargetRegisterClass *RegClass = | 
|  | TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF); | 
|  | if (!MRI.constrainRegClass(Op, RegClass)) { | 
|  | // If it's not legal to COPY between the register classes, something | 
|  | // has gone very wrong before we got here. | 
|  | unsigned NewOp = createResultReg(RegClass); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(TargetOpcode::COPY), NewOp).addReg(Op); | 
|  | return NewOp; | 
|  | } | 
|  | } | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | unsigned FastISel::fastEmitInst_(unsigned MachineInstOpcode, | 
|  | const TargetRegisterClass *RC) { | 
|  | unsigned ResultReg = createResultReg(RC); | 
|  | const MCInstrDesc &II = TII.get(MachineInstOpcode); | 
|  |  | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg); | 
|  | return ResultReg; | 
|  | } | 
|  |  | 
|  | unsigned FastISel::fastEmitInst_r(unsigned MachineInstOpcode, | 
|  | const TargetRegisterClass *RC, unsigned Op0, | 
|  | bool Op0IsKill) { | 
|  | const MCInstrDesc &II = TII.get(MachineInstOpcode); | 
|  |  | 
|  | unsigned ResultReg = createResultReg(RC); | 
|  | Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); | 
|  |  | 
|  | if (II.getNumDefs() >= 1) | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) | 
|  | .addReg(Op0, getKillRegState(Op0IsKill)); | 
|  | else { | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) | 
|  | .addReg(Op0, getKillRegState(Op0IsKill)); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); | 
|  | } | 
|  |  | 
|  | return ResultReg; | 
|  | } | 
|  |  | 
|  | unsigned FastISel::fastEmitInst_rr(unsigned MachineInstOpcode, | 
|  | const TargetRegisterClass *RC, unsigned Op0, | 
|  | bool Op0IsKill, unsigned Op1, | 
|  | bool Op1IsKill) { | 
|  | const MCInstrDesc &II = TII.get(MachineInstOpcode); | 
|  |  | 
|  | unsigned ResultReg = createResultReg(RC); | 
|  | Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); | 
|  | Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); | 
|  |  | 
|  | if (II.getNumDefs() >= 1) | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) | 
|  | .addReg(Op0, getKillRegState(Op0IsKill)) | 
|  | .addReg(Op1, getKillRegState(Op1IsKill)); | 
|  | else { | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) | 
|  | .addReg(Op0, getKillRegState(Op0IsKill)) | 
|  | .addReg(Op1, getKillRegState(Op1IsKill)); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); | 
|  | } | 
|  | return ResultReg; | 
|  | } | 
|  |  | 
|  | unsigned FastISel::fastEmitInst_rrr(unsigned MachineInstOpcode, | 
|  | const TargetRegisterClass *RC, unsigned Op0, | 
|  | bool Op0IsKill, unsigned Op1, | 
|  | bool Op1IsKill, unsigned Op2, | 
|  | bool Op2IsKill) { | 
|  | const MCInstrDesc &II = TII.get(MachineInstOpcode); | 
|  |  | 
|  | unsigned ResultReg = createResultReg(RC); | 
|  | Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); | 
|  | Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); | 
|  | Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2); | 
|  |  | 
|  | if (II.getNumDefs() >= 1) | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) | 
|  | .addReg(Op0, getKillRegState(Op0IsKill)) | 
|  | .addReg(Op1, getKillRegState(Op1IsKill)) | 
|  | .addReg(Op2, getKillRegState(Op2IsKill)); | 
|  | else { | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) | 
|  | .addReg(Op0, getKillRegState(Op0IsKill)) | 
|  | .addReg(Op1, getKillRegState(Op1IsKill)) | 
|  | .addReg(Op2, getKillRegState(Op2IsKill)); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); | 
|  | } | 
|  | return ResultReg; | 
|  | } | 
|  |  | 
|  | unsigned FastISel::fastEmitInst_ri(unsigned MachineInstOpcode, | 
|  | const TargetRegisterClass *RC, unsigned Op0, | 
|  | bool Op0IsKill, uint64_t Imm) { | 
|  | const MCInstrDesc &II = TII.get(MachineInstOpcode); | 
|  |  | 
|  | unsigned ResultReg = createResultReg(RC); | 
|  | Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); | 
|  |  | 
|  | if (II.getNumDefs() >= 1) | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) | 
|  | .addReg(Op0, getKillRegState(Op0IsKill)) | 
|  | .addImm(Imm); | 
|  | else { | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) | 
|  | .addReg(Op0, getKillRegState(Op0IsKill)) | 
|  | .addImm(Imm); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); | 
|  | } | 
|  | return ResultReg; | 
|  | } | 
|  |  | 
|  | unsigned FastISel::fastEmitInst_rii(unsigned MachineInstOpcode, | 
|  | const TargetRegisterClass *RC, unsigned Op0, | 
|  | bool Op0IsKill, uint64_t Imm1, | 
|  | uint64_t Imm2) { | 
|  | const MCInstrDesc &II = TII.get(MachineInstOpcode); | 
|  |  | 
|  | unsigned ResultReg = createResultReg(RC); | 
|  | Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); | 
|  |  | 
|  | if (II.getNumDefs() >= 1) | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) | 
|  | .addReg(Op0, getKillRegState(Op0IsKill)) | 
|  | .addImm(Imm1) | 
|  | .addImm(Imm2); | 
|  | else { | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) | 
|  | .addReg(Op0, getKillRegState(Op0IsKill)) | 
|  | .addImm(Imm1) | 
|  | .addImm(Imm2); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); | 
|  | } | 
|  | return ResultReg; | 
|  | } | 
|  |  | 
|  | unsigned FastISel::fastEmitInst_f(unsigned MachineInstOpcode, | 
|  | const TargetRegisterClass *RC, | 
|  | const ConstantFP *FPImm) { | 
|  | const MCInstrDesc &II = TII.get(MachineInstOpcode); | 
|  |  | 
|  | unsigned ResultReg = createResultReg(RC); | 
|  |  | 
|  | if (II.getNumDefs() >= 1) | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) | 
|  | .addFPImm(FPImm); | 
|  | else { | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) | 
|  | .addFPImm(FPImm); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); | 
|  | } | 
|  | return ResultReg; | 
|  | } | 
|  |  | 
|  | unsigned FastISel::fastEmitInst_rri(unsigned MachineInstOpcode, | 
|  | const TargetRegisterClass *RC, unsigned Op0, | 
|  | bool Op0IsKill, unsigned Op1, | 
|  | bool Op1IsKill, uint64_t Imm) { | 
|  | const MCInstrDesc &II = TII.get(MachineInstOpcode); | 
|  |  | 
|  | unsigned ResultReg = createResultReg(RC); | 
|  | Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); | 
|  | Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); | 
|  |  | 
|  | if (II.getNumDefs() >= 1) | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) | 
|  | .addReg(Op0, getKillRegState(Op0IsKill)) | 
|  | .addReg(Op1, getKillRegState(Op1IsKill)) | 
|  | .addImm(Imm); | 
|  | else { | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) | 
|  | .addReg(Op0, getKillRegState(Op0IsKill)) | 
|  | .addReg(Op1, getKillRegState(Op1IsKill)) | 
|  | .addImm(Imm); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); | 
|  | } | 
|  | return ResultReg; | 
|  | } | 
|  |  | 
|  | unsigned FastISel::fastEmitInst_i(unsigned MachineInstOpcode, | 
|  | const TargetRegisterClass *RC, uint64_t Imm) { | 
|  | unsigned ResultReg = createResultReg(RC); | 
|  | const MCInstrDesc &II = TII.get(MachineInstOpcode); | 
|  |  | 
|  | if (II.getNumDefs() >= 1) | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) | 
|  | .addImm(Imm); | 
|  | else { | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); | 
|  | } | 
|  | return ResultReg; | 
|  | } | 
|  |  | 
|  | unsigned FastISel::fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0, | 
|  | bool Op0IsKill, uint32_t Idx) { | 
|  | unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); | 
|  | assert(TargetRegisterInfo::isVirtualRegister(Op0) && | 
|  | "Cannot yet extract from physregs"); | 
|  | const TargetRegisterClass *RC = MRI.getRegClass(Op0); | 
|  | MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx)); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY), | 
|  | ResultReg).addReg(Op0, getKillRegState(Op0IsKill), Idx); | 
|  | return ResultReg; | 
|  | } | 
|  |  | 
|  | /// Emit MachineInstrs to compute the value of Op with all but the least | 
|  | /// significant bit set to zero. | 
|  | unsigned FastISel::fastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) { | 
|  | return fastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1); | 
|  | } | 
|  |  | 
|  | /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks. | 
|  | /// Emit code to ensure constants are copied into registers when needed. | 
|  | /// Remember the virtual registers that need to be added to the Machine PHI | 
|  | /// nodes as input.  We cannot just directly add them, because expansion | 
|  | /// might result in multiple MBB's for one BB.  As such, the start of the | 
|  | /// BB might correspond to a different MBB than the end. | 
|  | bool FastISel::handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { | 
|  | const TerminatorInst *TI = LLVMBB->getTerminator(); | 
|  |  | 
|  | SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; | 
|  | FuncInfo.OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size(); | 
|  |  | 
|  | // Check successor nodes' PHI nodes that expect a constant to be available | 
|  | // from this block. | 
|  | for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { | 
|  | const BasicBlock *SuccBB = TI->getSuccessor(succ); | 
|  | if (!isa<PHINode>(SuccBB->begin())) | 
|  | continue; | 
|  | MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; | 
|  |  | 
|  | // If this terminator has multiple identical successors (common for | 
|  | // switches), only handle each succ once. | 
|  | if (!SuccsHandled.insert(SuccMBB).second) | 
|  | continue; | 
|  |  | 
|  | MachineBasicBlock::iterator MBBI = SuccMBB->begin(); | 
|  |  | 
|  | // At this point we know that there is a 1-1 correspondence between LLVM PHI | 
|  | // nodes and Machine PHI nodes, but the incoming operands have not been | 
|  | // emitted yet. | 
|  | for (BasicBlock::const_iterator I = SuccBB->begin(); | 
|  | const auto *PN = dyn_cast<PHINode>(I); ++I) { | 
|  |  | 
|  | // Ignore dead phi's. | 
|  | if (PN->use_empty()) | 
|  | continue; | 
|  |  | 
|  | // Only handle legal types. Two interesting things to note here. First, | 
|  | // by bailing out early, we may leave behind some dead instructions, | 
|  | // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its | 
|  | // own moves. Second, this check is necessary because FastISel doesn't | 
|  | // use CreateRegs to create registers, so it always creates | 
|  | // exactly one register for each non-void instruction. | 
|  | EVT VT = TLI.getValueType(DL, PN->getType(), /*AllowUnknown=*/true); | 
|  | if (VT == MVT::Other || !TLI.isTypeLegal(VT)) { | 
|  | // Handle integer promotions, though, because they're common and easy. | 
|  | if (!(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) { | 
|  | FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); | 
|  |  | 
|  | // Set the DebugLoc for the copy. Prefer the location of the operand | 
|  | // if there is one; use the location of the PHI otherwise. | 
|  | DbgLoc = PN->getDebugLoc(); | 
|  | if (const auto *Inst = dyn_cast<Instruction>(PHIOp)) | 
|  | DbgLoc = Inst->getDebugLoc(); | 
|  |  | 
|  | unsigned Reg = getRegForValue(PHIOp); | 
|  | if (!Reg) { | 
|  | FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); | 
|  | return false; | 
|  | } | 
|  | FuncInfo.PHINodesToUpdate.push_back(std::make_pair(&*MBBI++, Reg)); | 
|  | DbgLoc = DebugLoc(); | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) { | 
|  | assert(LI->hasOneUse() && | 
|  | "tryToFoldLoad expected a LoadInst with a single use"); | 
|  | // We know that the load has a single use, but don't know what it is.  If it | 
|  | // isn't one of the folded instructions, then we can't succeed here.  Handle | 
|  | // this by scanning the single-use users of the load until we get to FoldInst. | 
|  | unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs. | 
|  |  | 
|  | const Instruction *TheUser = LI->user_back(); | 
|  | while (TheUser != FoldInst && // Scan up until we find FoldInst. | 
|  | // Stay in the right block. | 
|  | TheUser->getParent() == FoldInst->getParent() && | 
|  | --MaxUsers) { // Don't scan too far. | 
|  | // If there are multiple or no uses of this instruction, then bail out. | 
|  | if (!TheUser->hasOneUse()) | 
|  | return false; | 
|  |  | 
|  | TheUser = TheUser->user_back(); | 
|  | } | 
|  |  | 
|  | // If we didn't find the fold instruction, then we failed to collapse the | 
|  | // sequence. | 
|  | if (TheUser != FoldInst) | 
|  | return false; | 
|  |  | 
|  | // Don't try to fold volatile loads.  Target has to deal with alignment | 
|  | // constraints. | 
|  | if (LI->isVolatile()) | 
|  | return false; | 
|  |  | 
|  | // Figure out which vreg this is going into.  If there is no assigned vreg yet | 
|  | // then there actually was no reference to it.  Perhaps the load is referenced | 
|  | // by a dead instruction. | 
|  | unsigned LoadReg = getRegForValue(LI); | 
|  | if (!LoadReg) | 
|  | return false; | 
|  |  | 
|  | // We can't fold if this vreg has no uses or more than one use.  Multiple uses | 
|  | // may mean that the instruction got lowered to multiple MIs, or the use of | 
|  | // the loaded value ended up being multiple operands of the result. | 
|  | if (!MRI.hasOneUse(LoadReg)) | 
|  | return false; | 
|  |  | 
|  | MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg); | 
|  | MachineInstr *User = RI->getParent(); | 
|  |  | 
|  | // Set the insertion point properly.  Folding the load can cause generation of | 
|  | // other random instructions (like sign extends) for addressing modes; make | 
|  | // sure they get inserted in a logical place before the new instruction. | 
|  | FuncInfo.InsertPt = User; | 
|  | FuncInfo.MBB = User->getParent(); | 
|  |  | 
|  | // Ask the target to try folding the load. | 
|  | return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI); | 
|  | } | 
|  |  | 
|  | bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) { | 
|  | // Must be an add. | 
|  | if (!isa<AddOperator>(Add)) | 
|  | return false; | 
|  | // Type size needs to match. | 
|  | if (DL.getTypeSizeInBits(GEP->getType()) != | 
|  | DL.getTypeSizeInBits(Add->getType())) | 
|  | return false; | 
|  | // Must be in the same basic block. | 
|  | if (isa<Instruction>(Add) && | 
|  | FuncInfo.MBBMap[cast<Instruction>(Add)->getParent()] != FuncInfo.MBB) | 
|  | return false; | 
|  | // Must have a constant operand. | 
|  | return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1)); | 
|  | } | 
|  |  | 
|  | MachineMemOperand * | 
|  | FastISel::createMachineMemOperandFor(const Instruction *I) const { | 
|  | const Value *Ptr; | 
|  | Type *ValTy; | 
|  | unsigned Alignment; | 
|  | MachineMemOperand::Flags Flags; | 
|  | bool IsVolatile; | 
|  |  | 
|  | if (const auto *LI = dyn_cast<LoadInst>(I)) { | 
|  | Alignment = LI->getAlignment(); | 
|  | IsVolatile = LI->isVolatile(); | 
|  | Flags = MachineMemOperand::MOLoad; | 
|  | Ptr = LI->getPointerOperand(); | 
|  | ValTy = LI->getType(); | 
|  | } else if (const auto *SI = dyn_cast<StoreInst>(I)) { | 
|  | Alignment = SI->getAlignment(); | 
|  | IsVolatile = SI->isVolatile(); | 
|  | Flags = MachineMemOperand::MOStore; | 
|  | Ptr = SI->getPointerOperand(); | 
|  | ValTy = SI->getValueOperand()->getType(); | 
|  | } else | 
|  | return nullptr; | 
|  |  | 
|  | bool IsNonTemporal = I->getMetadata(LLVMContext::MD_nontemporal) != nullptr; | 
|  | bool IsInvariant = I->getMetadata(LLVMContext::MD_invariant_load) != nullptr; | 
|  | bool IsDereferenceable = | 
|  | I->getMetadata(LLVMContext::MD_dereferenceable) != nullptr; | 
|  | const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range); | 
|  |  | 
|  | AAMDNodes AAInfo; | 
|  | I->getAAMetadata(AAInfo); | 
|  |  | 
|  | if (Alignment == 0) // Ensure that codegen never sees alignment 0. | 
|  | Alignment = DL.getABITypeAlignment(ValTy); | 
|  |  | 
|  | unsigned Size = DL.getTypeStoreSize(ValTy); | 
|  |  | 
|  | if (IsVolatile) | 
|  | Flags |= MachineMemOperand::MOVolatile; | 
|  | if (IsNonTemporal) | 
|  | Flags |= MachineMemOperand::MONonTemporal; | 
|  | if (IsDereferenceable) | 
|  | Flags |= MachineMemOperand::MODereferenceable; | 
|  | if (IsInvariant) | 
|  | Flags |= MachineMemOperand::MOInvariant; | 
|  |  | 
|  | return FuncInfo.MF->getMachineMemOperand(MachinePointerInfo(Ptr), Flags, Size, | 
|  | Alignment, AAInfo, Ranges); | 
|  | } | 
|  |  | 
|  | CmpInst::Predicate FastISel::optimizeCmpPredicate(const CmpInst *CI) const { | 
|  | // If both operands are the same, then try to optimize or fold the cmp. | 
|  | CmpInst::Predicate Predicate = CI->getPredicate(); | 
|  | if (CI->getOperand(0) != CI->getOperand(1)) | 
|  | return Predicate; | 
|  |  | 
|  | switch (Predicate) { | 
|  | default: llvm_unreachable("Invalid predicate!"); | 
|  | case CmpInst::FCMP_FALSE: Predicate = CmpInst::FCMP_FALSE; break; | 
|  | case CmpInst::FCMP_OEQ:   Predicate = CmpInst::FCMP_ORD;   break; | 
|  | case CmpInst::FCMP_OGT:   Predicate = CmpInst::FCMP_FALSE; break; | 
|  | case CmpInst::FCMP_OGE:   Predicate = CmpInst::FCMP_ORD;   break; | 
|  | case CmpInst::FCMP_OLT:   Predicate = CmpInst::FCMP_FALSE; break; | 
|  | case CmpInst::FCMP_OLE:   Predicate = CmpInst::FCMP_ORD;   break; | 
|  | case CmpInst::FCMP_ONE:   Predicate = CmpInst::FCMP_FALSE; break; | 
|  | case CmpInst::FCMP_ORD:   Predicate = CmpInst::FCMP_ORD;   break; | 
|  | case CmpInst::FCMP_UNO:   Predicate = CmpInst::FCMP_UNO;   break; | 
|  | case CmpInst::FCMP_UEQ:   Predicate = CmpInst::FCMP_TRUE;  break; | 
|  | case CmpInst::FCMP_UGT:   Predicate = CmpInst::FCMP_UNO;   break; | 
|  | case CmpInst::FCMP_UGE:   Predicate = CmpInst::FCMP_TRUE;  break; | 
|  | case CmpInst::FCMP_ULT:   Predicate = CmpInst::FCMP_UNO;   break; | 
|  | case CmpInst::FCMP_ULE:   Predicate = CmpInst::FCMP_TRUE;  break; | 
|  | case CmpInst::FCMP_UNE:   Predicate = CmpInst::FCMP_UNO;   break; | 
|  | case CmpInst::FCMP_TRUE:  Predicate = CmpInst::FCMP_TRUE;  break; | 
|  |  | 
|  | case CmpInst::ICMP_EQ:    Predicate = CmpInst::FCMP_TRUE;  break; | 
|  | case CmpInst::ICMP_NE:    Predicate = CmpInst::FCMP_FALSE; break; | 
|  | case CmpInst::ICMP_UGT:   Predicate = CmpInst::FCMP_FALSE; break; | 
|  | case CmpInst::ICMP_UGE:   Predicate = CmpInst::FCMP_TRUE;  break; | 
|  | case CmpInst::ICMP_ULT:   Predicate = CmpInst::FCMP_FALSE; break; | 
|  | case CmpInst::ICMP_ULE:   Predicate = CmpInst::FCMP_TRUE;  break; | 
|  | case CmpInst::ICMP_SGT:   Predicate = CmpInst::FCMP_FALSE; break; | 
|  | case CmpInst::ICMP_SGE:   Predicate = CmpInst::FCMP_TRUE;  break; | 
|  | case CmpInst::ICMP_SLT:   Predicate = CmpInst::FCMP_FALSE; break; | 
|  | case CmpInst::ICMP_SLE:   Predicate = CmpInst::FCMP_TRUE;  break; | 
|  | } | 
|  |  | 
|  | return Predicate; | 
|  | } |