|  | //===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the LiveVariable analysis pass.  For each machine | 
|  | // instruction in the function, this pass calculates the set of registers that | 
|  | // are immediately dead after the instruction (i.e., the instruction calculates | 
|  | // the value, but it is never used) and the set of registers that are used by | 
|  | // the instruction, but are never used after the instruction (i.e., they are | 
|  | // killed). | 
|  | // | 
|  | // This class computes live variables using a sparse implementation based on | 
|  | // the machine code SSA form.  This class computes live variable information for | 
|  | // each virtual and _register allocatable_ physical register in a function.  It | 
|  | // uses the dominance properties of SSA form to efficiently compute live | 
|  | // variables for virtual registers, and assumes that physical registers are only | 
|  | // live within a single basic block (allowing it to do a single local analysis | 
|  | // to resolve physical register lifetimes in each basic block).  If a physical | 
|  | // register is not register allocatable, it is not tracked.  This is useful for | 
|  | // things like the stack pointer and condition codes. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/CodeGen/LiveVariables.h" | 
|  | #include "llvm/ADT/DenseSet.h" | 
|  | #include "llvm/ADT/DepthFirstIterator.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallSet.h" | 
|  | #include "llvm/CodeGen/MachineInstr.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/Passes.h" | 
|  | #include "llvm/Config/llvm-config.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <algorithm> | 
|  | using namespace llvm; | 
|  |  | 
|  | char LiveVariables::ID = 0; | 
|  | char &llvm::LiveVariablesID = LiveVariables::ID; | 
|  | INITIALIZE_PASS_BEGIN(LiveVariables, "livevars", | 
|  | "Live Variable Analysis", false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(UnreachableMachineBlockElim) | 
|  | INITIALIZE_PASS_END(LiveVariables, "livevars", | 
|  | "Live Variable Analysis", false, false) | 
|  |  | 
|  |  | 
|  | void LiveVariables::getAnalysisUsage(AnalysisUsage &AU) const { | 
|  | AU.addRequiredID(UnreachableMachineBlockElimID); | 
|  | AU.setPreservesAll(); | 
|  | MachineFunctionPass::getAnalysisUsage(AU); | 
|  | } | 
|  |  | 
|  | MachineInstr * | 
|  | LiveVariables::VarInfo::findKill(const MachineBasicBlock *MBB) const { | 
|  | for (unsigned i = 0, e = Kills.size(); i != e; ++i) | 
|  | if (Kills[i]->getParent() == MBB) | 
|  | return Kills[i]; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | 
|  | LLVM_DUMP_METHOD void LiveVariables::VarInfo::dump() const { | 
|  | dbgs() << "  Alive in blocks: "; | 
|  | for (SparseBitVector<>::iterator I = AliveBlocks.begin(), | 
|  | E = AliveBlocks.end(); I != E; ++I) | 
|  | dbgs() << *I << ", "; | 
|  | dbgs() << "\n  Killed by:"; | 
|  | if (Kills.empty()) | 
|  | dbgs() << " No instructions.\n"; | 
|  | else { | 
|  | for (unsigned i = 0, e = Kills.size(); i != e; ++i) | 
|  | dbgs() << "\n    #" << i << ": " << *Kills[i]; | 
|  | dbgs() << "\n"; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /// getVarInfo - Get (possibly creating) a VarInfo object for the given vreg. | 
|  | LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) { | 
|  | assert(Register::isVirtualRegister(RegIdx) && | 
|  | "getVarInfo: not a virtual register!"); | 
|  | VirtRegInfo.grow(RegIdx); | 
|  | return VirtRegInfo[RegIdx]; | 
|  | } | 
|  |  | 
|  | void LiveVariables::MarkVirtRegAliveInBlock(VarInfo& VRInfo, | 
|  | MachineBasicBlock *DefBlock, | 
|  | MachineBasicBlock *MBB, | 
|  | std::vector<MachineBasicBlock*> &WorkList) { | 
|  | unsigned BBNum = MBB->getNumber(); | 
|  |  | 
|  | // Check to see if this basic block is one of the killing blocks.  If so, | 
|  | // remove it. | 
|  | for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) | 
|  | if (VRInfo.Kills[i]->getParent() == MBB) { | 
|  | VRInfo.Kills.erase(VRInfo.Kills.begin()+i);  // Erase entry | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (MBB == DefBlock) return;  // Terminate recursion | 
|  |  | 
|  | if (VRInfo.AliveBlocks.test(BBNum)) | 
|  | return;  // We already know the block is live | 
|  |  | 
|  | // Mark the variable known alive in this bb | 
|  | VRInfo.AliveBlocks.set(BBNum); | 
|  |  | 
|  | assert(MBB != &MF->front() && "Can't find reaching def for virtreg"); | 
|  | WorkList.insert(WorkList.end(), MBB->pred_rbegin(), MBB->pred_rend()); | 
|  | } | 
|  |  | 
|  | void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo, | 
|  | MachineBasicBlock *DefBlock, | 
|  | MachineBasicBlock *MBB) { | 
|  | std::vector<MachineBasicBlock*> WorkList; | 
|  | MarkVirtRegAliveInBlock(VRInfo, DefBlock, MBB, WorkList); | 
|  |  | 
|  | while (!WorkList.empty()) { | 
|  | MachineBasicBlock *Pred = WorkList.back(); | 
|  | WorkList.pop_back(); | 
|  | MarkVirtRegAliveInBlock(VRInfo, DefBlock, Pred, WorkList); | 
|  | } | 
|  | } | 
|  |  | 
|  | void LiveVariables::HandleVirtRegUse(unsigned reg, MachineBasicBlock *MBB, | 
|  | MachineInstr &MI) { | 
|  | assert(MRI->getVRegDef(reg) && "Register use before def!"); | 
|  |  | 
|  | unsigned BBNum = MBB->getNumber(); | 
|  |  | 
|  | VarInfo& VRInfo = getVarInfo(reg); | 
|  |  | 
|  | // Check to see if this basic block is already a kill block. | 
|  | if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) { | 
|  | // Yes, this register is killed in this basic block already. Increase the | 
|  | // live range by updating the kill instruction. | 
|  | VRInfo.Kills.back() = &MI; | 
|  | return; | 
|  | } | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) | 
|  | assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!"); | 
|  | #endif | 
|  |  | 
|  | // This situation can occur: | 
|  | // | 
|  | //     ,------. | 
|  | //     |      | | 
|  | //     |      v | 
|  | //     |   t2 = phi ... t1 ... | 
|  | //     |      | | 
|  | //     |      v | 
|  | //     |   t1 = ... | 
|  | //     |  ... = ... t1 ... | 
|  | //     |      | | 
|  | //     `------' | 
|  | // | 
|  | // where there is a use in a PHI node that's a predecessor to the defining | 
|  | // block. We don't want to mark all predecessors as having the value "alive" | 
|  | // in this case. | 
|  | if (MBB == MRI->getVRegDef(reg)->getParent()) return; | 
|  |  | 
|  | // Add a new kill entry for this basic block. If this virtual register is | 
|  | // already marked as alive in this basic block, that means it is alive in at | 
|  | // least one of the successor blocks, it's not a kill. | 
|  | if (!VRInfo.AliveBlocks.test(BBNum)) | 
|  | VRInfo.Kills.push_back(&MI); | 
|  |  | 
|  | // Update all dominating blocks to mark them as "known live". | 
|  | for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), | 
|  | E = MBB->pred_end(); PI != E; ++PI) | 
|  | MarkVirtRegAliveInBlock(VRInfo, MRI->getVRegDef(reg)->getParent(), *PI); | 
|  | } | 
|  |  | 
|  | void LiveVariables::HandleVirtRegDef(unsigned Reg, MachineInstr &MI) { | 
|  | VarInfo &VRInfo = getVarInfo(Reg); | 
|  |  | 
|  | if (VRInfo.AliveBlocks.empty()) | 
|  | // If vr is not alive in any block, then defaults to dead. | 
|  | VRInfo.Kills.push_back(&MI); | 
|  | } | 
|  |  | 
|  | /// FindLastPartialDef - Return the last partial def of the specified register. | 
|  | /// Also returns the sub-registers that're defined by the instruction. | 
|  | MachineInstr *LiveVariables::FindLastPartialDef(unsigned Reg, | 
|  | SmallSet<unsigned,4> &PartDefRegs) { | 
|  | unsigned LastDefReg = 0; | 
|  | unsigned LastDefDist = 0; | 
|  | MachineInstr *LastDef = nullptr; | 
|  | for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { | 
|  | unsigned SubReg = *SubRegs; | 
|  | MachineInstr *Def = PhysRegDef[SubReg]; | 
|  | if (!Def) | 
|  | continue; | 
|  | unsigned Dist = DistanceMap[Def]; | 
|  | if (Dist > LastDefDist) { | 
|  | LastDefReg  = SubReg; | 
|  | LastDef     = Def; | 
|  | LastDefDist = Dist; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!LastDef) | 
|  | return nullptr; | 
|  |  | 
|  | PartDefRegs.insert(LastDefReg); | 
|  | for (unsigned i = 0, e = LastDef->getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &MO = LastDef->getOperand(i); | 
|  | if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0) | 
|  | continue; | 
|  | Register DefReg = MO.getReg(); | 
|  | if (TRI->isSubRegister(Reg, DefReg)) { | 
|  | for (MCSubRegIterator SubRegs(DefReg, TRI, /*IncludeSelf=*/true); | 
|  | SubRegs.isValid(); ++SubRegs) | 
|  | PartDefRegs.insert(*SubRegs); | 
|  | } | 
|  | } | 
|  | return LastDef; | 
|  | } | 
|  |  | 
|  | /// HandlePhysRegUse - Turn previous partial def's into read/mod/writes. Add | 
|  | /// implicit defs to a machine instruction if there was an earlier def of its | 
|  | /// super-register. | 
|  | void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr &MI) { | 
|  | MachineInstr *LastDef = PhysRegDef[Reg]; | 
|  | // If there was a previous use or a "full" def all is well. | 
|  | if (!LastDef && !PhysRegUse[Reg]) { | 
|  | // Otherwise, the last sub-register def implicitly defines this register. | 
|  | // e.g. | 
|  | // AH = | 
|  | // AL = ... implicit-def EAX, implicit killed AH | 
|  | //    = AH | 
|  | // ... | 
|  | //    = EAX | 
|  | // All of the sub-registers must have been defined before the use of Reg! | 
|  | SmallSet<unsigned, 4> PartDefRegs; | 
|  | MachineInstr *LastPartialDef = FindLastPartialDef(Reg, PartDefRegs); | 
|  | // If LastPartialDef is NULL, it must be using a livein register. | 
|  | if (LastPartialDef) { | 
|  | LastPartialDef->addOperand(MachineOperand::CreateReg(Reg, true/*IsDef*/, | 
|  | true/*IsImp*/)); | 
|  | PhysRegDef[Reg] = LastPartialDef; | 
|  | SmallSet<unsigned, 8> Processed; | 
|  | for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { | 
|  | unsigned SubReg = *SubRegs; | 
|  | if (Processed.count(SubReg)) | 
|  | continue; | 
|  | if (PartDefRegs.count(SubReg)) | 
|  | continue; | 
|  | // This part of Reg was defined before the last partial def. It's killed | 
|  | // here. | 
|  | LastPartialDef->addOperand(MachineOperand::CreateReg(SubReg, | 
|  | false/*IsDef*/, | 
|  | true/*IsImp*/)); | 
|  | PhysRegDef[SubReg] = LastPartialDef; | 
|  | for (MCSubRegIterator SS(SubReg, TRI); SS.isValid(); ++SS) | 
|  | Processed.insert(*SS); | 
|  | } | 
|  | } | 
|  | } else if (LastDef && !PhysRegUse[Reg] && | 
|  | !LastDef->findRegisterDefOperand(Reg)) | 
|  | // Last def defines the super register, add an implicit def of reg. | 
|  | LastDef->addOperand(MachineOperand::CreateReg(Reg, true/*IsDef*/, | 
|  | true/*IsImp*/)); | 
|  |  | 
|  | // Remember this use. | 
|  | for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); | 
|  | SubRegs.isValid(); ++SubRegs) | 
|  | PhysRegUse[*SubRegs] = &MI; | 
|  | } | 
|  |  | 
|  | /// FindLastRefOrPartRef - Return the last reference or partial reference of | 
|  | /// the specified register. | 
|  | MachineInstr *LiveVariables::FindLastRefOrPartRef(unsigned Reg) { | 
|  | MachineInstr *LastDef = PhysRegDef[Reg]; | 
|  | MachineInstr *LastUse = PhysRegUse[Reg]; | 
|  | if (!LastDef && !LastUse) | 
|  | return nullptr; | 
|  |  | 
|  | MachineInstr *LastRefOrPartRef = LastUse ? LastUse : LastDef; | 
|  | unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef]; | 
|  | unsigned LastPartDefDist = 0; | 
|  | for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { | 
|  | unsigned SubReg = *SubRegs; | 
|  | MachineInstr *Def = PhysRegDef[SubReg]; | 
|  | if (Def && Def != LastDef) { | 
|  | // There was a def of this sub-register in between. This is a partial | 
|  | // def, keep track of the last one. | 
|  | unsigned Dist = DistanceMap[Def]; | 
|  | if (Dist > LastPartDefDist) | 
|  | LastPartDefDist = Dist; | 
|  | } else if (MachineInstr *Use = PhysRegUse[SubReg]) { | 
|  | unsigned Dist = DistanceMap[Use]; | 
|  | if (Dist > LastRefOrPartRefDist) { | 
|  | LastRefOrPartRefDist = Dist; | 
|  | LastRefOrPartRef = Use; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return LastRefOrPartRef; | 
|  | } | 
|  |  | 
|  | bool LiveVariables::HandlePhysRegKill(unsigned Reg, MachineInstr *MI) { | 
|  | MachineInstr *LastDef = PhysRegDef[Reg]; | 
|  | MachineInstr *LastUse = PhysRegUse[Reg]; | 
|  | if (!LastDef && !LastUse) | 
|  | return false; | 
|  |  | 
|  | MachineInstr *LastRefOrPartRef = LastUse ? LastUse : LastDef; | 
|  | unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef]; | 
|  | // The whole register is used. | 
|  | // AL = | 
|  | // AH = | 
|  | // | 
|  | //    = AX | 
|  | //    = AL, implicit killed AX | 
|  | // AX = | 
|  | // | 
|  | // Or whole register is defined, but not used at all. | 
|  | // dead AX = | 
|  | // ... | 
|  | // AX = | 
|  | // | 
|  | // Or whole register is defined, but only partly used. | 
|  | // dead AX = implicit-def AL | 
|  | //    = killed AL | 
|  | // AX = | 
|  | MachineInstr *LastPartDef = nullptr; | 
|  | unsigned LastPartDefDist = 0; | 
|  | SmallSet<unsigned, 8> PartUses; | 
|  | for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { | 
|  | unsigned SubReg = *SubRegs; | 
|  | MachineInstr *Def = PhysRegDef[SubReg]; | 
|  | if (Def && Def != LastDef) { | 
|  | // There was a def of this sub-register in between. This is a partial | 
|  | // def, keep track of the last one. | 
|  | unsigned Dist = DistanceMap[Def]; | 
|  | if (Dist > LastPartDefDist) { | 
|  | LastPartDefDist = Dist; | 
|  | LastPartDef = Def; | 
|  | } | 
|  | continue; | 
|  | } | 
|  | if (MachineInstr *Use = PhysRegUse[SubReg]) { | 
|  | for (MCSubRegIterator SS(SubReg, TRI, /*IncludeSelf=*/true); SS.isValid(); | 
|  | ++SS) | 
|  | PartUses.insert(*SS); | 
|  | unsigned Dist = DistanceMap[Use]; | 
|  | if (Dist > LastRefOrPartRefDist) { | 
|  | LastRefOrPartRefDist = Dist; | 
|  | LastRefOrPartRef = Use; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!PhysRegUse[Reg]) { | 
|  | // Partial uses. Mark register def dead and add implicit def of | 
|  | // sub-registers which are used. | 
|  | // dead EAX  = op  implicit-def AL | 
|  | // That is, EAX def is dead but AL def extends pass it. | 
|  | PhysRegDef[Reg]->addRegisterDead(Reg, TRI, true); | 
|  | for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { | 
|  | unsigned SubReg = *SubRegs; | 
|  | if (!PartUses.count(SubReg)) | 
|  | continue; | 
|  | bool NeedDef = true; | 
|  | if (PhysRegDef[Reg] == PhysRegDef[SubReg]) { | 
|  | MachineOperand *MO = PhysRegDef[Reg]->findRegisterDefOperand(SubReg); | 
|  | if (MO) { | 
|  | NeedDef = false; | 
|  | assert(!MO->isDead()); | 
|  | } | 
|  | } | 
|  | if (NeedDef) | 
|  | PhysRegDef[Reg]->addOperand(MachineOperand::CreateReg(SubReg, | 
|  | true/*IsDef*/, true/*IsImp*/)); | 
|  | MachineInstr *LastSubRef = FindLastRefOrPartRef(SubReg); | 
|  | if (LastSubRef) | 
|  | LastSubRef->addRegisterKilled(SubReg, TRI, true); | 
|  | else { | 
|  | LastRefOrPartRef->addRegisterKilled(SubReg, TRI, true); | 
|  | for (MCSubRegIterator SS(SubReg, TRI, /*IncludeSelf=*/true); | 
|  | SS.isValid(); ++SS) | 
|  | PhysRegUse[*SS] = LastRefOrPartRef; | 
|  | } | 
|  | for (MCSubRegIterator SS(SubReg, TRI); SS.isValid(); ++SS) | 
|  | PartUses.erase(*SS); | 
|  | } | 
|  | } else if (LastRefOrPartRef == PhysRegDef[Reg] && LastRefOrPartRef != MI) { | 
|  | if (LastPartDef) | 
|  | // The last partial def kills the register. | 
|  | LastPartDef->addOperand(MachineOperand::CreateReg(Reg, false/*IsDef*/, | 
|  | true/*IsImp*/, true/*IsKill*/)); | 
|  | else { | 
|  | MachineOperand *MO = | 
|  | LastRefOrPartRef->findRegisterDefOperand(Reg, false, false, TRI); | 
|  | bool NeedEC = MO->isEarlyClobber() && MO->getReg() != Reg; | 
|  | // If the last reference is the last def, then it's not used at all. | 
|  | // That is, unless we are currently processing the last reference itself. | 
|  | LastRefOrPartRef->addRegisterDead(Reg, TRI, true); | 
|  | if (NeedEC) { | 
|  | // If we are adding a subreg def and the superreg def is marked early | 
|  | // clobber, add an early clobber marker to the subreg def. | 
|  | MO = LastRefOrPartRef->findRegisterDefOperand(Reg); | 
|  | if (MO) | 
|  | MO->setIsEarlyClobber(); | 
|  | } | 
|  | } | 
|  | } else | 
|  | LastRefOrPartRef->addRegisterKilled(Reg, TRI, true); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void LiveVariables::HandleRegMask(const MachineOperand &MO) { | 
|  | // Call HandlePhysRegKill() for all live registers clobbered by Mask. | 
|  | // Clobbered registers are always dead, sp there is no need to use | 
|  | // HandlePhysRegDef(). | 
|  | for (unsigned Reg = 1, NumRegs = TRI->getNumRegs(); Reg != NumRegs; ++Reg) { | 
|  | // Skip dead regs. | 
|  | if (!PhysRegDef[Reg] && !PhysRegUse[Reg]) | 
|  | continue; | 
|  | // Skip mask-preserved regs. | 
|  | if (!MO.clobbersPhysReg(Reg)) | 
|  | continue; | 
|  | // Kill the largest clobbered super-register. | 
|  | // This avoids needless implicit operands. | 
|  | unsigned Super = Reg; | 
|  | for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) | 
|  | if ((PhysRegDef[*SR] || PhysRegUse[*SR]) && MO.clobbersPhysReg(*SR)) | 
|  | Super = *SR; | 
|  | HandlePhysRegKill(Super, nullptr); | 
|  | } | 
|  | } | 
|  |  | 
|  | void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI, | 
|  | SmallVectorImpl<unsigned> &Defs) { | 
|  | // What parts of the register are previously defined? | 
|  | SmallSet<unsigned, 32> Live; | 
|  | if (PhysRegDef[Reg] || PhysRegUse[Reg]) { | 
|  | for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); | 
|  | SubRegs.isValid(); ++SubRegs) | 
|  | Live.insert(*SubRegs); | 
|  | } else { | 
|  | for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { | 
|  | unsigned SubReg = *SubRegs; | 
|  | // If a register isn't itself defined, but all parts that make up of it | 
|  | // are defined, then consider it also defined. | 
|  | // e.g. | 
|  | // AL = | 
|  | // AH = | 
|  | //    = AX | 
|  | if (Live.count(SubReg)) | 
|  | continue; | 
|  | if (PhysRegDef[SubReg] || PhysRegUse[SubReg]) { | 
|  | for (MCSubRegIterator SS(SubReg, TRI, /*IncludeSelf=*/true); | 
|  | SS.isValid(); ++SS) | 
|  | Live.insert(*SS); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Start from the largest piece, find the last time any part of the register | 
|  | // is referenced. | 
|  | HandlePhysRegKill(Reg, MI); | 
|  | // Only some of the sub-registers are used. | 
|  | for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { | 
|  | unsigned SubReg = *SubRegs; | 
|  | if (!Live.count(SubReg)) | 
|  | // Skip if this sub-register isn't defined. | 
|  | continue; | 
|  | HandlePhysRegKill(SubReg, MI); | 
|  | } | 
|  |  | 
|  | if (MI) | 
|  | Defs.push_back(Reg);  // Remember this def. | 
|  | } | 
|  |  | 
|  | void LiveVariables::UpdatePhysRegDefs(MachineInstr &MI, | 
|  | SmallVectorImpl<unsigned> &Defs) { | 
|  | while (!Defs.empty()) { | 
|  | unsigned Reg = Defs.back(); | 
|  | Defs.pop_back(); | 
|  | for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); | 
|  | SubRegs.isValid(); ++SubRegs) { | 
|  | unsigned SubReg = *SubRegs; | 
|  | PhysRegDef[SubReg] = &MI; | 
|  | PhysRegUse[SubReg]  = nullptr; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void LiveVariables::runOnInstr(MachineInstr &MI, | 
|  | SmallVectorImpl<unsigned> &Defs) { | 
|  | assert(!MI.isDebugInstr()); | 
|  | // Process all of the operands of the instruction... | 
|  | unsigned NumOperandsToProcess = MI.getNumOperands(); | 
|  |  | 
|  | // Unless it is a PHI node.  In this case, ONLY process the DEF, not any | 
|  | // of the uses.  They will be handled in other basic blocks. | 
|  | if (MI.isPHI()) | 
|  | NumOperandsToProcess = 1; | 
|  |  | 
|  | // Clear kill and dead markers. LV will recompute them. | 
|  | SmallVector<unsigned, 4> UseRegs; | 
|  | SmallVector<unsigned, 4> DefRegs; | 
|  | SmallVector<unsigned, 1> RegMasks; | 
|  | for (unsigned i = 0; i != NumOperandsToProcess; ++i) { | 
|  | MachineOperand &MO = MI.getOperand(i); | 
|  | if (MO.isRegMask()) { | 
|  | RegMasks.push_back(i); | 
|  | continue; | 
|  | } | 
|  | if (!MO.isReg() || MO.getReg() == 0) | 
|  | continue; | 
|  | Register MOReg = MO.getReg(); | 
|  | if (MO.isUse()) { | 
|  | if (!(Register::isPhysicalRegister(MOReg) && MRI->isReserved(MOReg))) | 
|  | MO.setIsKill(false); | 
|  | if (MO.readsReg()) | 
|  | UseRegs.push_back(MOReg); | 
|  | } else { | 
|  | assert(MO.isDef()); | 
|  | // FIXME: We should not remove any dead flags. However the MIPS RDDSP | 
|  | // instruction needs it at the moment: http://llvm.org/PR27116. | 
|  | if (Register::isPhysicalRegister(MOReg) && !MRI->isReserved(MOReg)) | 
|  | MO.setIsDead(false); | 
|  | DefRegs.push_back(MOReg); | 
|  | } | 
|  | } | 
|  |  | 
|  | MachineBasicBlock *MBB = MI.getParent(); | 
|  | // Process all uses. | 
|  | for (unsigned i = 0, e = UseRegs.size(); i != e; ++i) { | 
|  | unsigned MOReg = UseRegs[i]; | 
|  | if (Register::isVirtualRegister(MOReg)) | 
|  | HandleVirtRegUse(MOReg, MBB, MI); | 
|  | else if (!MRI->isReserved(MOReg)) | 
|  | HandlePhysRegUse(MOReg, MI); | 
|  | } | 
|  |  | 
|  | // Process all masked registers. (Call clobbers). | 
|  | for (unsigned i = 0, e = RegMasks.size(); i != e; ++i) | 
|  | HandleRegMask(MI.getOperand(RegMasks[i])); | 
|  |  | 
|  | // Process all defs. | 
|  | for (unsigned i = 0, e = DefRegs.size(); i != e; ++i) { | 
|  | unsigned MOReg = DefRegs[i]; | 
|  | if (Register::isVirtualRegister(MOReg)) | 
|  | HandleVirtRegDef(MOReg, MI); | 
|  | else if (!MRI->isReserved(MOReg)) | 
|  | HandlePhysRegDef(MOReg, &MI, Defs); | 
|  | } | 
|  | UpdatePhysRegDefs(MI, Defs); | 
|  | } | 
|  |  | 
|  | void LiveVariables::runOnBlock(MachineBasicBlock *MBB, const unsigned NumRegs) { | 
|  | // Mark live-in registers as live-in. | 
|  | SmallVector<unsigned, 4> Defs; | 
|  | for (const auto &LI : MBB->liveins()) { | 
|  | assert(Register::isPhysicalRegister(LI.PhysReg) && | 
|  | "Cannot have a live-in virtual register!"); | 
|  | HandlePhysRegDef(LI.PhysReg, nullptr, Defs); | 
|  | } | 
|  |  | 
|  | // Loop over all of the instructions, processing them. | 
|  | DistanceMap.clear(); | 
|  | unsigned Dist = 0; | 
|  | for (MachineInstr &MI : *MBB) { | 
|  | if (MI.isDebugInstr()) | 
|  | continue; | 
|  | DistanceMap.insert(std::make_pair(&MI, Dist++)); | 
|  |  | 
|  | runOnInstr(MI, Defs); | 
|  | } | 
|  |  | 
|  | // Handle any virtual assignments from PHI nodes which might be at the | 
|  | // bottom of this basic block.  We check all of our successor blocks to see | 
|  | // if they have PHI nodes, and if so, we simulate an assignment at the end | 
|  | // of the current block. | 
|  | if (!PHIVarInfo[MBB->getNumber()].empty()) { | 
|  | SmallVectorImpl<unsigned> &VarInfoVec = PHIVarInfo[MBB->getNumber()]; | 
|  |  | 
|  | for (SmallVectorImpl<unsigned>::iterator I = VarInfoVec.begin(), | 
|  | E = VarInfoVec.end(); I != E; ++I) | 
|  | // Mark it alive only in the block we are representing. | 
|  | MarkVirtRegAliveInBlock(getVarInfo(*I),MRI->getVRegDef(*I)->getParent(), | 
|  | MBB); | 
|  | } | 
|  |  | 
|  | // MachineCSE may CSE instructions which write to non-allocatable physical | 
|  | // registers across MBBs. Remember if any reserved register is liveout. | 
|  | SmallSet<unsigned, 4> LiveOuts; | 
|  | for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(), | 
|  | SE = MBB->succ_end(); SI != SE; ++SI) { | 
|  | MachineBasicBlock *SuccMBB = *SI; | 
|  | if (SuccMBB->isEHPad()) | 
|  | continue; | 
|  | for (const auto &LI : SuccMBB->liveins()) { | 
|  | if (!TRI->isInAllocatableClass(LI.PhysReg)) | 
|  | // Ignore other live-ins, e.g. those that are live into landing pads. | 
|  | LiveOuts.insert(LI.PhysReg); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Loop over PhysRegDef / PhysRegUse, killing any registers that are | 
|  | // available at the end of the basic block. | 
|  | for (unsigned i = 0; i != NumRegs; ++i) | 
|  | if ((PhysRegDef[i] || PhysRegUse[i]) && !LiveOuts.count(i)) | 
|  | HandlePhysRegDef(i, nullptr, Defs); | 
|  | } | 
|  |  | 
|  | bool LiveVariables::runOnMachineFunction(MachineFunction &mf) { | 
|  | MF = &mf; | 
|  | MRI = &mf.getRegInfo(); | 
|  | TRI = MF->getSubtarget().getRegisterInfo(); | 
|  |  | 
|  | const unsigned NumRegs = TRI->getNumRegs(); | 
|  | PhysRegDef.assign(NumRegs, nullptr); | 
|  | PhysRegUse.assign(NumRegs, nullptr); | 
|  | PHIVarInfo.resize(MF->getNumBlockIDs()); | 
|  | PHIJoins.clear(); | 
|  |  | 
|  | // FIXME: LiveIntervals will be updated to remove its dependence on | 
|  | // LiveVariables to improve compilation time and eliminate bizarre pass | 
|  | // dependencies. Until then, we can't change much in -O0. | 
|  | if (!MRI->isSSA()) | 
|  | report_fatal_error("regalloc=... not currently supported with -O0"); | 
|  |  | 
|  | analyzePHINodes(mf); | 
|  |  | 
|  | // Calculate live variable information in depth first order on the CFG of the | 
|  | // function.  This guarantees that we will see the definition of a virtual | 
|  | // register before its uses due to dominance properties of SSA (except for PHI | 
|  | // nodes, which are treated as a special case). | 
|  | MachineBasicBlock *Entry = &MF->front(); | 
|  | df_iterator_default_set<MachineBasicBlock*,16> Visited; | 
|  |  | 
|  | for (MachineBasicBlock *MBB : depth_first_ext(Entry, Visited)) { | 
|  | runOnBlock(MBB, NumRegs); | 
|  |  | 
|  | PhysRegDef.assign(NumRegs, nullptr); | 
|  | PhysRegUse.assign(NumRegs, nullptr); | 
|  | } | 
|  |  | 
|  | // Convert and transfer the dead / killed information we have gathered into | 
|  | // VirtRegInfo onto MI's. | 
|  | for (unsigned i = 0, e1 = VirtRegInfo.size(); i != e1; ++i) { | 
|  | const unsigned Reg = Register::index2VirtReg(i); | 
|  | for (unsigned j = 0, e2 = VirtRegInfo[Reg].Kills.size(); j != e2; ++j) | 
|  | if (VirtRegInfo[Reg].Kills[j] == MRI->getVRegDef(Reg)) | 
|  | VirtRegInfo[Reg].Kills[j]->addRegisterDead(Reg, TRI); | 
|  | else | 
|  | VirtRegInfo[Reg].Kills[j]->addRegisterKilled(Reg, TRI); | 
|  | } | 
|  |  | 
|  | // Check to make sure there are no unreachable blocks in the MC CFG for the | 
|  | // function.  If so, it is due to a bug in the instruction selector or some | 
|  | // other part of the code generator if this happens. | 
|  | #ifndef NDEBUG | 
|  | for(MachineFunction::iterator i = MF->begin(), e = MF->end(); i != e; ++i) | 
|  | assert(Visited.count(&*i) != 0 && "unreachable basic block found"); | 
|  | #endif | 
|  |  | 
|  | PhysRegDef.clear(); | 
|  | PhysRegUse.clear(); | 
|  | PHIVarInfo.clear(); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// replaceKillInstruction - Update register kill info by replacing a kill | 
|  | /// instruction with a new one. | 
|  | void LiveVariables::replaceKillInstruction(unsigned Reg, MachineInstr &OldMI, | 
|  | MachineInstr &NewMI) { | 
|  | VarInfo &VI = getVarInfo(Reg); | 
|  | std::replace(VI.Kills.begin(), VI.Kills.end(), &OldMI, &NewMI); | 
|  | } | 
|  |  | 
|  | /// removeVirtualRegistersKilled - Remove all killed info for the specified | 
|  | /// instruction. | 
|  | void LiveVariables::removeVirtualRegistersKilled(MachineInstr &MI) { | 
|  | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &MO = MI.getOperand(i); | 
|  | if (MO.isReg() && MO.isKill()) { | 
|  | MO.setIsKill(false); | 
|  | Register Reg = MO.getReg(); | 
|  | if (Register::isVirtualRegister(Reg)) { | 
|  | bool removed = getVarInfo(Reg).removeKill(MI); | 
|  | assert(removed && "kill not in register's VarInfo?"); | 
|  | (void)removed; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// analyzePHINodes - Gather information about the PHI nodes in here. In | 
|  | /// particular, we want to map the variable information of a virtual register | 
|  | /// which is used in a PHI node. We map that to the BB the vreg is coming from. | 
|  | /// | 
|  | void LiveVariables::analyzePHINodes(const MachineFunction& Fn) { | 
|  | for (const auto &MBB : Fn) | 
|  | for (const auto &BBI : MBB) { | 
|  | if (!BBI.isPHI()) | 
|  | break; | 
|  | for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) | 
|  | if (BBI.getOperand(i).readsReg()) | 
|  | PHIVarInfo[BBI.getOperand(i + 1).getMBB()->getNumber()] | 
|  | .push_back(BBI.getOperand(i).getReg()); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool LiveVariables::VarInfo::isLiveIn(const MachineBasicBlock &MBB, | 
|  | unsigned Reg, | 
|  | MachineRegisterInfo &MRI) { | 
|  | unsigned Num = MBB.getNumber(); | 
|  |  | 
|  | // Reg is live-through. | 
|  | if (AliveBlocks.test(Num)) | 
|  | return true; | 
|  |  | 
|  | // Registers defined in MBB cannot be live in. | 
|  | const MachineInstr *Def = MRI.getVRegDef(Reg); | 
|  | if (Def && Def->getParent() == &MBB) | 
|  | return false; | 
|  |  | 
|  | // Reg was not defined in MBB, was it killed here? | 
|  | return findKill(&MBB); | 
|  | } | 
|  |  | 
|  | bool LiveVariables::isLiveOut(unsigned Reg, const MachineBasicBlock &MBB) { | 
|  | LiveVariables::VarInfo &VI = getVarInfo(Reg); | 
|  |  | 
|  | SmallPtrSet<const MachineBasicBlock *, 8> Kills; | 
|  | for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i) | 
|  | Kills.insert(VI.Kills[i]->getParent()); | 
|  |  | 
|  | // Loop over all of the successors of the basic block, checking to see if | 
|  | // the value is either live in the block, or if it is killed in the block. | 
|  | for (const MachineBasicBlock *SuccMBB : MBB.successors()) { | 
|  | // Is it alive in this successor? | 
|  | unsigned SuccIdx = SuccMBB->getNumber(); | 
|  | if (VI.AliveBlocks.test(SuccIdx)) | 
|  | return true; | 
|  | // Or is it live because there is a use in a successor that kills it? | 
|  | if (Kills.count(SuccMBB)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// addNewBlock - Add a new basic block BB as an empty succcessor to DomBB. All | 
|  | /// variables that are live out of DomBB will be marked as passing live through | 
|  | /// BB. | 
|  | void LiveVariables::addNewBlock(MachineBasicBlock *BB, | 
|  | MachineBasicBlock *DomBB, | 
|  | MachineBasicBlock *SuccBB) { | 
|  | const unsigned NumNew = BB->getNumber(); | 
|  |  | 
|  | DenseSet<unsigned> Defs, Kills; | 
|  |  | 
|  | MachineBasicBlock::iterator BBI = SuccBB->begin(), BBE = SuccBB->end(); | 
|  | for (; BBI != BBE && BBI->isPHI(); ++BBI) { | 
|  | // Record the def of the PHI node. | 
|  | Defs.insert(BBI->getOperand(0).getReg()); | 
|  |  | 
|  | // All registers used by PHI nodes in SuccBB must be live through BB. | 
|  | for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) | 
|  | if (BBI->getOperand(i+1).getMBB() == BB) | 
|  | getVarInfo(BBI->getOperand(i).getReg()).AliveBlocks.set(NumNew); | 
|  | } | 
|  |  | 
|  | // Record all vreg defs and kills of all instructions in SuccBB. | 
|  | for (; BBI != BBE; ++BBI) { | 
|  | for (MachineInstr::mop_iterator I = BBI->operands_begin(), | 
|  | E = BBI->operands_end(); I != E; ++I) { | 
|  | if (I->isReg() && Register::isVirtualRegister(I->getReg())) { | 
|  | if (I->isDef()) | 
|  | Defs.insert(I->getReg()); | 
|  | else if (I->isKill()) | 
|  | Kills.insert(I->getReg()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Update info for all live variables | 
|  | for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { | 
|  | unsigned Reg = Register::index2VirtReg(i); | 
|  |  | 
|  | // If the Defs is defined in the successor it can't be live in BB. | 
|  | if (Defs.count(Reg)) | 
|  | continue; | 
|  |  | 
|  | // If the register is either killed in or live through SuccBB it's also live | 
|  | // through BB. | 
|  | VarInfo &VI = getVarInfo(Reg); | 
|  | if (Kills.count(Reg) || VI.AliveBlocks.test(SuccBB->getNumber())) | 
|  | VI.AliveBlocks.set(NumNew); | 
|  | } | 
|  | } |