| //===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Analysis/LazyCallGraph.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/IR/CallSite.h" |
| #include "llvm/IR/InstVisitor.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/PassManager.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "lcg" |
| |
| static void findCallees( |
| SmallVectorImpl<Constant *> &Worklist, SmallPtrSetImpl<Constant *> &Visited, |
| SmallVectorImpl<PointerUnion<Function *, LazyCallGraph::Node *>> &Callees, |
| DenseMap<Function *, size_t> &CalleeIndexMap) { |
| while (!Worklist.empty()) { |
| Constant *C = Worklist.pop_back_val(); |
| |
| if (Function *F = dyn_cast<Function>(C)) { |
| // Note that we consider *any* function with a definition to be a viable |
| // edge. Even if the function's definition is subject to replacement by |
| // some other module (say, a weak definition) there may still be |
| // optimizations which essentially speculate based on the definition and |
| // a way to check that the specific definition is in fact the one being |
| // used. For example, this could be done by moving the weak definition to |
| // a strong (internal) definition and making the weak definition be an |
| // alias. Then a test of the address of the weak function against the new |
| // strong definition's address would be an effective way to determine the |
| // safety of optimizing a direct call edge. |
| if (!F->isDeclaration() && |
| CalleeIndexMap.insert(std::make_pair(F, Callees.size())).second) { |
| DEBUG(dbgs() << " Added callable function: " << F->getName() |
| << "\n"); |
| Callees.push_back(F); |
| } |
| continue; |
| } |
| |
| for (Value *Op : C->operand_values()) |
| if (Visited.insert(cast<Constant>(Op))) |
| Worklist.push_back(cast<Constant>(Op)); |
| } |
| } |
| |
| LazyCallGraph::Node::Node(LazyCallGraph &G, Function &F) |
| : G(&G), F(F), DFSNumber(0), LowLink(0) { |
| DEBUG(dbgs() << " Adding functions called by '" << F.getName() |
| << "' to the graph.\n"); |
| |
| SmallVector<Constant *, 16> Worklist; |
| SmallPtrSet<Constant *, 16> Visited; |
| // Find all the potential callees in this function. First walk the |
| // instructions and add every operand which is a constant to the worklist. |
| for (BasicBlock &BB : F) |
| for (Instruction &I : BB) |
| for (Value *Op : I.operand_values()) |
| if (Constant *C = dyn_cast<Constant>(Op)) |
| if (Visited.insert(C)) |
| Worklist.push_back(C); |
| |
| // We've collected all the constant (and thus potentially function or |
| // function containing) operands to all of the instructions in the function. |
| // Process them (recursively) collecting every function found. |
| findCallees(Worklist, Visited, Callees, CalleeIndexMap); |
| } |
| |
| LazyCallGraph::LazyCallGraph(Module &M) : NextDFSNumber(0) { |
| DEBUG(dbgs() << "Building CG for module: " << M.getModuleIdentifier() |
| << "\n"); |
| for (Function &F : M) |
| if (!F.isDeclaration() && !F.hasLocalLinkage()) |
| if (EntryIndexMap.insert(std::make_pair(&F, EntryNodes.size())).second) { |
| DEBUG(dbgs() << " Adding '" << F.getName() |
| << "' to entry set of the graph.\n"); |
| EntryNodes.push_back(&F); |
| } |
| |
| // Now add entry nodes for functions reachable via initializers to globals. |
| SmallVector<Constant *, 16> Worklist; |
| SmallPtrSet<Constant *, 16> Visited; |
| for (GlobalVariable &GV : M.globals()) |
| if (GV.hasInitializer()) |
| if (Visited.insert(GV.getInitializer())) |
| Worklist.push_back(GV.getInitializer()); |
| |
| DEBUG(dbgs() << " Adding functions referenced by global initializers to the " |
| "entry set.\n"); |
| findCallees(Worklist, Visited, EntryNodes, EntryIndexMap); |
| |
| for (auto &Entry : EntryNodes) |
| if (Function *F = Entry.dyn_cast<Function *>()) |
| SCCEntryNodes.insert(F); |
| else |
| SCCEntryNodes.insert(&Entry.get<Node *>()->getFunction()); |
| } |
| |
| LazyCallGraph::LazyCallGraph(LazyCallGraph &&G) |
| : BPA(std::move(G.BPA)), NodeMap(std::move(G.NodeMap)), |
| EntryNodes(std::move(G.EntryNodes)), |
| EntryIndexMap(std::move(G.EntryIndexMap)), SCCBPA(std::move(G.SCCBPA)), |
| SCCMap(std::move(G.SCCMap)), LeafSCCs(std::move(G.LeafSCCs)), |
| DFSStack(std::move(G.DFSStack)), |
| SCCEntryNodes(std::move(G.SCCEntryNodes)), |
| NextDFSNumber(G.NextDFSNumber) { |
| updateGraphPtrs(); |
| } |
| |
| LazyCallGraph &LazyCallGraph::operator=(LazyCallGraph &&G) { |
| BPA = std::move(G.BPA); |
| NodeMap = std::move(G.NodeMap); |
| EntryNodes = std::move(G.EntryNodes); |
| EntryIndexMap = std::move(G.EntryIndexMap); |
| SCCBPA = std::move(G.SCCBPA); |
| SCCMap = std::move(G.SCCMap); |
| LeafSCCs = std::move(G.LeafSCCs); |
| DFSStack = std::move(G.DFSStack); |
| SCCEntryNodes = std::move(G.SCCEntryNodes); |
| NextDFSNumber = G.NextDFSNumber; |
| updateGraphPtrs(); |
| return *this; |
| } |
| |
| void LazyCallGraph::SCC::removeEdge(LazyCallGraph &G, Function &Caller, |
| Function &Callee, SCC &CalleeC) { |
| assert(std::find(G.LeafSCCs.begin(), G.LeafSCCs.end(), this) == |
| G.LeafSCCs.end() && |
| "Cannot have a leaf SCC caller with a different SCC callee."); |
| |
| bool HasOtherCallToCalleeC = false; |
| bool HasOtherCallOutsideSCC = false; |
| for (Node *N : *this) { |
| for (Node &Callee : *N) { |
| SCC &OtherCalleeC = *G.SCCMap.lookup(&Callee); |
| if (&OtherCalleeC == &CalleeC) { |
| HasOtherCallToCalleeC = true; |
| break; |
| } |
| if (&OtherCalleeC != this) |
| HasOtherCallOutsideSCC = true; |
| } |
| if (HasOtherCallToCalleeC) |
| break; |
| } |
| // Because the SCCs form a DAG, deleting such an edge cannot change the set |
| // of SCCs in the graph. However, it may cut an edge of the SCC DAG, making |
| // the caller no longer a parent of the callee. Walk the other call edges |
| // in the caller to tell. |
| if (!HasOtherCallToCalleeC) { |
| bool Removed = CalleeC.ParentSCCs.erase(this); |
| (void)Removed; |
| assert(Removed && |
| "Did not find the caller SCC in the callee SCC's parent list!"); |
| |
| // It may orphan an SCC if it is the last edge reaching it, but that does |
| // not violate any invariants of the graph. |
| if (CalleeC.ParentSCCs.empty()) |
| DEBUG(dbgs() << "LCG: Update removing " << Caller.getName() << " -> " |
| << Callee.getName() << " edge orphaned the callee's SCC!\n"); |
| } |
| |
| // It may make the Caller SCC a leaf SCC. |
| if (!HasOtherCallOutsideSCC) |
| G.LeafSCCs.push_back(this); |
| } |
| |
| SmallVector<LazyCallGraph::SCC *, 1> |
| LazyCallGraph::SCC::removeInternalEdge(LazyCallGraph &G, Node &Caller, |
| Node &Callee) { |
| // We return a list of the resulting SCCs, where 'this' is always the first |
| // element. |
| SmallVector<SCC *, 1> ResultSCCs; |
| ResultSCCs.push_back(this); |
| |
| // We're going to do a full mini-Tarjan's walk using a local stack here. |
| int NextDFSNumber; |
| SmallVector<std::pair<Node *, Node::iterator>, 4> DFSStack; |
| SmallVector<Node *, 4> PendingSCCStack; |
| |
| // The worklist is every node in the original SCC. FIXME: switch the SCC to |
| // use a SmallSetVector and swap here. |
| SmallSetVector<Node *, 1> Worklist; |
| for (Node *N : Nodes) { |
| // Clear these to 0 while we re-run Tarjan's over the SCC. |
| N->DFSNumber = 0; |
| N->LowLink = 0; |
| Worklist.insert(N); |
| } |
| |
| // The callee can already reach every node in this SCC (by definition). It is |
| // the only node we know will stay inside this SCC. Everything which |
| // transitively reaches Callee will also remain in the SCC. To model this we |
| // incrementally add any chain of nodes which reaches something in the new |
| // node set to the new node set. This short circuits one side of the Tarjan's |
| // walk. |
| SmallSetVector<Node *, 1> NewNodes; |
| NewNodes.insert(&Callee); |
| |
| for (;;) { |
| if (DFSStack.empty()) { |
| if (Worklist.empty()) |
| break; |
| Node *N = Worklist.pop_back_val(); |
| N->LowLink = N->DFSNumber = 1; |
| NextDFSNumber = 2; |
| DFSStack.push_back(std::make_pair(N, N->begin())); |
| assert(PendingSCCStack.empty() && "Cannot start a fresh DFS walk with " |
| "pending nodes from a prior walk."); |
| } |
| |
| // We simulate recursion by popping out of all the nested loops and |
| // continuing. |
| bool Recurse = false; |
| |
| do { |
| Node *N = DFSStack.back().first; |
| assert(N->DFSNumber != 0 && "We should always assign a DFS number " |
| "before placing a node onto the stack."); |
| |
| for (auto I = DFSStack.back().second, E = N->end(); I != E; ++I) { |
| Node &ChildN = *I; |
| // If this child isn't currently in this SCC, no need to process it. |
| // However, we do need to remove this SCC from its SCC's parent set. |
| SCC &ChildSCC = *G.SCCMap.lookup(&ChildN); |
| if (&ChildSCC != this) { |
| ChildSCC.ParentSCCs.erase(this); |
| continue; |
| } |
| |
| // Check if we have reached a node in the new (known connected) set. If |
| // so, the entire stack is necessarily in that set and we can re-start. |
| if (NewNodes.count(&ChildN)) { |
| while (!PendingSCCStack.empty()) |
| NewNodes.insert(PendingSCCStack.pop_back_val()); |
| while (!DFSStack.empty()) |
| NewNodes.insert(DFSStack.pop_back_val().first); |
| Recurse = true; |
| break; |
| } |
| |
| if (ChildN.DFSNumber == 0) { |
| // Mark that we should start at this child when next this node is the |
| // top of the stack. We don't start at the next child to ensure this |
| // child's lowlink is reflected. |
| DFSStack.back().second = I; |
| |
| // Recurse onto this node via a tail call. |
| ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++; |
| Worklist.remove(&ChildN); |
| DFSStack.push_back(std::make_pair(&ChildN, ChildN.begin())); |
| Recurse = true; |
| break; |
| } |
| |
| // Track the lowest link of the childen, if any are still in the stack. |
| // Any child not on the stack will have a LowLink of -1. |
| assert(ChildN.LowLink != 0 && |
| "Low-link must not be zero with a non-zero DFS number."); |
| if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink) |
| N->LowLink = ChildN.LowLink; |
| } |
| if (Recurse) |
| break; |
| |
| // No more children to process, pop it off the core DFS stack. |
| DFSStack.pop_back(); |
| |
| if (N->LowLink == N->DFSNumber) { |
| ResultSCCs.push_back(G.formSCC(N, PendingSCCStack)); |
| break; |
| } |
| |
| assert(!DFSStack.empty() && "We shouldn't have an empty stack!"); |
| |
| // At this point we know that N cannot ever be an SCC root. Its low-link |
| // is not its dfs-number, and we've processed all of its children. It is |
| // just sitting here waiting until some node further down the stack gets |
| // low-link == dfs-number and pops it off as well. Move it to the pending |
| // stack which is pulled into the next SCC to be formed. |
| PendingSCCStack.push_back(N); |
| } while (!DFSStack.empty()); |
| |
| // We reach here when we're going to "recurse". |
| } |
| |
| // Replace this SCC with the NewNodes we collected above. |
| // FIXME: Simplify this when the SCC's datastructure is just a list. |
| Nodes.clear(); |
| |
| // Now we need to reconnect the current SCC to the graph. |
| bool IsLeafSCC = true; |
| for (Node *N : NewNodes) { |
| N->DFSNumber = -1; |
| N->LowLink = -1; |
| Nodes.push_back(N); |
| for (Node &ChildN : *N) { |
| if (NewNodes.count(&ChildN)) |
| continue; |
| SCC &ChildSCC = *G.SCCMap.lookup(&ChildN); |
| ChildSCC.ParentSCCs.insert(this); |
| IsLeafSCC = false; |
| } |
| } |
| #ifndef NDEBUG |
| if (ResultSCCs.size() > 1) |
| assert(!IsLeafSCC && "This SCC cannot be a leaf as we have split out new " |
| "SCCs by removing this edge."); |
| if (!std::any_of(G.LeafSCCs.begin(), G.LeafSCCs.end(), |
| [&](SCC *C) { return C == this; })) |
| assert(!IsLeafSCC && "This SCC cannot be a leaf as it already had child " |
| "SCCs before we removed this edge."); |
| #endif |
| // If this SCC stopped being a leaf through this edge removal, remove it from |
| // the leaf SCC list. |
| if (!IsLeafSCC && ResultSCCs.size() > 1) |
| G.LeafSCCs.erase(std::remove(G.LeafSCCs.begin(), G.LeafSCCs.end(), this), |
| G.LeafSCCs.end()); |
| |
| // Return the new list of SCCs. |
| return ResultSCCs; |
| } |
| |
| void LazyCallGraph::removeEdge(Node &CallerN, Function &Callee) { |
| auto IndexMapI = CallerN.CalleeIndexMap.find(&Callee); |
| assert(IndexMapI != CallerN.CalleeIndexMap.end() && |
| "Callee not in the callee set for the caller?"); |
| |
| Node *CalleeN = CallerN.Callees[IndexMapI->second].dyn_cast<Node *>(); |
| CallerN.Callees.erase(CallerN.Callees.begin() + IndexMapI->second); |
| CallerN.CalleeIndexMap.erase(IndexMapI); |
| |
| SCC *CallerC = SCCMap.lookup(&CallerN); |
| if (!CallerC) { |
| // We can only remove edges when the edge isn't actively participating in |
| // a DFS walk. Either it must have been popped into an SCC, or it must not |
| // yet have been reached by the DFS walk. Assert the latter here. |
| assert(std::all_of(DFSStack.begin(), DFSStack.end(), |
| [&](const std::pair<Node *, iterator> &StackEntry) { |
| return StackEntry.first != &CallerN; |
| }) && |
| "Found the caller on the DFSStack!"); |
| return; |
| } |
| |
| assert(CalleeN && "If the caller is in an SCC, we have to have explored all " |
| "its transitively called functions."); |
| |
| SCC *CalleeC = SCCMap.lookup(CalleeN); |
| assert(CalleeC && |
| "The caller has an SCC, and thus by necessity so does the callee."); |
| |
| // The easy case is when they are different SCCs. |
| if (CallerC != CalleeC) { |
| CallerC->removeEdge(*this, CallerN.getFunction(), Callee, *CalleeC); |
| return; |
| } |
| |
| // The hard case is when we remove an edge within a SCC. This may cause new |
| // SCCs to need to be added to the graph. |
| CallerC->removeInternalEdge(*this, CallerN, *CalleeN); |
| } |
| |
| LazyCallGraph::Node &LazyCallGraph::insertInto(Function &F, Node *&MappedN) { |
| return *new (MappedN = BPA.Allocate()) Node(*this, F); |
| } |
| |
| void LazyCallGraph::updateGraphPtrs() { |
| // Process all nodes updating the graph pointers. |
| SmallVector<Node *, 16> Worklist; |
| for (auto &Entry : EntryNodes) |
| if (Node *EntryN = Entry.dyn_cast<Node *>()) |
| Worklist.push_back(EntryN); |
| |
| while (!Worklist.empty()) { |
| Node *N = Worklist.pop_back_val(); |
| N->G = this; |
| for (auto &Callee : N->Callees) |
| if (Node *CalleeN = Callee.dyn_cast<Node *>()) |
| Worklist.push_back(CalleeN); |
| } |
| } |
| |
| LazyCallGraph::SCC *LazyCallGraph::formSCC(Node *RootN, |
| SmallVectorImpl<Node *> &NodeStack) { |
| // The tail of the stack is the new SCC. Allocate the SCC and pop the stack |
| // into it. |
| SCC *NewSCC = new (SCCBPA.Allocate()) SCC(); |
| |
| SCCMap[RootN] = NewSCC; |
| NewSCC->Nodes.push_back(RootN); |
| |
| while (!NodeStack.empty() && NodeStack.back()->DFSNumber > RootN->DFSNumber) { |
| Node *SCCN = NodeStack.pop_back_val(); |
| assert(SCCN->LowLink >= RootN->LowLink && |
| "We cannot have a low link in an SCC lower than its root on the " |
| "stack!"); |
| SCCN->DFSNumber = SCCN->LowLink = -1; |
| |
| SCCMap[SCCN] = NewSCC; |
| NewSCC->Nodes.push_back(SCCN); |
| } |
| RootN->DFSNumber = RootN->LowLink = -1; |
| |
| // A final pass over all edges in the SCC (this remains linear as we only |
| // do this once when we build the SCC) to connect it to the parent sets of |
| // its children. |
| bool IsLeafSCC = true; |
| for (Node *SCCN : NewSCC->Nodes) |
| for (Node &SCCChildN : *SCCN) { |
| if (SCCMap.lookup(&SCCChildN) == NewSCC) |
| continue; |
| SCC &ChildSCC = *SCCMap.lookup(&SCCChildN); |
| ChildSCC.ParentSCCs.insert(NewSCC); |
| IsLeafSCC = false; |
| } |
| |
| // For the SCCs where we fine no child SCCs, add them to the leaf list. |
| if (IsLeafSCC) |
| LeafSCCs.push_back(NewSCC); |
| |
| return NewSCC; |
| } |
| |
| LazyCallGraph::SCC *LazyCallGraph::getNextSCCInPostOrder() { |
| // When the stack is empty, there are no more SCCs to walk in this graph. |
| if (DFSStack.empty()) { |
| // If we've handled all candidate entry nodes to the SCC forest, we're done. |
| if (SCCEntryNodes.empty()) |
| return nullptr; |
| |
| Node &N = get(*SCCEntryNodes.pop_back_val()); |
| N.LowLink = N.DFSNumber = 1; |
| NextDFSNumber = 2; |
| DFSStack.push_back(std::make_pair(&N, N.begin())); |
| } |
| |
| do { |
| Node *N = DFSStack.back().first; |
| assert(N->DFSNumber != 0 && "We should always assign a DFS number " |
| "before placing a node onto the stack."); |
| |
| for (auto I = DFSStack.back().second, E = N->end(); I != E; ++I) { |
| Node &ChildN = *I; |
| if (ChildN.DFSNumber == 0) { |
| // Mark that we should start at this child when next this node is the |
| // top of the stack. We don't start at the next child to ensure this |
| // child's lowlink is reflected. |
| DFSStack.back().second = I; |
| |
| // Recurse onto this node via a tail call. |
| assert(!SCCMap.count(&ChildN) && |
| "Found a node with 0 DFS number but already in an SCC!"); |
| ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++; |
| SCCEntryNodes.remove(&ChildN.getFunction()); |
| DFSStack.push_back(std::make_pair(&ChildN, ChildN.begin())); |
| return LazyCallGraph::getNextSCCInPostOrder(); |
| } |
| |
| // Track the lowest link of the childen, if any are still in the stack. |
| assert(ChildN.LowLink != 0 && |
| "Low-link must not be zero with a non-zero DFS number."); |
| if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink) |
| N->LowLink = ChildN.LowLink; |
| } |
| // No more children to process here, pop the node off the stack. |
| DFSStack.pop_back(); |
| |
| if (N->LowLink == N->DFSNumber) |
| // Form the new SCC out of the top of the DFS stack. |
| return formSCC(N, PendingSCCStack); |
| |
| // At this point we know that N cannot ever be an SCC root. Its low-link |
| // is not its dfs-number, and we've processed all of its children. It is |
| // just sitting here waiting until some node further down the stack gets |
| // low-link == dfs-number and pops it off as well. Move it to the pending |
| // stack which is pulled into the next SCC to be formed. |
| PendingSCCStack.push_back(N); |
| } while (!DFSStack.empty()); |
| |
| llvm_unreachable( |
| "We cannot reach the bottom of the stack without popping an SCC."); |
| } |
| |
| char LazyCallGraphAnalysis::PassID; |
| |
| LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {} |
| |
| static void printNodes(raw_ostream &OS, LazyCallGraph::Node &N, |
| SmallPtrSetImpl<LazyCallGraph::Node *> &Printed) { |
| // Recurse depth first through the nodes. |
| for (LazyCallGraph::Node &ChildN : N) |
| if (Printed.insert(&ChildN)) |
| printNodes(OS, ChildN, Printed); |
| |
| OS << " Call edges in function: " << N.getFunction().getName() << "\n"; |
| for (LazyCallGraph::iterator I = N.begin(), E = N.end(); I != E; ++I) |
| OS << " -> " << I->getFunction().getName() << "\n"; |
| |
| OS << "\n"; |
| } |
| |
| static void printSCC(raw_ostream &OS, LazyCallGraph::SCC &SCC) { |
| ptrdiff_t SCCSize = std::distance(SCC.begin(), SCC.end()); |
| OS << " SCC with " << SCCSize << " functions:\n"; |
| |
| for (LazyCallGraph::Node *N : SCC) |
| OS << " " << N->getFunction().getName() << "\n"; |
| |
| OS << "\n"; |
| } |
| |
| PreservedAnalyses LazyCallGraphPrinterPass::run(Module *M, |
| ModuleAnalysisManager *AM) { |
| LazyCallGraph &G = AM->getResult<LazyCallGraphAnalysis>(M); |
| |
| OS << "Printing the call graph for module: " << M->getModuleIdentifier() |
| << "\n\n"; |
| |
| SmallPtrSet<LazyCallGraph::Node *, 16> Printed; |
| for (LazyCallGraph::Node &N : G) |
| if (Printed.insert(&N)) |
| printNodes(OS, N, Printed); |
| |
| for (LazyCallGraph::SCC &SCC : G.postorder_sccs()) |
| printSCC(OS, SCC); |
| |
| return PreservedAnalyses::all(); |
| |
| } |