|  | //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the PPCISelLowering class. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "PPCISelLowering.h" | 
|  | #include "PPCMachineFunctionInfo.h" | 
|  | #include "PPCPredicates.h" | 
|  | #include "PPCTargetMachine.h" | 
|  | #include "PPCPerfectShuffle.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/VectorExtras.h" | 
|  | #include "llvm/CodeGen/CallingConvLower.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/PseudoSourceValue.h" | 
|  | #include "llvm/CodeGen/SelectionDAG.h" | 
|  | #include "llvm/CallingConv.h" | 
|  | #include "llvm/Constants.h" | 
|  | #include "llvm/Function.h" | 
|  | #include "llvm/Intrinsics.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Target/TargetOptions.h" | 
|  | #include "llvm/Target/TargetLoweringObjectFile.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/DerivedTypes.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, EVT &ValVT, EVT &LocVT, | 
|  | CCValAssign::LocInfo &LocInfo, | 
|  | ISD::ArgFlagsTy &ArgFlags, | 
|  | CCState &State); | 
|  | static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, EVT &ValVT, | 
|  | EVT &LocVT, | 
|  | CCValAssign::LocInfo &LocInfo, | 
|  | ISD::ArgFlagsTy &ArgFlags, | 
|  | CCState &State); | 
|  | static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, EVT &ValVT, | 
|  | EVT &LocVT, | 
|  | CCValAssign::LocInfo &LocInfo, | 
|  | ISD::ArgFlagsTy &ArgFlags, | 
|  | CCState &State); | 
|  |  | 
|  | static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc", | 
|  | cl::desc("enable preincrement load/store generation on PPC (experimental)"), | 
|  | cl::Hidden); | 
|  |  | 
|  | static TargetLoweringObjectFile *CreateTLOF(const PPCTargetMachine &TM) { | 
|  | if (TM.getSubtargetImpl()->isDarwin()) | 
|  | return new TargetLoweringObjectFileMachO(); | 
|  | return new TargetLoweringObjectFileELF(); | 
|  | } | 
|  |  | 
|  |  | 
|  | PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM) | 
|  | : TargetLowering(TM, CreateTLOF(TM)), PPCSubTarget(*TM.getSubtargetImpl()) { | 
|  |  | 
|  | setPow2DivIsCheap(); | 
|  |  | 
|  | // Use _setjmp/_longjmp instead of setjmp/longjmp. | 
|  | setUseUnderscoreSetJmp(true); | 
|  | setUseUnderscoreLongJmp(true); | 
|  |  | 
|  | // Set up the register classes. | 
|  | addRegisterClass(MVT::i32, PPC::GPRCRegisterClass); | 
|  | addRegisterClass(MVT::f32, PPC::F4RCRegisterClass); | 
|  | addRegisterClass(MVT::f64, PPC::F8RCRegisterClass); | 
|  |  | 
|  | // PowerPC has an i16 but no i8 (or i1) SEXTLOAD | 
|  | setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); | 
|  | setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand); | 
|  |  | 
|  | setTruncStoreAction(MVT::f64, MVT::f32, Expand); | 
|  |  | 
|  | // PowerPC has pre-inc load and store's. | 
|  | setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); | 
|  | setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); | 
|  | setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); | 
|  | setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); | 
|  | setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); | 
|  | setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); | 
|  | setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); | 
|  | setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); | 
|  | setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); | 
|  | setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); | 
|  |  | 
|  | // This is used in the ppcf128->int sequence.  Note it has different semantics | 
|  | // from FP_ROUND:  that rounds to nearest, this rounds to zero. | 
|  | setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom); | 
|  |  | 
|  | // PowerPC has no SREM/UREM instructions | 
|  | setOperationAction(ISD::SREM, MVT::i32, Expand); | 
|  | setOperationAction(ISD::UREM, MVT::i32, Expand); | 
|  | setOperationAction(ISD::SREM, MVT::i64, Expand); | 
|  | setOperationAction(ISD::UREM, MVT::i64, Expand); | 
|  |  | 
|  | // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. | 
|  | setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); | 
|  | setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); | 
|  | setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); | 
|  | setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); | 
|  | setOperationAction(ISD::UDIVREM, MVT::i32, Expand); | 
|  | setOperationAction(ISD::SDIVREM, MVT::i32, Expand); | 
|  | setOperationAction(ISD::UDIVREM, MVT::i64, Expand); | 
|  | setOperationAction(ISD::SDIVREM, MVT::i64, Expand); | 
|  |  | 
|  | // We don't support sin/cos/sqrt/fmod/pow | 
|  | setOperationAction(ISD::FSIN , MVT::f64, Expand); | 
|  | setOperationAction(ISD::FCOS , MVT::f64, Expand); | 
|  | setOperationAction(ISD::FREM , MVT::f64, Expand); | 
|  | setOperationAction(ISD::FPOW , MVT::f64, Expand); | 
|  | setOperationAction(ISD::FSIN , MVT::f32, Expand); | 
|  | setOperationAction(ISD::FCOS , MVT::f32, Expand); | 
|  | setOperationAction(ISD::FREM , MVT::f32, Expand); | 
|  | setOperationAction(ISD::FPOW , MVT::f32, Expand); | 
|  |  | 
|  | setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); | 
|  |  | 
|  | // If we're enabling GP optimizations, use hardware square root | 
|  | if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) { | 
|  | setOperationAction(ISD::FSQRT, MVT::f64, Expand); | 
|  | setOperationAction(ISD::FSQRT, MVT::f32, Expand); | 
|  | } | 
|  |  | 
|  | setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); | 
|  | setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); | 
|  |  | 
|  | // PowerPC does not have BSWAP, CTPOP or CTTZ | 
|  | setOperationAction(ISD::BSWAP, MVT::i32  , Expand); | 
|  | setOperationAction(ISD::CTPOP, MVT::i32  , Expand); | 
|  | setOperationAction(ISD::CTTZ , MVT::i32  , Expand); | 
|  | setOperationAction(ISD::BSWAP, MVT::i64  , Expand); | 
|  | setOperationAction(ISD::CTPOP, MVT::i64  , Expand); | 
|  | setOperationAction(ISD::CTTZ , MVT::i64  , Expand); | 
|  |  | 
|  | // PowerPC does not have ROTR | 
|  | setOperationAction(ISD::ROTR, MVT::i32   , Expand); | 
|  | setOperationAction(ISD::ROTR, MVT::i64   , Expand); | 
|  |  | 
|  | // PowerPC does not have Select | 
|  | setOperationAction(ISD::SELECT, MVT::i32, Expand); | 
|  | setOperationAction(ISD::SELECT, MVT::i64, Expand); | 
|  | setOperationAction(ISD::SELECT, MVT::f32, Expand); | 
|  | setOperationAction(ISD::SELECT, MVT::f64, Expand); | 
|  |  | 
|  | // PowerPC wants to turn select_cc of FP into fsel when possible. | 
|  | setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); | 
|  | setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); | 
|  |  | 
|  | // PowerPC wants to optimize integer setcc a bit | 
|  | setOperationAction(ISD::SETCC, MVT::i32, Custom); | 
|  |  | 
|  | // PowerPC does not have BRCOND which requires SetCC | 
|  | setOperationAction(ISD::BRCOND, MVT::Other, Expand); | 
|  |  | 
|  | setOperationAction(ISD::BR_JT,  MVT::Other, Expand); | 
|  |  | 
|  | // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. | 
|  | setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); | 
|  |  | 
|  | // PowerPC does not have [U|S]INT_TO_FP | 
|  | setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); | 
|  | setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); | 
|  |  | 
|  | setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand); | 
|  | setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand); | 
|  | setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand); | 
|  | setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand); | 
|  |  | 
|  | // We cannot sextinreg(i1).  Expand to shifts. | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); | 
|  |  | 
|  | // Support label based line numbers. | 
|  | setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand); | 
|  | setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand); | 
|  |  | 
|  | setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand); | 
|  | setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand); | 
|  | setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand); | 
|  | setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand); | 
|  |  | 
|  |  | 
|  | // We want to legalize GlobalAddress and ConstantPool nodes into the | 
|  | // appropriate instructions to materialize the address. | 
|  | setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); | 
|  | setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); | 
|  | setOperationAction(ISD::BlockAddress,  MVT::i32, Custom); | 
|  | setOperationAction(ISD::ConstantPool,  MVT::i32, Custom); | 
|  | setOperationAction(ISD::JumpTable,     MVT::i32, Custom); | 
|  | setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); | 
|  | setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); | 
|  | setOperationAction(ISD::BlockAddress,  MVT::i64, Custom); | 
|  | setOperationAction(ISD::ConstantPool,  MVT::i64, Custom); | 
|  | setOperationAction(ISD::JumpTable,     MVT::i64, Custom); | 
|  |  | 
|  | // TRAP is legal. | 
|  | setOperationAction(ISD::TRAP, MVT::Other, Legal); | 
|  |  | 
|  | // TRAMPOLINE is custom lowered. | 
|  | setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom); | 
|  |  | 
|  | // VASTART needs to be custom lowered to use the VarArgsFrameIndex | 
|  | setOperationAction(ISD::VASTART           , MVT::Other, Custom); | 
|  |  | 
|  | // VAARG is custom lowered with the 32-bit SVR4 ABI. | 
|  | if (    TM.getSubtarget<PPCSubtarget>().isSVR4ABI() | 
|  | && !TM.getSubtarget<PPCSubtarget>().isPPC64()) | 
|  | setOperationAction(ISD::VAARG, MVT::Other, Custom); | 
|  | else | 
|  | setOperationAction(ISD::VAARG, MVT::Other, Expand); | 
|  |  | 
|  | // Use the default implementation. | 
|  | setOperationAction(ISD::VACOPY            , MVT::Other, Expand); | 
|  | setOperationAction(ISD::VAEND             , MVT::Other, Expand); | 
|  | setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand); | 
|  | setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom); | 
|  | setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom); | 
|  | setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom); | 
|  |  | 
|  | // We want to custom lower some of our intrinsics. | 
|  | setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); | 
|  |  | 
|  | // Comparisons that require checking two conditions. | 
|  | setCondCodeAction(ISD::SETULT, MVT::f32, Expand); | 
|  | setCondCodeAction(ISD::SETULT, MVT::f64, Expand); | 
|  | setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); | 
|  | setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); | 
|  | setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); | 
|  | setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); | 
|  | setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); | 
|  | setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); | 
|  | setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); | 
|  | setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); | 
|  | setCondCodeAction(ISD::SETONE, MVT::f32, Expand); | 
|  | setCondCodeAction(ISD::SETONE, MVT::f64, Expand); | 
|  |  | 
|  | if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) { | 
|  | // They also have instructions for converting between i64 and fp. | 
|  | setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); | 
|  | setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); | 
|  | setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); | 
|  | setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); | 
|  | // This is just the low 32 bits of a (signed) fp->i64 conversion. | 
|  | // We cannot do this with Promote because i64 is not a legal type. | 
|  | setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); | 
|  |  | 
|  | // FIXME: disable this lowered code.  This generates 64-bit register values, | 
|  | // and we don't model the fact that the top part is clobbered by calls.  We | 
|  | // need to flag these together so that the value isn't live across a call. | 
|  | //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); | 
|  | } else { | 
|  | // PowerPC does not have FP_TO_UINT on 32-bit implementations. | 
|  | setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); | 
|  | } | 
|  |  | 
|  | if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) { | 
|  | // 64-bit PowerPC implementations can support i64 types directly | 
|  | addRegisterClass(MVT::i64, PPC::G8RCRegisterClass); | 
|  | // BUILD_PAIR can't be handled natively, and should be expanded to shl/or | 
|  | setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); | 
|  | // 64-bit PowerPC wants to expand i128 shifts itself. | 
|  | setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); | 
|  | setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); | 
|  | setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); | 
|  | } else { | 
|  | // 32-bit PowerPC wants to expand i64 shifts itself. | 
|  | setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); | 
|  | setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); | 
|  | setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); | 
|  | } | 
|  |  | 
|  | if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) { | 
|  | // First set operation action for all vector types to expand. Then we | 
|  | // will selectively turn on ones that can be effectively codegen'd. | 
|  | for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE; | 
|  | i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) { | 
|  | MVT::SimpleValueType VT = (MVT::SimpleValueType)i; | 
|  |  | 
|  | // add/sub are legal for all supported vector VT's. | 
|  | setOperationAction(ISD::ADD , VT, Legal); | 
|  | setOperationAction(ISD::SUB , VT, Legal); | 
|  |  | 
|  | // We promote all shuffles to v16i8. | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); | 
|  | AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); | 
|  |  | 
|  | // We promote all non-typed operations to v4i32. | 
|  | setOperationAction(ISD::AND   , VT, Promote); | 
|  | AddPromotedToType (ISD::AND   , VT, MVT::v4i32); | 
|  | setOperationAction(ISD::OR    , VT, Promote); | 
|  | AddPromotedToType (ISD::OR    , VT, MVT::v4i32); | 
|  | setOperationAction(ISD::XOR   , VT, Promote); | 
|  | AddPromotedToType (ISD::XOR   , VT, MVT::v4i32); | 
|  | setOperationAction(ISD::LOAD  , VT, Promote); | 
|  | AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32); | 
|  | setOperationAction(ISD::SELECT, VT, Promote); | 
|  | AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); | 
|  | setOperationAction(ISD::STORE, VT, Promote); | 
|  | AddPromotedToType (ISD::STORE, VT, MVT::v4i32); | 
|  |  | 
|  | // No other operations are legal. | 
|  | setOperationAction(ISD::MUL , VT, Expand); | 
|  | setOperationAction(ISD::SDIV, VT, Expand); | 
|  | setOperationAction(ISD::SREM, VT, Expand); | 
|  | setOperationAction(ISD::UDIV, VT, Expand); | 
|  | setOperationAction(ISD::UREM, VT, Expand); | 
|  | setOperationAction(ISD::FDIV, VT, Expand); | 
|  | setOperationAction(ISD::FNEG, VT, Expand); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); | 
|  | setOperationAction(ISD::BUILD_VECTOR, VT, Expand); | 
|  | setOperationAction(ISD::UMUL_LOHI, VT, Expand); | 
|  | setOperationAction(ISD::SMUL_LOHI, VT, Expand); | 
|  | setOperationAction(ISD::UDIVREM, VT, Expand); | 
|  | setOperationAction(ISD::SDIVREM, VT, Expand); | 
|  | setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); | 
|  | setOperationAction(ISD::FPOW, VT, Expand); | 
|  | setOperationAction(ISD::CTPOP, VT, Expand); | 
|  | setOperationAction(ISD::CTLZ, VT, Expand); | 
|  | setOperationAction(ISD::CTTZ, VT, Expand); | 
|  | } | 
|  |  | 
|  | // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle | 
|  | // with merges, splats, etc. | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); | 
|  |  | 
|  | setOperationAction(ISD::AND   , MVT::v4i32, Legal); | 
|  | setOperationAction(ISD::OR    , MVT::v4i32, Legal); | 
|  | setOperationAction(ISD::XOR   , MVT::v4i32, Legal); | 
|  | setOperationAction(ISD::LOAD  , MVT::v4i32, Legal); | 
|  | setOperationAction(ISD::SELECT, MVT::v4i32, Expand); | 
|  | setOperationAction(ISD::STORE , MVT::v4i32, Legal); | 
|  |  | 
|  | addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass); | 
|  | addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass); | 
|  | addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass); | 
|  | addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass); | 
|  |  | 
|  | setOperationAction(ISD::MUL, MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::MUL, MVT::v4i32, Custom); | 
|  | setOperationAction(ISD::MUL, MVT::v8i16, Custom); | 
|  | setOperationAction(ISD::MUL, MVT::v16i8, Custom); | 
|  |  | 
|  | setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); | 
|  | setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); | 
|  |  | 
|  | setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); | 
|  | setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); | 
|  | setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); | 
|  | setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); | 
|  | } | 
|  |  | 
|  | setShiftAmountType(MVT::i32); | 
|  | setBooleanContents(ZeroOrOneBooleanContent); | 
|  |  | 
|  | if (TM.getSubtarget<PPCSubtarget>().isPPC64()) { | 
|  | setStackPointerRegisterToSaveRestore(PPC::X1); | 
|  | setExceptionPointerRegister(PPC::X3); | 
|  | setExceptionSelectorRegister(PPC::X4); | 
|  | } else { | 
|  | setStackPointerRegisterToSaveRestore(PPC::R1); | 
|  | setExceptionPointerRegister(PPC::R3); | 
|  | setExceptionSelectorRegister(PPC::R4); | 
|  | } | 
|  |  | 
|  | // We have target-specific dag combine patterns for the following nodes: | 
|  | setTargetDAGCombine(ISD::SINT_TO_FP); | 
|  | setTargetDAGCombine(ISD::STORE); | 
|  | setTargetDAGCombine(ISD::BR_CC); | 
|  | setTargetDAGCombine(ISD::BSWAP); | 
|  |  | 
|  | // Darwin long double math library functions have $LDBL128 appended. | 
|  | if (TM.getSubtarget<PPCSubtarget>().isDarwin()) { | 
|  | setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128"); | 
|  | setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128"); | 
|  | setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128"); | 
|  | setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128"); | 
|  | setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128"); | 
|  | setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128"); | 
|  | setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128"); | 
|  | setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128"); | 
|  | setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128"); | 
|  | setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128"); | 
|  | } | 
|  |  | 
|  | computeRegisterProperties(); | 
|  | } | 
|  |  | 
|  | /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate | 
|  | /// function arguments in the caller parameter area. | 
|  | unsigned PPCTargetLowering::getByValTypeAlignment(const Type *Ty) const { | 
|  | TargetMachine &TM = getTargetMachine(); | 
|  | // Darwin passes everything on 4 byte boundary. | 
|  | if (TM.getSubtarget<PPCSubtarget>().isDarwin()) | 
|  | return 4; | 
|  | // FIXME SVR4 TBD | 
|  | return 4; | 
|  | } | 
|  |  | 
|  | const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { | 
|  | switch (Opcode) { | 
|  | default: return 0; | 
|  | case PPCISD::FSEL:            return "PPCISD::FSEL"; | 
|  | case PPCISD::FCFID:           return "PPCISD::FCFID"; | 
|  | case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ"; | 
|  | case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ"; | 
|  | case PPCISD::STFIWX:          return "PPCISD::STFIWX"; | 
|  | case PPCISD::VMADDFP:         return "PPCISD::VMADDFP"; | 
|  | case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP"; | 
|  | case PPCISD::VPERM:           return "PPCISD::VPERM"; | 
|  | case PPCISD::Hi:              return "PPCISD::Hi"; | 
|  | case PPCISD::Lo:              return "PPCISD::Lo"; | 
|  | case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY"; | 
|  | case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC"; | 
|  | case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg"; | 
|  | case PPCISD::SRL:             return "PPCISD::SRL"; | 
|  | case PPCISD::SRA:             return "PPCISD::SRA"; | 
|  | case PPCISD::SHL:             return "PPCISD::SHL"; | 
|  | case PPCISD::EXTSW_32:        return "PPCISD::EXTSW_32"; | 
|  | case PPCISD::STD_32:          return "PPCISD::STD_32"; | 
|  | case PPCISD::CALL_SVR4:       return "PPCISD::CALL_SVR4"; | 
|  | case PPCISD::CALL_Darwin:     return "PPCISD::CALL_Darwin"; | 
|  | case PPCISD::NOP:             return "PPCISD::NOP"; | 
|  | case PPCISD::MTCTR:           return "PPCISD::MTCTR"; | 
|  | case PPCISD::BCTRL_Darwin:    return "PPCISD::BCTRL_Darwin"; | 
|  | case PPCISD::BCTRL_SVR4:      return "PPCISD::BCTRL_SVR4"; | 
|  | case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG"; | 
|  | case PPCISD::MFCR:            return "PPCISD::MFCR"; | 
|  | case PPCISD::VCMP:            return "PPCISD::VCMP"; | 
|  | case PPCISD::VCMPo:           return "PPCISD::VCMPo"; | 
|  | case PPCISD::LBRX:            return "PPCISD::LBRX"; | 
|  | case PPCISD::STBRX:           return "PPCISD::STBRX"; | 
|  | case PPCISD::LARX:            return "PPCISD::LARX"; | 
|  | case PPCISD::STCX:            return "PPCISD::STCX"; | 
|  | case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH"; | 
|  | case PPCISD::MFFS:            return "PPCISD::MFFS"; | 
|  | case PPCISD::MTFSB0:          return "PPCISD::MTFSB0"; | 
|  | case PPCISD::MTFSB1:          return "PPCISD::MTFSB1"; | 
|  | case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ"; | 
|  | case PPCISD::MTFSF:           return "PPCISD::MTFSF"; | 
|  | case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN"; | 
|  | } | 
|  | } | 
|  |  | 
|  | MVT::SimpleValueType PPCTargetLowering::getSetCCResultType(EVT VT) const { | 
|  | return MVT::i32; | 
|  | } | 
|  |  | 
|  | /// getFunctionAlignment - Return the Log2 alignment of this function. | 
|  | unsigned PPCTargetLowering::getFunctionAlignment(const Function *F) const { | 
|  | if (getTargetMachine().getSubtarget<PPCSubtarget>().isDarwin()) | 
|  | return F->hasFnAttr(Attribute::OptimizeForSize) ? 2 : 4; | 
|  | else | 
|  | return 2; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Node matching predicates, for use by the tblgen matching code. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// isFloatingPointZero - Return true if this is 0.0 or -0.0. | 
|  | static bool isFloatingPointZero(SDValue Op) { | 
|  | if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) | 
|  | return CFP->getValueAPF().isZero(); | 
|  | else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { | 
|  | // Maybe this has already been legalized into the constant pool? | 
|  | if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) | 
|  | if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) | 
|  | return CFP->getValueAPF().isZero(); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return | 
|  | /// true if Op is undef or if it matches the specified value. | 
|  | static bool isConstantOrUndef(int Op, int Val) { | 
|  | return Op < 0 || Op == Val; | 
|  | } | 
|  |  | 
|  | /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a | 
|  | /// VPKUHUM instruction. | 
|  | bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) { | 
|  | if (!isUnary) { | 
|  | for (unsigned i = 0; i != 16; ++i) | 
|  | if (!isConstantOrUndef(N->getMaskElt(i),  i*2+1)) | 
|  | return false; | 
|  | } else { | 
|  | for (unsigned i = 0; i != 8; ++i) | 
|  | if (!isConstantOrUndef(N->getMaskElt(i),    i*2+1) || | 
|  | !isConstantOrUndef(N->getMaskElt(i+8),  i*2+1)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a | 
|  | /// VPKUWUM instruction. | 
|  | bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) { | 
|  | if (!isUnary) { | 
|  | for (unsigned i = 0; i != 16; i += 2) | 
|  | if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) || | 
|  | !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3)) | 
|  | return false; | 
|  | } else { | 
|  | for (unsigned i = 0; i != 8; i += 2) | 
|  | if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) || | 
|  | !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3) || | 
|  | !isConstantOrUndef(N->getMaskElt(i+8),  i*2+2) || | 
|  | !isConstantOrUndef(N->getMaskElt(i+9),  i*2+3)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isVMerge - Common function, used to match vmrg* shuffles. | 
|  | /// | 
|  | static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, | 
|  | unsigned LHSStart, unsigned RHSStart) { | 
|  | assert(N->getValueType(0) == MVT::v16i8 && | 
|  | "PPC only supports shuffles by bytes!"); | 
|  | assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && | 
|  | "Unsupported merge size!"); | 
|  |  | 
|  | for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units | 
|  | for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit | 
|  | if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), | 
|  | LHSStart+j+i*UnitSize) || | 
|  | !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), | 
|  | RHSStart+j+i*UnitSize)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for | 
|  | /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes). | 
|  | bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, | 
|  | bool isUnary) { | 
|  | if (!isUnary) | 
|  | return isVMerge(N, UnitSize, 8, 24); | 
|  | return isVMerge(N, UnitSize, 8, 8); | 
|  | } | 
|  |  | 
|  | /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for | 
|  | /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes). | 
|  | bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, | 
|  | bool isUnary) { | 
|  | if (!isUnary) | 
|  | return isVMerge(N, UnitSize, 0, 16); | 
|  | return isVMerge(N, UnitSize, 0, 0); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift | 
|  | /// amount, otherwise return -1. | 
|  | int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) { | 
|  | assert(N->getValueType(0) == MVT::v16i8 && | 
|  | "PPC only supports shuffles by bytes!"); | 
|  |  | 
|  | ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); | 
|  |  | 
|  | // Find the first non-undef value in the shuffle mask. | 
|  | unsigned i; | 
|  | for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) | 
|  | /*search*/; | 
|  |  | 
|  | if (i == 16) return -1;  // all undef. | 
|  |  | 
|  | // Otherwise, check to see if the rest of the elements are consecutively | 
|  | // numbered from this value. | 
|  | unsigned ShiftAmt = SVOp->getMaskElt(i); | 
|  | if (ShiftAmt < i) return -1; | 
|  | ShiftAmt -= i; | 
|  |  | 
|  | if (!isUnary) { | 
|  | // Check the rest of the elements to see if they are consecutive. | 
|  | for (++i; i != 16; ++i) | 
|  | if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) | 
|  | return -1; | 
|  | } else { | 
|  | // Check the rest of the elements to see if they are consecutive. | 
|  | for (++i; i != 16; ++i) | 
|  | if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) | 
|  | return -1; | 
|  | } | 
|  | return ShiftAmt; | 
|  | } | 
|  |  | 
|  | /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand | 
|  | /// specifies a splat of a single element that is suitable for input to | 
|  | /// VSPLTB/VSPLTH/VSPLTW. | 
|  | bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { | 
|  | assert(N->getValueType(0) == MVT::v16i8 && | 
|  | (EltSize == 1 || EltSize == 2 || EltSize == 4)); | 
|  |  | 
|  | // This is a splat operation if each element of the permute is the same, and | 
|  | // if the value doesn't reference the second vector. | 
|  | unsigned ElementBase = N->getMaskElt(0); | 
|  |  | 
|  | // FIXME: Handle UNDEF elements too! | 
|  | if (ElementBase >= 16) | 
|  | return false; | 
|  |  | 
|  | // Check that the indices are consecutive, in the case of a multi-byte element | 
|  | // splatted with a v16i8 mask. | 
|  | for (unsigned i = 1; i != EltSize; ++i) | 
|  | if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) | 
|  | return false; | 
|  |  | 
|  | for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { | 
|  | if (N->getMaskElt(i) < 0) continue; | 
|  | for (unsigned j = 0; j != EltSize; ++j) | 
|  | if (N->getMaskElt(i+j) != N->getMaskElt(j)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isAllNegativeZeroVector - Returns true if all elements of build_vector | 
|  | /// are -0.0. | 
|  | bool PPC::isAllNegativeZeroVector(SDNode *N) { | 
|  | BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N); | 
|  |  | 
|  | APInt APVal, APUndef; | 
|  | unsigned BitSize; | 
|  | bool HasAnyUndefs; | 
|  |  | 
|  | if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32)) | 
|  | if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) | 
|  | return CFP->getValueAPF().isNegZero(); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the | 
|  | /// specified isSplatShuffleMask VECTOR_SHUFFLE mask. | 
|  | unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) { | 
|  | ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); | 
|  | assert(isSplatShuffleMask(SVOp, EltSize)); | 
|  | return SVOp->getMaskElt(0) / EltSize; | 
|  | } | 
|  |  | 
|  | /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed | 
|  | /// by using a vspltis[bhw] instruction of the specified element size, return | 
|  | /// the constant being splatted.  The ByteSize field indicates the number of | 
|  | /// bytes of each element [124] -> [bhw]. | 
|  | SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { | 
|  | SDValue OpVal(0, 0); | 
|  |  | 
|  | // If ByteSize of the splat is bigger than the element size of the | 
|  | // build_vector, then we have a case where we are checking for a splat where | 
|  | // multiple elements of the buildvector are folded together into a single | 
|  | // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). | 
|  | unsigned EltSize = 16/N->getNumOperands(); | 
|  | if (EltSize < ByteSize) { | 
|  | unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval. | 
|  | SDValue UniquedVals[4]; | 
|  | assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); | 
|  |  | 
|  | // See if all of the elements in the buildvector agree across. | 
|  | for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { | 
|  | if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; | 
|  | // If the element isn't a constant, bail fully out. | 
|  | if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); | 
|  |  | 
|  |  | 
|  | if (UniquedVals[i&(Multiple-1)].getNode() == 0) | 
|  | UniquedVals[i&(Multiple-1)] = N->getOperand(i); | 
|  | else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) | 
|  | return SDValue();  // no match. | 
|  | } | 
|  |  | 
|  | // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains | 
|  | // either constant or undef values that are identical for each chunk.  See | 
|  | // if these chunks can form into a larger vspltis*. | 
|  |  | 
|  | // Check to see if all of the leading entries are either 0 or -1.  If | 
|  | // neither, then this won't fit into the immediate field. | 
|  | bool LeadingZero = true; | 
|  | bool LeadingOnes = true; | 
|  | for (unsigned i = 0; i != Multiple-1; ++i) { | 
|  | if (UniquedVals[i].getNode() == 0) continue;  // Must have been undefs. | 
|  |  | 
|  | LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue(); | 
|  | LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue(); | 
|  | } | 
|  | // Finally, check the least significant entry. | 
|  | if (LeadingZero) { | 
|  | if (UniquedVals[Multiple-1].getNode() == 0) | 
|  | return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef | 
|  | int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); | 
|  | if (Val < 16) | 
|  | return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4) | 
|  | } | 
|  | if (LeadingOnes) { | 
|  | if (UniquedVals[Multiple-1].getNode() == 0) | 
|  | return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef | 
|  | int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); | 
|  | if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2) | 
|  | return DAG.getTargetConstant(Val, MVT::i32); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Check to see if this buildvec has a single non-undef value in its elements. | 
|  | for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { | 
|  | if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; | 
|  | if (OpVal.getNode() == 0) | 
|  | OpVal = N->getOperand(i); | 
|  | else if (OpVal != N->getOperand(i)) | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | if (OpVal.getNode() == 0) return SDValue();  // All UNDEF: use implicit def. | 
|  |  | 
|  | unsigned ValSizeInBytes = EltSize; | 
|  | uint64_t Value = 0; | 
|  | if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { | 
|  | Value = CN->getZExtValue(); | 
|  | } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { | 
|  | assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); | 
|  | Value = FloatToBits(CN->getValueAPF().convertToFloat()); | 
|  | } | 
|  |  | 
|  | // If the splat value is larger than the element value, then we can never do | 
|  | // this splat.  The only case that we could fit the replicated bits into our | 
|  | // immediate field for would be zero, and we prefer to use vxor for it. | 
|  | if (ValSizeInBytes < ByteSize) return SDValue(); | 
|  |  | 
|  | // If the element value is larger than the splat value, cut it in half and | 
|  | // check to see if the two halves are equal.  Continue doing this until we | 
|  | // get to ByteSize.  This allows us to handle 0x01010101 as 0x01. | 
|  | while (ValSizeInBytes > ByteSize) { | 
|  | ValSizeInBytes >>= 1; | 
|  |  | 
|  | // If the top half equals the bottom half, we're still ok. | 
|  | if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) != | 
|  | (Value                        & ((1 << (8*ValSizeInBytes))-1))) | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Properly sign extend the value. | 
|  | int ShAmt = (4-ByteSize)*8; | 
|  | int MaskVal = ((int)Value << ShAmt) >> ShAmt; | 
|  |  | 
|  | // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. | 
|  | if (MaskVal == 0) return SDValue(); | 
|  |  | 
|  | // Finally, if this value fits in a 5 bit sext field, return it | 
|  | if (((MaskVal << (32-5)) >> (32-5)) == MaskVal) | 
|  | return DAG.getTargetConstant(MaskVal, MVT::i32); | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  Addressing Mode Selection | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// isIntS16Immediate - This method tests to see if the node is either a 32-bit | 
|  | /// or 64-bit immediate, and if the value can be accurately represented as a | 
|  | /// sign extension from a 16-bit value.  If so, this returns true and the | 
|  | /// immediate. | 
|  | static bool isIntS16Immediate(SDNode *N, short &Imm) { | 
|  | if (N->getOpcode() != ISD::Constant) | 
|  | return false; | 
|  |  | 
|  | Imm = (short)cast<ConstantSDNode>(N)->getZExtValue(); | 
|  | if (N->getValueType(0) == MVT::i32) | 
|  | return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); | 
|  | else | 
|  | return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); | 
|  | } | 
|  | static bool isIntS16Immediate(SDValue Op, short &Imm) { | 
|  | return isIntS16Immediate(Op.getNode(), Imm); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// SelectAddressRegReg - Given the specified addressed, check to see if it | 
|  | /// can be represented as an indexed [r+r] operation.  Returns false if it | 
|  | /// can be more efficiently represented with [r+imm]. | 
|  | bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base, | 
|  | SDValue &Index, | 
|  | SelectionDAG &DAG) const { | 
|  | short imm = 0; | 
|  | if (N.getOpcode() == ISD::ADD) { | 
|  | if (isIntS16Immediate(N.getOperand(1), imm)) | 
|  | return false;    // r+i | 
|  | if (N.getOperand(1).getOpcode() == PPCISD::Lo) | 
|  | return false;    // r+i | 
|  |  | 
|  | Base = N.getOperand(0); | 
|  | Index = N.getOperand(1); | 
|  | return true; | 
|  | } else if (N.getOpcode() == ISD::OR) { | 
|  | if (isIntS16Immediate(N.getOperand(1), imm)) | 
|  | return false;    // r+i can fold it if we can. | 
|  |  | 
|  | // If this is an or of disjoint bitfields, we can codegen this as an add | 
|  | // (for better address arithmetic) if the LHS and RHS of the OR are provably | 
|  | // disjoint. | 
|  | APInt LHSKnownZero, LHSKnownOne; | 
|  | APInt RHSKnownZero, RHSKnownOne; | 
|  | DAG.ComputeMaskedBits(N.getOperand(0), | 
|  | APInt::getAllOnesValue(N.getOperand(0) | 
|  | .getValueSizeInBits()), | 
|  | LHSKnownZero, LHSKnownOne); | 
|  |  | 
|  | if (LHSKnownZero.getBoolValue()) { | 
|  | DAG.ComputeMaskedBits(N.getOperand(1), | 
|  | APInt::getAllOnesValue(N.getOperand(1) | 
|  | .getValueSizeInBits()), | 
|  | RHSKnownZero, RHSKnownOne); | 
|  | // If all of the bits are known zero on the LHS or RHS, the add won't | 
|  | // carry. | 
|  | if (~(LHSKnownZero | RHSKnownZero) == 0) { | 
|  | Base = N.getOperand(0); | 
|  | Index = N.getOperand(1); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Returns true if the address N can be represented by a base register plus | 
|  | /// a signed 16-bit displacement [r+imm], and if it is not better | 
|  | /// represented as reg+reg. | 
|  | bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp, | 
|  | SDValue &Base, | 
|  | SelectionDAG &DAG) const { | 
|  | // FIXME dl should come from parent load or store, not from address | 
|  | DebugLoc dl = N.getDebugLoc(); | 
|  | // If this can be more profitably realized as r+r, fail. | 
|  | if (SelectAddressRegReg(N, Disp, Base, DAG)) | 
|  | return false; | 
|  |  | 
|  | if (N.getOpcode() == ISD::ADD) { | 
|  | short imm = 0; | 
|  | if (isIntS16Immediate(N.getOperand(1), imm)) { | 
|  | Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32); | 
|  | if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { | 
|  | Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); | 
|  | } else { | 
|  | Base = N.getOperand(0); | 
|  | } | 
|  | return true; // [r+i] | 
|  | } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { | 
|  | // Match LOAD (ADD (X, Lo(G))). | 
|  | assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() | 
|  | && "Cannot handle constant offsets yet!"); | 
|  | Disp = N.getOperand(1).getOperand(0);  // The global address. | 
|  | assert(Disp.getOpcode() == ISD::TargetGlobalAddress || | 
|  | Disp.getOpcode() == ISD::TargetConstantPool || | 
|  | Disp.getOpcode() == ISD::TargetJumpTable); | 
|  | Base = N.getOperand(0); | 
|  | return true;  // [&g+r] | 
|  | } | 
|  | } else if (N.getOpcode() == ISD::OR) { | 
|  | short imm = 0; | 
|  | if (isIntS16Immediate(N.getOperand(1), imm)) { | 
|  | // If this is an or of disjoint bitfields, we can codegen this as an add | 
|  | // (for better address arithmetic) if the LHS and RHS of the OR are | 
|  | // provably disjoint. | 
|  | APInt LHSKnownZero, LHSKnownOne; | 
|  | DAG.ComputeMaskedBits(N.getOperand(0), | 
|  | APInt::getAllOnesValue(N.getOperand(0) | 
|  | .getValueSizeInBits()), | 
|  | LHSKnownZero, LHSKnownOne); | 
|  |  | 
|  | if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { | 
|  | // If all of the bits are known zero on the LHS or RHS, the add won't | 
|  | // carry. | 
|  | Base = N.getOperand(0); | 
|  | Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { | 
|  | // Loading from a constant address. | 
|  |  | 
|  | // If this address fits entirely in a 16-bit sext immediate field, codegen | 
|  | // this as "d, 0" | 
|  | short Imm; | 
|  | if (isIntS16Immediate(CN, Imm)) { | 
|  | Disp = DAG.getTargetConstant(Imm, CN->getValueType(0)); | 
|  | Base = DAG.getRegister(PPC::R0, CN->getValueType(0)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Handle 32-bit sext immediates with LIS + addr mode. | 
|  | if (CN->getValueType(0) == MVT::i32 || | 
|  | (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) { | 
|  | int Addr = (int)CN->getZExtValue(); | 
|  |  | 
|  | // Otherwise, break this down into an LIS + disp. | 
|  | Disp = DAG.getTargetConstant((short)Addr, MVT::i32); | 
|  |  | 
|  | Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32); | 
|  | unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; | 
|  | Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | Disp = DAG.getTargetConstant(0, getPointerTy()); | 
|  | if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) | 
|  | Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); | 
|  | else | 
|  | Base = N; | 
|  | return true;      // [r+0] | 
|  | } | 
|  |  | 
|  | /// SelectAddressRegRegOnly - Given the specified addressed, force it to be | 
|  | /// represented as an indexed [r+r] operation. | 
|  | bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, | 
|  | SDValue &Index, | 
|  | SelectionDAG &DAG) const { | 
|  | // Check to see if we can easily represent this as an [r+r] address.  This | 
|  | // will fail if it thinks that the address is more profitably represented as | 
|  | // reg+imm, e.g. where imm = 0. | 
|  | if (SelectAddressRegReg(N, Base, Index, DAG)) | 
|  | return true; | 
|  |  | 
|  | // If the operand is an addition, always emit this as [r+r], since this is | 
|  | // better (for code size, and execution, as the memop does the add for free) | 
|  | // than emitting an explicit add. | 
|  | if (N.getOpcode() == ISD::ADD) { | 
|  | Base = N.getOperand(0); | 
|  | Index = N.getOperand(1); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Otherwise, do it the hard way, using R0 as the base register. | 
|  | Base = DAG.getRegister(PPC::R0, N.getValueType()); | 
|  | Index = N; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// SelectAddressRegImmShift - Returns true if the address N can be | 
|  | /// represented by a base register plus a signed 14-bit displacement | 
|  | /// [r+imm*4].  Suitable for use by STD and friends. | 
|  | bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N, SDValue &Disp, | 
|  | SDValue &Base, | 
|  | SelectionDAG &DAG) const { | 
|  | // FIXME dl should come from the parent load or store, not the address | 
|  | DebugLoc dl = N.getDebugLoc(); | 
|  | // If this can be more profitably realized as r+r, fail. | 
|  | if (SelectAddressRegReg(N, Disp, Base, DAG)) | 
|  | return false; | 
|  |  | 
|  | if (N.getOpcode() == ISD::ADD) { | 
|  | short imm = 0; | 
|  | if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) { | 
|  | Disp =  DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32); | 
|  | if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { | 
|  | Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); | 
|  | } else { | 
|  | Base = N.getOperand(0); | 
|  | } | 
|  | return true; // [r+i] | 
|  | } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { | 
|  | // Match LOAD (ADD (X, Lo(G))). | 
|  | assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() | 
|  | && "Cannot handle constant offsets yet!"); | 
|  | Disp = N.getOperand(1).getOperand(0);  // The global address. | 
|  | assert(Disp.getOpcode() == ISD::TargetGlobalAddress || | 
|  | Disp.getOpcode() == ISD::TargetConstantPool || | 
|  | Disp.getOpcode() == ISD::TargetJumpTable); | 
|  | Base = N.getOperand(0); | 
|  | return true;  // [&g+r] | 
|  | } | 
|  | } else if (N.getOpcode() == ISD::OR) { | 
|  | short imm = 0; | 
|  | if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) { | 
|  | // If this is an or of disjoint bitfields, we can codegen this as an add | 
|  | // (for better address arithmetic) if the LHS and RHS of the OR are | 
|  | // provably disjoint. | 
|  | APInt LHSKnownZero, LHSKnownOne; | 
|  | DAG.ComputeMaskedBits(N.getOperand(0), | 
|  | APInt::getAllOnesValue(N.getOperand(0) | 
|  | .getValueSizeInBits()), | 
|  | LHSKnownZero, LHSKnownOne); | 
|  | if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { | 
|  | // If all of the bits are known zero on the LHS or RHS, the add won't | 
|  | // carry. | 
|  | Base = N.getOperand(0); | 
|  | Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { | 
|  | // Loading from a constant address.  Verify low two bits are clear. | 
|  | if ((CN->getZExtValue() & 3) == 0) { | 
|  | // If this address fits entirely in a 14-bit sext immediate field, codegen | 
|  | // this as "d, 0" | 
|  | short Imm; | 
|  | if (isIntS16Immediate(CN, Imm)) { | 
|  | Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy()); | 
|  | Base = DAG.getRegister(PPC::R0, CN->getValueType(0)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Fold the low-part of 32-bit absolute addresses into addr mode. | 
|  | if (CN->getValueType(0) == MVT::i32 || | 
|  | (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) { | 
|  | int Addr = (int)CN->getZExtValue(); | 
|  |  | 
|  | // Otherwise, break this down into an LIS + disp. | 
|  | Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32); | 
|  | Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32); | 
|  | unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; | 
|  | Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base),0); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | Disp = DAG.getTargetConstant(0, getPointerTy()); | 
|  | if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) | 
|  | Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); | 
|  | else | 
|  | Base = N; | 
|  | return true;      // [r+0] | 
|  | } | 
|  |  | 
|  |  | 
|  | /// getPreIndexedAddressParts - returns true by value, base pointer and | 
|  | /// offset pointer and addressing mode by reference if the node's address | 
|  | /// can be legally represented as pre-indexed load / store address. | 
|  | bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, | 
|  | SDValue &Offset, | 
|  | ISD::MemIndexedMode &AM, | 
|  | SelectionDAG &DAG) const { | 
|  | // Disabled by default for now. | 
|  | if (!EnablePPCPreinc) return false; | 
|  |  | 
|  | SDValue Ptr; | 
|  | EVT VT; | 
|  | if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { | 
|  | Ptr = LD->getBasePtr(); | 
|  | VT = LD->getMemoryVT(); | 
|  |  | 
|  | } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { | 
|  | ST = ST; | 
|  | Ptr = ST->getBasePtr(); | 
|  | VT  = ST->getMemoryVT(); | 
|  | } else | 
|  | return false; | 
|  |  | 
|  | // PowerPC doesn't have preinc load/store instructions for vectors. | 
|  | if (VT.isVector()) | 
|  | return false; | 
|  |  | 
|  | // TODO: Check reg+reg first. | 
|  |  | 
|  | // LDU/STU use reg+imm*4, others use reg+imm. | 
|  | if (VT != MVT::i64) { | 
|  | // reg + imm | 
|  | if (!SelectAddressRegImm(Ptr, Offset, Base, DAG)) | 
|  | return false; | 
|  | } else { | 
|  | // reg + imm * 4. | 
|  | if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { | 
|  | // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of | 
|  | // sext i32 to i64 when addr mode is r+i. | 
|  | if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && | 
|  | LD->getExtensionType() == ISD::SEXTLOAD && | 
|  | isa<ConstantSDNode>(Offset)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | AM = ISD::PRE_INC; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  LowerOperation implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, | 
|  | SelectionDAG &DAG) { | 
|  | EVT PtrVT = Op.getValueType(); | 
|  | ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); | 
|  | Constant *C = CP->getConstVal(); | 
|  | SDValue CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment()); | 
|  | SDValue Zero = DAG.getConstant(0, PtrVT); | 
|  | // FIXME there isn't really any debug info here | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  |  | 
|  | const TargetMachine &TM = DAG.getTarget(); | 
|  |  | 
|  | SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, CPI, Zero); | 
|  | SDValue Lo = DAG.getNode(PPCISD::Lo, dl, PtrVT, CPI, Zero); | 
|  |  | 
|  | // If this is a non-darwin platform, we don't support non-static relo models | 
|  | // yet. | 
|  | if (TM.getRelocationModel() == Reloc::Static || | 
|  | !TM.getSubtarget<PPCSubtarget>().isDarwin()) { | 
|  | // Generate non-pic code that has direct accesses to the constant pool. | 
|  | // The address of the global is just (hi(&g)+lo(&g)). | 
|  | return DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo); | 
|  | } | 
|  |  | 
|  | if (TM.getRelocationModel() == Reloc::PIC_) { | 
|  | // With PIC, the first instruction is actually "GR+hi(&G)". | 
|  | Hi = DAG.getNode(ISD::ADD, dl, PtrVT, | 
|  | DAG.getNode(PPCISD::GlobalBaseReg, | 
|  | DebugLoc::getUnknownLoc(), PtrVT), Hi); | 
|  | } | 
|  |  | 
|  | Lo = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo); | 
|  | return Lo; | 
|  | } | 
|  |  | 
|  | SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) { | 
|  | EVT PtrVT = Op.getValueType(); | 
|  | JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); | 
|  | SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); | 
|  | SDValue Zero = DAG.getConstant(0, PtrVT); | 
|  | // FIXME there isn't really any debug loc here | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  |  | 
|  | const TargetMachine &TM = DAG.getTarget(); | 
|  |  | 
|  | SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, JTI, Zero); | 
|  | SDValue Lo = DAG.getNode(PPCISD::Lo, dl, PtrVT, JTI, Zero); | 
|  |  | 
|  | // If this is a non-darwin platform, we don't support non-static relo models | 
|  | // yet. | 
|  | if (TM.getRelocationModel() == Reloc::Static || | 
|  | !TM.getSubtarget<PPCSubtarget>().isDarwin()) { | 
|  | // Generate non-pic code that has direct accesses to the constant pool. | 
|  | // The address of the global is just (hi(&g)+lo(&g)). | 
|  | return DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo); | 
|  | } | 
|  |  | 
|  | if (TM.getRelocationModel() == Reloc::PIC_) { | 
|  | // With PIC, the first instruction is actually "GR+hi(&G)". | 
|  | Hi = DAG.getNode(ISD::ADD, dl, PtrVT, | 
|  | DAG.getNode(PPCISD::GlobalBaseReg, | 
|  | DebugLoc::getUnknownLoc(), PtrVT), Hi); | 
|  | } | 
|  |  | 
|  | Lo = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo); | 
|  | return Lo; | 
|  | } | 
|  |  | 
|  | SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, | 
|  | SelectionDAG &DAG) { | 
|  | llvm_unreachable("TLS not implemented for PPC."); | 
|  | return SDValue(); // Not reached | 
|  | } | 
|  |  | 
|  | SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) { | 
|  | EVT PtrVT = Op.getValueType(); | 
|  | DebugLoc DL = Op.getDebugLoc(); | 
|  |  | 
|  | BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); | 
|  | SDValue TgtBA = DAG.getBlockAddress(BA, DL, /*isTarget=*/true); | 
|  | SDValue Zero = DAG.getConstant(0, PtrVT); | 
|  | SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, TgtBA, Zero); | 
|  | SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, TgtBA, Zero); | 
|  |  | 
|  | // If this is a non-darwin platform, we don't support non-static relo models | 
|  | // yet. | 
|  | const TargetMachine &TM = DAG.getTarget(); | 
|  | if (TM.getRelocationModel() == Reloc::Static || | 
|  | !TM.getSubtarget<PPCSubtarget>().isDarwin()) { | 
|  | // Generate non-pic code that has direct accesses to globals. | 
|  | // The address of the global is just (hi(&g)+lo(&g)). | 
|  | return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); | 
|  | } | 
|  |  | 
|  | if (TM.getRelocationModel() == Reloc::PIC_) { | 
|  | // With PIC, the first instruction is actually "GR+hi(&G)". | 
|  | Hi = DAG.getNode(ISD::ADD, DL, PtrVT, | 
|  | DAG.getNode(PPCISD::GlobalBaseReg, | 
|  | DebugLoc::getUnknownLoc(), PtrVT), Hi); | 
|  | } | 
|  |  | 
|  | return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); | 
|  | } | 
|  |  | 
|  | SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, | 
|  | SelectionDAG &DAG) { | 
|  | EVT PtrVT = Op.getValueType(); | 
|  | GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); | 
|  | GlobalValue *GV = GSDN->getGlobal(); | 
|  | SDValue GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset()); | 
|  | SDValue Zero = DAG.getConstant(0, PtrVT); | 
|  | // FIXME there isn't really any debug info here | 
|  | DebugLoc dl = GSDN->getDebugLoc(); | 
|  |  | 
|  | const TargetMachine &TM = DAG.getTarget(); | 
|  |  | 
|  | // 64-bit SVR4 ABI code is always position-independent. | 
|  | // The actual address of the GlobalValue is stored in the TOC. | 
|  | if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) { | 
|  | return DAG.getNode(PPCISD::TOC_ENTRY, dl, MVT::i64, GA, | 
|  | DAG.getRegister(PPC::X2, MVT::i64)); | 
|  | } | 
|  |  | 
|  | SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, GA, Zero); | 
|  | SDValue Lo = DAG.getNode(PPCISD::Lo, dl, PtrVT, GA, Zero); | 
|  |  | 
|  | // If this is a non-darwin platform, we don't support non-static relo models | 
|  | // yet. | 
|  | if (TM.getRelocationModel() == Reloc::Static || | 
|  | !TM.getSubtarget<PPCSubtarget>().isDarwin()) { | 
|  | // Generate non-pic code that has direct accesses to globals. | 
|  | // The address of the global is just (hi(&g)+lo(&g)). | 
|  | return DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo); | 
|  | } | 
|  |  | 
|  | if (TM.getRelocationModel() == Reloc::PIC_) { | 
|  | // With PIC, the first instruction is actually "GR+hi(&G)". | 
|  | Hi = DAG.getNode(ISD::ADD, dl, PtrVT, | 
|  | DAG.getNode(PPCISD::GlobalBaseReg, | 
|  | DebugLoc::getUnknownLoc(), PtrVT), Hi); | 
|  | } | 
|  |  | 
|  | Lo = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo); | 
|  |  | 
|  | if (!TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV, TM)) | 
|  | return Lo; | 
|  |  | 
|  | // If the global is weak or external, we have to go through the lazy | 
|  | // resolution stub. | 
|  | return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Lo, NULL, 0); | 
|  | } | 
|  |  | 
|  | SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) { | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  |  | 
|  | // If we're comparing for equality to zero, expose the fact that this is | 
|  | // implented as a ctlz/srl pair on ppc, so that the dag combiner can | 
|  | // fold the new nodes. | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { | 
|  | if (C->isNullValue() && CC == ISD::SETEQ) { | 
|  | EVT VT = Op.getOperand(0).getValueType(); | 
|  | SDValue Zext = Op.getOperand(0); | 
|  | if (VT.bitsLT(MVT::i32)) { | 
|  | VT = MVT::i32; | 
|  | Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); | 
|  | } | 
|  | unsigned Log2b = Log2_32(VT.getSizeInBits()); | 
|  | SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); | 
|  | SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, | 
|  | DAG.getConstant(Log2b, MVT::i32)); | 
|  | return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); | 
|  | } | 
|  | // Leave comparisons against 0 and -1 alone for now, since they're usually | 
|  | // optimized.  FIXME: revisit this when we can custom lower all setcc | 
|  | // optimizations. | 
|  | if (C->isAllOnesValue() || C->isNullValue()) | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // If we have an integer seteq/setne, turn it into a compare against zero | 
|  | // by xor'ing the rhs with the lhs, which is faster than setting a | 
|  | // condition register, reading it back out, and masking the correct bit.  The | 
|  | // normal approach here uses sub to do this instead of xor.  Using xor exposes | 
|  | // the result to other bit-twiddling opportunities. | 
|  | EVT LHSVT = Op.getOperand(0).getValueType(); | 
|  | if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { | 
|  | EVT VT = Op.getValueType(); | 
|  | SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), | 
|  | Op.getOperand(1)); | 
|  | return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG, | 
|  | int VarArgsFrameIndex, | 
|  | int VarArgsStackOffset, | 
|  | unsigned VarArgsNumGPR, | 
|  | unsigned VarArgsNumFPR, | 
|  | const PPCSubtarget &Subtarget) { | 
|  |  | 
|  | llvm_unreachable("VAARG not yet implemented for the SVR4 ABI!"); | 
|  | return SDValue(); // Not reached | 
|  | } | 
|  |  | 
|  | SDValue PPCTargetLowering::LowerTRAMPOLINE(SDValue Op, SelectionDAG &DAG) { | 
|  | SDValue Chain = Op.getOperand(0); | 
|  | SDValue Trmp = Op.getOperand(1); // trampoline | 
|  | SDValue FPtr = Op.getOperand(2); // nested function | 
|  | SDValue Nest = Op.getOperand(3); // 'nest' parameter value | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  |  | 
|  | EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); | 
|  | bool isPPC64 = (PtrVT == MVT::i64); | 
|  | const Type *IntPtrTy = | 
|  | DAG.getTargetLoweringInfo().getTargetData()->getIntPtrType( | 
|  | *DAG.getContext()); | 
|  |  | 
|  | TargetLowering::ArgListTy Args; | 
|  | TargetLowering::ArgListEntry Entry; | 
|  |  | 
|  | Entry.Ty = IntPtrTy; | 
|  | Entry.Node = Trmp; Args.push_back(Entry); | 
|  |  | 
|  | // TrampSize == (isPPC64 ? 48 : 40); | 
|  | Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, | 
|  | isPPC64 ? MVT::i64 : MVT::i32); | 
|  | Args.push_back(Entry); | 
|  |  | 
|  | Entry.Node = FPtr; Args.push_back(Entry); | 
|  | Entry.Node = Nest; Args.push_back(Entry); | 
|  |  | 
|  | // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) | 
|  | std::pair<SDValue, SDValue> CallResult = | 
|  | LowerCallTo(Chain, Op.getValueType().getTypeForEVT(*DAG.getContext()), | 
|  | false, false, false, false, 0, CallingConv::C, false, | 
|  | /*isReturnValueUsed=*/true, | 
|  | DAG.getExternalSymbol("__trampoline_setup", PtrVT), | 
|  | Args, DAG, dl); | 
|  |  | 
|  | SDValue Ops[] = | 
|  | { CallResult.first, CallResult.second }; | 
|  |  | 
|  | return DAG.getMergeValues(Ops, 2, dl); | 
|  | } | 
|  |  | 
|  | SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG, | 
|  | int VarArgsFrameIndex, | 
|  | int VarArgsStackOffset, | 
|  | unsigned VarArgsNumGPR, | 
|  | unsigned VarArgsNumFPR, | 
|  | const PPCSubtarget &Subtarget) { | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  |  | 
|  | if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) { | 
|  | // vastart just stores the address of the VarArgsFrameIndex slot into the | 
|  | // memory location argument. | 
|  | EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); | 
|  | SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT); | 
|  | const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); | 
|  | return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0); | 
|  | } | 
|  |  | 
|  | // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. | 
|  | // We suppose the given va_list is already allocated. | 
|  | // | 
|  | // typedef struct { | 
|  | //  char gpr;     /* index into the array of 8 GPRs | 
|  | //                 * stored in the register save area | 
|  | //                 * gpr=0 corresponds to r3, | 
|  | //                 * gpr=1 to r4, etc. | 
|  | //                 */ | 
|  | //  char fpr;     /* index into the array of 8 FPRs | 
|  | //                 * stored in the register save area | 
|  | //                 * fpr=0 corresponds to f1, | 
|  | //                 * fpr=1 to f2, etc. | 
|  | //                 */ | 
|  | //  char *overflow_arg_area; | 
|  | //                /* location on stack that holds | 
|  | //                 * the next overflow argument | 
|  | //                 */ | 
|  | //  char *reg_save_area; | 
|  | //               /* where r3:r10 and f1:f8 (if saved) | 
|  | //                * are stored | 
|  | //                */ | 
|  | // } va_list[1]; | 
|  |  | 
|  |  | 
|  | SDValue ArgGPR = DAG.getConstant(VarArgsNumGPR, MVT::i32); | 
|  | SDValue ArgFPR = DAG.getConstant(VarArgsNumFPR, MVT::i32); | 
|  |  | 
|  |  | 
|  | EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); | 
|  |  | 
|  | SDValue StackOffsetFI = DAG.getFrameIndex(VarArgsStackOffset, PtrVT); | 
|  | SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT); | 
|  |  | 
|  | uint64_t FrameOffset = PtrVT.getSizeInBits()/8; | 
|  | SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT); | 
|  |  | 
|  | uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; | 
|  | SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT); | 
|  |  | 
|  | uint64_t FPROffset = 1; | 
|  | SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT); | 
|  |  | 
|  | const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); | 
|  |  | 
|  | // Store first byte : number of int regs | 
|  | SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, | 
|  | Op.getOperand(1), SV, 0, MVT::i8); | 
|  | uint64_t nextOffset = FPROffset; | 
|  | SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), | 
|  | ConstFPROffset); | 
|  |  | 
|  | // Store second byte : number of float regs | 
|  | SDValue secondStore = | 
|  | DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, SV, nextOffset, MVT::i8); | 
|  | nextOffset += StackOffset; | 
|  | nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); | 
|  |  | 
|  | // Store second word : arguments given on stack | 
|  | SDValue thirdStore = | 
|  | DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, SV, nextOffset); | 
|  | nextOffset += FrameOffset; | 
|  | nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); | 
|  |  | 
|  | // Store third word : arguments given in registers | 
|  | return DAG.getStore(thirdStore, dl, FR, nextPtr, SV, nextOffset); | 
|  |  | 
|  | } | 
|  |  | 
|  | #include "PPCGenCallingConv.inc" | 
|  |  | 
|  | static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, EVT &ValVT, EVT &LocVT, | 
|  | CCValAssign::LocInfo &LocInfo, | 
|  | ISD::ArgFlagsTy &ArgFlags, | 
|  | CCState &State) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, EVT &ValVT, | 
|  | EVT &LocVT, | 
|  | CCValAssign::LocInfo &LocInfo, | 
|  | ISD::ArgFlagsTy &ArgFlags, | 
|  | CCState &State) { | 
|  | static const unsigned ArgRegs[] = { | 
|  | PPC::R3, PPC::R4, PPC::R5, PPC::R6, | 
|  | PPC::R7, PPC::R8, PPC::R9, PPC::R10, | 
|  | }; | 
|  | const unsigned NumArgRegs = array_lengthof(ArgRegs); | 
|  |  | 
|  | unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs); | 
|  |  | 
|  | // Skip one register if the first unallocated register has an even register | 
|  | // number and there are still argument registers available which have not been | 
|  | // allocated yet. RegNum is actually an index into ArgRegs, which means we | 
|  | // need to skip a register if RegNum is odd. | 
|  | if (RegNum != NumArgRegs && RegNum % 2 == 1) { | 
|  | State.AllocateReg(ArgRegs[RegNum]); | 
|  | } | 
|  |  | 
|  | // Always return false here, as this function only makes sure that the first | 
|  | // unallocated register has an odd register number and does not actually | 
|  | // allocate a register for the current argument. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, EVT &ValVT, | 
|  | EVT &LocVT, | 
|  | CCValAssign::LocInfo &LocInfo, | 
|  | ISD::ArgFlagsTy &ArgFlags, | 
|  | CCState &State) { | 
|  | static const unsigned ArgRegs[] = { | 
|  | PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, | 
|  | PPC::F8 | 
|  | }; | 
|  |  | 
|  | const unsigned NumArgRegs = array_lengthof(ArgRegs); | 
|  |  | 
|  | unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs); | 
|  |  | 
|  | // If there is only one Floating-point register left we need to put both f64 | 
|  | // values of a split ppc_fp128 value on the stack. | 
|  | if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) { | 
|  | State.AllocateReg(ArgRegs[RegNum]); | 
|  | } | 
|  |  | 
|  | // Always return false here, as this function only makes sure that the two f64 | 
|  | // values a ppc_fp128 value is split into are both passed in registers or both | 
|  | // passed on the stack and does not actually allocate a register for the | 
|  | // current argument. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// GetFPR - Get the set of FP registers that should be allocated for arguments, | 
|  | /// on Darwin. | 
|  | static const unsigned *GetFPR() { | 
|  | static const unsigned FPR[] = { | 
|  | PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, | 
|  | PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13 | 
|  | }; | 
|  |  | 
|  | return FPR; | 
|  | } | 
|  |  | 
|  | /// CalculateStackSlotSize - Calculates the size reserved for this argument on | 
|  | /// the stack. | 
|  | static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, | 
|  | unsigned PtrByteSize) { | 
|  | unsigned ArgSize = ArgVT.getSizeInBits()/8; | 
|  | if (Flags.isByVal()) | 
|  | ArgSize = Flags.getByValSize(); | 
|  | ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; | 
|  |  | 
|  | return ArgSize; | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | PPCTargetLowering::LowerFormalArguments(SDValue Chain, | 
|  | CallingConv::ID CallConv, bool isVarArg, | 
|  | const SmallVectorImpl<ISD::InputArg> | 
|  | &Ins, | 
|  | DebugLoc dl, SelectionDAG &DAG, | 
|  | SmallVectorImpl<SDValue> &InVals) { | 
|  | if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64()) { | 
|  | return LowerFormalArguments_SVR4(Chain, CallConv, isVarArg, Ins, | 
|  | dl, DAG, InVals); | 
|  | } else { | 
|  | return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, | 
|  | dl, DAG, InVals); | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | PPCTargetLowering::LowerFormalArguments_SVR4( | 
|  | SDValue Chain, | 
|  | CallingConv::ID CallConv, bool isVarArg, | 
|  | const SmallVectorImpl<ISD::InputArg> | 
|  | &Ins, | 
|  | DebugLoc dl, SelectionDAG &DAG, | 
|  | SmallVectorImpl<SDValue> &InVals) { | 
|  |  | 
|  | // 32-bit SVR4 ABI Stack Frame Layout: | 
|  | //              +-----------------------------------+ | 
|  | //        +-->  |            Back chain             | | 
|  | //        |     +-----------------------------------+ | 
|  | //        |     | Floating-point register save area | | 
|  | //        |     +-----------------------------------+ | 
|  | //        |     |    General register save area     | | 
|  | //        |     +-----------------------------------+ | 
|  | //        |     |          CR save word             | | 
|  | //        |     +-----------------------------------+ | 
|  | //        |     |         VRSAVE save word          | | 
|  | //        |     +-----------------------------------+ | 
|  | //        |     |         Alignment padding         | | 
|  | //        |     +-----------------------------------+ | 
|  | //        |     |     Vector register save area     | | 
|  | //        |     +-----------------------------------+ | 
|  | //        |     |       Local variable space        | | 
|  | //        |     +-----------------------------------+ | 
|  | //        |     |        Parameter list area        | | 
|  | //        |     +-----------------------------------+ | 
|  | //        |     |           LR save word            | | 
|  | //        |     +-----------------------------------+ | 
|  | // SP-->  +---  |            Back chain             | | 
|  | //              +-----------------------------------+ | 
|  | // | 
|  | // Specifications: | 
|  | //   System V Application Binary Interface PowerPC Processor Supplement | 
|  | //   AltiVec Technology Programming Interface Manual | 
|  |  | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | MachineFrameInfo *MFI = MF.getFrameInfo(); | 
|  |  | 
|  | EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); | 
|  | // Potential tail calls could cause overwriting of argument stack slots. | 
|  | bool isImmutable = !(PerformTailCallOpt && (CallConv==CallingConv::Fast)); | 
|  | unsigned PtrByteSize = 4; | 
|  |  | 
|  | // Assign locations to all of the incoming arguments. | 
|  | SmallVector<CCValAssign, 16> ArgLocs; | 
|  | CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs, | 
|  | *DAG.getContext()); | 
|  |  | 
|  | // Reserve space for the linkage area on the stack. | 
|  | CCInfo.AllocateStack(PPCFrameInfo::getLinkageSize(false, false), PtrByteSize); | 
|  |  | 
|  | CCInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4); | 
|  |  | 
|  | for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { | 
|  | CCValAssign &VA = ArgLocs[i]; | 
|  |  | 
|  | // Arguments stored in registers. | 
|  | if (VA.isRegLoc()) { | 
|  | TargetRegisterClass *RC; | 
|  | EVT ValVT = VA.getValVT(); | 
|  |  | 
|  | switch (ValVT.getSimpleVT().SimpleTy) { | 
|  | default: | 
|  | llvm_unreachable("ValVT not supported by formal arguments Lowering"); | 
|  | case MVT::i32: | 
|  | RC = PPC::GPRCRegisterClass; | 
|  | break; | 
|  | case MVT::f32: | 
|  | RC = PPC::F4RCRegisterClass; | 
|  | break; | 
|  | case MVT::f64: | 
|  | RC = PPC::F8RCRegisterClass; | 
|  | break; | 
|  | case MVT::v16i8: | 
|  | case MVT::v8i16: | 
|  | case MVT::v4i32: | 
|  | case MVT::v4f32: | 
|  | RC = PPC::VRRCRegisterClass; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Transform the arguments stored in physical registers into virtual ones. | 
|  | unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); | 
|  | SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, ValVT); | 
|  |  | 
|  | InVals.push_back(ArgValue); | 
|  | } else { | 
|  | // Argument stored in memory. | 
|  | assert(VA.isMemLoc()); | 
|  |  | 
|  | unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8; | 
|  | int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(), | 
|  | isImmutable); | 
|  |  | 
|  | // Create load nodes to retrieve arguments from the stack. | 
|  | SDValue FIN = DAG.getFrameIndex(FI, PtrVT); | 
|  | InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN, NULL, 0)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Assign locations to all of the incoming aggregate by value arguments. | 
|  | // Aggregates passed by value are stored in the local variable space of the | 
|  | // caller's stack frame, right above the parameter list area. | 
|  | SmallVector<CCValAssign, 16> ByValArgLocs; | 
|  | CCState CCByValInfo(CallConv, isVarArg, getTargetMachine(), | 
|  | ByValArgLocs, *DAG.getContext()); | 
|  |  | 
|  | // Reserve stack space for the allocations in CCInfo. | 
|  | CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); | 
|  |  | 
|  | CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4_ByVal); | 
|  |  | 
|  | // Area that is at least reserved in the caller of this function. | 
|  | unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); | 
|  |  | 
|  | // Set the size that is at least reserved in caller of this function.  Tail | 
|  | // call optimized function's reserved stack space needs to be aligned so that | 
|  | // taking the difference between two stack areas will result in an aligned | 
|  | // stack. | 
|  | PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); | 
|  |  | 
|  | MinReservedArea = | 
|  | std::max(MinReservedArea, | 
|  | PPCFrameInfo::getMinCallFrameSize(false, false)); | 
|  |  | 
|  | unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()-> | 
|  | getStackAlignment(); | 
|  | unsigned AlignMask = TargetAlign-1; | 
|  | MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask; | 
|  |  | 
|  | FI->setMinReservedArea(MinReservedArea); | 
|  |  | 
|  | SmallVector<SDValue, 8> MemOps; | 
|  |  | 
|  | // If the function takes variable number of arguments, make a frame index for | 
|  | // the start of the first vararg value... for expansion of llvm.va_start. | 
|  | if (isVarArg) { | 
|  | static const unsigned GPArgRegs[] = { | 
|  | PPC::R3, PPC::R4, PPC::R5, PPC::R6, | 
|  | PPC::R7, PPC::R8, PPC::R9, PPC::R10, | 
|  | }; | 
|  | const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); | 
|  |  | 
|  | static const unsigned FPArgRegs[] = { | 
|  | PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, | 
|  | PPC::F8 | 
|  | }; | 
|  | const unsigned NumFPArgRegs = array_lengthof(FPArgRegs); | 
|  |  | 
|  | VarArgsNumGPR = CCInfo.getFirstUnallocated(GPArgRegs, NumGPArgRegs); | 
|  | VarArgsNumFPR = CCInfo.getFirstUnallocated(FPArgRegs, NumFPArgRegs); | 
|  |  | 
|  | // Make room for NumGPArgRegs and NumFPArgRegs. | 
|  | int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + | 
|  | NumFPArgRegs * EVT(MVT::f64).getSizeInBits()/8; | 
|  |  | 
|  | VarArgsStackOffset = MFI->CreateFixedObject(PtrVT.getSizeInBits()/8, | 
|  | CCInfo.getNextStackOffset()); | 
|  |  | 
|  | VarArgsFrameIndex = MFI->CreateStackObject(Depth, 8); | 
|  | SDValue FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT); | 
|  |  | 
|  | // The fixed integer arguments of a variadic function are | 
|  | // stored to the VarArgsFrameIndex on the stack. | 
|  | unsigned GPRIndex = 0; | 
|  | for (; GPRIndex != VarArgsNumGPR; ++GPRIndex) { | 
|  | SDValue Val = DAG.getRegister(GPArgRegs[GPRIndex], PtrVT); | 
|  | SDValue Store = DAG.getStore(Chain, dl, Val, FIN, NULL, 0); | 
|  | MemOps.push_back(Store); | 
|  | // Increment the address by four for the next argument to store | 
|  | SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT); | 
|  | FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); | 
|  | } | 
|  |  | 
|  | // If this function is vararg, store any remaining integer argument regs | 
|  | // to their spots on the stack so that they may be loaded by deferencing the | 
|  | // result of va_next. | 
|  | for (; GPRIndex != NumGPArgRegs; ++GPRIndex) { | 
|  | unsigned VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); | 
|  |  | 
|  | SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); | 
|  | SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0); | 
|  | MemOps.push_back(Store); | 
|  | // Increment the address by four for the next argument to store | 
|  | SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT); | 
|  | FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); | 
|  | } | 
|  |  | 
|  | // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 | 
|  | // is set. | 
|  |  | 
|  | // The double arguments are stored to the VarArgsFrameIndex | 
|  | // on the stack. | 
|  | unsigned FPRIndex = 0; | 
|  | for (FPRIndex = 0; FPRIndex != VarArgsNumFPR; ++FPRIndex) { | 
|  | SDValue Val = DAG.getRegister(FPArgRegs[FPRIndex], MVT::f64); | 
|  | SDValue Store = DAG.getStore(Chain, dl, Val, FIN, NULL, 0); | 
|  | MemOps.push_back(Store); | 
|  | // Increment the address by eight for the next argument to store | 
|  | SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8, | 
|  | PtrVT); | 
|  | FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); | 
|  | } | 
|  |  | 
|  | for (; FPRIndex != NumFPArgRegs; ++FPRIndex) { | 
|  | unsigned VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); | 
|  |  | 
|  | SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); | 
|  | SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0); | 
|  | MemOps.push_back(Store); | 
|  | // Increment the address by eight for the next argument to store | 
|  | SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8, | 
|  | PtrVT); | 
|  | FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!MemOps.empty()) | 
|  | Chain = DAG.getNode(ISD::TokenFactor, dl, | 
|  | MVT::Other, &MemOps[0], MemOps.size()); | 
|  |  | 
|  | return Chain; | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | PPCTargetLowering::LowerFormalArguments_Darwin( | 
|  | SDValue Chain, | 
|  | CallingConv::ID CallConv, bool isVarArg, | 
|  | const SmallVectorImpl<ISD::InputArg> | 
|  | &Ins, | 
|  | DebugLoc dl, SelectionDAG &DAG, | 
|  | SmallVectorImpl<SDValue> &InVals) { | 
|  | // TODO: add description of PPC stack frame format, or at least some docs. | 
|  | // | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | MachineFrameInfo *MFI = MF.getFrameInfo(); | 
|  |  | 
|  | EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); | 
|  | bool isPPC64 = PtrVT == MVT::i64; | 
|  | // Potential tail calls could cause overwriting of argument stack slots. | 
|  | bool isImmutable = !(PerformTailCallOpt && (CallConv==CallingConv::Fast)); | 
|  | unsigned PtrByteSize = isPPC64 ? 8 : 4; | 
|  |  | 
|  | unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, true); | 
|  | // Area that is at least reserved in caller of this function. | 
|  | unsigned MinReservedArea = ArgOffset; | 
|  |  | 
|  | static const unsigned GPR_32[] = {           // 32-bit registers. | 
|  | PPC::R3, PPC::R4, PPC::R5, PPC::R6, | 
|  | PPC::R7, PPC::R8, PPC::R9, PPC::R10, | 
|  | }; | 
|  | static const unsigned GPR_64[] = {           // 64-bit registers. | 
|  | PPC::X3, PPC::X4, PPC::X5, PPC::X6, | 
|  | PPC::X7, PPC::X8, PPC::X9, PPC::X10, | 
|  | }; | 
|  |  | 
|  | static const unsigned *FPR = GetFPR(); | 
|  |  | 
|  | static const unsigned VR[] = { | 
|  | PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, | 
|  | PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 | 
|  | }; | 
|  |  | 
|  | const unsigned Num_GPR_Regs = array_lengthof(GPR_32); | 
|  | const unsigned Num_FPR_Regs = 13; | 
|  | const unsigned Num_VR_Regs  = array_lengthof( VR); | 
|  |  | 
|  | unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; | 
|  |  | 
|  | const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32; | 
|  |  | 
|  | // In 32-bit non-varargs functions, the stack space for vectors is after the | 
|  | // stack space for non-vectors.  We do not use this space unless we have | 
|  | // too many vectors to fit in registers, something that only occurs in | 
|  | // constructed examples:), but we have to walk the arglist to figure | 
|  | // that out...for the pathological case, compute VecArgOffset as the | 
|  | // start of the vector parameter area.  Computing VecArgOffset is the | 
|  | // entire point of the following loop. | 
|  | unsigned VecArgOffset = ArgOffset; | 
|  | if (!isVarArg && !isPPC64) { | 
|  | for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; | 
|  | ++ArgNo) { | 
|  | EVT ObjectVT = Ins[ArgNo].VT; | 
|  | unsigned ObjSize = ObjectVT.getSizeInBits()/8; | 
|  | ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; | 
|  |  | 
|  | if (Flags.isByVal()) { | 
|  | // ObjSize is the true size, ArgSize rounded up to multiple of regs. | 
|  | ObjSize = Flags.getByValSize(); | 
|  | unsigned ArgSize = | 
|  | ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; | 
|  | VecArgOffset += ArgSize; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | switch(ObjectVT.getSimpleVT().SimpleTy) { | 
|  | default: llvm_unreachable("Unhandled argument type!"); | 
|  | case MVT::i32: | 
|  | case MVT::f32: | 
|  | VecArgOffset += isPPC64 ? 8 : 4; | 
|  | break; | 
|  | case MVT::i64:  // PPC64 | 
|  | case MVT::f64: | 
|  | VecArgOffset += 8; | 
|  | break; | 
|  | case MVT::v4f32: | 
|  | case MVT::v4i32: | 
|  | case MVT::v8i16: | 
|  | case MVT::v16i8: | 
|  | // Nothing to do, we're only looking at Nonvector args here. | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | // We've found where the vector parameter area in memory is.  Skip the | 
|  | // first 12 parameters; these don't use that memory. | 
|  | VecArgOffset = ((VecArgOffset+15)/16)*16; | 
|  | VecArgOffset += 12*16; | 
|  |  | 
|  | // Add DAG nodes to load the arguments or copy them out of registers.  On | 
|  | // entry to a function on PPC, the arguments start after the linkage area, | 
|  | // although the first ones are often in registers. | 
|  |  | 
|  | SmallVector<SDValue, 8> MemOps; | 
|  | unsigned nAltivecParamsAtEnd = 0; | 
|  | for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { | 
|  | SDValue ArgVal; | 
|  | bool needsLoad = false; | 
|  | EVT ObjectVT = Ins[ArgNo].VT; | 
|  | unsigned ObjSize = ObjectVT.getSizeInBits()/8; | 
|  | unsigned ArgSize = ObjSize; | 
|  | ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; | 
|  |  | 
|  | unsigned CurArgOffset = ArgOffset; | 
|  |  | 
|  | // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. | 
|  | if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || | 
|  | ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { | 
|  | if (isVarArg || isPPC64) { | 
|  | MinReservedArea = ((MinReservedArea+15)/16)*16; | 
|  | MinReservedArea += CalculateStackSlotSize(ObjectVT, | 
|  | Flags, | 
|  | PtrByteSize); | 
|  | } else  nAltivecParamsAtEnd++; | 
|  | } else | 
|  | // Calculate min reserved area. | 
|  | MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, | 
|  | Flags, | 
|  | PtrByteSize); | 
|  |  | 
|  | // FIXME the codegen can be much improved in some cases. | 
|  | // We do not have to keep everything in memory. | 
|  | if (Flags.isByVal()) { | 
|  | // ObjSize is the true size, ArgSize rounded up to multiple of registers. | 
|  | ObjSize = Flags.getByValSize(); | 
|  | ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; | 
|  | // Objects of size 1 and 2 are right justified, everything else is | 
|  | // left justified.  This means the memory address is adjusted forwards. | 
|  | if (ObjSize==1 || ObjSize==2) { | 
|  | CurArgOffset = CurArgOffset + (4 - ObjSize); | 
|  | } | 
|  | // The value of the object is its address. | 
|  | int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset); | 
|  | SDValue FIN = DAG.getFrameIndex(FI, PtrVT); | 
|  | InVals.push_back(FIN); | 
|  | if (ObjSize==1 || ObjSize==2) { | 
|  | if (GPR_idx != Num_GPR_Regs) { | 
|  | unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); | 
|  | SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); | 
|  | SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, | 
|  | NULL, 0, ObjSize==1 ? MVT::i8 : MVT::i16 ); | 
|  | MemOps.push_back(Store); | 
|  | ++GPR_idx; | 
|  | } | 
|  |  | 
|  | ArgOffset += PtrByteSize; | 
|  |  | 
|  | continue; | 
|  | } | 
|  | for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { | 
|  | // Store whatever pieces of the object are in registers | 
|  | // to memory.  ArgVal will be address of the beginning of | 
|  | // the object. | 
|  | if (GPR_idx != Num_GPR_Regs) { | 
|  | unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); | 
|  | int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset); | 
|  | SDValue FIN = DAG.getFrameIndex(FI, PtrVT); | 
|  | SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); | 
|  | SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0); | 
|  | MemOps.push_back(Store); | 
|  | ++GPR_idx; | 
|  | ArgOffset += PtrByteSize; | 
|  | } else { | 
|  | ArgOffset += ArgSize - (ArgOffset-CurArgOffset); | 
|  | break; | 
|  | } | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | switch (ObjectVT.getSimpleVT().SimpleTy) { | 
|  | default: llvm_unreachable("Unhandled argument type!"); | 
|  | case MVT::i32: | 
|  | if (!isPPC64) { | 
|  | if (GPR_idx != Num_GPR_Regs) { | 
|  | unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); | 
|  | ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); | 
|  | ++GPR_idx; | 
|  | } else { | 
|  | needsLoad = true; | 
|  | ArgSize = PtrByteSize; | 
|  | } | 
|  | // All int arguments reserve stack space in the Darwin ABI. | 
|  | ArgOffset += PtrByteSize; | 
|  | break; | 
|  | } | 
|  | // FALLTHROUGH | 
|  | case MVT::i64:  // PPC64 | 
|  | if (GPR_idx != Num_GPR_Regs) { | 
|  | unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); | 
|  | ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); | 
|  |  | 
|  | if (ObjectVT == MVT::i32) { | 
|  | // PPC64 passes i8, i16, and i32 values in i64 registers. Promote | 
|  | // value to MVT::i64 and then truncate to the correct register size. | 
|  | if (Flags.isSExt()) | 
|  | ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, | 
|  | DAG.getValueType(ObjectVT)); | 
|  | else if (Flags.isZExt()) | 
|  | ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, | 
|  | DAG.getValueType(ObjectVT)); | 
|  |  | 
|  | ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); | 
|  | } | 
|  |  | 
|  | ++GPR_idx; | 
|  | } else { | 
|  | needsLoad = true; | 
|  | ArgSize = PtrByteSize; | 
|  | } | 
|  | // All int arguments reserve stack space in the Darwin ABI. | 
|  | ArgOffset += 8; | 
|  | break; | 
|  |  | 
|  | case MVT::f32: | 
|  | case MVT::f64: | 
|  | // Every 4 bytes of argument space consumes one of the GPRs available for | 
|  | // argument passing. | 
|  | if (GPR_idx != Num_GPR_Regs) { | 
|  | ++GPR_idx; | 
|  | if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) | 
|  | ++GPR_idx; | 
|  | } | 
|  | if (FPR_idx != Num_FPR_Regs) { | 
|  | unsigned VReg; | 
|  |  | 
|  | if (ObjectVT == MVT::f32) | 
|  | VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); | 
|  | else | 
|  | VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); | 
|  |  | 
|  | ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); | 
|  | ++FPR_idx; | 
|  | } else { | 
|  | needsLoad = true; | 
|  | } | 
|  |  | 
|  | // All FP arguments reserve stack space in the Darwin ABI. | 
|  | ArgOffset += isPPC64 ? 8 : ObjSize; | 
|  | break; | 
|  | case MVT::v4f32: | 
|  | case MVT::v4i32: | 
|  | case MVT::v8i16: | 
|  | case MVT::v16i8: | 
|  | // Note that vector arguments in registers don't reserve stack space, | 
|  | // except in varargs functions. | 
|  | if (VR_idx != Num_VR_Regs) { | 
|  | unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); | 
|  | ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); | 
|  | if (isVarArg) { | 
|  | while ((ArgOffset % 16) != 0) { | 
|  | ArgOffset += PtrByteSize; | 
|  | if (GPR_idx != Num_GPR_Regs) | 
|  | GPR_idx++; | 
|  | } | 
|  | ArgOffset += 16; | 
|  | GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? | 
|  | } | 
|  | ++VR_idx; | 
|  | } else { | 
|  | if (!isVarArg && !isPPC64) { | 
|  | // Vectors go after all the nonvectors. | 
|  | CurArgOffset = VecArgOffset; | 
|  | VecArgOffset += 16; | 
|  | } else { | 
|  | // Vectors are aligned. | 
|  | ArgOffset = ((ArgOffset+15)/16)*16; | 
|  | CurArgOffset = ArgOffset; | 
|  | ArgOffset += 16; | 
|  | } | 
|  | needsLoad = true; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | // We need to load the argument to a virtual register if we determined above | 
|  | // that we ran out of physical registers of the appropriate type. | 
|  | if (needsLoad) { | 
|  | int FI = MFI->CreateFixedObject(ObjSize, | 
|  | CurArgOffset + (ArgSize - ObjSize), | 
|  | isImmutable); | 
|  | SDValue FIN = DAG.getFrameIndex(FI, PtrVT); | 
|  | ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, NULL, 0); | 
|  | } | 
|  |  | 
|  | InVals.push_back(ArgVal); | 
|  | } | 
|  |  | 
|  | // Set the size that is at least reserved in caller of this function.  Tail | 
|  | // call optimized function's reserved stack space needs to be aligned so that | 
|  | // taking the difference between two stack areas will result in an aligned | 
|  | // stack. | 
|  | PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); | 
|  | // Add the Altivec parameters at the end, if needed. | 
|  | if (nAltivecParamsAtEnd) { | 
|  | MinReservedArea = ((MinReservedArea+15)/16)*16; | 
|  | MinReservedArea += 16*nAltivecParamsAtEnd; | 
|  | } | 
|  | MinReservedArea = | 
|  | std::max(MinReservedArea, | 
|  | PPCFrameInfo::getMinCallFrameSize(isPPC64, true)); | 
|  | unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()-> | 
|  | getStackAlignment(); | 
|  | unsigned AlignMask = TargetAlign-1; | 
|  | MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask; | 
|  | FI->setMinReservedArea(MinReservedArea); | 
|  |  | 
|  | // If the function takes variable number of arguments, make a frame index for | 
|  | // the start of the first vararg value... for expansion of llvm.va_start. | 
|  | if (isVarArg) { | 
|  | int Depth = ArgOffset; | 
|  |  | 
|  | VarArgsFrameIndex = MFI->CreateFixedObject(PtrVT.getSizeInBits()/8, | 
|  | Depth); | 
|  | SDValue FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT); | 
|  |  | 
|  | // If this function is vararg, store any remaining integer argument regs | 
|  | // to their spots on the stack so that they may be loaded by deferencing the | 
|  | // result of va_next. | 
|  | for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { | 
|  | unsigned VReg; | 
|  |  | 
|  | if (isPPC64) | 
|  | VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); | 
|  | else | 
|  | VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); | 
|  |  | 
|  | SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); | 
|  | SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0); | 
|  | MemOps.push_back(Store); | 
|  | // Increment the address by four for the next argument to store | 
|  | SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT); | 
|  | FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!MemOps.empty()) | 
|  | Chain = DAG.getNode(ISD::TokenFactor, dl, | 
|  | MVT::Other, &MemOps[0], MemOps.size()); | 
|  |  | 
|  | return Chain; | 
|  | } | 
|  |  | 
|  | /// CalculateParameterAndLinkageAreaSize - Get the size of the paramter plus | 
|  | /// linkage area for the Darwin ABI. | 
|  | static unsigned | 
|  | CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG, | 
|  | bool isPPC64, | 
|  | bool isVarArg, | 
|  | unsigned CC, | 
|  | const SmallVectorImpl<ISD::OutputArg> | 
|  | &Outs, | 
|  | unsigned &nAltivecParamsAtEnd) { | 
|  | // Count how many bytes are to be pushed on the stack, including the linkage | 
|  | // area, and parameter passing area.  We start with 24/48 bytes, which is | 
|  | // prereserved space for [SP][CR][LR][3 x unused]. | 
|  | unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64, true); | 
|  | unsigned NumOps = Outs.size(); | 
|  | unsigned PtrByteSize = isPPC64 ? 8 : 4; | 
|  |  | 
|  | // Add up all the space actually used. | 
|  | // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually | 
|  | // they all go in registers, but we must reserve stack space for them for | 
|  | // possible use by the caller.  In varargs or 64-bit calls, parameters are | 
|  | // assigned stack space in order, with padding so Altivec parameters are | 
|  | // 16-byte aligned. | 
|  | nAltivecParamsAtEnd = 0; | 
|  | for (unsigned i = 0; i != NumOps; ++i) { | 
|  | SDValue Arg = Outs[i].Val; | 
|  | ISD::ArgFlagsTy Flags = Outs[i].Flags; | 
|  | EVT ArgVT = Arg.getValueType(); | 
|  | // Varargs Altivec parameters are padded to a 16 byte boundary. | 
|  | if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 || | 
|  | ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) { | 
|  | if (!isVarArg && !isPPC64) { | 
|  | // Non-varargs Altivec parameters go after all the non-Altivec | 
|  | // parameters; handle those later so we know how much padding we need. | 
|  | nAltivecParamsAtEnd++; | 
|  | continue; | 
|  | } | 
|  | // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. | 
|  | NumBytes = ((NumBytes+15)/16)*16; | 
|  | } | 
|  | NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); | 
|  | } | 
|  |  | 
|  | // Allow for Altivec parameters at the end, if needed. | 
|  | if (nAltivecParamsAtEnd) { | 
|  | NumBytes = ((NumBytes+15)/16)*16; | 
|  | NumBytes += 16*nAltivecParamsAtEnd; | 
|  | } | 
|  |  | 
|  | // The prolog code of the callee may store up to 8 GPR argument registers to | 
|  | // the stack, allowing va_start to index over them in memory if its varargs. | 
|  | // Because we cannot tell if this is needed on the caller side, we have to | 
|  | // conservatively assume that it is needed.  As such, make sure we have at | 
|  | // least enough stack space for the caller to store the 8 GPRs. | 
|  | NumBytes = std::max(NumBytes, | 
|  | PPCFrameInfo::getMinCallFrameSize(isPPC64, true)); | 
|  |  | 
|  | // Tail call needs the stack to be aligned. | 
|  | if (CC==CallingConv::Fast && PerformTailCallOpt) { | 
|  | unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()-> | 
|  | getStackAlignment(); | 
|  | unsigned AlignMask = TargetAlign-1; | 
|  | NumBytes = (NumBytes + AlignMask) & ~AlignMask; | 
|  | } | 
|  |  | 
|  | return NumBytes; | 
|  | } | 
|  |  | 
|  | /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be | 
|  | /// adjusted to accomodate the arguments for the tailcall. | 
|  | static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool IsTailCall, | 
|  | unsigned ParamSize) { | 
|  |  | 
|  | if (!IsTailCall) return 0; | 
|  |  | 
|  | PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); | 
|  | unsigned CallerMinReservedArea = FI->getMinReservedArea(); | 
|  | int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; | 
|  | // Remember only if the new adjustement is bigger. | 
|  | if (SPDiff < FI->getTailCallSPDelta()) | 
|  | FI->setTailCallSPDelta(SPDiff); | 
|  |  | 
|  | return SPDiff; | 
|  | } | 
|  |  | 
|  | /// IsEligibleForTailCallOptimization - Check whether the call is eligible | 
|  | /// for tail call optimization. Targets which want to do tail call | 
|  | /// optimization should implement this function. | 
|  | bool | 
|  | PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, | 
|  | CallingConv::ID CalleeCC, | 
|  | bool isVarArg, | 
|  | const SmallVectorImpl<ISD::InputArg> &Ins, | 
|  | SelectionDAG& DAG) const { | 
|  | // Variable argument functions are not supported. | 
|  | if (isVarArg) | 
|  | return false; | 
|  |  | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | CallingConv::ID CallerCC = MF.getFunction()->getCallingConv(); | 
|  | if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { | 
|  | // Functions containing by val parameters are not supported. | 
|  | for (unsigned i = 0; i != Ins.size(); i++) { | 
|  | ISD::ArgFlagsTy Flags = Ins[i].Flags; | 
|  | if (Flags.isByVal()) return false; | 
|  | } | 
|  |  | 
|  | // Non PIC/GOT  tail calls are supported. | 
|  | if (getTargetMachine().getRelocationModel() != Reloc::PIC_) | 
|  | return true; | 
|  |  | 
|  | // At the moment we can only do local tail calls (in same module, hidden | 
|  | // or protected) if we are generating PIC. | 
|  | if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) | 
|  | return G->getGlobal()->hasHiddenVisibility() | 
|  | || G->getGlobal()->hasProtectedVisibility(); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// isCallCompatibleAddress - Return the immediate to use if the specified | 
|  | /// 32-bit value is representable in the immediate field of a BxA instruction. | 
|  | static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { | 
|  | ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); | 
|  | if (!C) return 0; | 
|  |  | 
|  | int Addr = C->getZExtValue(); | 
|  | if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero. | 
|  | (Addr << 6 >> 6) != Addr) | 
|  | return 0;  // Top 6 bits have to be sext of immediate. | 
|  |  | 
|  | return DAG.getConstant((int)C->getZExtValue() >> 2, | 
|  | DAG.getTargetLoweringInfo().getPointerTy()).getNode(); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | struct TailCallArgumentInfo { | 
|  | SDValue Arg; | 
|  | SDValue FrameIdxOp; | 
|  | int       FrameIdx; | 
|  |  | 
|  | TailCallArgumentInfo() : FrameIdx(0) {} | 
|  | }; | 
|  |  | 
|  | } | 
|  |  | 
|  | /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. | 
|  | static void | 
|  | StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG, | 
|  | SDValue Chain, | 
|  | const SmallVector<TailCallArgumentInfo, 8> &TailCallArgs, | 
|  | SmallVector<SDValue, 8> &MemOpChains, | 
|  | DebugLoc dl) { | 
|  | for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { | 
|  | SDValue Arg = TailCallArgs[i].Arg; | 
|  | SDValue FIN = TailCallArgs[i].FrameIdxOp; | 
|  | int FI = TailCallArgs[i].FrameIdx; | 
|  | // Store relative to framepointer. | 
|  | MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN, | 
|  | PseudoSourceValue::getFixedStack(FI), | 
|  | 0)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to | 
|  | /// the appropriate stack slot for the tail call optimized function call. | 
|  | static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, | 
|  | MachineFunction &MF, | 
|  | SDValue Chain, | 
|  | SDValue OldRetAddr, | 
|  | SDValue OldFP, | 
|  | int SPDiff, | 
|  | bool isPPC64, | 
|  | bool isDarwinABI, | 
|  | DebugLoc dl) { | 
|  | if (SPDiff) { | 
|  | // Calculate the new stack slot for the return address. | 
|  | int SlotSize = isPPC64 ? 8 : 4; | 
|  | int NewRetAddrLoc = SPDiff + PPCFrameInfo::getReturnSaveOffset(isPPC64, | 
|  | isDarwinABI); | 
|  | int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize, | 
|  | NewRetAddrLoc); | 
|  | EVT VT = isPPC64 ? MVT::i64 : MVT::i32; | 
|  | SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); | 
|  | Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, | 
|  | PseudoSourceValue::getFixedStack(NewRetAddr), 0); | 
|  |  | 
|  | // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack | 
|  | // slot as the FP is never overwritten. | 
|  | if (isDarwinABI) { | 
|  | int NewFPLoc = | 
|  | SPDiff + PPCFrameInfo::getFramePointerSaveOffset(isPPC64, isDarwinABI); | 
|  | int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc); | 
|  | SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT); | 
|  | Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx, | 
|  | PseudoSourceValue::getFixedStack(NewFPIdx), 0); | 
|  | } | 
|  | } | 
|  | return Chain; | 
|  | } | 
|  |  | 
|  | /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate | 
|  | /// the position of the argument. | 
|  | static void | 
|  | CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, | 
|  | SDValue Arg, int SPDiff, unsigned ArgOffset, | 
|  | SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) { | 
|  | int Offset = ArgOffset + SPDiff; | 
|  | uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8; | 
|  | int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset); | 
|  | EVT VT = isPPC64 ? MVT::i64 : MVT::i32; | 
|  | SDValue FIN = DAG.getFrameIndex(FI, VT); | 
|  | TailCallArgumentInfo Info; | 
|  | Info.Arg = Arg; | 
|  | Info.FrameIdxOp = FIN; | 
|  | Info.FrameIdx = FI; | 
|  | TailCallArguments.push_back(Info); | 
|  | } | 
|  |  | 
|  | /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address | 
|  | /// stack slot. Returns the chain as result and the loaded frame pointers in | 
|  | /// LROpOut/FPOpout. Used when tail calling. | 
|  | SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG, | 
|  | int SPDiff, | 
|  | SDValue Chain, | 
|  | SDValue &LROpOut, | 
|  | SDValue &FPOpOut, | 
|  | bool isDarwinABI, | 
|  | DebugLoc dl) { | 
|  | if (SPDiff) { | 
|  | // Load the LR and FP stack slot for later adjusting. | 
|  | EVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32; | 
|  | LROpOut = getReturnAddrFrameIndex(DAG); | 
|  | LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, NULL, 0); | 
|  | Chain = SDValue(LROpOut.getNode(), 1); | 
|  |  | 
|  | // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack | 
|  | // slot as the FP is never overwritten. | 
|  | if (isDarwinABI) { | 
|  | FPOpOut = getFramePointerFrameIndex(DAG); | 
|  | FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, NULL, 0); | 
|  | Chain = SDValue(FPOpOut.getNode(), 1); | 
|  | } | 
|  | } | 
|  | return Chain; | 
|  | } | 
|  |  | 
|  | /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified | 
|  | /// by "Src" to address "Dst" of size "Size".  Alignment information is | 
|  | /// specified by the specific parameter attribute. The copy will be passed as | 
|  | /// a byval function parameter. | 
|  | /// Sometimes what we are copying is the end of a larger object, the part that | 
|  | /// does not fit in registers. | 
|  | static SDValue | 
|  | CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain, | 
|  | ISD::ArgFlagsTy Flags, SelectionDAG &DAG, | 
|  | DebugLoc dl) { | 
|  | SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32); | 
|  | return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), | 
|  | false, NULL, 0, NULL, 0); | 
|  | } | 
|  |  | 
|  | /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of | 
|  | /// tail calls. | 
|  | static void | 
|  | LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, | 
|  | SDValue Arg, SDValue PtrOff, int SPDiff, | 
|  | unsigned ArgOffset, bool isPPC64, bool isTailCall, | 
|  | bool isVector, SmallVector<SDValue, 8> &MemOpChains, | 
|  | SmallVector<TailCallArgumentInfo, 8>& TailCallArguments, | 
|  | DebugLoc dl) { | 
|  | EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); | 
|  | if (!isTailCall) { | 
|  | if (isVector) { | 
|  | SDValue StackPtr; | 
|  | if (isPPC64) | 
|  | StackPtr = DAG.getRegister(PPC::X1, MVT::i64); | 
|  | else | 
|  | StackPtr = DAG.getRegister(PPC::R1, MVT::i32); | 
|  | PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, | 
|  | DAG.getConstant(ArgOffset, PtrVT)); | 
|  | } | 
|  | MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, NULL, 0)); | 
|  | // Calculate and remember argument location. | 
|  | } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, | 
|  | TailCallArguments); | 
|  | } | 
|  |  | 
|  | static | 
|  | void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, | 
|  | DebugLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes, | 
|  | SDValue LROp, SDValue FPOp, bool isDarwinABI, | 
|  | SmallVector<TailCallArgumentInfo, 8> &TailCallArguments) { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  |  | 
|  | // Emit a sequence of copyto/copyfrom virtual registers for arguments that | 
|  | // might overwrite each other in case of tail call optimization. | 
|  | SmallVector<SDValue, 8> MemOpChains2; | 
|  | // Do not flag preceeding copytoreg stuff together with the following stuff. | 
|  | InFlag = SDValue(); | 
|  | StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, | 
|  | MemOpChains2, dl); | 
|  | if (!MemOpChains2.empty()) | 
|  | Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, | 
|  | &MemOpChains2[0], MemOpChains2.size()); | 
|  |  | 
|  | // Store the return address to the appropriate stack slot. | 
|  | Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff, | 
|  | isPPC64, isDarwinABI, dl); | 
|  |  | 
|  | // Emit callseq_end just before tailcall node. | 
|  | Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), | 
|  | DAG.getIntPtrConstant(0, true), InFlag); | 
|  | InFlag = Chain.getValue(1); | 
|  | } | 
|  |  | 
|  | static | 
|  | unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, | 
|  | SDValue &Chain, DebugLoc dl, int SPDiff, bool isTailCall, | 
|  | SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, | 
|  | SmallVector<SDValue, 8> &Ops, std::vector<EVT> &NodeTys, | 
|  | bool isSVR4ABI) { | 
|  | EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); | 
|  | NodeTys.push_back(MVT::Other);   // Returns a chain | 
|  | NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use. | 
|  |  | 
|  | unsigned CallOpc = isSVR4ABI ? PPCISD::CALL_SVR4 : PPCISD::CALL_Darwin; | 
|  |  | 
|  | // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every | 
|  | // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol | 
|  | // node so that legalize doesn't hack it. | 
|  | if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) | 
|  | Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType()); | 
|  | else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) | 
|  | Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType()); | 
|  | else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) | 
|  | // If this is an absolute destination address, use the munged value. | 
|  | Callee = SDValue(Dest, 0); | 
|  | else { | 
|  | // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair | 
|  | // to do the call, we can't use PPCISD::CALL. | 
|  | SDValue MTCTROps[] = {Chain, Callee, InFlag}; | 
|  | Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, MTCTROps, | 
|  | 2 + (InFlag.getNode() != 0)); | 
|  | InFlag = Chain.getValue(1); | 
|  |  | 
|  | NodeTys.clear(); | 
|  | NodeTys.push_back(MVT::Other); | 
|  | NodeTys.push_back(MVT::Flag); | 
|  | Ops.push_back(Chain); | 
|  | CallOpc = isSVR4ABI ? PPCISD::BCTRL_SVR4 : PPCISD::BCTRL_Darwin; | 
|  | Callee.setNode(0); | 
|  | // Add CTR register as callee so a bctr can be emitted later. | 
|  | if (isTailCall) | 
|  | Ops.push_back(DAG.getRegister(PPC::CTR, PtrVT)); | 
|  | } | 
|  |  | 
|  | // If this is a direct call, pass the chain and the callee. | 
|  | if (Callee.getNode()) { | 
|  | Ops.push_back(Chain); | 
|  | Ops.push_back(Callee); | 
|  | } | 
|  | // If this is a tail call add stack pointer delta. | 
|  | if (isTailCall) | 
|  | Ops.push_back(DAG.getConstant(SPDiff, MVT::i32)); | 
|  |  | 
|  | // Add argument registers to the end of the list so that they are known live | 
|  | // into the call. | 
|  | for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) | 
|  | Ops.push_back(DAG.getRegister(RegsToPass[i].first, | 
|  | RegsToPass[i].second.getValueType())); | 
|  |  | 
|  | return CallOpc; | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag, | 
|  | CallingConv::ID CallConv, bool isVarArg, | 
|  | const SmallVectorImpl<ISD::InputArg> &Ins, | 
|  | DebugLoc dl, SelectionDAG &DAG, | 
|  | SmallVectorImpl<SDValue> &InVals) { | 
|  |  | 
|  | SmallVector<CCValAssign, 16> RVLocs; | 
|  | CCState CCRetInfo(CallConv, isVarArg, getTargetMachine(), | 
|  | RVLocs, *DAG.getContext()); | 
|  | CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC); | 
|  |  | 
|  | // Copy all of the result registers out of their specified physreg. | 
|  | for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { | 
|  | CCValAssign &VA = RVLocs[i]; | 
|  | EVT VT = VA.getValVT(); | 
|  | assert(VA.isRegLoc() && "Can only return in registers!"); | 
|  | Chain = DAG.getCopyFromReg(Chain, dl, | 
|  | VA.getLocReg(), VT, InFlag).getValue(1); | 
|  | InVals.push_back(Chain.getValue(0)); | 
|  | InFlag = Chain.getValue(2); | 
|  | } | 
|  |  | 
|  | return Chain; | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | PPCTargetLowering::FinishCall(CallingConv::ID CallConv, DebugLoc dl, | 
|  | bool isTailCall, bool isVarArg, | 
|  | SelectionDAG &DAG, | 
|  | SmallVector<std::pair<unsigned, SDValue>, 8> | 
|  | &RegsToPass, | 
|  | SDValue InFlag, SDValue Chain, | 
|  | SDValue &Callee, | 
|  | int SPDiff, unsigned NumBytes, | 
|  | const SmallVectorImpl<ISD::InputArg> &Ins, | 
|  | SmallVectorImpl<SDValue> &InVals) { | 
|  | std::vector<EVT> NodeTys; | 
|  | SmallVector<SDValue, 8> Ops; | 
|  | unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff, | 
|  | isTailCall, RegsToPass, Ops, NodeTys, | 
|  | PPCSubTarget.isSVR4ABI()); | 
|  |  | 
|  | // When performing tail call optimization the callee pops its arguments off | 
|  | // the stack. Account for this here so these bytes can be pushed back on in | 
|  | // PPCRegisterInfo::eliminateCallFramePseudoInstr. | 
|  | int BytesCalleePops = | 
|  | (CallConv==CallingConv::Fast && PerformTailCallOpt) ? NumBytes : 0; | 
|  |  | 
|  | if (InFlag.getNode()) | 
|  | Ops.push_back(InFlag); | 
|  |  | 
|  | // Emit tail call. | 
|  | if (isTailCall) { | 
|  | // If this is the first return lowered for this function, add the regs | 
|  | // to the liveout set for the function. | 
|  | if (DAG.getMachineFunction().getRegInfo().liveout_empty()) { | 
|  | SmallVector<CCValAssign, 16> RVLocs; | 
|  | CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs, | 
|  | *DAG.getContext()); | 
|  | CCInfo.AnalyzeCallResult(Ins, RetCC_PPC); | 
|  | for (unsigned i = 0; i != RVLocs.size(); ++i) | 
|  | DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg()); | 
|  | } | 
|  |  | 
|  | assert(((Callee.getOpcode() == ISD::Register && | 
|  | cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || | 
|  | Callee.getOpcode() == ISD::TargetExternalSymbol || | 
|  | Callee.getOpcode() == ISD::TargetGlobalAddress || | 
|  | isa<ConstantSDNode>(Callee)) && | 
|  | "Expecting an global address, external symbol, absolute value or register"); | 
|  |  | 
|  | return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, &Ops[0], Ops.size()); | 
|  | } | 
|  |  | 
|  | Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size()); | 
|  | InFlag = Chain.getValue(1); | 
|  |  | 
|  | // Add a NOP immediately after the branch instruction when using the 64-bit | 
|  | // SVR4 ABI. At link time, if caller and callee are in a different module and | 
|  | // thus have a different TOC, the call will be replaced with a call to a stub | 
|  | // function which saves the current TOC, loads the TOC of the callee and | 
|  | // branches to the callee. The NOP will be replaced with a load instruction | 
|  | // which restores the TOC of the caller from the TOC save slot of the current | 
|  | // stack frame. If caller and callee belong to the same module (and have the | 
|  | // same TOC), the NOP will remain unchanged. | 
|  | if (!isTailCall && PPCSubTarget.isSVR4ABI()&& PPCSubTarget.isPPC64()) { | 
|  | // Insert NOP. | 
|  | InFlag = DAG.getNode(PPCISD::NOP, dl, MVT::Flag, InFlag); | 
|  | } | 
|  |  | 
|  | Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), | 
|  | DAG.getIntPtrConstant(BytesCalleePops, true), | 
|  | InFlag); | 
|  | if (!Ins.empty()) | 
|  | InFlag = Chain.getValue(1); | 
|  |  | 
|  | return LowerCallResult(Chain, InFlag, CallConv, isVarArg, | 
|  | Ins, dl, DAG, InVals); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | PPCTargetLowering::LowerCall(SDValue Chain, SDValue Callee, | 
|  | CallingConv::ID CallConv, bool isVarArg, | 
|  | bool isTailCall, | 
|  | const SmallVectorImpl<ISD::OutputArg> &Outs, | 
|  | const SmallVectorImpl<ISD::InputArg> &Ins, | 
|  | DebugLoc dl, SelectionDAG &DAG, | 
|  | SmallVectorImpl<SDValue> &InVals) { | 
|  | if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64()) { | 
|  | return LowerCall_SVR4(Chain, Callee, CallConv, isVarArg, | 
|  | isTailCall, Outs, Ins, | 
|  | dl, DAG, InVals); | 
|  | } else { | 
|  | return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg, | 
|  | isTailCall, Outs, Ins, | 
|  | dl, DAG, InVals); | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | PPCTargetLowering::LowerCall_SVR4(SDValue Chain, SDValue Callee, | 
|  | CallingConv::ID CallConv, bool isVarArg, | 
|  | bool isTailCall, | 
|  | const SmallVectorImpl<ISD::OutputArg> &Outs, | 
|  | const SmallVectorImpl<ISD::InputArg> &Ins, | 
|  | DebugLoc dl, SelectionDAG &DAG, | 
|  | SmallVectorImpl<SDValue> &InVals) { | 
|  | // See PPCTargetLowering::LowerFormalArguments_SVR4() for a description | 
|  | // of the 32-bit SVR4 ABI stack frame layout. | 
|  |  | 
|  | assert((!isTailCall || | 
|  | (CallConv == CallingConv::Fast && PerformTailCallOpt)) && | 
|  | "IsEligibleForTailCallOptimization missed a case!"); | 
|  |  | 
|  | assert((CallConv == CallingConv::C || | 
|  | CallConv == CallingConv::Fast) && "Unknown calling convention!"); | 
|  |  | 
|  | EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); | 
|  | unsigned PtrByteSize = 4; | 
|  |  | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  |  | 
|  | // Mark this function as potentially containing a function that contains a | 
|  | // tail call. As a consequence the frame pointer will be used for dynamicalloc | 
|  | // and restoring the callers stack pointer in this functions epilog. This is | 
|  | // done because by tail calling the called function might overwrite the value | 
|  | // in this function's (MF) stack pointer stack slot 0(SP). | 
|  | if (PerformTailCallOpt && CallConv==CallingConv::Fast) | 
|  | MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); | 
|  |  | 
|  | // Count how many bytes are to be pushed on the stack, including the linkage | 
|  | // area, parameter list area and the part of the local variable space which | 
|  | // contains copies of aggregates which are passed by value. | 
|  |  | 
|  | // Assign locations to all of the outgoing arguments. | 
|  | SmallVector<CCValAssign, 16> ArgLocs; | 
|  | CCState CCInfo(CallConv, isVarArg, getTargetMachine(), | 
|  | ArgLocs, *DAG.getContext()); | 
|  |  | 
|  | // Reserve space for the linkage area on the stack. | 
|  | CCInfo.AllocateStack(PPCFrameInfo::getLinkageSize(false, false), PtrByteSize); | 
|  |  | 
|  | if (isVarArg) { | 
|  | // Handle fixed and variable vector arguments differently. | 
|  | // Fixed vector arguments go into registers as long as registers are | 
|  | // available. Variable vector arguments always go into memory. | 
|  | unsigned NumArgs = Outs.size(); | 
|  |  | 
|  | for (unsigned i = 0; i != NumArgs; ++i) { | 
|  | EVT ArgVT = Outs[i].Val.getValueType(); | 
|  | ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; | 
|  | bool Result; | 
|  |  | 
|  | if (Outs[i].IsFixed) { | 
|  | Result = CC_PPC_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, | 
|  | CCInfo); | 
|  | } else { | 
|  | Result = CC_PPC_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, | 
|  | ArgFlags, CCInfo); | 
|  | } | 
|  |  | 
|  | if (Result) { | 
|  | #ifndef NDEBUG | 
|  | errs() << "Call operand #" << i << " has unhandled type " | 
|  | << ArgVT.getEVTString() << "\n"; | 
|  | #endif | 
|  | llvm_unreachable(0); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | // All arguments are treated the same. | 
|  | CCInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4); | 
|  | } | 
|  |  | 
|  | // Assign locations to all of the outgoing aggregate by value arguments. | 
|  | SmallVector<CCValAssign, 16> ByValArgLocs; | 
|  | CCState CCByValInfo(CallConv, isVarArg, getTargetMachine(), ByValArgLocs, | 
|  | *DAG.getContext()); | 
|  |  | 
|  | // Reserve stack space for the allocations in CCInfo. | 
|  | CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); | 
|  |  | 
|  | CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4_ByVal); | 
|  |  | 
|  | // Size of the linkage area, parameter list area and the part of the local | 
|  | // space variable where copies of aggregates which are passed by value are | 
|  | // stored. | 
|  | unsigned NumBytes = CCByValInfo.getNextStackOffset(); | 
|  |  | 
|  | // Calculate by how many bytes the stack has to be adjusted in case of tail | 
|  | // call optimization. | 
|  | int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); | 
|  |  | 
|  | // Adjust the stack pointer for the new arguments... | 
|  | // These operations are automatically eliminated by the prolog/epilog pass | 
|  | Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true)); | 
|  | SDValue CallSeqStart = Chain; | 
|  |  | 
|  | // Load the return address and frame pointer so it can be moved somewhere else | 
|  | // later. | 
|  | SDValue LROp, FPOp; | 
|  | Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false, | 
|  | dl); | 
|  |  | 
|  | // Set up a copy of the stack pointer for use loading and storing any | 
|  | // arguments that may not fit in the registers available for argument | 
|  | // passing. | 
|  | SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); | 
|  |  | 
|  | SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; | 
|  | SmallVector<TailCallArgumentInfo, 8> TailCallArguments; | 
|  | SmallVector<SDValue, 8> MemOpChains; | 
|  |  | 
|  | // Walk the register/memloc assignments, inserting copies/loads. | 
|  | for (unsigned i = 0, j = 0, e = ArgLocs.size(); | 
|  | i != e; | 
|  | ++i) { | 
|  | CCValAssign &VA = ArgLocs[i]; | 
|  | SDValue Arg = Outs[i].Val; | 
|  | ISD::ArgFlagsTy Flags = Outs[i].Flags; | 
|  |  | 
|  | if (Flags.isByVal()) { | 
|  | // Argument is an aggregate which is passed by value, thus we need to | 
|  | // create a copy of it in the local variable space of the current stack | 
|  | // frame (which is the stack frame of the caller) and pass the address of | 
|  | // this copy to the callee. | 
|  | assert((j < ByValArgLocs.size()) && "Index out of bounds!"); | 
|  | CCValAssign &ByValVA = ByValArgLocs[j++]; | 
|  | assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); | 
|  |  | 
|  | // Memory reserved in the local variable space of the callers stack frame. | 
|  | unsigned LocMemOffset = ByValVA.getLocMemOffset(); | 
|  |  | 
|  | SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset); | 
|  | PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff); | 
|  |  | 
|  | // Create a copy of the argument in the local area of the current | 
|  | // stack frame. | 
|  | SDValue MemcpyCall = | 
|  | CreateCopyOfByValArgument(Arg, PtrOff, | 
|  | CallSeqStart.getNode()->getOperand(0), | 
|  | Flags, DAG, dl); | 
|  |  | 
|  | // This must go outside the CALLSEQ_START..END. | 
|  | SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, | 
|  | CallSeqStart.getNode()->getOperand(1)); | 
|  | DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), | 
|  | NewCallSeqStart.getNode()); | 
|  | Chain = CallSeqStart = NewCallSeqStart; | 
|  |  | 
|  | // Pass the address of the aggregate copy on the stack either in a | 
|  | // physical register or in the parameter list area of the current stack | 
|  | // frame to the callee. | 
|  | Arg = PtrOff; | 
|  | } | 
|  |  | 
|  | if (VA.isRegLoc()) { | 
|  | // Put argument in a physical register. | 
|  | RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); | 
|  | } else { | 
|  | // Put argument in the parameter list area of the current stack frame. | 
|  | assert(VA.isMemLoc()); | 
|  | unsigned LocMemOffset = VA.getLocMemOffset(); | 
|  |  | 
|  | if (!isTailCall) { | 
|  | SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset); | 
|  | PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff); | 
|  |  | 
|  | MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, | 
|  | PseudoSourceValue::getStack(), LocMemOffset)); | 
|  | } else { | 
|  | // Calculate and remember argument location. | 
|  | CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, | 
|  | TailCallArguments); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!MemOpChains.empty()) | 
|  | Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, | 
|  | &MemOpChains[0], MemOpChains.size()); | 
|  |  | 
|  | // Build a sequence of copy-to-reg nodes chained together with token chain | 
|  | // and flag operands which copy the outgoing args into the appropriate regs. | 
|  | SDValue InFlag; | 
|  | for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { | 
|  | Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, | 
|  | RegsToPass[i].second, InFlag); | 
|  | InFlag = Chain.getValue(1); | 
|  | } | 
|  |  | 
|  | // Set CR6 to true if this is a vararg call. | 
|  | if (isVarArg) { | 
|  | SDValue SetCR(DAG.getMachineNode(PPC::CRSET, dl, MVT::i32), 0); | 
|  | Chain = DAG.getCopyToReg(Chain, dl, PPC::CR1EQ, SetCR, InFlag); | 
|  | InFlag = Chain.getValue(1); | 
|  | } | 
|  |  | 
|  | if (isTailCall) { | 
|  | PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp, | 
|  | false, TailCallArguments); | 
|  | } | 
|  |  | 
|  | return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG, | 
|  | RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes, | 
|  | Ins, InVals); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee, | 
|  | CallingConv::ID CallConv, bool isVarArg, | 
|  | bool isTailCall, | 
|  | const SmallVectorImpl<ISD::OutputArg> &Outs, | 
|  | const SmallVectorImpl<ISD::InputArg> &Ins, | 
|  | DebugLoc dl, SelectionDAG &DAG, | 
|  | SmallVectorImpl<SDValue> &InVals) { | 
|  |  | 
|  | unsigned NumOps  = Outs.size(); | 
|  |  | 
|  | EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); | 
|  | bool isPPC64 = PtrVT == MVT::i64; | 
|  | unsigned PtrByteSize = isPPC64 ? 8 : 4; | 
|  |  | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  |  | 
|  | // Mark this function as potentially containing a function that contains a | 
|  | // tail call. As a consequence the frame pointer will be used for dynamicalloc | 
|  | // and restoring the callers stack pointer in this functions epilog. This is | 
|  | // done because by tail calling the called function might overwrite the value | 
|  | // in this function's (MF) stack pointer stack slot 0(SP). | 
|  | if (PerformTailCallOpt && CallConv==CallingConv::Fast) | 
|  | MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); | 
|  |  | 
|  | unsigned nAltivecParamsAtEnd = 0; | 
|  |  | 
|  | // Count how many bytes are to be pushed on the stack, including the linkage | 
|  | // area, and parameter passing area.  We start with 24/48 bytes, which is | 
|  | // prereserved space for [SP][CR][LR][3 x unused]. | 
|  | unsigned NumBytes = | 
|  | CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isVarArg, CallConv, | 
|  | Outs, | 
|  | nAltivecParamsAtEnd); | 
|  |  | 
|  | // Calculate by how many bytes the stack has to be adjusted in case of tail | 
|  | // call optimization. | 
|  | int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); | 
|  |  | 
|  | // To protect arguments on the stack from being clobbered in a tail call, | 
|  | // force all the loads to happen before doing any other lowering. | 
|  | if (isTailCall) | 
|  | Chain = DAG.getStackArgumentTokenFactor(Chain); | 
|  |  | 
|  | // Adjust the stack pointer for the new arguments... | 
|  | // These operations are automatically eliminated by the prolog/epilog pass | 
|  | Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true)); | 
|  | SDValue CallSeqStart = Chain; | 
|  |  | 
|  | // Load the return address and frame pointer so it can be move somewhere else | 
|  | // later. | 
|  | SDValue LROp, FPOp; | 
|  | Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true, | 
|  | dl); | 
|  |  | 
|  | // Set up a copy of the stack pointer for use loading and storing any | 
|  | // arguments that may not fit in the registers available for argument | 
|  | // passing. | 
|  | SDValue StackPtr; | 
|  | if (isPPC64) | 
|  | StackPtr = DAG.getRegister(PPC::X1, MVT::i64); | 
|  | else | 
|  | StackPtr = DAG.getRegister(PPC::R1, MVT::i32); | 
|  |  | 
|  | // Figure out which arguments are going to go in registers, and which in | 
|  | // memory.  Also, if this is a vararg function, floating point operations | 
|  | // must be stored to our stack, and loaded into integer regs as well, if | 
|  | // any integer regs are available for argument passing. | 
|  | unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, true); | 
|  | unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; | 
|  |  | 
|  | static const unsigned GPR_32[] = {           // 32-bit registers. | 
|  | PPC::R3, PPC::R4, PPC::R5, PPC::R6, | 
|  | PPC::R7, PPC::R8, PPC::R9, PPC::R10, | 
|  | }; | 
|  | static const unsigned GPR_64[] = {           // 64-bit registers. | 
|  | PPC::X3, PPC::X4, PPC::X5, PPC::X6, | 
|  | PPC::X7, PPC::X8, PPC::X9, PPC::X10, | 
|  | }; | 
|  | static const unsigned *FPR = GetFPR(); | 
|  |  | 
|  | static const unsigned VR[] = { | 
|  | PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, | 
|  | PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 | 
|  | }; | 
|  | const unsigned NumGPRs = array_lengthof(GPR_32); | 
|  | const unsigned NumFPRs = 13; | 
|  | const unsigned NumVRs  = array_lengthof(VR); | 
|  |  | 
|  | const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32; | 
|  |  | 
|  | SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; | 
|  | SmallVector<TailCallArgumentInfo, 8> TailCallArguments; | 
|  |  | 
|  | SmallVector<SDValue, 8> MemOpChains; | 
|  | for (unsigned i = 0; i != NumOps; ++i) { | 
|  | SDValue Arg = Outs[i].Val; | 
|  | ISD::ArgFlagsTy Flags = Outs[i].Flags; | 
|  |  | 
|  | // PtrOff will be used to store the current argument to the stack if a | 
|  | // register cannot be found for it. | 
|  | SDValue PtrOff; | 
|  |  | 
|  | PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType()); | 
|  |  | 
|  | PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); | 
|  |  | 
|  | // On PPC64, promote integers to 64-bit values. | 
|  | if (isPPC64 && Arg.getValueType() == MVT::i32) { | 
|  | // FIXME: Should this use ANY_EXTEND if neither sext nor zext? | 
|  | unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; | 
|  | Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); | 
|  | } | 
|  |  | 
|  | // FIXME memcpy is used way more than necessary.  Correctness first. | 
|  | if (Flags.isByVal()) { | 
|  | unsigned Size = Flags.getByValSize(); | 
|  | if (Size==1 || Size==2) { | 
|  | // Very small objects are passed right-justified. | 
|  | // Everything else is passed left-justified. | 
|  | EVT VT = (Size==1) ? MVT::i8 : MVT::i16; | 
|  | if (GPR_idx != NumGPRs) { | 
|  | SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, | 
|  | NULL, 0, VT); | 
|  | MemOpChains.push_back(Load.getValue(1)); | 
|  | RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); | 
|  |  | 
|  | ArgOffset += PtrByteSize; | 
|  | } else { | 
|  | SDValue Const = DAG.getConstant(4 - Size, PtrOff.getValueType()); | 
|  | SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); | 
|  | SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr, | 
|  | CallSeqStart.getNode()->getOperand(0), | 
|  | Flags, DAG, dl); | 
|  | // This must go outside the CALLSEQ_START..END. | 
|  | SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, | 
|  | CallSeqStart.getNode()->getOperand(1)); | 
|  | DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), | 
|  | NewCallSeqStart.getNode()); | 
|  | Chain = CallSeqStart = NewCallSeqStart; | 
|  | ArgOffset += PtrByteSize; | 
|  | } | 
|  | continue; | 
|  | } | 
|  | // Copy entire object into memory.  There are cases where gcc-generated | 
|  | // code assumes it is there, even if it could be put entirely into | 
|  | // registers.  (This is not what the doc says.) | 
|  | SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, | 
|  | CallSeqStart.getNode()->getOperand(0), | 
|  | Flags, DAG, dl); | 
|  | // This must go outside the CALLSEQ_START..END. | 
|  | SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, | 
|  | CallSeqStart.getNode()->getOperand(1)); | 
|  | DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), NewCallSeqStart.getNode()); | 
|  | Chain = CallSeqStart = NewCallSeqStart; | 
|  | // And copy the pieces of it that fit into registers. | 
|  | for (unsigned j=0; j<Size; j+=PtrByteSize) { | 
|  | SDValue Const = DAG.getConstant(j, PtrOff.getValueType()); | 
|  | SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); | 
|  | if (GPR_idx != NumGPRs) { | 
|  | SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, NULL, 0); | 
|  | MemOpChains.push_back(Load.getValue(1)); | 
|  | RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); | 
|  | ArgOffset += PtrByteSize; | 
|  | } else { | 
|  | ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; | 
|  | break; | 
|  | } | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | switch (Arg.getValueType().getSimpleVT().SimpleTy) { | 
|  | default: llvm_unreachable("Unexpected ValueType for argument!"); | 
|  | case MVT::i32: | 
|  | case MVT::i64: | 
|  | if (GPR_idx != NumGPRs) { | 
|  | RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); | 
|  | } else { | 
|  | LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, | 
|  | isPPC64, isTailCall, false, MemOpChains, | 
|  | TailCallArguments, dl); | 
|  | } | 
|  | ArgOffset += PtrByteSize; | 
|  | break; | 
|  | case MVT::f32: | 
|  | case MVT::f64: | 
|  | if (FPR_idx != NumFPRs) { | 
|  | RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); | 
|  |  | 
|  | if (isVarArg) { | 
|  | SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, NULL, 0); | 
|  | MemOpChains.push_back(Store); | 
|  |  | 
|  | // Float varargs are always shadowed in available integer registers | 
|  | if (GPR_idx != NumGPRs) { | 
|  | SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, NULL, 0); | 
|  | MemOpChains.push_back(Load.getValue(1)); | 
|  | RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); | 
|  | } | 
|  | if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ | 
|  | SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType()); | 
|  | PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); | 
|  | SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, NULL, 0); | 
|  | MemOpChains.push_back(Load.getValue(1)); | 
|  | RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); | 
|  | } | 
|  | } else { | 
|  | // If we have any FPRs remaining, we may also have GPRs remaining. | 
|  | // Args passed in FPRs consume either 1 (f32) or 2 (f64) available | 
|  | // GPRs. | 
|  | if (GPR_idx != NumGPRs) | 
|  | ++GPR_idx; | 
|  | if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && | 
|  | !isPPC64)  // PPC64 has 64-bit GPR's obviously :) | 
|  | ++GPR_idx; | 
|  | } | 
|  | } else { | 
|  | LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, | 
|  | isPPC64, isTailCall, false, MemOpChains, | 
|  | TailCallArguments, dl); | 
|  | } | 
|  | if (isPPC64) | 
|  | ArgOffset += 8; | 
|  | else | 
|  | ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; | 
|  | break; | 
|  | case MVT::v4f32: | 
|  | case MVT::v4i32: | 
|  | case MVT::v8i16: | 
|  | case MVT::v16i8: | 
|  | if (isVarArg) { | 
|  | // These go aligned on the stack, or in the corresponding R registers | 
|  | // when within range.  The Darwin PPC ABI doc claims they also go in | 
|  | // V registers; in fact gcc does this only for arguments that are | 
|  | // prototyped, not for those that match the ...  We do it for all | 
|  | // arguments, seems to work. | 
|  | while (ArgOffset % 16 !=0) { | 
|  | ArgOffset += PtrByteSize; | 
|  | if (GPR_idx != NumGPRs) | 
|  | GPR_idx++; | 
|  | } | 
|  | // We could elide this store in the case where the object fits | 
|  | // entirely in R registers.  Maybe later. | 
|  | PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, | 
|  | DAG.getConstant(ArgOffset, PtrVT)); | 
|  | SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, NULL, 0); | 
|  | MemOpChains.push_back(Store); | 
|  | if (VR_idx != NumVRs) { | 
|  | SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, NULL, 0); | 
|  | MemOpChains.push_back(Load.getValue(1)); | 
|  | RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); | 
|  | } | 
|  | ArgOffset += 16; | 
|  | for (unsigned i=0; i<16; i+=PtrByteSize) { | 
|  | if (GPR_idx == NumGPRs) | 
|  | break; | 
|  | SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, | 
|  | DAG.getConstant(i, PtrVT)); | 
|  | SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, NULL, 0); | 
|  | MemOpChains.push_back(Load.getValue(1)); | 
|  | RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Non-varargs Altivec params generally go in registers, but have | 
|  | // stack space allocated at the end. | 
|  | if (VR_idx != NumVRs) { | 
|  | // Doesn't have GPR space allocated. | 
|  | RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); | 
|  | } else if (nAltivecParamsAtEnd==0) { | 
|  | // We are emitting Altivec params in order. | 
|  | LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, | 
|  | isPPC64, isTailCall, true, MemOpChains, | 
|  | TailCallArguments, dl); | 
|  | ArgOffset += 16; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | // If all Altivec parameters fit in registers, as they usually do, | 
|  | // they get stack space following the non-Altivec parameters.  We | 
|  | // don't track this here because nobody below needs it. | 
|  | // If there are more Altivec parameters than fit in registers emit | 
|  | // the stores here. | 
|  | if (!isVarArg && nAltivecParamsAtEnd > NumVRs) { | 
|  | unsigned j = 0; | 
|  | // Offset is aligned; skip 1st 12 params which go in V registers. | 
|  | ArgOffset = ((ArgOffset+15)/16)*16; | 
|  | ArgOffset += 12*16; | 
|  | for (unsigned i = 0; i != NumOps; ++i) { | 
|  | SDValue Arg = Outs[i].Val; | 
|  | EVT ArgType = Arg.getValueType(); | 
|  | if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || | 
|  | ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { | 
|  | if (++j > NumVRs) { | 
|  | SDValue PtrOff; | 
|  | // We are emitting Altivec params in order. | 
|  | LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, | 
|  | isPPC64, isTailCall, true, MemOpChains, | 
|  | TailCallArguments, dl); | 
|  | ArgOffset += 16; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!MemOpChains.empty()) | 
|  | Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, | 
|  | &MemOpChains[0], MemOpChains.size()); | 
|  |  | 
|  | // Build a sequence of copy-to-reg nodes chained together with token chain | 
|  | // and flag operands which copy the outgoing args into the appropriate regs. | 
|  | SDValue InFlag; | 
|  | for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { | 
|  | Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, | 
|  | RegsToPass[i].second, InFlag); | 
|  | InFlag = Chain.getValue(1); | 
|  | } | 
|  |  | 
|  | if (isTailCall) { | 
|  | PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp, | 
|  | FPOp, true, TailCallArguments); | 
|  | } | 
|  |  | 
|  | return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG, | 
|  | RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes, | 
|  | Ins, InVals); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | PPCTargetLowering::LowerReturn(SDValue Chain, | 
|  | CallingConv::ID CallConv, bool isVarArg, | 
|  | const SmallVectorImpl<ISD::OutputArg> &Outs, | 
|  | DebugLoc dl, SelectionDAG &DAG) { | 
|  |  | 
|  | SmallVector<CCValAssign, 16> RVLocs; | 
|  | CCState CCInfo(CallConv, isVarArg, getTargetMachine(), | 
|  | RVLocs, *DAG.getContext()); | 
|  | CCInfo.AnalyzeReturn(Outs, RetCC_PPC); | 
|  |  | 
|  | // If this is the first return lowered for this function, add the regs to the | 
|  | // liveout set for the function. | 
|  | if (DAG.getMachineFunction().getRegInfo().liveout_empty()) { | 
|  | for (unsigned i = 0; i != RVLocs.size(); ++i) | 
|  | DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg()); | 
|  | } | 
|  |  | 
|  | SDValue Flag; | 
|  |  | 
|  | // Copy the result values into the output registers. | 
|  | for (unsigned i = 0; i != RVLocs.size(); ++i) { | 
|  | CCValAssign &VA = RVLocs[i]; | 
|  | assert(VA.isRegLoc() && "Can only return in registers!"); | 
|  | Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), | 
|  | Outs[i].Val, Flag); | 
|  | Flag = Chain.getValue(1); | 
|  | } | 
|  |  | 
|  | if (Flag.getNode()) | 
|  | return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain, Flag); | 
|  | else | 
|  | return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain); | 
|  | } | 
|  |  | 
|  | SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG, | 
|  | const PPCSubtarget &Subtarget) { | 
|  | // When we pop the dynamic allocation we need to restore the SP link. | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  |  | 
|  | // Get the corect type for pointers. | 
|  | EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); | 
|  |  | 
|  | // Construct the stack pointer operand. | 
|  | bool IsPPC64 = Subtarget.isPPC64(); | 
|  | unsigned SP = IsPPC64 ? PPC::X1 : PPC::R1; | 
|  | SDValue StackPtr = DAG.getRegister(SP, PtrVT); | 
|  |  | 
|  | // Get the operands for the STACKRESTORE. | 
|  | SDValue Chain = Op.getOperand(0); | 
|  | SDValue SaveSP = Op.getOperand(1); | 
|  |  | 
|  | // Load the old link SP. | 
|  | SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr, NULL, 0); | 
|  |  | 
|  | // Restore the stack pointer. | 
|  | Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); | 
|  |  | 
|  | // Store the old link SP. | 
|  | return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, NULL, 0); | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | SDValue | 
|  | PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | bool IsPPC64 = PPCSubTarget.isPPC64(); | 
|  | bool isDarwinABI = PPCSubTarget.isDarwinABI(); | 
|  | EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); | 
|  |  | 
|  | // Get current frame pointer save index.  The users of this index will be | 
|  | // primarily DYNALLOC instructions. | 
|  | PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); | 
|  | int RASI = FI->getReturnAddrSaveIndex(); | 
|  |  | 
|  | // If the frame pointer save index hasn't been defined yet. | 
|  | if (!RASI) { | 
|  | // Find out what the fix offset of the frame pointer save area. | 
|  | int LROffset = PPCFrameInfo::getReturnSaveOffset(IsPPC64, isDarwinABI); | 
|  | // Allocate the frame index for frame pointer save area. | 
|  | RASI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, LROffset); | 
|  | // Save the result. | 
|  | FI->setReturnAddrSaveIndex(RASI); | 
|  | } | 
|  | return DAG.getFrameIndex(RASI, PtrVT); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | bool IsPPC64 = PPCSubTarget.isPPC64(); | 
|  | bool isDarwinABI = PPCSubTarget.isDarwinABI(); | 
|  | EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); | 
|  |  | 
|  | // Get current frame pointer save index.  The users of this index will be | 
|  | // primarily DYNALLOC instructions. | 
|  | PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); | 
|  | int FPSI = FI->getFramePointerSaveIndex(); | 
|  |  | 
|  | // If the frame pointer save index hasn't been defined yet. | 
|  | if (!FPSI) { | 
|  | // Find out what the fix offset of the frame pointer save area. | 
|  | int FPOffset = PPCFrameInfo::getFramePointerSaveOffset(IsPPC64, | 
|  | isDarwinABI); | 
|  |  | 
|  | // Allocate the frame index for frame pointer save area. | 
|  | FPSI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, FPOffset); | 
|  | // Save the result. | 
|  | FI->setFramePointerSaveIndex(FPSI); | 
|  | } | 
|  | return DAG.getFrameIndex(FPSI, PtrVT); | 
|  | } | 
|  |  | 
|  | SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, | 
|  | SelectionDAG &DAG, | 
|  | const PPCSubtarget &Subtarget) { | 
|  | // Get the inputs. | 
|  | SDValue Chain = Op.getOperand(0); | 
|  | SDValue Size  = Op.getOperand(1); | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  |  | 
|  | // Get the corect type for pointers. | 
|  | EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); | 
|  | // Negate the size. | 
|  | SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, | 
|  | DAG.getConstant(0, PtrVT), Size); | 
|  | // Construct a node for the frame pointer save index. | 
|  | SDValue FPSIdx = getFramePointerFrameIndex(DAG); | 
|  | // Build a DYNALLOC node. | 
|  | SDValue Ops[3] = { Chain, NegSize, FPSIdx }; | 
|  | SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); | 
|  | return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops, 3); | 
|  | } | 
|  |  | 
|  | /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when | 
|  | /// possible. | 
|  | SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) { | 
|  | // Not FP? Not a fsel. | 
|  | if (!Op.getOperand(0).getValueType().isFloatingPoint() || | 
|  | !Op.getOperand(2).getValueType().isFloatingPoint()) | 
|  | return Op; | 
|  |  | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); | 
|  |  | 
|  | // Cannot handle SETEQ/SETNE. | 
|  | if (CC == ISD::SETEQ || CC == ISD::SETNE) return Op; | 
|  |  | 
|  | EVT ResVT = Op.getValueType(); | 
|  | EVT CmpVT = Op.getOperand(0).getValueType(); | 
|  | SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); | 
|  | SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3); | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  |  | 
|  | // If the RHS of the comparison is a 0.0, we don't need to do the | 
|  | // subtraction at all. | 
|  | if (isFloatingPointZero(RHS)) | 
|  | switch (CC) { | 
|  | default: break;       // SETUO etc aren't handled by fsel. | 
|  | case ISD::SETULT: | 
|  | case ISD::SETLT: | 
|  | std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt | 
|  | case ISD::SETOGE: | 
|  | case ISD::SETGE: | 
|  | if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits | 
|  | LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); | 
|  | return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); | 
|  | case ISD::SETUGT: | 
|  | case ISD::SETGT: | 
|  | std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt | 
|  | case ISD::SETOLE: | 
|  | case ISD::SETLE: | 
|  | if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits | 
|  | LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); | 
|  | return DAG.getNode(PPCISD::FSEL, dl, ResVT, | 
|  | DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); | 
|  | } | 
|  |  | 
|  | SDValue Cmp; | 
|  | switch (CC) { | 
|  | default: break;       // SETUO etc aren't handled by fsel. | 
|  | case ISD::SETULT: | 
|  | case ISD::SETLT: | 
|  | Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS); | 
|  | if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits | 
|  | Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); | 
|  | return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); | 
|  | case ISD::SETOGE: | 
|  | case ISD::SETGE: | 
|  | Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS); | 
|  | if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits | 
|  | Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); | 
|  | return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); | 
|  | case ISD::SETUGT: | 
|  | case ISD::SETGT: | 
|  | Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS); | 
|  | if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits | 
|  | Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); | 
|  | return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); | 
|  | case ISD::SETOLE: | 
|  | case ISD::SETLE: | 
|  | Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS); | 
|  | if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits | 
|  | Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); | 
|  | return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); | 
|  | } | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | // FIXME: Split this code up when LegalizeDAGTypes lands. | 
|  | SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, | 
|  | DebugLoc dl) { | 
|  | assert(Op.getOperand(0).getValueType().isFloatingPoint()); | 
|  | SDValue Src = Op.getOperand(0); | 
|  | if (Src.getValueType() == MVT::f32) | 
|  | Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); | 
|  |  | 
|  | SDValue Tmp; | 
|  | switch (Op.getValueType().getSimpleVT().SimpleTy) { | 
|  | default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); | 
|  | case MVT::i32: | 
|  | Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ : | 
|  | PPCISD::FCTIDZ, | 
|  | dl, MVT::f64, Src); | 
|  | break; | 
|  | case MVT::i64: | 
|  | Tmp = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Src); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Convert the FP value to an int value through memory. | 
|  | SDValue FIPtr = DAG.CreateStackTemporary(MVT::f64); | 
|  |  | 
|  | // Emit a store to the stack slot. | 
|  | SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, NULL, 0); | 
|  |  | 
|  | // Result is a load from the stack slot.  If loading 4 bytes, make sure to | 
|  | // add in a bias. | 
|  | if (Op.getValueType() == MVT::i32) | 
|  | FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, | 
|  | DAG.getConstant(4, FIPtr.getValueType())); | 
|  | return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, NULL, 0); | 
|  | } | 
|  |  | 
|  | SDValue PPCTargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) { | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  | // Don't handle ppc_fp128 here; let it be lowered to a libcall. | 
|  | if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) | 
|  | return SDValue(); | 
|  |  | 
|  | if (Op.getOperand(0).getValueType() == MVT::i64) { | 
|  | SDValue Bits = DAG.getNode(ISD::BIT_CONVERT, dl, | 
|  | MVT::f64, Op.getOperand(0)); | 
|  | SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Bits); | 
|  | if (Op.getValueType() == MVT::f32) | 
|  | FP = DAG.getNode(ISD::FP_ROUND, dl, | 
|  | MVT::f32, FP, DAG.getIntPtrConstant(0)); | 
|  | return FP; | 
|  | } | 
|  |  | 
|  | assert(Op.getOperand(0).getValueType() == MVT::i32 && | 
|  | "Unhandled SINT_TO_FP type in custom expander!"); | 
|  | // Since we only generate this in 64-bit mode, we can take advantage of | 
|  | // 64-bit registers.  In particular, sign extend the input value into the | 
|  | // 64-bit register with extsw, store the WHOLE 64-bit value into the stack | 
|  | // then lfd it and fcfid it. | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | MachineFrameInfo *FrameInfo = MF.getFrameInfo(); | 
|  | int FrameIdx = FrameInfo->CreateStackObject(8, 8); | 
|  | EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); | 
|  | SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); | 
|  |  | 
|  | SDValue Ext64 = DAG.getNode(PPCISD::EXTSW_32, dl, MVT::i32, | 
|  | Op.getOperand(0)); | 
|  |  | 
|  | // STD the extended value into the stack slot. | 
|  | MachineMemOperand *MMO = | 
|  | MF.getMachineMemOperand(PseudoSourceValue::getFixedStack(FrameIdx), | 
|  | MachineMemOperand::MOStore, 0, 8, 8); | 
|  | SDValue Ops[] = { DAG.getEntryNode(), Ext64, FIdx }; | 
|  | SDValue Store = | 
|  | DAG.getMemIntrinsicNode(PPCISD::STD_32, dl, DAG.getVTList(MVT::Other), | 
|  | Ops, 4, MVT::i64, MMO); | 
|  | // Load the value as a double. | 
|  | SDValue Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx, NULL, 0); | 
|  |  | 
|  | // FCFID it and return it. | 
|  | SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Ld); | 
|  | if (Op.getValueType() == MVT::f32) | 
|  | FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0)); | 
|  | return FP; | 
|  | } | 
|  |  | 
|  | SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) { | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  | /* | 
|  | The rounding mode is in bits 30:31 of FPSR, and has the following | 
|  | settings: | 
|  | 00 Round to nearest | 
|  | 01 Round to 0 | 
|  | 10 Round to +inf | 
|  | 11 Round to -inf | 
|  |  | 
|  | FLT_ROUNDS, on the other hand, expects the following: | 
|  | -1 Undefined | 
|  | 0 Round to 0 | 
|  | 1 Round to nearest | 
|  | 2 Round to +inf | 
|  | 3 Round to -inf | 
|  |  | 
|  | To perform the conversion, we do: | 
|  | ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) | 
|  | */ | 
|  |  | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | EVT VT = Op.getValueType(); | 
|  | EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); | 
|  | std::vector<EVT> NodeTys; | 
|  | SDValue MFFSreg, InFlag; | 
|  |  | 
|  | // Save FP Control Word to register | 
|  | NodeTys.push_back(MVT::f64);    // return register | 
|  | NodeTys.push_back(MVT::Flag);   // unused in this context | 
|  | SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0); | 
|  |  | 
|  | // Save FP register to stack slot | 
|  | int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8); | 
|  | SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); | 
|  | SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, | 
|  | StackSlot, NULL, 0); | 
|  |  | 
|  | // Load FP Control Word from low 32 bits of stack slot. | 
|  | SDValue Four = DAG.getConstant(4, PtrVT); | 
|  | SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); | 
|  | SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, NULL, 0); | 
|  |  | 
|  | // Transform as necessary | 
|  | SDValue CWD1 = | 
|  | DAG.getNode(ISD::AND, dl, MVT::i32, | 
|  | CWD, DAG.getConstant(3, MVT::i32)); | 
|  | SDValue CWD2 = | 
|  | DAG.getNode(ISD::SRL, dl, MVT::i32, | 
|  | DAG.getNode(ISD::AND, dl, MVT::i32, | 
|  | DAG.getNode(ISD::XOR, dl, MVT::i32, | 
|  | CWD, DAG.getConstant(3, MVT::i32)), | 
|  | DAG.getConstant(3, MVT::i32)), | 
|  | DAG.getConstant(1, MVT::i32)); | 
|  |  | 
|  | SDValue RetVal = | 
|  | DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); | 
|  |  | 
|  | return DAG.getNode((VT.getSizeInBits() < 16 ? | 
|  | ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal); | 
|  | } | 
|  |  | 
|  | SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) { | 
|  | EVT VT = Op.getValueType(); | 
|  | unsigned BitWidth = VT.getSizeInBits(); | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  | assert(Op.getNumOperands() == 3 && | 
|  | VT == Op.getOperand(1).getValueType() && | 
|  | "Unexpected SHL!"); | 
|  |  | 
|  | // Expand into a bunch of logical ops.  Note that these ops | 
|  | // depend on the PPC behavior for oversized shift amounts. | 
|  | SDValue Lo = Op.getOperand(0); | 
|  | SDValue Hi = Op.getOperand(1); | 
|  | SDValue Amt = Op.getOperand(2); | 
|  | EVT AmtVT = Amt.getValueType(); | 
|  |  | 
|  | SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, | 
|  | DAG.getConstant(BitWidth, AmtVT), Amt); | 
|  | SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); | 
|  | SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); | 
|  | SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); | 
|  | SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, | 
|  | DAG.getConstant(-BitWidth, AmtVT)); | 
|  | SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); | 
|  | SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); | 
|  | SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); | 
|  | SDValue OutOps[] = { OutLo, OutHi }; | 
|  | return DAG.getMergeValues(OutOps, 2, dl); | 
|  | } | 
|  |  | 
|  | SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) { | 
|  | EVT VT = Op.getValueType(); | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  | unsigned BitWidth = VT.getSizeInBits(); | 
|  | assert(Op.getNumOperands() == 3 && | 
|  | VT == Op.getOperand(1).getValueType() && | 
|  | "Unexpected SRL!"); | 
|  |  | 
|  | // Expand into a bunch of logical ops.  Note that these ops | 
|  | // depend on the PPC behavior for oversized shift amounts. | 
|  | SDValue Lo = Op.getOperand(0); | 
|  | SDValue Hi = Op.getOperand(1); | 
|  | SDValue Amt = Op.getOperand(2); | 
|  | EVT AmtVT = Amt.getValueType(); | 
|  |  | 
|  | SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, | 
|  | DAG.getConstant(BitWidth, AmtVT), Amt); | 
|  | SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); | 
|  | SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); | 
|  | SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); | 
|  | SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, | 
|  | DAG.getConstant(-BitWidth, AmtVT)); | 
|  | SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); | 
|  | SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); | 
|  | SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); | 
|  | SDValue OutOps[] = { OutLo, OutHi }; | 
|  | return DAG.getMergeValues(OutOps, 2, dl); | 
|  | } | 
|  |  | 
|  | SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) { | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  | EVT VT = Op.getValueType(); | 
|  | unsigned BitWidth = VT.getSizeInBits(); | 
|  | assert(Op.getNumOperands() == 3 && | 
|  | VT == Op.getOperand(1).getValueType() && | 
|  | "Unexpected SRA!"); | 
|  |  | 
|  | // Expand into a bunch of logical ops, followed by a select_cc. | 
|  | SDValue Lo = Op.getOperand(0); | 
|  | SDValue Hi = Op.getOperand(1); | 
|  | SDValue Amt = Op.getOperand(2); | 
|  | EVT AmtVT = Amt.getValueType(); | 
|  |  | 
|  | SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, | 
|  | DAG.getConstant(BitWidth, AmtVT), Amt); | 
|  | SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); | 
|  | SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); | 
|  | SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); | 
|  | SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, | 
|  | DAG.getConstant(-BitWidth, AmtVT)); | 
|  | SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); | 
|  | SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); | 
|  | SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT), | 
|  | Tmp4, Tmp6, ISD::SETLE); | 
|  | SDValue OutOps[] = { OutLo, OutHi }; | 
|  | return DAG.getMergeValues(OutOps, 2, dl); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Vector related lowering. | 
|  | // | 
|  |  | 
|  | /// BuildSplatI - Build a canonical splati of Val with an element size of | 
|  | /// SplatSize.  Cast the result to VT. | 
|  | static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT, | 
|  | SelectionDAG &DAG, DebugLoc dl) { | 
|  | assert(Val >= -16 && Val <= 15 && "vsplti is out of range!"); | 
|  |  | 
|  | static const EVT VTys[] = { // canonical VT to use for each size. | 
|  | MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 | 
|  | }; | 
|  |  | 
|  | EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; | 
|  |  | 
|  | // Force vspltis[hw] -1 to vspltisb -1 to canonicalize. | 
|  | if (Val == -1) | 
|  | SplatSize = 1; | 
|  |  | 
|  | EVT CanonicalVT = VTys[SplatSize-1]; | 
|  |  | 
|  | // Build a canonical splat for this value. | 
|  | SDValue Elt = DAG.getConstant(Val, MVT::i32); | 
|  | SmallVector<SDValue, 8> Ops; | 
|  | Ops.assign(CanonicalVT.getVectorNumElements(), Elt); | 
|  | SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT, | 
|  | &Ops[0], Ops.size()); | 
|  | return DAG.getNode(ISD::BIT_CONVERT, dl, ReqVT, Res); | 
|  | } | 
|  |  | 
|  | /// BuildIntrinsicOp - Return a binary operator intrinsic node with the | 
|  | /// specified intrinsic ID. | 
|  | static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, | 
|  | SelectionDAG &DAG, DebugLoc dl, | 
|  | EVT DestVT = MVT::Other) { | 
|  | if (DestVT == MVT::Other) DestVT = LHS.getValueType(); | 
|  | return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, | 
|  | DAG.getConstant(IID, MVT::i32), LHS, RHS); | 
|  | } | 
|  |  | 
|  | /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the | 
|  | /// specified intrinsic ID. | 
|  | static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, | 
|  | SDValue Op2, SelectionDAG &DAG, | 
|  | DebugLoc dl, EVT DestVT = MVT::Other) { | 
|  | if (DestVT == MVT::Other) DestVT = Op0.getValueType(); | 
|  | return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, | 
|  | DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified | 
|  | /// amount.  The result has the specified value type. | 
|  | static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, | 
|  | EVT VT, SelectionDAG &DAG, DebugLoc dl) { | 
|  | // Force LHS/RHS to be the right type. | 
|  | LHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, LHS); | 
|  | RHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, RHS); | 
|  |  | 
|  | int Ops[16]; | 
|  | for (unsigned i = 0; i != 16; ++i) | 
|  | Ops[i] = i + Amt; | 
|  | SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); | 
|  | return DAG.getNode(ISD::BIT_CONVERT, dl, VT, T); | 
|  | } | 
|  |  | 
|  | // If this is a case we can't handle, return null and let the default | 
|  | // expansion code take care of it.  If we CAN select this case, and if it | 
|  | // selects to a single instruction, return Op.  Otherwise, if we can codegen | 
|  | // this case more efficiently than a constant pool load, lower it to the | 
|  | // sequence of ops that should be used. | 
|  | SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) { | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  | BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); | 
|  | assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); | 
|  |  | 
|  | // Check if this is a splat of a constant value. | 
|  | APInt APSplatBits, APSplatUndef; | 
|  | unsigned SplatBitSize; | 
|  | bool HasAnyUndefs; | 
|  | if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, | 
|  | HasAnyUndefs) || SplatBitSize > 32) | 
|  | return SDValue(); | 
|  |  | 
|  | unsigned SplatBits = APSplatBits.getZExtValue(); | 
|  | unsigned SplatUndef = APSplatUndef.getZExtValue(); | 
|  | unsigned SplatSize = SplatBitSize / 8; | 
|  |  | 
|  | // First, handle single instruction cases. | 
|  |  | 
|  | // All zeros? | 
|  | if (SplatBits == 0) { | 
|  | // Canonicalize all zero vectors to be v4i32. | 
|  | if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { | 
|  | SDValue Z = DAG.getConstant(0, MVT::i32); | 
|  | Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z); | 
|  | Op = DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Z); | 
|  | } | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. | 
|  | int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> | 
|  | (32-SplatBitSize)); | 
|  | if (SextVal >= -16 && SextVal <= 15) | 
|  | return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl); | 
|  |  | 
|  |  | 
|  | // Two instruction sequences. | 
|  |  | 
|  | // If this value is in the range [-32,30] and is even, use: | 
|  | //    tmp = VSPLTI[bhw], result = add tmp, tmp | 
|  | if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) { | 
|  | SDValue Res = BuildSplatI(SextVal >> 1, SplatSize, MVT::Other, DAG, dl); | 
|  | Res = DAG.getNode(ISD::ADD, dl, Res.getValueType(), Res, Res); | 
|  | return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res); | 
|  | } | 
|  |  | 
|  | // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is | 
|  | // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important | 
|  | // for fneg/fabs. | 
|  | if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { | 
|  | // Make -1 and vspltisw -1: | 
|  | SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl); | 
|  |  | 
|  | // Make the VSLW intrinsic, computing 0x8000_0000. | 
|  | SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, | 
|  | OnesV, DAG, dl); | 
|  |  | 
|  | // xor by OnesV to invert it. | 
|  | Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); | 
|  | return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res); | 
|  | } | 
|  |  | 
|  | // Check to see if this is a wide variety of vsplti*, binop self cases. | 
|  | static const signed char SplatCsts[] = { | 
|  | -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, | 
|  | -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 | 
|  | }; | 
|  |  | 
|  | for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { | 
|  | // Indirect through the SplatCsts array so that we favor 'vsplti -1' for | 
|  | // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1' | 
|  | int i = SplatCsts[idx]; | 
|  |  | 
|  | // Figure out what shift amount will be used by altivec if shifted by i in | 
|  | // this splat size. | 
|  | unsigned TypeShiftAmt = i & (SplatBitSize-1); | 
|  |  | 
|  | // vsplti + shl self. | 
|  | if (SextVal == (i << (int)TypeShiftAmt)) { | 
|  | SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); | 
|  | static const unsigned IIDs[] = { // Intrinsic to use for each size. | 
|  | Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, | 
|  | Intrinsic::ppc_altivec_vslw | 
|  | }; | 
|  | Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); | 
|  | return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res); | 
|  | } | 
|  |  | 
|  | // vsplti + srl self. | 
|  | if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { | 
|  | SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); | 
|  | static const unsigned IIDs[] = { // Intrinsic to use for each size. | 
|  | Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, | 
|  | Intrinsic::ppc_altivec_vsrw | 
|  | }; | 
|  | Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); | 
|  | return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res); | 
|  | } | 
|  |  | 
|  | // vsplti + sra self. | 
|  | if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { | 
|  | SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); | 
|  | static const unsigned IIDs[] = { // Intrinsic to use for each size. | 
|  | Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, | 
|  | Intrinsic::ppc_altivec_vsraw | 
|  | }; | 
|  | Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); | 
|  | return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res); | 
|  | } | 
|  |  | 
|  | // vsplti + rol self. | 
|  | if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | | 
|  | ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { | 
|  | SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); | 
|  | static const unsigned IIDs[] = { // Intrinsic to use for each size. | 
|  | Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, | 
|  | Intrinsic::ppc_altivec_vrlw | 
|  | }; | 
|  | Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); | 
|  | return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res); | 
|  | } | 
|  |  | 
|  | // t = vsplti c, result = vsldoi t, t, 1 | 
|  | if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) { | 
|  | SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); | 
|  | return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl); | 
|  | } | 
|  | // t = vsplti c, result = vsldoi t, t, 2 | 
|  | if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) { | 
|  | SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); | 
|  | return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl); | 
|  | } | 
|  | // t = vsplti c, result = vsldoi t, t, 3 | 
|  | if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) { | 
|  | SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); | 
|  | return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Three instruction sequences. | 
|  |  | 
|  | // Odd, in range [17,31]:  (vsplti C)-(vsplti -16). | 
|  | if (SextVal >= 0 && SextVal <= 31) { | 
|  | SDValue LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG, dl); | 
|  | SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl); | 
|  | LHS = DAG.getNode(ISD::SUB, dl, LHS.getValueType(), LHS, RHS); | 
|  | return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), LHS); | 
|  | } | 
|  | // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16). | 
|  | if (SextVal >= -31 && SextVal <= 0) { | 
|  | SDValue LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG, dl); | 
|  | SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl); | 
|  | LHS = DAG.getNode(ISD::ADD, dl, LHS.getValueType(), LHS, RHS); | 
|  | return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), LHS); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit | 
|  | /// the specified operations to build the shuffle. | 
|  | static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, | 
|  | SDValue RHS, SelectionDAG &DAG, | 
|  | DebugLoc dl) { | 
|  | unsigned OpNum = (PFEntry >> 26) & 0x0F; | 
|  | unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); | 
|  | unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1); | 
|  |  | 
|  | enum { | 
|  | OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> | 
|  | OP_VMRGHW, | 
|  | OP_VMRGLW, | 
|  | OP_VSPLTISW0, | 
|  | OP_VSPLTISW1, | 
|  | OP_VSPLTISW2, | 
|  | OP_VSPLTISW3, | 
|  | OP_VSLDOI4, | 
|  | OP_VSLDOI8, | 
|  | OP_VSLDOI12 | 
|  | }; | 
|  |  | 
|  | if (OpNum == OP_COPY) { | 
|  | if (LHSID == (1*9+2)*9+3) return LHS; | 
|  | assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); | 
|  | return RHS; | 
|  | } | 
|  |  | 
|  | SDValue OpLHS, OpRHS; | 
|  | OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); | 
|  | OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); | 
|  |  | 
|  | int ShufIdxs[16]; | 
|  | switch (OpNum) { | 
|  | default: llvm_unreachable("Unknown i32 permute!"); | 
|  | case OP_VMRGHW: | 
|  | ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3; | 
|  | ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; | 
|  | ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7; | 
|  | ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; | 
|  | break; | 
|  | case OP_VMRGLW: | 
|  | ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; | 
|  | ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; | 
|  | ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; | 
|  | ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; | 
|  | break; | 
|  | case OP_VSPLTISW0: | 
|  | for (unsigned i = 0; i != 16; ++i) | 
|  | ShufIdxs[i] = (i&3)+0; | 
|  | break; | 
|  | case OP_VSPLTISW1: | 
|  | for (unsigned i = 0; i != 16; ++i) | 
|  | ShufIdxs[i] = (i&3)+4; | 
|  | break; | 
|  | case OP_VSPLTISW2: | 
|  | for (unsigned i = 0; i != 16; ++i) | 
|  | ShufIdxs[i] = (i&3)+8; | 
|  | break; | 
|  | case OP_VSPLTISW3: | 
|  | for (unsigned i = 0; i != 16; ++i) | 
|  | ShufIdxs[i] = (i&3)+12; | 
|  | break; | 
|  | case OP_VSLDOI4: | 
|  | return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); | 
|  | case OP_VSLDOI8: | 
|  | return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); | 
|  | case OP_VSLDOI12: | 
|  | return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); | 
|  | } | 
|  | EVT VT = OpLHS.getValueType(); | 
|  | OpLHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, OpLHS); | 
|  | OpRHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, OpRHS); | 
|  | SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); | 
|  | return DAG.getNode(ISD::BIT_CONVERT, dl, VT, T); | 
|  | } | 
|  |  | 
|  | /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this | 
|  | /// is a shuffle we can handle in a single instruction, return it.  Otherwise, | 
|  | /// return the code it can be lowered into.  Worst case, it can always be | 
|  | /// lowered into a vperm. | 
|  | SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, | 
|  | SelectionDAG &DAG) { | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  | SDValue V1 = Op.getOperand(0); | 
|  | SDValue V2 = Op.getOperand(1); | 
|  | ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); | 
|  | EVT VT = Op.getValueType(); | 
|  |  | 
|  | // Cases that are handled by instructions that take permute immediates | 
|  | // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be | 
|  | // selected by the instruction selector. | 
|  | if (V2.getOpcode() == ISD::UNDEF) { | 
|  | if (PPC::isSplatShuffleMask(SVOp, 1) || | 
|  | PPC::isSplatShuffleMask(SVOp, 2) || | 
|  | PPC::isSplatShuffleMask(SVOp, 4) || | 
|  | PPC::isVPKUWUMShuffleMask(SVOp, true) || | 
|  | PPC::isVPKUHUMShuffleMask(SVOp, true) || | 
|  | PPC::isVSLDOIShuffleMask(SVOp, true) != -1 || | 
|  | PPC::isVMRGLShuffleMask(SVOp, 1, true) || | 
|  | PPC::isVMRGLShuffleMask(SVOp, 2, true) || | 
|  | PPC::isVMRGLShuffleMask(SVOp, 4, true) || | 
|  | PPC::isVMRGHShuffleMask(SVOp, 1, true) || | 
|  | PPC::isVMRGHShuffleMask(SVOp, 2, true) || | 
|  | PPC::isVMRGHShuffleMask(SVOp, 4, true)) { | 
|  | return Op; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Altivec has a variety of "shuffle immediates" that take two vector inputs | 
|  | // and produce a fixed permutation.  If any of these match, do not lower to | 
|  | // VPERM. | 
|  | if (PPC::isVPKUWUMShuffleMask(SVOp, false) || | 
|  | PPC::isVPKUHUMShuffleMask(SVOp, false) || | 
|  | PPC::isVSLDOIShuffleMask(SVOp, false) != -1 || | 
|  | PPC::isVMRGLShuffleMask(SVOp, 1, false) || | 
|  | PPC::isVMRGLShuffleMask(SVOp, 2, false) || | 
|  | PPC::isVMRGLShuffleMask(SVOp, 4, false) || | 
|  | PPC::isVMRGHShuffleMask(SVOp, 1, false) || | 
|  | PPC::isVMRGHShuffleMask(SVOp, 2, false) || | 
|  | PPC::isVMRGHShuffleMask(SVOp, 4, false)) | 
|  | return Op; | 
|  |  | 
|  | // Check to see if this is a shuffle of 4-byte values.  If so, we can use our | 
|  | // perfect shuffle table to emit an optimal matching sequence. | 
|  | SmallVector<int, 16> PermMask; | 
|  | SVOp->getMask(PermMask); | 
|  |  | 
|  | unsigned PFIndexes[4]; | 
|  | bool isFourElementShuffle = true; | 
|  | for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number | 
|  | unsigned EltNo = 8;   // Start out undef. | 
|  | for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte. | 
|  | if (PermMask[i*4+j] < 0) | 
|  | continue;   // Undef, ignore it. | 
|  |  | 
|  | unsigned ByteSource = PermMask[i*4+j]; | 
|  | if ((ByteSource & 3) != j) { | 
|  | isFourElementShuffle = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (EltNo == 8) { | 
|  | EltNo = ByteSource/4; | 
|  | } else if (EltNo != ByteSource/4) { | 
|  | isFourElementShuffle = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | PFIndexes[i] = EltNo; | 
|  | } | 
|  |  | 
|  | // If this shuffle can be expressed as a shuffle of 4-byte elements, use the | 
|  | // perfect shuffle vector to determine if it is cost effective to do this as | 
|  | // discrete instructions, or whether we should use a vperm. | 
|  | if (isFourElementShuffle) { | 
|  | // Compute the index in the perfect shuffle table. | 
|  | unsigned PFTableIndex = | 
|  | PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; | 
|  |  | 
|  | unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; | 
|  | unsigned Cost  = (PFEntry >> 30); | 
|  |  | 
|  | // Determining when to avoid vperm is tricky.  Many things affect the cost | 
|  | // of vperm, particularly how many times the perm mask needs to be computed. | 
|  | // For example, if the perm mask can be hoisted out of a loop or is already | 
|  | // used (perhaps because there are multiple permutes with the same shuffle | 
|  | // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of | 
|  | // the loop requires an extra register. | 
|  | // | 
|  | // As a compromise, we only emit discrete instructions if the shuffle can be | 
|  | // generated in 3 or fewer operations.  When we have loop information | 
|  | // available, if this block is within a loop, we should avoid using vperm | 
|  | // for 3-operation perms and use a constant pool load instead. | 
|  | if (Cost < 3) | 
|  | return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); | 
|  | } | 
|  |  | 
|  | // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant | 
|  | // vector that will get spilled to the constant pool. | 
|  | if (V2.getOpcode() == ISD::UNDEF) V2 = V1; | 
|  |  | 
|  | // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except | 
|  | // that it is in input element units, not in bytes.  Convert now. | 
|  | EVT EltVT = V1.getValueType().getVectorElementType(); | 
|  | unsigned BytesPerElement = EltVT.getSizeInBits()/8; | 
|  |  | 
|  | SmallVector<SDValue, 16> ResultMask; | 
|  | for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { | 
|  | unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; | 
|  |  | 
|  | for (unsigned j = 0; j != BytesPerElement; ++j) | 
|  | ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j, | 
|  | MVT::i32)); | 
|  | } | 
|  |  | 
|  | SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8, | 
|  | &ResultMask[0], ResultMask.size()); | 
|  | return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V1, V2, VPermMask); | 
|  | } | 
|  |  | 
|  | /// getAltivecCompareInfo - Given an intrinsic, return false if it is not an | 
|  | /// altivec comparison.  If it is, return true and fill in Opc/isDot with | 
|  | /// information about the intrinsic. | 
|  | static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc, | 
|  | bool &isDot) { | 
|  | unsigned IntrinsicID = | 
|  | cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); | 
|  | CompareOpc = -1; | 
|  | isDot = false; | 
|  | switch (IntrinsicID) { | 
|  | default: return false; | 
|  | // Comparison predicates. | 
|  | case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break; | 
|  | case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break; | 
|  | case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break; | 
|  | case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break; | 
|  | case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break; | 
|  | case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break; | 
|  | case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break; | 
|  | case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break; | 
|  | case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break; | 
|  | case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break; | 
|  | case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break; | 
|  | case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break; | 
|  | case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break; | 
|  |  | 
|  | // Normal Comparisons. | 
|  | case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break; | 
|  | case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break; | 
|  | case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break; | 
|  | case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break; | 
|  | case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break; | 
|  | case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break; | 
|  | case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break; | 
|  | case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break; | 
|  | case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break; | 
|  | case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break; | 
|  | case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break; | 
|  | case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break; | 
|  | case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom | 
|  | /// lower, do it, otherwise return null. | 
|  | SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, | 
|  | SelectionDAG &DAG) { | 
|  | // If this is a lowered altivec predicate compare, CompareOpc is set to the | 
|  | // opcode number of the comparison. | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  | int CompareOpc; | 
|  | bool isDot; | 
|  | if (!getAltivecCompareInfo(Op, CompareOpc, isDot)) | 
|  | return SDValue();    // Don't custom lower most intrinsics. | 
|  |  | 
|  | // If this is a non-dot comparison, make the VCMP node and we are done. | 
|  | if (!isDot) { | 
|  | SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), | 
|  | Op.getOperand(1), Op.getOperand(2), | 
|  | DAG.getConstant(CompareOpc, MVT::i32)); | 
|  | return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Tmp); | 
|  | } | 
|  |  | 
|  | // Create the PPCISD altivec 'dot' comparison node. | 
|  | SDValue Ops[] = { | 
|  | Op.getOperand(2),  // LHS | 
|  | Op.getOperand(3),  // RHS | 
|  | DAG.getConstant(CompareOpc, MVT::i32) | 
|  | }; | 
|  | std::vector<EVT> VTs; | 
|  | VTs.push_back(Op.getOperand(2).getValueType()); | 
|  | VTs.push_back(MVT::Flag); | 
|  | SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3); | 
|  |  | 
|  | // Now that we have the comparison, emit a copy from the CR to a GPR. | 
|  | // This is flagged to the above dot comparison. | 
|  | SDValue Flags = DAG.getNode(PPCISD::MFCR, dl, MVT::i32, | 
|  | DAG.getRegister(PPC::CR6, MVT::i32), | 
|  | CompNode.getValue(1)); | 
|  |  | 
|  | // Unpack the result based on how the target uses it. | 
|  | unsigned BitNo;   // Bit # of CR6. | 
|  | bool InvertBit;   // Invert result? | 
|  | switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { | 
|  | default:  // Can't happen, don't crash on invalid number though. | 
|  | case 0:   // Return the value of the EQ bit of CR6. | 
|  | BitNo = 0; InvertBit = false; | 
|  | break; | 
|  | case 1:   // Return the inverted value of the EQ bit of CR6. | 
|  | BitNo = 0; InvertBit = true; | 
|  | break; | 
|  | case 2:   // Return the value of the LT bit of CR6. | 
|  | BitNo = 2; InvertBit = false; | 
|  | break; | 
|  | case 3:   // Return the inverted value of the LT bit of CR6. | 
|  | BitNo = 2; InvertBit = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Shift the bit into the low position. | 
|  | Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, | 
|  | DAG.getConstant(8-(3-BitNo), MVT::i32)); | 
|  | // Isolate the bit. | 
|  | Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, | 
|  | DAG.getConstant(1, MVT::i32)); | 
|  |  | 
|  | // If we are supposed to, toggle the bit. | 
|  | if (InvertBit) | 
|  | Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, | 
|  | DAG.getConstant(1, MVT::i32)); | 
|  | return Flags; | 
|  | } | 
|  |  | 
|  | SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, | 
|  | SelectionDAG &DAG) { | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  | // Create a stack slot that is 16-byte aligned. | 
|  | MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); | 
|  | int FrameIdx = FrameInfo->CreateStackObject(16, 16); | 
|  | EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); | 
|  | SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); | 
|  |  | 
|  | // Store the input value into Value#0 of the stack slot. | 
|  | SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, | 
|  | Op.getOperand(0), FIdx, NULL, 0); | 
|  | // Load it out. | 
|  | return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, NULL, 0); | 
|  | } | 
|  |  | 
|  | SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) { | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  | if (Op.getValueType() == MVT::v4i32) { | 
|  | SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); | 
|  |  | 
|  | SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl); | 
|  | SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt. | 
|  |  | 
|  | SDValue RHSSwap =   // = vrlw RHS, 16 | 
|  | BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); | 
|  |  | 
|  | // Shrinkify inputs to v8i16. | 
|  | LHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, LHS); | 
|  | RHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, RHS); | 
|  | RHSSwap = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, RHSSwap); | 
|  |  | 
|  | // Low parts multiplied together, generating 32-bit results (we ignore the | 
|  | // top parts). | 
|  | SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, | 
|  | LHS, RHS, DAG, dl, MVT::v4i32); | 
|  |  | 
|  | SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, | 
|  | LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); | 
|  | // Shift the high parts up 16 bits. | 
|  | HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, | 
|  | Neg16, DAG, dl); | 
|  | return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); | 
|  | } else if (Op.getValueType() == MVT::v8i16) { | 
|  | SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); | 
|  |  | 
|  | SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl); | 
|  |  | 
|  | return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm, | 
|  | LHS, RHS, Zero, DAG, dl); | 
|  | } else if (Op.getValueType() == MVT::v16i8) { | 
|  | SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); | 
|  |  | 
|  | // Multiply the even 8-bit parts, producing 16-bit sums. | 
|  | SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, | 
|  | LHS, RHS, DAG, dl, MVT::v8i16); | 
|  | EvenParts = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, EvenParts); | 
|  |  | 
|  | // Multiply the odd 8-bit parts, producing 16-bit sums. | 
|  | SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, | 
|  | LHS, RHS, DAG, dl, MVT::v8i16); | 
|  | OddParts = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, OddParts); | 
|  |  | 
|  | // Merge the results together. | 
|  | int Ops[16]; | 
|  | for (unsigned i = 0; i != 8; ++i) { | 
|  | Ops[i*2  ] = 2*i+1; | 
|  | Ops[i*2+1] = 2*i+1+16; | 
|  | } | 
|  | return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); | 
|  | } else { | 
|  | llvm_unreachable("Unknown mul to lower!"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// LowerOperation - Provide custom lowering hooks for some operations. | 
|  | /// | 
|  | SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) { | 
|  | switch (Op.getOpcode()) { | 
|  | default: llvm_unreachable("Wasn't expecting to be able to lower this!"); | 
|  | case ISD::ConstantPool:       return LowerConstantPool(Op, DAG); | 
|  | case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG); | 
|  | case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG); | 
|  | case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG); | 
|  | case ISD::JumpTable:          return LowerJumpTable(Op, DAG); | 
|  | case ISD::SETCC:              return LowerSETCC(Op, DAG); | 
|  | case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG); | 
|  | case ISD::VASTART: | 
|  | return LowerVASTART(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset, | 
|  | VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget); | 
|  |  | 
|  | case ISD::VAARG: | 
|  | return LowerVAARG(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset, | 
|  | VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget); | 
|  |  | 
|  | case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget); | 
|  | case ISD::DYNAMIC_STACKALLOC: | 
|  | return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget); | 
|  |  | 
|  | case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG); | 
|  | case ISD::FP_TO_UINT: | 
|  | case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG, | 
|  | Op.getDebugLoc()); | 
|  | case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG); | 
|  | case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG); | 
|  |  | 
|  | // Lower 64-bit shifts. | 
|  | case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG); | 
|  | case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG); | 
|  | case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG); | 
|  |  | 
|  | // Vector-related lowering. | 
|  | case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG); | 
|  | case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG); | 
|  | case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); | 
|  | case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG); | 
|  | case ISD::MUL:                return LowerMUL(Op, DAG); | 
|  |  | 
|  | // Frame & Return address. | 
|  | case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG); | 
|  | case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | void PPCTargetLowering::ReplaceNodeResults(SDNode *N, | 
|  | SmallVectorImpl<SDValue>&Results, | 
|  | SelectionDAG &DAG) { | 
|  | DebugLoc dl = N->getDebugLoc(); | 
|  | switch (N->getOpcode()) { | 
|  | default: | 
|  | assert(false && "Do not know how to custom type legalize this operation!"); | 
|  | return; | 
|  | case ISD::FP_ROUND_INREG: { | 
|  | assert(N->getValueType(0) == MVT::ppcf128); | 
|  | assert(N->getOperand(0).getValueType() == MVT::ppcf128); | 
|  | SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, | 
|  | MVT::f64, N->getOperand(0), | 
|  | DAG.getIntPtrConstant(0)); | 
|  | SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, | 
|  | MVT::f64, N->getOperand(0), | 
|  | DAG.getIntPtrConstant(1)); | 
|  |  | 
|  | // This sequence changes FPSCR to do round-to-zero, adds the two halves | 
|  | // of the long double, and puts FPSCR back the way it was.  We do not | 
|  | // actually model FPSCR. | 
|  | std::vector<EVT> NodeTys; | 
|  | SDValue Ops[4], Result, MFFSreg, InFlag, FPreg; | 
|  |  | 
|  | NodeTys.push_back(MVT::f64);   // Return register | 
|  | NodeTys.push_back(MVT::Flag);    // Returns a flag for later insns | 
|  | Result = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0); | 
|  | MFFSreg = Result.getValue(0); | 
|  | InFlag = Result.getValue(1); | 
|  |  | 
|  | NodeTys.clear(); | 
|  | NodeTys.push_back(MVT::Flag);   // Returns a flag | 
|  | Ops[0] = DAG.getConstant(31, MVT::i32); | 
|  | Ops[1] = InFlag; | 
|  | Result = DAG.getNode(PPCISD::MTFSB1, dl, NodeTys, Ops, 2); | 
|  | InFlag = Result.getValue(0); | 
|  |  | 
|  | NodeTys.clear(); | 
|  | NodeTys.push_back(MVT::Flag);   // Returns a flag | 
|  | Ops[0] = DAG.getConstant(30, MVT::i32); | 
|  | Ops[1] = InFlag; | 
|  | Result = DAG.getNode(PPCISD::MTFSB0, dl, NodeTys, Ops, 2); | 
|  | InFlag = Result.getValue(0); | 
|  |  | 
|  | NodeTys.clear(); | 
|  | NodeTys.push_back(MVT::f64);    // result of add | 
|  | NodeTys.push_back(MVT::Flag);   // Returns a flag | 
|  | Ops[0] = Lo; | 
|  | Ops[1] = Hi; | 
|  | Ops[2] = InFlag; | 
|  | Result = DAG.getNode(PPCISD::FADDRTZ, dl, NodeTys, Ops, 3); | 
|  | FPreg = Result.getValue(0); | 
|  | InFlag = Result.getValue(1); | 
|  |  | 
|  | NodeTys.clear(); | 
|  | NodeTys.push_back(MVT::f64); | 
|  | Ops[0] = DAG.getConstant(1, MVT::i32); | 
|  | Ops[1] = MFFSreg; | 
|  | Ops[2] = FPreg; | 
|  | Ops[3] = InFlag; | 
|  | Result = DAG.getNode(PPCISD::MTFSF, dl, NodeTys, Ops, 4); | 
|  | FPreg = Result.getValue(0); | 
|  |  | 
|  | // We know the low half is about to be thrown away, so just use something | 
|  | // convenient. | 
|  | Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128, | 
|  | FPreg, FPreg)); | 
|  | return; | 
|  | } | 
|  | case ISD::FP_TO_SINT: | 
|  | Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  Other Lowering Code | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | MachineBasicBlock * | 
|  | PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB, | 
|  | bool is64bit, unsigned BinOpcode) const { | 
|  | // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. | 
|  | const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); | 
|  |  | 
|  | const BasicBlock *LLVM_BB = BB->getBasicBlock(); | 
|  | MachineFunction *F = BB->getParent(); | 
|  | MachineFunction::iterator It = BB; | 
|  | ++It; | 
|  |  | 
|  | unsigned dest = MI->getOperand(0).getReg(); | 
|  | unsigned ptrA = MI->getOperand(1).getReg(); | 
|  | unsigned ptrB = MI->getOperand(2).getReg(); | 
|  | unsigned incr = MI->getOperand(3).getReg(); | 
|  | DebugLoc dl = MI->getDebugLoc(); | 
|  |  | 
|  | MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); | 
|  | MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); | 
|  | F->insert(It, loopMBB); | 
|  | F->insert(It, exitMBB); | 
|  | exitMBB->transferSuccessors(BB); | 
|  |  | 
|  | MachineRegisterInfo &RegInfo = F->getRegInfo(); | 
|  | unsigned TmpReg = (!BinOpcode) ? incr : | 
|  | RegInfo.createVirtualRegister( | 
|  | is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass : | 
|  | (const TargetRegisterClass *) &PPC::GPRCRegClass); | 
|  |  | 
|  | //  thisMBB: | 
|  | //   ... | 
|  | //   fallthrough --> loopMBB | 
|  | BB->addSuccessor(loopMBB); | 
|  |  | 
|  | //  loopMBB: | 
|  | //   l[wd]arx dest, ptr | 
|  | //   add r0, dest, incr | 
|  | //   st[wd]cx. r0, ptr | 
|  | //   bne- loopMBB | 
|  | //   fallthrough --> exitMBB | 
|  | BB = loopMBB; | 
|  | BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest) | 
|  | .addReg(ptrA).addReg(ptrB); | 
|  | if (BinOpcode) | 
|  | BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); | 
|  | BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX)) | 
|  | .addReg(TmpReg).addReg(ptrA).addReg(ptrB); | 
|  | BuildMI(BB, dl, TII->get(PPC::BCC)) | 
|  | .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); | 
|  | BB->addSuccessor(loopMBB); | 
|  | BB->addSuccessor(exitMBB); | 
|  |  | 
|  | //  exitMBB: | 
|  | //   ... | 
|  | BB = exitMBB; | 
|  | return BB; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock * | 
|  | PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI, | 
|  | MachineBasicBlock *BB, | 
|  | bool is8bit,    // operation | 
|  | unsigned BinOpcode) const { | 
|  | // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. | 
|  | const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); | 
|  | // In 64 bit mode we have to use 64 bits for addresses, even though the | 
|  | // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address | 
|  | // registers without caring whether they're 32 or 64, but here we're | 
|  | // doing actual arithmetic on the addresses. | 
|  | bool is64bit = PPCSubTarget.isPPC64(); | 
|  |  | 
|  | const BasicBlock *LLVM_BB = BB->getBasicBlock(); | 
|  | MachineFunction *F = BB->getParent(); | 
|  | MachineFunction::iterator It = BB; | 
|  | ++It; | 
|  |  | 
|  | unsigned dest = MI->getOperand(0).getReg(); | 
|  | unsigned ptrA = MI->getOperand(1).getReg(); | 
|  | unsigned ptrB = MI->getOperand(2).getReg(); | 
|  | unsigned incr = MI->getOperand(3).getReg(); | 
|  | DebugLoc dl = MI->getDebugLoc(); | 
|  |  | 
|  | MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); | 
|  | MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); | 
|  | F->insert(It, loopMBB); | 
|  | F->insert(It, exitMBB); | 
|  | exitMBB->transferSuccessors(BB); | 
|  |  | 
|  | MachineRegisterInfo &RegInfo = F->getRegInfo(); | 
|  | const TargetRegisterClass *RC = | 
|  | is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass : | 
|  | (const TargetRegisterClass *) &PPC::GPRCRegClass; | 
|  | unsigned PtrReg = RegInfo.createVirtualRegister(RC); | 
|  | unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); | 
|  | unsigned ShiftReg = RegInfo.createVirtualRegister(RC); | 
|  | unsigned Incr2Reg = RegInfo.createVirtualRegister(RC); | 
|  | unsigned MaskReg = RegInfo.createVirtualRegister(RC); | 
|  | unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); | 
|  | unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); | 
|  | unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); | 
|  | unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC); | 
|  | unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); | 
|  | unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); | 
|  | unsigned Ptr1Reg; | 
|  | unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC); | 
|  |  | 
|  | //  thisMBB: | 
|  | //   ... | 
|  | //   fallthrough --> loopMBB | 
|  | BB->addSuccessor(loopMBB); | 
|  |  | 
|  | // The 4-byte load must be aligned, while a char or short may be | 
|  | // anywhere in the word.  Hence all this nasty bookkeeping code. | 
|  | //   add ptr1, ptrA, ptrB [copy if ptrA==0] | 
|  | //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] | 
|  | //   xori shift, shift1, 24 [16] | 
|  | //   rlwinm ptr, ptr1, 0, 0, 29 | 
|  | //   slw incr2, incr, shift | 
|  | //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] | 
|  | //   slw mask, mask2, shift | 
|  | //  loopMBB: | 
|  | //   lwarx tmpDest, ptr | 
|  | //   add tmp, tmpDest, incr2 | 
|  | //   andc tmp2, tmpDest, mask | 
|  | //   and tmp3, tmp, mask | 
|  | //   or tmp4, tmp3, tmp2 | 
|  | //   stwcx. tmp4, ptr | 
|  | //   bne- loopMBB | 
|  | //   fallthrough --> exitMBB | 
|  | //   srw dest, tmpDest, shift | 
|  |  | 
|  | if (ptrA!=PPC::R0) { | 
|  | Ptr1Reg = RegInfo.createVirtualRegister(RC); | 
|  | BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) | 
|  | .addReg(ptrA).addReg(ptrB); | 
|  | } else { | 
|  | Ptr1Reg = ptrB; | 
|  | } | 
|  | BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) | 
|  | .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); | 
|  | BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) | 
|  | .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); | 
|  | if (is64bit) | 
|  | BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) | 
|  | .addReg(Ptr1Reg).addImm(0).addImm(61); | 
|  | else | 
|  | BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) | 
|  | .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); | 
|  | BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg) | 
|  | .addReg(incr).addReg(ShiftReg); | 
|  | if (is8bit) | 
|  | BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); | 
|  | else { | 
|  | BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); | 
|  | BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535); | 
|  | } | 
|  | BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) | 
|  | .addReg(Mask2Reg).addReg(ShiftReg); | 
|  |  | 
|  | BB = loopMBB; | 
|  | BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) | 
|  | .addReg(PPC::R0).addReg(PtrReg); | 
|  | if (BinOpcode) | 
|  | BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) | 
|  | .addReg(Incr2Reg).addReg(TmpDestReg); | 
|  | BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg) | 
|  | .addReg(TmpDestReg).addReg(MaskReg); | 
|  | BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg) | 
|  | .addReg(TmpReg).addReg(MaskReg); | 
|  | BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg) | 
|  | .addReg(Tmp3Reg).addReg(Tmp2Reg); | 
|  | BuildMI(BB, dl, TII->get(PPC::STWCX)) | 
|  | .addReg(Tmp4Reg).addReg(PPC::R0).addReg(PtrReg); | 
|  | BuildMI(BB, dl, TII->get(PPC::BCC)) | 
|  | .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); | 
|  | BB->addSuccessor(loopMBB); | 
|  | BB->addSuccessor(exitMBB); | 
|  |  | 
|  | //  exitMBB: | 
|  | //   ... | 
|  | BB = exitMBB; | 
|  | BuildMI(BB, dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg).addReg(ShiftReg); | 
|  | return BB; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock * | 
|  | PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, | 
|  | MachineBasicBlock *BB, | 
|  | DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const { | 
|  | const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); | 
|  |  | 
|  | // To "insert" these instructions we actually have to insert their | 
|  | // control-flow patterns. | 
|  | const BasicBlock *LLVM_BB = BB->getBasicBlock(); | 
|  | MachineFunction::iterator It = BB; | 
|  | ++It; | 
|  |  | 
|  | MachineFunction *F = BB->getParent(); | 
|  |  | 
|  | if (MI->getOpcode() == PPC::SELECT_CC_I4 || | 
|  | MI->getOpcode() == PPC::SELECT_CC_I8 || | 
|  | MI->getOpcode() == PPC::SELECT_CC_F4 || | 
|  | MI->getOpcode() == PPC::SELECT_CC_F8 || | 
|  | MI->getOpcode() == PPC::SELECT_CC_VRRC) { | 
|  |  | 
|  | // The incoming instruction knows the destination vreg to set, the | 
|  | // condition code register to branch on, the true/false values to | 
|  | // select between, and a branch opcode to use. | 
|  |  | 
|  | //  thisMBB: | 
|  | //  ... | 
|  | //   TrueVal = ... | 
|  | //   cmpTY ccX, r1, r2 | 
|  | //   bCC copy1MBB | 
|  | //   fallthrough --> copy0MBB | 
|  | MachineBasicBlock *thisMBB = BB; | 
|  | MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); | 
|  | MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); | 
|  | unsigned SelectPred = MI->getOperand(4).getImm(); | 
|  | DebugLoc dl = MI->getDebugLoc(); | 
|  | BuildMI(BB, dl, TII->get(PPC::BCC)) | 
|  | .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB); | 
|  | F->insert(It, copy0MBB); | 
|  | F->insert(It, sinkMBB); | 
|  | // Update machine-CFG edges by first adding all successors of the current | 
|  | // block to the new block which will contain the Phi node for the select. | 
|  | // Also inform sdisel of the edge changes. | 
|  | for (MachineBasicBlock::succ_iterator I = BB->succ_begin(), | 
|  | E = BB->succ_end(); I != E; ++I) { | 
|  | EM->insert(std::make_pair(*I, sinkMBB)); | 
|  | sinkMBB->addSuccessor(*I); | 
|  | } | 
|  | // Next, remove all successors of the current block, and add the true | 
|  | // and fallthrough blocks as its successors. | 
|  | while (!BB->succ_empty()) | 
|  | BB->removeSuccessor(BB->succ_begin()); | 
|  | // Next, add the true and fallthrough blocks as its successors. | 
|  | BB->addSuccessor(copy0MBB); | 
|  | BB->addSuccessor(sinkMBB); | 
|  |  | 
|  | //  copy0MBB: | 
|  | //   %FalseValue = ... | 
|  | //   # fallthrough to sinkMBB | 
|  | BB = copy0MBB; | 
|  |  | 
|  | // Update machine-CFG edges | 
|  | BB->addSuccessor(sinkMBB); | 
|  |  | 
|  | //  sinkMBB: | 
|  | //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] | 
|  | //  ... | 
|  | BB = sinkMBB; | 
|  | BuildMI(BB, dl, TII->get(PPC::PHI), MI->getOperand(0).getReg()) | 
|  | .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB) | 
|  | .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); | 
|  | } | 
|  | else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) | 
|  | BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); | 
|  | else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) | 
|  | BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); | 
|  | else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) | 
|  | BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4); | 
|  | else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) | 
|  | BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8); | 
|  |  | 
|  | else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8) | 
|  | BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); | 
|  | else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16) | 
|  | BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); | 
|  | else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32) | 
|  | BB = EmitAtomicBinary(MI, BB, false, PPC::AND); | 
|  | else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64) | 
|  | BB = EmitAtomicBinary(MI, BB, true, PPC::AND8); | 
|  |  | 
|  | else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8) | 
|  | BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); | 
|  | else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16) | 
|  | BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); | 
|  | else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32) | 
|  | BB = EmitAtomicBinary(MI, BB, false, PPC::OR); | 
|  | else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64) | 
|  | BB = EmitAtomicBinary(MI, BB, true, PPC::OR8); | 
|  |  | 
|  | else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) | 
|  | BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); | 
|  | else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) | 
|  | BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); | 
|  | else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) | 
|  | BB = EmitAtomicBinary(MI, BB, false, PPC::XOR); | 
|  | else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) | 
|  | BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8); | 
|  |  | 
|  | else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) | 
|  | BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC); | 
|  | else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) | 
|  | BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC); | 
|  | else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) | 
|  | BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC); | 
|  | else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) | 
|  | BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8); | 
|  |  | 
|  | else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) | 
|  | BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); | 
|  | else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) | 
|  | BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); | 
|  | else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) | 
|  | BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF); | 
|  | else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) | 
|  | BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8); | 
|  |  | 
|  | else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8) | 
|  | BB = EmitPartwordAtomicBinary(MI, BB, true, 0); | 
|  | else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16) | 
|  | BB = EmitPartwordAtomicBinary(MI, BB, false, 0); | 
|  | else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32) | 
|  | BB = EmitAtomicBinary(MI, BB, false, 0); | 
|  | else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64) | 
|  | BB = EmitAtomicBinary(MI, BB, true, 0); | 
|  |  | 
|  | else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || | 
|  | MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) { | 
|  | bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; | 
|  |  | 
|  | unsigned dest   = MI->getOperand(0).getReg(); | 
|  | unsigned ptrA   = MI->getOperand(1).getReg(); | 
|  | unsigned ptrB   = MI->getOperand(2).getReg(); | 
|  | unsigned oldval = MI->getOperand(3).getReg(); | 
|  | unsigned newval = MI->getOperand(4).getReg(); | 
|  | DebugLoc dl     = MI->getDebugLoc(); | 
|  |  | 
|  | MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); | 
|  | MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); | 
|  | MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); | 
|  | MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); | 
|  | F->insert(It, loop1MBB); | 
|  | F->insert(It, loop2MBB); | 
|  | F->insert(It, midMBB); | 
|  | F->insert(It, exitMBB); | 
|  | exitMBB->transferSuccessors(BB); | 
|  |  | 
|  | //  thisMBB: | 
|  | //   ... | 
|  | //   fallthrough --> loopMBB | 
|  | BB->addSuccessor(loop1MBB); | 
|  |  | 
|  | // loop1MBB: | 
|  | //   l[wd]arx dest, ptr | 
|  | //   cmp[wd] dest, oldval | 
|  | //   bne- midMBB | 
|  | // loop2MBB: | 
|  | //   st[wd]cx. newval, ptr | 
|  | //   bne- loopMBB | 
|  | //   b exitBB | 
|  | // midMBB: | 
|  | //   st[wd]cx. dest, ptr | 
|  | // exitBB: | 
|  | BB = loop1MBB; | 
|  | BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest) | 
|  | .addReg(ptrA).addReg(ptrB); | 
|  | BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) | 
|  | .addReg(oldval).addReg(dest); | 
|  | BuildMI(BB, dl, TII->get(PPC::BCC)) | 
|  | .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); | 
|  | BB->addSuccessor(loop2MBB); | 
|  | BB->addSuccessor(midMBB); | 
|  |  | 
|  | BB = loop2MBB; | 
|  | BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX)) | 
|  | .addReg(newval).addReg(ptrA).addReg(ptrB); | 
|  | BuildMI(BB, dl, TII->get(PPC::BCC)) | 
|  | .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); | 
|  | BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); | 
|  | BB->addSuccessor(loop1MBB); | 
|  | BB->addSuccessor(exitMBB); | 
|  |  | 
|  | BB = midMBB; | 
|  | BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX)) | 
|  | .addReg(dest).addReg(ptrA).addReg(ptrB); | 
|  | BB->addSuccessor(exitMBB); | 
|  |  | 
|  | //  exitMBB: | 
|  | //   ... | 
|  | BB = exitMBB; | 
|  | } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || | 
|  | MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { | 
|  | // We must use 64-bit registers for addresses when targeting 64-bit, | 
|  | // since we're actually doing arithmetic on them.  Other registers | 
|  | // can be 32-bit. | 
|  | bool is64bit = PPCSubTarget.isPPC64(); | 
|  | bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; | 
|  |  | 
|  | unsigned dest   = MI->getOperand(0).getReg(); | 
|  | unsigned ptrA   = MI->getOperand(1).getReg(); | 
|  | unsigned ptrB   = MI->getOperand(2).getReg(); | 
|  | unsigned oldval = MI->getOperand(3).getReg(); | 
|  | unsigned newval = MI->getOperand(4).getReg(); | 
|  | DebugLoc dl     = MI->getDebugLoc(); | 
|  |  | 
|  | MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); | 
|  | MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); | 
|  | MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); | 
|  | MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); | 
|  | F->insert(It, loop1MBB); | 
|  | F->insert(It, loop2MBB); | 
|  | F->insert(It, midMBB); | 
|  | F->insert(It, exitMBB); | 
|  | exitMBB->transferSuccessors(BB); | 
|  |  | 
|  | MachineRegisterInfo &RegInfo = F->getRegInfo(); | 
|  | const TargetRegisterClass *RC = | 
|  | is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass : | 
|  | (const TargetRegisterClass *) &PPC::GPRCRegClass; | 
|  | unsigned PtrReg = RegInfo.createVirtualRegister(RC); | 
|  | unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); | 
|  | unsigned ShiftReg = RegInfo.createVirtualRegister(RC); | 
|  | unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC); | 
|  | unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC); | 
|  | unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC); | 
|  | unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC); | 
|  | unsigned MaskReg = RegInfo.createVirtualRegister(RC); | 
|  | unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); | 
|  | unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); | 
|  | unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); | 
|  | unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); | 
|  | unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); | 
|  | unsigned Ptr1Reg; | 
|  | unsigned TmpReg = RegInfo.createVirtualRegister(RC); | 
|  | //  thisMBB: | 
|  | //   ... | 
|  | //   fallthrough --> loopMBB | 
|  | BB->addSuccessor(loop1MBB); | 
|  |  | 
|  | // The 4-byte load must be aligned, while a char or short may be | 
|  | // anywhere in the word.  Hence all this nasty bookkeeping code. | 
|  | //   add ptr1, ptrA, ptrB [copy if ptrA==0] | 
|  | //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] | 
|  | //   xori shift, shift1, 24 [16] | 
|  | //   rlwinm ptr, ptr1, 0, 0, 29 | 
|  | //   slw newval2, newval, shift | 
|  | //   slw oldval2, oldval,shift | 
|  | //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] | 
|  | //   slw mask, mask2, shift | 
|  | //   and newval3, newval2, mask | 
|  | //   and oldval3, oldval2, mask | 
|  | // loop1MBB: | 
|  | //   lwarx tmpDest, ptr | 
|  | //   and tmp, tmpDest, mask | 
|  | //   cmpw tmp, oldval3 | 
|  | //   bne- midMBB | 
|  | // loop2MBB: | 
|  | //   andc tmp2, tmpDest, mask | 
|  | //   or tmp4, tmp2, newval3 | 
|  | //   stwcx. tmp4, ptr | 
|  | //   bne- loop1MBB | 
|  | //   b exitBB | 
|  | // midMBB: | 
|  | //   stwcx. tmpDest, ptr | 
|  | // exitBB: | 
|  | //   srw dest, tmpDest, shift | 
|  | if (ptrA!=PPC::R0) { | 
|  | Ptr1Reg = RegInfo.createVirtualRegister(RC); | 
|  | BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) | 
|  | .addReg(ptrA).addReg(ptrB); | 
|  | } else { | 
|  | Ptr1Reg = ptrB; | 
|  | } | 
|  | BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) | 
|  | .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); | 
|  | BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) | 
|  | .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); | 
|  | if (is64bit) | 
|  | BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) | 
|  | .addReg(Ptr1Reg).addImm(0).addImm(61); | 
|  | else | 
|  | BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) | 
|  | .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); | 
|  | BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) | 
|  | .addReg(newval).addReg(ShiftReg); | 
|  | BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) | 
|  | .addReg(oldval).addReg(ShiftReg); | 
|  | if (is8bit) | 
|  | BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); | 
|  | else { | 
|  | BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); | 
|  | BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) | 
|  | .addReg(Mask3Reg).addImm(65535); | 
|  | } | 
|  | BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) | 
|  | .addReg(Mask2Reg).addReg(ShiftReg); | 
|  | BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) | 
|  | .addReg(NewVal2Reg).addReg(MaskReg); | 
|  | BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) | 
|  | .addReg(OldVal2Reg).addReg(MaskReg); | 
|  |  | 
|  | BB = loop1MBB; | 
|  | BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) | 
|  | .addReg(PPC::R0).addReg(PtrReg); | 
|  | BuildMI(BB, dl, TII->get(PPC::AND),TmpReg) | 
|  | .addReg(TmpDestReg).addReg(MaskReg); | 
|  | BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) | 
|  | .addReg(TmpReg).addReg(OldVal3Reg); | 
|  | BuildMI(BB, dl, TII->get(PPC::BCC)) | 
|  | .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); | 
|  | BB->addSuccessor(loop2MBB); | 
|  | BB->addSuccessor(midMBB); | 
|  |  | 
|  | BB = loop2MBB; | 
|  | BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg) | 
|  | .addReg(TmpDestReg).addReg(MaskReg); | 
|  | BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg) | 
|  | .addReg(Tmp2Reg).addReg(NewVal3Reg); | 
|  | BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg) | 
|  | .addReg(PPC::R0).addReg(PtrReg); | 
|  | BuildMI(BB, dl, TII->get(PPC::BCC)) | 
|  | .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); | 
|  | BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); | 
|  | BB->addSuccessor(loop1MBB); | 
|  | BB->addSuccessor(exitMBB); | 
|  |  | 
|  | BB = midMBB; | 
|  | BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg) | 
|  | .addReg(PPC::R0).addReg(PtrReg); | 
|  | BB->addSuccessor(exitMBB); | 
|  |  | 
|  | //  exitMBB: | 
|  | //   ... | 
|  | BB = exitMBB; | 
|  | BuildMI(BB, dl, TII->get(PPC::SRW),dest).addReg(TmpReg).addReg(ShiftReg); | 
|  | } else { | 
|  | llvm_unreachable("Unexpected instr type to insert"); | 
|  | } | 
|  |  | 
|  | F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now. | 
|  | return BB; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Target Optimization Hooks | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | TargetMachine &TM = getTargetMachine(); | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | DebugLoc dl = N->getDebugLoc(); | 
|  | switch (N->getOpcode()) { | 
|  | default: break; | 
|  | case PPCISD::SHL: | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { | 
|  | if (C->getZExtValue() == 0)   // 0 << V -> 0. | 
|  | return N->getOperand(0); | 
|  | } | 
|  | break; | 
|  | case PPCISD::SRL: | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { | 
|  | if (C->getZExtValue() == 0)   // 0 >>u V -> 0. | 
|  | return N->getOperand(0); | 
|  | } | 
|  | break; | 
|  | case PPCISD::SRA: | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { | 
|  | if (C->getZExtValue() == 0 ||   //  0 >>s V -> 0. | 
|  | C->isAllOnesValue())    // -1 >>s V -> -1. | 
|  | return N->getOperand(0); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case ISD::SINT_TO_FP: | 
|  | if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) { | 
|  | if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) { | 
|  | // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores. | 
|  | // We allow the src/dst to be either f32/f64, but the intermediate | 
|  | // type must be i64. | 
|  | if (N->getOperand(0).getValueType() == MVT::i64 && | 
|  | N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) { | 
|  | SDValue Val = N->getOperand(0).getOperand(0); | 
|  | if (Val.getValueType() == MVT::f32) { | 
|  | Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); | 
|  | DCI.AddToWorklist(Val.getNode()); | 
|  | } | 
|  |  | 
|  | Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val); | 
|  | DCI.AddToWorklist(Val.getNode()); | 
|  | Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val); | 
|  | DCI.AddToWorklist(Val.getNode()); | 
|  | if (N->getValueType(0) == MVT::f32) { | 
|  | Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val, | 
|  | DAG.getIntPtrConstant(0)); | 
|  | DCI.AddToWorklist(Val.getNode()); | 
|  | } | 
|  | return Val; | 
|  | } else if (N->getOperand(0).getValueType() == MVT::i32) { | 
|  | // If the intermediate type is i32, we can avoid the load/store here | 
|  | // too. | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  | case ISD::STORE: | 
|  | // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)). | 
|  | if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() && | 
|  | !cast<StoreSDNode>(N)->isTruncatingStore() && | 
|  | N->getOperand(1).getOpcode() == ISD::FP_TO_SINT && | 
|  | N->getOperand(1).getValueType() == MVT::i32 && | 
|  | N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) { | 
|  | SDValue Val = N->getOperand(1).getOperand(0); | 
|  | if (Val.getValueType() == MVT::f32) { | 
|  | Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); | 
|  | DCI.AddToWorklist(Val.getNode()); | 
|  | } | 
|  | Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val); | 
|  | DCI.AddToWorklist(Val.getNode()); | 
|  |  | 
|  | Val = DAG.getNode(PPCISD::STFIWX, dl, MVT::Other, N->getOperand(0), Val, | 
|  | N->getOperand(2), N->getOperand(3)); | 
|  | DCI.AddToWorklist(Val.getNode()); | 
|  | return Val; | 
|  | } | 
|  |  | 
|  | // Turn STORE (BSWAP) -> sthbrx/stwbrx. | 
|  | if (cast<StoreSDNode>(N)->isUnindexed() && | 
|  | N->getOperand(1).getOpcode() == ISD::BSWAP && | 
|  | N->getOperand(1).getNode()->hasOneUse() && | 
|  | (N->getOperand(1).getValueType() == MVT::i32 || | 
|  | N->getOperand(1).getValueType() == MVT::i16)) { | 
|  | SDValue BSwapOp = N->getOperand(1).getOperand(0); | 
|  | // Do an any-extend to 32-bits if this is a half-word input. | 
|  | if (BSwapOp.getValueType() == MVT::i16) | 
|  | BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); | 
|  |  | 
|  | SDValue Ops[] = { | 
|  | N->getOperand(0), BSwapOp, N->getOperand(2), | 
|  | DAG.getValueType(N->getOperand(1).getValueType()) | 
|  | }; | 
|  | return | 
|  | DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), | 
|  | Ops, array_lengthof(Ops), | 
|  | cast<StoreSDNode>(N)->getMemoryVT(), | 
|  | cast<StoreSDNode>(N)->getMemOperand()); | 
|  | } | 
|  | break; | 
|  | case ISD::BSWAP: | 
|  | // Turn BSWAP (LOAD) -> lhbrx/lwbrx. | 
|  | if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && | 
|  | N->getOperand(0).hasOneUse() && | 
|  | (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) { | 
|  | SDValue Load = N->getOperand(0); | 
|  | LoadSDNode *LD = cast<LoadSDNode>(Load); | 
|  | // Create the byte-swapping load. | 
|  | SDValue Ops[] = { | 
|  | LD->getChain(),    // Chain | 
|  | LD->getBasePtr(),  // Ptr | 
|  | DAG.getValueType(N->getValueType(0)) // VT | 
|  | }; | 
|  | SDValue BSLoad = | 
|  | DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, | 
|  | DAG.getVTList(MVT::i32, MVT::Other), Ops, 3, | 
|  | LD->getMemoryVT(), LD->getMemOperand()); | 
|  |  | 
|  | // If this is an i16 load, insert the truncate. | 
|  | SDValue ResVal = BSLoad; | 
|  | if (N->getValueType(0) == MVT::i16) | 
|  | ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); | 
|  |  | 
|  | // First, combine the bswap away.  This makes the value produced by the | 
|  | // load dead. | 
|  | DCI.CombineTo(N, ResVal); | 
|  |  | 
|  | // Next, combine the load away, we give it a bogus result value but a real | 
|  | // chain result.  The result value is dead because the bswap is dead. | 
|  | DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); | 
|  |  | 
|  | // Return N so it doesn't get rechecked! | 
|  | return SDValue(N, 0); | 
|  | } | 
|  |  | 
|  | break; | 
|  | case PPCISD::VCMP: { | 
|  | // If a VCMPo node already exists with exactly the same operands as this | 
|  | // node, use its result instead of this node (VCMPo computes both a CR6 and | 
|  | // a normal output). | 
|  | // | 
|  | if (!N->getOperand(0).hasOneUse() && | 
|  | !N->getOperand(1).hasOneUse() && | 
|  | !N->getOperand(2).hasOneUse()) { | 
|  |  | 
|  | // Scan all of the users of the LHS, looking for VCMPo's that match. | 
|  | SDNode *VCMPoNode = 0; | 
|  |  | 
|  | SDNode *LHSN = N->getOperand(0).getNode(); | 
|  | for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); | 
|  | UI != E; ++UI) | 
|  | if (UI->getOpcode() == PPCISD::VCMPo && | 
|  | UI->getOperand(1) == N->getOperand(1) && | 
|  | UI->getOperand(2) == N->getOperand(2) && | 
|  | UI->getOperand(0) == N->getOperand(0)) { | 
|  | VCMPoNode = *UI; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If there is no VCMPo node, or if the flag value has a single use, don't | 
|  | // transform this. | 
|  | if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1)) | 
|  | break; | 
|  |  | 
|  | // Look at the (necessarily single) use of the flag value.  If it has a | 
|  | // chain, this transformation is more complex.  Note that multiple things | 
|  | // could use the value result, which we should ignore. | 
|  | SDNode *FlagUser = 0; | 
|  | for (SDNode::use_iterator UI = VCMPoNode->use_begin(); | 
|  | FlagUser == 0; ++UI) { | 
|  | assert(UI != VCMPoNode->use_end() && "Didn't find user!"); | 
|  | SDNode *User = *UI; | 
|  | for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { | 
|  | if (User->getOperand(i) == SDValue(VCMPoNode, 1)) { | 
|  | FlagUser = User; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the user is a MFCR instruction, we know this is safe.  Otherwise we | 
|  | // give up for right now. | 
|  | if (FlagUser->getOpcode() == PPCISD::MFCR) | 
|  | return SDValue(VCMPoNode, 0); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ISD::BR_CC: { | 
|  | // If this is a branch on an altivec predicate comparison, lower this so | 
|  | // that we don't have to do a MFCR: instead, branch directly on CR6.  This | 
|  | // lowering is done pre-legalize, because the legalizer lowers the predicate | 
|  | // compare down to code that is difficult to reassemble. | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); | 
|  | SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); | 
|  | int CompareOpc; | 
|  | bool isDot; | 
|  |  | 
|  | if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && | 
|  | isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && | 
|  | getAltivecCompareInfo(LHS, CompareOpc, isDot)) { | 
|  | assert(isDot && "Can't compare against a vector result!"); | 
|  |  | 
|  | // If this is a comparison against something other than 0/1, then we know | 
|  | // that the condition is never/always true. | 
|  | unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); | 
|  | if (Val != 0 && Val != 1) { | 
|  | if (CC == ISD::SETEQ)      // Cond never true, remove branch. | 
|  | return N->getOperand(0); | 
|  | // Always !=, turn it into an unconditional branch. | 
|  | return DAG.getNode(ISD::BR, dl, MVT::Other, | 
|  | N->getOperand(0), N->getOperand(4)); | 
|  | } | 
|  |  | 
|  | bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); | 
|  |  | 
|  | // Create the PPCISD altivec 'dot' comparison node. | 
|  | std::vector<EVT> VTs; | 
|  | SDValue Ops[] = { | 
|  | LHS.getOperand(2),  // LHS of compare | 
|  | LHS.getOperand(3),  // RHS of compare | 
|  | DAG.getConstant(CompareOpc, MVT::i32) | 
|  | }; | 
|  | VTs.push_back(LHS.getOperand(2).getValueType()); | 
|  | VTs.push_back(MVT::Flag); | 
|  | SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3); | 
|  |  | 
|  | // Unpack the result based on how the target uses it. | 
|  | PPC::Predicate CompOpc; | 
|  | switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { | 
|  | default:  // Can't happen, don't crash on invalid number though. | 
|  | case 0:   // Branch on the value of the EQ bit of CR6. | 
|  | CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; | 
|  | break; | 
|  | case 1:   // Branch on the inverted value of the EQ bit of CR6. | 
|  | CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; | 
|  | break; | 
|  | case 2:   // Branch on the value of the LT bit of CR6. | 
|  | CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; | 
|  | break; | 
|  | case 3:   // Branch on the inverted value of the LT bit of CR6. | 
|  | CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), | 
|  | DAG.getConstant(CompOpc, MVT::i32), | 
|  | DAG.getRegister(PPC::CR6, MVT::i32), | 
|  | N->getOperand(4), CompNode.getValue(1)); | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Inline Assembly Support | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op, | 
|  | const APInt &Mask, | 
|  | APInt &KnownZero, | 
|  | APInt &KnownOne, | 
|  | const SelectionDAG &DAG, | 
|  | unsigned Depth) const { | 
|  | KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0); | 
|  | switch (Op.getOpcode()) { | 
|  | default: break; | 
|  | case PPCISD::LBRX: { | 
|  | // lhbrx is known to have the top bits cleared out. | 
|  | if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) | 
|  | KnownZero = 0xFFFF0000; | 
|  | break; | 
|  | } | 
|  | case ISD::INTRINSIC_WO_CHAIN: { | 
|  | switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { | 
|  | default: break; | 
|  | case Intrinsic::ppc_altivec_vcmpbfp_p: | 
|  | case Intrinsic::ppc_altivec_vcmpeqfp_p: | 
|  | case Intrinsic::ppc_altivec_vcmpequb_p: | 
|  | case Intrinsic::ppc_altivec_vcmpequh_p: | 
|  | case Intrinsic::ppc_altivec_vcmpequw_p: | 
|  | case Intrinsic::ppc_altivec_vcmpgefp_p: | 
|  | case Intrinsic::ppc_altivec_vcmpgtfp_p: | 
|  | case Intrinsic::ppc_altivec_vcmpgtsb_p: | 
|  | case Intrinsic::ppc_altivec_vcmpgtsh_p: | 
|  | case Intrinsic::ppc_altivec_vcmpgtsw_p: | 
|  | case Intrinsic::ppc_altivec_vcmpgtub_p: | 
|  | case Intrinsic::ppc_altivec_vcmpgtuh_p: | 
|  | case Intrinsic::ppc_altivec_vcmpgtuw_p: | 
|  | KnownZero = ~1U;  // All bits but the low one are known to be zero. | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /// getConstraintType - Given a constraint, return the type of | 
|  | /// constraint it is for this target. | 
|  | PPCTargetLowering::ConstraintType | 
|  | PPCTargetLowering::getConstraintType(const std::string &Constraint) const { | 
|  | if (Constraint.size() == 1) { | 
|  | switch (Constraint[0]) { | 
|  | default: break; | 
|  | case 'b': | 
|  | case 'r': | 
|  | case 'f': | 
|  | case 'v': | 
|  | case 'y': | 
|  | return C_RegisterClass; | 
|  | } | 
|  | } | 
|  | return TargetLowering::getConstraintType(Constraint); | 
|  | } | 
|  |  | 
|  | std::pair<unsigned, const TargetRegisterClass*> | 
|  | PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint, | 
|  | EVT VT) const { | 
|  | if (Constraint.size() == 1) { | 
|  | // GCC RS6000 Constraint Letters | 
|  | switch (Constraint[0]) { | 
|  | case 'b':   // R1-R31 | 
|  | case 'r':   // R0-R31 | 
|  | if (VT == MVT::i64 && PPCSubTarget.isPPC64()) | 
|  | return std::make_pair(0U, PPC::G8RCRegisterClass); | 
|  | return std::make_pair(0U, PPC::GPRCRegisterClass); | 
|  | case 'f': | 
|  | if (VT == MVT::f32) | 
|  | return std::make_pair(0U, PPC::F4RCRegisterClass); | 
|  | else if (VT == MVT::f64) | 
|  | return std::make_pair(0U, PPC::F8RCRegisterClass); | 
|  | break; | 
|  | case 'v': | 
|  | return std::make_pair(0U, PPC::VRRCRegisterClass); | 
|  | case 'y':   // crrc | 
|  | return std::make_pair(0U, PPC::CRRCRegisterClass); | 
|  | } | 
|  | } | 
|  |  | 
|  | return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops | 
|  | /// vector.  If it is invalid, don't add anything to Ops. If hasMemory is true | 
|  | /// it means one of the asm constraint of the inline asm instruction being | 
|  | /// processed is 'm'. | 
|  | void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, char Letter, | 
|  | bool hasMemory, | 
|  | std::vector<SDValue>&Ops, | 
|  | SelectionDAG &DAG) const { | 
|  | SDValue Result(0,0); | 
|  | switch (Letter) { | 
|  | default: break; | 
|  | case 'I': | 
|  | case 'J': | 
|  | case 'K': | 
|  | case 'L': | 
|  | case 'M': | 
|  | case 'N': | 
|  | case 'O': | 
|  | case 'P': { | 
|  | ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); | 
|  | if (!CST) return; // Must be an immediate to match. | 
|  | unsigned Value = CST->getZExtValue(); | 
|  | switch (Letter) { | 
|  | default: llvm_unreachable("Unknown constraint letter!"); | 
|  | case 'I':  // "I" is a signed 16-bit constant. | 
|  | if ((short)Value == (int)Value) | 
|  | Result = DAG.getTargetConstant(Value, Op.getValueType()); | 
|  | break; | 
|  | case 'J':  // "J" is a constant with only the high-order 16 bits nonzero. | 
|  | case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits. | 
|  | if ((short)Value == 0) | 
|  | Result = DAG.getTargetConstant(Value, Op.getValueType()); | 
|  | break; | 
|  | case 'K':  // "K" is a constant with only the low-order 16 bits nonzero. | 
|  | if ((Value >> 16) == 0) | 
|  | Result = DAG.getTargetConstant(Value, Op.getValueType()); | 
|  | break; | 
|  | case 'M':  // "M" is a constant that is greater than 31. | 
|  | if (Value > 31) | 
|  | Result = DAG.getTargetConstant(Value, Op.getValueType()); | 
|  | break; | 
|  | case 'N':  // "N" is a positive constant that is an exact power of two. | 
|  | if ((int)Value > 0 && isPowerOf2_32(Value)) | 
|  | Result = DAG.getTargetConstant(Value, Op.getValueType()); | 
|  | break; | 
|  | case 'O':  // "O" is the constant zero. | 
|  | if (Value == 0) | 
|  | Result = DAG.getTargetConstant(Value, Op.getValueType()); | 
|  | break; | 
|  | case 'P':  // "P" is a constant whose negation is a signed 16-bit constant. | 
|  | if ((short)-Value == (int)-Value) | 
|  | Result = DAG.getTargetConstant(Value, Op.getValueType()); | 
|  | break; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Result.getNode()) { | 
|  | Ops.push_back(Result); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Handle standard constraint letters. | 
|  | TargetLowering::LowerAsmOperandForConstraint(Op, Letter, hasMemory, Ops, DAG); | 
|  | } | 
|  |  | 
|  | // isLegalAddressingMode - Return true if the addressing mode represented | 
|  | // by AM is legal for this target, for a load/store of the specified type. | 
|  | bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM, | 
|  | const Type *Ty) const { | 
|  | // FIXME: PPC does not allow r+i addressing modes for vectors! | 
|  |  | 
|  | // PPC allows a sign-extended 16-bit immediate field. | 
|  | if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) | 
|  | return false; | 
|  |  | 
|  | // No global is ever allowed as a base. | 
|  | if (AM.BaseGV) | 
|  | return false; | 
|  |  | 
|  | // PPC only support r+r, | 
|  | switch (AM.Scale) { | 
|  | case 0:  // "r+i" or just "i", depending on HasBaseReg. | 
|  | break; | 
|  | case 1: | 
|  | if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed. | 
|  | return false; | 
|  | // Otherwise we have r+r or r+i. | 
|  | break; | 
|  | case 2: | 
|  | if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed. | 
|  | return false; | 
|  | // Allow 2*r as r+r. | 
|  | break; | 
|  | default: | 
|  | // No other scales are supported. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isLegalAddressImmediate - Return true if the integer value can be used | 
|  | /// as the offset of the target addressing mode for load / store of the | 
|  | /// given type. | 
|  | bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{ | 
|  | // PPC allows a sign-extended 16-bit immediate field. | 
|  | return (V > -(1 << 16) && V < (1 << 16)-1); | 
|  | } | 
|  |  | 
|  | bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) { | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  | // Depths > 0 not supported yet! | 
|  | if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0) | 
|  | return SDValue(); | 
|  |  | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); | 
|  |  | 
|  | // Just load the return address off the stack. | 
|  | SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); | 
|  |  | 
|  | // Make sure the function really does not optimize away the store of the RA | 
|  | // to the stack. | 
|  | FuncInfo->setLRStoreRequired(); | 
|  | return DAG.getLoad(getPointerTy(), dl, | 
|  | DAG.getEntryNode(), RetAddrFI, NULL, 0); | 
|  | } | 
|  |  | 
|  | SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) { | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  | // Depths > 0 not supported yet! | 
|  | if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); | 
|  | bool isPPC64 = PtrVT == MVT::i64; | 
|  |  | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | MachineFrameInfo *MFI = MF.getFrameInfo(); | 
|  | bool is31 = (NoFramePointerElim || MFI->hasVarSizedObjects()) | 
|  | && MFI->getStackSize(); | 
|  |  | 
|  | if (isPPC64) | 
|  | return DAG.getCopyFromReg(DAG.getEntryNode(), dl, is31 ? PPC::X31 : PPC::X1, | 
|  | MVT::i64); | 
|  | else | 
|  | return DAG.getCopyFromReg(DAG.getEntryNode(), dl, is31 ? PPC::R31 : PPC::R1, | 
|  | MVT::i32); | 
|  | } | 
|  |  | 
|  | bool | 
|  | PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { | 
|  | // The PowerPC target isn't yet aware of offsets. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned Align, | 
|  | bool isSrcConst, bool isSrcStr, | 
|  | SelectionDAG &DAG) const { | 
|  | if (this->PPCSubTarget.isPPC64()) { | 
|  | return MVT::i64; | 
|  | } else { | 
|  | return MVT::i32; | 
|  | } | 
|  | } |