|  | //===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This pass performs loop invariant code motion, attempting to remove as much | 
|  | // code from the body of a loop as possible.  It does this by either hoisting | 
|  | // code into the preheader block, or by sinking code to the exit blocks if it is | 
|  | // safe.  This pass also promotes must-aliased memory locations in the loop to | 
|  | // live in registers, thus hoisting and sinking "invariant" loads and stores. | 
|  | // | 
|  | // This pass uses alias analysis for two purposes: | 
|  | // | 
|  | //  1. Moving loop invariant loads and calls out of loops.  If we can determine | 
|  | //     that a load or call inside of a loop never aliases anything stored to, | 
|  | //     we can hoist it or sink it like any other instruction. | 
|  | //  2. Scalar Promotion of Memory - If there is a store instruction inside of | 
|  | //     the loop, we try to move the store to happen AFTER the loop instead of | 
|  | //     inside of the loop.  This can only happen if a few conditions are true: | 
|  | //       A. The pointer stored through is loop invariant | 
|  | //       B. There are no stores or loads in the loop which _may_ alias the | 
|  | //          pointer.  There are no calls in the loop which mod/ref the pointer. | 
|  | //     If these conditions are true, we can promote the loads and stores in the | 
|  | //     loop of the pointer to use a temporary alloca'd variable.  We then use | 
|  | //     the SSAUpdater to construct the appropriate SSA form for the value. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Transforms/Scalar/LICM.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Analysis/AliasAnalysis.h" | 
|  | #include "llvm/Analysis/AliasSetTracker.h" | 
|  | #include "llvm/Analysis/BasicAliasAnalysis.h" | 
|  | #include "llvm/Analysis/CaptureTracking.h" | 
|  | #include "llvm/Analysis/ConstantFolding.h" | 
|  | #include "llvm/Analysis/GlobalsModRef.h" | 
|  | #include "llvm/Analysis/Loads.h" | 
|  | #include "llvm/Analysis/LoopInfo.h" | 
|  | #include "llvm/Analysis/LoopPass.h" | 
|  | #include "llvm/Analysis/MemoryBuiltins.h" | 
|  | #include "llvm/Analysis/MemorySSA.h" | 
|  | #include "llvm/Analysis/OptimizationRemarkEmitter.h" | 
|  | #include "llvm/Analysis/ScalarEvolution.h" | 
|  | #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" | 
|  | #include "llvm/Analysis/TargetLibraryInfo.h" | 
|  | #include "llvm/Analysis/Utils/Local.h" | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/IR/CFG.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/IR/Metadata.h" | 
|  | #include "llvm/IR/PredIteratorCache.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Transforms/Scalar.h" | 
|  | #include "llvm/Transforms/Scalar/LoopPassManager.h" | 
|  | #include "llvm/Transforms/Utils/BasicBlockUtils.h" | 
|  | #include "llvm/Transforms/Utils/LoopUtils.h" | 
|  | #include "llvm/Transforms/Utils/SSAUpdater.h" | 
|  | #include <algorithm> | 
|  | #include <utility> | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "licm" | 
|  |  | 
|  | STATISTIC(NumSunk, "Number of instructions sunk out of loop"); | 
|  | STATISTIC(NumHoisted, "Number of instructions hoisted out of loop"); | 
|  | STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk"); | 
|  | STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk"); | 
|  | STATISTIC(NumPromoted, "Number of memory locations promoted to registers"); | 
|  |  | 
|  | /// Memory promotion is enabled by default. | 
|  | static cl::opt<bool> | 
|  | DisablePromotion("disable-licm-promotion", cl::Hidden, cl::init(false), | 
|  | cl::desc("Disable memory promotion in LICM pass")); | 
|  |  | 
|  | static cl::opt<uint32_t> MaxNumUsesTraversed( | 
|  | "licm-max-num-uses-traversed", cl::Hidden, cl::init(8), | 
|  | cl::desc("Max num uses visited for identifying load " | 
|  | "invariance in loop using invariant start (default = 8)")); | 
|  |  | 
|  | static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI); | 
|  | static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop, | 
|  | const LoopSafetyInfo *SafetyInfo, | 
|  | TargetTransformInfo *TTI, bool &FreeInLoop); | 
|  | static bool hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop, | 
|  | const LoopSafetyInfo *SafetyInfo, | 
|  | OptimizationRemarkEmitter *ORE); | 
|  | static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT, | 
|  | const Loop *CurLoop, LoopSafetyInfo *SafetyInfo, | 
|  | OptimizationRemarkEmitter *ORE, bool FreeInLoop); | 
|  | static bool isSafeToExecuteUnconditionally(Instruction &Inst, | 
|  | const DominatorTree *DT, | 
|  | const Loop *CurLoop, | 
|  | const LoopSafetyInfo *SafetyInfo, | 
|  | OptimizationRemarkEmitter *ORE, | 
|  | const Instruction *CtxI = nullptr); | 
|  | static bool pointerInvalidatedByLoop(Value *V, uint64_t Size, | 
|  | const AAMDNodes &AAInfo, | 
|  | AliasSetTracker *CurAST); | 
|  | static Instruction * | 
|  | CloneInstructionInExitBlock(Instruction &I, BasicBlock &ExitBlock, PHINode &PN, | 
|  | const LoopInfo *LI, | 
|  | const LoopSafetyInfo *SafetyInfo); | 
|  |  | 
|  | namespace { | 
|  | struct LoopInvariantCodeMotion { | 
|  | bool runOnLoop(Loop *L, AliasAnalysis *AA, LoopInfo *LI, DominatorTree *DT, | 
|  | TargetLibraryInfo *TLI, TargetTransformInfo *TTI, | 
|  | ScalarEvolution *SE, MemorySSA *MSSA, | 
|  | OptimizationRemarkEmitter *ORE, bool DeleteAST); | 
|  |  | 
|  | DenseMap<Loop *, AliasSetTracker *> &getLoopToAliasSetMap() { | 
|  | return LoopToAliasSetMap; | 
|  | } | 
|  |  | 
|  | private: | 
|  | DenseMap<Loop *, AliasSetTracker *> LoopToAliasSetMap; | 
|  |  | 
|  | AliasSetTracker *collectAliasInfoForLoop(Loop *L, LoopInfo *LI, | 
|  | AliasAnalysis *AA); | 
|  | }; | 
|  |  | 
|  | struct LegacyLICMPass : public LoopPass { | 
|  | static char ID; // Pass identification, replacement for typeid | 
|  | LegacyLICMPass() : LoopPass(ID) { | 
|  | initializeLegacyLICMPassPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | bool runOnLoop(Loop *L, LPPassManager &LPM) override { | 
|  | if (skipLoop(L)) { | 
|  | // If we have run LICM on a previous loop but now we are skipping | 
|  | // (because we've hit the opt-bisect limit), we need to clear the | 
|  | // loop alias information. | 
|  | for (auto <AS : LICM.getLoopToAliasSetMap()) | 
|  | delete LTAS.second; | 
|  | LICM.getLoopToAliasSetMap().clear(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | auto *SE = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); | 
|  | MemorySSA *MSSA = EnableMSSALoopDependency | 
|  | ? (&getAnalysis<MemorySSAWrapperPass>().getMSSA()) | 
|  | : nullptr; | 
|  | // For the old PM, we can't use OptimizationRemarkEmitter as an analysis | 
|  | // pass.  Function analyses need to be preserved across loop transformations | 
|  | // but ORE cannot be preserved (see comment before the pass definition). | 
|  | OptimizationRemarkEmitter ORE(L->getHeader()->getParent()); | 
|  | return LICM.runOnLoop(L, | 
|  | &getAnalysis<AAResultsWrapperPass>().getAAResults(), | 
|  | &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(), | 
|  | &getAnalysis<DominatorTreeWrapperPass>().getDomTree(), | 
|  | &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), | 
|  | &getAnalysis<TargetTransformInfoWrapperPass>().getTTI( | 
|  | *L->getHeader()->getParent()), | 
|  | SE ? &SE->getSE() : nullptr, MSSA, &ORE, false); | 
|  | } | 
|  |  | 
|  | /// This transformation requires natural loop information & requires that | 
|  | /// loop preheaders be inserted into the CFG... | 
|  | /// | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.setPreservesCFG(); | 
|  | AU.addRequired<TargetLibraryInfoWrapperPass>(); | 
|  | if (EnableMSSALoopDependency) | 
|  | AU.addRequired<MemorySSAWrapperPass>(); | 
|  | AU.addRequired<TargetTransformInfoWrapperPass>(); | 
|  | getLoopAnalysisUsage(AU); | 
|  | } | 
|  |  | 
|  | using llvm::Pass::doFinalization; | 
|  |  | 
|  | bool doFinalization() override { | 
|  | assert(LICM.getLoopToAliasSetMap().empty() && | 
|  | "Didn't free loop alias sets"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | private: | 
|  | LoopInvariantCodeMotion LICM; | 
|  |  | 
|  | /// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info. | 
|  | void cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, | 
|  | Loop *L) override; | 
|  |  | 
|  | /// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias | 
|  | /// set. | 
|  | void deleteAnalysisValue(Value *V, Loop *L) override; | 
|  |  | 
|  | /// Simple Analysis hook. Delete loop L from alias set map. | 
|  | void deleteAnalysisLoop(Loop *L) override; | 
|  | }; | 
|  | } // namespace | 
|  |  | 
|  | PreservedAnalyses LICMPass::run(Loop &L, LoopAnalysisManager &AM, | 
|  | LoopStandardAnalysisResults &AR, LPMUpdater &) { | 
|  | const auto &FAM = | 
|  | AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager(); | 
|  | Function *F = L.getHeader()->getParent(); | 
|  |  | 
|  | auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F); | 
|  | // FIXME: This should probably be optional rather than required. | 
|  | if (!ORE) | 
|  | report_fatal_error("LICM: OptimizationRemarkEmitterAnalysis not " | 
|  | "cached at a higher level"); | 
|  |  | 
|  | LoopInvariantCodeMotion LICM; | 
|  | if (!LICM.runOnLoop(&L, &AR.AA, &AR.LI, &AR.DT, &AR.TLI, &AR.TTI, &AR.SE, | 
|  | AR.MSSA, ORE, true)) | 
|  | return PreservedAnalyses::all(); | 
|  |  | 
|  | auto PA = getLoopPassPreservedAnalyses(); | 
|  | PA.preserveSet<CFGAnalyses>(); | 
|  | return PA; | 
|  | } | 
|  |  | 
|  | char LegacyLICMPass::ID = 0; | 
|  | INITIALIZE_PASS_BEGIN(LegacyLICMPass, "licm", "Loop Invariant Code Motion", | 
|  | false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(LoopPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) | 
|  | INITIALIZE_PASS_END(LegacyLICMPass, "licm", "Loop Invariant Code Motion", false, | 
|  | false) | 
|  |  | 
|  | Pass *llvm::createLICMPass() { return new LegacyLICMPass(); } | 
|  |  | 
|  | /// Hoist expressions out of the specified loop. Note, alias info for inner | 
|  | /// loop is not preserved so it is not a good idea to run LICM multiple | 
|  | /// times on one loop. | 
|  | /// We should delete AST for inner loops in the new pass manager to avoid | 
|  | /// memory leak. | 
|  | /// | 
|  | bool LoopInvariantCodeMotion::runOnLoop( | 
|  | Loop *L, AliasAnalysis *AA, LoopInfo *LI, DominatorTree *DT, | 
|  | TargetLibraryInfo *TLI, TargetTransformInfo *TTI, ScalarEvolution *SE, | 
|  | MemorySSA *MSSA, OptimizationRemarkEmitter *ORE, bool DeleteAST) { | 
|  | bool Changed = false; | 
|  |  | 
|  | assert(L->isLCSSAForm(*DT) && "Loop is not in LCSSA form."); | 
|  |  | 
|  | AliasSetTracker *CurAST = collectAliasInfoForLoop(L, LI, AA); | 
|  |  | 
|  | // Get the preheader block to move instructions into... | 
|  | BasicBlock *Preheader = L->getLoopPreheader(); | 
|  |  | 
|  | // Compute loop safety information. | 
|  | LoopSafetyInfo SafetyInfo; | 
|  | computeLoopSafetyInfo(&SafetyInfo, L); | 
|  |  | 
|  | // We want to visit all of the instructions in this loop... that are not parts | 
|  | // of our subloops (they have already had their invariants hoisted out of | 
|  | // their loop, into this loop, so there is no need to process the BODIES of | 
|  | // the subloops). | 
|  | // | 
|  | // Traverse the body of the loop in depth first order on the dominator tree so | 
|  | // that we are guaranteed to see definitions before we see uses.  This allows | 
|  | // us to sink instructions in one pass, without iteration.  After sinking | 
|  | // instructions, we perform another pass to hoist them out of the loop. | 
|  | // | 
|  | if (L->hasDedicatedExits()) | 
|  | Changed |= sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, TLI, TTI, L, | 
|  | CurAST, &SafetyInfo, ORE); | 
|  | if (Preheader) | 
|  | Changed |= hoistRegion(DT->getNode(L->getHeader()), AA, LI, DT, TLI, L, | 
|  | CurAST, &SafetyInfo, ORE); | 
|  |  | 
|  | // Now that all loop invariants have been removed from the loop, promote any | 
|  | // memory references to scalars that we can. | 
|  | // Don't sink stores from loops without dedicated block exits. Exits | 
|  | // containing indirect branches are not transformed by loop simplify, | 
|  | // make sure we catch that. An additional load may be generated in the | 
|  | // preheader for SSA updater, so also avoid sinking when no preheader | 
|  | // is available. | 
|  | if (!DisablePromotion && Preheader && L->hasDedicatedExits()) { | 
|  | // Figure out the loop exits and their insertion points | 
|  | SmallVector<BasicBlock *, 8> ExitBlocks; | 
|  | L->getUniqueExitBlocks(ExitBlocks); | 
|  |  | 
|  | // We can't insert into a catchswitch. | 
|  | bool HasCatchSwitch = llvm::any_of(ExitBlocks, [](BasicBlock *Exit) { | 
|  | return isa<CatchSwitchInst>(Exit->getTerminator()); | 
|  | }); | 
|  |  | 
|  | if (!HasCatchSwitch) { | 
|  | SmallVector<Instruction *, 8> InsertPts; | 
|  | InsertPts.reserve(ExitBlocks.size()); | 
|  | for (BasicBlock *ExitBlock : ExitBlocks) | 
|  | InsertPts.push_back(&*ExitBlock->getFirstInsertionPt()); | 
|  |  | 
|  | PredIteratorCache PIC; | 
|  |  | 
|  | bool Promoted = false; | 
|  |  | 
|  | // Loop over all of the alias sets in the tracker object. | 
|  | for (AliasSet &AS : *CurAST) { | 
|  | // We can promote this alias set if it has a store, if it is a "Must" | 
|  | // alias set, if the pointer is loop invariant, and if we are not | 
|  | // eliminating any volatile loads or stores. | 
|  | if (AS.isForwardingAliasSet() || !AS.isMod() || !AS.isMustAlias() || | 
|  | AS.isVolatile() || !L->isLoopInvariant(AS.begin()->getValue())) | 
|  | continue; | 
|  |  | 
|  | assert( | 
|  | !AS.empty() && | 
|  | "Must alias set should have at least one pointer element in it!"); | 
|  |  | 
|  | SmallSetVector<Value *, 8> PointerMustAliases; | 
|  | for (const auto &ASI : AS) | 
|  | PointerMustAliases.insert(ASI.getValue()); | 
|  |  | 
|  | Promoted |= promoteLoopAccessesToScalars(PointerMustAliases, ExitBlocks, | 
|  | InsertPts, PIC, LI, DT, TLI, L, | 
|  | CurAST, &SafetyInfo, ORE); | 
|  | } | 
|  |  | 
|  | // Once we have promoted values across the loop body we have to | 
|  | // recursively reform LCSSA as any nested loop may now have values defined | 
|  | // within the loop used in the outer loop. | 
|  | // FIXME: This is really heavy handed. It would be a bit better to use an | 
|  | // SSAUpdater strategy during promotion that was LCSSA aware and reformed | 
|  | // it as it went. | 
|  | if (Promoted) | 
|  | formLCSSARecursively(*L, *DT, LI, SE); | 
|  |  | 
|  | Changed |= Promoted; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check that neither this loop nor its parent have had LCSSA broken. LICM is | 
|  | // specifically moving instructions across the loop boundary and so it is | 
|  | // especially in need of sanity checking here. | 
|  | assert(L->isLCSSAForm(*DT) && "Loop not left in LCSSA form after LICM!"); | 
|  | assert((!L->getParentLoop() || L->getParentLoop()->isLCSSAForm(*DT)) && | 
|  | "Parent loop not left in LCSSA form after LICM!"); | 
|  |  | 
|  | // If this loop is nested inside of another one, save the alias information | 
|  | // for when we process the outer loop. | 
|  | if (L->getParentLoop() && !DeleteAST) | 
|  | LoopToAliasSetMap[L] = CurAST; | 
|  | else | 
|  | delete CurAST; | 
|  |  | 
|  | if (Changed && SE) | 
|  | SE->forgetLoopDispositions(L); | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | /// Walk the specified region of the CFG (defined by all blocks dominated by | 
|  | /// the specified block, and that are in the current loop) in reverse depth | 
|  | /// first order w.r.t the DominatorTree.  This allows us to visit uses before | 
|  | /// definitions, allowing us to sink a loop body in one pass without iteration. | 
|  | /// | 
|  | bool llvm::sinkRegion(DomTreeNode *N, AliasAnalysis *AA, LoopInfo *LI, | 
|  | DominatorTree *DT, TargetLibraryInfo *TLI, | 
|  | TargetTransformInfo *TTI, Loop *CurLoop, | 
|  | AliasSetTracker *CurAST, LoopSafetyInfo *SafetyInfo, | 
|  | OptimizationRemarkEmitter *ORE) { | 
|  |  | 
|  | // Verify inputs. | 
|  | assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && | 
|  | CurLoop != nullptr && CurAST != nullptr && SafetyInfo != nullptr && | 
|  | "Unexpected input to sinkRegion"); | 
|  |  | 
|  | // We want to visit children before parents. We will enque all the parents | 
|  | // before their children in the worklist and process the worklist in reverse | 
|  | // order. | 
|  | SmallVector<DomTreeNode *, 16> Worklist = collectChildrenInLoop(N, CurLoop); | 
|  |  | 
|  | bool Changed = false; | 
|  | for (DomTreeNode *DTN : reverse(Worklist)) { | 
|  | BasicBlock *BB = DTN->getBlock(); | 
|  | // Only need to process the contents of this block if it is not part of a | 
|  | // subloop (which would already have been processed). | 
|  | if (inSubLoop(BB, CurLoop, LI)) | 
|  | continue; | 
|  |  | 
|  | for (BasicBlock::iterator II = BB->end(); II != BB->begin();) { | 
|  | Instruction &I = *--II; | 
|  |  | 
|  | // If the instruction is dead, we would try to sink it because it isn't | 
|  | // used in the loop, instead, just delete it. | 
|  | if (isInstructionTriviallyDead(&I, TLI)) { | 
|  | LLVM_DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n'); | 
|  | salvageDebugInfo(I); | 
|  | ++II; | 
|  | CurAST->deleteValue(&I); | 
|  | I.eraseFromParent(); | 
|  | Changed = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Check to see if we can sink this instruction to the exit blocks | 
|  | // of the loop.  We can do this if the all users of the instruction are | 
|  | // outside of the loop.  In this case, it doesn't even matter if the | 
|  | // operands of the instruction are loop invariant. | 
|  | // | 
|  | bool FreeInLoop = false; | 
|  | if (isNotUsedOrFreeInLoop(I, CurLoop, SafetyInfo, TTI, FreeInLoop) && | 
|  | canSinkOrHoistInst(I, AA, DT, CurLoop, CurAST, SafetyInfo, ORE)) { | 
|  | if (sink(I, LI, DT, CurLoop, SafetyInfo, ORE, FreeInLoop)) { | 
|  | if (!FreeInLoop) { | 
|  | ++II; | 
|  | CurAST->deleteValue(&I); | 
|  | I.eraseFromParent(); | 
|  | } | 
|  | Changed = true; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | /// Walk the specified region of the CFG (defined by all blocks dominated by | 
|  | /// the specified block, and that are in the current loop) in depth first | 
|  | /// order w.r.t the DominatorTree.  This allows us to visit definitions before | 
|  | /// uses, allowing us to hoist a loop body in one pass without iteration. | 
|  | /// | 
|  | bool llvm::hoistRegion(DomTreeNode *N, AliasAnalysis *AA, LoopInfo *LI, | 
|  | DominatorTree *DT, TargetLibraryInfo *TLI, Loop *CurLoop, | 
|  | AliasSetTracker *CurAST, LoopSafetyInfo *SafetyInfo, | 
|  | OptimizationRemarkEmitter *ORE) { | 
|  | // Verify inputs. | 
|  | assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && | 
|  | CurLoop != nullptr && CurAST != nullptr && SafetyInfo != nullptr && | 
|  | "Unexpected input to hoistRegion"); | 
|  |  | 
|  | // We want to visit parents before children. We will enque all the parents | 
|  | // before their children in the worklist and process the worklist in order. | 
|  | SmallVector<DomTreeNode *, 16> Worklist = collectChildrenInLoop(N, CurLoop); | 
|  |  | 
|  | bool Changed = false; | 
|  | for (DomTreeNode *DTN : Worklist) { | 
|  | BasicBlock *BB = DTN->getBlock(); | 
|  | // Only need to process the contents of this block if it is not part of a | 
|  | // subloop (which would already have been processed). | 
|  | if (inSubLoop(BB, CurLoop, LI)) | 
|  | continue; | 
|  |  | 
|  | // Keep track of whether the prefix of instructions visited so far are such | 
|  | // that the next instruction visited is guaranteed to execute if the loop | 
|  | // is entered. | 
|  | bool IsMustExecute = CurLoop->getHeader() == BB; | 
|  |  | 
|  | for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E;) { | 
|  | Instruction &I = *II++; | 
|  | // Try constant folding this instruction.  If all the operands are | 
|  | // constants, it is technically hoistable, but it would be better to | 
|  | // just fold it. | 
|  | if (Constant *C = ConstantFoldInstruction( | 
|  | &I, I.getModule()->getDataLayout(), TLI)) { | 
|  | LLVM_DEBUG(dbgs() << "LICM folding inst: " << I << "  --> " << *C | 
|  | << '\n'); | 
|  | CurAST->copyValue(&I, C); | 
|  | I.replaceAllUsesWith(C); | 
|  | if (isInstructionTriviallyDead(&I, TLI)) { | 
|  | CurAST->deleteValue(&I); | 
|  | I.eraseFromParent(); | 
|  | } | 
|  | Changed = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Attempt to remove floating point division out of the loop by | 
|  | // converting it to a reciprocal multiplication. | 
|  | if (I.getOpcode() == Instruction::FDiv && | 
|  | CurLoop->isLoopInvariant(I.getOperand(1)) && | 
|  | I.hasAllowReciprocal()) { | 
|  | auto Divisor = I.getOperand(1); | 
|  | auto One = llvm::ConstantFP::get(Divisor->getType(), 1.0); | 
|  | auto ReciprocalDivisor = BinaryOperator::CreateFDiv(One, Divisor); | 
|  | ReciprocalDivisor->setFastMathFlags(I.getFastMathFlags()); | 
|  | ReciprocalDivisor->insertBefore(&I); | 
|  |  | 
|  | auto Product = | 
|  | BinaryOperator::CreateFMul(I.getOperand(0), ReciprocalDivisor); | 
|  | Product->setFastMathFlags(I.getFastMathFlags()); | 
|  | Product->insertAfter(&I); | 
|  | I.replaceAllUsesWith(Product); | 
|  | I.eraseFromParent(); | 
|  |  | 
|  | hoist(*ReciprocalDivisor, DT, CurLoop, SafetyInfo, ORE); | 
|  | Changed = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Try hoisting the instruction out to the preheader.  We can only do | 
|  | // this if all of the operands of the instruction are loop invariant and | 
|  | // if it is safe to hoist the instruction. | 
|  | // | 
|  | if (CurLoop->hasLoopInvariantOperands(&I) && | 
|  | canSinkOrHoistInst(I, AA, DT, CurLoop, CurAST, SafetyInfo, ORE) && | 
|  | (IsMustExecute || | 
|  | isSafeToExecuteUnconditionally( | 
|  | I, DT, CurLoop, SafetyInfo, ORE, | 
|  | CurLoop->getLoopPreheader()->getTerminator()))) { | 
|  | Changed |= hoist(I, DT, CurLoop, SafetyInfo, ORE); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (IsMustExecute) | 
|  | IsMustExecute = isGuaranteedToTransferExecutionToSuccessor(&I); | 
|  | } | 
|  | } | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | // Return true if LI is invariant within scope of the loop. LI is invariant if | 
|  | // CurLoop is dominated by an invariant.start representing the same memory | 
|  | // location and size as the memory location LI loads from, and also the | 
|  | // invariant.start has no uses. | 
|  | static bool isLoadInvariantInLoop(LoadInst *LI, DominatorTree *DT, | 
|  | Loop *CurLoop) { | 
|  | Value *Addr = LI->getOperand(0); | 
|  | const DataLayout &DL = LI->getModule()->getDataLayout(); | 
|  | const uint32_t LocSizeInBits = DL.getTypeSizeInBits( | 
|  | cast<PointerType>(Addr->getType())->getElementType()); | 
|  |  | 
|  | // if the type is i8 addrspace(x)*, we know this is the type of | 
|  | // llvm.invariant.start operand | 
|  | auto *PtrInt8Ty = PointerType::get(Type::getInt8Ty(LI->getContext()), | 
|  | LI->getPointerAddressSpace()); | 
|  | unsigned BitcastsVisited = 0; | 
|  | // Look through bitcasts until we reach the i8* type (this is invariant.start | 
|  | // operand type). | 
|  | while (Addr->getType() != PtrInt8Ty) { | 
|  | auto *BC = dyn_cast<BitCastInst>(Addr); | 
|  | // Avoid traversing high number of bitcast uses. | 
|  | if (++BitcastsVisited > MaxNumUsesTraversed || !BC) | 
|  | return false; | 
|  | Addr = BC->getOperand(0); | 
|  | } | 
|  |  | 
|  | unsigned UsesVisited = 0; | 
|  | // Traverse all uses of the load operand value, to see if invariant.start is | 
|  | // one of the uses, and whether it dominates the load instruction. | 
|  | for (auto *U : Addr->users()) { | 
|  | // Avoid traversing for Load operand with high number of users. | 
|  | if (++UsesVisited > MaxNumUsesTraversed) | 
|  | return false; | 
|  | IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); | 
|  | // If there are escaping uses of invariant.start instruction, the load maybe | 
|  | // non-invariant. | 
|  | if (!II || II->getIntrinsicID() != Intrinsic::invariant_start || | 
|  | !II->use_empty()) | 
|  | continue; | 
|  | unsigned InvariantSizeInBits = | 
|  | cast<ConstantInt>(II->getArgOperand(0))->getSExtValue() * 8; | 
|  | // Confirm the invariant.start location size contains the load operand size | 
|  | // in bits. Also, the invariant.start should dominate the load, and we | 
|  | // should not hoist the load out of a loop that contains this dominating | 
|  | // invariant.start. | 
|  | if (LocSizeInBits <= InvariantSizeInBits && | 
|  | DT->properlyDominates(II->getParent(), CurLoop->getHeader())) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool llvm::canSinkOrHoistInst(Instruction &I, AAResults *AA, DominatorTree *DT, | 
|  | Loop *CurLoop, AliasSetTracker *CurAST, | 
|  | LoopSafetyInfo *SafetyInfo, | 
|  | OptimizationRemarkEmitter *ORE) { | 
|  | // SafetyInfo is nullptr if we are checking for sinking from preheader to | 
|  | // loop body. | 
|  | const bool SinkingToLoopBody = !SafetyInfo; | 
|  | // Loads have extra constraints we have to verify before we can hoist them. | 
|  | if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { | 
|  | if (!LI->isUnordered()) | 
|  | return false; // Don't sink/hoist volatile or ordered atomic loads! | 
|  |  | 
|  | // Loads from constant memory are always safe to move, even if they end up | 
|  | // in the same alias set as something that ends up being modified. | 
|  | if (AA->pointsToConstantMemory(LI->getOperand(0))) | 
|  | return true; | 
|  | if (LI->getMetadata(LLVMContext::MD_invariant_load)) | 
|  | return true; | 
|  |  | 
|  | if (LI->isAtomic() && SinkingToLoopBody) | 
|  | return false; // Don't sink unordered atomic loads to loop body. | 
|  |  | 
|  | // This checks for an invariant.start dominating the load. | 
|  | if (isLoadInvariantInLoop(LI, DT, CurLoop)) | 
|  | return true; | 
|  |  | 
|  | // Don't hoist loads which have may-aliased stores in loop. | 
|  | uint64_t Size = 0; | 
|  | if (LI->getType()->isSized()) | 
|  | Size = I.getModule()->getDataLayout().getTypeStoreSize(LI->getType()); | 
|  |  | 
|  | AAMDNodes AAInfo; | 
|  | LI->getAAMetadata(AAInfo); | 
|  |  | 
|  | bool Invalidated = | 
|  | pointerInvalidatedByLoop(LI->getOperand(0), Size, AAInfo, CurAST); | 
|  | // Check loop-invariant address because this may also be a sinkable load | 
|  | // whose address is not necessarily loop-invariant. | 
|  | if (ORE && Invalidated && CurLoop->isLoopInvariant(LI->getPointerOperand())) | 
|  | ORE->emit([&]() { | 
|  | return OptimizationRemarkMissed( | 
|  | DEBUG_TYPE, "LoadWithLoopInvariantAddressInvalidated", LI) | 
|  | << "failed to move load with loop-invariant address " | 
|  | "because the loop may invalidate its value"; | 
|  | }); | 
|  |  | 
|  | return !Invalidated; | 
|  | } else if (CallInst *CI = dyn_cast<CallInst>(&I)) { | 
|  | // Don't sink or hoist dbg info; it's legal, but not useful. | 
|  | if (isa<DbgInfoIntrinsic>(I)) | 
|  | return false; | 
|  |  | 
|  | // Don't sink calls which can throw. | 
|  | if (CI->mayThrow()) | 
|  | return false; | 
|  |  | 
|  | // Handle simple cases by querying alias analysis. | 
|  | FunctionModRefBehavior Behavior = AA->getModRefBehavior(CI); | 
|  | if (Behavior == FMRB_DoesNotAccessMemory) | 
|  | return true; | 
|  | if (AliasAnalysis::onlyReadsMemory(Behavior)) { | 
|  | // A readonly argmemonly function only reads from memory pointed to by | 
|  | // it's arguments with arbitrary offsets.  If we can prove there are no | 
|  | // writes to this memory in the loop, we can hoist or sink. | 
|  | if (AliasAnalysis::onlyAccessesArgPointees(Behavior)) { | 
|  | for (Value *Op : CI->arg_operands()) | 
|  | if (Op->getType()->isPointerTy() && | 
|  | pointerInvalidatedByLoop(Op, MemoryLocation::UnknownSize, | 
|  | AAMDNodes(), CurAST)) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  | // If this call only reads from memory and there are no writes to memory | 
|  | // in the loop, we can hoist or sink the call as appropriate. | 
|  | bool FoundMod = false; | 
|  | for (AliasSet &AS : *CurAST) { | 
|  | if (!AS.isForwardingAliasSet() && AS.isMod()) { | 
|  | FoundMod = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!FoundMod) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // FIXME: This should use mod/ref information to see if we can hoist or | 
|  | // sink the call. | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Only these instructions are hoistable/sinkable. | 
|  | if (!isa<BinaryOperator>(I) && !isa<CastInst>(I) && !isa<SelectInst>(I) && | 
|  | !isa<GetElementPtrInst>(I) && !isa<CmpInst>(I) && | 
|  | !isa<InsertElementInst>(I) && !isa<ExtractElementInst>(I) && | 
|  | !isa<ShuffleVectorInst>(I) && !isa<ExtractValueInst>(I) && | 
|  | !isa<InsertValueInst>(I)) | 
|  | return false; | 
|  |  | 
|  | // If we are checking for sinking from preheader to loop body it will be | 
|  | // always safe as there is no speculative execution. | 
|  | if (SinkingToLoopBody) | 
|  | return true; | 
|  |  | 
|  | // TODO: Plumb the context instruction through to make hoisting and sinking | 
|  | // more powerful. Hoisting of loads already works due to the special casing | 
|  | // above. | 
|  | return isSafeToExecuteUnconditionally(I, DT, CurLoop, SafetyInfo, nullptr); | 
|  | } | 
|  |  | 
|  | /// Returns true if a PHINode is a trivially replaceable with an | 
|  | /// Instruction. | 
|  | /// This is true when all incoming values are that instruction. | 
|  | /// This pattern occurs most often with LCSSA PHI nodes. | 
|  | /// | 
|  | static bool isTriviallyReplacablePHI(const PHINode &PN, const Instruction &I) { | 
|  | for (const Value *IncValue : PN.incoming_values()) | 
|  | if (IncValue != &I) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Return true if the instruction is free in the loop. | 
|  | static bool isFreeInLoop(const Instruction &I, const Loop *CurLoop, | 
|  | const TargetTransformInfo *TTI) { | 
|  |  | 
|  | if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I)) { | 
|  | if (TTI->getUserCost(GEP) != TargetTransformInfo::TCC_Free) | 
|  | return false; | 
|  | // For a GEP, we cannot simply use getUserCost because currently it | 
|  | // optimistically assume that a GEP will fold into addressing mode | 
|  | // regardless of its users. | 
|  | const BasicBlock *BB = GEP->getParent(); | 
|  | for (const User *U : GEP->users()) { | 
|  | const Instruction *UI = cast<Instruction>(U); | 
|  | if (CurLoop->contains(UI) && | 
|  | (BB != UI->getParent() || | 
|  | (!isa<StoreInst>(UI) && !isa<LoadInst>(UI)))) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } else | 
|  | return TTI->getUserCost(&I) == TargetTransformInfo::TCC_Free; | 
|  | } | 
|  |  | 
|  | /// Return true if the only users of this instruction are outside of | 
|  | /// the loop. If this is true, we can sink the instruction to the exit | 
|  | /// blocks of the loop. | 
|  | /// | 
|  | /// We also return true if the instruction could be folded away in lowering. | 
|  | /// (e.g.,  a GEP can be folded into a load as an addressing mode in the loop). | 
|  | static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop, | 
|  | const LoopSafetyInfo *SafetyInfo, | 
|  | TargetTransformInfo *TTI, bool &FreeInLoop) { | 
|  | const auto &BlockColors = SafetyInfo->BlockColors; | 
|  | bool IsFree = isFreeInLoop(I, CurLoop, TTI); | 
|  | for (const User *U : I.users()) { | 
|  | const Instruction *UI = cast<Instruction>(U); | 
|  | if (const PHINode *PN = dyn_cast<PHINode>(UI)) { | 
|  | const BasicBlock *BB = PN->getParent(); | 
|  | // We cannot sink uses in catchswitches. | 
|  | if (isa<CatchSwitchInst>(BB->getTerminator())) | 
|  | return false; | 
|  |  | 
|  | // We need to sink a callsite to a unique funclet.  Avoid sinking if the | 
|  | // phi use is too muddled. | 
|  | if (isa<CallInst>(I)) | 
|  | if (!BlockColors.empty() && | 
|  | BlockColors.find(const_cast<BasicBlock *>(BB))->second.size() != 1) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (CurLoop->contains(UI)) { | 
|  | if (IsFree) { | 
|  | FreeInLoop = true; | 
|  | continue; | 
|  | } | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static Instruction * | 
|  | CloneInstructionInExitBlock(Instruction &I, BasicBlock &ExitBlock, PHINode &PN, | 
|  | const LoopInfo *LI, | 
|  | const LoopSafetyInfo *SafetyInfo) { | 
|  | Instruction *New; | 
|  | if (auto *CI = dyn_cast<CallInst>(&I)) { | 
|  | const auto &BlockColors = SafetyInfo->BlockColors; | 
|  |  | 
|  | // Sinking call-sites need to be handled differently from other | 
|  | // instructions.  The cloned call-site needs a funclet bundle operand | 
|  | // appropriate for it's location in the CFG. | 
|  | SmallVector<OperandBundleDef, 1> OpBundles; | 
|  | for (unsigned BundleIdx = 0, BundleEnd = CI->getNumOperandBundles(); | 
|  | BundleIdx != BundleEnd; ++BundleIdx) { | 
|  | OperandBundleUse Bundle = CI->getOperandBundleAt(BundleIdx); | 
|  | if (Bundle.getTagID() == LLVMContext::OB_funclet) | 
|  | continue; | 
|  |  | 
|  | OpBundles.emplace_back(Bundle); | 
|  | } | 
|  |  | 
|  | if (!BlockColors.empty()) { | 
|  | const ColorVector &CV = BlockColors.find(&ExitBlock)->second; | 
|  | assert(CV.size() == 1 && "non-unique color for exit block!"); | 
|  | BasicBlock *BBColor = CV.front(); | 
|  | Instruction *EHPad = BBColor->getFirstNonPHI(); | 
|  | if (EHPad->isEHPad()) | 
|  | OpBundles.emplace_back("funclet", EHPad); | 
|  | } | 
|  |  | 
|  | New = CallInst::Create(CI, OpBundles); | 
|  | } else { | 
|  | New = I.clone(); | 
|  | } | 
|  |  | 
|  | ExitBlock.getInstList().insert(ExitBlock.getFirstInsertionPt(), New); | 
|  | if (!I.getName().empty()) | 
|  | New->setName(I.getName() + ".le"); | 
|  |  | 
|  | // Build LCSSA PHI nodes for any in-loop operands. Note that this is | 
|  | // particularly cheap because we can rip off the PHI node that we're | 
|  | // replacing for the number and blocks of the predecessors. | 
|  | // OPT: If this shows up in a profile, we can instead finish sinking all | 
|  | // invariant instructions, and then walk their operands to re-establish | 
|  | // LCSSA. That will eliminate creating PHI nodes just to nuke them when | 
|  | // sinking bottom-up. | 
|  | for (User::op_iterator OI = New->op_begin(), OE = New->op_end(); OI != OE; | 
|  | ++OI) | 
|  | if (Instruction *OInst = dyn_cast<Instruction>(*OI)) | 
|  | if (Loop *OLoop = LI->getLoopFor(OInst->getParent())) | 
|  | if (!OLoop->contains(&PN)) { | 
|  | PHINode *OpPN = | 
|  | PHINode::Create(OInst->getType(), PN.getNumIncomingValues(), | 
|  | OInst->getName() + ".lcssa", &ExitBlock.front()); | 
|  | for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) | 
|  | OpPN->addIncoming(OInst, PN.getIncomingBlock(i)); | 
|  | *OI = OpPN; | 
|  | } | 
|  | return New; | 
|  | } | 
|  |  | 
|  | static Instruction *sinkThroughTriviallyReplacablePHI( | 
|  | PHINode *TPN, Instruction *I, LoopInfo *LI, | 
|  | SmallDenseMap<BasicBlock *, Instruction *, 32> &SunkCopies, | 
|  | const LoopSafetyInfo *SafetyInfo, const Loop *CurLoop) { | 
|  | assert(isTriviallyReplacablePHI(*TPN, *I) && | 
|  | "Expect only trivially replacalbe PHI"); | 
|  | BasicBlock *ExitBlock = TPN->getParent(); | 
|  | Instruction *New; | 
|  | auto It = SunkCopies.find(ExitBlock); | 
|  | if (It != SunkCopies.end()) | 
|  | New = It->second; | 
|  | else | 
|  | New = SunkCopies[ExitBlock] = | 
|  | CloneInstructionInExitBlock(*I, *ExitBlock, *TPN, LI, SafetyInfo); | 
|  | return New; | 
|  | } | 
|  |  | 
|  | static bool canSplitPredecessors(PHINode *PN, LoopSafetyInfo *SafetyInfo) { | 
|  | BasicBlock *BB = PN->getParent(); | 
|  | if (!BB->canSplitPredecessors()) | 
|  | return false; | 
|  | // It's not impossible to split EHPad blocks, but if BlockColors already exist | 
|  | // it require updating BlockColors for all offspring blocks accordingly. By | 
|  | // skipping such corner case, we can make updating BlockColors after splitting | 
|  | // predecessor fairly simple. | 
|  | if (!SafetyInfo->BlockColors.empty() && BB->getFirstNonPHI()->isEHPad()) | 
|  | return false; | 
|  | for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { | 
|  | BasicBlock *BBPred = *PI; | 
|  | if (isa<IndirectBrInst>(BBPred->getTerminator())) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void splitPredecessorsOfLoopExit(PHINode *PN, DominatorTree *DT, | 
|  | LoopInfo *LI, const Loop *CurLoop, | 
|  | LoopSafetyInfo *SafetyInfo) { | 
|  | #ifndef NDEBUG | 
|  | SmallVector<BasicBlock *, 32> ExitBlocks; | 
|  | CurLoop->getUniqueExitBlocks(ExitBlocks); | 
|  | SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(), | 
|  | ExitBlocks.end()); | 
|  | #endif | 
|  | BasicBlock *ExitBB = PN->getParent(); | 
|  | assert(ExitBlockSet.count(ExitBB) && "Expect the PHI is in an exit block."); | 
|  |  | 
|  | // Split predecessors of the loop exit to make instructions in the loop are | 
|  | // exposed to exit blocks through trivially replacable PHIs while keeping the | 
|  | // loop in the canonical form where each predecessor of each exit block should | 
|  | // be contained within the loop. For example, this will convert the loop below | 
|  | // from | 
|  | // | 
|  | // LB1: | 
|  | //   %v1 = | 
|  | //   br %LE, %LB2 | 
|  | // LB2: | 
|  | //   %v2 = | 
|  | //   br %LE, %LB1 | 
|  | // LE: | 
|  | //   %p = phi [%v1, %LB1], [%v2, %LB2] <-- non-trivially replacable | 
|  | // | 
|  | // to | 
|  | // | 
|  | // LB1: | 
|  | //   %v1 = | 
|  | //   br %LE.split, %LB2 | 
|  | // LB2: | 
|  | //   %v2 = | 
|  | //   br %LE.split2, %LB1 | 
|  | // LE.split: | 
|  | //   %p1 = phi [%v1, %LB1]  <-- trivially replacable | 
|  | //   br %LE | 
|  | // LE.split2: | 
|  | //   %p2 = phi [%v2, %LB2]  <-- trivially replacable | 
|  | //   br %LE | 
|  | // LE: | 
|  | //   %p = phi [%p1, %LE.split], [%p2, %LE.split2] | 
|  | // | 
|  | auto &BlockColors = SafetyInfo->BlockColors; | 
|  | SmallSetVector<BasicBlock *, 8> PredBBs(pred_begin(ExitBB), pred_end(ExitBB)); | 
|  | while (!PredBBs.empty()) { | 
|  | BasicBlock *PredBB = *PredBBs.begin(); | 
|  | assert(CurLoop->contains(PredBB) && | 
|  | "Expect all predecessors are in the loop"); | 
|  | if (PN->getBasicBlockIndex(PredBB) >= 0) { | 
|  | BasicBlock *NewPred = SplitBlockPredecessors( | 
|  | ExitBB, PredBB, ".split.loop.exit", DT, LI, true); | 
|  | // Since we do not allow splitting EH-block with BlockColors in | 
|  | // canSplitPredecessors(), we can simply assign predecessor's color to | 
|  | // the new block. | 
|  | if (!BlockColors.empty()) { | 
|  | // Grab a reference to the ColorVector to be inserted before getting the | 
|  | // reference to the vector we are copying because inserting the new | 
|  | // element in BlockColors might cause the map to be reallocated. | 
|  | ColorVector &ColorsForNewBlock = BlockColors[NewPred]; | 
|  | ColorVector &ColorsForOldBlock = BlockColors[PredBB]; | 
|  | ColorsForNewBlock = ColorsForOldBlock; | 
|  | } | 
|  | } | 
|  | PredBBs.remove(PredBB); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// When an instruction is found to only be used outside of the loop, this | 
|  | /// function moves it to the exit blocks and patches up SSA form as needed. | 
|  | /// This method is guaranteed to remove the original instruction from its | 
|  | /// position, and may either delete it or move it to outside of the loop. | 
|  | /// | 
|  | static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT, | 
|  | const Loop *CurLoop, LoopSafetyInfo *SafetyInfo, | 
|  | OptimizationRemarkEmitter *ORE, bool FreeInLoop) { | 
|  | LLVM_DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n"); | 
|  | ORE->emit([&]() { | 
|  | return OptimizationRemark(DEBUG_TYPE, "InstSunk", &I) | 
|  | << "sinking " << ore::NV("Inst", &I); | 
|  | }); | 
|  | bool Changed = false; | 
|  | if (isa<LoadInst>(I)) | 
|  | ++NumMovedLoads; | 
|  | else if (isa<CallInst>(I)) | 
|  | ++NumMovedCalls; | 
|  | ++NumSunk; | 
|  |  | 
|  | // Iterate over users to be ready for actual sinking. Replace users via | 
|  | // unrechable blocks with undef and make all user PHIs trivially replcable. | 
|  | SmallPtrSet<Instruction *, 8> VisitedUsers; | 
|  | for (Value::user_iterator UI = I.user_begin(), UE = I.user_end(); UI != UE;) { | 
|  | auto *User = cast<Instruction>(*UI); | 
|  | Use &U = UI.getUse(); | 
|  | ++UI; | 
|  |  | 
|  | if (VisitedUsers.count(User) || CurLoop->contains(User)) | 
|  | continue; | 
|  |  | 
|  | if (!DT->isReachableFromEntry(User->getParent())) { | 
|  | U = UndefValue::get(I.getType()); | 
|  | Changed = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // The user must be a PHI node. | 
|  | PHINode *PN = cast<PHINode>(User); | 
|  |  | 
|  | // Surprisingly, instructions can be used outside of loops without any | 
|  | // exits.  This can only happen in PHI nodes if the incoming block is | 
|  | // unreachable. | 
|  | BasicBlock *BB = PN->getIncomingBlock(U); | 
|  | if (!DT->isReachableFromEntry(BB)) { | 
|  | U = UndefValue::get(I.getType()); | 
|  | Changed = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | VisitedUsers.insert(PN); | 
|  | if (isTriviallyReplacablePHI(*PN, I)) | 
|  | continue; | 
|  |  | 
|  | if (!canSplitPredecessors(PN, SafetyInfo)) | 
|  | return Changed; | 
|  |  | 
|  | // Split predecessors of the PHI so that we can make users trivially | 
|  | // replacable. | 
|  | splitPredecessorsOfLoopExit(PN, DT, LI, CurLoop, SafetyInfo); | 
|  |  | 
|  | // Should rebuild the iterators, as they may be invalidated by | 
|  | // splitPredecessorsOfLoopExit(). | 
|  | UI = I.user_begin(); | 
|  | UE = I.user_end(); | 
|  | } | 
|  |  | 
|  | if (VisitedUsers.empty()) | 
|  | return Changed; | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | SmallVector<BasicBlock *, 32> ExitBlocks; | 
|  | CurLoop->getUniqueExitBlocks(ExitBlocks); | 
|  | SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(), | 
|  | ExitBlocks.end()); | 
|  | #endif | 
|  |  | 
|  | // Clones of this instruction. Don't create more than one per exit block! | 
|  | SmallDenseMap<BasicBlock *, Instruction *, 32> SunkCopies; | 
|  |  | 
|  | // If this instruction is only used outside of the loop, then all users are | 
|  | // PHI nodes in exit blocks due to LCSSA form. Just RAUW them with clones of | 
|  | // the instruction. | 
|  | SmallSetVector<User*, 8> Users(I.user_begin(), I.user_end()); | 
|  | for (auto *UI : Users) { | 
|  | auto *User = cast<Instruction>(UI); | 
|  |  | 
|  | if (CurLoop->contains(User)) | 
|  | continue; | 
|  |  | 
|  | PHINode *PN = cast<PHINode>(User); | 
|  | assert(ExitBlockSet.count(PN->getParent()) && | 
|  | "The LCSSA PHI is not in an exit block!"); | 
|  | // The PHI must be trivially replacable. | 
|  | Instruction *New = sinkThroughTriviallyReplacablePHI(PN, &I, LI, SunkCopies, | 
|  | SafetyInfo, CurLoop); | 
|  | PN->replaceAllUsesWith(New); | 
|  | PN->eraseFromParent(); | 
|  | Changed = true; | 
|  | } | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | /// When an instruction is found to only use loop invariant operands that | 
|  | /// is safe to hoist, this instruction is called to do the dirty work. | 
|  | /// | 
|  | static bool hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop, | 
|  | const LoopSafetyInfo *SafetyInfo, | 
|  | OptimizationRemarkEmitter *ORE) { | 
|  | auto *Preheader = CurLoop->getLoopPreheader(); | 
|  | LLVM_DEBUG(dbgs() << "LICM hoisting to " << Preheader->getName() << ": " << I | 
|  | << "\n"); | 
|  | ORE->emit([&]() { | 
|  | return OptimizationRemark(DEBUG_TYPE, "Hoisted", &I) << "hoisting " | 
|  | << ore::NV("Inst", &I); | 
|  | }); | 
|  |  | 
|  | // Metadata can be dependent on conditions we are hoisting above. | 
|  | // Conservatively strip all metadata on the instruction unless we were | 
|  | // guaranteed to execute I if we entered the loop, in which case the metadata | 
|  | // is valid in the loop preheader. | 
|  | if (I.hasMetadataOtherThanDebugLoc() && | 
|  | // The check on hasMetadataOtherThanDebugLoc is to prevent us from burning | 
|  | // time in isGuaranteedToExecute if we don't actually have anything to | 
|  | // drop.  It is a compile time optimization, not required for correctness. | 
|  | !isGuaranteedToExecute(I, DT, CurLoop, SafetyInfo)) | 
|  | I.dropUnknownNonDebugMetadata(); | 
|  |  | 
|  | // Move the new node to the Preheader, before its terminator. | 
|  | I.moveBefore(Preheader->getTerminator()); | 
|  |  | 
|  | // Do not retain debug locations when we are moving instructions to different | 
|  | // basic blocks, because we want to avoid jumpy line tables. Calls, however, | 
|  | // need to retain their debug locs because they may be inlined. | 
|  | // FIXME: How do we retain source locations without causing poor debugging | 
|  | // behavior? | 
|  | if (!isa<CallInst>(I)) | 
|  | I.setDebugLoc(DebugLoc()); | 
|  |  | 
|  | if (isa<LoadInst>(I)) | 
|  | ++NumMovedLoads; | 
|  | else if (isa<CallInst>(I)) | 
|  | ++NumMovedCalls; | 
|  | ++NumHoisted; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Only sink or hoist an instruction if it is not a trapping instruction, | 
|  | /// or if the instruction is known not to trap when moved to the preheader. | 
|  | /// or if it is a trapping instruction and is guaranteed to execute. | 
|  | static bool isSafeToExecuteUnconditionally(Instruction &Inst, | 
|  | const DominatorTree *DT, | 
|  | const Loop *CurLoop, | 
|  | const LoopSafetyInfo *SafetyInfo, | 
|  | OptimizationRemarkEmitter *ORE, | 
|  | const Instruction *CtxI) { | 
|  | if (isSafeToSpeculativelyExecute(&Inst, CtxI, DT)) | 
|  | return true; | 
|  |  | 
|  | bool GuaranteedToExecute = | 
|  | isGuaranteedToExecute(Inst, DT, CurLoop, SafetyInfo); | 
|  |  | 
|  | if (!GuaranteedToExecute) { | 
|  | auto *LI = dyn_cast<LoadInst>(&Inst); | 
|  | if (LI && CurLoop->isLoopInvariant(LI->getPointerOperand())) | 
|  | ORE->emit([&]() { | 
|  | return OptimizationRemarkMissed( | 
|  | DEBUG_TYPE, "LoadWithLoopInvariantAddressCondExecuted", LI) | 
|  | << "failed to hoist load with loop-invariant address " | 
|  | "because load is conditionally executed"; | 
|  | }); | 
|  | } | 
|  |  | 
|  | return GuaranteedToExecute; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | class LoopPromoter : public LoadAndStorePromoter { | 
|  | Value *SomePtr; // Designated pointer to store to. | 
|  | const SmallSetVector<Value *, 8> &PointerMustAliases; | 
|  | SmallVectorImpl<BasicBlock *> &LoopExitBlocks; | 
|  | SmallVectorImpl<Instruction *> &LoopInsertPts; | 
|  | PredIteratorCache &PredCache; | 
|  | AliasSetTracker &AST; | 
|  | LoopInfo &LI; | 
|  | DebugLoc DL; | 
|  | int Alignment; | 
|  | bool UnorderedAtomic; | 
|  | AAMDNodes AATags; | 
|  |  | 
|  | Value *maybeInsertLCSSAPHI(Value *V, BasicBlock *BB) const { | 
|  | if (Instruction *I = dyn_cast<Instruction>(V)) | 
|  | if (Loop *L = LI.getLoopFor(I->getParent())) | 
|  | if (!L->contains(BB)) { | 
|  | // We need to create an LCSSA PHI node for the incoming value and | 
|  | // store that. | 
|  | PHINode *PN = PHINode::Create(I->getType(), PredCache.size(BB), | 
|  | I->getName() + ".lcssa", &BB->front()); | 
|  | for (BasicBlock *Pred : PredCache.get(BB)) | 
|  | PN->addIncoming(I, Pred); | 
|  | return PN; | 
|  | } | 
|  | return V; | 
|  | } | 
|  |  | 
|  | public: | 
|  | LoopPromoter(Value *SP, ArrayRef<const Instruction *> Insts, SSAUpdater &S, | 
|  | const SmallSetVector<Value *, 8> &PMA, | 
|  | SmallVectorImpl<BasicBlock *> &LEB, | 
|  | SmallVectorImpl<Instruction *> &LIP, PredIteratorCache &PIC, | 
|  | AliasSetTracker &ast, LoopInfo &li, DebugLoc dl, int alignment, | 
|  | bool UnorderedAtomic, const AAMDNodes &AATags) | 
|  | : LoadAndStorePromoter(Insts, S), SomePtr(SP), PointerMustAliases(PMA), | 
|  | LoopExitBlocks(LEB), LoopInsertPts(LIP), PredCache(PIC), AST(ast), | 
|  | LI(li), DL(std::move(dl)), Alignment(alignment), | 
|  | UnorderedAtomic(UnorderedAtomic), AATags(AATags) {} | 
|  |  | 
|  | bool isInstInList(Instruction *I, | 
|  | const SmallVectorImpl<Instruction *> &) const override { | 
|  | Value *Ptr; | 
|  | if (LoadInst *LI = dyn_cast<LoadInst>(I)) | 
|  | Ptr = LI->getOperand(0); | 
|  | else | 
|  | Ptr = cast<StoreInst>(I)->getPointerOperand(); | 
|  | return PointerMustAliases.count(Ptr); | 
|  | } | 
|  |  | 
|  | void doExtraRewritesBeforeFinalDeletion() const override { | 
|  | // Insert stores after in the loop exit blocks.  Each exit block gets a | 
|  | // store of the live-out values that feed them.  Since we've already told | 
|  | // the SSA updater about the defs in the loop and the preheader | 
|  | // definition, it is all set and we can start using it. | 
|  | for (unsigned i = 0, e = LoopExitBlocks.size(); i != e; ++i) { | 
|  | BasicBlock *ExitBlock = LoopExitBlocks[i]; | 
|  | Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock); | 
|  | LiveInValue = maybeInsertLCSSAPHI(LiveInValue, ExitBlock); | 
|  | Value *Ptr = maybeInsertLCSSAPHI(SomePtr, ExitBlock); | 
|  | Instruction *InsertPos = LoopInsertPts[i]; | 
|  | StoreInst *NewSI = new StoreInst(LiveInValue, Ptr, InsertPos); | 
|  | if (UnorderedAtomic) | 
|  | NewSI->setOrdering(AtomicOrdering::Unordered); | 
|  | NewSI->setAlignment(Alignment); | 
|  | NewSI->setDebugLoc(DL); | 
|  | if (AATags) | 
|  | NewSI->setAAMetadata(AATags); | 
|  | } | 
|  | } | 
|  |  | 
|  | void replaceLoadWithValue(LoadInst *LI, Value *V) const override { | 
|  | // Update alias analysis. | 
|  | AST.copyValue(LI, V); | 
|  | } | 
|  | void instructionDeleted(Instruction *I) const override { AST.deleteValue(I); } | 
|  | }; | 
|  |  | 
|  |  | 
|  | /// Return true iff we can prove that a caller of this function can not inspect | 
|  | /// the contents of the provided object in a well defined program. | 
|  | bool isKnownNonEscaping(Value *Object, const TargetLibraryInfo *TLI) { | 
|  | if (isa<AllocaInst>(Object)) | 
|  | // Since the alloca goes out of scope, we know the caller can't retain a | 
|  | // reference to it and be well defined.  Thus, we don't need to check for | 
|  | // capture. | 
|  | return true; | 
|  |  | 
|  | // For all other objects we need to know that the caller can't possibly | 
|  | // have gotten a reference to the object.  There are two components of | 
|  | // that: | 
|  | //   1) Object can't be escaped by this function.  This is what | 
|  | //      PointerMayBeCaptured checks. | 
|  | //   2) Object can't have been captured at definition site.  For this, we | 
|  | //      need to know the return value is noalias.  At the moment, we use a | 
|  | //      weaker condition and handle only AllocLikeFunctions (which are | 
|  | //      known to be noalias).  TODO | 
|  | return isAllocLikeFn(Object, TLI) && | 
|  | !PointerMayBeCaptured(Object, true, true); | 
|  | } | 
|  |  | 
|  | } // namespace | 
|  |  | 
|  | /// Try to promote memory values to scalars by sinking stores out of the | 
|  | /// loop and moving loads to before the loop.  We do this by looping over | 
|  | /// the stores in the loop, looking for stores to Must pointers which are | 
|  | /// loop invariant. | 
|  | /// | 
|  | bool llvm::promoteLoopAccessesToScalars( | 
|  | const SmallSetVector<Value *, 8> &PointerMustAliases, | 
|  | SmallVectorImpl<BasicBlock *> &ExitBlocks, | 
|  | SmallVectorImpl<Instruction *> &InsertPts, PredIteratorCache &PIC, | 
|  | LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI, | 
|  | Loop *CurLoop, AliasSetTracker *CurAST, LoopSafetyInfo *SafetyInfo, | 
|  | OptimizationRemarkEmitter *ORE) { | 
|  | // Verify inputs. | 
|  | assert(LI != nullptr && DT != nullptr && CurLoop != nullptr && | 
|  | CurAST != nullptr && SafetyInfo != nullptr && | 
|  | "Unexpected Input to promoteLoopAccessesToScalars"); | 
|  |  | 
|  | Value *SomePtr = *PointerMustAliases.begin(); | 
|  | BasicBlock *Preheader = CurLoop->getLoopPreheader(); | 
|  |  | 
|  | // It is not safe to promote a load/store from the loop if the load/store is | 
|  | // conditional.  For example, turning: | 
|  | // | 
|  | //    for () { if (c) *P += 1; } | 
|  | // | 
|  | // into: | 
|  | // | 
|  | //    tmp = *P;  for () { if (c) tmp +=1; } *P = tmp; | 
|  | // | 
|  | // is not safe, because *P may only be valid to access if 'c' is true. | 
|  | // | 
|  | // The safety property divides into two parts: | 
|  | // p1) The memory may not be dereferenceable on entry to the loop.  In this | 
|  | //    case, we can't insert the required load in the preheader. | 
|  | // p2) The memory model does not allow us to insert a store along any dynamic | 
|  | //    path which did not originally have one. | 
|  | // | 
|  | // If at least one store is guaranteed to execute, both properties are | 
|  | // satisfied, and promotion is legal. | 
|  | // | 
|  | // This, however, is not a necessary condition. Even if no store/load is | 
|  | // guaranteed to execute, we can still establish these properties. | 
|  | // We can establish (p1) by proving that hoisting the load into the preheader | 
|  | // is safe (i.e. proving dereferenceability on all paths through the loop). We | 
|  | // can use any access within the alias set to prove dereferenceability, | 
|  | // since they're all must alias. | 
|  | // | 
|  | // There are two ways establish (p2): | 
|  | // a) Prove the location is thread-local. In this case the memory model | 
|  | // requirement does not apply, and stores are safe to insert. | 
|  | // b) Prove a store dominates every exit block. In this case, if an exit | 
|  | // blocks is reached, the original dynamic path would have taken us through | 
|  | // the store, so inserting a store into the exit block is safe. Note that this | 
|  | // is different from the store being guaranteed to execute. For instance, | 
|  | // if an exception is thrown on the first iteration of the loop, the original | 
|  | // store is never executed, but the exit blocks are not executed either. | 
|  |  | 
|  | bool DereferenceableInPH = false; | 
|  | bool SafeToInsertStore = false; | 
|  |  | 
|  | SmallVector<Instruction *, 64> LoopUses; | 
|  |  | 
|  | // We start with an alignment of one and try to find instructions that allow | 
|  | // us to prove better alignment. | 
|  | unsigned Alignment = 1; | 
|  | // Keep track of which types of access we see | 
|  | bool SawUnorderedAtomic = false; | 
|  | bool SawNotAtomic = false; | 
|  | AAMDNodes AATags; | 
|  |  | 
|  | const DataLayout &MDL = Preheader->getModule()->getDataLayout(); | 
|  |  | 
|  | bool IsKnownThreadLocalObject = false; | 
|  | if (SafetyInfo->MayThrow) { | 
|  | // If a loop can throw, we have to insert a store along each unwind edge. | 
|  | // That said, we can't actually make the unwind edge explicit. Therefore, | 
|  | // we have to prove that the store is dead along the unwind edge.  We do | 
|  | // this by proving that the caller can't have a reference to the object | 
|  | // after return and thus can't possibly load from the object. | 
|  | Value *Object = GetUnderlyingObject(SomePtr, MDL); | 
|  | if (!isKnownNonEscaping(Object, TLI)) | 
|  | return false; | 
|  | // Subtlety: Alloca's aren't visible to callers, but *are* potentially | 
|  | // visible to other threads if captured and used during their lifetimes. | 
|  | IsKnownThreadLocalObject = !isa<AllocaInst>(Object); | 
|  | } | 
|  |  | 
|  | // Check that all of the pointers in the alias set have the same type.  We | 
|  | // cannot (yet) promote a memory location that is loaded and stored in | 
|  | // different sizes.  While we are at it, collect alignment and AA info. | 
|  | for (Value *ASIV : PointerMustAliases) { | 
|  | // Check that all of the pointers in the alias set have the same type.  We | 
|  | // cannot (yet) promote a memory location that is loaded and stored in | 
|  | // different sizes. | 
|  | if (SomePtr->getType() != ASIV->getType()) | 
|  | return false; | 
|  |  | 
|  | for (User *U : ASIV->users()) { | 
|  | // Ignore instructions that are outside the loop. | 
|  | Instruction *UI = dyn_cast<Instruction>(U); | 
|  | if (!UI || !CurLoop->contains(UI)) | 
|  | continue; | 
|  |  | 
|  | // If there is an non-load/store instruction in the loop, we can't promote | 
|  | // it. | 
|  | if (LoadInst *Load = dyn_cast<LoadInst>(UI)) { | 
|  | assert(!Load->isVolatile() && "AST broken"); | 
|  | if (!Load->isUnordered()) | 
|  | return false; | 
|  |  | 
|  | SawUnorderedAtomic |= Load->isAtomic(); | 
|  | SawNotAtomic |= !Load->isAtomic(); | 
|  |  | 
|  | if (!DereferenceableInPH) | 
|  | DereferenceableInPH = isSafeToExecuteUnconditionally( | 
|  | *Load, DT, CurLoop, SafetyInfo, ORE, Preheader->getTerminator()); | 
|  | } else if (const StoreInst *Store = dyn_cast<StoreInst>(UI)) { | 
|  | // Stores *of* the pointer are not interesting, only stores *to* the | 
|  | // pointer. | 
|  | if (UI->getOperand(1) != ASIV) | 
|  | continue; | 
|  | assert(!Store->isVolatile() && "AST broken"); | 
|  | if (!Store->isUnordered()) | 
|  | return false; | 
|  |  | 
|  | SawUnorderedAtomic |= Store->isAtomic(); | 
|  | SawNotAtomic |= !Store->isAtomic(); | 
|  |  | 
|  | // If the store is guaranteed to execute, both properties are satisfied. | 
|  | // We may want to check if a store is guaranteed to execute even if we | 
|  | // already know that promotion is safe, since it may have higher | 
|  | // alignment than any other guaranteed stores, in which case we can | 
|  | // raise the alignment on the promoted store. | 
|  | unsigned InstAlignment = Store->getAlignment(); | 
|  | if (!InstAlignment) | 
|  | InstAlignment = | 
|  | MDL.getABITypeAlignment(Store->getValueOperand()->getType()); | 
|  |  | 
|  | if (!DereferenceableInPH || !SafeToInsertStore || | 
|  | (InstAlignment > Alignment)) { | 
|  | if (isGuaranteedToExecute(*UI, DT, CurLoop, SafetyInfo)) { | 
|  | DereferenceableInPH = true; | 
|  | SafeToInsertStore = true; | 
|  | Alignment = std::max(Alignment, InstAlignment); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If a store dominates all exit blocks, it is safe to sink. | 
|  | // As explained above, if an exit block was executed, a dominating | 
|  | // store must have been executed at least once, so we are not | 
|  | // introducing stores on paths that did not have them. | 
|  | // Note that this only looks at explicit exit blocks. If we ever | 
|  | // start sinking stores into unwind edges (see above), this will break. | 
|  | if (!SafeToInsertStore) | 
|  | SafeToInsertStore = llvm::all_of(ExitBlocks, [&](BasicBlock *Exit) { | 
|  | return DT->dominates(Store->getParent(), Exit); | 
|  | }); | 
|  |  | 
|  | // If the store is not guaranteed to execute, we may still get | 
|  | // deref info through it. | 
|  | if (!DereferenceableInPH) { | 
|  | DereferenceableInPH = isDereferenceableAndAlignedPointer( | 
|  | Store->getPointerOperand(), Store->getAlignment(), MDL, | 
|  | Preheader->getTerminator(), DT); | 
|  | } | 
|  | } else | 
|  | return false; // Not a load or store. | 
|  |  | 
|  | // Merge the AA tags. | 
|  | if (LoopUses.empty()) { | 
|  | // On the first load/store, just take its AA tags. | 
|  | UI->getAAMetadata(AATags); | 
|  | } else if (AATags) { | 
|  | UI->getAAMetadata(AATags, /* Merge = */ true); | 
|  | } | 
|  |  | 
|  | LoopUses.push_back(UI); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we found both an unordered atomic instruction and a non-atomic memory | 
|  | // access, bail.  We can't blindly promote non-atomic to atomic since we | 
|  | // might not be able to lower the result.  We can't downgrade since that | 
|  | // would violate memory model.  Also, align 0 is an error for atomics. | 
|  | if (SawUnorderedAtomic && SawNotAtomic) | 
|  | return false; | 
|  |  | 
|  | // If we couldn't prove we can hoist the load, bail. | 
|  | if (!DereferenceableInPH) | 
|  | return false; | 
|  |  | 
|  | // We know we can hoist the load, but don't have a guaranteed store. | 
|  | // Check whether the location is thread-local. If it is, then we can insert | 
|  | // stores along paths which originally didn't have them without violating the | 
|  | // memory model. | 
|  | if (!SafeToInsertStore) { | 
|  | if (IsKnownThreadLocalObject) | 
|  | SafeToInsertStore = true; | 
|  | else { | 
|  | Value *Object = GetUnderlyingObject(SomePtr, MDL); | 
|  | SafeToInsertStore = | 
|  | (isAllocLikeFn(Object, TLI) || isa<AllocaInst>(Object)) && | 
|  | !PointerMayBeCaptured(Object, true, true); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we've still failed to prove we can sink the store, give up. | 
|  | if (!SafeToInsertStore) | 
|  | return false; | 
|  |  | 
|  | // Otherwise, this is safe to promote, lets do it! | 
|  | LLVM_DEBUG(dbgs() << "LICM: Promoting value stored to in loop: " << *SomePtr | 
|  | << '\n'); | 
|  | ORE->emit([&]() { | 
|  | return OptimizationRemark(DEBUG_TYPE, "PromoteLoopAccessesToScalar", | 
|  | LoopUses[0]) | 
|  | << "Moving accesses to memory location out of the loop"; | 
|  | }); | 
|  | ++NumPromoted; | 
|  |  | 
|  | // Grab a debug location for the inserted loads/stores; given that the | 
|  | // inserted loads/stores have little relation to the original loads/stores, | 
|  | // this code just arbitrarily picks a location from one, since any debug | 
|  | // location is better than none. | 
|  | DebugLoc DL = LoopUses[0]->getDebugLoc(); | 
|  |  | 
|  | // We use the SSAUpdater interface to insert phi nodes as required. | 
|  | SmallVector<PHINode *, 16> NewPHIs; | 
|  | SSAUpdater SSA(&NewPHIs); | 
|  | LoopPromoter Promoter(SomePtr, LoopUses, SSA, PointerMustAliases, ExitBlocks, | 
|  | InsertPts, PIC, *CurAST, *LI, DL, Alignment, | 
|  | SawUnorderedAtomic, AATags); | 
|  |  | 
|  | // Set up the preheader to have a definition of the value.  It is the live-out | 
|  | // value from the preheader that uses in the loop will use. | 
|  | LoadInst *PreheaderLoad = new LoadInst( | 
|  | SomePtr, SomePtr->getName() + ".promoted", Preheader->getTerminator()); | 
|  | if (SawUnorderedAtomic) | 
|  | PreheaderLoad->setOrdering(AtomicOrdering::Unordered); | 
|  | PreheaderLoad->setAlignment(Alignment); | 
|  | PreheaderLoad->setDebugLoc(DL); | 
|  | if (AATags) | 
|  | PreheaderLoad->setAAMetadata(AATags); | 
|  | SSA.AddAvailableValue(Preheader, PreheaderLoad); | 
|  |  | 
|  | // Rewrite all the loads in the loop and remember all the definitions from | 
|  | // stores in the loop. | 
|  | Promoter.run(LoopUses); | 
|  |  | 
|  | // If the SSAUpdater didn't use the load in the preheader, just zap it now. | 
|  | if (PreheaderLoad->use_empty()) | 
|  | PreheaderLoad->eraseFromParent(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Returns an owning pointer to an alias set which incorporates aliasing info | 
|  | /// from L and all subloops of L. | 
|  | /// FIXME: In new pass manager, there is no helper function to handle loop | 
|  | /// analysis such as cloneBasicBlockAnalysis, so the AST needs to be recomputed | 
|  | /// from scratch for every loop. Hook up with the helper functions when | 
|  | /// available in the new pass manager to avoid redundant computation. | 
|  | AliasSetTracker * | 
|  | LoopInvariantCodeMotion::collectAliasInfoForLoop(Loop *L, LoopInfo *LI, | 
|  | AliasAnalysis *AA) { | 
|  | AliasSetTracker *CurAST = nullptr; | 
|  | SmallVector<Loop *, 4> RecomputeLoops; | 
|  | for (Loop *InnerL : L->getSubLoops()) { | 
|  | auto MapI = LoopToAliasSetMap.find(InnerL); | 
|  | // If the AST for this inner loop is missing it may have been merged into | 
|  | // some other loop's AST and then that loop unrolled, and so we need to | 
|  | // recompute it. | 
|  | if (MapI == LoopToAliasSetMap.end()) { | 
|  | RecomputeLoops.push_back(InnerL); | 
|  | continue; | 
|  | } | 
|  | AliasSetTracker *InnerAST = MapI->second; | 
|  |  | 
|  | if (CurAST != nullptr) { | 
|  | // What if InnerLoop was modified by other passes ? | 
|  | CurAST->add(*InnerAST); | 
|  |  | 
|  | // Once we've incorporated the inner loop's AST into ours, we don't need | 
|  | // the subloop's anymore. | 
|  | delete InnerAST; | 
|  | } else { | 
|  | CurAST = InnerAST; | 
|  | } | 
|  | LoopToAliasSetMap.erase(MapI); | 
|  | } | 
|  | if (CurAST == nullptr) | 
|  | CurAST = new AliasSetTracker(*AA); | 
|  |  | 
|  | auto mergeLoop = [&](Loop *L) { | 
|  | // Loop over the body of this loop, looking for calls, invokes, and stores. | 
|  | for (BasicBlock *BB : L->blocks()) | 
|  | CurAST->add(*BB); // Incorporate the specified basic block | 
|  | }; | 
|  |  | 
|  | // Add everything from the sub loops that are no longer directly available. | 
|  | for (Loop *InnerL : RecomputeLoops) | 
|  | mergeLoop(InnerL); | 
|  |  | 
|  | // And merge in this loop. | 
|  | mergeLoop(L); | 
|  |  | 
|  | return CurAST; | 
|  | } | 
|  |  | 
|  | /// Simple analysis hook. Clone alias set info. | 
|  | /// | 
|  | void LegacyLICMPass::cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, | 
|  | Loop *L) { | 
|  | AliasSetTracker *AST = LICM.getLoopToAliasSetMap().lookup(L); | 
|  | if (!AST) | 
|  | return; | 
|  |  | 
|  | AST->copyValue(From, To); | 
|  | } | 
|  |  | 
|  | /// Simple Analysis hook. Delete value V from alias set | 
|  | /// | 
|  | void LegacyLICMPass::deleteAnalysisValue(Value *V, Loop *L) { | 
|  | AliasSetTracker *AST = LICM.getLoopToAliasSetMap().lookup(L); | 
|  | if (!AST) | 
|  | return; | 
|  |  | 
|  | AST->deleteValue(V); | 
|  | } | 
|  |  | 
|  | /// Simple Analysis hook. Delete value L from alias set map. | 
|  | /// | 
|  | void LegacyLICMPass::deleteAnalysisLoop(Loop *L) { | 
|  | AliasSetTracker *AST = LICM.getLoopToAliasSetMap().lookup(L); | 
|  | if (!AST) | 
|  | return; | 
|  |  | 
|  | delete AST; | 
|  | LICM.getLoopToAliasSetMap().erase(L); | 
|  | } | 
|  |  | 
|  | /// Return true if the body of this loop may store into the memory | 
|  | /// location pointed to by V. | 
|  | /// | 
|  | static bool pointerInvalidatedByLoop(Value *V, uint64_t Size, | 
|  | const AAMDNodes &AAInfo, | 
|  | AliasSetTracker *CurAST) { | 
|  | // Check to see if any of the basic blocks in CurLoop invalidate *V. | 
|  | return CurAST->getAliasSetForPointer(V, Size, AAInfo).isMod(); | 
|  | } | 
|  |  | 
|  | /// Little predicate that returns true if the specified basic block is in | 
|  | /// a subloop of the current one, not the current one itself. | 
|  | /// | 
|  | static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI) { | 
|  | assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop"); | 
|  | return LI->getLoopFor(BB) != CurLoop; | 
|  | } |