|  | //===-- llvm-stress.cpp - Generate random LL files to stress-test LLVM ----===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This program is a utility that generates random .ll files to stress-test | 
|  | // different components in LLVM. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Analysis/CallGraphSCCPass.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/IRPrintingPasses.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/IR/LegacyPassManager.h" | 
|  | #include "llvm/IR/LegacyPassNameParser.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/IR/Verifier.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/FileSystem.h" | 
|  | #include "llvm/Support/ManagedStatic.h" | 
|  | #include "llvm/Support/PluginLoader.h" | 
|  | #include "llvm/Support/PrettyStackTrace.h" | 
|  | #include "llvm/Support/ToolOutputFile.h" | 
|  | #include <algorithm> | 
|  | #include <random> | 
|  | #include <vector> | 
|  |  | 
|  | namespace llvm { | 
|  |  | 
|  | static cl::opt<unsigned> SeedCL("seed", | 
|  | cl::desc("Seed used for randomness"), cl::init(0)); | 
|  | static cl::opt<unsigned> SizeCL("size", | 
|  | cl::desc("The estimated size of the generated function (# of instrs)"), | 
|  | cl::init(100)); | 
|  | static cl::opt<std::string> | 
|  | OutputFilename("o", cl::desc("Override output filename"), | 
|  | cl::value_desc("filename")); | 
|  |  | 
|  | static LLVMContext Context; | 
|  |  | 
|  | namespace cl { | 
|  | template <> class parser<Type*> final : public basic_parser<Type*> { | 
|  | public: | 
|  | parser(Option &O) : basic_parser(O) {} | 
|  |  | 
|  | // Parse options as IR types. Return true on error. | 
|  | bool parse(Option &O, StringRef, StringRef Arg, Type *&Value) { | 
|  | if      (Arg == "half")      Value = Type::getHalfTy(Context); | 
|  | else if (Arg == "fp128")     Value = Type::getFP128Ty(Context); | 
|  | else if (Arg == "x86_fp80")  Value = Type::getX86_FP80Ty(Context); | 
|  | else if (Arg == "ppc_fp128") Value = Type::getPPC_FP128Ty(Context); | 
|  | else if (Arg == "x86_mmx")   Value = Type::getX86_MMXTy(Context); | 
|  | else if (Arg.startswith("i")) { | 
|  | unsigned N = 0; | 
|  | Arg.drop_front().getAsInteger(10, N); | 
|  | if (N > 0) | 
|  | Value = Type::getIntNTy(Context, N); | 
|  | } | 
|  |  | 
|  | if (!Value) | 
|  | return O.error("Invalid IR scalar type: '" + Arg + "'!"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | StringRef getValueName() const override { return "IR scalar type"; } | 
|  | }; | 
|  | } | 
|  |  | 
|  |  | 
|  | static cl::list<Type*> AdditionalScalarTypes("types", cl::CommaSeparated, | 
|  | cl::desc("Additional IR scalar types " | 
|  | "(always includes i1, i8, i16, i32, i64, float and double)")); | 
|  |  | 
|  | namespace { | 
|  | /// A utility class to provide a pseudo-random number generator which is | 
|  | /// the same across all platforms. This is somewhat close to the libc | 
|  | /// implementation. Note: This is not a cryptographically secure pseudorandom | 
|  | /// number generator. | 
|  | class Random { | 
|  | public: | 
|  | /// C'tor | 
|  | Random(unsigned _seed):Seed(_seed) {} | 
|  |  | 
|  | /// Return a random integer, up to a | 
|  | /// maximum of 2**19 - 1. | 
|  | uint32_t Rand() { | 
|  | uint32_t Val = Seed + 0x000b07a1; | 
|  | Seed = (Val * 0x3c7c0ac1); | 
|  | // Only lowest 19 bits are random-ish. | 
|  | return Seed & 0x7ffff; | 
|  | } | 
|  |  | 
|  | /// Return a random 32 bit integer. | 
|  | uint32_t Rand32() { | 
|  | uint32_t Val = Rand(); | 
|  | Val &= 0xffff; | 
|  | return Val | (Rand() << 16); | 
|  | } | 
|  |  | 
|  | /// Return a random 64 bit integer. | 
|  | uint64_t Rand64() { | 
|  | uint64_t Val = Rand32(); | 
|  | return Val | (uint64_t(Rand32()) << 32); | 
|  | } | 
|  |  | 
|  | /// Rand operator for STL algorithms. | 
|  | ptrdiff_t operator()(ptrdiff_t y) { | 
|  | return  Rand64() % y; | 
|  | } | 
|  |  | 
|  | /// Make this like a C++11 random device | 
|  | typedef uint32_t result_type; | 
|  | uint32_t operator()() { return Rand32(); } | 
|  | static constexpr result_type min() { return 0; } | 
|  | static constexpr result_type max() { return 0x7ffff; } | 
|  |  | 
|  | private: | 
|  | unsigned Seed; | 
|  | }; | 
|  |  | 
|  | /// Generate an empty function with a default argument list. | 
|  | Function *GenEmptyFunction(Module *M) { | 
|  | // Define a few arguments | 
|  | LLVMContext &Context = M->getContext(); | 
|  | Type* ArgsTy[] = { | 
|  | Type::getInt8PtrTy(Context), | 
|  | Type::getInt32PtrTy(Context), | 
|  | Type::getInt64PtrTy(Context), | 
|  | Type::getInt32Ty(Context), | 
|  | Type::getInt64Ty(Context), | 
|  | Type::getInt8Ty(Context) | 
|  | }; | 
|  |  | 
|  | auto *FuncTy = FunctionType::get(Type::getVoidTy(Context), ArgsTy, false); | 
|  | // Pick a unique name to describe the input parameters | 
|  | Twine Name = "autogen_SD" + Twine{SeedCL}; | 
|  | auto *Func = Function::Create(FuncTy, GlobalValue::ExternalLinkage, Name, M); | 
|  | Func->setCallingConv(CallingConv::C); | 
|  | return Func; | 
|  | } | 
|  |  | 
|  | /// A base class, implementing utilities needed for | 
|  | /// modifying and adding new random instructions. | 
|  | struct Modifier { | 
|  | /// Used to store the randomly generated values. | 
|  | typedef std::vector<Value*> PieceTable; | 
|  |  | 
|  | public: | 
|  | /// C'tor | 
|  | Modifier(BasicBlock *Block, PieceTable *PT, Random *R): | 
|  | BB(Block),PT(PT),Ran(R),Context(BB->getContext()) {} | 
|  |  | 
|  | /// virtual D'tor to silence warnings. | 
|  | virtual ~Modifier() {} | 
|  |  | 
|  | /// Add a new instruction. | 
|  | virtual void Act() = 0; | 
|  | /// Add N new instructions, | 
|  | virtual void ActN(unsigned n) { | 
|  | for (unsigned i=0; i<n; ++i) | 
|  | Act(); | 
|  | } | 
|  |  | 
|  | protected: | 
|  | /// Return a random value from the list of known values. | 
|  | Value *getRandomVal() { | 
|  | assert(PT->size()); | 
|  | return PT->at(Ran->Rand() % PT->size()); | 
|  | } | 
|  |  | 
|  | Constant *getRandomConstant(Type *Tp) { | 
|  | if (Tp->isIntegerTy()) { | 
|  | if (Ran->Rand() & 1) | 
|  | return ConstantInt::getAllOnesValue(Tp); | 
|  | return ConstantInt::getNullValue(Tp); | 
|  | } else if (Tp->isFloatingPointTy()) { | 
|  | if (Ran->Rand() & 1) | 
|  | return ConstantFP::getAllOnesValue(Tp); | 
|  | return ConstantFP::getNullValue(Tp); | 
|  | } | 
|  | return UndefValue::get(Tp); | 
|  | } | 
|  |  | 
|  | /// Return a random value with a known type. | 
|  | Value *getRandomValue(Type *Tp) { | 
|  | unsigned index = Ran->Rand(); | 
|  | for (unsigned i=0; i<PT->size(); ++i) { | 
|  | Value *V = PT->at((index + i) % PT->size()); | 
|  | if (V->getType() == Tp) | 
|  | return V; | 
|  | } | 
|  |  | 
|  | // If the requested type was not found, generate a constant value. | 
|  | if (Tp->isIntegerTy()) { | 
|  | if (Ran->Rand() & 1) | 
|  | return ConstantInt::getAllOnesValue(Tp); | 
|  | return ConstantInt::getNullValue(Tp); | 
|  | } else if (Tp->isFloatingPointTy()) { | 
|  | if (Ran->Rand() & 1) | 
|  | return ConstantFP::getAllOnesValue(Tp); | 
|  | return ConstantFP::getNullValue(Tp); | 
|  | } else if (Tp->isVectorTy()) { | 
|  | VectorType *VTp = cast<VectorType>(Tp); | 
|  |  | 
|  | std::vector<Constant*> TempValues; | 
|  | TempValues.reserve(VTp->getNumElements()); | 
|  | for (unsigned i = 0; i < VTp->getNumElements(); ++i) | 
|  | TempValues.push_back(getRandomConstant(VTp->getScalarType())); | 
|  |  | 
|  | ArrayRef<Constant*> VectorValue(TempValues); | 
|  | return ConstantVector::get(VectorValue); | 
|  | } | 
|  |  | 
|  | return UndefValue::get(Tp); | 
|  | } | 
|  |  | 
|  | /// Return a random value of any pointer type. | 
|  | Value *getRandomPointerValue() { | 
|  | unsigned index = Ran->Rand(); | 
|  | for (unsigned i=0; i<PT->size(); ++i) { | 
|  | Value *V = PT->at((index + i) % PT->size()); | 
|  | if (V->getType()->isPointerTy()) | 
|  | return V; | 
|  | } | 
|  | return UndefValue::get(pickPointerType()); | 
|  | } | 
|  |  | 
|  | /// Return a random value of any vector type. | 
|  | Value *getRandomVectorValue() { | 
|  | unsigned index = Ran->Rand(); | 
|  | for (unsigned i=0; i<PT->size(); ++i) { | 
|  | Value *V = PT->at((index + i) % PT->size()); | 
|  | if (V->getType()->isVectorTy()) | 
|  | return V; | 
|  | } | 
|  | return UndefValue::get(pickVectorType()); | 
|  | } | 
|  |  | 
|  | /// Pick a random type. | 
|  | Type *pickType() { | 
|  | return (Ran->Rand() & 1 ? pickVectorType() : pickScalarType()); | 
|  | } | 
|  |  | 
|  | /// Pick a random pointer type. | 
|  | Type *pickPointerType() { | 
|  | Type *Ty = pickType(); | 
|  | return PointerType::get(Ty, 0); | 
|  | } | 
|  |  | 
|  | /// Pick a random vector type. | 
|  | Type *pickVectorType(unsigned len = (unsigned)-1) { | 
|  | // Pick a random vector width in the range 2**0 to 2**4. | 
|  | // by adding two randoms we are generating a normal-like distribution | 
|  | // around 2**3. | 
|  | unsigned width = 1<<((Ran->Rand() % 3) + (Ran->Rand() % 3)); | 
|  | Type *Ty; | 
|  |  | 
|  | // Vectors of x86mmx are illegal; keep trying till we get something else. | 
|  | do { | 
|  | Ty = pickScalarType(); | 
|  | } while (Ty->isX86_MMXTy()); | 
|  |  | 
|  | if (len != (unsigned)-1) | 
|  | width = len; | 
|  | return VectorType::get(Ty, width); | 
|  | } | 
|  |  | 
|  | /// Pick a random scalar type. | 
|  | Type *pickScalarType() { | 
|  | static std::vector<Type*> ScalarTypes; | 
|  | if (ScalarTypes.empty()) { | 
|  | ScalarTypes.assign({ | 
|  | Type::getInt1Ty(Context), | 
|  | Type::getInt8Ty(Context), | 
|  | Type::getInt16Ty(Context), | 
|  | Type::getInt32Ty(Context), | 
|  | Type::getInt64Ty(Context), | 
|  | Type::getFloatTy(Context), | 
|  | Type::getDoubleTy(Context) | 
|  | }); | 
|  | ScalarTypes.insert(ScalarTypes.end(), | 
|  | AdditionalScalarTypes.begin(), AdditionalScalarTypes.end()); | 
|  | } | 
|  |  | 
|  | return ScalarTypes[Ran->Rand() % ScalarTypes.size()]; | 
|  | } | 
|  |  | 
|  | /// Basic block to populate | 
|  | BasicBlock *BB; | 
|  | /// Value table | 
|  | PieceTable *PT; | 
|  | /// Random number generator | 
|  | Random *Ran; | 
|  | /// Context | 
|  | LLVMContext &Context; | 
|  | }; | 
|  |  | 
|  | struct LoadModifier: public Modifier { | 
|  | LoadModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R) {} | 
|  | void Act() override { | 
|  | // Try to use predefined pointers. If non-exist, use undef pointer value; | 
|  | Value *Ptr = getRandomPointerValue(); | 
|  | Value *V = new LoadInst(Ptr, "L", BB->getTerminator()); | 
|  | PT->push_back(V); | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct StoreModifier: public Modifier { | 
|  | StoreModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R) {} | 
|  | void Act() override { | 
|  | // Try to use predefined pointers. If non-exist, use undef pointer value; | 
|  | Value *Ptr = getRandomPointerValue(); | 
|  | Type  *Tp = Ptr->getType(); | 
|  | Value *Val = getRandomValue(Tp->getContainedType(0)); | 
|  | Type  *ValTy = Val->getType(); | 
|  |  | 
|  | // Do not store vectors of i1s because they are unsupported | 
|  | // by the codegen. | 
|  | if (ValTy->isVectorTy() && ValTy->getScalarSizeInBits() == 1) | 
|  | return; | 
|  |  | 
|  | new StoreInst(Val, Ptr, BB->getTerminator()); | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct BinModifier: public Modifier { | 
|  | BinModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R) {} | 
|  |  | 
|  | void Act() override { | 
|  | Value *Val0 = getRandomVal(); | 
|  | Value *Val1 = getRandomValue(Val0->getType()); | 
|  |  | 
|  | // Don't handle pointer types. | 
|  | if (Val0->getType()->isPointerTy() || | 
|  | Val1->getType()->isPointerTy()) | 
|  | return; | 
|  |  | 
|  | // Don't handle i1 types. | 
|  | if (Val0->getType()->getScalarSizeInBits() == 1) | 
|  | return; | 
|  |  | 
|  |  | 
|  | bool isFloat = Val0->getType()->getScalarType()->isFloatingPointTy(); | 
|  | Instruction* Term = BB->getTerminator(); | 
|  | unsigned R = Ran->Rand() % (isFloat ? 7 : 13); | 
|  | Instruction::BinaryOps Op; | 
|  |  | 
|  | switch (R) { | 
|  | default: llvm_unreachable("Invalid BinOp"); | 
|  | case 0:{Op = (isFloat?Instruction::FAdd : Instruction::Add); break; } | 
|  | case 1:{Op = (isFloat?Instruction::FSub : Instruction::Sub); break; } | 
|  | case 2:{Op = (isFloat?Instruction::FMul : Instruction::Mul); break; } | 
|  | case 3:{Op = (isFloat?Instruction::FDiv : Instruction::SDiv); break; } | 
|  | case 4:{Op = (isFloat?Instruction::FDiv : Instruction::UDiv); break; } | 
|  | case 5:{Op = (isFloat?Instruction::FRem : Instruction::SRem); break; } | 
|  | case 6:{Op = (isFloat?Instruction::FRem : Instruction::URem); break; } | 
|  | case 7: {Op = Instruction::Shl;  break; } | 
|  | case 8: {Op = Instruction::LShr; break; } | 
|  | case 9: {Op = Instruction::AShr; break; } | 
|  | case 10:{Op = Instruction::And;  break; } | 
|  | case 11:{Op = Instruction::Or;   break; } | 
|  | case 12:{Op = Instruction::Xor;  break; } | 
|  | } | 
|  |  | 
|  | PT->push_back(BinaryOperator::Create(Op, Val0, Val1, "B", Term)); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// Generate constant values. | 
|  | struct ConstModifier: public Modifier { | 
|  | ConstModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R) {} | 
|  | void Act() override { | 
|  | Type *Ty = pickType(); | 
|  |  | 
|  | if (Ty->isVectorTy()) { | 
|  | switch (Ran->Rand() % 2) { | 
|  | case 0: if (Ty->getScalarType()->isIntegerTy()) | 
|  | return PT->push_back(ConstantVector::getAllOnesValue(Ty)); | 
|  | case 1: if (Ty->getScalarType()->isIntegerTy()) | 
|  | return PT->push_back(ConstantVector::getNullValue(Ty)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Ty->isFloatingPointTy()) { | 
|  | // Generate 128 random bits, the size of the (currently) | 
|  | // largest floating-point types. | 
|  | uint64_t RandomBits[2]; | 
|  | for (unsigned i = 0; i < 2; ++i) | 
|  | RandomBits[i] = Ran->Rand64(); | 
|  |  | 
|  | APInt RandomInt(Ty->getPrimitiveSizeInBits(), makeArrayRef(RandomBits)); | 
|  | APFloat RandomFloat(Ty->getFltSemantics(), RandomInt); | 
|  |  | 
|  | if (Ran->Rand() & 1) | 
|  | return PT->push_back(ConstantFP::getNullValue(Ty)); | 
|  | return PT->push_back(ConstantFP::get(Ty->getContext(), RandomFloat)); | 
|  | } | 
|  |  | 
|  | if (Ty->isIntegerTy()) { | 
|  | switch (Ran->Rand() % 7) { | 
|  | case 0: if (Ty->isIntegerTy()) | 
|  | return PT->push_back(ConstantInt::get(Ty, | 
|  | APInt::getAllOnesValue(Ty->getPrimitiveSizeInBits()))); | 
|  | case 1: if (Ty->isIntegerTy()) | 
|  | return PT->push_back(ConstantInt::get(Ty, | 
|  | APInt::getNullValue(Ty->getPrimitiveSizeInBits()))); | 
|  | case 2: case 3: case 4: case 5: | 
|  | case 6: if (Ty->isIntegerTy()) | 
|  | PT->push_back(ConstantInt::get(Ty, Ran->Rand())); | 
|  | } | 
|  | } | 
|  |  | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct AllocaModifier: public Modifier { | 
|  | AllocaModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R){} | 
|  |  | 
|  | void Act() override { | 
|  | Type *Tp = pickType(); | 
|  | PT->push_back(new AllocaInst(Tp, "A", BB->getFirstNonPHI())); | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct ExtractElementModifier: public Modifier { | 
|  | ExtractElementModifier(BasicBlock *BB, PieceTable *PT, Random *R): | 
|  | Modifier(BB, PT, R) {} | 
|  |  | 
|  | void Act() override { | 
|  | Value *Val0 = getRandomVectorValue(); | 
|  | Value *V = ExtractElementInst::Create(Val0, | 
|  | ConstantInt::get(Type::getInt32Ty(BB->getContext()), | 
|  | Ran->Rand() % cast<VectorType>(Val0->getType())->getNumElements()), | 
|  | "E", BB->getTerminator()); | 
|  | return PT->push_back(V); | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct ShuffModifier: public Modifier { | 
|  | ShuffModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R) {} | 
|  | void Act() override { | 
|  |  | 
|  | Value *Val0 = getRandomVectorValue(); | 
|  | Value *Val1 = getRandomValue(Val0->getType()); | 
|  |  | 
|  | unsigned Width = cast<VectorType>(Val0->getType())->getNumElements(); | 
|  | std::vector<Constant*> Idxs; | 
|  |  | 
|  | Type *I32 = Type::getInt32Ty(BB->getContext()); | 
|  | for (unsigned i=0; i<Width; ++i) { | 
|  | Constant *CI = ConstantInt::get(I32, Ran->Rand() % (Width*2)); | 
|  | // Pick some undef values. | 
|  | if (!(Ran->Rand() % 5)) | 
|  | CI = UndefValue::get(I32); | 
|  | Idxs.push_back(CI); | 
|  | } | 
|  |  | 
|  | Constant *Mask = ConstantVector::get(Idxs); | 
|  |  | 
|  | Value *V = new ShuffleVectorInst(Val0, Val1, Mask, "Shuff", | 
|  | BB->getTerminator()); | 
|  | PT->push_back(V); | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct InsertElementModifier: public Modifier { | 
|  | InsertElementModifier(BasicBlock *BB, PieceTable *PT, Random *R): | 
|  | Modifier(BB, PT, R) {} | 
|  |  | 
|  | void Act() override { | 
|  | Value *Val0 = getRandomVectorValue(); | 
|  | Value *Val1 = getRandomValue(Val0->getType()->getScalarType()); | 
|  |  | 
|  | Value *V = InsertElementInst::Create(Val0, Val1, | 
|  | ConstantInt::get(Type::getInt32Ty(BB->getContext()), | 
|  | Ran->Rand() % cast<VectorType>(Val0->getType())->getNumElements()), | 
|  | "I",  BB->getTerminator()); | 
|  | return PT->push_back(V); | 
|  | } | 
|  |  | 
|  | }; | 
|  |  | 
|  | struct CastModifier: public Modifier { | 
|  | CastModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R) {} | 
|  | void Act() override { | 
|  |  | 
|  | Value *V = getRandomVal(); | 
|  | Type *VTy = V->getType(); | 
|  | Type *DestTy = pickScalarType(); | 
|  |  | 
|  | // Handle vector casts vectors. | 
|  | if (VTy->isVectorTy()) { | 
|  | VectorType *VecTy = cast<VectorType>(VTy); | 
|  | DestTy = pickVectorType(VecTy->getNumElements()); | 
|  | } | 
|  |  | 
|  | // no need to cast. | 
|  | if (VTy == DestTy) return; | 
|  |  | 
|  | // Pointers: | 
|  | if (VTy->isPointerTy()) { | 
|  | if (!DestTy->isPointerTy()) | 
|  | DestTy = PointerType::get(DestTy, 0); | 
|  | return PT->push_back( | 
|  | new BitCastInst(V, DestTy, "PC", BB->getTerminator())); | 
|  | } | 
|  |  | 
|  | unsigned VSize = VTy->getScalarType()->getPrimitiveSizeInBits(); | 
|  | unsigned DestSize = DestTy->getScalarType()->getPrimitiveSizeInBits(); | 
|  |  | 
|  | // Generate lots of bitcasts. | 
|  | if ((Ran->Rand() & 1) && VSize == DestSize) { | 
|  | return PT->push_back( | 
|  | new BitCastInst(V, DestTy, "BC", BB->getTerminator())); | 
|  | } | 
|  |  | 
|  | // Both types are integers: | 
|  | if (VTy->getScalarType()->isIntegerTy() && | 
|  | DestTy->getScalarType()->isIntegerTy()) { | 
|  | if (VSize > DestSize) { | 
|  | return PT->push_back( | 
|  | new TruncInst(V, DestTy, "Tr", BB->getTerminator())); | 
|  | } else { | 
|  | assert(VSize < DestSize && "Different int types with the same size?"); | 
|  | if (Ran->Rand() & 1) | 
|  | return PT->push_back( | 
|  | new ZExtInst(V, DestTy, "ZE", BB->getTerminator())); | 
|  | return PT->push_back(new SExtInst(V, DestTy, "Se", BB->getTerminator())); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Fp to int. | 
|  | if (VTy->getScalarType()->isFloatingPointTy() && | 
|  | DestTy->getScalarType()->isIntegerTy()) { | 
|  | if (Ran->Rand() & 1) | 
|  | return PT->push_back( | 
|  | new FPToSIInst(V, DestTy, "FC", BB->getTerminator())); | 
|  | return PT->push_back(new FPToUIInst(V, DestTy, "FC", BB->getTerminator())); | 
|  | } | 
|  |  | 
|  | // Int to fp. | 
|  | if (VTy->getScalarType()->isIntegerTy() && | 
|  | DestTy->getScalarType()->isFloatingPointTy()) { | 
|  | if (Ran->Rand() & 1) | 
|  | return PT->push_back( | 
|  | new SIToFPInst(V, DestTy, "FC", BB->getTerminator())); | 
|  | return PT->push_back(new UIToFPInst(V, DestTy, "FC", BB->getTerminator())); | 
|  |  | 
|  | } | 
|  |  | 
|  | // Both floats. | 
|  | if (VTy->getScalarType()->isFloatingPointTy() && | 
|  | DestTy->getScalarType()->isFloatingPointTy()) { | 
|  | if (VSize > DestSize) { | 
|  | return PT->push_back( | 
|  | new FPTruncInst(V, DestTy, "Tr", BB->getTerminator())); | 
|  | } else if (VSize < DestSize) { | 
|  | return PT->push_back( | 
|  | new FPExtInst(V, DestTy, "ZE", BB->getTerminator())); | 
|  | } | 
|  | // If VSize == DestSize, then the two types must be fp128 and ppc_fp128, | 
|  | // for which there is no defined conversion. So do nothing. | 
|  | } | 
|  | } | 
|  |  | 
|  | }; | 
|  |  | 
|  | struct SelectModifier: public Modifier { | 
|  | SelectModifier(BasicBlock *BB, PieceTable *PT, Random *R): | 
|  | Modifier(BB, PT, R) {} | 
|  |  | 
|  | void Act() override { | 
|  | // Try a bunch of different select configuration until a valid one is found. | 
|  | Value *Val0 = getRandomVal(); | 
|  | Value *Val1 = getRandomValue(Val0->getType()); | 
|  |  | 
|  | Type *CondTy = Type::getInt1Ty(Context); | 
|  |  | 
|  | // If the value type is a vector, and we allow vector select, then in 50% | 
|  | // of the cases generate a vector select. | 
|  | if (Val0->getType()->isVectorTy() && (Ran->Rand() % 1)) { | 
|  | unsigned NumElem = cast<VectorType>(Val0->getType())->getNumElements(); | 
|  | CondTy = VectorType::get(CondTy, NumElem); | 
|  | } | 
|  |  | 
|  | Value *Cond = getRandomValue(CondTy); | 
|  | Value *V = SelectInst::Create(Cond, Val0, Val1, "Sl", BB->getTerminator()); | 
|  | return PT->push_back(V); | 
|  | } | 
|  | }; | 
|  |  | 
|  |  | 
|  | struct CmpModifier: public Modifier { | 
|  | CmpModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R) {} | 
|  | void Act() override { | 
|  |  | 
|  | Value *Val0 = getRandomVal(); | 
|  | Value *Val1 = getRandomValue(Val0->getType()); | 
|  |  | 
|  | if (Val0->getType()->isPointerTy()) return; | 
|  | bool fp = Val0->getType()->getScalarType()->isFloatingPointTy(); | 
|  |  | 
|  | int op; | 
|  | if (fp) { | 
|  | op = Ran->Rand() % | 
|  | (CmpInst::LAST_FCMP_PREDICATE - CmpInst::FIRST_FCMP_PREDICATE) + | 
|  | CmpInst::FIRST_FCMP_PREDICATE; | 
|  | } else { | 
|  | op = Ran->Rand() % | 
|  | (CmpInst::LAST_ICMP_PREDICATE - CmpInst::FIRST_ICMP_PREDICATE) + | 
|  | CmpInst::FIRST_ICMP_PREDICATE; | 
|  | } | 
|  |  | 
|  | Value *V = CmpInst::Create(fp ? Instruction::FCmp : Instruction::ICmp, | 
|  | (CmpInst::Predicate)op, Val0, Val1, "Cmp", | 
|  | BB->getTerminator()); | 
|  | return PT->push_back(V); | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | static void FillFunction(Function *F, Random &R) { | 
|  | // Create a legal entry block. | 
|  | BasicBlock *BB = BasicBlock::Create(F->getContext(), "BB", F); | 
|  | ReturnInst::Create(F->getContext(), BB); | 
|  |  | 
|  | // Create the value table. | 
|  | Modifier::PieceTable PT; | 
|  |  | 
|  | // Consider arguments as legal values. | 
|  | for (auto &arg : F->args()) | 
|  | PT.push_back(&arg); | 
|  |  | 
|  | // List of modifiers which add new random instructions. | 
|  | std::vector<std::unique_ptr<Modifier>> Modifiers; | 
|  | Modifiers.emplace_back(new LoadModifier(BB, &PT, &R)); | 
|  | Modifiers.emplace_back(new StoreModifier(BB, &PT, &R)); | 
|  | auto SM = Modifiers.back().get(); | 
|  | Modifiers.emplace_back(new ExtractElementModifier(BB, &PT, &R)); | 
|  | Modifiers.emplace_back(new ShuffModifier(BB, &PT, &R)); | 
|  | Modifiers.emplace_back(new InsertElementModifier(BB, &PT, &R)); | 
|  | Modifiers.emplace_back(new BinModifier(BB, &PT, &R)); | 
|  | Modifiers.emplace_back(new CastModifier(BB, &PT, &R)); | 
|  | Modifiers.emplace_back(new SelectModifier(BB, &PT, &R)); | 
|  | Modifiers.emplace_back(new CmpModifier(BB, &PT, &R)); | 
|  |  | 
|  | // Generate the random instructions | 
|  | AllocaModifier{BB, &PT, &R}.ActN(5); // Throw in a few allocas | 
|  | ConstModifier{BB, &PT, &R}.ActN(40); // Throw in a few constants | 
|  |  | 
|  | for (unsigned i = 0; i < SizeCL / Modifiers.size(); ++i) | 
|  | for (auto &Mod : Modifiers) | 
|  | Mod->Act(); | 
|  |  | 
|  | SM->ActN(5); // Throw in a few stores. | 
|  | } | 
|  |  | 
|  | static void IntroduceControlFlow(Function *F, Random &R) { | 
|  | std::vector<Instruction*> BoolInst; | 
|  | for (auto &Instr : F->front()) { | 
|  | if (Instr.getType() == IntegerType::getInt1Ty(F->getContext())) | 
|  | BoolInst.push_back(&Instr); | 
|  | } | 
|  |  | 
|  | std::shuffle(BoolInst.begin(), BoolInst.end(), R); | 
|  |  | 
|  | for (auto *Instr : BoolInst) { | 
|  | BasicBlock *Curr = Instr->getParent(); | 
|  | BasicBlock::iterator Loc = Instr->getIterator(); | 
|  | BasicBlock *Next = Curr->splitBasicBlock(Loc, "CF"); | 
|  | Instr->moveBefore(Curr->getTerminator()); | 
|  | if (Curr != &F->getEntryBlock()) { | 
|  | BranchInst::Create(Curr, Next, Instr, Curr->getTerminator()); | 
|  | Curr->getTerminator()->eraseFromParent(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | int main(int argc, char **argv) { | 
|  | using namespace llvm; | 
|  |  | 
|  | // Init LLVM, call llvm_shutdown() on exit, parse args, etc. | 
|  | PrettyStackTraceProgram X(argc, argv); | 
|  | cl::ParseCommandLineOptions(argc, argv, "llvm codegen stress-tester\n"); | 
|  | llvm_shutdown_obj Y; | 
|  |  | 
|  | auto M = make_unique<Module>("/tmp/autogen.bc", Context); | 
|  | Function *F = GenEmptyFunction(M.get()); | 
|  |  | 
|  | // Pick an initial seed value | 
|  | Random R(SeedCL); | 
|  | // Generate lots of random instructions inside a single basic block. | 
|  | FillFunction(F, R); | 
|  | // Break the basic block into many loops. | 
|  | IntroduceControlFlow(F, R); | 
|  |  | 
|  | // Figure out what stream we are supposed to write to... | 
|  | std::unique_ptr<tool_output_file> Out; | 
|  | // Default to standard output. | 
|  | if (OutputFilename.empty()) | 
|  | OutputFilename = "-"; | 
|  |  | 
|  | std::error_code EC; | 
|  | Out.reset(new tool_output_file(OutputFilename, EC, sys::fs::F_None)); | 
|  | if (EC) { | 
|  | errs() << EC.message() << '\n'; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | legacy::PassManager Passes; | 
|  | Passes.add(createVerifierPass()); | 
|  | Passes.add(createPrintModulePass(Out->os())); | 
|  | Passes.run(*M.get()); | 
|  | Out->keep(); | 
|  |  | 
|  | return 0; | 
|  | } |