|  | //===- RegAllocBigBlock.cpp - A register allocator for large basic blocks -===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the RABigBlock class | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // This register allocator is derived from RegAllocLocal.cpp. Like it, this | 
|  | // allocator works on one basic block at a time, oblivious to others. | 
|  | // However, the algorithm used here is suited for long blocks of | 
|  | // instructions - registers are spilled by greedily choosing those holding | 
|  | // values that will not be needed for the longest amount of time. This works | 
|  | // particularly well for blocks with 10 or more times as many instructions | 
|  | // as machine registers, but can be used for general code. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // TODO: - automagically invoke linearscan for (groups of) small BBs? | 
|  | //       - break ties when picking regs? (probably not worth it in a | 
|  | //         JIT context) | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #define DEBUG_TYPE "regalloc" | 
|  | #include "llvm/BasicBlock.h" | 
|  | #include "llvm/CodeGen/Passes.h" | 
|  | #include "llvm/CodeGen/MachineFunctionPass.h" | 
|  | #include "llvm/CodeGen/MachineInstr.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/LiveVariables.h" | 
|  | #include "llvm/CodeGen/RegAllocRegistry.h" | 
|  | #include "llvm/Target/TargetInstrInfo.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include "llvm/ADT/IndexedMap.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include <algorithm> | 
|  | using namespace llvm; | 
|  |  | 
|  | STATISTIC(NumStores, "Number of stores added"); | 
|  | STATISTIC(NumLoads , "Number of loads added"); | 
|  | STATISTIC(NumFolded, "Number of loads/stores folded into instructions"); | 
|  |  | 
|  | static RegisterRegAlloc | 
|  | bigBlockRegAlloc("bigblock", "  Big-block register allocator", | 
|  | createBigBlockRegisterAllocator); | 
|  |  | 
|  | namespace { | 
|  | /// VRegKeyInfo - Defines magic values required to use VirtRegs as DenseMap | 
|  | /// keys. | 
|  | struct VRegKeyInfo { | 
|  | static inline unsigned getEmptyKey() { return -1U; } | 
|  | static inline unsigned getTombstoneKey() { return -2U; } | 
|  | static bool isEqual(unsigned LHS, unsigned RHS) { return LHS == RHS; } | 
|  | static unsigned getHashValue(const unsigned &Key) { return Key; } | 
|  | }; | 
|  |  | 
|  |  | 
|  | /// This register allocator is derived from RegAllocLocal.cpp. Like it, this | 
|  | /// allocator works on one basic block at a time, oblivious to others. | 
|  | /// However, the algorithm used here is suited for long blocks of | 
|  | /// instructions - registers are spilled by greedily choosing those holding | 
|  | /// values that will not be needed for the longest amount of time. This works | 
|  | /// particularly well for blocks with 10 or more times as many instructions | 
|  | /// as machine registers, but can be used for general code. | 
|  | /// | 
|  | /// TODO: - automagically invoke linearscan for (groups of) small BBs? | 
|  | ///       - break ties when picking regs? (probably not worth it in a | 
|  | ///         JIT context) | 
|  | /// | 
|  | class VISIBILITY_HIDDEN RABigBlock : public MachineFunctionPass { | 
|  | public: | 
|  | static char ID; | 
|  | RABigBlock() : MachineFunctionPass((intptr_t)&ID) {} | 
|  | private: | 
|  | /// TM - For getting at TargetMachine info | 
|  | /// | 
|  | const TargetMachine *TM; | 
|  |  | 
|  | /// MF - Our generic MachineFunction pointer | 
|  | /// | 
|  | MachineFunction *MF; | 
|  |  | 
|  | /// RegInfo - For dealing with machine register info (aliases, folds | 
|  | /// etc) | 
|  | const TargetRegisterInfo *RegInfo; | 
|  |  | 
|  | typedef SmallVector<unsigned, 2> VRegTimes; | 
|  |  | 
|  | /// VRegReadTable - maps VRegs in a BB to the set of times they are read | 
|  | /// | 
|  | DenseMap<unsigned, VRegTimes*, VRegKeyInfo> VRegReadTable; | 
|  |  | 
|  | /// VRegReadIdx - keeps track of the "current time" in terms of | 
|  | /// positions in VRegReadTable | 
|  | DenseMap<unsigned, unsigned , VRegKeyInfo> VRegReadIdx; | 
|  |  | 
|  | /// StackSlotForVirtReg - Maps virtual regs to the frame index where these | 
|  | /// values are spilled. | 
|  | IndexedMap<unsigned, VirtReg2IndexFunctor> StackSlotForVirtReg; | 
|  |  | 
|  | /// Virt2PhysRegMap - This map contains entries for each virtual register | 
|  | /// that is currently available in a physical register. | 
|  | IndexedMap<unsigned, VirtReg2IndexFunctor> Virt2PhysRegMap; | 
|  |  | 
|  | /// PhysRegsUsed - This array is effectively a map, containing entries for | 
|  | /// each physical register that currently has a value (ie, it is in | 
|  | /// Virt2PhysRegMap).  The value mapped to is the virtual register | 
|  | /// corresponding to the physical register (the inverse of the | 
|  | /// Virt2PhysRegMap), or 0.  The value is set to 0 if this register is pinned | 
|  | /// because it is used by a future instruction, and to -2 if it is not | 
|  | /// allocatable.  If the entry for a physical register is -1, then the | 
|  | /// physical register is "not in the map". | 
|  | /// | 
|  | std::vector<int> PhysRegsUsed; | 
|  |  | 
|  | /// VirtRegModified - This bitset contains information about which virtual | 
|  | /// registers need to be spilled back to memory when their registers are | 
|  | /// scavenged.  If a virtual register has simply been rematerialized, there | 
|  | /// is no reason to spill it to memory when we need the register back. | 
|  | /// | 
|  | std::vector<int> VirtRegModified; | 
|  |  | 
|  | /// MBBLastInsnTime - the number of the the last instruction in MBB | 
|  | /// | 
|  | int MBBLastInsnTime; | 
|  |  | 
|  | /// MBBCurTime - the number of the the instruction being currently processed | 
|  | /// | 
|  | int MBBCurTime; | 
|  |  | 
|  | unsigned &getVirt2PhysRegMapSlot(unsigned VirtReg) { | 
|  | return Virt2PhysRegMap[VirtReg]; | 
|  | } | 
|  |  | 
|  | unsigned &getVirt2StackSlot(unsigned VirtReg) { | 
|  | return StackSlotForVirtReg[VirtReg]; | 
|  | } | 
|  |  | 
|  | /// markVirtRegModified - Lets us flip bits in the VirtRegModified bitset | 
|  | /// | 
|  | void markVirtRegModified(unsigned Reg, bool Val = true) { | 
|  | assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!"); | 
|  | Reg -= TargetRegisterInfo::FirstVirtualRegister; | 
|  | if (VirtRegModified.size() <= Reg) | 
|  | VirtRegModified.resize(Reg+1); | 
|  | VirtRegModified[Reg] = Val; | 
|  | } | 
|  |  | 
|  | /// isVirtRegModified - Lets us query the VirtRegModified bitset | 
|  | /// | 
|  | bool isVirtRegModified(unsigned Reg) const { | 
|  | assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!"); | 
|  | assert(Reg - TargetRegisterInfo::FirstVirtualRegister < VirtRegModified.size() | 
|  | && "Illegal virtual register!"); | 
|  | return VirtRegModified[Reg - TargetRegisterInfo::FirstVirtualRegister]; | 
|  | } | 
|  |  | 
|  | public: | 
|  | /// getPassName - returns the BigBlock allocator's name | 
|  | /// | 
|  | virtual const char *getPassName() const { | 
|  | return "BigBlock Register Allocator"; | 
|  | } | 
|  |  | 
|  | /// getAnalaysisUsage - declares the required analyses | 
|  | /// | 
|  | virtual void getAnalysisUsage(AnalysisUsage &AU) const { | 
|  | AU.addRequiredID(PHIEliminationID); | 
|  | AU.addRequiredID(TwoAddressInstructionPassID); | 
|  | MachineFunctionPass::getAnalysisUsage(AU); | 
|  | } | 
|  |  | 
|  | private: | 
|  | /// runOnMachineFunction - Register allocate the whole function | 
|  | /// | 
|  | bool runOnMachineFunction(MachineFunction &Fn); | 
|  |  | 
|  | /// AllocateBasicBlock - Register allocate the specified basic block. | 
|  | /// | 
|  | void AllocateBasicBlock(MachineBasicBlock &MBB); | 
|  |  | 
|  | /// FillVRegReadTable - Fill out the table of vreg read times given a BB | 
|  | /// | 
|  | void FillVRegReadTable(MachineBasicBlock &MBB); | 
|  |  | 
|  | /// areRegsEqual - This method returns true if the specified registers are | 
|  | /// related to each other.  To do this, it checks to see if they are equal | 
|  | /// or if the first register is in the alias set of the second register. | 
|  | /// | 
|  | bool areRegsEqual(unsigned R1, unsigned R2) const { | 
|  | if (R1 == R2) return true; | 
|  | for (const unsigned *AliasSet = RegInfo->getAliasSet(R2); | 
|  | *AliasSet; ++AliasSet) { | 
|  | if (*AliasSet == R1) return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// getStackSpaceFor - This returns the frame index of the specified virtual | 
|  | /// register on the stack, allocating space if necessary. | 
|  | int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC); | 
|  |  | 
|  | /// removePhysReg - This method marks the specified physical register as no | 
|  | /// longer being in use. | 
|  | /// | 
|  | void removePhysReg(unsigned PhysReg); | 
|  |  | 
|  | /// spillVirtReg - This method spills the value specified by PhysReg into | 
|  | /// the virtual register slot specified by VirtReg.  It then updates the RA | 
|  | /// data structures to indicate the fact that PhysReg is now available. | 
|  | /// | 
|  | void spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, | 
|  | unsigned VirtReg, unsigned PhysReg); | 
|  |  | 
|  | /// spillPhysReg - This method spills the specified physical register into | 
|  | /// the virtual register slot associated with it.  If OnlyVirtRegs is set to | 
|  | /// true, then the request is ignored if the physical register does not | 
|  | /// contain a virtual register. | 
|  | /// | 
|  | void spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I, | 
|  | unsigned PhysReg, bool OnlyVirtRegs = false); | 
|  |  | 
|  | /// assignVirtToPhysReg - This method updates local state so that we know | 
|  | /// that PhysReg is the proper container for VirtReg now.  The physical | 
|  | /// register must not be used for anything else when this is called. | 
|  | /// | 
|  | void assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg); | 
|  |  | 
|  | /// isPhysRegAvailable - Return true if the specified physical register is | 
|  | /// free and available for use.  This also includes checking to see if | 
|  | /// aliased registers are all free... | 
|  | /// | 
|  | bool isPhysRegAvailable(unsigned PhysReg) const; | 
|  |  | 
|  | /// getFreeReg - Look to see if there is a free register available in the | 
|  | /// specified register class.  If not, return 0. | 
|  | /// | 
|  | unsigned getFreeReg(const TargetRegisterClass *RC); | 
|  |  | 
|  | /// chooseReg - Pick a physical register to hold the specified | 
|  | /// virtual register by choosing the one which will be read furthest | 
|  | /// in the future. | 
|  | /// | 
|  | unsigned chooseReg(MachineBasicBlock &MBB, MachineInstr *MI, | 
|  | unsigned VirtReg); | 
|  |  | 
|  | /// reloadVirtReg - This method transforms the specified specified virtual | 
|  | /// register use to refer to a physical register.  This method may do this | 
|  | /// in one of several ways: if the register is available in a physical | 
|  | /// register already, it uses that physical register.  If the value is not | 
|  | /// in a physical register, and if there are physical registers available, | 
|  | /// it loads it into a register.  If register pressure is high, and it is | 
|  | /// possible, it tries to fold the load of the virtual register into the | 
|  | /// instruction itself.  It avoids doing this if register pressure is low to | 
|  | /// improve the chance that subsequent instructions can use the reloaded | 
|  | /// value.  This method returns the modified instruction. | 
|  | /// | 
|  | MachineInstr *reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI, | 
|  | unsigned OpNum); | 
|  |  | 
|  | }; | 
|  | char RABigBlock::ID = 0; | 
|  | } | 
|  |  | 
|  | /// getStackSpaceFor - This allocates space for the specified virtual register | 
|  | /// to be held on the stack. | 
|  | int RABigBlock::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) { | 
|  | // Find the location Reg would belong... | 
|  | int FrameIdx = getVirt2StackSlot(VirtReg); | 
|  |  | 
|  | if (FrameIdx) | 
|  | return FrameIdx - 1;          // Already has space allocated? | 
|  |  | 
|  | // Allocate a new stack object for this spill location... | 
|  | FrameIdx = MF->getFrameInfo()->CreateStackObject(RC->getSize(), | 
|  | RC->getAlignment()); | 
|  |  | 
|  | // Assign the slot... | 
|  | getVirt2StackSlot(VirtReg) = FrameIdx + 1; | 
|  | return FrameIdx; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// removePhysReg - This method marks the specified physical register as no | 
|  | /// longer being in use. | 
|  | /// | 
|  | void RABigBlock::removePhysReg(unsigned PhysReg) { | 
|  | PhysRegsUsed[PhysReg] = -1;      // PhyReg no longer used | 
|  | } | 
|  |  | 
|  |  | 
|  | /// spillVirtReg - This method spills the value specified by PhysReg into the | 
|  | /// virtual register slot specified by VirtReg.  It then updates the RA data | 
|  | /// structures to indicate the fact that PhysReg is now available. | 
|  | /// | 
|  | void RABigBlock::spillVirtReg(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator I, | 
|  | unsigned VirtReg, unsigned PhysReg) { | 
|  | assert(VirtReg && "Spilling a physical register is illegal!" | 
|  | " Must not have appropriate kill for the register or use exists beyond" | 
|  | " the intended one."); | 
|  | DOUT << "  Spilling register " << RegInfo->getName(PhysReg) | 
|  | << " containing %reg" << VirtReg; | 
|  |  | 
|  | const TargetInstrInfo* TII = MBB.getParent()->getTarget().getInstrInfo(); | 
|  |  | 
|  | if (!isVirtRegModified(VirtReg)) | 
|  | DOUT << " which has not been modified, so no store necessary!"; | 
|  |  | 
|  | // Otherwise, there is a virtual register corresponding to this physical | 
|  | // register.  We only need to spill it into its stack slot if it has been | 
|  | // modified. | 
|  | if (isVirtRegModified(VirtReg)) { | 
|  | const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg); | 
|  | int FrameIndex = getStackSpaceFor(VirtReg, RC); | 
|  | DOUT << " to stack slot #" << FrameIndex; | 
|  | TII->storeRegToStackSlot(MBB, I, PhysReg, true, FrameIndex, RC); | 
|  | ++NumStores;   // Update statistics | 
|  | } | 
|  |  | 
|  | getVirt2PhysRegMapSlot(VirtReg) = 0;   // VirtReg no longer available | 
|  |  | 
|  | DOUT << "\n"; | 
|  | removePhysReg(PhysReg); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// spillPhysReg - This method spills the specified physical register into the | 
|  | /// virtual register slot associated with it.  If OnlyVirtRegs is set to true, | 
|  | /// then the request is ignored if the physical register does not contain a | 
|  | /// virtual register. | 
|  | /// | 
|  | void RABigBlock::spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I, | 
|  | unsigned PhysReg, bool OnlyVirtRegs) { | 
|  | if (PhysRegsUsed[PhysReg] != -1) {            // Only spill it if it's used! | 
|  | assert(PhysRegsUsed[PhysReg] != -2 && "Non allocable reg used!"); | 
|  | if (PhysRegsUsed[PhysReg] || !OnlyVirtRegs) | 
|  | spillVirtReg(MBB, I, PhysRegsUsed[PhysReg], PhysReg); | 
|  | } else { | 
|  | // If the selected register aliases any other registers, we must make | 
|  | // sure that one of the aliases isn't alive. | 
|  | for (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg); | 
|  | *AliasSet; ++AliasSet) | 
|  | if (PhysRegsUsed[*AliasSet] != -1 &&     // Spill aliased register. | 
|  | PhysRegsUsed[*AliasSet] != -2)       // If allocatable. | 
|  | if (PhysRegsUsed[*AliasSet]) | 
|  | spillVirtReg(MBB, I, PhysRegsUsed[*AliasSet], *AliasSet); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /// assignVirtToPhysReg - This method updates local state so that we know | 
|  | /// that PhysReg is the proper container for VirtReg now.  The physical | 
|  | /// register must not be used for anything else when this is called. | 
|  | /// | 
|  | void RABigBlock::assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) { | 
|  | assert(PhysRegsUsed[PhysReg] == -1 && "Phys reg already assigned!"); | 
|  | // Update information to note the fact that this register was just used, and | 
|  | // it holds VirtReg. | 
|  | PhysRegsUsed[PhysReg] = VirtReg; | 
|  | getVirt2PhysRegMapSlot(VirtReg) = PhysReg; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// isPhysRegAvailable - Return true if the specified physical register is free | 
|  | /// and available for use.  This also includes checking to see if aliased | 
|  | /// registers are all free... | 
|  | /// | 
|  | bool RABigBlock::isPhysRegAvailable(unsigned PhysReg) const { | 
|  | if (PhysRegsUsed[PhysReg] != -1) return false; | 
|  |  | 
|  | // If the selected register aliases any other allocated registers, it is | 
|  | // not free! | 
|  | for (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg); | 
|  | *AliasSet; ++AliasSet) | 
|  | if (PhysRegsUsed[*AliasSet] >= 0) // Aliased register in use? | 
|  | return false;                    // Can't use this reg then. | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// getFreeReg - Look to see if there is a free register available in the | 
|  | /// specified register class.  If not, return 0. | 
|  | /// | 
|  | unsigned RABigBlock::getFreeReg(const TargetRegisterClass *RC) { | 
|  | // Get iterators defining the range of registers that are valid to allocate in | 
|  | // this class, which also specifies the preferred allocation order. | 
|  | TargetRegisterClass::iterator RI = RC->allocation_order_begin(*MF); | 
|  | TargetRegisterClass::iterator RE = RC->allocation_order_end(*MF); | 
|  |  | 
|  | for (; RI != RE; ++RI) | 
|  | if (isPhysRegAvailable(*RI)) {       // Is reg unused? | 
|  | assert(*RI != 0 && "Cannot use register!"); | 
|  | return *RI; // Found an unused register! | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// chooseReg - Pick a physical register to hold the specified | 
|  | /// virtual register by choosing the one whose value will be read | 
|  | /// furthest in the future. | 
|  | /// | 
|  | unsigned RABigBlock::chooseReg(MachineBasicBlock &MBB, MachineInstr *I, | 
|  | unsigned VirtReg) { | 
|  | const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg); | 
|  | // First check to see if we have a free register of the requested type... | 
|  | unsigned PhysReg = getFreeReg(RC); | 
|  |  | 
|  | // If we didn't find an unused register, find the one which will be | 
|  | // read at the most distant point in time. | 
|  | if (PhysReg == 0) { | 
|  | unsigned delay=0, longest_delay=0; | 
|  | VRegTimes* ReadTimes; | 
|  |  | 
|  | unsigned curTime = MBBCurTime; | 
|  |  | 
|  | // for all physical regs in the RC, | 
|  | for(TargetRegisterClass::iterator pReg = RC->begin(); | 
|  | pReg != RC->end();  ++pReg) { | 
|  | // how long until they're read? | 
|  | if(PhysRegsUsed[*pReg]>0) { // ignore non-allocatable regs | 
|  | ReadTimes = VRegReadTable[PhysRegsUsed[*pReg]]; | 
|  | if(ReadTimes && !ReadTimes->empty()) { | 
|  | unsigned& pt = VRegReadIdx[PhysRegsUsed[*pReg]]; | 
|  | while(pt < ReadTimes->size() && (*ReadTimes)[pt] < curTime) { | 
|  | ++pt; | 
|  | } | 
|  |  | 
|  | if(pt < ReadTimes->size()) | 
|  | delay = (*ReadTimes)[pt] - curTime; | 
|  | else | 
|  | delay = MBBLastInsnTime + 1 - curTime; | 
|  | } else { | 
|  | // This register is only defined, but never | 
|  | // read in this MBB. Therefore the next read | 
|  | // happens after the end of this MBB | 
|  | delay = MBBLastInsnTime + 1 - curTime; | 
|  | } | 
|  |  | 
|  |  | 
|  | if(delay > longest_delay) { | 
|  | longest_delay = delay; | 
|  | PhysReg = *pReg; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if(PhysReg == 0) { // ok, now we're desperate. We couldn't choose | 
|  | // a register to spill by looking through the | 
|  | // read timetable, so now we just spill the | 
|  | // first allocatable register we find. | 
|  |  | 
|  | // for all physical regs in the RC, | 
|  | for(TargetRegisterClass::iterator pReg = RC->begin(); | 
|  | pReg != RC->end();  ++pReg) { | 
|  | // if we find a register we can spill | 
|  | if(PhysRegsUsed[*pReg]>=-1) | 
|  | PhysReg = *pReg; // choose it to be spilled | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(PhysReg && "couldn't choose a register to spill :( "); | 
|  | // TODO: assert that RC->contains(PhysReg) / handle aliased registers? | 
|  |  | 
|  | // since we needed to look in the table we need to spill this register. | 
|  | spillPhysReg(MBB, I, PhysReg); | 
|  | } | 
|  |  | 
|  | // assign the vreg to our chosen physical register | 
|  | assignVirtToPhysReg(VirtReg, PhysReg); | 
|  | return PhysReg; // and return it | 
|  | } | 
|  |  | 
|  |  | 
|  | /// reloadVirtReg - This method transforms an instruction with a virtual | 
|  | /// register use to one that references a physical register. It does this as | 
|  | /// follows: | 
|  | /// | 
|  | ///   1) If the register is already in a physical register, it uses it. | 
|  | ///   2) Otherwise, if there is a free physical register, it uses that. | 
|  | ///   3) Otherwise, it calls chooseReg() to get the physical register | 
|  | ///      holding the most distantly needed value, generating a spill in | 
|  | ///      the process. | 
|  | /// | 
|  | /// This method returns the modified instruction. | 
|  | MachineInstr *RABigBlock::reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI, | 
|  | unsigned OpNum) { | 
|  | unsigned VirtReg = MI->getOperand(OpNum).getReg(); | 
|  | const TargetInstrInfo* TII = MBB.getParent()->getTarget().getInstrInfo(); | 
|  |  | 
|  | // If the virtual register is already available in a physical register, | 
|  | // just update the instruction and return. | 
|  | if (unsigned PR = getVirt2PhysRegMapSlot(VirtReg)) { | 
|  | MI->getOperand(OpNum).setReg(PR); | 
|  | return MI; | 
|  | } | 
|  |  | 
|  | // Otherwise, if we have free physical registers available to hold the | 
|  | // value, use them. | 
|  | const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg); | 
|  | unsigned PhysReg = getFreeReg(RC); | 
|  | int FrameIndex = getStackSpaceFor(VirtReg, RC); | 
|  |  | 
|  | if (PhysReg) {   // we have a free register, so use it. | 
|  | assignVirtToPhysReg(VirtReg, PhysReg); | 
|  | } else {  // no free registers available. | 
|  | // try to fold the spill into the instruction | 
|  | SmallVector<unsigned, 2> Ops; | 
|  | Ops.push_back(OpNum); | 
|  | if(MachineInstr* FMI = TII->foldMemoryOperand(*MF, MI, Ops, FrameIndex)) { | 
|  | ++NumFolded; | 
|  | FMI->copyKillDeadInfo(MI); | 
|  | return MBB.insert(MBB.erase(MI), FMI); | 
|  | } | 
|  |  | 
|  | // determine which of the physical registers we'll kill off, since we | 
|  | // couldn't fold. | 
|  | PhysReg = chooseReg(MBB, MI, VirtReg); | 
|  | } | 
|  |  | 
|  | // this virtual register is now unmodified (since we just reloaded it) | 
|  | markVirtRegModified(VirtReg, false); | 
|  |  | 
|  | DOUT << "  Reloading %reg" << VirtReg << " into " | 
|  | << RegInfo->getName(PhysReg) << "\n"; | 
|  |  | 
|  | // Add move instruction(s) | 
|  | TII->loadRegFromStackSlot(MBB, MI, PhysReg, FrameIndex, RC); | 
|  | ++NumLoads;    // Update statistics | 
|  |  | 
|  | MF->getRegInfo().setPhysRegUsed(PhysReg); | 
|  | MI->getOperand(OpNum).setReg(PhysReg);  // Assign the input register | 
|  | return MI; | 
|  | } | 
|  |  | 
|  | /// Fill out the vreg read timetable. Since ReadTime increases | 
|  | /// monotonically, the individual readtime sets will be sorted | 
|  | /// in ascending order. | 
|  | void RABigBlock::FillVRegReadTable(MachineBasicBlock &MBB) { | 
|  | // loop over each instruction | 
|  | MachineBasicBlock::iterator MII; | 
|  | unsigned ReadTime; | 
|  |  | 
|  | for(ReadTime=0, MII = MBB.begin(); MII != MBB.end(); ++ReadTime, ++MII) { | 
|  | MachineInstr *MI = MII; | 
|  |  | 
|  | for (unsigned i = 0; i != MI->getNumOperands(); ++i) { | 
|  | MachineOperand& MO = MI->getOperand(i); | 
|  | // look for vreg reads.. | 
|  | if (MO.isRegister() && !MO.isDef() && MO.getReg() && | 
|  | TargetRegisterInfo::isVirtualRegister(MO.getReg())) { | 
|  | // ..and add them to the read table. | 
|  | VRegTimes* &Times = VRegReadTable[MO.getReg()]; | 
|  | if(!VRegReadTable[MO.getReg()]) { | 
|  | Times = new VRegTimes; | 
|  | VRegReadIdx[MO.getReg()] = 0; | 
|  | } | 
|  | Times->push_back(ReadTime); | 
|  | } | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | MBBLastInsnTime = ReadTime; | 
|  |  | 
|  | for(DenseMap<unsigned, VRegTimes*, VRegKeyInfo>::iterator Reads = VRegReadTable.begin(); | 
|  | Reads != VRegReadTable.end(); ++Reads) { | 
|  | if(Reads->second) { | 
|  | DOUT << "Reads[" << Reads->first << "]=" << Reads->second->size() << "\n"; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// isReadModWriteImplicitKill - True if this is an implicit kill for a | 
|  | /// read/mod/write register, i.e. update partial register. | 
|  | static bool isReadModWriteImplicitKill(MachineInstr *MI, unsigned Reg) { | 
|  | for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
|  | MachineOperand& MO = MI->getOperand(i); | 
|  | if (MO.isRegister() && MO.getReg() == Reg && MO.isImplicit() && | 
|  | MO.isDef() && !MO.isDead()) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// isReadModWriteImplicitDef - True if this is an implicit def for a | 
|  | /// read/mod/write register, i.e. update partial register. | 
|  | static bool isReadModWriteImplicitDef(MachineInstr *MI, unsigned Reg) { | 
|  | for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
|  | MachineOperand& MO = MI->getOperand(i); | 
|  | if (MO.isRegister() && MO.getReg() == Reg && MO.isImplicit() && | 
|  | !MO.isDef() && MO.isKill()) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | void RABigBlock::AllocateBasicBlock(MachineBasicBlock &MBB) { | 
|  | // loop over each instruction | 
|  | MachineBasicBlock::iterator MII = MBB.begin(); | 
|  | const TargetInstrInfo &TII = *TM->getInstrInfo(); | 
|  |  | 
|  | DEBUG(const BasicBlock *LBB = MBB.getBasicBlock(); | 
|  | if (LBB) DOUT << "\nStarting RegAlloc of BB: " << LBB->getName()); | 
|  |  | 
|  | // If this is the first basic block in the machine function, add live-in | 
|  | // registers as active. | 
|  | if (&MBB == &*MF->begin()) { | 
|  | for (MachineRegisterInfo::livein_iterator | 
|  | I = MF->getRegInfo().livein_begin(), | 
|  | E = MF->getRegInfo().livein_end(); I != E; ++I) { | 
|  | unsigned Reg = I->first; | 
|  | MF->getRegInfo().setPhysRegUsed(Reg); | 
|  | PhysRegsUsed[Reg] = 0;            // It is free and reserved now | 
|  | for (const unsigned *AliasSet = RegInfo->getSubRegisters(Reg); | 
|  | *AliasSet; ++AliasSet) { | 
|  | if (PhysRegsUsed[*AliasSet] != -2) { | 
|  | PhysRegsUsed[*AliasSet] = 0;  // It is free and reserved now | 
|  | MF->getRegInfo().setPhysRegUsed(*AliasSet); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise, sequentially allocate each instruction in the MBB. | 
|  | MBBCurTime = -1; | 
|  | while (MII != MBB.end()) { | 
|  | MachineInstr *MI = MII++; | 
|  | MBBCurTime++; | 
|  | const TargetInstrDesc &TID = MI->getDesc(); | 
|  | DEBUG(DOUT << "\nTime=" << MBBCurTime << " Starting RegAlloc of: " << *MI; | 
|  | DOUT << "  Regs have values: "; | 
|  | for (unsigned i = 0; i != RegInfo->getNumRegs(); ++i) | 
|  | if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2) | 
|  | DOUT << "[" << RegInfo->getName(i) | 
|  | << ",%reg" << PhysRegsUsed[i] << "] "; | 
|  | DOUT << "\n"); | 
|  |  | 
|  | SmallVector<unsigned, 8> Kills; | 
|  | for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
|  | MachineOperand& MO = MI->getOperand(i); | 
|  | if (MO.isRegister() && MO.isKill()) { | 
|  | if (!MO.isImplicit()) | 
|  | Kills.push_back(MO.getReg()); | 
|  | else if (!isReadModWriteImplicitKill(MI, MO.getReg())) | 
|  | // These are extra physical register kills when a sub-register | 
|  | // is defined (def of a sub-register is a read/mod/write of the | 
|  | // larger registers). Ignore. | 
|  | Kills.push_back(MO.getReg()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Get the used operands into registers.  This has the potential to spill | 
|  | // incoming values if we are out of registers.  Note that we completely | 
|  | // ignore physical register uses here.  We assume that if an explicit | 
|  | // physical register is referenced by the instruction, that it is guaranteed | 
|  | // to be live-in, or the input is badly hosed. | 
|  | // | 
|  | for (unsigned i = 0; i != MI->getNumOperands(); ++i) { | 
|  | MachineOperand& MO = MI->getOperand(i); | 
|  | // here we are looking for only used operands (never def&use) | 
|  | if (MO.isRegister() && !MO.isDef() && MO.getReg() && !MO.isImplicit() && | 
|  | TargetRegisterInfo::isVirtualRegister(MO.getReg())) | 
|  | MI = reloadVirtReg(MBB, MI, i); | 
|  | } | 
|  |  | 
|  | // If this instruction is the last user of this register, kill the | 
|  | // value, freeing the register being used, so it doesn't need to be | 
|  | // spilled to memory. | 
|  | // | 
|  | for (unsigned i = 0, e = Kills.size(); i != e; ++i) { | 
|  | unsigned VirtReg = Kills[i]; | 
|  | unsigned PhysReg = VirtReg; | 
|  | if (TargetRegisterInfo::isVirtualRegister(VirtReg)) { | 
|  | // If the virtual register was never materialized into a register, it | 
|  | // might not be in the map, but it won't hurt to zero it out anyway. | 
|  | unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg); | 
|  | PhysReg = PhysRegSlot; | 
|  | PhysRegSlot = 0; | 
|  | } else if (PhysRegsUsed[PhysReg] == -2) { | 
|  | // Unallocatable register dead, ignore. | 
|  | continue; | 
|  | } else { | 
|  | assert((!PhysRegsUsed[PhysReg] || PhysRegsUsed[PhysReg] == -1) && | 
|  | "Silently clearing a virtual register?"); | 
|  | } | 
|  |  | 
|  | if (PhysReg) { | 
|  | DOUT << "  Last use of " << RegInfo->getName(PhysReg) | 
|  | << "[%reg" << VirtReg <<"], removing it from live set\n"; | 
|  | removePhysReg(PhysReg); | 
|  | for (const unsigned *AliasSet = RegInfo->getSubRegisters(PhysReg); | 
|  | *AliasSet; ++AliasSet) { | 
|  | if (PhysRegsUsed[*AliasSet] != -2) { | 
|  | DOUT  << "  Last use of " | 
|  | << RegInfo->getName(*AliasSet) | 
|  | << "[%reg" << VirtReg <<"], removing it from live set\n"; | 
|  | removePhysReg(*AliasSet); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Loop over all of the operands of the instruction, spilling registers that | 
|  | // are defined, and marking explicit destinations in the PhysRegsUsed map. | 
|  | for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
|  | MachineOperand& MO = MI->getOperand(i); | 
|  | if (MO.isRegister() && MO.isDef() && !MO.isImplicit() && MO.getReg() && | 
|  | TargetRegisterInfo::isPhysicalRegister(MO.getReg())) { | 
|  | unsigned Reg = MO.getReg(); | 
|  | if (PhysRegsUsed[Reg] == -2) continue;  // Something like ESP. | 
|  | // These are extra physical register defs when a sub-register | 
|  | // is defined (def of a sub-register is a read/mod/write of the | 
|  | // larger registers). Ignore. | 
|  | if (isReadModWriteImplicitDef(MI, MO.getReg())) continue; | 
|  |  | 
|  | MF->getRegInfo().setPhysRegUsed(Reg); | 
|  | spillPhysReg(MBB, MI, Reg, true); // Spill any existing value in reg | 
|  | PhysRegsUsed[Reg] = 0;            // It is free and reserved now | 
|  | for (const unsigned *AliasSet = RegInfo->getSubRegisters(Reg); | 
|  | *AliasSet; ++AliasSet) { | 
|  | if (PhysRegsUsed[*AliasSet] != -2) { | 
|  | PhysRegsUsed[*AliasSet] = 0;  // It is free and reserved now | 
|  | MF->getRegInfo().setPhysRegUsed(*AliasSet); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Loop over the implicit defs, spilling them as well. | 
|  | if (TID.getImplicitDefs()) { | 
|  | for (const unsigned *ImplicitDefs = TID.getImplicitDefs(); | 
|  | *ImplicitDefs; ++ImplicitDefs) { | 
|  | unsigned Reg = *ImplicitDefs; | 
|  | if (PhysRegsUsed[Reg] != -2) { | 
|  | spillPhysReg(MBB, MI, Reg, true); | 
|  | PhysRegsUsed[Reg] = 0;            // It is free and reserved now | 
|  | } | 
|  | MF->getRegInfo().setPhysRegUsed(Reg); | 
|  | for (const unsigned *AliasSet = RegInfo->getSubRegisters(Reg); | 
|  | *AliasSet; ++AliasSet) { | 
|  | if (PhysRegsUsed[*AliasSet] != -2) { | 
|  | PhysRegsUsed[*AliasSet] = 0;  // It is free and reserved now | 
|  | MF->getRegInfo().setPhysRegUsed(*AliasSet); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | SmallVector<unsigned, 8> DeadDefs; | 
|  | for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
|  | MachineOperand& MO = MI->getOperand(i); | 
|  | if (MO.isRegister() && MO.isDead()) | 
|  | DeadDefs.push_back(MO.getReg()); | 
|  | } | 
|  |  | 
|  | // Okay, we have allocated all of the source operands and spilled any values | 
|  | // that would be destroyed by defs of this instruction.  Loop over the | 
|  | // explicit defs and assign them to a register, spilling incoming values if | 
|  | // we need to scavenge a register. | 
|  | // | 
|  | for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
|  | MachineOperand& MO = MI->getOperand(i); | 
|  | if (MO.isRegister() && MO.isDef() && MO.getReg() && | 
|  | TargetRegisterInfo::isVirtualRegister(MO.getReg())) { | 
|  | unsigned DestVirtReg = MO.getReg(); | 
|  | unsigned DestPhysReg; | 
|  |  | 
|  | // If DestVirtReg already has a value, use it. | 
|  | if (!(DestPhysReg = getVirt2PhysRegMapSlot(DestVirtReg))) | 
|  | DestPhysReg = chooseReg(MBB, MI, DestVirtReg); | 
|  | MF->getRegInfo().setPhysRegUsed(DestPhysReg); | 
|  | markVirtRegModified(DestVirtReg); | 
|  | MI->getOperand(i).setReg(DestPhysReg);  // Assign the output register | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this instruction defines any registers that are immediately dead, | 
|  | // kill them now. | 
|  | // | 
|  | for (unsigned i = 0, e = DeadDefs.size(); i != e; ++i) { | 
|  | unsigned VirtReg = DeadDefs[i]; | 
|  | unsigned PhysReg = VirtReg; | 
|  | if (TargetRegisterInfo::isVirtualRegister(VirtReg)) { | 
|  | unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg); | 
|  | PhysReg = PhysRegSlot; | 
|  | assert(PhysReg != 0); | 
|  | PhysRegSlot = 0; | 
|  | } else if (PhysRegsUsed[PhysReg] == -2) { | 
|  | // Unallocatable register dead, ignore. | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (PhysReg) { | 
|  | DOUT  << "  Register " << RegInfo->getName(PhysReg) | 
|  | << " [%reg" << VirtReg | 
|  | << "] is never used, removing it frame live list\n"; | 
|  | removePhysReg(PhysReg); | 
|  | for (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg); | 
|  | *AliasSet; ++AliasSet) { | 
|  | if (PhysRegsUsed[*AliasSet] != -2) { | 
|  | DOUT  << "  Register " << RegInfo->getName(*AliasSet) | 
|  | << " [%reg" << *AliasSet | 
|  | << "] is never used, removing it frame live list\n"; | 
|  | removePhysReg(*AliasSet); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Finally, if this is a noop copy instruction, zap it. | 
|  | unsigned SrcReg, DstReg; | 
|  | if (TII.isMoveInstr(*MI, SrcReg, DstReg) && SrcReg == DstReg) | 
|  | MBB.erase(MI); | 
|  | } | 
|  |  | 
|  | MachineBasicBlock::iterator MI = MBB.getFirstTerminator(); | 
|  |  | 
|  | // Spill all physical registers holding virtual registers now. | 
|  | for (unsigned i = 0, e = RegInfo->getNumRegs(); i != e; ++i) | 
|  | if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2) { | 
|  | if (unsigned VirtReg = PhysRegsUsed[i]) | 
|  | spillVirtReg(MBB, MI, VirtReg, i); | 
|  | else | 
|  | removePhysReg(i); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// runOnMachineFunction - Register allocate the whole function | 
|  | /// | 
|  | bool RABigBlock::runOnMachineFunction(MachineFunction &Fn) { | 
|  | DOUT << "Machine Function " << "\n"; | 
|  | MF = &Fn; | 
|  | TM = &Fn.getTarget(); | 
|  | RegInfo = TM->getRegisterInfo(); | 
|  |  | 
|  | PhysRegsUsed.assign(RegInfo->getNumRegs(), -1); | 
|  |  | 
|  | // At various places we want to efficiently check to see whether a register | 
|  | // is allocatable.  To handle this, we mark all unallocatable registers as | 
|  | // being pinned down, permanently. | 
|  | { | 
|  | BitVector Allocable = RegInfo->getAllocatableSet(Fn); | 
|  | for (unsigned i = 0, e = Allocable.size(); i != e; ++i) | 
|  | if (!Allocable[i]) | 
|  | PhysRegsUsed[i] = -2;  // Mark the reg unallocable. | 
|  | } | 
|  |  | 
|  | // initialize the virtual->physical register map to have a 'null' | 
|  | // mapping for all virtual registers | 
|  | Virt2PhysRegMap.grow(MF->getRegInfo().getLastVirtReg()); | 
|  | StackSlotForVirtReg.grow(MF->getRegInfo().getLastVirtReg()); | 
|  | VirtRegModified.resize(MF->getRegInfo().getLastVirtReg() - | 
|  | TargetRegisterInfo::FirstVirtualRegister + 1, 0); | 
|  |  | 
|  | // Loop over all of the basic blocks, eliminating virtual register references | 
|  | for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end(); | 
|  | MBB != MBBe; ++MBB) { | 
|  | // fill out the read timetable | 
|  | FillVRegReadTable(*MBB); | 
|  | // use it to allocate the BB | 
|  | AllocateBasicBlock(*MBB); | 
|  | // clear it | 
|  | VRegReadTable.clear(); | 
|  | } | 
|  |  | 
|  | StackSlotForVirtReg.clear(); | 
|  | PhysRegsUsed.clear(); | 
|  | VirtRegModified.clear(); | 
|  | Virt2PhysRegMap.clear(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | FunctionPass *llvm::createBigBlockRegisterAllocator() { | 
|  | return new RABigBlock(); | 
|  | } | 
|  |  |