|  | //===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | //  This file implements the ASTContext interface. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "clang/AST/ASTContext.h" | 
|  | #include "CXXABI.h" | 
|  | #include "clang/AST/ASTMutationListener.h" | 
|  | #include "clang/AST/Attr.h" | 
|  | #include "clang/AST/CharUnits.h" | 
|  | #include "clang/AST/Comment.h" | 
|  | #include "clang/AST/CommentCommandTraits.h" | 
|  | #include "clang/AST/DeclCXX.h" | 
|  | #include "clang/AST/DeclObjC.h" | 
|  | #include "clang/AST/DeclTemplate.h" | 
|  | #include "clang/AST/Expr.h" | 
|  | #include "clang/AST/ExprCXX.h" | 
|  | #include "clang/AST/ExternalASTSource.h" | 
|  | #include "clang/AST/Mangle.h" | 
|  | #include "clang/AST/MangleNumberingContext.h" | 
|  | #include "clang/AST/RecordLayout.h" | 
|  | #include "clang/AST/RecursiveASTVisitor.h" | 
|  | #include "clang/AST/TypeLoc.h" | 
|  | #include "clang/AST/VTableBuilder.h" | 
|  | #include "clang/Basic/Builtins.h" | 
|  | #include "clang/Basic/SourceManager.h" | 
|  | #include "clang/Basic/TargetInfo.h" | 
|  | #include "llvm/ADT/SmallString.h" | 
|  | #include "llvm/ADT/StringExtras.h" | 
|  | #include "llvm/ADT/Triple.h" | 
|  | #include "llvm/Support/Capacity.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <map> | 
|  |  | 
|  | using namespace clang; | 
|  |  | 
|  | unsigned ASTContext::NumImplicitDefaultConstructors; | 
|  | unsigned ASTContext::NumImplicitDefaultConstructorsDeclared; | 
|  | unsigned ASTContext::NumImplicitCopyConstructors; | 
|  | unsigned ASTContext::NumImplicitCopyConstructorsDeclared; | 
|  | unsigned ASTContext::NumImplicitMoveConstructors; | 
|  | unsigned ASTContext::NumImplicitMoveConstructorsDeclared; | 
|  | unsigned ASTContext::NumImplicitCopyAssignmentOperators; | 
|  | unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared; | 
|  | unsigned ASTContext::NumImplicitMoveAssignmentOperators; | 
|  | unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared; | 
|  | unsigned ASTContext::NumImplicitDestructors; | 
|  | unsigned ASTContext::NumImplicitDestructorsDeclared; | 
|  |  | 
|  | enum FloatingRank { | 
|  | HalfRank, FloatRank, DoubleRank, LongDoubleRank | 
|  | }; | 
|  |  | 
|  | RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const { | 
|  | if (!CommentsLoaded && ExternalSource) { | 
|  | ExternalSource->ReadComments(); | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | ArrayRef<RawComment *> RawComments = Comments.getComments(); | 
|  | assert(std::is_sorted(RawComments.begin(), RawComments.end(), | 
|  | BeforeThanCompare<RawComment>(SourceMgr))); | 
|  | #endif | 
|  |  | 
|  | CommentsLoaded = true; | 
|  | } | 
|  |  | 
|  | assert(D); | 
|  |  | 
|  | // User can not attach documentation to implicit declarations. | 
|  | if (D->isImplicit()) | 
|  | return nullptr; | 
|  |  | 
|  | // User can not attach documentation to implicit instantiations. | 
|  | if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { | 
|  | if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { | 
|  | if (VD->isStaticDataMember() && | 
|  | VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) { | 
|  | if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | if (const ClassTemplateSpecializationDecl *CTSD = | 
|  | dyn_cast<ClassTemplateSpecializationDecl>(D)) { | 
|  | TemplateSpecializationKind TSK = CTSD->getSpecializationKind(); | 
|  | if (TSK == TSK_ImplicitInstantiation || | 
|  | TSK == TSK_Undeclared) | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) { | 
|  | if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) | 
|  | return nullptr; | 
|  | } | 
|  | if (const TagDecl *TD = dyn_cast<TagDecl>(D)) { | 
|  | // When tag declaration (but not definition!) is part of the | 
|  | // decl-specifier-seq of some other declaration, it doesn't get comment | 
|  | if (TD->isEmbeddedInDeclarator() && !TD->isCompleteDefinition()) | 
|  | return nullptr; | 
|  | } | 
|  | // TODO: handle comments for function parameters properly. | 
|  | if (isa<ParmVarDecl>(D)) | 
|  | return nullptr; | 
|  |  | 
|  | // TODO: we could look up template parameter documentation in the template | 
|  | // documentation. | 
|  | if (isa<TemplateTypeParmDecl>(D) || | 
|  | isa<NonTypeTemplateParmDecl>(D) || | 
|  | isa<TemplateTemplateParmDecl>(D)) | 
|  | return nullptr; | 
|  |  | 
|  | ArrayRef<RawComment *> RawComments = Comments.getComments(); | 
|  |  | 
|  | // If there are no comments anywhere, we won't find anything. | 
|  | if (RawComments.empty()) | 
|  | return nullptr; | 
|  |  | 
|  | // Find declaration location. | 
|  | // For Objective-C declarations we generally don't expect to have multiple | 
|  | // declarators, thus use declaration starting location as the "declaration | 
|  | // location". | 
|  | // For all other declarations multiple declarators are used quite frequently, | 
|  | // so we use the location of the identifier as the "declaration location". | 
|  | SourceLocation DeclLoc; | 
|  | if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) || | 
|  | isa<ObjCPropertyDecl>(D) || | 
|  | isa<RedeclarableTemplateDecl>(D) || | 
|  | isa<ClassTemplateSpecializationDecl>(D)) | 
|  | DeclLoc = D->getLocStart(); | 
|  | else { | 
|  | DeclLoc = D->getLocation(); | 
|  | if (DeclLoc.isMacroID()) { | 
|  | if (isa<TypedefDecl>(D)) { | 
|  | // If location of the typedef name is in a macro, it is because being | 
|  | // declared via a macro. Try using declaration's starting location as | 
|  | // the "declaration location". | 
|  | DeclLoc = D->getLocStart(); | 
|  | } else if (const TagDecl *TD = dyn_cast<TagDecl>(D)) { | 
|  | // If location of the tag decl is inside a macro, but the spelling of | 
|  | // the tag name comes from a macro argument, it looks like a special | 
|  | // macro like NS_ENUM is being used to define the tag decl.  In that | 
|  | // case, adjust the source location to the expansion loc so that we can | 
|  | // attach the comment to the tag decl. | 
|  | if (SourceMgr.isMacroArgExpansion(DeclLoc) && | 
|  | TD->isCompleteDefinition()) | 
|  | DeclLoc = SourceMgr.getExpansionLoc(DeclLoc); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the declaration doesn't map directly to a location in a file, we | 
|  | // can't find the comment. | 
|  | if (DeclLoc.isInvalid() || !DeclLoc.isFileID()) | 
|  | return nullptr; | 
|  |  | 
|  | // Find the comment that occurs just after this declaration. | 
|  | ArrayRef<RawComment *>::iterator Comment; | 
|  | { | 
|  | // When searching for comments during parsing, the comment we are looking | 
|  | // for is usually among the last two comments we parsed -- check them | 
|  | // first. | 
|  | RawComment CommentAtDeclLoc( | 
|  | SourceMgr, SourceRange(DeclLoc), false, | 
|  | LangOpts.CommentOpts.ParseAllComments); | 
|  | BeforeThanCompare<RawComment> Compare(SourceMgr); | 
|  | ArrayRef<RawComment *>::iterator MaybeBeforeDecl = RawComments.end() - 1; | 
|  | bool Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc); | 
|  | if (!Found && RawComments.size() >= 2) { | 
|  | MaybeBeforeDecl--; | 
|  | Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc); | 
|  | } | 
|  |  | 
|  | if (Found) { | 
|  | Comment = MaybeBeforeDecl + 1; | 
|  | assert(Comment == std::lower_bound(RawComments.begin(), RawComments.end(), | 
|  | &CommentAtDeclLoc, Compare)); | 
|  | } else { | 
|  | // Slow path. | 
|  | Comment = std::lower_bound(RawComments.begin(), RawComments.end(), | 
|  | &CommentAtDeclLoc, Compare); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Decompose the location for the declaration and find the beginning of the | 
|  | // file buffer. | 
|  | std::pair<FileID, unsigned> DeclLocDecomp = SourceMgr.getDecomposedLoc(DeclLoc); | 
|  |  | 
|  | // First check whether we have a trailing comment. | 
|  | if (Comment != RawComments.end() && | 
|  | (*Comment)->isDocumentation() && (*Comment)->isTrailingComment() && | 
|  | (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D) || | 
|  | isa<ObjCMethodDecl>(D) || isa<ObjCPropertyDecl>(D))) { | 
|  | std::pair<FileID, unsigned> CommentBeginDecomp | 
|  | = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getBegin()); | 
|  | // Check that Doxygen trailing comment comes after the declaration, starts | 
|  | // on the same line and in the same file as the declaration. | 
|  | if (DeclLocDecomp.first == CommentBeginDecomp.first && | 
|  | SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second) | 
|  | == SourceMgr.getLineNumber(CommentBeginDecomp.first, | 
|  | CommentBeginDecomp.second)) { | 
|  | return *Comment; | 
|  | } | 
|  | } | 
|  |  | 
|  | // The comment just after the declaration was not a trailing comment. | 
|  | // Let's look at the previous comment. | 
|  | if (Comment == RawComments.begin()) | 
|  | return nullptr; | 
|  | --Comment; | 
|  |  | 
|  | // Check that we actually have a non-member Doxygen comment. | 
|  | if (!(*Comment)->isDocumentation() || (*Comment)->isTrailingComment()) | 
|  | return nullptr; | 
|  |  | 
|  | // Decompose the end of the comment. | 
|  | std::pair<FileID, unsigned> CommentEndDecomp | 
|  | = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getEnd()); | 
|  |  | 
|  | // If the comment and the declaration aren't in the same file, then they | 
|  | // aren't related. | 
|  | if (DeclLocDecomp.first != CommentEndDecomp.first) | 
|  | return nullptr; | 
|  |  | 
|  | // Get the corresponding buffer. | 
|  | bool Invalid = false; | 
|  | const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first, | 
|  | &Invalid).data(); | 
|  | if (Invalid) | 
|  | return nullptr; | 
|  |  | 
|  | // Extract text between the comment and declaration. | 
|  | StringRef Text(Buffer + CommentEndDecomp.second, | 
|  | DeclLocDecomp.second - CommentEndDecomp.second); | 
|  |  | 
|  | // There should be no other declarations or preprocessor directives between | 
|  | // comment and declaration. | 
|  | if (Text.find_first_of(";{}#@") != StringRef::npos) | 
|  | return nullptr; | 
|  |  | 
|  | return *Comment; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | /// If we have a 'templated' declaration for a template, adjust 'D' to | 
|  | /// refer to the actual template. | 
|  | /// If we have an implicit instantiation, adjust 'D' to refer to template. | 
|  | const Decl *adjustDeclToTemplate(const Decl *D) { | 
|  | if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { | 
|  | // Is this function declaration part of a function template? | 
|  | if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate()) | 
|  | return FTD; | 
|  |  | 
|  | // Nothing to do if function is not an implicit instantiation. | 
|  | if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) | 
|  | return D; | 
|  |  | 
|  | // Function is an implicit instantiation of a function template? | 
|  | if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate()) | 
|  | return FTD; | 
|  |  | 
|  | // Function is instantiated from a member definition of a class template? | 
|  | if (const FunctionDecl *MemberDecl = | 
|  | FD->getInstantiatedFromMemberFunction()) | 
|  | return MemberDecl; | 
|  |  | 
|  | return D; | 
|  | } | 
|  | if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { | 
|  | // Static data member is instantiated from a member definition of a class | 
|  | // template? | 
|  | if (VD->isStaticDataMember()) | 
|  | if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember()) | 
|  | return MemberDecl; | 
|  |  | 
|  | return D; | 
|  | } | 
|  | if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) { | 
|  | // Is this class declaration part of a class template? | 
|  | if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate()) | 
|  | return CTD; | 
|  |  | 
|  | // Class is an implicit instantiation of a class template or partial | 
|  | // specialization? | 
|  | if (const ClassTemplateSpecializationDecl *CTSD = | 
|  | dyn_cast<ClassTemplateSpecializationDecl>(CRD)) { | 
|  | if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation) | 
|  | return D; | 
|  | llvm::PointerUnion<ClassTemplateDecl *, | 
|  | ClassTemplatePartialSpecializationDecl *> | 
|  | PU = CTSD->getSpecializedTemplateOrPartial(); | 
|  | return PU.is<ClassTemplateDecl*>() ? | 
|  | static_cast<const Decl*>(PU.get<ClassTemplateDecl *>()) : | 
|  | static_cast<const Decl*>( | 
|  | PU.get<ClassTemplatePartialSpecializationDecl *>()); | 
|  | } | 
|  |  | 
|  | // Class is instantiated from a member definition of a class template? | 
|  | if (const MemberSpecializationInfo *Info = | 
|  | CRD->getMemberSpecializationInfo()) | 
|  | return Info->getInstantiatedFrom(); | 
|  |  | 
|  | return D; | 
|  | } | 
|  | if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) { | 
|  | // Enum is instantiated from a member definition of a class template? | 
|  | if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum()) | 
|  | return MemberDecl; | 
|  |  | 
|  | return D; | 
|  | } | 
|  | // FIXME: Adjust alias templates? | 
|  | return D; | 
|  | } | 
|  | } // unnamed namespace | 
|  |  | 
|  | const RawComment *ASTContext::getRawCommentForAnyRedecl( | 
|  | const Decl *D, | 
|  | const Decl **OriginalDecl) const { | 
|  | D = adjustDeclToTemplate(D); | 
|  |  | 
|  | // Check whether we have cached a comment for this declaration already. | 
|  | { | 
|  | llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos = | 
|  | RedeclComments.find(D); | 
|  | if (Pos != RedeclComments.end()) { | 
|  | const RawCommentAndCacheFlags &Raw = Pos->second; | 
|  | if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) { | 
|  | if (OriginalDecl) | 
|  | *OriginalDecl = Raw.getOriginalDecl(); | 
|  | return Raw.getRaw(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Search for comments attached to declarations in the redeclaration chain. | 
|  | const RawComment *RC = nullptr; | 
|  | const Decl *OriginalDeclForRC = nullptr; | 
|  | for (auto I : D->redecls()) { | 
|  | llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos = | 
|  | RedeclComments.find(I); | 
|  | if (Pos != RedeclComments.end()) { | 
|  | const RawCommentAndCacheFlags &Raw = Pos->second; | 
|  | if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) { | 
|  | RC = Raw.getRaw(); | 
|  | OriginalDeclForRC = Raw.getOriginalDecl(); | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | RC = getRawCommentForDeclNoCache(I); | 
|  | OriginalDeclForRC = I; | 
|  | RawCommentAndCacheFlags Raw; | 
|  | if (RC) { | 
|  | Raw.setRaw(RC); | 
|  | Raw.setKind(RawCommentAndCacheFlags::FromDecl); | 
|  | } else | 
|  | Raw.setKind(RawCommentAndCacheFlags::NoCommentInDecl); | 
|  | Raw.setOriginalDecl(I); | 
|  | RedeclComments[I] = Raw; | 
|  | if (RC) | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we found a comment, it should be a documentation comment. | 
|  | assert(!RC || RC->isDocumentation()); | 
|  |  | 
|  | if (OriginalDecl) | 
|  | *OriginalDecl = OriginalDeclForRC; | 
|  |  | 
|  | // Update cache for every declaration in the redeclaration chain. | 
|  | RawCommentAndCacheFlags Raw; | 
|  | Raw.setRaw(RC); | 
|  | Raw.setKind(RawCommentAndCacheFlags::FromRedecl); | 
|  | Raw.setOriginalDecl(OriginalDeclForRC); | 
|  |  | 
|  | for (auto I : D->redecls()) { | 
|  | RawCommentAndCacheFlags &R = RedeclComments[I]; | 
|  | if (R.getKind() == RawCommentAndCacheFlags::NoCommentInDecl) | 
|  | R = Raw; | 
|  | } | 
|  |  | 
|  | return RC; | 
|  | } | 
|  |  | 
|  | static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod, | 
|  | SmallVectorImpl<const NamedDecl *> &Redeclared) { | 
|  | const DeclContext *DC = ObjCMethod->getDeclContext(); | 
|  | if (const ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(DC)) { | 
|  | const ObjCInterfaceDecl *ID = IMD->getClassInterface(); | 
|  | if (!ID) | 
|  | return; | 
|  | // Add redeclared method here. | 
|  | for (const auto *Ext : ID->known_extensions()) { | 
|  | if (ObjCMethodDecl *RedeclaredMethod = | 
|  | Ext->getMethod(ObjCMethod->getSelector(), | 
|  | ObjCMethod->isInstanceMethod())) | 
|  | Redeclared.push_back(RedeclaredMethod); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC, | 
|  | const Decl *D) const { | 
|  | comments::DeclInfo *ThisDeclInfo = new (*this) comments::DeclInfo; | 
|  | ThisDeclInfo->CommentDecl = D; | 
|  | ThisDeclInfo->IsFilled = false; | 
|  | ThisDeclInfo->fill(); | 
|  | ThisDeclInfo->CommentDecl = FC->getDecl(); | 
|  | if (!ThisDeclInfo->TemplateParameters) | 
|  | ThisDeclInfo->TemplateParameters = FC->getDeclInfo()->TemplateParameters; | 
|  | comments::FullComment *CFC = | 
|  | new (*this) comments::FullComment(FC->getBlocks(), | 
|  | ThisDeclInfo); | 
|  | return CFC; | 
|  |  | 
|  | } | 
|  |  | 
|  | comments::FullComment *ASTContext::getLocalCommentForDeclUncached(const Decl *D) const { | 
|  | const RawComment *RC = getRawCommentForDeclNoCache(D); | 
|  | return RC ? RC->parse(*this, nullptr, D) : nullptr; | 
|  | } | 
|  |  | 
|  | comments::FullComment *ASTContext::getCommentForDecl( | 
|  | const Decl *D, | 
|  | const Preprocessor *PP) const { | 
|  | if (D->isInvalidDecl()) | 
|  | return nullptr; | 
|  | D = adjustDeclToTemplate(D); | 
|  |  | 
|  | const Decl *Canonical = D->getCanonicalDecl(); | 
|  | llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos = | 
|  | ParsedComments.find(Canonical); | 
|  |  | 
|  | if (Pos != ParsedComments.end()) { | 
|  | if (Canonical != D) { | 
|  | comments::FullComment *FC = Pos->second; | 
|  | comments::FullComment *CFC = cloneFullComment(FC, D); | 
|  | return CFC; | 
|  | } | 
|  | return Pos->second; | 
|  | } | 
|  |  | 
|  | const Decl *OriginalDecl; | 
|  |  | 
|  | const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl); | 
|  | if (!RC) { | 
|  | if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) { | 
|  | SmallVector<const NamedDecl*, 8> Overridden; | 
|  | const ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(D); | 
|  | if (OMD && OMD->isPropertyAccessor()) | 
|  | if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl()) | 
|  | if (comments::FullComment *FC = getCommentForDecl(PDecl, PP)) | 
|  | return cloneFullComment(FC, D); | 
|  | if (OMD) | 
|  | addRedeclaredMethods(OMD, Overridden); | 
|  | getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden); | 
|  | for (unsigned i = 0, e = Overridden.size(); i < e; i++) | 
|  | if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP)) | 
|  | return cloneFullComment(FC, D); | 
|  | } | 
|  | else if (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) { | 
|  | // Attach any tag type's documentation to its typedef if latter | 
|  | // does not have one of its own. | 
|  | QualType QT = TD->getUnderlyingType(); | 
|  | if (const TagType *TT = QT->getAs<TagType>()) | 
|  | if (const Decl *TD = TT->getDecl()) | 
|  | if (comments::FullComment *FC = getCommentForDecl(TD, PP)) | 
|  | return cloneFullComment(FC, D); | 
|  | } | 
|  | else if (const ObjCInterfaceDecl *IC = dyn_cast<ObjCInterfaceDecl>(D)) { | 
|  | while (IC->getSuperClass()) { | 
|  | IC = IC->getSuperClass(); | 
|  | if (comments::FullComment *FC = getCommentForDecl(IC, PP)) | 
|  | return cloneFullComment(FC, D); | 
|  | } | 
|  | } | 
|  | else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(D)) { | 
|  | if (const ObjCInterfaceDecl *IC = CD->getClassInterface()) | 
|  | if (comments::FullComment *FC = getCommentForDecl(IC, PP)) | 
|  | return cloneFullComment(FC, D); | 
|  | } | 
|  | else if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) { | 
|  | if (!(RD = RD->getDefinition())) | 
|  | return nullptr; | 
|  | // Check non-virtual bases. | 
|  | for (const auto &I : RD->bases()) { | 
|  | if (I.isVirtual() || (I.getAccessSpecifier() != AS_public)) | 
|  | continue; | 
|  | QualType Ty = I.getType(); | 
|  | if (Ty.isNull()) | 
|  | continue; | 
|  | if (const CXXRecordDecl *NonVirtualBase = Ty->getAsCXXRecordDecl()) { | 
|  | if (!(NonVirtualBase= NonVirtualBase->getDefinition())) | 
|  | continue; | 
|  |  | 
|  | if (comments::FullComment *FC = getCommentForDecl((NonVirtualBase), PP)) | 
|  | return cloneFullComment(FC, D); | 
|  | } | 
|  | } | 
|  | // Check virtual bases. | 
|  | for (const auto &I : RD->vbases()) { | 
|  | if (I.getAccessSpecifier() != AS_public) | 
|  | continue; | 
|  | QualType Ty = I.getType(); | 
|  | if (Ty.isNull()) | 
|  | continue; | 
|  | if (const CXXRecordDecl *VirtualBase = Ty->getAsCXXRecordDecl()) { | 
|  | if (!(VirtualBase= VirtualBase->getDefinition())) | 
|  | continue; | 
|  | if (comments::FullComment *FC = getCommentForDecl((VirtualBase), PP)) | 
|  | return cloneFullComment(FC, D); | 
|  | } | 
|  | } | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // If the RawComment was attached to other redeclaration of this Decl, we | 
|  | // should parse the comment in context of that other Decl.  This is important | 
|  | // because comments can contain references to parameter names which can be | 
|  | // different across redeclarations. | 
|  | if (D != OriginalDecl) | 
|  | return getCommentForDecl(OriginalDecl, PP); | 
|  |  | 
|  | comments::FullComment *FC = RC->parse(*this, PP, D); | 
|  | ParsedComments[Canonical] = FC; | 
|  | return FC; | 
|  | } | 
|  |  | 
|  | void | 
|  | ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID, | 
|  | TemplateTemplateParmDecl *Parm) { | 
|  | ID.AddInteger(Parm->getDepth()); | 
|  | ID.AddInteger(Parm->getPosition()); | 
|  | ID.AddBoolean(Parm->isParameterPack()); | 
|  |  | 
|  | TemplateParameterList *Params = Parm->getTemplateParameters(); | 
|  | ID.AddInteger(Params->size()); | 
|  | for (TemplateParameterList::const_iterator P = Params->begin(), | 
|  | PEnd = Params->end(); | 
|  | P != PEnd; ++P) { | 
|  | if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) { | 
|  | ID.AddInteger(0); | 
|  | ID.AddBoolean(TTP->isParameterPack()); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) { | 
|  | ID.AddInteger(1); | 
|  | ID.AddBoolean(NTTP->isParameterPack()); | 
|  | ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr()); | 
|  | if (NTTP->isExpandedParameterPack()) { | 
|  | ID.AddBoolean(true); | 
|  | ID.AddInteger(NTTP->getNumExpansionTypes()); | 
|  | for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) { | 
|  | QualType T = NTTP->getExpansionType(I); | 
|  | ID.AddPointer(T.getCanonicalType().getAsOpaquePtr()); | 
|  | } | 
|  | } else | 
|  | ID.AddBoolean(false); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P); | 
|  | ID.AddInteger(2); | 
|  | Profile(ID, TTP); | 
|  | } | 
|  | } | 
|  |  | 
|  | TemplateTemplateParmDecl * | 
|  | ASTContext::getCanonicalTemplateTemplateParmDecl( | 
|  | TemplateTemplateParmDecl *TTP) const { | 
|  | // Check if we already have a canonical template template parameter. | 
|  | llvm::FoldingSetNodeID ID; | 
|  | CanonicalTemplateTemplateParm::Profile(ID, TTP); | 
|  | void *InsertPos = nullptr; | 
|  | CanonicalTemplateTemplateParm *Canonical | 
|  | = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos); | 
|  | if (Canonical) | 
|  | return Canonical->getParam(); | 
|  |  | 
|  | // Build a canonical template parameter list. | 
|  | TemplateParameterList *Params = TTP->getTemplateParameters(); | 
|  | SmallVector<NamedDecl *, 4> CanonParams; | 
|  | CanonParams.reserve(Params->size()); | 
|  | for (TemplateParameterList::const_iterator P = Params->begin(), | 
|  | PEnd = Params->end(); | 
|  | P != PEnd; ++P) { | 
|  | if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) | 
|  | CanonParams.push_back( | 
|  | TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(), | 
|  | SourceLocation(), | 
|  | SourceLocation(), | 
|  | TTP->getDepth(), | 
|  | TTP->getIndex(), nullptr, false, | 
|  | TTP->isParameterPack())); | 
|  | else if (NonTypeTemplateParmDecl *NTTP | 
|  | = dyn_cast<NonTypeTemplateParmDecl>(*P)) { | 
|  | QualType T = getCanonicalType(NTTP->getType()); | 
|  | TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T); | 
|  | NonTypeTemplateParmDecl *Param; | 
|  | if (NTTP->isExpandedParameterPack()) { | 
|  | SmallVector<QualType, 2> ExpandedTypes; | 
|  | SmallVector<TypeSourceInfo *, 2> ExpandedTInfos; | 
|  | for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) { | 
|  | ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I))); | 
|  | ExpandedTInfos.push_back( | 
|  | getTrivialTypeSourceInfo(ExpandedTypes.back())); | 
|  | } | 
|  |  | 
|  | Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(), | 
|  | SourceLocation(), | 
|  | SourceLocation(), | 
|  | NTTP->getDepth(), | 
|  | NTTP->getPosition(), nullptr, | 
|  | T, | 
|  | TInfo, | 
|  | ExpandedTypes.data(), | 
|  | ExpandedTypes.size(), | 
|  | ExpandedTInfos.data()); | 
|  | } else { | 
|  | Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(), | 
|  | SourceLocation(), | 
|  | SourceLocation(), | 
|  | NTTP->getDepth(), | 
|  | NTTP->getPosition(), nullptr, | 
|  | T, | 
|  | NTTP->isParameterPack(), | 
|  | TInfo); | 
|  | } | 
|  | CanonParams.push_back(Param); | 
|  |  | 
|  | } else | 
|  | CanonParams.push_back(getCanonicalTemplateTemplateParmDecl( | 
|  | cast<TemplateTemplateParmDecl>(*P))); | 
|  | } | 
|  |  | 
|  | TemplateTemplateParmDecl *CanonTTP | 
|  | = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(), | 
|  | SourceLocation(), TTP->getDepth(), | 
|  | TTP->getPosition(), | 
|  | TTP->isParameterPack(), | 
|  | nullptr, | 
|  | TemplateParameterList::Create(*this, SourceLocation(), | 
|  | SourceLocation(), | 
|  | CanonParams.data(), | 
|  | CanonParams.size(), | 
|  | SourceLocation())); | 
|  |  | 
|  | // Get the new insert position for the node we care about. | 
|  | Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos); | 
|  | assert(!Canonical && "Shouldn't be in the map!"); | 
|  | (void)Canonical; | 
|  |  | 
|  | // Create the canonical template template parameter entry. | 
|  | Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP); | 
|  | CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos); | 
|  | return CanonTTP; | 
|  | } | 
|  |  | 
|  | CXXABI *ASTContext::createCXXABI(const TargetInfo &T) { | 
|  | if (!LangOpts.CPlusPlus) return nullptr; | 
|  |  | 
|  | switch (T.getCXXABI().getKind()) { | 
|  | case TargetCXXABI::GenericARM: // Same as Itanium at this level | 
|  | case TargetCXXABI::iOS: | 
|  | case TargetCXXABI::iOS64: | 
|  | case TargetCXXABI::GenericAArch64: | 
|  | case TargetCXXABI::GenericItanium: | 
|  | return CreateItaniumCXXABI(*this); | 
|  | case TargetCXXABI::Microsoft: | 
|  | return CreateMicrosoftCXXABI(*this); | 
|  | } | 
|  | llvm_unreachable("Invalid CXXABI type!"); | 
|  | } | 
|  |  | 
|  | static const LangAS::Map *getAddressSpaceMap(const TargetInfo &T, | 
|  | const LangOptions &LOpts) { | 
|  | if (LOpts.FakeAddressSpaceMap) { | 
|  | // The fake address space map must have a distinct entry for each | 
|  | // language-specific address space. | 
|  | static const unsigned FakeAddrSpaceMap[] = { | 
|  | 1, // opencl_global | 
|  | 2, // opencl_local | 
|  | 3, // opencl_constant | 
|  | 4, // cuda_device | 
|  | 5, // cuda_constant | 
|  | 6  // cuda_shared | 
|  | }; | 
|  | return &FakeAddrSpaceMap; | 
|  | } else { | 
|  | return &T.getAddressSpaceMap(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool isAddrSpaceMapManglingEnabled(const TargetInfo &TI, | 
|  | const LangOptions &LangOpts) { | 
|  | switch (LangOpts.getAddressSpaceMapMangling()) { | 
|  | case LangOptions::ASMM_Target: | 
|  | return TI.useAddressSpaceMapMangling(); | 
|  | case LangOptions::ASMM_On: | 
|  | return true; | 
|  | case LangOptions::ASMM_Off: | 
|  | return false; | 
|  | } | 
|  | llvm_unreachable("getAddressSpaceMapMangling() doesn't cover anything."); | 
|  | } | 
|  |  | 
|  | ASTContext::ASTContext(LangOptions& LOpts, SourceManager &SM, | 
|  | IdentifierTable &idents, SelectorTable &sels, | 
|  | Builtin::Context &builtins) | 
|  | : FunctionProtoTypes(this_()), | 
|  | TemplateSpecializationTypes(this_()), | 
|  | DependentTemplateSpecializationTypes(this_()), | 
|  | SubstTemplateTemplateParmPacks(this_()), | 
|  | GlobalNestedNameSpecifier(nullptr), | 
|  | Int128Decl(nullptr), UInt128Decl(nullptr), Float128StubDecl(nullptr), | 
|  | BuiltinVaListDecl(nullptr), | 
|  | ObjCIdDecl(nullptr), ObjCSelDecl(nullptr), ObjCClassDecl(nullptr), | 
|  | ObjCProtocolClassDecl(nullptr), BOOLDecl(nullptr), | 
|  | CFConstantStringTypeDecl(nullptr), ObjCInstanceTypeDecl(nullptr), | 
|  | FILEDecl(nullptr), | 
|  | jmp_bufDecl(nullptr), sigjmp_bufDecl(nullptr), ucontext_tDecl(nullptr), | 
|  | BlockDescriptorType(nullptr), BlockDescriptorExtendedType(nullptr), | 
|  | cudaConfigureCallDecl(nullptr), | 
|  | NullTypeSourceInfo(QualType()), | 
|  | FirstLocalImport(), LastLocalImport(), | 
|  | SourceMgr(SM), LangOpts(LOpts), | 
|  | AddrSpaceMap(nullptr), Target(nullptr), PrintingPolicy(LOpts), | 
|  | Idents(idents), Selectors(sels), | 
|  | BuiltinInfo(builtins), | 
|  | DeclarationNames(*this), | 
|  | ExternalSource(nullptr), Listener(nullptr), | 
|  | Comments(SM), CommentsLoaded(false), | 
|  | CommentCommandTraits(BumpAlloc, LOpts.CommentOpts), | 
|  | LastSDM(nullptr, 0) | 
|  | { | 
|  | TUDecl = TranslationUnitDecl::Create(*this); | 
|  | } | 
|  |  | 
|  | ASTContext::~ASTContext() { | 
|  | ReleaseParentMapEntries(); | 
|  |  | 
|  | // Release the DenseMaps associated with DeclContext objects. | 
|  | // FIXME: Is this the ideal solution? | 
|  | ReleaseDeclContextMaps(); | 
|  |  | 
|  | // Call all of the deallocation functions on all of their targets. | 
|  | for (DeallocationMap::const_iterator I = Deallocations.begin(), | 
|  | E = Deallocations.end(); I != E; ++I) | 
|  | for (unsigned J = 0, N = I->second.size(); J != N; ++J) | 
|  | (I->first)((I->second)[J]); | 
|  |  | 
|  | // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed | 
|  | // because they can contain DenseMaps. | 
|  | for (llvm::DenseMap<const ObjCContainerDecl*, | 
|  | const ASTRecordLayout*>::iterator | 
|  | I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; ) | 
|  | // Increment in loop to prevent using deallocated memory. | 
|  | if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second)) | 
|  | R->Destroy(*this); | 
|  |  | 
|  | for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator | 
|  | I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) { | 
|  | // Increment in loop to prevent using deallocated memory. | 
|  | if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second)) | 
|  | R->Destroy(*this); | 
|  | } | 
|  |  | 
|  | for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(), | 
|  | AEnd = DeclAttrs.end(); | 
|  | A != AEnd; ++A) | 
|  | A->second->~AttrVec(); | 
|  |  | 
|  | llvm::DeleteContainerSeconds(MangleNumberingContexts); | 
|  | } | 
|  |  | 
|  | void ASTContext::ReleaseParentMapEntries() { | 
|  | if (!AllParents) return; | 
|  | for (const auto &Entry : *AllParents) { | 
|  | if (Entry.second.is<ast_type_traits::DynTypedNode *>()) { | 
|  | delete Entry.second.get<ast_type_traits::DynTypedNode *>(); | 
|  | } else { | 
|  | assert(Entry.second.is<ParentVector *>()); | 
|  | delete Entry.second.get<ParentVector *>(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) { | 
|  | Deallocations[Callback].push_back(Data); | 
|  | } | 
|  |  | 
|  | void | 
|  | ASTContext::setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source) { | 
|  | ExternalSource = Source; | 
|  | } | 
|  |  | 
|  | void ASTContext::PrintStats() const { | 
|  | llvm::errs() << "\n*** AST Context Stats:\n"; | 
|  | llvm::errs() << "  " << Types.size() << " types total.\n"; | 
|  |  | 
|  | unsigned counts[] = { | 
|  | #define TYPE(Name, Parent) 0, | 
|  | #define ABSTRACT_TYPE(Name, Parent) | 
|  | #include "clang/AST/TypeNodes.def" | 
|  | 0 // Extra | 
|  | }; | 
|  |  | 
|  | for (unsigned i = 0, e = Types.size(); i != e; ++i) { | 
|  | Type *T = Types[i]; | 
|  | counts[(unsigned)T->getTypeClass()]++; | 
|  | } | 
|  |  | 
|  | unsigned Idx = 0; | 
|  | unsigned TotalBytes = 0; | 
|  | #define TYPE(Name, Parent)                                              \ | 
|  | if (counts[Idx])                                                      \ | 
|  | llvm::errs() << "    " << counts[Idx] << " " << #Name               \ | 
|  | << " types\n";                                         \ | 
|  | TotalBytes += counts[Idx] * sizeof(Name##Type);                       \ | 
|  | ++Idx; | 
|  | #define ABSTRACT_TYPE(Name, Parent) | 
|  | #include "clang/AST/TypeNodes.def" | 
|  |  | 
|  | llvm::errs() << "Total bytes = " << TotalBytes << "\n"; | 
|  |  | 
|  | // Implicit special member functions. | 
|  | llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/" | 
|  | << NumImplicitDefaultConstructors | 
|  | << " implicit default constructors created\n"; | 
|  | llvm::errs() << NumImplicitCopyConstructorsDeclared << "/" | 
|  | << NumImplicitCopyConstructors | 
|  | << " implicit copy constructors created\n"; | 
|  | if (getLangOpts().CPlusPlus) | 
|  | llvm::errs() << NumImplicitMoveConstructorsDeclared << "/" | 
|  | << NumImplicitMoveConstructors | 
|  | << " implicit move constructors created\n"; | 
|  | llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/" | 
|  | << NumImplicitCopyAssignmentOperators | 
|  | << " implicit copy assignment operators created\n"; | 
|  | if (getLangOpts().CPlusPlus) | 
|  | llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/" | 
|  | << NumImplicitMoveAssignmentOperators | 
|  | << " implicit move assignment operators created\n"; | 
|  | llvm::errs() << NumImplicitDestructorsDeclared << "/" | 
|  | << NumImplicitDestructors | 
|  | << " implicit destructors created\n"; | 
|  |  | 
|  | if (ExternalSource) { | 
|  | llvm::errs() << "\n"; | 
|  | ExternalSource->PrintStats(); | 
|  | } | 
|  |  | 
|  | BumpAlloc.PrintStats(); | 
|  | } | 
|  |  | 
|  | RecordDecl *ASTContext::buildImplicitRecord(StringRef Name, | 
|  | RecordDecl::TagKind TK) const { | 
|  | SourceLocation Loc; | 
|  | RecordDecl *NewDecl; | 
|  | if (getLangOpts().CPlusPlus) | 
|  | NewDecl = CXXRecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc, | 
|  | Loc, &Idents.get(Name)); | 
|  | else | 
|  | NewDecl = RecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc, Loc, | 
|  | &Idents.get(Name)); | 
|  | NewDecl->setImplicit(); | 
|  | return NewDecl; | 
|  | } | 
|  |  | 
|  | TypedefDecl *ASTContext::buildImplicitTypedef(QualType T, | 
|  | StringRef Name) const { | 
|  | TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T); | 
|  | TypedefDecl *NewDecl = TypedefDecl::Create( | 
|  | const_cast<ASTContext &>(*this), getTranslationUnitDecl(), | 
|  | SourceLocation(), SourceLocation(), &Idents.get(Name), TInfo); | 
|  | NewDecl->setImplicit(); | 
|  | return NewDecl; | 
|  | } | 
|  |  | 
|  | TypedefDecl *ASTContext::getInt128Decl() const { | 
|  | if (!Int128Decl) | 
|  | Int128Decl = buildImplicitTypedef(Int128Ty, "__int128_t"); | 
|  | return Int128Decl; | 
|  | } | 
|  |  | 
|  | TypedefDecl *ASTContext::getUInt128Decl() const { | 
|  | if (!UInt128Decl) | 
|  | UInt128Decl = buildImplicitTypedef(UnsignedInt128Ty, "__uint128_t"); | 
|  | return UInt128Decl; | 
|  | } | 
|  |  | 
|  | TypeDecl *ASTContext::getFloat128StubType() const { | 
|  | assert(LangOpts.CPlusPlus && "should only be called for c++"); | 
|  | if (!Float128StubDecl) | 
|  | Float128StubDecl = buildImplicitRecord("__float128"); | 
|  |  | 
|  | return Float128StubDecl; | 
|  | } | 
|  |  | 
|  | void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) { | 
|  | BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K); | 
|  | R = CanQualType::CreateUnsafe(QualType(Ty, 0)); | 
|  | Types.push_back(Ty); | 
|  | } | 
|  |  | 
|  | void ASTContext::InitBuiltinTypes(const TargetInfo &Target) { | 
|  | assert((!this->Target || this->Target == &Target) && | 
|  | "Incorrect target reinitialization"); | 
|  | assert(VoidTy.isNull() && "Context reinitialized?"); | 
|  |  | 
|  | this->Target = &Target; | 
|  |  | 
|  | ABI.reset(createCXXABI(Target)); | 
|  | AddrSpaceMap = getAddressSpaceMap(Target, LangOpts); | 
|  | AddrSpaceMapMangling = isAddrSpaceMapManglingEnabled(Target, LangOpts); | 
|  |  | 
|  | // C99 6.2.5p19. | 
|  | InitBuiltinType(VoidTy,              BuiltinType::Void); | 
|  |  | 
|  | // C99 6.2.5p2. | 
|  | InitBuiltinType(BoolTy,              BuiltinType::Bool); | 
|  | // C99 6.2.5p3. | 
|  | if (LangOpts.CharIsSigned) | 
|  | InitBuiltinType(CharTy,            BuiltinType::Char_S); | 
|  | else | 
|  | InitBuiltinType(CharTy,            BuiltinType::Char_U); | 
|  | // C99 6.2.5p4. | 
|  | InitBuiltinType(SignedCharTy,        BuiltinType::SChar); | 
|  | InitBuiltinType(ShortTy,             BuiltinType::Short); | 
|  | InitBuiltinType(IntTy,               BuiltinType::Int); | 
|  | InitBuiltinType(LongTy,              BuiltinType::Long); | 
|  | InitBuiltinType(LongLongTy,          BuiltinType::LongLong); | 
|  |  | 
|  | // C99 6.2.5p6. | 
|  | InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar); | 
|  | InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort); | 
|  | InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt); | 
|  | InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong); | 
|  | InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong); | 
|  |  | 
|  | // C99 6.2.5p10. | 
|  | InitBuiltinType(FloatTy,             BuiltinType::Float); | 
|  | InitBuiltinType(DoubleTy,            BuiltinType::Double); | 
|  | InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble); | 
|  |  | 
|  | // GNU extension, 128-bit integers. | 
|  | InitBuiltinType(Int128Ty,            BuiltinType::Int128); | 
|  | InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128); | 
|  |  | 
|  | // C++ 3.9.1p5 | 
|  | if (TargetInfo::isTypeSigned(Target.getWCharType())) | 
|  | InitBuiltinType(WCharTy,           BuiltinType::WChar_S); | 
|  | else  // -fshort-wchar makes wchar_t be unsigned. | 
|  | InitBuiltinType(WCharTy,           BuiltinType::WChar_U); | 
|  | if (LangOpts.CPlusPlus && LangOpts.WChar) | 
|  | WideCharTy = WCharTy; | 
|  | else { | 
|  | // C99 (or C++ using -fno-wchar). | 
|  | WideCharTy = getFromTargetType(Target.getWCharType()); | 
|  | } | 
|  |  | 
|  | WIntTy = getFromTargetType(Target.getWIntType()); | 
|  |  | 
|  | if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++ | 
|  | InitBuiltinType(Char16Ty,           BuiltinType::Char16); | 
|  | else // C99 | 
|  | Char16Ty = getFromTargetType(Target.getChar16Type()); | 
|  |  | 
|  | if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++ | 
|  | InitBuiltinType(Char32Ty,           BuiltinType::Char32); | 
|  | else // C99 | 
|  | Char32Ty = getFromTargetType(Target.getChar32Type()); | 
|  |  | 
|  | // Placeholder type for type-dependent expressions whose type is | 
|  | // completely unknown. No code should ever check a type against | 
|  | // DependentTy and users should never see it; however, it is here to | 
|  | // help diagnose failures to properly check for type-dependent | 
|  | // expressions. | 
|  | InitBuiltinType(DependentTy,         BuiltinType::Dependent); | 
|  |  | 
|  | // Placeholder type for functions. | 
|  | InitBuiltinType(OverloadTy,          BuiltinType::Overload); | 
|  |  | 
|  | // Placeholder type for bound members. | 
|  | InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember); | 
|  |  | 
|  | // Placeholder type for pseudo-objects. | 
|  | InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject); | 
|  |  | 
|  | // "any" type; useful for debugger-like clients. | 
|  | InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny); | 
|  |  | 
|  | // Placeholder type for unbridged ARC casts. | 
|  | InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast); | 
|  |  | 
|  | // Placeholder type for builtin functions. | 
|  | InitBuiltinType(BuiltinFnTy,  BuiltinType::BuiltinFn); | 
|  |  | 
|  | // C99 6.2.5p11. | 
|  | FloatComplexTy      = getComplexType(FloatTy); | 
|  | DoubleComplexTy     = getComplexType(DoubleTy); | 
|  | LongDoubleComplexTy = getComplexType(LongDoubleTy); | 
|  |  | 
|  | // Builtin types for 'id', 'Class', and 'SEL'. | 
|  | InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId); | 
|  | InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass); | 
|  | InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel); | 
|  |  | 
|  | if (LangOpts.OpenCL) { | 
|  | InitBuiltinType(OCLImage1dTy, BuiltinType::OCLImage1d); | 
|  | InitBuiltinType(OCLImage1dArrayTy, BuiltinType::OCLImage1dArray); | 
|  | InitBuiltinType(OCLImage1dBufferTy, BuiltinType::OCLImage1dBuffer); | 
|  | InitBuiltinType(OCLImage2dTy, BuiltinType::OCLImage2d); | 
|  | InitBuiltinType(OCLImage2dArrayTy, BuiltinType::OCLImage2dArray); | 
|  | InitBuiltinType(OCLImage3dTy, BuiltinType::OCLImage3d); | 
|  |  | 
|  | InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler); | 
|  | InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent); | 
|  | } | 
|  |  | 
|  | // Builtin type for __objc_yes and __objc_no | 
|  | ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ? | 
|  | SignedCharTy : BoolTy); | 
|  |  | 
|  | ObjCConstantStringType = QualType(); | 
|  |  | 
|  | ObjCSuperType = QualType(); | 
|  |  | 
|  | // void * type | 
|  | VoidPtrTy = getPointerType(VoidTy); | 
|  |  | 
|  | // nullptr type (C++0x 2.14.7) | 
|  | InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr); | 
|  |  | 
|  | // half type (OpenCL 6.1.1.1) / ARM NEON __fp16 | 
|  | InitBuiltinType(HalfTy, BuiltinType::Half); | 
|  |  | 
|  | // Builtin type used to help define __builtin_va_list. | 
|  | VaListTagTy = QualType(); | 
|  | } | 
|  |  | 
|  | DiagnosticsEngine &ASTContext::getDiagnostics() const { | 
|  | return SourceMgr.getDiagnostics(); | 
|  | } | 
|  |  | 
|  | AttrVec& ASTContext::getDeclAttrs(const Decl *D) { | 
|  | AttrVec *&Result = DeclAttrs[D]; | 
|  | if (!Result) { | 
|  | void *Mem = Allocate(sizeof(AttrVec)); | 
|  | Result = new (Mem) AttrVec; | 
|  | } | 
|  |  | 
|  | return *Result; | 
|  | } | 
|  |  | 
|  | /// \brief Erase the attributes corresponding to the given declaration. | 
|  | void ASTContext::eraseDeclAttrs(const Decl *D) { | 
|  | llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D); | 
|  | if (Pos != DeclAttrs.end()) { | 
|  | Pos->second->~AttrVec(); | 
|  | DeclAttrs.erase(Pos); | 
|  | } | 
|  | } | 
|  |  | 
|  | // FIXME: Remove ? | 
|  | MemberSpecializationInfo * | 
|  | ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) { | 
|  | assert(Var->isStaticDataMember() && "Not a static data member"); | 
|  | return getTemplateOrSpecializationInfo(Var) | 
|  | .dyn_cast<MemberSpecializationInfo *>(); | 
|  | } | 
|  |  | 
|  | ASTContext::TemplateOrSpecializationInfo | 
|  | ASTContext::getTemplateOrSpecializationInfo(const VarDecl *Var) { | 
|  | llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>::iterator Pos = | 
|  | TemplateOrInstantiation.find(Var); | 
|  | if (Pos == TemplateOrInstantiation.end()) | 
|  | return TemplateOrSpecializationInfo(); | 
|  |  | 
|  | return Pos->second; | 
|  | } | 
|  |  | 
|  | void | 
|  | ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl, | 
|  | TemplateSpecializationKind TSK, | 
|  | SourceLocation PointOfInstantiation) { | 
|  | assert(Inst->isStaticDataMember() && "Not a static data member"); | 
|  | assert(Tmpl->isStaticDataMember() && "Not a static data member"); | 
|  | setTemplateOrSpecializationInfo(Inst, new (*this) MemberSpecializationInfo( | 
|  | Tmpl, TSK, PointOfInstantiation)); | 
|  | } | 
|  |  | 
|  | void | 
|  | ASTContext::setTemplateOrSpecializationInfo(VarDecl *Inst, | 
|  | TemplateOrSpecializationInfo TSI) { | 
|  | assert(!TemplateOrInstantiation[Inst] && | 
|  | "Already noted what the variable was instantiated from"); | 
|  | TemplateOrInstantiation[Inst] = TSI; | 
|  | } | 
|  |  | 
|  | FunctionDecl *ASTContext::getClassScopeSpecializationPattern( | 
|  | const FunctionDecl *FD){ | 
|  | assert(FD && "Specialization is 0"); | 
|  | llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos | 
|  | = ClassScopeSpecializationPattern.find(FD); | 
|  | if (Pos == ClassScopeSpecializationPattern.end()) | 
|  | return nullptr; | 
|  |  | 
|  | return Pos->second; | 
|  | } | 
|  |  | 
|  | void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD, | 
|  | FunctionDecl *Pattern) { | 
|  | assert(FD && "Specialization is 0"); | 
|  | assert(Pattern && "Class scope specialization pattern is 0"); | 
|  | ClassScopeSpecializationPattern[FD] = Pattern; | 
|  | } | 
|  |  | 
|  | NamedDecl * | 
|  | ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) { | 
|  | llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos | 
|  | = InstantiatedFromUsingDecl.find(UUD); | 
|  | if (Pos == InstantiatedFromUsingDecl.end()) | 
|  | return nullptr; | 
|  |  | 
|  | return Pos->second; | 
|  | } | 
|  |  | 
|  | void | 
|  | ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) { | 
|  | assert((isa<UsingDecl>(Pattern) || | 
|  | isa<UnresolvedUsingValueDecl>(Pattern) || | 
|  | isa<UnresolvedUsingTypenameDecl>(Pattern)) && | 
|  | "pattern decl is not a using decl"); | 
|  | assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists"); | 
|  | InstantiatedFromUsingDecl[Inst] = Pattern; | 
|  | } | 
|  |  | 
|  | UsingShadowDecl * | 
|  | ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) { | 
|  | llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos | 
|  | = InstantiatedFromUsingShadowDecl.find(Inst); | 
|  | if (Pos == InstantiatedFromUsingShadowDecl.end()) | 
|  | return nullptr; | 
|  |  | 
|  | return Pos->second; | 
|  | } | 
|  |  | 
|  | void | 
|  | ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst, | 
|  | UsingShadowDecl *Pattern) { | 
|  | assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists"); | 
|  | InstantiatedFromUsingShadowDecl[Inst] = Pattern; | 
|  | } | 
|  |  | 
|  | FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) { | 
|  | llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos | 
|  | = InstantiatedFromUnnamedFieldDecl.find(Field); | 
|  | if (Pos == InstantiatedFromUnnamedFieldDecl.end()) | 
|  | return nullptr; | 
|  |  | 
|  | return Pos->second; | 
|  | } | 
|  |  | 
|  | void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, | 
|  | FieldDecl *Tmpl) { | 
|  | assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed"); | 
|  | assert(!Tmpl->getDeclName() && "Template field decl is not unnamed"); | 
|  | assert(!InstantiatedFromUnnamedFieldDecl[Inst] && | 
|  | "Already noted what unnamed field was instantiated from"); | 
|  |  | 
|  | InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl; | 
|  | } | 
|  |  | 
|  | ASTContext::overridden_cxx_method_iterator | 
|  | ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const { | 
|  | llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos | 
|  | = OverriddenMethods.find(Method->getCanonicalDecl()); | 
|  | if (Pos == OverriddenMethods.end()) | 
|  | return nullptr; | 
|  |  | 
|  | return Pos->second.begin(); | 
|  | } | 
|  |  | 
|  | ASTContext::overridden_cxx_method_iterator | 
|  | ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const { | 
|  | llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos | 
|  | = OverriddenMethods.find(Method->getCanonicalDecl()); | 
|  | if (Pos == OverriddenMethods.end()) | 
|  | return nullptr; | 
|  |  | 
|  | return Pos->second.end(); | 
|  | } | 
|  |  | 
|  | unsigned | 
|  | ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const { | 
|  | llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos | 
|  | = OverriddenMethods.find(Method->getCanonicalDecl()); | 
|  | if (Pos == OverriddenMethods.end()) | 
|  | return 0; | 
|  |  | 
|  | return Pos->second.size(); | 
|  | } | 
|  |  | 
|  | void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method, | 
|  | const CXXMethodDecl *Overridden) { | 
|  | assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl()); | 
|  | OverriddenMethods[Method].push_back(Overridden); | 
|  | } | 
|  |  | 
|  | void ASTContext::getOverriddenMethods( | 
|  | const NamedDecl *D, | 
|  | SmallVectorImpl<const NamedDecl *> &Overridden) const { | 
|  | assert(D); | 
|  |  | 
|  | if (const CXXMethodDecl *CXXMethod = dyn_cast<CXXMethodDecl>(D)) { | 
|  | Overridden.append(overridden_methods_begin(CXXMethod), | 
|  | overridden_methods_end(CXXMethod)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(D); | 
|  | if (!Method) | 
|  | return; | 
|  |  | 
|  | SmallVector<const ObjCMethodDecl *, 8> OverDecls; | 
|  | Method->getOverriddenMethods(OverDecls); | 
|  | Overridden.append(OverDecls.begin(), OverDecls.end()); | 
|  | } | 
|  |  | 
|  | void ASTContext::addedLocalImportDecl(ImportDecl *Import) { | 
|  | assert(!Import->NextLocalImport && "Import declaration already in the chain"); | 
|  | assert(!Import->isFromASTFile() && "Non-local import declaration"); | 
|  | if (!FirstLocalImport) { | 
|  | FirstLocalImport = Import; | 
|  | LastLocalImport = Import; | 
|  | return; | 
|  | } | 
|  |  | 
|  | LastLocalImport->NextLocalImport = Import; | 
|  | LastLocalImport = Import; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                         Type Sizing and Analysis | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified | 
|  | /// scalar floating point type. | 
|  | const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const { | 
|  | const BuiltinType *BT = T->getAs<BuiltinType>(); | 
|  | assert(BT && "Not a floating point type!"); | 
|  | switch (BT->getKind()) { | 
|  | default: llvm_unreachable("Not a floating point type!"); | 
|  | case BuiltinType::Half:       return Target->getHalfFormat(); | 
|  | case BuiltinType::Float:      return Target->getFloatFormat(); | 
|  | case BuiltinType::Double:     return Target->getDoubleFormat(); | 
|  | case BuiltinType::LongDouble: return Target->getLongDoubleFormat(); | 
|  | } | 
|  | } | 
|  |  | 
|  | CharUnits ASTContext::getDeclAlign(const Decl *D, bool ForAlignof) const { | 
|  | unsigned Align = Target->getCharWidth(); | 
|  |  | 
|  | bool UseAlignAttrOnly = false; | 
|  | if (unsigned AlignFromAttr = D->getMaxAlignment()) { | 
|  | Align = AlignFromAttr; | 
|  |  | 
|  | // __attribute__((aligned)) can increase or decrease alignment | 
|  | // *except* on a struct or struct member, where it only increases | 
|  | // alignment unless 'packed' is also specified. | 
|  | // | 
|  | // It is an error for alignas to decrease alignment, so we can | 
|  | // ignore that possibility;  Sema should diagnose it. | 
|  | if (isa<FieldDecl>(D)) { | 
|  | UseAlignAttrOnly = D->hasAttr<PackedAttr>() || | 
|  | cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>(); | 
|  | } else { | 
|  | UseAlignAttrOnly = true; | 
|  | } | 
|  | } | 
|  | else if (isa<FieldDecl>(D)) | 
|  | UseAlignAttrOnly = | 
|  | D->hasAttr<PackedAttr>() || | 
|  | cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>(); | 
|  |  | 
|  | // If we're using the align attribute only, just ignore everything | 
|  | // else about the declaration and its type. | 
|  | if (UseAlignAttrOnly) { | 
|  | // do nothing | 
|  |  | 
|  | } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) { | 
|  | QualType T = VD->getType(); | 
|  | if (const ReferenceType *RT = T->getAs<ReferenceType>()) { | 
|  | if (ForAlignof) | 
|  | T = RT->getPointeeType(); | 
|  | else | 
|  | T = getPointerType(RT->getPointeeType()); | 
|  | } | 
|  | QualType BaseT = getBaseElementType(T); | 
|  | if (!BaseT->isIncompleteType() && !T->isFunctionType()) { | 
|  | // Adjust alignments of declarations with array type by the | 
|  | // large-array alignment on the target. | 
|  | if (const ArrayType *arrayType = getAsArrayType(T)) { | 
|  | unsigned MinWidth = Target->getLargeArrayMinWidth(); | 
|  | if (!ForAlignof && MinWidth) { | 
|  | if (isa<VariableArrayType>(arrayType)) | 
|  | Align = std::max(Align, Target->getLargeArrayAlign()); | 
|  | else if (isa<ConstantArrayType>(arrayType) && | 
|  | MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType))) | 
|  | Align = std::max(Align, Target->getLargeArrayAlign()); | 
|  | } | 
|  | } | 
|  | Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr())); | 
|  | if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { | 
|  | if (VD->hasGlobalStorage()) | 
|  | Align = std::max(Align, getTargetInfo().getMinGlobalAlign()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Fields can be subject to extra alignment constraints, like if | 
|  | // the field is packed, the struct is packed, or the struct has a | 
|  | // a max-field-alignment constraint (#pragma pack).  So calculate | 
|  | // the actual alignment of the field within the struct, and then | 
|  | // (as we're expected to) constrain that by the alignment of the type. | 
|  | if (const FieldDecl *Field = dyn_cast<FieldDecl>(VD)) { | 
|  | const RecordDecl *Parent = Field->getParent(); | 
|  | // We can only produce a sensible answer if the record is valid. | 
|  | if (!Parent->isInvalidDecl()) { | 
|  | const ASTRecordLayout &Layout = getASTRecordLayout(Parent); | 
|  |  | 
|  | // Start with the record's overall alignment. | 
|  | unsigned FieldAlign = toBits(Layout.getAlignment()); | 
|  |  | 
|  | // Use the GCD of that and the offset within the record. | 
|  | uint64_t Offset = Layout.getFieldOffset(Field->getFieldIndex()); | 
|  | if (Offset > 0) { | 
|  | // Alignment is always a power of 2, so the GCD will be a power of 2, | 
|  | // which means we get to do this crazy thing instead of Euclid's. | 
|  | uint64_t LowBitOfOffset = Offset & (~Offset + 1); | 
|  | if (LowBitOfOffset < FieldAlign) | 
|  | FieldAlign = static_cast<unsigned>(LowBitOfOffset); | 
|  | } | 
|  |  | 
|  | Align = std::min(Align, FieldAlign); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return toCharUnitsFromBits(Align); | 
|  | } | 
|  |  | 
|  | // getTypeInfoDataSizeInChars - Return the size of a type, in | 
|  | // chars. If the type is a record, its data size is returned.  This is | 
|  | // the size of the memcpy that's performed when assigning this type | 
|  | // using a trivial copy/move assignment operator. | 
|  | std::pair<CharUnits, CharUnits> | 
|  | ASTContext::getTypeInfoDataSizeInChars(QualType T) const { | 
|  | std::pair<CharUnits, CharUnits> sizeAndAlign = getTypeInfoInChars(T); | 
|  |  | 
|  | // In C++, objects can sometimes be allocated into the tail padding | 
|  | // of a base-class subobject.  We decide whether that's possible | 
|  | // during class layout, so here we can just trust the layout results. | 
|  | if (getLangOpts().CPlusPlus) { | 
|  | if (const RecordType *RT = T->getAs<RecordType>()) { | 
|  | const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl()); | 
|  | sizeAndAlign.first = layout.getDataSize(); | 
|  | } | 
|  | } | 
|  |  | 
|  | return sizeAndAlign; | 
|  | } | 
|  |  | 
|  | /// getConstantArrayInfoInChars - Performing the computation in CharUnits | 
|  | /// instead of in bits prevents overflowing the uint64_t for some large arrays. | 
|  | std::pair<CharUnits, CharUnits> | 
|  | static getConstantArrayInfoInChars(const ASTContext &Context, | 
|  | const ConstantArrayType *CAT) { | 
|  | std::pair<CharUnits, CharUnits> EltInfo = | 
|  | Context.getTypeInfoInChars(CAT->getElementType()); | 
|  | uint64_t Size = CAT->getSize().getZExtValue(); | 
|  | assert((Size == 0 || static_cast<uint64_t>(EltInfo.first.getQuantity()) <= | 
|  | (uint64_t)(-1)/Size) && | 
|  | "Overflow in array type char size evaluation"); | 
|  | uint64_t Width = EltInfo.first.getQuantity() * Size; | 
|  | unsigned Align = EltInfo.second.getQuantity(); | 
|  | if (!Context.getTargetInfo().getCXXABI().isMicrosoft() || | 
|  | Context.getTargetInfo().getPointerWidth(0) == 64) | 
|  | Width = llvm::RoundUpToAlignment(Width, Align); | 
|  | return std::make_pair(CharUnits::fromQuantity(Width), | 
|  | CharUnits::fromQuantity(Align)); | 
|  | } | 
|  |  | 
|  | std::pair<CharUnits, CharUnits> | 
|  | ASTContext::getTypeInfoInChars(const Type *T) const { | 
|  | if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(T)) | 
|  | return getConstantArrayInfoInChars(*this, CAT); | 
|  | std::pair<uint64_t, unsigned> Info = getTypeInfo(T); | 
|  | return std::make_pair(toCharUnitsFromBits(Info.first), | 
|  | toCharUnitsFromBits(Info.second)); | 
|  | } | 
|  |  | 
|  | std::pair<CharUnits, CharUnits> | 
|  | ASTContext::getTypeInfoInChars(QualType T) const { | 
|  | return getTypeInfoInChars(T.getTypePtr()); | 
|  | } | 
|  |  | 
|  | std::pair<uint64_t, unsigned> ASTContext::getTypeInfo(const Type *T) const { | 
|  | TypeInfoMap::iterator it = MemoizedTypeInfo.find(T); | 
|  | if (it != MemoizedTypeInfo.end()) | 
|  | return it->second; | 
|  |  | 
|  | std::pair<uint64_t, unsigned> Info = getTypeInfoImpl(T); | 
|  | MemoizedTypeInfo.insert(std::make_pair(T, Info)); | 
|  | return Info; | 
|  | } | 
|  |  | 
|  | /// getTypeInfoImpl - Return the size of the specified type, in bits.  This | 
|  | /// method does not work on incomplete types. | 
|  | /// | 
|  | /// FIXME: Pointers into different addr spaces could have different sizes and | 
|  | /// alignment requirements: getPointerInfo should take an AddrSpace, this | 
|  | /// should take a QualType, &c. | 
|  | std::pair<uint64_t, unsigned> | 
|  | ASTContext::getTypeInfoImpl(const Type *T) const { | 
|  | uint64_t Width=0; | 
|  | unsigned Align=8; | 
|  | switch (T->getTypeClass()) { | 
|  | #define TYPE(Class, Base) | 
|  | #define ABSTRACT_TYPE(Class, Base) | 
|  | #define NON_CANONICAL_TYPE(Class, Base) | 
|  | #define DEPENDENT_TYPE(Class, Base) case Type::Class: | 
|  | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)                       \ | 
|  | case Type::Class:                                                            \ | 
|  | assert(!T->isDependentType() && "should not see dependent types here");      \ | 
|  | return getTypeInfo(cast<Class##Type>(T)->desugar().getTypePtr()); | 
|  | #include "clang/AST/TypeNodes.def" | 
|  | llvm_unreachable("Should not see dependent types"); | 
|  |  | 
|  | case Type::FunctionNoProto: | 
|  | case Type::FunctionProto: | 
|  | // GCC extension: alignof(function) = 32 bits | 
|  | Width = 0; | 
|  | Align = 32; | 
|  | break; | 
|  |  | 
|  | case Type::IncompleteArray: | 
|  | case Type::VariableArray: | 
|  | Width = 0; | 
|  | Align = getTypeAlign(cast<ArrayType>(T)->getElementType()); | 
|  | break; | 
|  |  | 
|  | case Type::ConstantArray: { | 
|  | const ConstantArrayType *CAT = cast<ConstantArrayType>(T); | 
|  |  | 
|  | std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType()); | 
|  | uint64_t Size = CAT->getSize().getZExtValue(); | 
|  | assert((Size == 0 || EltInfo.first <= (uint64_t)(-1)/Size) && | 
|  | "Overflow in array type bit size evaluation"); | 
|  | Width = EltInfo.first*Size; | 
|  | Align = EltInfo.second; | 
|  | if (!getTargetInfo().getCXXABI().isMicrosoft() || | 
|  | getTargetInfo().getPointerWidth(0) == 64) | 
|  | Width = llvm::RoundUpToAlignment(Width, Align); | 
|  | break; | 
|  | } | 
|  | case Type::ExtVector: | 
|  | case Type::Vector: { | 
|  | const VectorType *VT = cast<VectorType>(T); | 
|  | std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType()); | 
|  | Width = EltInfo.first*VT->getNumElements(); | 
|  | Align = Width; | 
|  | // If the alignment is not a power of 2, round up to the next power of 2. | 
|  | // This happens for non-power-of-2 length vectors. | 
|  | if (Align & (Align-1)) { | 
|  | Align = llvm::NextPowerOf2(Align); | 
|  | Width = llvm::RoundUpToAlignment(Width, Align); | 
|  | } | 
|  | // Adjust the alignment based on the target max. | 
|  | uint64_t TargetVectorAlign = Target->getMaxVectorAlign(); | 
|  | if (TargetVectorAlign && TargetVectorAlign < Align) | 
|  | Align = TargetVectorAlign; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Type::Builtin: | 
|  | switch (cast<BuiltinType>(T)->getKind()) { | 
|  | default: llvm_unreachable("Unknown builtin type!"); | 
|  | case BuiltinType::Void: | 
|  | // GCC extension: alignof(void) = 8 bits. | 
|  | Width = 0; | 
|  | Align = 8; | 
|  | break; | 
|  |  | 
|  | case BuiltinType::Bool: | 
|  | Width = Target->getBoolWidth(); | 
|  | Align = Target->getBoolAlign(); | 
|  | break; | 
|  | case BuiltinType::Char_S: | 
|  | case BuiltinType::Char_U: | 
|  | case BuiltinType::UChar: | 
|  | case BuiltinType::SChar: | 
|  | Width = Target->getCharWidth(); | 
|  | Align = Target->getCharAlign(); | 
|  | break; | 
|  | case BuiltinType::WChar_S: | 
|  | case BuiltinType::WChar_U: | 
|  | Width = Target->getWCharWidth(); | 
|  | Align = Target->getWCharAlign(); | 
|  | break; | 
|  | case BuiltinType::Char16: | 
|  | Width = Target->getChar16Width(); | 
|  | Align = Target->getChar16Align(); | 
|  | break; | 
|  | case BuiltinType::Char32: | 
|  | Width = Target->getChar32Width(); | 
|  | Align = Target->getChar32Align(); | 
|  | break; | 
|  | case BuiltinType::UShort: | 
|  | case BuiltinType::Short: | 
|  | Width = Target->getShortWidth(); | 
|  | Align = Target->getShortAlign(); | 
|  | break; | 
|  | case BuiltinType::UInt: | 
|  | case BuiltinType::Int: | 
|  | Width = Target->getIntWidth(); | 
|  | Align = Target->getIntAlign(); | 
|  | break; | 
|  | case BuiltinType::ULong: | 
|  | case BuiltinType::Long: | 
|  | Width = Target->getLongWidth(); | 
|  | Align = Target->getLongAlign(); | 
|  | break; | 
|  | case BuiltinType::ULongLong: | 
|  | case BuiltinType::LongLong: | 
|  | Width = Target->getLongLongWidth(); | 
|  | Align = Target->getLongLongAlign(); | 
|  | break; | 
|  | case BuiltinType::Int128: | 
|  | case BuiltinType::UInt128: | 
|  | Width = 128; | 
|  | Align = 128; // int128_t is 128-bit aligned on all targets. | 
|  | break; | 
|  | case BuiltinType::Half: | 
|  | Width = Target->getHalfWidth(); | 
|  | Align = Target->getHalfAlign(); | 
|  | break; | 
|  | case BuiltinType::Float: | 
|  | Width = Target->getFloatWidth(); | 
|  | Align = Target->getFloatAlign(); | 
|  | break; | 
|  | case BuiltinType::Double: | 
|  | Width = Target->getDoubleWidth(); | 
|  | Align = Target->getDoubleAlign(); | 
|  | break; | 
|  | case BuiltinType::LongDouble: | 
|  | Width = Target->getLongDoubleWidth(); | 
|  | Align = Target->getLongDoubleAlign(); | 
|  | break; | 
|  | case BuiltinType::NullPtr: | 
|  | Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t) | 
|  | Align = Target->getPointerAlign(0); //   == sizeof(void*) | 
|  | break; | 
|  | case BuiltinType::ObjCId: | 
|  | case BuiltinType::ObjCClass: | 
|  | case BuiltinType::ObjCSel: | 
|  | Width = Target->getPointerWidth(0); | 
|  | Align = Target->getPointerAlign(0); | 
|  | break; | 
|  | case BuiltinType::OCLSampler: | 
|  | // Samplers are modeled as integers. | 
|  | Width = Target->getIntWidth(); | 
|  | Align = Target->getIntAlign(); | 
|  | break; | 
|  | case BuiltinType::OCLEvent: | 
|  | case BuiltinType::OCLImage1d: | 
|  | case BuiltinType::OCLImage1dArray: | 
|  | case BuiltinType::OCLImage1dBuffer: | 
|  | case BuiltinType::OCLImage2d: | 
|  | case BuiltinType::OCLImage2dArray: | 
|  | case BuiltinType::OCLImage3d: | 
|  | // Currently these types are pointers to opaque types. | 
|  | Width = Target->getPointerWidth(0); | 
|  | Align = Target->getPointerAlign(0); | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case Type::ObjCObjectPointer: | 
|  | Width = Target->getPointerWidth(0); | 
|  | Align = Target->getPointerAlign(0); | 
|  | break; | 
|  | case Type::BlockPointer: { | 
|  | unsigned AS = getTargetAddressSpace( | 
|  | cast<BlockPointerType>(T)->getPointeeType()); | 
|  | Width = Target->getPointerWidth(AS); | 
|  | Align = Target->getPointerAlign(AS); | 
|  | break; | 
|  | } | 
|  | case Type::LValueReference: | 
|  | case Type::RValueReference: { | 
|  | // alignof and sizeof should never enter this code path here, so we go | 
|  | // the pointer route. | 
|  | unsigned AS = getTargetAddressSpace( | 
|  | cast<ReferenceType>(T)->getPointeeType()); | 
|  | Width = Target->getPointerWidth(AS); | 
|  | Align = Target->getPointerAlign(AS); | 
|  | break; | 
|  | } | 
|  | case Type::Pointer: { | 
|  | unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType()); | 
|  | Width = Target->getPointerWidth(AS); | 
|  | Align = Target->getPointerAlign(AS); | 
|  | break; | 
|  | } | 
|  | case Type::MemberPointer: { | 
|  | const MemberPointerType *MPT = cast<MemberPointerType>(T); | 
|  | std::tie(Width, Align) = ABI->getMemberPointerWidthAndAlign(MPT); | 
|  | break; | 
|  | } | 
|  | case Type::Complex: { | 
|  | // Complex types have the same alignment as their elements, but twice the | 
|  | // size. | 
|  | std::pair<uint64_t, unsigned> EltInfo = | 
|  | getTypeInfo(cast<ComplexType>(T)->getElementType()); | 
|  | Width = EltInfo.first*2; | 
|  | Align = EltInfo.second; | 
|  | break; | 
|  | } | 
|  | case Type::ObjCObject: | 
|  | return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr()); | 
|  | case Type::Adjusted: | 
|  | case Type::Decayed: | 
|  | return getTypeInfo(cast<AdjustedType>(T)->getAdjustedType().getTypePtr()); | 
|  | case Type::ObjCInterface: { | 
|  | const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T); | 
|  | const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl()); | 
|  | Width = toBits(Layout.getSize()); | 
|  | Align = toBits(Layout.getAlignment()); | 
|  | break; | 
|  | } | 
|  | case Type::Record: | 
|  | case Type::Enum: { | 
|  | const TagType *TT = cast<TagType>(T); | 
|  |  | 
|  | if (TT->getDecl()->isInvalidDecl()) { | 
|  | Width = 8; | 
|  | Align = 8; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (const EnumType *ET = dyn_cast<EnumType>(TT)) | 
|  | return getTypeInfo(ET->getDecl()->getIntegerType()); | 
|  |  | 
|  | const RecordType *RT = cast<RecordType>(TT); | 
|  | const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl()); | 
|  | Width = toBits(Layout.getSize()); | 
|  | Align = toBits(Layout.getAlignment()); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Type::SubstTemplateTypeParm: | 
|  | return getTypeInfo(cast<SubstTemplateTypeParmType>(T)-> | 
|  | getReplacementType().getTypePtr()); | 
|  |  | 
|  | case Type::Auto: { | 
|  | const AutoType *A = cast<AutoType>(T); | 
|  | assert(!A->getDeducedType().isNull() && | 
|  | "cannot request the size of an undeduced or dependent auto type"); | 
|  | return getTypeInfo(A->getDeducedType().getTypePtr()); | 
|  | } | 
|  |  | 
|  | case Type::Paren: | 
|  | return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr()); | 
|  |  | 
|  | case Type::Typedef: { | 
|  | const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl(); | 
|  | std::pair<uint64_t, unsigned> Info | 
|  | = getTypeInfo(Typedef->getUnderlyingType().getTypePtr()); | 
|  | // If the typedef has an aligned attribute on it, it overrides any computed | 
|  | // alignment we have.  This violates the GCC documentation (which says that | 
|  | // attribute(aligned) can only round up) but matches its implementation. | 
|  | if (unsigned AttrAlign = Typedef->getMaxAlignment()) | 
|  | Align = AttrAlign; | 
|  | else | 
|  | Align = Info.second; | 
|  | Width = Info.first; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Type::Elaborated: | 
|  | return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr()); | 
|  |  | 
|  | case Type::Attributed: | 
|  | return getTypeInfo( | 
|  | cast<AttributedType>(T)->getEquivalentType().getTypePtr()); | 
|  |  | 
|  | case Type::Atomic: { | 
|  | // Start with the base type information. | 
|  | std::pair<uint64_t, unsigned> Info | 
|  | = getTypeInfo(cast<AtomicType>(T)->getValueType()); | 
|  | Width = Info.first; | 
|  | Align = Info.second; | 
|  |  | 
|  | // If the size of the type doesn't exceed the platform's max | 
|  | // atomic promotion width, make the size and alignment more | 
|  | // favorable to atomic operations: | 
|  | if (Width != 0 && Width <= Target->getMaxAtomicPromoteWidth()) { | 
|  | // Round the size up to a power of 2. | 
|  | if (!llvm::isPowerOf2_64(Width)) | 
|  | Width = llvm::NextPowerOf2(Width); | 
|  |  | 
|  | // Set the alignment equal to the size. | 
|  | Align = static_cast<unsigned>(Width); | 
|  | } | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2"); | 
|  | return std::make_pair(Width, Align); | 
|  | } | 
|  |  | 
|  | /// toCharUnitsFromBits - Convert a size in bits to a size in characters. | 
|  | CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const { | 
|  | return CharUnits::fromQuantity(BitSize / getCharWidth()); | 
|  | } | 
|  |  | 
|  | /// toBits - Convert a size in characters to a size in characters. | 
|  | int64_t ASTContext::toBits(CharUnits CharSize) const { | 
|  | return CharSize.getQuantity() * getCharWidth(); | 
|  | } | 
|  |  | 
|  | /// getTypeSizeInChars - Return the size of the specified type, in characters. | 
|  | /// This method does not work on incomplete types. | 
|  | CharUnits ASTContext::getTypeSizeInChars(QualType T) const { | 
|  | return getTypeInfoInChars(T).first; | 
|  | } | 
|  | CharUnits ASTContext::getTypeSizeInChars(const Type *T) const { | 
|  | return getTypeInfoInChars(T).first; | 
|  | } | 
|  |  | 
|  | /// getTypeAlignInChars - Return the ABI-specified alignment of a type, in | 
|  | /// characters. This method does not work on incomplete types. | 
|  | CharUnits ASTContext::getTypeAlignInChars(QualType T) const { | 
|  | return toCharUnitsFromBits(getTypeAlign(T)); | 
|  | } | 
|  | CharUnits ASTContext::getTypeAlignInChars(const Type *T) const { | 
|  | return toCharUnitsFromBits(getTypeAlign(T)); | 
|  | } | 
|  |  | 
|  | /// getPreferredTypeAlign - Return the "preferred" alignment of the specified | 
|  | /// type for the current target in bits.  This can be different than the ABI | 
|  | /// alignment in cases where it is beneficial for performance to overalign | 
|  | /// a data type. | 
|  | unsigned ASTContext::getPreferredTypeAlign(const Type *T) const { | 
|  | unsigned ABIAlign = getTypeAlign(T); | 
|  |  | 
|  | if (Target->getTriple().getArch() == llvm::Triple::xcore) | 
|  | return ABIAlign;  // Never overalign on XCore. | 
|  |  | 
|  | const TypedefType *TT = T->getAs<TypedefType>(); | 
|  |  | 
|  | // Double and long long should be naturally aligned if possible. | 
|  | T = T->getBaseElementTypeUnsafe(); | 
|  | if (const ComplexType *CT = T->getAs<ComplexType>()) | 
|  | T = CT->getElementType().getTypePtr(); | 
|  | if (T->isSpecificBuiltinType(BuiltinType::Double) || | 
|  | T->isSpecificBuiltinType(BuiltinType::LongLong) || | 
|  | T->isSpecificBuiltinType(BuiltinType::ULongLong)) | 
|  | // Don't increase the alignment if an alignment attribute was specified on a | 
|  | // typedef declaration. | 
|  | if (!TT || !TT->getDecl()->getMaxAlignment()) | 
|  | return std::max(ABIAlign, (unsigned)getTypeSize(T)); | 
|  |  | 
|  | return ABIAlign; | 
|  | } | 
|  |  | 
|  | /// getAlignOfGlobalVar - Return the alignment in bits that should be given | 
|  | /// to a global variable of the specified type. | 
|  | unsigned ASTContext::getAlignOfGlobalVar(QualType T) const { | 
|  | return std::max(getTypeAlign(T), getTargetInfo().getMinGlobalAlign()); | 
|  | } | 
|  |  | 
|  | /// getAlignOfGlobalVarInChars - Return the alignment in characters that | 
|  | /// should be given to a global variable of the specified type. | 
|  | CharUnits ASTContext::getAlignOfGlobalVarInChars(QualType T) const { | 
|  | return toCharUnitsFromBits(getAlignOfGlobalVar(T)); | 
|  | } | 
|  |  | 
|  | /// DeepCollectObjCIvars - | 
|  | /// This routine first collects all declared, but not synthesized, ivars in | 
|  | /// super class and then collects all ivars, including those synthesized for | 
|  | /// current class. This routine is used for implementation of current class | 
|  | /// when all ivars, declared and synthesized are known. | 
|  | /// | 
|  | void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI, | 
|  | bool leafClass, | 
|  | SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const { | 
|  | if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass()) | 
|  | DeepCollectObjCIvars(SuperClass, false, Ivars); | 
|  | if (!leafClass) { | 
|  | for (const auto *I : OI->ivars()) | 
|  | Ivars.push_back(I); | 
|  | } else { | 
|  | ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI); | 
|  | for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv; | 
|  | Iv= Iv->getNextIvar()) | 
|  | Ivars.push_back(Iv); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// CollectInheritedProtocols - Collect all protocols in current class and | 
|  | /// those inherited by it. | 
|  | void ASTContext::CollectInheritedProtocols(const Decl *CDecl, | 
|  | llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) { | 
|  | if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) { | 
|  | // We can use protocol_iterator here instead of | 
|  | // all_referenced_protocol_iterator since we are walking all categories. | 
|  | for (auto *Proto : OI->all_referenced_protocols()) { | 
|  | Protocols.insert(Proto->getCanonicalDecl()); | 
|  | for (auto *P : Proto->protocols()) { | 
|  | Protocols.insert(P->getCanonicalDecl()); | 
|  | CollectInheritedProtocols(P, Protocols); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Categories of this Interface. | 
|  | for (const auto *Cat : OI->visible_categories()) | 
|  | CollectInheritedProtocols(Cat, Protocols); | 
|  |  | 
|  | if (ObjCInterfaceDecl *SD = OI->getSuperClass()) | 
|  | while (SD) { | 
|  | CollectInheritedProtocols(SD, Protocols); | 
|  | SD = SD->getSuperClass(); | 
|  | } | 
|  | } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) { | 
|  | for (auto *Proto : OC->protocols()) { | 
|  | Protocols.insert(Proto->getCanonicalDecl()); | 
|  | for (const auto *P : Proto->protocols()) | 
|  | CollectInheritedProtocols(P, Protocols); | 
|  | } | 
|  | } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) { | 
|  | for (auto *Proto : OP->protocols()) { | 
|  | Protocols.insert(Proto->getCanonicalDecl()); | 
|  | for (const auto *P : Proto->protocols()) | 
|  | CollectInheritedProtocols(P, Protocols); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const { | 
|  | unsigned count = 0; | 
|  | // Count ivars declared in class extension. | 
|  | for (const auto *Ext : OI->known_extensions()) | 
|  | count += Ext->ivar_size(); | 
|  |  | 
|  | // Count ivar defined in this class's implementation.  This | 
|  | // includes synthesized ivars. | 
|  | if (ObjCImplementationDecl *ImplDecl = OI->getImplementation()) | 
|  | count += ImplDecl->ivar_size(); | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | bool ASTContext::isSentinelNullExpr(const Expr *E) { | 
|  | if (!E) | 
|  | return false; | 
|  |  | 
|  | // nullptr_t is always treated as null. | 
|  | if (E->getType()->isNullPtrType()) return true; | 
|  |  | 
|  | if (E->getType()->isAnyPointerType() && | 
|  | E->IgnoreParenCasts()->isNullPointerConstant(*this, | 
|  | Expr::NPC_ValueDependentIsNull)) | 
|  | return true; | 
|  |  | 
|  | // Unfortunately, __null has type 'int'. | 
|  | if (isa<GNUNullExpr>(E)) return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists. | 
|  | ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) { | 
|  | llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator | 
|  | I = ObjCImpls.find(D); | 
|  | if (I != ObjCImpls.end()) | 
|  | return cast<ObjCImplementationDecl>(I->second); | 
|  | return nullptr; | 
|  | } | 
|  | /// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists. | 
|  | ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) { | 
|  | llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator | 
|  | I = ObjCImpls.find(D); | 
|  | if (I != ObjCImpls.end()) | 
|  | return cast<ObjCCategoryImplDecl>(I->second); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// \brief Set the implementation of ObjCInterfaceDecl. | 
|  | void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD, | 
|  | ObjCImplementationDecl *ImplD) { | 
|  | assert(IFaceD && ImplD && "Passed null params"); | 
|  | ObjCImpls[IFaceD] = ImplD; | 
|  | } | 
|  | /// \brief Set the implementation of ObjCCategoryDecl. | 
|  | void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD, | 
|  | ObjCCategoryImplDecl *ImplD) { | 
|  | assert(CatD && ImplD && "Passed null params"); | 
|  | ObjCImpls[CatD] = ImplD; | 
|  | } | 
|  |  | 
|  | const ObjCInterfaceDecl *ASTContext::getObjContainingInterface( | 
|  | const NamedDecl *ND) const { | 
|  | if (const ObjCInterfaceDecl *ID = | 
|  | dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext())) | 
|  | return ID; | 
|  | if (const ObjCCategoryDecl *CD = | 
|  | dyn_cast<ObjCCategoryDecl>(ND->getDeclContext())) | 
|  | return CD->getClassInterface(); | 
|  | if (const ObjCImplDecl *IMD = | 
|  | dyn_cast<ObjCImplDecl>(ND->getDeclContext())) | 
|  | return IMD->getClassInterface(); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// \brief Get the copy initialization expression of VarDecl,or NULL if | 
|  | /// none exists. | 
|  | Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) { | 
|  | assert(VD && "Passed null params"); | 
|  | assert(VD->hasAttr<BlocksAttr>() && | 
|  | "getBlockVarCopyInits - not __block var"); | 
|  | llvm::DenseMap<const VarDecl*, Expr*>::iterator | 
|  | I = BlockVarCopyInits.find(VD); | 
|  | return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : nullptr; | 
|  | } | 
|  |  | 
|  | /// \brief Set the copy inialization expression of a block var decl. | 
|  | void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) { | 
|  | assert(VD && Init && "Passed null params"); | 
|  | assert(VD->hasAttr<BlocksAttr>() && | 
|  | "setBlockVarCopyInits - not __block var"); | 
|  | BlockVarCopyInits[VD] = Init; | 
|  | } | 
|  |  | 
|  | TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T, | 
|  | unsigned DataSize) const { | 
|  | if (!DataSize) | 
|  | DataSize = TypeLoc::getFullDataSizeForType(T); | 
|  | else | 
|  | assert(DataSize == TypeLoc::getFullDataSizeForType(T) && | 
|  | "incorrect data size provided to CreateTypeSourceInfo!"); | 
|  |  | 
|  | TypeSourceInfo *TInfo = | 
|  | (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8); | 
|  | new (TInfo) TypeSourceInfo(T); | 
|  | return TInfo; | 
|  | } | 
|  |  | 
|  | TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T, | 
|  | SourceLocation L) const { | 
|  | TypeSourceInfo *DI = CreateTypeSourceInfo(T); | 
|  | DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L); | 
|  | return DI; | 
|  | } | 
|  |  | 
|  | const ASTRecordLayout & | 
|  | ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const { | 
|  | return getObjCLayout(D, nullptr); | 
|  | } | 
|  |  | 
|  | const ASTRecordLayout & | 
|  | ASTContext::getASTObjCImplementationLayout( | 
|  | const ObjCImplementationDecl *D) const { | 
|  | return getObjCLayout(D->getClassInterface(), D); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                   Type creation/memoization methods | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | QualType | 
|  | ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const { | 
|  | unsigned fastQuals = quals.getFastQualifiers(); | 
|  | quals.removeFastQualifiers(); | 
|  |  | 
|  | // Check if we've already instantiated this type. | 
|  | llvm::FoldingSetNodeID ID; | 
|  | ExtQuals::Profile(ID, baseType, quals); | 
|  | void *insertPos = nullptr; | 
|  | if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) { | 
|  | assert(eq->getQualifiers() == quals); | 
|  | return QualType(eq, fastQuals); | 
|  | } | 
|  |  | 
|  | // If the base type is not canonical, make the appropriate canonical type. | 
|  | QualType canon; | 
|  | if (!baseType->isCanonicalUnqualified()) { | 
|  | SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split(); | 
|  | canonSplit.Quals.addConsistentQualifiers(quals); | 
|  | canon = getExtQualType(canonSplit.Ty, canonSplit.Quals); | 
|  |  | 
|  | // Re-find the insert position. | 
|  | (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos); | 
|  | } | 
|  |  | 
|  | ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals); | 
|  | ExtQualNodes.InsertNode(eq, insertPos); | 
|  | return QualType(eq, fastQuals); | 
|  | } | 
|  |  | 
|  | QualType | 
|  | ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const { | 
|  | QualType CanT = getCanonicalType(T); | 
|  | if (CanT.getAddressSpace() == AddressSpace) | 
|  | return T; | 
|  |  | 
|  | // If we are composing extended qualifiers together, merge together | 
|  | // into one ExtQuals node. | 
|  | QualifierCollector Quals; | 
|  | const Type *TypeNode = Quals.strip(T); | 
|  |  | 
|  | // If this type already has an address space specified, it cannot get | 
|  | // another one. | 
|  | assert(!Quals.hasAddressSpace() && | 
|  | "Type cannot be in multiple addr spaces!"); | 
|  | Quals.addAddressSpace(AddressSpace); | 
|  |  | 
|  | return getExtQualType(TypeNode, Quals); | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getObjCGCQualType(QualType T, | 
|  | Qualifiers::GC GCAttr) const { | 
|  | QualType CanT = getCanonicalType(T); | 
|  | if (CanT.getObjCGCAttr() == GCAttr) | 
|  | return T; | 
|  |  | 
|  | if (const PointerType *ptr = T->getAs<PointerType>()) { | 
|  | QualType Pointee = ptr->getPointeeType(); | 
|  | if (Pointee->isAnyPointerType()) { | 
|  | QualType ResultType = getObjCGCQualType(Pointee, GCAttr); | 
|  | return getPointerType(ResultType); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we are composing extended qualifiers together, merge together | 
|  | // into one ExtQuals node. | 
|  | QualifierCollector Quals; | 
|  | const Type *TypeNode = Quals.strip(T); | 
|  |  | 
|  | // If this type already has an ObjCGC specified, it cannot get | 
|  | // another one. | 
|  | assert(!Quals.hasObjCGCAttr() && | 
|  | "Type cannot have multiple ObjCGCs!"); | 
|  | Quals.addObjCGCAttr(GCAttr); | 
|  |  | 
|  | return getExtQualType(TypeNode, Quals); | 
|  | } | 
|  |  | 
|  | const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T, | 
|  | FunctionType::ExtInfo Info) { | 
|  | if (T->getExtInfo() == Info) | 
|  | return T; | 
|  |  | 
|  | QualType Result; | 
|  | if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) { | 
|  | Result = getFunctionNoProtoType(FNPT->getReturnType(), Info); | 
|  | } else { | 
|  | const FunctionProtoType *FPT = cast<FunctionProtoType>(T); | 
|  | FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); | 
|  | EPI.ExtInfo = Info; | 
|  | Result = getFunctionType(FPT->getReturnType(), FPT->getParamTypes(), EPI); | 
|  | } | 
|  |  | 
|  | return cast<FunctionType>(Result.getTypePtr()); | 
|  | } | 
|  |  | 
|  | void ASTContext::adjustDeducedFunctionResultType(FunctionDecl *FD, | 
|  | QualType ResultType) { | 
|  | FD = FD->getMostRecentDecl(); | 
|  | while (true) { | 
|  | const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>(); | 
|  | FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); | 
|  | FD->setType(getFunctionType(ResultType, FPT->getParamTypes(), EPI)); | 
|  | if (FunctionDecl *Next = FD->getPreviousDecl()) | 
|  | FD = Next; | 
|  | else | 
|  | break; | 
|  | } | 
|  | if (ASTMutationListener *L = getASTMutationListener()) | 
|  | L->DeducedReturnType(FD, ResultType); | 
|  | } | 
|  |  | 
|  | /// getComplexType - Return the uniqued reference to the type for a complex | 
|  | /// number with the specified element type. | 
|  | QualType ASTContext::getComplexType(QualType T) const { | 
|  | // Unique pointers, to guarantee there is only one pointer of a particular | 
|  | // structure. | 
|  | llvm::FoldingSetNodeID ID; | 
|  | ComplexType::Profile(ID, T); | 
|  |  | 
|  | void *InsertPos = nullptr; | 
|  | if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
|  | return QualType(CT, 0); | 
|  |  | 
|  | // If the pointee type isn't canonical, this won't be a canonical type either, | 
|  | // so fill in the canonical type field. | 
|  | QualType Canonical; | 
|  | if (!T.isCanonical()) { | 
|  | Canonical = getComplexType(getCanonicalType(T)); | 
|  |  | 
|  | // Get the new insert position for the node we care about. | 
|  | ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; | 
|  | } | 
|  | ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical); | 
|  | Types.push_back(New); | 
|  | ComplexTypes.InsertNode(New, InsertPos); | 
|  | return QualType(New, 0); | 
|  | } | 
|  |  | 
|  | /// getPointerType - Return the uniqued reference to the type for a pointer to | 
|  | /// the specified type. | 
|  | QualType ASTContext::getPointerType(QualType T) const { | 
|  | // Unique pointers, to guarantee there is only one pointer of a particular | 
|  | // structure. | 
|  | llvm::FoldingSetNodeID ID; | 
|  | PointerType::Profile(ID, T); | 
|  |  | 
|  | void *InsertPos = nullptr; | 
|  | if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
|  | return QualType(PT, 0); | 
|  |  | 
|  | // If the pointee type isn't canonical, this won't be a canonical type either, | 
|  | // so fill in the canonical type field. | 
|  | QualType Canonical; | 
|  | if (!T.isCanonical()) { | 
|  | Canonical = getPointerType(getCanonicalType(T)); | 
|  |  | 
|  | // Get the new insert position for the node we care about. | 
|  | PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; | 
|  | } | 
|  | PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical); | 
|  | Types.push_back(New); | 
|  | PointerTypes.InsertNode(New, InsertPos); | 
|  | return QualType(New, 0); | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getAdjustedType(QualType Orig, QualType New) const { | 
|  | llvm::FoldingSetNodeID ID; | 
|  | AdjustedType::Profile(ID, Orig, New); | 
|  | void *InsertPos = nullptr; | 
|  | AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | if (AT) | 
|  | return QualType(AT, 0); | 
|  |  | 
|  | QualType Canonical = getCanonicalType(New); | 
|  |  | 
|  | // Get the new insert position for the node we care about. | 
|  | AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | assert(!AT && "Shouldn't be in the map!"); | 
|  |  | 
|  | AT = new (*this, TypeAlignment) | 
|  | AdjustedType(Type::Adjusted, Orig, New, Canonical); | 
|  | Types.push_back(AT); | 
|  | AdjustedTypes.InsertNode(AT, InsertPos); | 
|  | return QualType(AT, 0); | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getDecayedType(QualType T) const { | 
|  | assert((T->isArrayType() || T->isFunctionType()) && "T does not decay"); | 
|  |  | 
|  | QualType Decayed; | 
|  |  | 
|  | // C99 6.7.5.3p7: | 
|  | //   A declaration of a parameter as "array of type" shall be | 
|  | //   adjusted to "qualified pointer to type", where the type | 
|  | //   qualifiers (if any) are those specified within the [ and ] of | 
|  | //   the array type derivation. | 
|  | if (T->isArrayType()) | 
|  | Decayed = getArrayDecayedType(T); | 
|  |  | 
|  | // C99 6.7.5.3p8: | 
|  | //   A declaration of a parameter as "function returning type" | 
|  | //   shall be adjusted to "pointer to function returning type", as | 
|  | //   in 6.3.2.1. | 
|  | if (T->isFunctionType()) | 
|  | Decayed = getPointerType(T); | 
|  |  | 
|  | llvm::FoldingSetNodeID ID; | 
|  | AdjustedType::Profile(ID, T, Decayed); | 
|  | void *InsertPos = nullptr; | 
|  | AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | if (AT) | 
|  | return QualType(AT, 0); | 
|  |  | 
|  | QualType Canonical = getCanonicalType(Decayed); | 
|  |  | 
|  | // Get the new insert position for the node we care about. | 
|  | AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | assert(!AT && "Shouldn't be in the map!"); | 
|  |  | 
|  | AT = new (*this, TypeAlignment) DecayedType(T, Decayed, Canonical); | 
|  | Types.push_back(AT); | 
|  | AdjustedTypes.InsertNode(AT, InsertPos); | 
|  | return QualType(AT, 0); | 
|  | } | 
|  |  | 
|  | /// getBlockPointerType - Return the uniqued reference to the type for | 
|  | /// a pointer to the specified block. | 
|  | QualType ASTContext::getBlockPointerType(QualType T) const { | 
|  | assert(T->isFunctionType() && "block of function types only"); | 
|  | // Unique pointers, to guarantee there is only one block of a particular | 
|  | // structure. | 
|  | llvm::FoldingSetNodeID ID; | 
|  | BlockPointerType::Profile(ID, T); | 
|  |  | 
|  | void *InsertPos = nullptr; | 
|  | if (BlockPointerType *PT = | 
|  | BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
|  | return QualType(PT, 0); | 
|  |  | 
|  | // If the block pointee type isn't canonical, this won't be a canonical | 
|  | // type either so fill in the canonical type field. | 
|  | QualType Canonical; | 
|  | if (!T.isCanonical()) { | 
|  | Canonical = getBlockPointerType(getCanonicalType(T)); | 
|  |  | 
|  | // Get the new insert position for the node we care about. | 
|  | BlockPointerType *NewIP = | 
|  | BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; | 
|  | } | 
|  | BlockPointerType *New | 
|  | = new (*this, TypeAlignment) BlockPointerType(T, Canonical); | 
|  | Types.push_back(New); | 
|  | BlockPointerTypes.InsertNode(New, InsertPos); | 
|  | return QualType(New, 0); | 
|  | } | 
|  |  | 
|  | /// getLValueReferenceType - Return the uniqued reference to the type for an | 
|  | /// lvalue reference to the specified type. | 
|  | QualType | 
|  | ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const { | 
|  | assert(getCanonicalType(T) != OverloadTy && | 
|  | "Unresolved overloaded function type"); | 
|  |  | 
|  | // Unique pointers, to guarantee there is only one pointer of a particular | 
|  | // structure. | 
|  | llvm::FoldingSetNodeID ID; | 
|  | ReferenceType::Profile(ID, T, SpelledAsLValue); | 
|  |  | 
|  | void *InsertPos = nullptr; | 
|  | if (LValueReferenceType *RT = | 
|  | LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
|  | return QualType(RT, 0); | 
|  |  | 
|  | const ReferenceType *InnerRef = T->getAs<ReferenceType>(); | 
|  |  | 
|  | // If the referencee type isn't canonical, this won't be a canonical type | 
|  | // either, so fill in the canonical type field. | 
|  | QualType Canonical; | 
|  | if (!SpelledAsLValue || InnerRef || !T.isCanonical()) { | 
|  | QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T); | 
|  | Canonical = getLValueReferenceType(getCanonicalType(PointeeType)); | 
|  |  | 
|  | // Get the new insert position for the node we care about. | 
|  | LValueReferenceType *NewIP = | 
|  | LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; | 
|  | } | 
|  |  | 
|  | LValueReferenceType *New | 
|  | = new (*this, TypeAlignment) LValueReferenceType(T, Canonical, | 
|  | SpelledAsLValue); | 
|  | Types.push_back(New); | 
|  | LValueReferenceTypes.InsertNode(New, InsertPos); | 
|  |  | 
|  | return QualType(New, 0); | 
|  | } | 
|  |  | 
|  | /// getRValueReferenceType - Return the uniqued reference to the type for an | 
|  | /// rvalue reference to the specified type. | 
|  | QualType ASTContext::getRValueReferenceType(QualType T) const { | 
|  | // Unique pointers, to guarantee there is only one pointer of a particular | 
|  | // structure. | 
|  | llvm::FoldingSetNodeID ID; | 
|  | ReferenceType::Profile(ID, T, false); | 
|  |  | 
|  | void *InsertPos = nullptr; | 
|  | if (RValueReferenceType *RT = | 
|  | RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
|  | return QualType(RT, 0); | 
|  |  | 
|  | const ReferenceType *InnerRef = T->getAs<ReferenceType>(); | 
|  |  | 
|  | // If the referencee type isn't canonical, this won't be a canonical type | 
|  | // either, so fill in the canonical type field. | 
|  | QualType Canonical; | 
|  | if (InnerRef || !T.isCanonical()) { | 
|  | QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T); | 
|  | Canonical = getRValueReferenceType(getCanonicalType(PointeeType)); | 
|  |  | 
|  | // Get the new insert position for the node we care about. | 
|  | RValueReferenceType *NewIP = | 
|  | RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; | 
|  | } | 
|  |  | 
|  | RValueReferenceType *New | 
|  | = new (*this, TypeAlignment) RValueReferenceType(T, Canonical); | 
|  | Types.push_back(New); | 
|  | RValueReferenceTypes.InsertNode(New, InsertPos); | 
|  | return QualType(New, 0); | 
|  | } | 
|  |  | 
|  | /// getMemberPointerType - Return the uniqued reference to the type for a | 
|  | /// member pointer to the specified type, in the specified class. | 
|  | QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const { | 
|  | // Unique pointers, to guarantee there is only one pointer of a particular | 
|  | // structure. | 
|  | llvm::FoldingSetNodeID ID; | 
|  | MemberPointerType::Profile(ID, T, Cls); | 
|  |  | 
|  | void *InsertPos = nullptr; | 
|  | if (MemberPointerType *PT = | 
|  | MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
|  | return QualType(PT, 0); | 
|  |  | 
|  | // If the pointee or class type isn't canonical, this won't be a canonical | 
|  | // type either, so fill in the canonical type field. | 
|  | QualType Canonical; | 
|  | if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) { | 
|  | Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls)); | 
|  |  | 
|  | // Get the new insert position for the node we care about. | 
|  | MemberPointerType *NewIP = | 
|  | MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; | 
|  | } | 
|  | MemberPointerType *New | 
|  | = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical); | 
|  | Types.push_back(New); | 
|  | MemberPointerTypes.InsertNode(New, InsertPos); | 
|  | return QualType(New, 0); | 
|  | } | 
|  |  | 
|  | /// getConstantArrayType - Return the unique reference to the type for an | 
|  | /// array of the specified element type. | 
|  | QualType ASTContext::getConstantArrayType(QualType EltTy, | 
|  | const llvm::APInt &ArySizeIn, | 
|  | ArrayType::ArraySizeModifier ASM, | 
|  | unsigned IndexTypeQuals) const { | 
|  | assert((EltTy->isDependentType() || | 
|  | EltTy->isIncompleteType() || EltTy->isConstantSizeType()) && | 
|  | "Constant array of VLAs is illegal!"); | 
|  |  | 
|  | // Convert the array size into a canonical width matching the pointer size for | 
|  | // the target. | 
|  | llvm::APInt ArySize(ArySizeIn); | 
|  | ArySize = | 
|  | ArySize.zextOrTrunc(Target->getPointerWidth(getTargetAddressSpace(EltTy))); | 
|  |  | 
|  | llvm::FoldingSetNodeID ID; | 
|  | ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals); | 
|  |  | 
|  | void *InsertPos = nullptr; | 
|  | if (ConstantArrayType *ATP = | 
|  | ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
|  | return QualType(ATP, 0); | 
|  |  | 
|  | // If the element type isn't canonical or has qualifiers, this won't | 
|  | // be a canonical type either, so fill in the canonical type field. | 
|  | QualType Canon; | 
|  | if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) { | 
|  | SplitQualType canonSplit = getCanonicalType(EltTy).split(); | 
|  | Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize, | 
|  | ASM, IndexTypeQuals); | 
|  | Canon = getQualifiedType(Canon, canonSplit.Quals); | 
|  |  | 
|  | // Get the new insert position for the node we care about. | 
|  | ConstantArrayType *NewIP = | 
|  | ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; | 
|  | } | 
|  |  | 
|  | ConstantArrayType *New = new(*this,TypeAlignment) | 
|  | ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals); | 
|  | ConstantArrayTypes.InsertNode(New, InsertPos); | 
|  | Types.push_back(New); | 
|  | return QualType(New, 0); | 
|  | } | 
|  |  | 
|  | /// getVariableArrayDecayedType - Turns the given type, which may be | 
|  | /// variably-modified, into the corresponding type with all the known | 
|  | /// sizes replaced with [*]. | 
|  | QualType ASTContext::getVariableArrayDecayedType(QualType type) const { | 
|  | // Vastly most common case. | 
|  | if (!type->isVariablyModifiedType()) return type; | 
|  |  | 
|  | QualType result; | 
|  |  | 
|  | SplitQualType split = type.getSplitDesugaredType(); | 
|  | const Type *ty = split.Ty; | 
|  | switch (ty->getTypeClass()) { | 
|  | #define TYPE(Class, Base) | 
|  | #define ABSTRACT_TYPE(Class, Base) | 
|  | #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: | 
|  | #include "clang/AST/TypeNodes.def" | 
|  | llvm_unreachable("didn't desugar past all non-canonical types?"); | 
|  |  | 
|  | // These types should never be variably-modified. | 
|  | case Type::Builtin: | 
|  | case Type::Complex: | 
|  | case Type::Vector: | 
|  | case Type::ExtVector: | 
|  | case Type::DependentSizedExtVector: | 
|  | case Type::ObjCObject: | 
|  | case Type::ObjCInterface: | 
|  | case Type::ObjCObjectPointer: | 
|  | case Type::Record: | 
|  | case Type::Enum: | 
|  | case Type::UnresolvedUsing: | 
|  | case Type::TypeOfExpr: | 
|  | case Type::TypeOf: | 
|  | case Type::Decltype: | 
|  | case Type::UnaryTransform: | 
|  | case Type::DependentName: | 
|  | case Type::InjectedClassName: | 
|  | case Type::TemplateSpecialization: | 
|  | case Type::DependentTemplateSpecialization: | 
|  | case Type::TemplateTypeParm: | 
|  | case Type::SubstTemplateTypeParmPack: | 
|  | case Type::Auto: | 
|  | case Type::PackExpansion: | 
|  | llvm_unreachable("type should never be variably-modified"); | 
|  |  | 
|  | // These types can be variably-modified but should never need to | 
|  | // further decay. | 
|  | case Type::FunctionNoProto: | 
|  | case Type::FunctionProto: | 
|  | case Type::BlockPointer: | 
|  | case Type::MemberPointer: | 
|  | return type; | 
|  |  | 
|  | // These types can be variably-modified.  All these modifications | 
|  | // preserve structure except as noted by comments. | 
|  | // TODO: if we ever care about optimizing VLAs, there are no-op | 
|  | // optimizations available here. | 
|  | case Type::Pointer: | 
|  | result = getPointerType(getVariableArrayDecayedType( | 
|  | cast<PointerType>(ty)->getPointeeType())); | 
|  | break; | 
|  |  | 
|  | case Type::LValueReference: { | 
|  | const LValueReferenceType *lv = cast<LValueReferenceType>(ty); | 
|  | result = getLValueReferenceType( | 
|  | getVariableArrayDecayedType(lv->getPointeeType()), | 
|  | lv->isSpelledAsLValue()); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Type::RValueReference: { | 
|  | const RValueReferenceType *lv = cast<RValueReferenceType>(ty); | 
|  | result = getRValueReferenceType( | 
|  | getVariableArrayDecayedType(lv->getPointeeType())); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Type::Atomic: { | 
|  | const AtomicType *at = cast<AtomicType>(ty); | 
|  | result = getAtomicType(getVariableArrayDecayedType(at->getValueType())); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Type::ConstantArray: { | 
|  | const ConstantArrayType *cat = cast<ConstantArrayType>(ty); | 
|  | result = getConstantArrayType( | 
|  | getVariableArrayDecayedType(cat->getElementType()), | 
|  | cat->getSize(), | 
|  | cat->getSizeModifier(), | 
|  | cat->getIndexTypeCVRQualifiers()); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Type::DependentSizedArray: { | 
|  | const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty); | 
|  | result = getDependentSizedArrayType( | 
|  | getVariableArrayDecayedType(dat->getElementType()), | 
|  | dat->getSizeExpr(), | 
|  | dat->getSizeModifier(), | 
|  | dat->getIndexTypeCVRQualifiers(), | 
|  | dat->getBracketsRange()); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Turn incomplete types into [*] types. | 
|  | case Type::IncompleteArray: { | 
|  | const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty); | 
|  | result = getVariableArrayType( | 
|  | getVariableArrayDecayedType(iat->getElementType()), | 
|  | /*size*/ nullptr, | 
|  | ArrayType::Normal, | 
|  | iat->getIndexTypeCVRQualifiers(), | 
|  | SourceRange()); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Turn VLA types into [*] types. | 
|  | case Type::VariableArray: { | 
|  | const VariableArrayType *vat = cast<VariableArrayType>(ty); | 
|  | result = getVariableArrayType( | 
|  | getVariableArrayDecayedType(vat->getElementType()), | 
|  | /*size*/ nullptr, | 
|  | ArrayType::Star, | 
|  | vat->getIndexTypeCVRQualifiers(), | 
|  | vat->getBracketsRange()); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Apply the top-level qualifiers from the original. | 
|  | return getQualifiedType(result, split.Quals); | 
|  | } | 
|  |  | 
|  | /// getVariableArrayType - Returns a non-unique reference to the type for a | 
|  | /// variable array of the specified element type. | 
|  | QualType ASTContext::getVariableArrayType(QualType EltTy, | 
|  | Expr *NumElts, | 
|  | ArrayType::ArraySizeModifier ASM, | 
|  | unsigned IndexTypeQuals, | 
|  | SourceRange Brackets) const { | 
|  | // Since we don't unique expressions, it isn't possible to unique VLA's | 
|  | // that have an expression provided for their size. | 
|  | QualType Canon; | 
|  |  | 
|  | // Be sure to pull qualifiers off the element type. | 
|  | if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) { | 
|  | SplitQualType canonSplit = getCanonicalType(EltTy).split(); | 
|  | Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM, | 
|  | IndexTypeQuals, Brackets); | 
|  | Canon = getQualifiedType(Canon, canonSplit.Quals); | 
|  | } | 
|  |  | 
|  | VariableArrayType *New = new(*this, TypeAlignment) | 
|  | VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets); | 
|  |  | 
|  | VariableArrayTypes.push_back(New); | 
|  | Types.push_back(New); | 
|  | return QualType(New, 0); | 
|  | } | 
|  |  | 
|  | /// getDependentSizedArrayType - Returns a non-unique reference to | 
|  | /// the type for a dependently-sized array of the specified element | 
|  | /// type. | 
|  | QualType ASTContext::getDependentSizedArrayType(QualType elementType, | 
|  | Expr *numElements, | 
|  | ArrayType::ArraySizeModifier ASM, | 
|  | unsigned elementTypeQuals, | 
|  | SourceRange brackets) const { | 
|  | assert((!numElements || numElements->isTypeDependent() || | 
|  | numElements->isValueDependent()) && | 
|  | "Size must be type- or value-dependent!"); | 
|  |  | 
|  | // Dependently-sized array types that do not have a specified number | 
|  | // of elements will have their sizes deduced from a dependent | 
|  | // initializer.  We do no canonicalization here at all, which is okay | 
|  | // because they can't be used in most locations. | 
|  | if (!numElements) { | 
|  | DependentSizedArrayType *newType | 
|  | = new (*this, TypeAlignment) | 
|  | DependentSizedArrayType(*this, elementType, QualType(), | 
|  | numElements, ASM, elementTypeQuals, | 
|  | brackets); | 
|  | Types.push_back(newType); | 
|  | return QualType(newType, 0); | 
|  | } | 
|  |  | 
|  | // Otherwise, we actually build a new type every time, but we | 
|  | // also build a canonical type. | 
|  |  | 
|  | SplitQualType canonElementType = getCanonicalType(elementType).split(); | 
|  |  | 
|  | void *insertPos = nullptr; | 
|  | llvm::FoldingSetNodeID ID; | 
|  | DependentSizedArrayType::Profile(ID, *this, | 
|  | QualType(canonElementType.Ty, 0), | 
|  | ASM, elementTypeQuals, numElements); | 
|  |  | 
|  | // Look for an existing type with these properties. | 
|  | DependentSizedArrayType *canonTy = | 
|  | DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos); | 
|  |  | 
|  | // If we don't have one, build one. | 
|  | if (!canonTy) { | 
|  | canonTy = new (*this, TypeAlignment) | 
|  | DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0), | 
|  | QualType(), numElements, ASM, elementTypeQuals, | 
|  | brackets); | 
|  | DependentSizedArrayTypes.InsertNode(canonTy, insertPos); | 
|  | Types.push_back(canonTy); | 
|  | } | 
|  |  | 
|  | // Apply qualifiers from the element type to the array. | 
|  | QualType canon = getQualifiedType(QualType(canonTy,0), | 
|  | canonElementType.Quals); | 
|  |  | 
|  | // If we didn't need extra canonicalization for the element type, | 
|  | // then just use that as our result. | 
|  | if (QualType(canonElementType.Ty, 0) == elementType) | 
|  | return canon; | 
|  |  | 
|  | // Otherwise, we need to build a type which follows the spelling | 
|  | // of the element type. | 
|  | DependentSizedArrayType *sugaredType | 
|  | = new (*this, TypeAlignment) | 
|  | DependentSizedArrayType(*this, elementType, canon, numElements, | 
|  | ASM, elementTypeQuals, brackets); | 
|  | Types.push_back(sugaredType); | 
|  | return QualType(sugaredType, 0); | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getIncompleteArrayType(QualType elementType, | 
|  | ArrayType::ArraySizeModifier ASM, | 
|  | unsigned elementTypeQuals) const { | 
|  | llvm::FoldingSetNodeID ID; | 
|  | IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals); | 
|  |  | 
|  | void *insertPos = nullptr; | 
|  | if (IncompleteArrayType *iat = | 
|  | IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos)) | 
|  | return QualType(iat, 0); | 
|  |  | 
|  | // If the element type isn't canonical, this won't be a canonical type | 
|  | // either, so fill in the canonical type field.  We also have to pull | 
|  | // qualifiers off the element type. | 
|  | QualType canon; | 
|  |  | 
|  | if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) { | 
|  | SplitQualType canonSplit = getCanonicalType(elementType).split(); | 
|  | canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0), | 
|  | ASM, elementTypeQuals); | 
|  | canon = getQualifiedType(canon, canonSplit.Quals); | 
|  |  | 
|  | // Get the new insert position for the node we care about. | 
|  | IncompleteArrayType *existing = | 
|  | IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos); | 
|  | assert(!existing && "Shouldn't be in the map!"); (void) existing; | 
|  | } | 
|  |  | 
|  | IncompleteArrayType *newType = new (*this, TypeAlignment) | 
|  | IncompleteArrayType(elementType, canon, ASM, elementTypeQuals); | 
|  |  | 
|  | IncompleteArrayTypes.InsertNode(newType, insertPos); | 
|  | Types.push_back(newType); | 
|  | return QualType(newType, 0); | 
|  | } | 
|  |  | 
|  | /// getVectorType - Return the unique reference to a vector type of | 
|  | /// the specified element type and size. VectorType must be a built-in type. | 
|  | QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts, | 
|  | VectorType::VectorKind VecKind) const { | 
|  | assert(vecType->isBuiltinType()); | 
|  |  | 
|  | // Check if we've already instantiated a vector of this type. | 
|  | llvm::FoldingSetNodeID ID; | 
|  | VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind); | 
|  |  | 
|  | void *InsertPos = nullptr; | 
|  | if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
|  | return QualType(VTP, 0); | 
|  |  | 
|  | // If the element type isn't canonical, this won't be a canonical type either, | 
|  | // so fill in the canonical type field. | 
|  | QualType Canonical; | 
|  | if (!vecType.isCanonical()) { | 
|  | Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind); | 
|  |  | 
|  | // Get the new insert position for the node we care about. | 
|  | VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; | 
|  | } | 
|  | VectorType *New = new (*this, TypeAlignment) | 
|  | VectorType(vecType, NumElts, Canonical, VecKind); | 
|  | VectorTypes.InsertNode(New, InsertPos); | 
|  | Types.push_back(New); | 
|  | return QualType(New, 0); | 
|  | } | 
|  |  | 
|  | /// getExtVectorType - Return the unique reference to an extended vector type of | 
|  | /// the specified element type and size. VectorType must be a built-in type. | 
|  | QualType | 
|  | ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const { | 
|  | assert(vecType->isBuiltinType() || vecType->isDependentType()); | 
|  |  | 
|  | // Check if we've already instantiated a vector of this type. | 
|  | llvm::FoldingSetNodeID ID; | 
|  | VectorType::Profile(ID, vecType, NumElts, Type::ExtVector, | 
|  | VectorType::GenericVector); | 
|  | void *InsertPos = nullptr; | 
|  | if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
|  | return QualType(VTP, 0); | 
|  |  | 
|  | // If the element type isn't canonical, this won't be a canonical type either, | 
|  | // so fill in the canonical type field. | 
|  | QualType Canonical; | 
|  | if (!vecType.isCanonical()) { | 
|  | Canonical = getExtVectorType(getCanonicalType(vecType), NumElts); | 
|  |  | 
|  | // Get the new insert position for the node we care about. | 
|  | VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; | 
|  | } | 
|  | ExtVectorType *New = new (*this, TypeAlignment) | 
|  | ExtVectorType(vecType, NumElts, Canonical); | 
|  | VectorTypes.InsertNode(New, InsertPos); | 
|  | Types.push_back(New); | 
|  | return QualType(New, 0); | 
|  | } | 
|  |  | 
|  | QualType | 
|  | ASTContext::getDependentSizedExtVectorType(QualType vecType, | 
|  | Expr *SizeExpr, | 
|  | SourceLocation AttrLoc) const { | 
|  | llvm::FoldingSetNodeID ID; | 
|  | DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType), | 
|  | SizeExpr); | 
|  |  | 
|  | void *InsertPos = nullptr; | 
|  | DependentSizedExtVectorType *Canon | 
|  | = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | DependentSizedExtVectorType *New; | 
|  | if (Canon) { | 
|  | // We already have a canonical version of this array type; use it as | 
|  | // the canonical type for a newly-built type. | 
|  | New = new (*this, TypeAlignment) | 
|  | DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0), | 
|  | SizeExpr, AttrLoc); | 
|  | } else { | 
|  | QualType CanonVecTy = getCanonicalType(vecType); | 
|  | if (CanonVecTy == vecType) { | 
|  | New = new (*this, TypeAlignment) | 
|  | DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr, | 
|  | AttrLoc); | 
|  |  | 
|  | DependentSizedExtVectorType *CanonCheck | 
|  | = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken"); | 
|  | (void)CanonCheck; | 
|  | DependentSizedExtVectorTypes.InsertNode(New, InsertPos); | 
|  | } else { | 
|  | QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr, | 
|  | SourceLocation()); | 
|  | New = new (*this, TypeAlignment) | 
|  | DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc); | 
|  | } | 
|  | } | 
|  |  | 
|  | Types.push_back(New); | 
|  | return QualType(New, 0); | 
|  | } | 
|  |  | 
|  | /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'. | 
|  | /// | 
|  | QualType | 
|  | ASTContext::getFunctionNoProtoType(QualType ResultTy, | 
|  | const FunctionType::ExtInfo &Info) const { | 
|  | const CallingConv CallConv = Info.getCC(); | 
|  |  | 
|  | // Unique functions, to guarantee there is only one function of a particular | 
|  | // structure. | 
|  | llvm::FoldingSetNodeID ID; | 
|  | FunctionNoProtoType::Profile(ID, ResultTy, Info); | 
|  |  | 
|  | void *InsertPos = nullptr; | 
|  | if (FunctionNoProtoType *FT = | 
|  | FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
|  | return QualType(FT, 0); | 
|  |  | 
|  | QualType Canonical; | 
|  | if (!ResultTy.isCanonical()) { | 
|  | Canonical = getFunctionNoProtoType(getCanonicalType(ResultTy), Info); | 
|  |  | 
|  | // Get the new insert position for the node we care about. | 
|  | FunctionNoProtoType *NewIP = | 
|  | FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; | 
|  | } | 
|  |  | 
|  | FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv); | 
|  | FunctionNoProtoType *New = new (*this, TypeAlignment) | 
|  | FunctionNoProtoType(ResultTy, Canonical, newInfo); | 
|  | Types.push_back(New); | 
|  | FunctionNoProtoTypes.InsertNode(New, InsertPos); | 
|  | return QualType(New, 0); | 
|  | } | 
|  |  | 
|  | /// \brief Determine whether \p T is canonical as the result type of a function. | 
|  | static bool isCanonicalResultType(QualType T) { | 
|  | return T.isCanonical() && | 
|  | (T.getObjCLifetime() == Qualifiers::OCL_None || | 
|  | T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone); | 
|  | } | 
|  |  | 
|  | QualType | 
|  | ASTContext::getFunctionType(QualType ResultTy, ArrayRef<QualType> ArgArray, | 
|  | const FunctionProtoType::ExtProtoInfo &EPI) const { | 
|  | size_t NumArgs = ArgArray.size(); | 
|  |  | 
|  | // Unique functions, to guarantee there is only one function of a particular | 
|  | // structure. | 
|  | llvm::FoldingSetNodeID ID; | 
|  | FunctionProtoType::Profile(ID, ResultTy, ArgArray.begin(), NumArgs, EPI, | 
|  | *this); | 
|  |  | 
|  | void *InsertPos = nullptr; | 
|  | if (FunctionProtoType *FTP = | 
|  | FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
|  | return QualType(FTP, 0); | 
|  |  | 
|  | // Determine whether the type being created is already canonical or not. | 
|  | bool isCanonical = | 
|  | EPI.ExceptionSpecType == EST_None && isCanonicalResultType(ResultTy) && | 
|  | !EPI.HasTrailingReturn; | 
|  | for (unsigned i = 0; i != NumArgs && isCanonical; ++i) | 
|  | if (!ArgArray[i].isCanonicalAsParam()) | 
|  | isCanonical = false; | 
|  |  | 
|  | // If this type isn't canonical, get the canonical version of it. | 
|  | // The exception spec is not part of the canonical type. | 
|  | QualType Canonical; | 
|  | if (!isCanonical) { | 
|  | SmallVector<QualType, 16> CanonicalArgs; | 
|  | CanonicalArgs.reserve(NumArgs); | 
|  | for (unsigned i = 0; i != NumArgs; ++i) | 
|  | CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i])); | 
|  |  | 
|  | FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI; | 
|  | CanonicalEPI.HasTrailingReturn = false; | 
|  | CanonicalEPI.ExceptionSpecType = EST_None; | 
|  | CanonicalEPI.NumExceptions = 0; | 
|  |  | 
|  | // Result types do not have ARC lifetime qualifiers. | 
|  | QualType CanResultTy = getCanonicalType(ResultTy); | 
|  | if (ResultTy.getQualifiers().hasObjCLifetime()) { | 
|  | Qualifiers Qs = CanResultTy.getQualifiers(); | 
|  | Qs.removeObjCLifetime(); | 
|  | CanResultTy = getQualifiedType(CanResultTy.getUnqualifiedType(), Qs); | 
|  | } | 
|  |  | 
|  | Canonical = getFunctionType(CanResultTy, CanonicalArgs, CanonicalEPI); | 
|  |  | 
|  | // Get the new insert position for the node we care about. | 
|  | FunctionProtoType *NewIP = | 
|  | FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; | 
|  | } | 
|  |  | 
|  | // FunctionProtoType objects are allocated with extra bytes after | 
|  | // them for three variable size arrays at the end: | 
|  | //  - parameter types | 
|  | //  - exception types | 
|  | //  - consumed-arguments flags | 
|  | // Instead of the exception types, there could be a noexcept | 
|  | // expression, or information used to resolve the exception | 
|  | // specification. | 
|  | size_t Size = sizeof(FunctionProtoType) + | 
|  | NumArgs * sizeof(QualType); | 
|  | if (EPI.ExceptionSpecType == EST_Dynamic) { | 
|  | Size += EPI.NumExceptions * sizeof(QualType); | 
|  | } else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) { | 
|  | Size += sizeof(Expr*); | 
|  | } else if (EPI.ExceptionSpecType == EST_Uninstantiated) { | 
|  | Size += 2 * sizeof(FunctionDecl*); | 
|  | } else if (EPI.ExceptionSpecType == EST_Unevaluated) { | 
|  | Size += sizeof(FunctionDecl*); | 
|  | } | 
|  | if (EPI.ConsumedParameters) | 
|  | Size += NumArgs * sizeof(bool); | 
|  |  | 
|  | FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment); | 
|  | FunctionProtoType::ExtProtoInfo newEPI = EPI; | 
|  | new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI); | 
|  | Types.push_back(FTP); | 
|  | FunctionProtoTypes.InsertNode(FTP, InsertPos); | 
|  | return QualType(FTP, 0); | 
|  | } | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | static bool NeedsInjectedClassNameType(const RecordDecl *D) { | 
|  | if (!isa<CXXRecordDecl>(D)) return false; | 
|  | const CXXRecordDecl *RD = cast<CXXRecordDecl>(D); | 
|  | if (isa<ClassTemplatePartialSpecializationDecl>(RD)) | 
|  | return true; | 
|  | if (RD->getDescribedClassTemplate() && | 
|  | !isa<ClassTemplateSpecializationDecl>(RD)) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /// getInjectedClassNameType - Return the unique reference to the | 
|  | /// injected class name type for the specified templated declaration. | 
|  | QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl, | 
|  | QualType TST) const { | 
|  | assert(NeedsInjectedClassNameType(Decl)); | 
|  | if (Decl->TypeForDecl) { | 
|  | assert(isa<InjectedClassNameType>(Decl->TypeForDecl)); | 
|  | } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) { | 
|  | assert(PrevDecl->TypeForDecl && "previous declaration has no type"); | 
|  | Decl->TypeForDecl = PrevDecl->TypeForDecl; | 
|  | assert(isa<InjectedClassNameType>(Decl->TypeForDecl)); | 
|  | } else { | 
|  | Type *newType = | 
|  | new (*this, TypeAlignment) InjectedClassNameType(Decl, TST); | 
|  | Decl->TypeForDecl = newType; | 
|  | Types.push_back(newType); | 
|  | } | 
|  | return QualType(Decl->TypeForDecl, 0); | 
|  | } | 
|  |  | 
|  | /// getTypeDeclType - Return the unique reference to the type for the | 
|  | /// specified type declaration. | 
|  | QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const { | 
|  | assert(Decl && "Passed null for Decl param"); | 
|  | assert(!Decl->TypeForDecl && "TypeForDecl present in slow case"); | 
|  |  | 
|  | if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl)) | 
|  | return getTypedefType(Typedef); | 
|  |  | 
|  | assert(!isa<TemplateTypeParmDecl>(Decl) && | 
|  | "Template type parameter types are always available."); | 
|  |  | 
|  | if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) { | 
|  | assert(Record->isFirstDecl() && "struct/union has previous declaration"); | 
|  | assert(!NeedsInjectedClassNameType(Record)); | 
|  | return getRecordType(Record); | 
|  | } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) { | 
|  | assert(Enum->isFirstDecl() && "enum has previous declaration"); | 
|  | return getEnumType(Enum); | 
|  | } else if (const UnresolvedUsingTypenameDecl *Using = | 
|  | dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) { | 
|  | Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using); | 
|  | Decl->TypeForDecl = newType; | 
|  | Types.push_back(newType); | 
|  | } else | 
|  | llvm_unreachable("TypeDecl without a type?"); | 
|  |  | 
|  | return QualType(Decl->TypeForDecl, 0); | 
|  | } | 
|  |  | 
|  | /// getTypedefType - Return the unique reference to the type for the | 
|  | /// specified typedef name decl. | 
|  | QualType | 
|  | ASTContext::getTypedefType(const TypedefNameDecl *Decl, | 
|  | QualType Canonical) const { | 
|  | if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0); | 
|  |  | 
|  | if (Canonical.isNull()) | 
|  | Canonical = getCanonicalType(Decl->getUnderlyingType()); | 
|  | TypedefType *newType = new(*this, TypeAlignment) | 
|  | TypedefType(Type::Typedef, Decl, Canonical); | 
|  | Decl->TypeForDecl = newType; | 
|  | Types.push_back(newType); | 
|  | return QualType(newType, 0); | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getRecordType(const RecordDecl *Decl) const { | 
|  | if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0); | 
|  |  | 
|  | if (const RecordDecl *PrevDecl = Decl->getPreviousDecl()) | 
|  | if (PrevDecl->TypeForDecl) | 
|  | return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0); | 
|  |  | 
|  | RecordType *newType = new (*this, TypeAlignment) RecordType(Decl); | 
|  | Decl->TypeForDecl = newType; | 
|  | Types.push_back(newType); | 
|  | return QualType(newType, 0); | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getEnumType(const EnumDecl *Decl) const { | 
|  | if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0); | 
|  |  | 
|  | if (const EnumDecl *PrevDecl = Decl->getPreviousDecl()) | 
|  | if (PrevDecl->TypeForDecl) | 
|  | return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0); | 
|  |  | 
|  | EnumType *newType = new (*this, TypeAlignment) EnumType(Decl); | 
|  | Decl->TypeForDecl = newType; | 
|  | Types.push_back(newType); | 
|  | return QualType(newType, 0); | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getAttributedType(AttributedType::Kind attrKind, | 
|  | QualType modifiedType, | 
|  | QualType equivalentType) { | 
|  | llvm::FoldingSetNodeID id; | 
|  | AttributedType::Profile(id, attrKind, modifiedType, equivalentType); | 
|  |  | 
|  | void *insertPos = nullptr; | 
|  | AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos); | 
|  | if (type) return QualType(type, 0); | 
|  |  | 
|  | QualType canon = getCanonicalType(equivalentType); | 
|  | type = new (*this, TypeAlignment) | 
|  | AttributedType(canon, attrKind, modifiedType, equivalentType); | 
|  |  | 
|  | Types.push_back(type); | 
|  | AttributedTypes.InsertNode(type, insertPos); | 
|  |  | 
|  | return QualType(type, 0); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// \brief Retrieve a substitution-result type. | 
|  | QualType | 
|  | ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm, | 
|  | QualType Replacement) const { | 
|  | assert(Replacement.isCanonical() | 
|  | && "replacement types must always be canonical"); | 
|  |  | 
|  | llvm::FoldingSetNodeID ID; | 
|  | SubstTemplateTypeParmType::Profile(ID, Parm, Replacement); | 
|  | void *InsertPos = nullptr; | 
|  | SubstTemplateTypeParmType *SubstParm | 
|  | = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  |  | 
|  | if (!SubstParm) { | 
|  | SubstParm = new (*this, TypeAlignment) | 
|  | SubstTemplateTypeParmType(Parm, Replacement); | 
|  | Types.push_back(SubstParm); | 
|  | SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos); | 
|  | } | 
|  |  | 
|  | return QualType(SubstParm, 0); | 
|  | } | 
|  |  | 
|  | /// \brief Retrieve a | 
|  | QualType ASTContext::getSubstTemplateTypeParmPackType( | 
|  | const TemplateTypeParmType *Parm, | 
|  | const TemplateArgument &ArgPack) { | 
|  | #ifndef NDEBUG | 
|  | for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(), | 
|  | PEnd = ArgPack.pack_end(); | 
|  | P != PEnd; ++P) { | 
|  | assert(P->getKind() == TemplateArgument::Type &&"Pack contains a non-type"); | 
|  | assert(P->getAsType().isCanonical() && "Pack contains non-canonical type"); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | llvm::FoldingSetNodeID ID; | 
|  | SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack); | 
|  | void *InsertPos = nullptr; | 
|  | if (SubstTemplateTypeParmPackType *SubstParm | 
|  | = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
|  | return QualType(SubstParm, 0); | 
|  |  | 
|  | QualType Canon; | 
|  | if (!Parm->isCanonicalUnqualified()) { | 
|  | Canon = getCanonicalType(QualType(Parm, 0)); | 
|  | Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon), | 
|  | ArgPack); | 
|  | SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | } | 
|  |  | 
|  | SubstTemplateTypeParmPackType *SubstParm | 
|  | = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon, | 
|  | ArgPack); | 
|  | Types.push_back(SubstParm); | 
|  | SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos); | 
|  | return QualType(SubstParm, 0); | 
|  | } | 
|  |  | 
|  | /// \brief Retrieve the template type parameter type for a template | 
|  | /// parameter or parameter pack with the given depth, index, and (optionally) | 
|  | /// name. | 
|  | QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index, | 
|  | bool ParameterPack, | 
|  | TemplateTypeParmDecl *TTPDecl) const { | 
|  | llvm::FoldingSetNodeID ID; | 
|  | TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl); | 
|  | void *InsertPos = nullptr; | 
|  | TemplateTypeParmType *TypeParm | 
|  | = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  |  | 
|  | if (TypeParm) | 
|  | return QualType(TypeParm, 0); | 
|  |  | 
|  | if (TTPDecl) { | 
|  | QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack); | 
|  | TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon); | 
|  |  | 
|  | TemplateTypeParmType *TypeCheck | 
|  | = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | assert(!TypeCheck && "Template type parameter canonical type broken"); | 
|  | (void)TypeCheck; | 
|  | } else | 
|  | TypeParm = new (*this, TypeAlignment) | 
|  | TemplateTypeParmType(Depth, Index, ParameterPack); | 
|  |  | 
|  | Types.push_back(TypeParm); | 
|  | TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos); | 
|  |  | 
|  | return QualType(TypeParm, 0); | 
|  | } | 
|  |  | 
|  | TypeSourceInfo * | 
|  | ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name, | 
|  | SourceLocation NameLoc, | 
|  | const TemplateArgumentListInfo &Args, | 
|  | QualType Underlying) const { | 
|  | assert(!Name.getAsDependentTemplateName() && | 
|  | "No dependent template names here!"); | 
|  | QualType TST = getTemplateSpecializationType(Name, Args, Underlying); | 
|  |  | 
|  | TypeSourceInfo *DI = CreateTypeSourceInfo(TST); | 
|  | TemplateSpecializationTypeLoc TL = | 
|  | DI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>(); | 
|  | TL.setTemplateKeywordLoc(SourceLocation()); | 
|  | TL.setTemplateNameLoc(NameLoc); | 
|  | TL.setLAngleLoc(Args.getLAngleLoc()); | 
|  | TL.setRAngleLoc(Args.getRAngleLoc()); | 
|  | for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i) | 
|  | TL.setArgLocInfo(i, Args[i].getLocInfo()); | 
|  | return DI; | 
|  | } | 
|  |  | 
|  | QualType | 
|  | ASTContext::getTemplateSpecializationType(TemplateName Template, | 
|  | const TemplateArgumentListInfo &Args, | 
|  | QualType Underlying) const { | 
|  | assert(!Template.getAsDependentTemplateName() && | 
|  | "No dependent template names here!"); | 
|  |  | 
|  | unsigned NumArgs = Args.size(); | 
|  |  | 
|  | SmallVector<TemplateArgument, 4> ArgVec; | 
|  | ArgVec.reserve(NumArgs); | 
|  | for (unsigned i = 0; i != NumArgs; ++i) | 
|  | ArgVec.push_back(Args[i].getArgument()); | 
|  |  | 
|  | return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs, | 
|  | Underlying); | 
|  | } | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | static bool hasAnyPackExpansions(const TemplateArgument *Args, | 
|  | unsigned NumArgs) { | 
|  | for (unsigned I = 0; I != NumArgs; ++I) | 
|  | if (Args[I].isPackExpansion()) | 
|  | return true; | 
|  |  | 
|  | return true; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | QualType | 
|  | ASTContext::getTemplateSpecializationType(TemplateName Template, | 
|  | const TemplateArgument *Args, | 
|  | unsigned NumArgs, | 
|  | QualType Underlying) const { | 
|  | assert(!Template.getAsDependentTemplateName() && | 
|  | "No dependent template names here!"); | 
|  | // Look through qualified template names. | 
|  | if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName()) | 
|  | Template = TemplateName(QTN->getTemplateDecl()); | 
|  |  | 
|  | bool IsTypeAlias = | 
|  | Template.getAsTemplateDecl() && | 
|  | isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl()); | 
|  | QualType CanonType; | 
|  | if (!Underlying.isNull()) | 
|  | CanonType = getCanonicalType(Underlying); | 
|  | else { | 
|  | // We can get here with an alias template when the specialization contains | 
|  | // a pack expansion that does not match up with a parameter pack. | 
|  | assert((!IsTypeAlias || hasAnyPackExpansions(Args, NumArgs)) && | 
|  | "Caller must compute aliased type"); | 
|  | IsTypeAlias = false; | 
|  | CanonType = getCanonicalTemplateSpecializationType(Template, Args, | 
|  | NumArgs); | 
|  | } | 
|  |  | 
|  | // Allocate the (non-canonical) template specialization type, but don't | 
|  | // try to unique it: these types typically have location information that | 
|  | // we don't unique and don't want to lose. | 
|  | void *Mem = Allocate(sizeof(TemplateSpecializationType) + | 
|  | sizeof(TemplateArgument) * NumArgs + | 
|  | (IsTypeAlias? sizeof(QualType) : 0), | 
|  | TypeAlignment); | 
|  | TemplateSpecializationType *Spec | 
|  | = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, CanonType, | 
|  | IsTypeAlias ? Underlying : QualType()); | 
|  |  | 
|  | Types.push_back(Spec); | 
|  | return QualType(Spec, 0); | 
|  | } | 
|  |  | 
|  | QualType | 
|  | ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template, | 
|  | const TemplateArgument *Args, | 
|  | unsigned NumArgs) const { | 
|  | assert(!Template.getAsDependentTemplateName() && | 
|  | "No dependent template names here!"); | 
|  |  | 
|  | // Look through qualified template names. | 
|  | if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName()) | 
|  | Template = TemplateName(QTN->getTemplateDecl()); | 
|  |  | 
|  | // Build the canonical template specialization type. | 
|  | TemplateName CanonTemplate = getCanonicalTemplateName(Template); | 
|  | SmallVector<TemplateArgument, 4> CanonArgs; | 
|  | CanonArgs.reserve(NumArgs); | 
|  | for (unsigned I = 0; I != NumArgs; ++I) | 
|  | CanonArgs.push_back(getCanonicalTemplateArgument(Args[I])); | 
|  |  | 
|  | // Determine whether this canonical template specialization type already | 
|  | // exists. | 
|  | llvm::FoldingSetNodeID ID; | 
|  | TemplateSpecializationType::Profile(ID, CanonTemplate, | 
|  | CanonArgs.data(), NumArgs, *this); | 
|  |  | 
|  | void *InsertPos = nullptr; | 
|  | TemplateSpecializationType *Spec | 
|  | = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  |  | 
|  | if (!Spec) { | 
|  | // Allocate a new canonical template specialization type. | 
|  | void *Mem = Allocate((sizeof(TemplateSpecializationType) + | 
|  | sizeof(TemplateArgument) * NumArgs), | 
|  | TypeAlignment); | 
|  | Spec = new (Mem) TemplateSpecializationType(CanonTemplate, | 
|  | CanonArgs.data(), NumArgs, | 
|  | QualType(), QualType()); | 
|  | Types.push_back(Spec); | 
|  | TemplateSpecializationTypes.InsertNode(Spec, InsertPos); | 
|  | } | 
|  |  | 
|  | assert(Spec->isDependentType() && | 
|  | "Non-dependent template-id type must have a canonical type"); | 
|  | return QualType(Spec, 0); | 
|  | } | 
|  |  | 
|  | QualType | 
|  | ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword, | 
|  | NestedNameSpecifier *NNS, | 
|  | QualType NamedType) const { | 
|  | llvm::FoldingSetNodeID ID; | 
|  | ElaboratedType::Profile(ID, Keyword, NNS, NamedType); | 
|  |  | 
|  | void *InsertPos = nullptr; | 
|  | ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | if (T) | 
|  | return QualType(T, 0); | 
|  |  | 
|  | QualType Canon = NamedType; | 
|  | if (!Canon.isCanonical()) { | 
|  | Canon = getCanonicalType(NamedType); | 
|  | ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | assert(!CheckT && "Elaborated canonical type broken"); | 
|  | (void)CheckT; | 
|  | } | 
|  |  | 
|  | T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon); | 
|  | Types.push_back(T); | 
|  | ElaboratedTypes.InsertNode(T, InsertPos); | 
|  | return QualType(T, 0); | 
|  | } | 
|  |  | 
|  | QualType | 
|  | ASTContext::getParenType(QualType InnerType) const { | 
|  | llvm::FoldingSetNodeID ID; | 
|  | ParenType::Profile(ID, InnerType); | 
|  |  | 
|  | void *InsertPos = nullptr; | 
|  | ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | if (T) | 
|  | return QualType(T, 0); | 
|  |  | 
|  | QualType Canon = InnerType; | 
|  | if (!Canon.isCanonical()) { | 
|  | Canon = getCanonicalType(InnerType); | 
|  | ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | assert(!CheckT && "Paren canonical type broken"); | 
|  | (void)CheckT; | 
|  | } | 
|  |  | 
|  | T = new (*this) ParenType(InnerType, Canon); | 
|  | Types.push_back(T); | 
|  | ParenTypes.InsertNode(T, InsertPos); | 
|  | return QualType(T, 0); | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword, | 
|  | NestedNameSpecifier *NNS, | 
|  | const IdentifierInfo *Name, | 
|  | QualType Canon) const { | 
|  | if (Canon.isNull()) { | 
|  | NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS); | 
|  | ElaboratedTypeKeyword CanonKeyword = Keyword; | 
|  | if (Keyword == ETK_None) | 
|  | CanonKeyword = ETK_Typename; | 
|  |  | 
|  | if (CanonNNS != NNS || CanonKeyword != Keyword) | 
|  | Canon = getDependentNameType(CanonKeyword, CanonNNS, Name); | 
|  | } | 
|  |  | 
|  | llvm::FoldingSetNodeID ID; | 
|  | DependentNameType::Profile(ID, Keyword, NNS, Name); | 
|  |  | 
|  | void *InsertPos = nullptr; | 
|  | DependentNameType *T | 
|  | = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | if (T) | 
|  | return QualType(T, 0); | 
|  |  | 
|  | T = new (*this) DependentNameType(Keyword, NNS, Name, Canon); | 
|  | Types.push_back(T); | 
|  | DependentNameTypes.InsertNode(T, InsertPos); | 
|  | return QualType(T, 0); | 
|  | } | 
|  |  | 
|  | QualType | 
|  | ASTContext::getDependentTemplateSpecializationType( | 
|  | ElaboratedTypeKeyword Keyword, | 
|  | NestedNameSpecifier *NNS, | 
|  | const IdentifierInfo *Name, | 
|  | const TemplateArgumentListInfo &Args) const { | 
|  | // TODO: avoid this copy | 
|  | SmallVector<TemplateArgument, 16> ArgCopy; | 
|  | for (unsigned I = 0, E = Args.size(); I != E; ++I) | 
|  | ArgCopy.push_back(Args[I].getArgument()); | 
|  | return getDependentTemplateSpecializationType(Keyword, NNS, Name, | 
|  | ArgCopy.size(), | 
|  | ArgCopy.data()); | 
|  | } | 
|  |  | 
|  | QualType | 
|  | ASTContext::getDependentTemplateSpecializationType( | 
|  | ElaboratedTypeKeyword Keyword, | 
|  | NestedNameSpecifier *NNS, | 
|  | const IdentifierInfo *Name, | 
|  | unsigned NumArgs, | 
|  | const TemplateArgument *Args) const { | 
|  | assert((!NNS || NNS->isDependent()) && | 
|  | "nested-name-specifier must be dependent"); | 
|  |  | 
|  | llvm::FoldingSetNodeID ID; | 
|  | DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS, | 
|  | Name, NumArgs, Args); | 
|  |  | 
|  | void *InsertPos = nullptr; | 
|  | DependentTemplateSpecializationType *T | 
|  | = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | if (T) | 
|  | return QualType(T, 0); | 
|  |  | 
|  | NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS); | 
|  |  | 
|  | ElaboratedTypeKeyword CanonKeyword = Keyword; | 
|  | if (Keyword == ETK_None) CanonKeyword = ETK_Typename; | 
|  |  | 
|  | bool AnyNonCanonArgs = false; | 
|  | SmallVector<TemplateArgument, 16> CanonArgs(NumArgs); | 
|  | for (unsigned I = 0; I != NumArgs; ++I) { | 
|  | CanonArgs[I] = getCanonicalTemplateArgument(Args[I]); | 
|  | if (!CanonArgs[I].structurallyEquals(Args[I])) | 
|  | AnyNonCanonArgs = true; | 
|  | } | 
|  |  | 
|  | QualType Canon; | 
|  | if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) { | 
|  | Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS, | 
|  | Name, NumArgs, | 
|  | CanonArgs.data()); | 
|  |  | 
|  | // Find the insert position again. | 
|  | DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | } | 
|  |  | 
|  | void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) + | 
|  | sizeof(TemplateArgument) * NumArgs), | 
|  | TypeAlignment); | 
|  | T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS, | 
|  | Name, NumArgs, Args, Canon); | 
|  | Types.push_back(T); | 
|  | DependentTemplateSpecializationTypes.InsertNode(T, InsertPos); | 
|  | return QualType(T, 0); | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getPackExpansionType(QualType Pattern, | 
|  | Optional<unsigned> NumExpansions) { | 
|  | llvm::FoldingSetNodeID ID; | 
|  | PackExpansionType::Profile(ID, Pattern, NumExpansions); | 
|  |  | 
|  | assert(Pattern->containsUnexpandedParameterPack() && | 
|  | "Pack expansions must expand one or more parameter packs"); | 
|  | void *InsertPos = nullptr; | 
|  | PackExpansionType *T | 
|  | = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | if (T) | 
|  | return QualType(T, 0); | 
|  |  | 
|  | QualType Canon; | 
|  | if (!Pattern.isCanonical()) { | 
|  | Canon = getCanonicalType(Pattern); | 
|  | // The canonical type might not contain an unexpanded parameter pack, if it | 
|  | // contains an alias template specialization which ignores one of its | 
|  | // parameters. | 
|  | if (Canon->containsUnexpandedParameterPack()) { | 
|  | Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions); | 
|  |  | 
|  | // Find the insert position again, in case we inserted an element into | 
|  | // PackExpansionTypes and invalidated our insert position. | 
|  | PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | } | 
|  | } | 
|  |  | 
|  | T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions); | 
|  | Types.push_back(T); | 
|  | PackExpansionTypes.InsertNode(T, InsertPos); | 
|  | return QualType(T, 0); | 
|  | } | 
|  |  | 
|  | /// CmpProtocolNames - Comparison predicate for sorting protocols | 
|  | /// alphabetically. | 
|  | static bool CmpProtocolNames(const ObjCProtocolDecl *LHS, | 
|  | const ObjCProtocolDecl *RHS) { | 
|  | return LHS->getDeclName() < RHS->getDeclName(); | 
|  | } | 
|  |  | 
|  | static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols, | 
|  | unsigned NumProtocols) { | 
|  | if (NumProtocols == 0) return true; | 
|  |  | 
|  | if (Protocols[0]->getCanonicalDecl() != Protocols[0]) | 
|  | return false; | 
|  |  | 
|  | for (unsigned i = 1; i != NumProtocols; ++i) | 
|  | if (!CmpProtocolNames(Protocols[i-1], Protocols[i]) || | 
|  | Protocols[i]->getCanonicalDecl() != Protocols[i]) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols, | 
|  | unsigned &NumProtocols) { | 
|  | ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols; | 
|  |  | 
|  | // Sort protocols, keyed by name. | 
|  | std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames); | 
|  |  | 
|  | // Canonicalize. | 
|  | for (unsigned I = 0, N = NumProtocols; I != N; ++I) | 
|  | Protocols[I] = Protocols[I]->getCanonicalDecl(); | 
|  |  | 
|  | // Remove duplicates. | 
|  | ProtocolsEnd = std::unique(Protocols, ProtocolsEnd); | 
|  | NumProtocols = ProtocolsEnd-Protocols; | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getObjCObjectType(QualType BaseType, | 
|  | ObjCProtocolDecl * const *Protocols, | 
|  | unsigned NumProtocols) const { | 
|  | // If the base type is an interface and there aren't any protocols | 
|  | // to add, then the interface type will do just fine. | 
|  | if (!NumProtocols && isa<ObjCInterfaceType>(BaseType)) | 
|  | return BaseType; | 
|  |  | 
|  | // Look in the folding set for an existing type. | 
|  | llvm::FoldingSetNodeID ID; | 
|  | ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols); | 
|  | void *InsertPos = nullptr; | 
|  | if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
|  | return QualType(QT, 0); | 
|  |  | 
|  | // Build the canonical type, which has the canonical base type and | 
|  | // a sorted-and-uniqued list of protocols. | 
|  | QualType Canonical; | 
|  | bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols); | 
|  | if (!ProtocolsSorted || !BaseType.isCanonical()) { | 
|  | if (!ProtocolsSorted) { | 
|  | SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols, | 
|  | Protocols + NumProtocols); | 
|  | unsigned UniqueCount = NumProtocols; | 
|  |  | 
|  | SortAndUniqueProtocols(&Sorted[0], UniqueCount); | 
|  | Canonical = getObjCObjectType(getCanonicalType(BaseType), | 
|  | &Sorted[0], UniqueCount); | 
|  | } else { | 
|  | Canonical = getObjCObjectType(getCanonicalType(BaseType), | 
|  | Protocols, NumProtocols); | 
|  | } | 
|  |  | 
|  | // Regenerate InsertPos. | 
|  | ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | } | 
|  |  | 
|  | unsigned Size = sizeof(ObjCObjectTypeImpl); | 
|  | Size += NumProtocols * sizeof(ObjCProtocolDecl *); | 
|  | void *Mem = Allocate(Size, TypeAlignment); | 
|  | ObjCObjectTypeImpl *T = | 
|  | new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols); | 
|  |  | 
|  | Types.push_back(T); | 
|  | ObjCObjectTypes.InsertNode(T, InsertPos); | 
|  | return QualType(T, 0); | 
|  | } | 
|  |  | 
|  | /// ObjCObjectAdoptsQTypeProtocols - Checks that protocols in IC's | 
|  | /// protocol list adopt all protocols in QT's qualified-id protocol | 
|  | /// list. | 
|  | bool ASTContext::ObjCObjectAdoptsQTypeProtocols(QualType QT, | 
|  | ObjCInterfaceDecl *IC) { | 
|  | if (!QT->isObjCQualifiedIdType()) | 
|  | return false; | 
|  |  | 
|  | if (const ObjCObjectPointerType *OPT = QT->getAs<ObjCObjectPointerType>()) { | 
|  | // If both the right and left sides have qualifiers. | 
|  | for (auto *Proto : OPT->quals()) { | 
|  | if (!IC->ClassImplementsProtocol(Proto, false)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in | 
|  | /// QT's qualified-id protocol list adopt all protocols in IDecl's list | 
|  | /// of protocols. | 
|  | bool ASTContext::QIdProtocolsAdoptObjCObjectProtocols(QualType QT, | 
|  | ObjCInterfaceDecl *IDecl) { | 
|  | if (!QT->isObjCQualifiedIdType()) | 
|  | return false; | 
|  | const ObjCObjectPointerType *OPT = QT->getAs<ObjCObjectPointerType>(); | 
|  | if (!OPT) | 
|  | return false; | 
|  | if (!IDecl->hasDefinition()) | 
|  | return false; | 
|  | llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocols; | 
|  | CollectInheritedProtocols(IDecl, InheritedProtocols); | 
|  | if (InheritedProtocols.empty()) | 
|  | return false; | 
|  | // Check that if every protocol in list of id<plist> conforms to a protcol | 
|  | // of IDecl's, then bridge casting is ok. | 
|  | bool Conforms = false; | 
|  | for (auto *Proto : OPT->quals()) { | 
|  | Conforms = false; | 
|  | for (auto *PI : InheritedProtocols) { | 
|  | if (ProtocolCompatibleWithProtocol(Proto, PI)) { | 
|  | Conforms = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!Conforms) | 
|  | break; | 
|  | } | 
|  | if (Conforms) | 
|  | return true; | 
|  |  | 
|  | for (auto *PI : InheritedProtocols) { | 
|  | // If both the right and left sides have qualifiers. | 
|  | bool Adopts = false; | 
|  | for (auto *Proto : OPT->quals()) { | 
|  | // return 'true' if 'PI' is in the inheritance hierarchy of Proto | 
|  | if ((Adopts = ProtocolCompatibleWithProtocol(PI, Proto))) | 
|  | break; | 
|  | } | 
|  | if (!Adopts) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// getObjCObjectPointerType - Return a ObjCObjectPointerType type for | 
|  | /// the given object type. | 
|  | QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const { | 
|  | llvm::FoldingSetNodeID ID; | 
|  | ObjCObjectPointerType::Profile(ID, ObjectT); | 
|  |  | 
|  | void *InsertPos = nullptr; | 
|  | if (ObjCObjectPointerType *QT = | 
|  | ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
|  | return QualType(QT, 0); | 
|  |  | 
|  | // Find the canonical object type. | 
|  | QualType Canonical; | 
|  | if (!ObjectT.isCanonical()) { | 
|  | Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT)); | 
|  |  | 
|  | // Regenerate InsertPos. | 
|  | ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | } | 
|  |  | 
|  | // No match. | 
|  | void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment); | 
|  | ObjCObjectPointerType *QType = | 
|  | new (Mem) ObjCObjectPointerType(Canonical, ObjectT); | 
|  |  | 
|  | Types.push_back(QType); | 
|  | ObjCObjectPointerTypes.InsertNode(QType, InsertPos); | 
|  | return QualType(QType, 0); | 
|  | } | 
|  |  | 
|  | /// getObjCInterfaceType - Return the unique reference to the type for the | 
|  | /// specified ObjC interface decl. The list of protocols is optional. | 
|  | QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl, | 
|  | ObjCInterfaceDecl *PrevDecl) const { | 
|  | if (Decl->TypeForDecl) | 
|  | return QualType(Decl->TypeForDecl, 0); | 
|  |  | 
|  | if (PrevDecl) { | 
|  | assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl"); | 
|  | Decl->TypeForDecl = PrevDecl->TypeForDecl; | 
|  | return QualType(PrevDecl->TypeForDecl, 0); | 
|  | } | 
|  |  | 
|  | // Prefer the definition, if there is one. | 
|  | if (const ObjCInterfaceDecl *Def = Decl->getDefinition()) | 
|  | Decl = Def; | 
|  |  | 
|  | void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment); | 
|  | ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl); | 
|  | Decl->TypeForDecl = T; | 
|  | Types.push_back(T); | 
|  | return QualType(T, 0); | 
|  | } | 
|  |  | 
|  | /// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique | 
|  | /// TypeOfExprType AST's (since expression's are never shared). For example, | 
|  | /// multiple declarations that refer to "typeof(x)" all contain different | 
|  | /// DeclRefExpr's. This doesn't effect the type checker, since it operates | 
|  | /// on canonical type's (which are always unique). | 
|  | QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const { | 
|  | TypeOfExprType *toe; | 
|  | if (tofExpr->isTypeDependent()) { | 
|  | llvm::FoldingSetNodeID ID; | 
|  | DependentTypeOfExprType::Profile(ID, *this, tofExpr); | 
|  |  | 
|  | void *InsertPos = nullptr; | 
|  | DependentTypeOfExprType *Canon | 
|  | = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | if (Canon) { | 
|  | // We already have a "canonical" version of an identical, dependent | 
|  | // typeof(expr) type. Use that as our canonical type. | 
|  | toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, | 
|  | QualType((TypeOfExprType*)Canon, 0)); | 
|  | } else { | 
|  | // Build a new, canonical typeof(expr) type. | 
|  | Canon | 
|  | = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr); | 
|  | DependentTypeOfExprTypes.InsertNode(Canon, InsertPos); | 
|  | toe = Canon; | 
|  | } | 
|  | } else { | 
|  | QualType Canonical = getCanonicalType(tofExpr->getType()); | 
|  | toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical); | 
|  | } | 
|  | Types.push_back(toe); | 
|  | return QualType(toe, 0); | 
|  | } | 
|  |  | 
|  | /// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique | 
|  | /// TypeOfType nodes. The only motivation to unique these nodes would be | 
|  | /// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be | 
|  | /// an issue. This doesn't affect the type checker, since it operates | 
|  | /// on canonical types (which are always unique). | 
|  | QualType ASTContext::getTypeOfType(QualType tofType) const { | 
|  | QualType Canonical = getCanonicalType(tofType); | 
|  | TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical); | 
|  | Types.push_back(tot); | 
|  | return QualType(tot, 0); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// \brief Unlike many "get<Type>" functions, we don't unique DecltypeType | 
|  | /// nodes. This would never be helpful, since each such type has its own | 
|  | /// expression, and would not give a significant memory saving, since there | 
|  | /// is an Expr tree under each such type. | 
|  | QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const { | 
|  | DecltypeType *dt; | 
|  |  | 
|  | // C++11 [temp.type]p2: | 
|  | //   If an expression e involves a template parameter, decltype(e) denotes a | 
|  | //   unique dependent type. Two such decltype-specifiers refer to the same | 
|  | //   type only if their expressions are equivalent (14.5.6.1). | 
|  | if (e->isInstantiationDependent()) { | 
|  | llvm::FoldingSetNodeID ID; | 
|  | DependentDecltypeType::Profile(ID, *this, e); | 
|  |  | 
|  | void *InsertPos = nullptr; | 
|  | DependentDecltypeType *Canon | 
|  | = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | if (!Canon) { | 
|  | // Build a new, canonical typeof(expr) type. | 
|  | Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e); | 
|  | DependentDecltypeTypes.InsertNode(Canon, InsertPos); | 
|  | } | 
|  | dt = new (*this, TypeAlignment) | 
|  | DecltypeType(e, UnderlyingType, QualType((DecltypeType *)Canon, 0)); | 
|  | } else { | 
|  | dt = new (*this, TypeAlignment) | 
|  | DecltypeType(e, UnderlyingType, getCanonicalType(UnderlyingType)); | 
|  | } | 
|  | Types.push_back(dt); | 
|  | return QualType(dt, 0); | 
|  | } | 
|  |  | 
|  | /// getUnaryTransformationType - We don't unique these, since the memory | 
|  | /// savings are minimal and these are rare. | 
|  | QualType ASTContext::getUnaryTransformType(QualType BaseType, | 
|  | QualType UnderlyingType, | 
|  | UnaryTransformType::UTTKind Kind) | 
|  | const { | 
|  | UnaryTransformType *Ty = | 
|  | new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType, | 
|  | Kind, | 
|  | UnderlyingType->isDependentType() ? | 
|  | QualType() : getCanonicalType(UnderlyingType)); | 
|  | Types.push_back(Ty); | 
|  | return QualType(Ty, 0); | 
|  | } | 
|  |  | 
|  | /// getAutoType - Return the uniqued reference to the 'auto' type which has been | 
|  | /// deduced to the given type, or to the canonical undeduced 'auto' type, or the | 
|  | /// canonical deduced-but-dependent 'auto' type. | 
|  | QualType ASTContext::getAutoType(QualType DeducedType, bool IsDecltypeAuto, | 
|  | bool IsDependent) const { | 
|  | if (DeducedType.isNull() && !IsDecltypeAuto && !IsDependent) | 
|  | return getAutoDeductType(); | 
|  |  | 
|  | // Look in the folding set for an existing type. | 
|  | void *InsertPos = nullptr; | 
|  | llvm::FoldingSetNodeID ID; | 
|  | AutoType::Profile(ID, DeducedType, IsDecltypeAuto, IsDependent); | 
|  | if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
|  | return QualType(AT, 0); | 
|  |  | 
|  | AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType, | 
|  | IsDecltypeAuto, | 
|  | IsDependent); | 
|  | Types.push_back(AT); | 
|  | if (InsertPos) | 
|  | AutoTypes.InsertNode(AT, InsertPos); | 
|  | return QualType(AT, 0); | 
|  | } | 
|  |  | 
|  | /// getAtomicType - Return the uniqued reference to the atomic type for | 
|  | /// the given value type. | 
|  | QualType ASTContext::getAtomicType(QualType T) const { | 
|  | // Unique pointers, to guarantee there is only one pointer of a particular | 
|  | // structure. | 
|  | llvm::FoldingSetNodeID ID; | 
|  | AtomicType::Profile(ID, T); | 
|  |  | 
|  | void *InsertPos = nullptr; | 
|  | if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
|  | return QualType(AT, 0); | 
|  |  | 
|  | // If the atomic value type isn't canonical, this won't be a canonical type | 
|  | // either, so fill in the canonical type field. | 
|  | QualType Canonical; | 
|  | if (!T.isCanonical()) { | 
|  | Canonical = getAtomicType(getCanonicalType(T)); | 
|  |  | 
|  | // Get the new insert position for the node we care about. | 
|  | AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; | 
|  | } | 
|  | AtomicType *New = new (*this, TypeAlignment) AtomicType(T, Canonical); | 
|  | Types.push_back(New); | 
|  | AtomicTypes.InsertNode(New, InsertPos); | 
|  | return QualType(New, 0); | 
|  | } | 
|  |  | 
|  | /// getAutoDeductType - Get type pattern for deducing against 'auto'. | 
|  | QualType ASTContext::getAutoDeductType() const { | 
|  | if (AutoDeductTy.isNull()) | 
|  | AutoDeductTy = QualType( | 
|  | new (*this, TypeAlignment) AutoType(QualType(), /*decltype(auto)*/false, | 
|  | /*dependent*/false), | 
|  | 0); | 
|  | return AutoDeductTy; | 
|  | } | 
|  |  | 
|  | /// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'. | 
|  | QualType ASTContext::getAutoRRefDeductType() const { | 
|  | if (AutoRRefDeductTy.isNull()) | 
|  | AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType()); | 
|  | assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern"); | 
|  | return AutoRRefDeductTy; | 
|  | } | 
|  |  | 
|  | /// getTagDeclType - Return the unique reference to the type for the | 
|  | /// specified TagDecl (struct/union/class/enum) decl. | 
|  | QualType ASTContext::getTagDeclType(const TagDecl *Decl) const { | 
|  | assert (Decl); | 
|  | // FIXME: What is the design on getTagDeclType when it requires casting | 
|  | // away const?  mutable? | 
|  | return getTypeDeclType(const_cast<TagDecl*>(Decl)); | 
|  | } | 
|  |  | 
|  | /// getSizeType - Return the unique type for "size_t" (C99 7.17), the result | 
|  | /// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and | 
|  | /// needs to agree with the definition in <stddef.h>. | 
|  | CanQualType ASTContext::getSizeType() const { | 
|  | return getFromTargetType(Target->getSizeType()); | 
|  | } | 
|  |  | 
|  | /// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5). | 
|  | CanQualType ASTContext::getIntMaxType() const { | 
|  | return getFromTargetType(Target->getIntMaxType()); | 
|  | } | 
|  |  | 
|  | /// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5). | 
|  | CanQualType ASTContext::getUIntMaxType() const { | 
|  | return getFromTargetType(Target->getUIntMaxType()); | 
|  | } | 
|  |  | 
|  | /// getSignedWCharType - Return the type of "signed wchar_t". | 
|  | /// Used when in C++, as a GCC extension. | 
|  | QualType ASTContext::getSignedWCharType() const { | 
|  | // FIXME: derive from "Target" ? | 
|  | return WCharTy; | 
|  | } | 
|  |  | 
|  | /// getUnsignedWCharType - Return the type of "unsigned wchar_t". | 
|  | /// Used when in C++, as a GCC extension. | 
|  | QualType ASTContext::getUnsignedWCharType() const { | 
|  | // FIXME: derive from "Target" ? | 
|  | return UnsignedIntTy; | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getIntPtrType() const { | 
|  | return getFromTargetType(Target->getIntPtrType()); | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getUIntPtrType() const { | 
|  | return getCorrespondingUnsignedType(getIntPtrType()); | 
|  | } | 
|  |  | 
|  | /// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17) | 
|  | /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9). | 
|  | QualType ASTContext::getPointerDiffType() const { | 
|  | return getFromTargetType(Target->getPtrDiffType(0)); | 
|  | } | 
|  |  | 
|  | /// \brief Return the unique type for "pid_t" defined in | 
|  | /// <sys/types.h>. We need this to compute the correct type for vfork(). | 
|  | QualType ASTContext::getProcessIDType() const { | 
|  | return getFromTargetType(Target->getProcessIDType()); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                              Type Operators | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | CanQualType ASTContext::getCanonicalParamType(QualType T) const { | 
|  | // Push qualifiers into arrays, and then discard any remaining | 
|  | // qualifiers. | 
|  | T = getCanonicalType(T); | 
|  | T = getVariableArrayDecayedType(T); | 
|  | const Type *Ty = T.getTypePtr(); | 
|  | QualType Result; | 
|  | if (isa<ArrayType>(Ty)) { | 
|  | Result = getArrayDecayedType(QualType(Ty,0)); | 
|  | } else if (isa<FunctionType>(Ty)) { | 
|  | Result = getPointerType(QualType(Ty, 0)); | 
|  | } else { | 
|  | Result = QualType(Ty, 0); | 
|  | } | 
|  |  | 
|  | return CanQualType::CreateUnsafe(Result); | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getUnqualifiedArrayType(QualType type, | 
|  | Qualifiers &quals) { | 
|  | SplitQualType splitType = type.getSplitUnqualifiedType(); | 
|  |  | 
|  | // FIXME: getSplitUnqualifiedType() actually walks all the way to | 
|  | // the unqualified desugared type and then drops it on the floor. | 
|  | // We then have to strip that sugar back off with | 
|  | // getUnqualifiedDesugaredType(), which is silly. | 
|  | const ArrayType *AT = | 
|  | dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType()); | 
|  |  | 
|  | // If we don't have an array, just use the results in splitType. | 
|  | if (!AT) { | 
|  | quals = splitType.Quals; | 
|  | return QualType(splitType.Ty, 0); | 
|  | } | 
|  |  | 
|  | // Otherwise, recurse on the array's element type. | 
|  | QualType elementType = AT->getElementType(); | 
|  | QualType unqualElementType = getUnqualifiedArrayType(elementType, quals); | 
|  |  | 
|  | // If that didn't change the element type, AT has no qualifiers, so we | 
|  | // can just use the results in splitType. | 
|  | if (elementType == unqualElementType) { | 
|  | assert(quals.empty()); // from the recursive call | 
|  | quals = splitType.Quals; | 
|  | return QualType(splitType.Ty, 0); | 
|  | } | 
|  |  | 
|  | // Otherwise, add in the qualifiers from the outermost type, then | 
|  | // build the type back up. | 
|  | quals.addConsistentQualifiers(splitType.Quals); | 
|  |  | 
|  | if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) { | 
|  | return getConstantArrayType(unqualElementType, CAT->getSize(), | 
|  | CAT->getSizeModifier(), 0); | 
|  | } | 
|  |  | 
|  | if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) { | 
|  | return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0); | 
|  | } | 
|  |  | 
|  | if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) { | 
|  | return getVariableArrayType(unqualElementType, | 
|  | VAT->getSizeExpr(), | 
|  | VAT->getSizeModifier(), | 
|  | VAT->getIndexTypeCVRQualifiers(), | 
|  | VAT->getBracketsRange()); | 
|  | } | 
|  |  | 
|  | const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT); | 
|  | return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(), | 
|  | DSAT->getSizeModifier(), 0, | 
|  | SourceRange()); | 
|  | } | 
|  |  | 
|  | /// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that | 
|  | /// may be similar (C++ 4.4), replaces T1 and T2 with the type that | 
|  | /// they point to and return true. If T1 and T2 aren't pointer types | 
|  | /// or pointer-to-member types, or if they are not similar at this | 
|  | /// level, returns false and leaves T1 and T2 unchanged. Top-level | 
|  | /// qualifiers on T1 and T2 are ignored. This function will typically | 
|  | /// be called in a loop that successively "unwraps" pointer and | 
|  | /// pointer-to-member types to compare them at each level. | 
|  | bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) { | 
|  | const PointerType *T1PtrType = T1->getAs<PointerType>(), | 
|  | *T2PtrType = T2->getAs<PointerType>(); | 
|  | if (T1PtrType && T2PtrType) { | 
|  | T1 = T1PtrType->getPointeeType(); | 
|  | T2 = T2PtrType->getPointeeType(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(), | 
|  | *T2MPType = T2->getAs<MemberPointerType>(); | 
|  | if (T1MPType && T2MPType && | 
|  | hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0), | 
|  | QualType(T2MPType->getClass(), 0))) { | 
|  | T1 = T1MPType->getPointeeType(); | 
|  | T2 = T2MPType->getPointeeType(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (getLangOpts().ObjC1) { | 
|  | const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(), | 
|  | *T2OPType = T2->getAs<ObjCObjectPointerType>(); | 
|  | if (T1OPType && T2OPType) { | 
|  | T1 = T1OPType->getPointeeType(); | 
|  | T2 = T2OPType->getPointeeType(); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // FIXME: Block pointers, too? | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | DeclarationNameInfo | 
|  | ASTContext::getNameForTemplate(TemplateName Name, | 
|  | SourceLocation NameLoc) const { | 
|  | switch (Name.getKind()) { | 
|  | case TemplateName::QualifiedTemplate: | 
|  | case TemplateName::Template: | 
|  | // DNInfo work in progress: CHECKME: what about DNLoc? | 
|  | return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(), | 
|  | NameLoc); | 
|  |  | 
|  | case TemplateName::OverloadedTemplate: { | 
|  | OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate(); | 
|  | // DNInfo work in progress: CHECKME: what about DNLoc? | 
|  | return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc); | 
|  | } | 
|  |  | 
|  | case TemplateName::DependentTemplate: { | 
|  | DependentTemplateName *DTN = Name.getAsDependentTemplateName(); | 
|  | DeclarationName DName; | 
|  | if (DTN->isIdentifier()) { | 
|  | DName = DeclarationNames.getIdentifier(DTN->getIdentifier()); | 
|  | return DeclarationNameInfo(DName, NameLoc); | 
|  | } else { | 
|  | DName = DeclarationNames.getCXXOperatorName(DTN->getOperator()); | 
|  | // DNInfo work in progress: FIXME: source locations? | 
|  | DeclarationNameLoc DNLoc; | 
|  | DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding(); | 
|  | DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding(); | 
|  | return DeclarationNameInfo(DName, NameLoc, DNLoc); | 
|  | } | 
|  | } | 
|  |  | 
|  | case TemplateName::SubstTemplateTemplateParm: { | 
|  | SubstTemplateTemplateParmStorage *subst | 
|  | = Name.getAsSubstTemplateTemplateParm(); | 
|  | return DeclarationNameInfo(subst->getParameter()->getDeclName(), | 
|  | NameLoc); | 
|  | } | 
|  |  | 
|  | case TemplateName::SubstTemplateTemplateParmPack: { | 
|  | SubstTemplateTemplateParmPackStorage *subst | 
|  | = Name.getAsSubstTemplateTemplateParmPack(); | 
|  | return DeclarationNameInfo(subst->getParameterPack()->getDeclName(), | 
|  | NameLoc); | 
|  | } | 
|  | } | 
|  |  | 
|  | llvm_unreachable("bad template name kind!"); | 
|  | } | 
|  |  | 
|  | TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const { | 
|  | switch (Name.getKind()) { | 
|  | case TemplateName::QualifiedTemplate: | 
|  | case TemplateName::Template: { | 
|  | TemplateDecl *Template = Name.getAsTemplateDecl(); | 
|  | if (TemplateTemplateParmDecl *TTP | 
|  | = dyn_cast<TemplateTemplateParmDecl>(Template)) | 
|  | Template = getCanonicalTemplateTemplateParmDecl(TTP); | 
|  |  | 
|  | // The canonical template name is the canonical template declaration. | 
|  | return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl())); | 
|  | } | 
|  |  | 
|  | case TemplateName::OverloadedTemplate: | 
|  | llvm_unreachable("cannot canonicalize overloaded template"); | 
|  |  | 
|  | case TemplateName::DependentTemplate: { | 
|  | DependentTemplateName *DTN = Name.getAsDependentTemplateName(); | 
|  | assert(DTN && "Non-dependent template names must refer to template decls."); | 
|  | return DTN->CanonicalTemplateName; | 
|  | } | 
|  |  | 
|  | case TemplateName::SubstTemplateTemplateParm: { | 
|  | SubstTemplateTemplateParmStorage *subst | 
|  | = Name.getAsSubstTemplateTemplateParm(); | 
|  | return getCanonicalTemplateName(subst->getReplacement()); | 
|  | } | 
|  |  | 
|  | case TemplateName::SubstTemplateTemplateParmPack: { | 
|  | SubstTemplateTemplateParmPackStorage *subst | 
|  | = Name.getAsSubstTemplateTemplateParmPack(); | 
|  | TemplateTemplateParmDecl *canonParameter | 
|  | = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack()); | 
|  | TemplateArgument canonArgPack | 
|  | = getCanonicalTemplateArgument(subst->getArgumentPack()); | 
|  | return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack); | 
|  | } | 
|  | } | 
|  |  | 
|  | llvm_unreachable("bad template name!"); | 
|  | } | 
|  |  | 
|  | bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) { | 
|  | X = getCanonicalTemplateName(X); | 
|  | Y = getCanonicalTemplateName(Y); | 
|  | return X.getAsVoidPointer() == Y.getAsVoidPointer(); | 
|  | } | 
|  |  | 
|  | TemplateArgument | 
|  | ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const { | 
|  | switch (Arg.getKind()) { | 
|  | case TemplateArgument::Null: | 
|  | return Arg; | 
|  |  | 
|  | case TemplateArgument::Expression: | 
|  | return Arg; | 
|  |  | 
|  | case TemplateArgument::Declaration: { | 
|  | ValueDecl *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl()); | 
|  | return TemplateArgument(D, Arg.isDeclForReferenceParam()); | 
|  | } | 
|  |  | 
|  | case TemplateArgument::NullPtr: | 
|  | return TemplateArgument(getCanonicalType(Arg.getNullPtrType()), | 
|  | /*isNullPtr*/true); | 
|  |  | 
|  | case TemplateArgument::Template: | 
|  | return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate())); | 
|  |  | 
|  | case TemplateArgument::TemplateExpansion: | 
|  | return TemplateArgument(getCanonicalTemplateName( | 
|  | Arg.getAsTemplateOrTemplatePattern()), | 
|  | Arg.getNumTemplateExpansions()); | 
|  |  | 
|  | case TemplateArgument::Integral: | 
|  | return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType())); | 
|  |  | 
|  | case TemplateArgument::Type: | 
|  | return TemplateArgument(getCanonicalType(Arg.getAsType())); | 
|  |  | 
|  | case TemplateArgument::Pack: { | 
|  | if (Arg.pack_size() == 0) | 
|  | return Arg; | 
|  |  | 
|  | TemplateArgument *CanonArgs | 
|  | = new (*this) TemplateArgument[Arg.pack_size()]; | 
|  | unsigned Idx = 0; | 
|  | for (TemplateArgument::pack_iterator A = Arg.pack_begin(), | 
|  | AEnd = Arg.pack_end(); | 
|  | A != AEnd; (void)++A, ++Idx) | 
|  | CanonArgs[Idx] = getCanonicalTemplateArgument(*A); | 
|  |  | 
|  | return TemplateArgument(CanonArgs, Arg.pack_size()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Silence GCC warning | 
|  | llvm_unreachable("Unhandled template argument kind"); | 
|  | } | 
|  |  | 
|  | NestedNameSpecifier * | 
|  | ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const { | 
|  | if (!NNS) | 
|  | return nullptr; | 
|  |  | 
|  | switch (NNS->getKind()) { | 
|  | case NestedNameSpecifier::Identifier: | 
|  | // Canonicalize the prefix but keep the identifier the same. | 
|  | return NestedNameSpecifier::Create(*this, | 
|  | getCanonicalNestedNameSpecifier(NNS->getPrefix()), | 
|  | NNS->getAsIdentifier()); | 
|  |  | 
|  | case NestedNameSpecifier::Namespace: | 
|  | // A namespace is canonical; build a nested-name-specifier with | 
|  | // this namespace and no prefix. | 
|  | return NestedNameSpecifier::Create(*this, nullptr, | 
|  | NNS->getAsNamespace()->getOriginalNamespace()); | 
|  |  | 
|  | case NestedNameSpecifier::NamespaceAlias: | 
|  | // A namespace is canonical; build a nested-name-specifier with | 
|  | // this namespace and no prefix. | 
|  | return NestedNameSpecifier::Create(*this, nullptr, | 
|  | NNS->getAsNamespaceAlias()->getNamespace() | 
|  | ->getOriginalNamespace()); | 
|  |  | 
|  | case NestedNameSpecifier::TypeSpec: | 
|  | case NestedNameSpecifier::TypeSpecWithTemplate: { | 
|  | QualType T = getCanonicalType(QualType(NNS->getAsType(), 0)); | 
|  |  | 
|  | // If we have some kind of dependent-named type (e.g., "typename T::type"), | 
|  | // break it apart into its prefix and identifier, then reconsititute those | 
|  | // as the canonical nested-name-specifier. This is required to canonicalize | 
|  | // a dependent nested-name-specifier involving typedefs of dependent-name | 
|  | // types, e.g., | 
|  | //   typedef typename T::type T1; | 
|  | //   typedef typename T1::type T2; | 
|  | if (const DependentNameType *DNT = T->getAs<DependentNameType>()) | 
|  | return NestedNameSpecifier::Create(*this, DNT->getQualifier(), | 
|  | const_cast<IdentifierInfo *>(DNT->getIdentifier())); | 
|  |  | 
|  | // Otherwise, just canonicalize the type, and force it to be a TypeSpec. | 
|  | // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the | 
|  | // first place? | 
|  | return NestedNameSpecifier::Create(*this, nullptr, false, | 
|  | const_cast<Type *>(T.getTypePtr())); | 
|  | } | 
|  |  | 
|  | case NestedNameSpecifier::Global: | 
|  | // The global specifier is canonical and unique. | 
|  | return NNS; | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Invalid NestedNameSpecifier::Kind!"); | 
|  | } | 
|  |  | 
|  |  | 
|  | const ArrayType *ASTContext::getAsArrayType(QualType T) const { | 
|  | // Handle the non-qualified case efficiently. | 
|  | if (!T.hasLocalQualifiers()) { | 
|  | // Handle the common positive case fast. | 
|  | if (const ArrayType *AT = dyn_cast<ArrayType>(T)) | 
|  | return AT; | 
|  | } | 
|  |  | 
|  | // Handle the common negative case fast. | 
|  | if (!isa<ArrayType>(T.getCanonicalType())) | 
|  | return nullptr; | 
|  |  | 
|  | // Apply any qualifiers from the array type to the element type.  This | 
|  | // implements C99 6.7.3p8: "If the specification of an array type includes | 
|  | // any type qualifiers, the element type is so qualified, not the array type." | 
|  |  | 
|  | // If we get here, we either have type qualifiers on the type, or we have | 
|  | // sugar such as a typedef in the way.  If we have type qualifiers on the type | 
|  | // we must propagate them down into the element type. | 
|  |  | 
|  | SplitQualType split = T.getSplitDesugaredType(); | 
|  | Qualifiers qs = split.Quals; | 
|  |  | 
|  | // If we have a simple case, just return now. | 
|  | const ArrayType *ATy = dyn_cast<ArrayType>(split.Ty); | 
|  | if (!ATy || qs.empty()) | 
|  | return ATy; | 
|  |  | 
|  | // Otherwise, we have an array and we have qualifiers on it.  Push the | 
|  | // qualifiers into the array element type and return a new array type. | 
|  | QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs); | 
|  |  | 
|  | if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy)) | 
|  | return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(), | 
|  | CAT->getSizeModifier(), | 
|  | CAT->getIndexTypeCVRQualifiers())); | 
|  | if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy)) | 
|  | return cast<ArrayType>(getIncompleteArrayType(NewEltTy, | 
|  | IAT->getSizeModifier(), | 
|  | IAT->getIndexTypeCVRQualifiers())); | 
|  |  | 
|  | if (const DependentSizedArrayType *DSAT | 
|  | = dyn_cast<DependentSizedArrayType>(ATy)) | 
|  | return cast<ArrayType>( | 
|  | getDependentSizedArrayType(NewEltTy, | 
|  | DSAT->getSizeExpr(), | 
|  | DSAT->getSizeModifier(), | 
|  | DSAT->getIndexTypeCVRQualifiers(), | 
|  | DSAT->getBracketsRange())); | 
|  |  | 
|  | const VariableArrayType *VAT = cast<VariableArrayType>(ATy); | 
|  | return cast<ArrayType>(getVariableArrayType(NewEltTy, | 
|  | VAT->getSizeExpr(), | 
|  | VAT->getSizeModifier(), | 
|  | VAT->getIndexTypeCVRQualifiers(), | 
|  | VAT->getBracketsRange())); | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getAdjustedParameterType(QualType T) const { | 
|  | if (T->isArrayType() || T->isFunctionType()) | 
|  | return getDecayedType(T); | 
|  | return T; | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getSignatureParameterType(QualType T) const { | 
|  | T = getVariableArrayDecayedType(T); | 
|  | T = getAdjustedParameterType(T); | 
|  | return T.getUnqualifiedType(); | 
|  | } | 
|  |  | 
|  | /// getArrayDecayedType - Return the properly qualified result of decaying the | 
|  | /// specified array type to a pointer.  This operation is non-trivial when | 
|  | /// handling typedefs etc.  The canonical type of "T" must be an array type, | 
|  | /// this returns a pointer to a properly qualified element of the array. | 
|  | /// | 
|  | /// See C99 6.7.5.3p7 and C99 6.3.2.1p3. | 
|  | QualType ASTContext::getArrayDecayedType(QualType Ty) const { | 
|  | // Get the element type with 'getAsArrayType' so that we don't lose any | 
|  | // typedefs in the element type of the array.  This also handles propagation | 
|  | // of type qualifiers from the array type into the element type if present | 
|  | // (C99 6.7.3p8). | 
|  | const ArrayType *PrettyArrayType = getAsArrayType(Ty); | 
|  | assert(PrettyArrayType && "Not an array type!"); | 
|  |  | 
|  | QualType PtrTy = getPointerType(PrettyArrayType->getElementType()); | 
|  |  | 
|  | // int x[restrict 4] ->  int *restrict | 
|  | return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers()); | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getBaseElementType(const ArrayType *array) const { | 
|  | return getBaseElementType(array->getElementType()); | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getBaseElementType(QualType type) const { | 
|  | Qualifiers qs; | 
|  | while (true) { | 
|  | SplitQualType split = type.getSplitDesugaredType(); | 
|  | const ArrayType *array = split.Ty->getAsArrayTypeUnsafe(); | 
|  | if (!array) break; | 
|  |  | 
|  | type = array->getElementType(); | 
|  | qs.addConsistentQualifiers(split.Quals); | 
|  | } | 
|  |  | 
|  | return getQualifiedType(type, qs); | 
|  | } | 
|  |  | 
|  | /// getConstantArrayElementCount - Returns number of constant array elements. | 
|  | uint64_t | 
|  | ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const { | 
|  | uint64_t ElementCount = 1; | 
|  | do { | 
|  | ElementCount *= CA->getSize().getZExtValue(); | 
|  | CA = dyn_cast_or_null<ConstantArrayType>( | 
|  | CA->getElementType()->getAsArrayTypeUnsafe()); | 
|  | } while (CA); | 
|  | return ElementCount; | 
|  | } | 
|  |  | 
|  | /// getFloatingRank - Return a relative rank for floating point types. | 
|  | /// This routine will assert if passed a built-in type that isn't a float. | 
|  | static FloatingRank getFloatingRank(QualType T) { | 
|  | if (const ComplexType *CT = T->getAs<ComplexType>()) | 
|  | return getFloatingRank(CT->getElementType()); | 
|  |  | 
|  | assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type"); | 
|  | switch (T->getAs<BuiltinType>()->getKind()) { | 
|  | default: llvm_unreachable("getFloatingRank(): not a floating type"); | 
|  | case BuiltinType::Half:       return HalfRank; | 
|  | case BuiltinType::Float:      return FloatRank; | 
|  | case BuiltinType::Double:     return DoubleRank; | 
|  | case BuiltinType::LongDouble: return LongDoubleRank; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// getFloatingTypeOfSizeWithinDomain - Returns a real floating | 
|  | /// point or a complex type (based on typeDomain/typeSize). | 
|  | /// 'typeDomain' is a real floating point or complex type. | 
|  | /// 'typeSize' is a real floating point or complex type. | 
|  | QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size, | 
|  | QualType Domain) const { | 
|  | FloatingRank EltRank = getFloatingRank(Size); | 
|  | if (Domain->isComplexType()) { | 
|  | switch (EltRank) { | 
|  | case HalfRank: llvm_unreachable("Complex half is not supported"); | 
|  | case FloatRank:      return FloatComplexTy; | 
|  | case DoubleRank:     return DoubleComplexTy; | 
|  | case LongDoubleRank: return LongDoubleComplexTy; | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(Domain->isRealFloatingType() && "Unknown domain!"); | 
|  | switch (EltRank) { | 
|  | case HalfRank:       return HalfTy; | 
|  | case FloatRank:      return FloatTy; | 
|  | case DoubleRank:     return DoubleTy; | 
|  | case LongDoubleRank: return LongDoubleTy; | 
|  | } | 
|  | llvm_unreachable("getFloatingRank(): illegal value for rank"); | 
|  | } | 
|  |  | 
|  | /// getFloatingTypeOrder - Compare the rank of the two specified floating | 
|  | /// point types, ignoring the domain of the type (i.e. 'double' == | 
|  | /// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If | 
|  | /// LHS < RHS, return -1. | 
|  | int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const { | 
|  | FloatingRank LHSR = getFloatingRank(LHS); | 
|  | FloatingRank RHSR = getFloatingRank(RHS); | 
|  |  | 
|  | if (LHSR == RHSR) | 
|  | return 0; | 
|  | if (LHSR > RHSR) | 
|  | return 1; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This | 
|  | /// routine will assert if passed a built-in type that isn't an integer or enum, | 
|  | /// or if it is not canonicalized. | 
|  | unsigned ASTContext::getIntegerRank(const Type *T) const { | 
|  | assert(T->isCanonicalUnqualified() && "T should be canonicalized"); | 
|  |  | 
|  | switch (cast<BuiltinType>(T)->getKind()) { | 
|  | default: llvm_unreachable("getIntegerRank(): not a built-in integer"); | 
|  | case BuiltinType::Bool: | 
|  | return 1 + (getIntWidth(BoolTy) << 3); | 
|  | case BuiltinType::Char_S: | 
|  | case BuiltinType::Char_U: | 
|  | case BuiltinType::SChar: | 
|  | case BuiltinType::UChar: | 
|  | return 2 + (getIntWidth(CharTy) << 3); | 
|  | case BuiltinType::Short: | 
|  | case BuiltinType::UShort: | 
|  | return 3 + (getIntWidth(ShortTy) << 3); | 
|  | case BuiltinType::Int: | 
|  | case BuiltinType::UInt: | 
|  | return 4 + (getIntWidth(IntTy) << 3); | 
|  | case BuiltinType::Long: | 
|  | case BuiltinType::ULong: | 
|  | return 5 + (getIntWidth(LongTy) << 3); | 
|  | case BuiltinType::LongLong: | 
|  | case BuiltinType::ULongLong: | 
|  | return 6 + (getIntWidth(LongLongTy) << 3); | 
|  | case BuiltinType::Int128: | 
|  | case BuiltinType::UInt128: | 
|  | return 7 + (getIntWidth(Int128Ty) << 3); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// \brief Whether this is a promotable bitfield reference according | 
|  | /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions). | 
|  | /// | 
|  | /// \returns the type this bit-field will promote to, or NULL if no | 
|  | /// promotion occurs. | 
|  | QualType ASTContext::isPromotableBitField(Expr *E) const { | 
|  | if (E->isTypeDependent() || E->isValueDependent()) | 
|  | return QualType(); | 
|  |  | 
|  | FieldDecl *Field = E->getSourceBitField(); // FIXME: conditional bit-fields? | 
|  | if (!Field) | 
|  | return QualType(); | 
|  |  | 
|  | QualType FT = Field->getType(); | 
|  |  | 
|  | uint64_t BitWidth = Field->getBitWidthValue(*this); | 
|  | uint64_t IntSize = getTypeSize(IntTy); | 
|  | // GCC extension compatibility: if the bit-field size is less than or equal | 
|  | // to the size of int, it gets promoted no matter what its type is. | 
|  | // For instance, unsigned long bf : 4 gets promoted to signed int. | 
|  | if (BitWidth < IntSize) | 
|  | return IntTy; | 
|  |  | 
|  | if (BitWidth == IntSize) | 
|  | return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy; | 
|  |  | 
|  | // Types bigger than int are not subject to promotions, and therefore act | 
|  | // like the base type. | 
|  | // FIXME: This doesn't quite match what gcc does, but what gcc does here | 
|  | // is ridiculous. | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | /// getPromotedIntegerType - Returns the type that Promotable will | 
|  | /// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable | 
|  | /// integer type. | 
|  | QualType ASTContext::getPromotedIntegerType(QualType Promotable) const { | 
|  | assert(!Promotable.isNull()); | 
|  | assert(Promotable->isPromotableIntegerType()); | 
|  | if (const EnumType *ET = Promotable->getAs<EnumType>()) | 
|  | return ET->getDecl()->getPromotionType(); | 
|  |  | 
|  | if (const BuiltinType *BT = Promotable->getAs<BuiltinType>()) { | 
|  | // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t | 
|  | // (3.9.1) can be converted to a prvalue of the first of the following | 
|  | // types that can represent all the values of its underlying type: | 
|  | // int, unsigned int, long int, unsigned long int, long long int, or | 
|  | // unsigned long long int [...] | 
|  | // FIXME: Is there some better way to compute this? | 
|  | if (BT->getKind() == BuiltinType::WChar_S || | 
|  | BT->getKind() == BuiltinType::WChar_U || | 
|  | BT->getKind() == BuiltinType::Char16 || | 
|  | BT->getKind() == BuiltinType::Char32) { | 
|  | bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S; | 
|  | uint64_t FromSize = getTypeSize(BT); | 
|  | QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy, | 
|  | LongLongTy, UnsignedLongLongTy }; | 
|  | for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) { | 
|  | uint64_t ToSize = getTypeSize(PromoteTypes[Idx]); | 
|  | if (FromSize < ToSize || | 
|  | (FromSize == ToSize && | 
|  | FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) | 
|  | return PromoteTypes[Idx]; | 
|  | } | 
|  | llvm_unreachable("char type should fit into long long"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // At this point, we should have a signed or unsigned integer type. | 
|  | if (Promotable->isSignedIntegerType()) | 
|  | return IntTy; | 
|  | uint64_t PromotableSize = getIntWidth(Promotable); | 
|  | uint64_t IntSize = getIntWidth(IntTy); | 
|  | assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize); | 
|  | return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy; | 
|  | } | 
|  |  | 
|  | /// \brief Recurses in pointer/array types until it finds an objc retainable | 
|  | /// type and returns its ownership. | 
|  | Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const { | 
|  | while (!T.isNull()) { | 
|  | if (T.getObjCLifetime() != Qualifiers::OCL_None) | 
|  | return T.getObjCLifetime(); | 
|  | if (T->isArrayType()) | 
|  | T = getBaseElementType(T); | 
|  | else if (const PointerType *PT = T->getAs<PointerType>()) | 
|  | T = PT->getPointeeType(); | 
|  | else if (const ReferenceType *RT = T->getAs<ReferenceType>()) | 
|  | T = RT->getPointeeType(); | 
|  | else | 
|  | break; | 
|  | } | 
|  |  | 
|  | return Qualifiers::OCL_None; | 
|  | } | 
|  |  | 
|  | static const Type *getIntegerTypeForEnum(const EnumType *ET) { | 
|  | // Incomplete enum types are not treated as integer types. | 
|  | // FIXME: In C++, enum types are never integer types. | 
|  | if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped()) | 
|  | return ET->getDecl()->getIntegerType().getTypePtr(); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// getIntegerTypeOrder - Returns the highest ranked integer type: | 
|  | /// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If | 
|  | /// LHS < RHS, return -1. | 
|  | int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const { | 
|  | const Type *LHSC = getCanonicalType(LHS).getTypePtr(); | 
|  | const Type *RHSC = getCanonicalType(RHS).getTypePtr(); | 
|  |  | 
|  | // Unwrap enums to their underlying type. | 
|  | if (const EnumType *ET = dyn_cast<EnumType>(LHSC)) | 
|  | LHSC = getIntegerTypeForEnum(ET); | 
|  | if (const EnumType *ET = dyn_cast<EnumType>(RHSC)) | 
|  | RHSC = getIntegerTypeForEnum(ET); | 
|  |  | 
|  | if (LHSC == RHSC) return 0; | 
|  |  | 
|  | bool LHSUnsigned = LHSC->isUnsignedIntegerType(); | 
|  | bool RHSUnsigned = RHSC->isUnsignedIntegerType(); | 
|  |  | 
|  | unsigned LHSRank = getIntegerRank(LHSC); | 
|  | unsigned RHSRank = getIntegerRank(RHSC); | 
|  |  | 
|  | if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned. | 
|  | if (LHSRank == RHSRank) return 0; | 
|  | return LHSRank > RHSRank ? 1 : -1; | 
|  | } | 
|  |  | 
|  | // Otherwise, the LHS is signed and the RHS is unsigned or visa versa. | 
|  | if (LHSUnsigned) { | 
|  | // If the unsigned [LHS] type is larger, return it. | 
|  | if (LHSRank >= RHSRank) | 
|  | return 1; | 
|  |  | 
|  | // If the signed type can represent all values of the unsigned type, it | 
|  | // wins.  Because we are dealing with 2's complement and types that are | 
|  | // powers of two larger than each other, this is always safe. | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | // If the unsigned [RHS] type is larger, return it. | 
|  | if (RHSRank >= LHSRank) | 
|  | return -1; | 
|  |  | 
|  | // If the signed type can represent all values of the unsigned type, it | 
|  | // wins.  Because we are dealing with 2's complement and types that are | 
|  | // powers of two larger than each other, this is always safe. | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // getCFConstantStringType - Return the type used for constant CFStrings. | 
|  | QualType ASTContext::getCFConstantStringType() const { | 
|  | if (!CFConstantStringTypeDecl) { | 
|  | CFConstantStringTypeDecl = buildImplicitRecord("NSConstantString"); | 
|  | CFConstantStringTypeDecl->startDefinition(); | 
|  |  | 
|  | QualType FieldTypes[4]; | 
|  |  | 
|  | // const int *isa; | 
|  | FieldTypes[0] = getPointerType(IntTy.withConst()); | 
|  | // int flags; | 
|  | FieldTypes[1] = IntTy; | 
|  | // const char *str; | 
|  | FieldTypes[2] = getPointerType(CharTy.withConst()); | 
|  | // long length; | 
|  | FieldTypes[3] = LongTy; | 
|  |  | 
|  | // Create fields | 
|  | for (unsigned i = 0; i < 4; ++i) { | 
|  | FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl, | 
|  | SourceLocation(), | 
|  | SourceLocation(), nullptr, | 
|  | FieldTypes[i], /*TInfo=*/nullptr, | 
|  | /*BitWidth=*/nullptr, | 
|  | /*Mutable=*/false, | 
|  | ICIS_NoInit); | 
|  | Field->setAccess(AS_public); | 
|  | CFConstantStringTypeDecl->addDecl(Field); | 
|  | } | 
|  |  | 
|  | CFConstantStringTypeDecl->completeDefinition(); | 
|  | } | 
|  |  | 
|  | return getTagDeclType(CFConstantStringTypeDecl); | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getObjCSuperType() const { | 
|  | if (ObjCSuperType.isNull()) { | 
|  | RecordDecl *ObjCSuperTypeDecl = buildImplicitRecord("objc_super"); | 
|  | TUDecl->addDecl(ObjCSuperTypeDecl); | 
|  | ObjCSuperType = getTagDeclType(ObjCSuperTypeDecl); | 
|  | } | 
|  | return ObjCSuperType; | 
|  | } | 
|  |  | 
|  | void ASTContext::setCFConstantStringType(QualType T) { | 
|  | const RecordType *Rec = T->getAs<RecordType>(); | 
|  | assert(Rec && "Invalid CFConstantStringType"); | 
|  | CFConstantStringTypeDecl = Rec->getDecl(); | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getBlockDescriptorType() const { | 
|  | if (BlockDescriptorType) | 
|  | return getTagDeclType(BlockDescriptorType); | 
|  |  | 
|  | RecordDecl *RD; | 
|  | // FIXME: Needs the FlagAppleBlock bit. | 
|  | RD = buildImplicitRecord("__block_descriptor"); | 
|  | RD->startDefinition(); | 
|  |  | 
|  | QualType FieldTypes[] = { | 
|  | UnsignedLongTy, | 
|  | UnsignedLongTy, | 
|  | }; | 
|  |  | 
|  | static const char *const FieldNames[] = { | 
|  | "reserved", | 
|  | "Size" | 
|  | }; | 
|  |  | 
|  | for (size_t i = 0; i < 2; ++i) { | 
|  | FieldDecl *Field = FieldDecl::Create( | 
|  | *this, RD, SourceLocation(), SourceLocation(), | 
|  | &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr, | 
|  | /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit); | 
|  | Field->setAccess(AS_public); | 
|  | RD->addDecl(Field); | 
|  | } | 
|  |  | 
|  | RD->completeDefinition(); | 
|  |  | 
|  | BlockDescriptorType = RD; | 
|  |  | 
|  | return getTagDeclType(BlockDescriptorType); | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getBlockDescriptorExtendedType() const { | 
|  | if (BlockDescriptorExtendedType) | 
|  | return getTagDeclType(BlockDescriptorExtendedType); | 
|  |  | 
|  | RecordDecl *RD; | 
|  | // FIXME: Needs the FlagAppleBlock bit. | 
|  | RD = buildImplicitRecord("__block_descriptor_withcopydispose"); | 
|  | RD->startDefinition(); | 
|  |  | 
|  | QualType FieldTypes[] = { | 
|  | UnsignedLongTy, | 
|  | UnsignedLongTy, | 
|  | getPointerType(VoidPtrTy), | 
|  | getPointerType(VoidPtrTy) | 
|  | }; | 
|  |  | 
|  | static const char *const FieldNames[] = { | 
|  | "reserved", | 
|  | "Size", | 
|  | "CopyFuncPtr", | 
|  | "DestroyFuncPtr" | 
|  | }; | 
|  |  | 
|  | for (size_t i = 0; i < 4; ++i) { | 
|  | FieldDecl *Field = FieldDecl::Create( | 
|  | *this, RD, SourceLocation(), SourceLocation(), | 
|  | &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr, | 
|  | /*BitWidth=*/nullptr, | 
|  | /*Mutable=*/false, ICIS_NoInit); | 
|  | Field->setAccess(AS_public); | 
|  | RD->addDecl(Field); | 
|  | } | 
|  |  | 
|  | RD->completeDefinition(); | 
|  |  | 
|  | BlockDescriptorExtendedType = RD; | 
|  | return getTagDeclType(BlockDescriptorExtendedType); | 
|  | } | 
|  |  | 
|  | /// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty" | 
|  | /// requires copy/dispose. Note that this must match the logic | 
|  | /// in buildByrefHelpers. | 
|  | bool ASTContext::BlockRequiresCopying(QualType Ty, | 
|  | const VarDecl *D) { | 
|  | if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) { | 
|  | const Expr *copyExpr = getBlockVarCopyInits(D); | 
|  | if (!copyExpr && record->hasTrivialDestructor()) return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (!Ty->isObjCRetainableType()) return false; | 
|  |  | 
|  | Qualifiers qs = Ty.getQualifiers(); | 
|  |  | 
|  | // If we have lifetime, that dominates. | 
|  | if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) { | 
|  | assert(getLangOpts().ObjCAutoRefCount); | 
|  |  | 
|  | switch (lifetime) { | 
|  | case Qualifiers::OCL_None: llvm_unreachable("impossible"); | 
|  |  | 
|  | // These are just bits as far as the runtime is concerned. | 
|  | case Qualifiers::OCL_ExplicitNone: | 
|  | case Qualifiers::OCL_Autoreleasing: | 
|  | return false; | 
|  |  | 
|  | // Tell the runtime that this is ARC __weak, called by the | 
|  | // byref routines. | 
|  | case Qualifiers::OCL_Weak: | 
|  | // ARC __strong __block variables need to be retained. | 
|  | case Qualifiers::OCL_Strong: | 
|  | return true; | 
|  | } | 
|  | llvm_unreachable("fell out of lifetime switch!"); | 
|  | } | 
|  | return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) || | 
|  | Ty->isObjCObjectPointerType()); | 
|  | } | 
|  |  | 
|  | bool ASTContext::getByrefLifetime(QualType Ty, | 
|  | Qualifiers::ObjCLifetime &LifeTime, | 
|  | bool &HasByrefExtendedLayout) const { | 
|  |  | 
|  | if (!getLangOpts().ObjC1 || | 
|  | getLangOpts().getGC() != LangOptions::NonGC) | 
|  | return false; | 
|  |  | 
|  | HasByrefExtendedLayout = false; | 
|  | if (Ty->isRecordType()) { | 
|  | HasByrefExtendedLayout = true; | 
|  | LifeTime = Qualifiers::OCL_None; | 
|  | } | 
|  | else if (getLangOpts().ObjCAutoRefCount) | 
|  | LifeTime = Ty.getObjCLifetime(); | 
|  | // MRR. | 
|  | else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType()) | 
|  | LifeTime = Qualifiers::OCL_ExplicitNone; | 
|  | else | 
|  | LifeTime = Qualifiers::OCL_None; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | TypedefDecl *ASTContext::getObjCInstanceTypeDecl() { | 
|  | if (!ObjCInstanceTypeDecl) | 
|  | ObjCInstanceTypeDecl = | 
|  | buildImplicitTypedef(getObjCIdType(), "instancetype"); | 
|  | return ObjCInstanceTypeDecl; | 
|  | } | 
|  |  | 
|  | // This returns true if a type has been typedefed to BOOL: | 
|  | // typedef <type> BOOL; | 
|  | static bool isTypeTypedefedAsBOOL(QualType T) { | 
|  | if (const TypedefType *TT = dyn_cast<TypedefType>(T)) | 
|  | if (IdentifierInfo *II = TT->getDecl()->getIdentifier()) | 
|  | return II->isStr("BOOL"); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// getObjCEncodingTypeSize returns size of type for objective-c encoding | 
|  | /// purpose. | 
|  | CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const { | 
|  | if (!type->isIncompleteArrayType() && type->isIncompleteType()) | 
|  | return CharUnits::Zero(); | 
|  |  | 
|  | CharUnits sz = getTypeSizeInChars(type); | 
|  |  | 
|  | // Make all integer and enum types at least as large as an int | 
|  | if (sz.isPositive() && type->isIntegralOrEnumerationType()) | 
|  | sz = std::max(sz, getTypeSizeInChars(IntTy)); | 
|  | // Treat arrays as pointers, since that's how they're passed in. | 
|  | else if (type->isArrayType()) | 
|  | sz = getTypeSizeInChars(VoidPtrTy); | 
|  | return sz; | 
|  | } | 
|  |  | 
|  | static inline | 
|  | std::string charUnitsToString(const CharUnits &CU) { | 
|  | return llvm::itostr(CU.getQuantity()); | 
|  | } | 
|  |  | 
|  | /// getObjCEncodingForBlock - Return the encoded type for this block | 
|  | /// declaration. | 
|  | std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const { | 
|  | std::string S; | 
|  |  | 
|  | const BlockDecl *Decl = Expr->getBlockDecl(); | 
|  | QualType BlockTy = | 
|  | Expr->getType()->getAs<BlockPointerType>()->getPointeeType(); | 
|  | // Encode result type. | 
|  | if (getLangOpts().EncodeExtendedBlockSig) | 
|  | getObjCEncodingForMethodParameter( | 
|  | Decl::OBJC_TQ_None, BlockTy->getAs<FunctionType>()->getReturnType(), S, | 
|  | true /*Extended*/); | 
|  | else | 
|  | getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getReturnType(), S); | 
|  | // Compute size of all parameters. | 
|  | // Start with computing size of a pointer in number of bytes. | 
|  | // FIXME: There might(should) be a better way of doing this computation! | 
|  | SourceLocation Loc; | 
|  | CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy); | 
|  | CharUnits ParmOffset = PtrSize; | 
|  | for (auto PI : Decl->params()) { | 
|  | QualType PType = PI->getType(); | 
|  | CharUnits sz = getObjCEncodingTypeSize(PType); | 
|  | if (sz.isZero()) | 
|  | continue; | 
|  | assert (sz.isPositive() && "BlockExpr - Incomplete param type"); | 
|  | ParmOffset += sz; | 
|  | } | 
|  | // Size of the argument frame | 
|  | S += charUnitsToString(ParmOffset); | 
|  | // Block pointer and offset. | 
|  | S += "@?0"; | 
|  |  | 
|  | // Argument types. | 
|  | ParmOffset = PtrSize; | 
|  | for (auto PVDecl : Decl->params()) { | 
|  | QualType PType = PVDecl->getOriginalType(); | 
|  | if (const ArrayType *AT = | 
|  | dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) { | 
|  | // Use array's original type only if it has known number of | 
|  | // elements. | 
|  | if (!isa<ConstantArrayType>(AT)) | 
|  | PType = PVDecl->getType(); | 
|  | } else if (PType->isFunctionType()) | 
|  | PType = PVDecl->getType(); | 
|  | if (getLangOpts().EncodeExtendedBlockSig) | 
|  | getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType, | 
|  | S, true /*Extended*/); | 
|  | else | 
|  | getObjCEncodingForType(PType, S); | 
|  | S += charUnitsToString(ParmOffset); | 
|  | ParmOffset += getObjCEncodingTypeSize(PType); | 
|  | } | 
|  |  | 
|  | return S; | 
|  | } | 
|  |  | 
|  | bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl, | 
|  | std::string& S) { | 
|  | // Encode result type. | 
|  | getObjCEncodingForType(Decl->getReturnType(), S); | 
|  | CharUnits ParmOffset; | 
|  | // Compute size of all parameters. | 
|  | for (auto PI : Decl->params()) { | 
|  | QualType PType = PI->getType(); | 
|  | CharUnits sz = getObjCEncodingTypeSize(PType); | 
|  | if (sz.isZero()) | 
|  | continue; | 
|  |  | 
|  | assert (sz.isPositive() && | 
|  | "getObjCEncodingForFunctionDecl - Incomplete param type"); | 
|  | ParmOffset += sz; | 
|  | } | 
|  | S += charUnitsToString(ParmOffset); | 
|  | ParmOffset = CharUnits::Zero(); | 
|  |  | 
|  | // Argument types. | 
|  | for (auto PVDecl : Decl->params()) { | 
|  | QualType PType = PVDecl->getOriginalType(); | 
|  | if (const ArrayType *AT = | 
|  | dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) { | 
|  | // Use array's original type only if it has known number of | 
|  | // elements. | 
|  | if (!isa<ConstantArrayType>(AT)) | 
|  | PType = PVDecl->getType(); | 
|  | } else if (PType->isFunctionType()) | 
|  | PType = PVDecl->getType(); | 
|  | getObjCEncodingForType(PType, S); | 
|  | S += charUnitsToString(ParmOffset); | 
|  | ParmOffset += getObjCEncodingTypeSize(PType); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// getObjCEncodingForMethodParameter - Return the encoded type for a single | 
|  | /// method parameter or return type. If Extended, include class names and | 
|  | /// block object types. | 
|  | void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT, | 
|  | QualType T, std::string& S, | 
|  | bool Extended) const { | 
|  | // Encode type qualifer, 'in', 'inout', etc. for the parameter. | 
|  | getObjCEncodingForTypeQualifier(QT, S); | 
|  | // Encode parameter type. | 
|  | getObjCEncodingForTypeImpl(T, S, true, true, nullptr, | 
|  | true     /*OutermostType*/, | 
|  | false    /*EncodingProperty*/, | 
|  | false    /*StructField*/, | 
|  | Extended /*EncodeBlockParameters*/, | 
|  | Extended /*EncodeClassNames*/); | 
|  | } | 
|  |  | 
|  | /// getObjCEncodingForMethodDecl - Return the encoded type for this method | 
|  | /// declaration. | 
|  | bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, | 
|  | std::string& S, | 
|  | bool Extended) const { | 
|  | // FIXME: This is not very efficient. | 
|  | // Encode return type. | 
|  | getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(), | 
|  | Decl->getReturnType(), S, Extended); | 
|  | // Compute size of all parameters. | 
|  | // Start with computing size of a pointer in number of bytes. | 
|  | // FIXME: There might(should) be a better way of doing this computation! | 
|  | SourceLocation Loc; | 
|  | CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy); | 
|  | // The first two arguments (self and _cmd) are pointers; account for | 
|  | // their size. | 
|  | CharUnits ParmOffset = 2 * PtrSize; | 
|  | for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(), | 
|  | E = Decl->sel_param_end(); PI != E; ++PI) { | 
|  | QualType PType = (*PI)->getType(); | 
|  | CharUnits sz = getObjCEncodingTypeSize(PType); | 
|  | if (sz.isZero()) | 
|  | continue; | 
|  |  | 
|  | assert (sz.isPositive() && | 
|  | "getObjCEncodingForMethodDecl - Incomplete param type"); | 
|  | ParmOffset += sz; | 
|  | } | 
|  | S += charUnitsToString(ParmOffset); | 
|  | S += "@0:"; | 
|  | S += charUnitsToString(PtrSize); | 
|  |  | 
|  | // Argument types. | 
|  | ParmOffset = 2 * PtrSize; | 
|  | for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(), | 
|  | E = Decl->sel_param_end(); PI != E; ++PI) { | 
|  | const ParmVarDecl *PVDecl = *PI; | 
|  | QualType PType = PVDecl->getOriginalType(); | 
|  | if (const ArrayType *AT = | 
|  | dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) { | 
|  | // Use array's original type only if it has known number of | 
|  | // elements. | 
|  | if (!isa<ConstantArrayType>(AT)) | 
|  | PType = PVDecl->getType(); | 
|  | } else if (PType->isFunctionType()) | 
|  | PType = PVDecl->getType(); | 
|  | getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(), | 
|  | PType, S, Extended); | 
|  | S += charUnitsToString(ParmOffset); | 
|  | ParmOffset += getObjCEncodingTypeSize(PType); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | ObjCPropertyImplDecl * | 
|  | ASTContext::getObjCPropertyImplDeclForPropertyDecl( | 
|  | const ObjCPropertyDecl *PD, | 
|  | const Decl *Container) const { | 
|  | if (!Container) | 
|  | return nullptr; | 
|  | if (const ObjCCategoryImplDecl *CID = | 
|  | dyn_cast<ObjCCategoryImplDecl>(Container)) { | 
|  | for (auto *PID : CID->property_impls()) | 
|  | if (PID->getPropertyDecl() == PD) | 
|  | return PID; | 
|  | } else { | 
|  | const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container); | 
|  | for (auto *PID : OID->property_impls()) | 
|  | if (PID->getPropertyDecl() == PD) | 
|  | return PID; | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// getObjCEncodingForPropertyDecl - Return the encoded type for this | 
|  | /// property declaration. If non-NULL, Container must be either an | 
|  | /// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be | 
|  | /// NULL when getting encodings for protocol properties. | 
|  | /// Property attributes are stored as a comma-delimited C string. The simple | 
|  | /// attributes readonly and bycopy are encoded as single characters. The | 
|  | /// parametrized attributes, getter=name, setter=name, and ivar=name, are | 
|  | /// encoded as single characters, followed by an identifier. Property types | 
|  | /// are also encoded as a parametrized attribute. The characters used to encode | 
|  | /// these attributes are defined by the following enumeration: | 
|  | /// @code | 
|  | /// enum PropertyAttributes { | 
|  | /// kPropertyReadOnly = 'R',   // property is read-only. | 
|  | /// kPropertyBycopy = 'C',     // property is a copy of the value last assigned | 
|  | /// kPropertyByref = '&',  // property is a reference to the value last assigned | 
|  | /// kPropertyDynamic = 'D',    // property is dynamic | 
|  | /// kPropertyGetter = 'G',     // followed by getter selector name | 
|  | /// kPropertySetter = 'S',     // followed by setter selector name | 
|  | /// kPropertyInstanceVariable = 'V'  // followed by instance variable  name | 
|  | /// kPropertyType = 'T'              // followed by old-style type encoding. | 
|  | /// kPropertyWeak = 'W'              // 'weak' property | 
|  | /// kPropertyStrong = 'P'            // property GC'able | 
|  | /// kPropertyNonAtomic = 'N'         // property non-atomic | 
|  | /// }; | 
|  | /// @endcode | 
|  | void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD, | 
|  | const Decl *Container, | 
|  | std::string& S) const { | 
|  | // Collect information from the property implementation decl(s). | 
|  | bool Dynamic = false; | 
|  | ObjCPropertyImplDecl *SynthesizePID = nullptr; | 
|  |  | 
|  | if (ObjCPropertyImplDecl *PropertyImpDecl = | 
|  | getObjCPropertyImplDeclForPropertyDecl(PD, Container)) { | 
|  | if (PropertyImpDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic) | 
|  | Dynamic = true; | 
|  | else | 
|  | SynthesizePID = PropertyImpDecl; | 
|  | } | 
|  |  | 
|  | // FIXME: This is not very efficient. | 
|  | S = "T"; | 
|  |  | 
|  | // Encode result type. | 
|  | // GCC has some special rules regarding encoding of properties which | 
|  | // closely resembles encoding of ivars. | 
|  | getObjCEncodingForTypeImpl(PD->getType(), S, true, true, nullptr, | 
|  | true /* outermost type */, | 
|  | true /* encoding for property */); | 
|  |  | 
|  | if (PD->isReadOnly()) { | 
|  | S += ",R"; | 
|  | if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_copy) | 
|  | S += ",C"; | 
|  | if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_retain) | 
|  | S += ",&"; | 
|  | if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_weak) | 
|  | S += ",W"; | 
|  | } else { | 
|  | switch (PD->getSetterKind()) { | 
|  | case ObjCPropertyDecl::Assign: break; | 
|  | case ObjCPropertyDecl::Copy:   S += ",C"; break; | 
|  | case ObjCPropertyDecl::Retain: S += ",&"; break; | 
|  | case ObjCPropertyDecl::Weak:   S += ",W"; break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // It really isn't clear at all what this means, since properties | 
|  | // are "dynamic by default". | 
|  | if (Dynamic) | 
|  | S += ",D"; | 
|  |  | 
|  | if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic) | 
|  | S += ",N"; | 
|  |  | 
|  | if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) { | 
|  | S += ",G"; | 
|  | S += PD->getGetterName().getAsString(); | 
|  | } | 
|  |  | 
|  | if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) { | 
|  | S += ",S"; | 
|  | S += PD->getSetterName().getAsString(); | 
|  | } | 
|  |  | 
|  | if (SynthesizePID) { | 
|  | const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl(); | 
|  | S += ",V"; | 
|  | S += OID->getNameAsString(); | 
|  | } | 
|  |  | 
|  | // FIXME: OBJCGC: weak & strong | 
|  | } | 
|  |  | 
|  | /// getLegacyIntegralTypeEncoding - | 
|  | /// Another legacy compatibility encoding: 32-bit longs are encoded as | 
|  | /// 'l' or 'L' , but not always.  For typedefs, we need to use | 
|  | /// 'i' or 'I' instead if encoding a struct field, or a pointer! | 
|  | /// | 
|  | void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const { | 
|  | if (isa<TypedefType>(PointeeTy.getTypePtr())) { | 
|  | if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) { | 
|  | if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32) | 
|  | PointeeTy = UnsignedIntTy; | 
|  | else | 
|  | if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32) | 
|  | PointeeTy = IntTy; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void ASTContext::getObjCEncodingForType(QualType T, std::string& S, | 
|  | const FieldDecl *Field) const { | 
|  | // We follow the behavior of gcc, expanding structures which are | 
|  | // directly pointed to, and expanding embedded structures. Note that | 
|  | // these rules are sufficient to prevent recursive encoding of the | 
|  | // same type. | 
|  | getObjCEncodingForTypeImpl(T, S, true, true, Field, | 
|  | true /* outermost type */); | 
|  | } | 
|  |  | 
|  | static char getObjCEncodingForPrimitiveKind(const ASTContext *C, | 
|  | BuiltinType::Kind kind) { | 
|  | switch (kind) { | 
|  | case BuiltinType::Void:       return 'v'; | 
|  | case BuiltinType::Bool:       return 'B'; | 
|  | case BuiltinType::Char_U: | 
|  | case BuiltinType::UChar:      return 'C'; | 
|  | case BuiltinType::Char16: | 
|  | case BuiltinType::UShort:     return 'S'; | 
|  | case BuiltinType::Char32: | 
|  | case BuiltinType::UInt:       return 'I'; | 
|  | case BuiltinType::ULong: | 
|  | return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q'; | 
|  | case BuiltinType::UInt128:    return 'T'; | 
|  | case BuiltinType::ULongLong:  return 'Q'; | 
|  | case BuiltinType::Char_S: | 
|  | case BuiltinType::SChar:      return 'c'; | 
|  | case BuiltinType::Short:      return 's'; | 
|  | case BuiltinType::WChar_S: | 
|  | case BuiltinType::WChar_U: | 
|  | case BuiltinType::Int:        return 'i'; | 
|  | case BuiltinType::Long: | 
|  | return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q'; | 
|  | case BuiltinType::LongLong:   return 'q'; | 
|  | case BuiltinType::Int128:     return 't'; | 
|  | case BuiltinType::Float:      return 'f'; | 
|  | case BuiltinType::Double:     return 'd'; | 
|  | case BuiltinType::LongDouble: return 'D'; | 
|  | case BuiltinType::NullPtr:    return '*'; // like char* | 
|  |  | 
|  | case BuiltinType::Half: | 
|  | // FIXME: potentially need @encodes for these! | 
|  | return ' '; | 
|  |  | 
|  | case BuiltinType::ObjCId: | 
|  | case BuiltinType::ObjCClass: | 
|  | case BuiltinType::ObjCSel: | 
|  | llvm_unreachable("@encoding ObjC primitive type"); | 
|  |  | 
|  | // OpenCL and placeholder types don't need @encodings. | 
|  | case BuiltinType::OCLImage1d: | 
|  | case BuiltinType::OCLImage1dArray: | 
|  | case BuiltinType::OCLImage1dBuffer: | 
|  | case BuiltinType::OCLImage2d: | 
|  | case BuiltinType::OCLImage2dArray: | 
|  | case BuiltinType::OCLImage3d: | 
|  | case BuiltinType::OCLEvent: | 
|  | case BuiltinType::OCLSampler: | 
|  | case BuiltinType::Dependent: | 
|  | #define BUILTIN_TYPE(KIND, ID) | 
|  | #define PLACEHOLDER_TYPE(KIND, ID) \ | 
|  | case BuiltinType::KIND: | 
|  | #include "clang/AST/BuiltinTypes.def" | 
|  | llvm_unreachable("invalid builtin type for @encode"); | 
|  | } | 
|  | llvm_unreachable("invalid BuiltinType::Kind value"); | 
|  | } | 
|  |  | 
|  | static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) { | 
|  | EnumDecl *Enum = ET->getDecl(); | 
|  |  | 
|  | // The encoding of an non-fixed enum type is always 'i', regardless of size. | 
|  | if (!Enum->isFixed()) | 
|  | return 'i'; | 
|  |  | 
|  | // The encoding of a fixed enum type matches its fixed underlying type. | 
|  | const BuiltinType *BT = Enum->getIntegerType()->castAs<BuiltinType>(); | 
|  | return getObjCEncodingForPrimitiveKind(C, BT->getKind()); | 
|  | } | 
|  |  | 
|  | static void EncodeBitField(const ASTContext *Ctx, std::string& S, | 
|  | QualType T, const FieldDecl *FD) { | 
|  | assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl"); | 
|  | S += 'b'; | 
|  | // The NeXT runtime encodes bit fields as b followed by the number of bits. | 
|  | // The GNU runtime requires more information; bitfields are encoded as b, | 
|  | // then the offset (in bits) of the first element, then the type of the | 
|  | // bitfield, then the size in bits.  For example, in this structure: | 
|  | // | 
|  | // struct | 
|  | // { | 
|  | //    int integer; | 
|  | //    int flags:2; | 
|  | // }; | 
|  | // On a 32-bit system, the encoding for flags would be b2 for the NeXT | 
|  | // runtime, but b32i2 for the GNU runtime.  The reason for this extra | 
|  | // information is not especially sensible, but we're stuck with it for | 
|  | // compatibility with GCC, although providing it breaks anything that | 
|  | // actually uses runtime introspection and wants to work on both runtimes... | 
|  | if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) { | 
|  | const RecordDecl *RD = FD->getParent(); | 
|  | const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD); | 
|  | S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex())); | 
|  | if (const EnumType *ET = T->getAs<EnumType>()) | 
|  | S += ObjCEncodingForEnumType(Ctx, ET); | 
|  | else { | 
|  | const BuiltinType *BT = T->castAs<BuiltinType>(); | 
|  | S += getObjCEncodingForPrimitiveKind(Ctx, BT->getKind()); | 
|  | } | 
|  | } | 
|  | S += llvm::utostr(FD->getBitWidthValue(*Ctx)); | 
|  | } | 
|  |  | 
|  | // FIXME: Use SmallString for accumulating string. | 
|  | void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S, | 
|  | bool ExpandPointedToStructures, | 
|  | bool ExpandStructures, | 
|  | const FieldDecl *FD, | 
|  | bool OutermostType, | 
|  | bool EncodingProperty, | 
|  | bool StructField, | 
|  | bool EncodeBlockParameters, | 
|  | bool EncodeClassNames, | 
|  | bool EncodePointerToObjCTypedef) const { | 
|  | CanQualType CT = getCanonicalType(T); | 
|  | switch (CT->getTypeClass()) { | 
|  | case Type::Builtin: | 
|  | case Type::Enum: | 
|  | if (FD && FD->isBitField()) | 
|  | return EncodeBitField(this, S, T, FD); | 
|  | if (const BuiltinType *BT = dyn_cast<BuiltinType>(CT)) | 
|  | S += getObjCEncodingForPrimitiveKind(this, BT->getKind()); | 
|  | else | 
|  | S += ObjCEncodingForEnumType(this, cast<EnumType>(CT)); | 
|  | return; | 
|  |  | 
|  | case Type::Complex: { | 
|  | const ComplexType *CT = T->castAs<ComplexType>(); | 
|  | S += 'j'; | 
|  | getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, nullptr, | 
|  | false, false); | 
|  | return; | 
|  | } | 
|  |  | 
|  | case Type::Atomic: { | 
|  | const AtomicType *AT = T->castAs<AtomicType>(); | 
|  | S += 'A'; | 
|  | getObjCEncodingForTypeImpl(AT->getValueType(), S, false, false, nullptr, | 
|  | false, false); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // encoding for pointer or reference types. | 
|  | case Type::Pointer: | 
|  | case Type::LValueReference: | 
|  | case Type::RValueReference: { | 
|  | QualType PointeeTy; | 
|  | if (isa<PointerType>(CT)) { | 
|  | const PointerType *PT = T->castAs<PointerType>(); | 
|  | if (PT->isObjCSelType()) { | 
|  | S += ':'; | 
|  | return; | 
|  | } | 
|  | PointeeTy = PT->getPointeeType(); | 
|  | } else { | 
|  | PointeeTy = T->castAs<ReferenceType>()->getPointeeType(); | 
|  | } | 
|  |  | 
|  | bool isReadOnly = false; | 
|  | // For historical/compatibility reasons, the read-only qualifier of the | 
|  | // pointee gets emitted _before_ the '^'.  The read-only qualifier of | 
|  | // the pointer itself gets ignored, _unless_ we are looking at a typedef! | 
|  | // Also, do not emit the 'r' for anything but the outermost type! | 
|  | if (isa<TypedefType>(T.getTypePtr())) { | 
|  | if (OutermostType && T.isConstQualified()) { | 
|  | isReadOnly = true; | 
|  | S += 'r'; | 
|  | } | 
|  | } else if (OutermostType) { | 
|  | QualType P = PointeeTy; | 
|  | while (P->getAs<PointerType>()) | 
|  | P = P->getAs<PointerType>()->getPointeeType(); | 
|  | if (P.isConstQualified()) { | 
|  | isReadOnly = true; | 
|  | S += 'r'; | 
|  | } | 
|  | } | 
|  | if (isReadOnly) { | 
|  | // Another legacy compatibility encoding. Some ObjC qualifier and type | 
|  | // combinations need to be rearranged. | 
|  | // Rewrite "in const" from "nr" to "rn" | 
|  | if (StringRef(S).endswith("nr")) | 
|  | S.replace(S.end()-2, S.end(), "rn"); | 
|  | } | 
|  |  | 
|  | if (PointeeTy->isCharType()) { | 
|  | // char pointer types should be encoded as '*' unless it is a | 
|  | // type that has been typedef'd to 'BOOL'. | 
|  | if (!isTypeTypedefedAsBOOL(PointeeTy)) { | 
|  | S += '*'; | 
|  | return; | 
|  | } | 
|  | } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) { | 
|  | // GCC binary compat: Need to convert "struct objc_class *" to "#". | 
|  | if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) { | 
|  | S += '#'; | 
|  | return; | 
|  | } | 
|  | // GCC binary compat: Need to convert "struct objc_object *" to "@". | 
|  | if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) { | 
|  | S += '@'; | 
|  | return; | 
|  | } | 
|  | // fall through... | 
|  | } | 
|  | S += '^'; | 
|  | getLegacyIntegralTypeEncoding(PointeeTy); | 
|  |  | 
|  | getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures, | 
|  | nullptr); | 
|  | return; | 
|  | } | 
|  |  | 
|  | case Type::ConstantArray: | 
|  | case Type::IncompleteArray: | 
|  | case Type::VariableArray: { | 
|  | const ArrayType *AT = cast<ArrayType>(CT); | 
|  |  | 
|  | if (isa<IncompleteArrayType>(AT) && !StructField) { | 
|  | // Incomplete arrays are encoded as a pointer to the array element. | 
|  | S += '^'; | 
|  |  | 
|  | getObjCEncodingForTypeImpl(AT->getElementType(), S, | 
|  | false, ExpandStructures, FD); | 
|  | } else { | 
|  | S += '['; | 
|  |  | 
|  | if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) | 
|  | S += llvm::utostr(CAT->getSize().getZExtValue()); | 
|  | else { | 
|  | //Variable length arrays are encoded as a regular array with 0 elements. | 
|  | assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) && | 
|  | "Unknown array type!"); | 
|  | S += '0'; | 
|  | } | 
|  |  | 
|  | getObjCEncodingForTypeImpl(AT->getElementType(), S, | 
|  | false, ExpandStructures, FD); | 
|  | S += ']'; | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | case Type::FunctionNoProto: | 
|  | case Type::FunctionProto: | 
|  | S += '?'; | 
|  | return; | 
|  |  | 
|  | case Type::Record: { | 
|  | RecordDecl *RDecl = cast<RecordType>(CT)->getDecl(); | 
|  | S += RDecl->isUnion() ? '(' : '{'; | 
|  | // Anonymous structures print as '?' | 
|  | if (const IdentifierInfo *II = RDecl->getIdentifier()) { | 
|  | S += II->getName(); | 
|  | if (ClassTemplateSpecializationDecl *Spec | 
|  | = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) { | 
|  | const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs(); | 
|  | llvm::raw_string_ostream OS(S); | 
|  | TemplateSpecializationType::PrintTemplateArgumentList(OS, | 
|  | TemplateArgs.data(), | 
|  | TemplateArgs.size(), | 
|  | (*this).getPrintingPolicy()); | 
|  | } | 
|  | } else { | 
|  | S += '?'; | 
|  | } | 
|  | if (ExpandStructures) { | 
|  | S += '='; | 
|  | if (!RDecl->isUnion()) { | 
|  | getObjCEncodingForStructureImpl(RDecl, S, FD); | 
|  | } else { | 
|  | for (const auto *Field : RDecl->fields()) { | 
|  | if (FD) { | 
|  | S += '"'; | 
|  | S += Field->getNameAsString(); | 
|  | S += '"'; | 
|  | } | 
|  |  | 
|  | // Special case bit-fields. | 
|  | if (Field->isBitField()) { | 
|  | getObjCEncodingForTypeImpl(Field->getType(), S, false, true, | 
|  | Field); | 
|  | } else { | 
|  | QualType qt = Field->getType(); | 
|  | getLegacyIntegralTypeEncoding(qt); | 
|  | getObjCEncodingForTypeImpl(qt, S, false, true, | 
|  | FD, /*OutermostType*/false, | 
|  | /*EncodingProperty*/false, | 
|  | /*StructField*/true); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | S += RDecl->isUnion() ? ')' : '}'; | 
|  | return; | 
|  | } | 
|  |  | 
|  | case Type::BlockPointer: { | 
|  | const BlockPointerType *BT = T->castAs<BlockPointerType>(); | 
|  | S += "@?"; // Unlike a pointer-to-function, which is "^?". | 
|  | if (EncodeBlockParameters) { | 
|  | const FunctionType *FT = BT->getPointeeType()->castAs<FunctionType>(); | 
|  |  | 
|  | S += '<'; | 
|  | // Block return type | 
|  | getObjCEncodingForTypeImpl( | 
|  | FT->getReturnType(), S, ExpandPointedToStructures, ExpandStructures, | 
|  | FD, false /* OutermostType */, EncodingProperty, | 
|  | false /* StructField */, EncodeBlockParameters, EncodeClassNames); | 
|  | // Block self | 
|  | S += "@?"; | 
|  | // Block parameters | 
|  | if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) { | 
|  | for (const auto &I : FPT->param_types()) | 
|  | getObjCEncodingForTypeImpl( | 
|  | I, S, ExpandPointedToStructures, ExpandStructures, FD, | 
|  | false /* OutermostType */, EncodingProperty, | 
|  | false /* StructField */, EncodeBlockParameters, EncodeClassNames); | 
|  | } | 
|  | S += '>'; | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | case Type::ObjCObject: { | 
|  | // hack to match legacy encoding of *id and *Class | 
|  | QualType Ty = getObjCObjectPointerType(CT); | 
|  | if (Ty->isObjCIdType()) { | 
|  | S += "{objc_object=}"; | 
|  | return; | 
|  | } | 
|  | else if (Ty->isObjCClassType()) { | 
|  | S += "{objc_class=}"; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | case Type::ObjCInterface: { | 
|  | // Ignore protocol qualifiers when mangling at this level. | 
|  | T = T->castAs<ObjCObjectType>()->getBaseType(); | 
|  |  | 
|  | // The assumption seems to be that this assert will succeed | 
|  | // because nested levels will have filtered out 'id' and 'Class'. | 
|  | const ObjCInterfaceType *OIT = T->castAs<ObjCInterfaceType>(); | 
|  | // @encode(class_name) | 
|  | ObjCInterfaceDecl *OI = OIT->getDecl(); | 
|  | S += '{'; | 
|  | const IdentifierInfo *II = OI->getIdentifier(); | 
|  | S += II->getName(); | 
|  | S += '='; | 
|  | SmallVector<const ObjCIvarDecl*, 32> Ivars; | 
|  | DeepCollectObjCIvars(OI, true, Ivars); | 
|  | for (unsigned i = 0, e = Ivars.size(); i != e; ++i) { | 
|  | const FieldDecl *Field = cast<FieldDecl>(Ivars[i]); | 
|  | if (Field->isBitField()) | 
|  | getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field); | 
|  | else | 
|  | getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD, | 
|  | false, false, false, false, false, | 
|  | EncodePointerToObjCTypedef); | 
|  | } | 
|  | S += '}'; | 
|  | return; | 
|  | } | 
|  |  | 
|  | case Type::ObjCObjectPointer: { | 
|  | const ObjCObjectPointerType *OPT = T->castAs<ObjCObjectPointerType>(); | 
|  | if (OPT->isObjCIdType()) { | 
|  | S += '@'; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) { | 
|  | // FIXME: Consider if we need to output qualifiers for 'Class<p>'. | 
|  | // Since this is a binary compatibility issue, need to consult with runtime | 
|  | // folks. Fortunately, this is a *very* obsure construct. | 
|  | S += '#'; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (OPT->isObjCQualifiedIdType()) { | 
|  | getObjCEncodingForTypeImpl(getObjCIdType(), S, | 
|  | ExpandPointedToStructures, | 
|  | ExpandStructures, FD); | 
|  | if (FD || EncodingProperty || EncodeClassNames) { | 
|  | // Note that we do extended encoding of protocol qualifer list | 
|  | // Only when doing ivar or property encoding. | 
|  | S += '"'; | 
|  | for (const auto *I : OPT->quals()) { | 
|  | S += '<'; | 
|  | S += I->getNameAsString(); | 
|  | S += '>'; | 
|  | } | 
|  | S += '"'; | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | QualType PointeeTy = OPT->getPointeeType(); | 
|  | if (!EncodingProperty && | 
|  | isa<TypedefType>(PointeeTy.getTypePtr()) && | 
|  | !EncodePointerToObjCTypedef) { | 
|  | // Another historical/compatibility reason. | 
|  | // We encode the underlying type which comes out as | 
|  | // {...}; | 
|  | S += '^'; | 
|  | if (FD && OPT->getInterfaceDecl()) { | 
|  | // Prevent recursive encoding of fields in some rare cases. | 
|  | ObjCInterfaceDecl *OI = OPT->getInterfaceDecl(); | 
|  | SmallVector<const ObjCIvarDecl*, 32> Ivars; | 
|  | DeepCollectObjCIvars(OI, true, Ivars); | 
|  | for (unsigned i = 0, e = Ivars.size(); i != e; ++i) { | 
|  | if (cast<FieldDecl>(Ivars[i]) == FD) { | 
|  | S += '{'; | 
|  | S += OI->getIdentifier()->getName(); | 
|  | S += '}'; | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  | getObjCEncodingForTypeImpl(PointeeTy, S, | 
|  | false, ExpandPointedToStructures, | 
|  | nullptr, | 
|  | false, false, false, false, false, | 
|  | /*EncodePointerToObjCTypedef*/true); | 
|  | return; | 
|  | } | 
|  |  | 
|  | S += '@'; | 
|  | if (OPT->getInterfaceDecl() && | 
|  | (FD || EncodingProperty || EncodeClassNames)) { | 
|  | S += '"'; | 
|  | S += OPT->getInterfaceDecl()->getIdentifier()->getName(); | 
|  | for (const auto *I : OPT->quals()) { | 
|  | S += '<'; | 
|  | S += I->getNameAsString(); | 
|  | S += '>'; | 
|  | } | 
|  | S += '"'; | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | // gcc just blithely ignores member pointers. | 
|  | // FIXME: we shoul do better than that.  'M' is available. | 
|  | case Type::MemberPointer: | 
|  | return; | 
|  |  | 
|  | case Type::Vector: | 
|  | case Type::ExtVector: | 
|  | // This matches gcc's encoding, even though technically it is | 
|  | // insufficient. | 
|  | // FIXME. We should do a better job than gcc. | 
|  | return; | 
|  |  | 
|  | case Type::Auto: | 
|  | // We could see an undeduced auto type here during error recovery. | 
|  | // Just ignore it. | 
|  | return; | 
|  |  | 
|  | #define ABSTRACT_TYPE(KIND, BASE) | 
|  | #define TYPE(KIND, BASE) | 
|  | #define DEPENDENT_TYPE(KIND, BASE) \ | 
|  | case Type::KIND: | 
|  | #define NON_CANONICAL_TYPE(KIND, BASE) \ | 
|  | case Type::KIND: | 
|  | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \ | 
|  | case Type::KIND: | 
|  | #include "clang/AST/TypeNodes.def" | 
|  | llvm_unreachable("@encode for dependent type!"); | 
|  | } | 
|  | llvm_unreachable("bad type kind!"); | 
|  | } | 
|  |  | 
|  | void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl, | 
|  | std::string &S, | 
|  | const FieldDecl *FD, | 
|  | bool includeVBases) const { | 
|  | assert(RDecl && "Expected non-null RecordDecl"); | 
|  | assert(!RDecl->isUnion() && "Should not be called for unions"); | 
|  | if (!RDecl->getDefinition()) | 
|  | return; | 
|  |  | 
|  | CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl); | 
|  | std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets; | 
|  | const ASTRecordLayout &layout = getASTRecordLayout(RDecl); | 
|  |  | 
|  | if (CXXRec) { | 
|  | for (const auto &BI : CXXRec->bases()) { | 
|  | if (!BI.isVirtual()) { | 
|  | CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl(); | 
|  | if (base->isEmpty()) | 
|  | continue; | 
|  | uint64_t offs = toBits(layout.getBaseClassOffset(base)); | 
|  | FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs), | 
|  | std::make_pair(offs, base)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned i = 0; | 
|  | for (RecordDecl::field_iterator Field = RDecl->field_begin(), | 
|  | FieldEnd = RDecl->field_end(); | 
|  | Field != FieldEnd; ++Field, ++i) { | 
|  | uint64_t offs = layout.getFieldOffset(i); | 
|  | FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs), | 
|  | std::make_pair(offs, *Field)); | 
|  | } | 
|  |  | 
|  | if (CXXRec && includeVBases) { | 
|  | for (const auto &BI : CXXRec->vbases()) { | 
|  | CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl(); | 
|  | if (base->isEmpty()) | 
|  | continue; | 
|  | uint64_t offs = toBits(layout.getVBaseClassOffset(base)); | 
|  | if (offs >= uint64_t(toBits(layout.getNonVirtualSize())) && | 
|  | FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end()) | 
|  | FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(), | 
|  | std::make_pair(offs, base)); | 
|  | } | 
|  | } | 
|  |  | 
|  | CharUnits size; | 
|  | if (CXXRec) { | 
|  | size = includeVBases ? layout.getSize() : layout.getNonVirtualSize(); | 
|  | } else { | 
|  | size = layout.getSize(); | 
|  | } | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | uint64_t CurOffs = 0; | 
|  | #endif | 
|  | std::multimap<uint64_t, NamedDecl *>::iterator | 
|  | CurLayObj = FieldOrBaseOffsets.begin(); | 
|  |  | 
|  | if (CXXRec && CXXRec->isDynamicClass() && | 
|  | (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) { | 
|  | if (FD) { | 
|  | S += "\"_vptr$"; | 
|  | std::string recname = CXXRec->getNameAsString(); | 
|  | if (recname.empty()) recname = "?"; | 
|  | S += recname; | 
|  | S += '"'; | 
|  | } | 
|  | S += "^^?"; | 
|  | #ifndef NDEBUG | 
|  | CurOffs += getTypeSize(VoidPtrTy); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | if (!RDecl->hasFlexibleArrayMember()) { | 
|  | // Mark the end of the structure. | 
|  | uint64_t offs = toBits(size); | 
|  | FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs), | 
|  | std::make_pair(offs, nullptr)); | 
|  | } | 
|  |  | 
|  | for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) { | 
|  | #ifndef NDEBUG | 
|  | assert(CurOffs <= CurLayObj->first); | 
|  | if (CurOffs < CurLayObj->first) { | 
|  | uint64_t padding = CurLayObj->first - CurOffs; | 
|  | // FIXME: There doesn't seem to be a way to indicate in the encoding that | 
|  | // packing/alignment of members is different that normal, in which case | 
|  | // the encoding will be out-of-sync with the real layout. | 
|  | // If the runtime switches to just consider the size of types without | 
|  | // taking into account alignment, we could make padding explicit in the | 
|  | // encoding (e.g. using arrays of chars). The encoding strings would be | 
|  | // longer then though. | 
|  | CurOffs += padding; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | NamedDecl *dcl = CurLayObj->second; | 
|  | if (!dcl) | 
|  | break; // reached end of structure. | 
|  |  | 
|  | if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) { | 
|  | // We expand the bases without their virtual bases since those are going | 
|  | // in the initial structure. Note that this differs from gcc which | 
|  | // expands virtual bases each time one is encountered in the hierarchy, | 
|  | // making the encoding type bigger than it really is. | 
|  | getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false); | 
|  | assert(!base->isEmpty()); | 
|  | #ifndef NDEBUG | 
|  | CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize()); | 
|  | #endif | 
|  | } else { | 
|  | FieldDecl *field = cast<FieldDecl>(dcl); | 
|  | if (FD) { | 
|  | S += '"'; | 
|  | S += field->getNameAsString(); | 
|  | S += '"'; | 
|  | } | 
|  |  | 
|  | if (field->isBitField()) { | 
|  | EncodeBitField(this, S, field->getType(), field); | 
|  | #ifndef NDEBUG | 
|  | CurOffs += field->getBitWidthValue(*this); | 
|  | #endif | 
|  | } else { | 
|  | QualType qt = field->getType(); | 
|  | getLegacyIntegralTypeEncoding(qt); | 
|  | getObjCEncodingForTypeImpl(qt, S, false, true, FD, | 
|  | /*OutermostType*/false, | 
|  | /*EncodingProperty*/false, | 
|  | /*StructField*/true); | 
|  | #ifndef NDEBUG | 
|  | CurOffs += getTypeSize(field->getType()); | 
|  | #endif | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT, | 
|  | std::string& S) const { | 
|  | if (QT & Decl::OBJC_TQ_In) | 
|  | S += 'n'; | 
|  | if (QT & Decl::OBJC_TQ_Inout) | 
|  | S += 'N'; | 
|  | if (QT & Decl::OBJC_TQ_Out) | 
|  | S += 'o'; | 
|  | if (QT & Decl::OBJC_TQ_Bycopy) | 
|  | S += 'O'; | 
|  | if (QT & Decl::OBJC_TQ_Byref) | 
|  | S += 'R'; | 
|  | if (QT & Decl::OBJC_TQ_Oneway) | 
|  | S += 'V'; | 
|  | } | 
|  |  | 
|  | TypedefDecl *ASTContext::getObjCIdDecl() const { | 
|  | if (!ObjCIdDecl) { | 
|  | QualType T = getObjCObjectType(ObjCBuiltinIdTy, nullptr, 0); | 
|  | T = getObjCObjectPointerType(T); | 
|  | ObjCIdDecl = buildImplicitTypedef(T, "id"); | 
|  | } | 
|  | return ObjCIdDecl; | 
|  | } | 
|  |  | 
|  | TypedefDecl *ASTContext::getObjCSelDecl() const { | 
|  | if (!ObjCSelDecl) { | 
|  | QualType T = getPointerType(ObjCBuiltinSelTy); | 
|  | ObjCSelDecl = buildImplicitTypedef(T, "SEL"); | 
|  | } | 
|  | return ObjCSelDecl; | 
|  | } | 
|  |  | 
|  | TypedefDecl *ASTContext::getObjCClassDecl() const { | 
|  | if (!ObjCClassDecl) { | 
|  | QualType T = getObjCObjectType(ObjCBuiltinClassTy, nullptr, 0); | 
|  | T = getObjCObjectPointerType(T); | 
|  | ObjCClassDecl = buildImplicitTypedef(T, "Class"); | 
|  | } | 
|  | return ObjCClassDecl; | 
|  | } | 
|  |  | 
|  | ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const { | 
|  | if (!ObjCProtocolClassDecl) { | 
|  | ObjCProtocolClassDecl | 
|  | = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(), | 
|  | SourceLocation(), | 
|  | &Idents.get("Protocol"), | 
|  | /*PrevDecl=*/nullptr, | 
|  | SourceLocation(), true); | 
|  | } | 
|  |  | 
|  | return ObjCProtocolClassDecl; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // __builtin_va_list Construction Functions | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) { | 
|  | // typedef char* __builtin_va_list; | 
|  | QualType T = Context->getPointerType(Context->CharTy); | 
|  | return Context->buildImplicitTypedef(T, "__builtin_va_list"); | 
|  | } | 
|  |  | 
|  | static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) { | 
|  | // typedef void* __builtin_va_list; | 
|  | QualType T = Context->getPointerType(Context->VoidTy); | 
|  | return Context->buildImplicitTypedef(T, "__builtin_va_list"); | 
|  | } | 
|  |  | 
|  | static TypedefDecl * | 
|  | CreateAArch64ABIBuiltinVaListDecl(const ASTContext *Context) { | 
|  | // struct __va_list | 
|  | RecordDecl *VaListTagDecl = Context->buildImplicitRecord("__va_list"); | 
|  | if (Context->getLangOpts().CPlusPlus) { | 
|  | // namespace std { struct __va_list { | 
|  | NamespaceDecl *NS; | 
|  | NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context), | 
|  | Context->getTranslationUnitDecl(), | 
|  | /*Inline*/ false, SourceLocation(), | 
|  | SourceLocation(), &Context->Idents.get("std"), | 
|  | /*PrevDecl*/ nullptr); | 
|  | NS->setImplicit(); | 
|  | VaListTagDecl->setDeclContext(NS); | 
|  | } | 
|  |  | 
|  | VaListTagDecl->startDefinition(); | 
|  |  | 
|  | const size_t NumFields = 5; | 
|  | QualType FieldTypes[NumFields]; | 
|  | const char *FieldNames[NumFields]; | 
|  |  | 
|  | // void *__stack; | 
|  | FieldTypes[0] = Context->getPointerType(Context->VoidTy); | 
|  | FieldNames[0] = "__stack"; | 
|  |  | 
|  | // void *__gr_top; | 
|  | FieldTypes[1] = Context->getPointerType(Context->VoidTy); | 
|  | FieldNames[1] = "__gr_top"; | 
|  |  | 
|  | // void *__vr_top; | 
|  | FieldTypes[2] = Context->getPointerType(Context->VoidTy); | 
|  | FieldNames[2] = "__vr_top"; | 
|  |  | 
|  | // int __gr_offs; | 
|  | FieldTypes[3] = Context->IntTy; | 
|  | FieldNames[3] = "__gr_offs"; | 
|  |  | 
|  | // int __vr_offs; | 
|  | FieldTypes[4] = Context->IntTy; | 
|  | FieldNames[4] = "__vr_offs"; | 
|  |  | 
|  | // Create fields | 
|  | for (unsigned i = 0; i < NumFields; ++i) { | 
|  | FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context), | 
|  | VaListTagDecl, | 
|  | SourceLocation(), | 
|  | SourceLocation(), | 
|  | &Context->Idents.get(FieldNames[i]), | 
|  | FieldTypes[i], /*TInfo=*/nullptr, | 
|  | /*BitWidth=*/nullptr, | 
|  | /*Mutable=*/false, | 
|  | ICIS_NoInit); | 
|  | Field->setAccess(AS_public); | 
|  | VaListTagDecl->addDecl(Field); | 
|  | } | 
|  | VaListTagDecl->completeDefinition(); | 
|  | QualType VaListTagType = Context->getRecordType(VaListTagDecl); | 
|  | Context->VaListTagTy = VaListTagType; | 
|  |  | 
|  | // } __builtin_va_list; | 
|  | return Context->buildImplicitTypedef(VaListTagType, "__builtin_va_list"); | 
|  | } | 
|  |  | 
|  | static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) { | 
|  | // typedef struct __va_list_tag { | 
|  | RecordDecl *VaListTagDecl; | 
|  |  | 
|  | VaListTagDecl = Context->buildImplicitRecord("__va_list_tag"); | 
|  | VaListTagDecl->startDefinition(); | 
|  |  | 
|  | const size_t NumFields = 5; | 
|  | QualType FieldTypes[NumFields]; | 
|  | const char *FieldNames[NumFields]; | 
|  |  | 
|  | //   unsigned char gpr; | 
|  | FieldTypes[0] = Context->UnsignedCharTy; | 
|  | FieldNames[0] = "gpr"; | 
|  |  | 
|  | //   unsigned char fpr; | 
|  | FieldTypes[1] = Context->UnsignedCharTy; | 
|  | FieldNames[1] = "fpr"; | 
|  |  | 
|  | //   unsigned short reserved; | 
|  | FieldTypes[2] = Context->UnsignedShortTy; | 
|  | FieldNames[2] = "reserved"; | 
|  |  | 
|  | //   void* overflow_arg_area; | 
|  | FieldTypes[3] = Context->getPointerType(Context->VoidTy); | 
|  | FieldNames[3] = "overflow_arg_area"; | 
|  |  | 
|  | //   void* reg_save_area; | 
|  | FieldTypes[4] = Context->getPointerType(Context->VoidTy); | 
|  | FieldNames[4] = "reg_save_area"; | 
|  |  | 
|  | // Create fields | 
|  | for (unsigned i = 0; i < NumFields; ++i) { | 
|  | FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl, | 
|  | SourceLocation(), | 
|  | SourceLocation(), | 
|  | &Context->Idents.get(FieldNames[i]), | 
|  | FieldTypes[i], /*TInfo=*/nullptr, | 
|  | /*BitWidth=*/nullptr, | 
|  | /*Mutable=*/false, | 
|  | ICIS_NoInit); | 
|  | Field->setAccess(AS_public); | 
|  | VaListTagDecl->addDecl(Field); | 
|  | } | 
|  | VaListTagDecl->completeDefinition(); | 
|  | QualType VaListTagType = Context->getRecordType(VaListTagDecl); | 
|  | Context->VaListTagTy = VaListTagType; | 
|  |  | 
|  | // } __va_list_tag; | 
|  | TypedefDecl *VaListTagTypedefDecl = | 
|  | Context->buildImplicitTypedef(VaListTagType, "__va_list_tag"); | 
|  |  | 
|  | QualType VaListTagTypedefType = | 
|  | Context->getTypedefType(VaListTagTypedefDecl); | 
|  |  | 
|  | // typedef __va_list_tag __builtin_va_list[1]; | 
|  | llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1); | 
|  | QualType VaListTagArrayType | 
|  | = Context->getConstantArrayType(VaListTagTypedefType, | 
|  | Size, ArrayType::Normal, 0); | 
|  | return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list"); | 
|  | } | 
|  |  | 
|  | static TypedefDecl * | 
|  | CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) { | 
|  | // typedef struct __va_list_tag { | 
|  | RecordDecl *VaListTagDecl; | 
|  | VaListTagDecl = Context->buildImplicitRecord("__va_list_tag"); | 
|  | VaListTagDecl->startDefinition(); | 
|  |  | 
|  | const size_t NumFields = 4; | 
|  | QualType FieldTypes[NumFields]; | 
|  | const char *FieldNames[NumFields]; | 
|  |  | 
|  | //   unsigned gp_offset; | 
|  | FieldTypes[0] = Context->UnsignedIntTy; | 
|  | FieldNames[0] = "gp_offset"; | 
|  |  | 
|  | //   unsigned fp_offset; | 
|  | FieldTypes[1] = Context->UnsignedIntTy; | 
|  | FieldNames[1] = "fp_offset"; | 
|  |  | 
|  | //   void* overflow_arg_area; | 
|  | FieldTypes[2] = Context->getPointerType(Context->VoidTy); | 
|  | FieldNames[2] = "overflow_arg_area"; | 
|  |  | 
|  | //   void* reg_save_area; | 
|  | FieldTypes[3] = Context->getPointerType(Context->VoidTy); | 
|  | FieldNames[3] = "reg_save_area"; | 
|  |  | 
|  | // Create fields | 
|  | for (unsigned i = 0; i < NumFields; ++i) { | 
|  | FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context), | 
|  | VaListTagDecl, | 
|  | SourceLocation(), | 
|  | SourceLocation(), | 
|  | &Context->Idents.get(FieldNames[i]), | 
|  | FieldTypes[i], /*TInfo=*/nullptr, | 
|  | /*BitWidth=*/nullptr, | 
|  | /*Mutable=*/false, | 
|  | ICIS_NoInit); | 
|  | Field->setAccess(AS_public); | 
|  | VaListTagDecl->addDecl(Field); | 
|  | } | 
|  | VaListTagDecl->completeDefinition(); | 
|  | QualType VaListTagType = Context->getRecordType(VaListTagDecl); | 
|  | Context->VaListTagTy = VaListTagType; | 
|  |  | 
|  | // } __va_list_tag; | 
|  | TypedefDecl *VaListTagTypedefDecl = | 
|  | Context->buildImplicitTypedef(VaListTagType, "__va_list_tag"); | 
|  |  | 
|  | QualType VaListTagTypedefType = | 
|  | Context->getTypedefType(VaListTagTypedefDecl); | 
|  |  | 
|  | // typedef __va_list_tag __builtin_va_list[1]; | 
|  | llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1); | 
|  | QualType VaListTagArrayType | 
|  | = Context->getConstantArrayType(VaListTagTypedefType, | 
|  | Size, ArrayType::Normal,0); | 
|  | return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list"); | 
|  | } | 
|  |  | 
|  | static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) { | 
|  | // typedef int __builtin_va_list[4]; | 
|  | llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4); | 
|  | QualType IntArrayType | 
|  | = Context->getConstantArrayType(Context->IntTy, | 
|  | Size, ArrayType::Normal, 0); | 
|  | return Context->buildImplicitTypedef(IntArrayType, "__builtin_va_list"); | 
|  | } | 
|  |  | 
|  | static TypedefDecl * | 
|  | CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) { | 
|  | // struct __va_list | 
|  | RecordDecl *VaListDecl = Context->buildImplicitRecord("__va_list"); | 
|  | if (Context->getLangOpts().CPlusPlus) { | 
|  | // namespace std { struct __va_list { | 
|  | NamespaceDecl *NS; | 
|  | NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context), | 
|  | Context->getTranslationUnitDecl(), | 
|  | /*Inline*/false, SourceLocation(), | 
|  | SourceLocation(), &Context->Idents.get("std"), | 
|  | /*PrevDecl*/ nullptr); | 
|  | NS->setImplicit(); | 
|  | VaListDecl->setDeclContext(NS); | 
|  | } | 
|  |  | 
|  | VaListDecl->startDefinition(); | 
|  |  | 
|  | // void * __ap; | 
|  | FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context), | 
|  | VaListDecl, | 
|  | SourceLocation(), | 
|  | SourceLocation(), | 
|  | &Context->Idents.get("__ap"), | 
|  | Context->getPointerType(Context->VoidTy), | 
|  | /*TInfo=*/nullptr, | 
|  | /*BitWidth=*/nullptr, | 
|  | /*Mutable=*/false, | 
|  | ICIS_NoInit); | 
|  | Field->setAccess(AS_public); | 
|  | VaListDecl->addDecl(Field); | 
|  |  | 
|  | // }; | 
|  | VaListDecl->completeDefinition(); | 
|  |  | 
|  | // typedef struct __va_list __builtin_va_list; | 
|  | QualType T = Context->getRecordType(VaListDecl); | 
|  | return Context->buildImplicitTypedef(T, "__builtin_va_list"); | 
|  | } | 
|  |  | 
|  | static TypedefDecl * | 
|  | CreateSystemZBuiltinVaListDecl(const ASTContext *Context) { | 
|  | // typedef struct __va_list_tag { | 
|  | RecordDecl *VaListTagDecl; | 
|  | VaListTagDecl = Context->buildImplicitRecord("__va_list_tag"); | 
|  | VaListTagDecl->startDefinition(); | 
|  |  | 
|  | const size_t NumFields = 4; | 
|  | QualType FieldTypes[NumFields]; | 
|  | const char *FieldNames[NumFields]; | 
|  |  | 
|  | //   long __gpr; | 
|  | FieldTypes[0] = Context->LongTy; | 
|  | FieldNames[0] = "__gpr"; | 
|  |  | 
|  | //   long __fpr; | 
|  | FieldTypes[1] = Context->LongTy; | 
|  | FieldNames[1] = "__fpr"; | 
|  |  | 
|  | //   void *__overflow_arg_area; | 
|  | FieldTypes[2] = Context->getPointerType(Context->VoidTy); | 
|  | FieldNames[2] = "__overflow_arg_area"; | 
|  |  | 
|  | //   void *__reg_save_area; | 
|  | FieldTypes[3] = Context->getPointerType(Context->VoidTy); | 
|  | FieldNames[3] = "__reg_save_area"; | 
|  |  | 
|  | // Create fields | 
|  | for (unsigned i = 0; i < NumFields; ++i) { | 
|  | FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context), | 
|  | VaListTagDecl, | 
|  | SourceLocation(), | 
|  | SourceLocation(), | 
|  | &Context->Idents.get(FieldNames[i]), | 
|  | FieldTypes[i], /*TInfo=*/nullptr, | 
|  | /*BitWidth=*/nullptr, | 
|  | /*Mutable=*/false, | 
|  | ICIS_NoInit); | 
|  | Field->setAccess(AS_public); | 
|  | VaListTagDecl->addDecl(Field); | 
|  | } | 
|  | VaListTagDecl->completeDefinition(); | 
|  | QualType VaListTagType = Context->getRecordType(VaListTagDecl); | 
|  | Context->VaListTagTy = VaListTagType; | 
|  |  | 
|  | // } __va_list_tag; | 
|  | TypedefDecl *VaListTagTypedefDecl = | 
|  | Context->buildImplicitTypedef(VaListTagType, "__va_list_tag"); | 
|  | QualType VaListTagTypedefType = | 
|  | Context->getTypedefType(VaListTagTypedefDecl); | 
|  |  | 
|  | // typedef __va_list_tag __builtin_va_list[1]; | 
|  | llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1); | 
|  | QualType VaListTagArrayType | 
|  | = Context->getConstantArrayType(VaListTagTypedefType, | 
|  | Size, ArrayType::Normal,0); | 
|  |  | 
|  | return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list"); | 
|  | } | 
|  |  | 
|  | static TypedefDecl *CreateVaListDecl(const ASTContext *Context, | 
|  | TargetInfo::BuiltinVaListKind Kind) { | 
|  | switch (Kind) { | 
|  | case TargetInfo::CharPtrBuiltinVaList: | 
|  | return CreateCharPtrBuiltinVaListDecl(Context); | 
|  | case TargetInfo::VoidPtrBuiltinVaList: | 
|  | return CreateVoidPtrBuiltinVaListDecl(Context); | 
|  | case TargetInfo::AArch64ABIBuiltinVaList: | 
|  | return CreateAArch64ABIBuiltinVaListDecl(Context); | 
|  | case TargetInfo::PowerABIBuiltinVaList: | 
|  | return CreatePowerABIBuiltinVaListDecl(Context); | 
|  | case TargetInfo::X86_64ABIBuiltinVaList: | 
|  | return CreateX86_64ABIBuiltinVaListDecl(Context); | 
|  | case TargetInfo::PNaClABIBuiltinVaList: | 
|  | return CreatePNaClABIBuiltinVaListDecl(Context); | 
|  | case TargetInfo::AAPCSABIBuiltinVaList: | 
|  | return CreateAAPCSABIBuiltinVaListDecl(Context); | 
|  | case TargetInfo::SystemZBuiltinVaList: | 
|  | return CreateSystemZBuiltinVaListDecl(Context); | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Unhandled __builtin_va_list type kind"); | 
|  | } | 
|  |  | 
|  | TypedefDecl *ASTContext::getBuiltinVaListDecl() const { | 
|  | if (!BuiltinVaListDecl) { | 
|  | BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind()); | 
|  | assert(BuiltinVaListDecl->isImplicit()); | 
|  | } | 
|  |  | 
|  | return BuiltinVaListDecl; | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getVaListTagType() const { | 
|  | // Force the creation of VaListTagTy by building the __builtin_va_list | 
|  | // declaration. | 
|  | if (VaListTagTy.isNull()) | 
|  | (void) getBuiltinVaListDecl(); | 
|  |  | 
|  | return VaListTagTy; | 
|  | } | 
|  |  | 
|  | void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) { | 
|  | assert(ObjCConstantStringType.isNull() && | 
|  | "'NSConstantString' type already set!"); | 
|  |  | 
|  | ObjCConstantStringType = getObjCInterfaceType(Decl); | 
|  | } | 
|  |  | 
|  | /// \brief Retrieve the template name that corresponds to a non-empty | 
|  | /// lookup. | 
|  | TemplateName | 
|  | ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin, | 
|  | UnresolvedSetIterator End) const { | 
|  | unsigned size = End - Begin; | 
|  | assert(size > 1 && "set is not overloaded!"); | 
|  |  | 
|  | void *memory = Allocate(sizeof(OverloadedTemplateStorage) + | 
|  | size * sizeof(FunctionTemplateDecl*)); | 
|  | OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size); | 
|  |  | 
|  | NamedDecl **Storage = OT->getStorage(); | 
|  | for (UnresolvedSetIterator I = Begin; I != End; ++I) { | 
|  | NamedDecl *D = *I; | 
|  | assert(isa<FunctionTemplateDecl>(D) || | 
|  | (isa<UsingShadowDecl>(D) && | 
|  | isa<FunctionTemplateDecl>(D->getUnderlyingDecl()))); | 
|  | *Storage++ = D; | 
|  | } | 
|  |  | 
|  | return TemplateName(OT); | 
|  | } | 
|  |  | 
|  | /// \brief Retrieve the template name that represents a qualified | 
|  | /// template name such as \c std::vector. | 
|  | TemplateName | 
|  | ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS, | 
|  | bool TemplateKeyword, | 
|  | TemplateDecl *Template) const { | 
|  | assert(NNS && "Missing nested-name-specifier in qualified template name"); | 
|  |  | 
|  | // FIXME: Canonicalization? | 
|  | llvm::FoldingSetNodeID ID; | 
|  | QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template); | 
|  |  | 
|  | void *InsertPos = nullptr; | 
|  | QualifiedTemplateName *QTN = | 
|  | QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos); | 
|  | if (!QTN) { | 
|  | QTN = new (*this, llvm::alignOf<QualifiedTemplateName>()) | 
|  | QualifiedTemplateName(NNS, TemplateKeyword, Template); | 
|  | QualifiedTemplateNames.InsertNode(QTN, InsertPos); | 
|  | } | 
|  |  | 
|  | return TemplateName(QTN); | 
|  | } | 
|  |  | 
|  | /// \brief Retrieve the template name that represents a dependent | 
|  | /// template name such as \c MetaFun::template apply. | 
|  | TemplateName | 
|  | ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS, | 
|  | const IdentifierInfo *Name) const { | 
|  | assert((!NNS || NNS->isDependent()) && | 
|  | "Nested name specifier must be dependent"); | 
|  |  | 
|  | llvm::FoldingSetNodeID ID; | 
|  | DependentTemplateName::Profile(ID, NNS, Name); | 
|  |  | 
|  | void *InsertPos = nullptr; | 
|  | DependentTemplateName *QTN = | 
|  | DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos); | 
|  |  | 
|  | if (QTN) | 
|  | return TemplateName(QTN); | 
|  |  | 
|  | NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS); | 
|  | if (CanonNNS == NNS) { | 
|  | QTN = new (*this, llvm::alignOf<DependentTemplateName>()) | 
|  | DependentTemplateName(NNS, Name); | 
|  | } else { | 
|  | TemplateName Canon = getDependentTemplateName(CanonNNS, Name); | 
|  | QTN = new (*this, llvm::alignOf<DependentTemplateName>()) | 
|  | DependentTemplateName(NNS, Name, Canon); | 
|  | DependentTemplateName *CheckQTN = | 
|  | DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos); | 
|  | assert(!CheckQTN && "Dependent type name canonicalization broken"); | 
|  | (void)CheckQTN; | 
|  | } | 
|  |  | 
|  | DependentTemplateNames.InsertNode(QTN, InsertPos); | 
|  | return TemplateName(QTN); | 
|  | } | 
|  |  | 
|  | /// \brief Retrieve the template name that represents a dependent | 
|  | /// template name such as \c MetaFun::template operator+. | 
|  | TemplateName | 
|  | ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS, | 
|  | OverloadedOperatorKind Operator) const { | 
|  | assert((!NNS || NNS->isDependent()) && | 
|  | "Nested name specifier must be dependent"); | 
|  |  | 
|  | llvm::FoldingSetNodeID ID; | 
|  | DependentTemplateName::Profile(ID, NNS, Operator); | 
|  |  | 
|  | void *InsertPos = nullptr; | 
|  | DependentTemplateName *QTN | 
|  | = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos); | 
|  |  | 
|  | if (QTN) | 
|  | return TemplateName(QTN); | 
|  |  | 
|  | NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS); | 
|  | if (CanonNNS == NNS) { | 
|  | QTN = new (*this, llvm::alignOf<DependentTemplateName>()) | 
|  | DependentTemplateName(NNS, Operator); | 
|  | } else { | 
|  | TemplateName Canon = getDependentTemplateName(CanonNNS, Operator); | 
|  | QTN = new (*this, llvm::alignOf<DependentTemplateName>()) | 
|  | DependentTemplateName(NNS, Operator, Canon); | 
|  |  | 
|  | DependentTemplateName *CheckQTN | 
|  | = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos); | 
|  | assert(!CheckQTN && "Dependent template name canonicalization broken"); | 
|  | (void)CheckQTN; | 
|  | } | 
|  |  | 
|  | DependentTemplateNames.InsertNode(QTN, InsertPos); | 
|  | return TemplateName(QTN); | 
|  | } | 
|  |  | 
|  | TemplateName | 
|  | ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param, | 
|  | TemplateName replacement) const { | 
|  | llvm::FoldingSetNodeID ID; | 
|  | SubstTemplateTemplateParmStorage::Profile(ID, param, replacement); | 
|  |  | 
|  | void *insertPos = nullptr; | 
|  | SubstTemplateTemplateParmStorage *subst | 
|  | = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos); | 
|  |  | 
|  | if (!subst) { | 
|  | subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement); | 
|  | SubstTemplateTemplateParms.InsertNode(subst, insertPos); | 
|  | } | 
|  |  | 
|  | return TemplateName(subst); | 
|  | } | 
|  |  | 
|  | TemplateName | 
|  | ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param, | 
|  | const TemplateArgument &ArgPack) const { | 
|  | ASTContext &Self = const_cast<ASTContext &>(*this); | 
|  | llvm::FoldingSetNodeID ID; | 
|  | SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack); | 
|  |  | 
|  | void *InsertPos = nullptr; | 
|  | SubstTemplateTemplateParmPackStorage *Subst | 
|  | = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos); | 
|  |  | 
|  | if (!Subst) { | 
|  | Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param, | 
|  | ArgPack.pack_size(), | 
|  | ArgPack.pack_begin()); | 
|  | SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos); | 
|  | } | 
|  |  | 
|  | return TemplateName(Subst); | 
|  | } | 
|  |  | 
|  | /// getFromTargetType - Given one of the integer types provided by | 
|  | /// TargetInfo, produce the corresponding type. The unsigned @p Type | 
|  | /// is actually a value of type @c TargetInfo::IntType. | 
|  | CanQualType ASTContext::getFromTargetType(unsigned Type) const { | 
|  | switch (Type) { | 
|  | case TargetInfo::NoInt: return CanQualType(); | 
|  | case TargetInfo::SignedChar: return SignedCharTy; | 
|  | case TargetInfo::UnsignedChar: return UnsignedCharTy; | 
|  | case TargetInfo::SignedShort: return ShortTy; | 
|  | case TargetInfo::UnsignedShort: return UnsignedShortTy; | 
|  | case TargetInfo::SignedInt: return IntTy; | 
|  | case TargetInfo::UnsignedInt: return UnsignedIntTy; | 
|  | case TargetInfo::SignedLong: return LongTy; | 
|  | case TargetInfo::UnsignedLong: return UnsignedLongTy; | 
|  | case TargetInfo::SignedLongLong: return LongLongTy; | 
|  | case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy; | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Unhandled TargetInfo::IntType value"); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                        Type Predicates. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's | 
|  | /// garbage collection attribute. | 
|  | /// | 
|  | Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const { | 
|  | if (getLangOpts().getGC() == LangOptions::NonGC) | 
|  | return Qualifiers::GCNone; | 
|  |  | 
|  | assert(getLangOpts().ObjC1); | 
|  | Qualifiers::GC GCAttrs = Ty.getObjCGCAttr(); | 
|  |  | 
|  | // Default behaviour under objective-C's gc is for ObjC pointers | 
|  | // (or pointers to them) be treated as though they were declared | 
|  | // as __strong. | 
|  | if (GCAttrs == Qualifiers::GCNone) { | 
|  | if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType()) | 
|  | return Qualifiers::Strong; | 
|  | else if (Ty->isPointerType()) | 
|  | return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType()); | 
|  | } else { | 
|  | // It's not valid to set GC attributes on anything that isn't a | 
|  | // pointer. | 
|  | #ifndef NDEBUG | 
|  | QualType CT = Ty->getCanonicalTypeInternal(); | 
|  | while (const ArrayType *AT = dyn_cast<ArrayType>(CT)) | 
|  | CT = AT->getElementType(); | 
|  | assert(CT->isAnyPointerType() || CT->isBlockPointerType()); | 
|  | #endif | 
|  | } | 
|  | return GCAttrs; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                        Type Compatibility Testing | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// areCompatVectorTypes - Return true if the two specified vector types are | 
|  | /// compatible. | 
|  | static bool areCompatVectorTypes(const VectorType *LHS, | 
|  | const VectorType *RHS) { | 
|  | assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified()); | 
|  | return LHS->getElementType() == RHS->getElementType() && | 
|  | LHS->getNumElements() == RHS->getNumElements(); | 
|  | } | 
|  |  | 
|  | bool ASTContext::areCompatibleVectorTypes(QualType FirstVec, | 
|  | QualType SecondVec) { | 
|  | assert(FirstVec->isVectorType() && "FirstVec should be a vector type"); | 
|  | assert(SecondVec->isVectorType() && "SecondVec should be a vector type"); | 
|  |  | 
|  | if (hasSameUnqualifiedType(FirstVec, SecondVec)) | 
|  | return true; | 
|  |  | 
|  | // Treat Neon vector types and most AltiVec vector types as if they are the | 
|  | // equivalent GCC vector types. | 
|  | const VectorType *First = FirstVec->getAs<VectorType>(); | 
|  | const VectorType *Second = SecondVec->getAs<VectorType>(); | 
|  | if (First->getNumElements() == Second->getNumElements() && | 
|  | hasSameType(First->getElementType(), Second->getElementType()) && | 
|  | First->getVectorKind() != VectorType::AltiVecPixel && | 
|  | First->getVectorKind() != VectorType::AltiVecBool && | 
|  | Second->getVectorKind() != VectorType::AltiVecPixel && | 
|  | Second->getVectorKind() != VectorType::AltiVecBool) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the | 
|  | /// inheritance hierarchy of 'rProto'. | 
|  | bool | 
|  | ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto, | 
|  | ObjCProtocolDecl *rProto) const { | 
|  | if (declaresSameEntity(lProto, rProto)) | 
|  | return true; | 
|  | for (auto *PI : rProto->protocols()) | 
|  | if (ProtocolCompatibleWithProtocol(lProto, PI)) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// ObjCQualifiedClassTypesAreCompatible - compare  Class<pr,...> and | 
|  | /// Class<pr1, ...>. | 
|  | bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs, | 
|  | QualType rhs) { | 
|  | const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>(); | 
|  | const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>(); | 
|  | assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible"); | 
|  |  | 
|  | for (auto *lhsProto : lhsQID->quals()) { | 
|  | bool match = false; | 
|  | for (auto *rhsProto : rhsOPT->quals()) { | 
|  | if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) { | 
|  | match = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!match) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an | 
|  | /// ObjCQualifiedIDType. | 
|  | bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs, | 
|  | bool compare) { | 
|  | // Allow id<P..> and an 'id' or void* type in all cases. | 
|  | if (lhs->isVoidPointerType() || | 
|  | lhs->isObjCIdType() || lhs->isObjCClassType()) | 
|  | return true; | 
|  | else if (rhs->isVoidPointerType() || | 
|  | rhs->isObjCIdType() || rhs->isObjCClassType()) | 
|  | return true; | 
|  |  | 
|  | if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) { | 
|  | const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>(); | 
|  |  | 
|  | if (!rhsOPT) return false; | 
|  |  | 
|  | if (rhsOPT->qual_empty()) { | 
|  | // If the RHS is a unqualified interface pointer "NSString*", | 
|  | // make sure we check the class hierarchy. | 
|  | if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) { | 
|  | for (auto *I : lhsQID->quals()) { | 
|  | // when comparing an id<P> on lhs with a static type on rhs, | 
|  | // see if static class implements all of id's protocols, directly or | 
|  | // through its super class and categories. | 
|  | if (!rhsID->ClassImplementsProtocol(I, true)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | // If there are no qualifiers and no interface, we have an 'id'. | 
|  | return true; | 
|  | } | 
|  | // Both the right and left sides have qualifiers. | 
|  | for (auto *lhsProto : lhsQID->quals()) { | 
|  | bool match = false; | 
|  |  | 
|  | // when comparing an id<P> on lhs with a static type on rhs, | 
|  | // see if static class implements all of id's protocols, directly or | 
|  | // through its super class and categories. | 
|  | for (auto *rhsProto : rhsOPT->quals()) { | 
|  | if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) || | 
|  | (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) { | 
|  | match = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | // If the RHS is a qualified interface pointer "NSString<P>*", | 
|  | // make sure we check the class hierarchy. | 
|  | if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) { | 
|  | for (auto *I : lhsQID->quals()) { | 
|  | // when comparing an id<P> on lhs with a static type on rhs, | 
|  | // see if static class implements all of id's protocols, directly or | 
|  | // through its super class and categories. | 
|  | if (rhsID->ClassImplementsProtocol(I, true)) { | 
|  | match = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (!match) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType(); | 
|  | assert(rhsQID && "One of the LHS/RHS should be id<x>"); | 
|  |  | 
|  | if (const ObjCObjectPointerType *lhsOPT = | 
|  | lhs->getAsObjCInterfacePointerType()) { | 
|  | // If both the right and left sides have qualifiers. | 
|  | for (auto *lhsProto : lhsOPT->quals()) { | 
|  | bool match = false; | 
|  |  | 
|  | // when comparing an id<P> on rhs with a static type on lhs, | 
|  | // see if static class implements all of id's protocols, directly or | 
|  | // through its super class and categories. | 
|  | // First, lhs protocols in the qualifier list must be found, direct | 
|  | // or indirect in rhs's qualifier list or it is a mismatch. | 
|  | for (auto *rhsProto : rhsQID->quals()) { | 
|  | if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) || | 
|  | (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) { | 
|  | match = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!match) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Static class's protocols, or its super class or category protocols | 
|  | // must be found, direct or indirect in rhs's qualifier list or it is a mismatch. | 
|  | if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) { | 
|  | llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols; | 
|  | CollectInheritedProtocols(lhsID, LHSInheritedProtocols); | 
|  | // This is rather dubious but matches gcc's behavior. If lhs has | 
|  | // no type qualifier and its class has no static protocol(s) | 
|  | // assume that it is mismatch. | 
|  | if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty()) | 
|  | return false; | 
|  | for (auto *lhsProto : LHSInheritedProtocols) { | 
|  | bool match = false; | 
|  | for (auto *rhsProto : rhsQID->quals()) { | 
|  | if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) || | 
|  | (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) { | 
|  | match = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!match) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// canAssignObjCInterfaces - Return true if the two interface types are | 
|  | /// compatible for assignment from RHS to LHS.  This handles validation of any | 
|  | /// protocol qualifiers on the LHS or RHS. | 
|  | /// | 
|  | bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT, | 
|  | const ObjCObjectPointerType *RHSOPT) { | 
|  | const ObjCObjectType* LHS = LHSOPT->getObjectType(); | 
|  | const ObjCObjectType* RHS = RHSOPT->getObjectType(); | 
|  |  | 
|  | // If either type represents the built-in 'id' or 'Class' types, return true. | 
|  | if (LHS->isObjCUnqualifiedIdOrClass() || | 
|  | RHS->isObjCUnqualifiedIdOrClass()) | 
|  | return true; | 
|  |  | 
|  | if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId()) | 
|  | return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0), | 
|  | QualType(RHSOPT,0), | 
|  | false); | 
|  |  | 
|  | if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass()) | 
|  | return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0), | 
|  | QualType(RHSOPT,0)); | 
|  |  | 
|  | // If we have 2 user-defined types, fall into that path. | 
|  | if (LHS->getInterface() && RHS->getInterface()) | 
|  | return canAssignObjCInterfaces(LHS, RHS); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// canAssignObjCInterfacesInBlockPointer - This routine is specifically written | 
|  | /// for providing type-safety for objective-c pointers used to pass/return | 
|  | /// arguments in block literals. When passed as arguments, passing 'A*' where | 
|  | /// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is | 
|  | /// not OK. For the return type, the opposite is not OK. | 
|  | bool ASTContext::canAssignObjCInterfacesInBlockPointer( | 
|  | const ObjCObjectPointerType *LHSOPT, | 
|  | const ObjCObjectPointerType *RHSOPT, | 
|  | bool BlockReturnType) { | 
|  | if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType()) | 
|  | return true; | 
|  |  | 
|  | if (LHSOPT->isObjCBuiltinType()) { | 
|  | return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType(); | 
|  | } | 
|  |  | 
|  | if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType()) | 
|  | return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0), | 
|  | QualType(RHSOPT,0), | 
|  | false); | 
|  |  | 
|  | const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType(); | 
|  | const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType(); | 
|  | if (LHS && RHS)  { // We have 2 user-defined types. | 
|  | if (LHS != RHS) { | 
|  | if (LHS->getDecl()->isSuperClassOf(RHS->getDecl())) | 
|  | return BlockReturnType; | 
|  | if (RHS->getDecl()->isSuperClassOf(LHS->getDecl())) | 
|  | return !BlockReturnType; | 
|  | } | 
|  | else | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// getIntersectionOfProtocols - This routine finds the intersection of set | 
|  | /// of protocols inherited from two distinct objective-c pointer objects. | 
|  | /// It is used to build composite qualifier list of the composite type of | 
|  | /// the conditional expression involving two objective-c pointer objects. | 
|  | static | 
|  | void getIntersectionOfProtocols(ASTContext &Context, | 
|  | const ObjCObjectPointerType *LHSOPT, | 
|  | const ObjCObjectPointerType *RHSOPT, | 
|  | SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) { | 
|  |  | 
|  | const ObjCObjectType* LHS = LHSOPT->getObjectType(); | 
|  | const ObjCObjectType* RHS = RHSOPT->getObjectType(); | 
|  | assert(LHS->getInterface() && "LHS must have an interface base"); | 
|  | assert(RHS->getInterface() && "RHS must have an interface base"); | 
|  |  | 
|  | llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet; | 
|  | unsigned LHSNumProtocols = LHS->getNumProtocols(); | 
|  | if (LHSNumProtocols > 0) | 
|  | InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end()); | 
|  | else { | 
|  | llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols; | 
|  | Context.CollectInheritedProtocols(LHS->getInterface(), | 
|  | LHSInheritedProtocols); | 
|  | InheritedProtocolSet.insert(LHSInheritedProtocols.begin(), | 
|  | LHSInheritedProtocols.end()); | 
|  | } | 
|  |  | 
|  | unsigned RHSNumProtocols = RHS->getNumProtocols(); | 
|  | if (RHSNumProtocols > 0) { | 
|  | ObjCProtocolDecl **RHSProtocols = | 
|  | const_cast<ObjCProtocolDecl **>(RHS->qual_begin()); | 
|  | for (unsigned i = 0; i < RHSNumProtocols; ++i) | 
|  | if (InheritedProtocolSet.count(RHSProtocols[i])) | 
|  | IntersectionOfProtocols.push_back(RHSProtocols[i]); | 
|  | } else { | 
|  | llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols; | 
|  | Context.CollectInheritedProtocols(RHS->getInterface(), | 
|  | RHSInheritedProtocols); | 
|  | for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I = | 
|  | RHSInheritedProtocols.begin(), | 
|  | E = RHSInheritedProtocols.end(); I != E; ++I) | 
|  | if (InheritedProtocolSet.count((*I))) | 
|  | IntersectionOfProtocols.push_back((*I)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// areCommonBaseCompatible - Returns common base class of the two classes if | 
|  | /// one found. Note that this is O'2 algorithm. But it will be called as the | 
|  | /// last type comparison in a ?-exp of ObjC pointer types before a | 
|  | /// warning is issued. So, its invokation is extremely rare. | 
|  | QualType ASTContext::areCommonBaseCompatible( | 
|  | const ObjCObjectPointerType *Lptr, | 
|  | const ObjCObjectPointerType *Rptr) { | 
|  | const ObjCObjectType *LHS = Lptr->getObjectType(); | 
|  | const ObjCObjectType *RHS = Rptr->getObjectType(); | 
|  | const ObjCInterfaceDecl* LDecl = LHS->getInterface(); | 
|  | const ObjCInterfaceDecl* RDecl = RHS->getInterface(); | 
|  | if (!LDecl || !RDecl || (declaresSameEntity(LDecl, RDecl))) | 
|  | return QualType(); | 
|  |  | 
|  | do { | 
|  | LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl)); | 
|  | if (canAssignObjCInterfaces(LHS, RHS)) { | 
|  | SmallVector<ObjCProtocolDecl *, 8> Protocols; | 
|  | getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols); | 
|  |  | 
|  | QualType Result = QualType(LHS, 0); | 
|  | if (!Protocols.empty()) | 
|  | Result = getObjCObjectType(Result, Protocols.data(), Protocols.size()); | 
|  | Result = getObjCObjectPointerType(Result); | 
|  | return Result; | 
|  | } | 
|  | } while ((LDecl = LDecl->getSuperClass())); | 
|  |  | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS, | 
|  | const ObjCObjectType *RHS) { | 
|  | assert(LHS->getInterface() && "LHS is not an interface type"); | 
|  | assert(RHS->getInterface() && "RHS is not an interface type"); | 
|  |  | 
|  | // Verify that the base decls are compatible: the RHS must be a subclass of | 
|  | // the LHS. | 
|  | if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface())) | 
|  | return false; | 
|  |  | 
|  | // RHS must have a superset of the protocols in the LHS.  If the LHS is not | 
|  | // protocol qualified at all, then we are good. | 
|  | if (LHS->getNumProtocols() == 0) | 
|  | return true; | 
|  |  | 
|  | // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't, | 
|  | // more detailed analysis is required. | 
|  | if (RHS->getNumProtocols() == 0) { | 
|  | // OK, if LHS is a superclass of RHS *and* | 
|  | // this superclass is assignment compatible with LHS. | 
|  | // false otherwise. | 
|  | bool IsSuperClass = | 
|  | LHS->getInterface()->isSuperClassOf(RHS->getInterface()); | 
|  | if (IsSuperClass) { | 
|  | // OK if conversion of LHS to SuperClass results in narrowing of types | 
|  | // ; i.e., SuperClass may implement at least one of the protocols | 
|  | // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok. | 
|  | // But not SuperObj<P1,P2,P3> = lhs<P1,P2>. | 
|  | llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols; | 
|  | CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols); | 
|  | // If super class has no protocols, it is not a match. | 
|  | if (SuperClassInheritedProtocols.empty()) | 
|  | return false; | 
|  |  | 
|  | for (const auto *LHSProto : LHS->quals()) { | 
|  | bool SuperImplementsProtocol = false; | 
|  | for (auto *SuperClassProto : SuperClassInheritedProtocols) { | 
|  | if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) { | 
|  | SuperImplementsProtocol = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!SuperImplementsProtocol) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | for (const auto *LHSPI : LHS->quals()) { | 
|  | bool RHSImplementsProtocol = false; | 
|  |  | 
|  | // If the RHS doesn't implement the protocol on the left, the types | 
|  | // are incompatible. | 
|  | for (auto *RHSPI : RHS->quals()) { | 
|  | if (RHSPI->lookupProtocolNamed(LHSPI->getIdentifier())) { | 
|  | RHSImplementsProtocol = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | // FIXME: For better diagnostics, consider passing back the protocol name. | 
|  | if (!RHSImplementsProtocol) | 
|  | return false; | 
|  | } | 
|  | // The RHS implements all protocols listed on the LHS. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) { | 
|  | // get the "pointed to" types | 
|  | const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>(); | 
|  | const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>(); | 
|  |  | 
|  | if (!LHSOPT || !RHSOPT) | 
|  | return false; | 
|  |  | 
|  | return canAssignObjCInterfaces(LHSOPT, RHSOPT) || | 
|  | canAssignObjCInterfaces(RHSOPT, LHSOPT); | 
|  | } | 
|  |  | 
|  | bool ASTContext::canBindObjCObjectType(QualType To, QualType From) { | 
|  | return canAssignObjCInterfaces( | 
|  | getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(), | 
|  | getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>()); | 
|  | } | 
|  |  | 
|  | /// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible, | 
|  | /// both shall have the identically qualified version of a compatible type. | 
|  | /// C99 6.2.7p1: Two types have compatible types if their types are the | 
|  | /// same. See 6.7.[2,3,5] for additional rules. | 
|  | bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS, | 
|  | bool CompareUnqualified) { | 
|  | if (getLangOpts().CPlusPlus) | 
|  | return hasSameType(LHS, RHS); | 
|  |  | 
|  | return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull(); | 
|  | } | 
|  |  | 
|  | bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) { | 
|  | return typesAreCompatible(LHS, RHS); | 
|  | } | 
|  |  | 
|  | bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) { | 
|  | return !mergeTypes(LHS, RHS, true).isNull(); | 
|  | } | 
|  |  | 
|  | /// mergeTransparentUnionType - if T is a transparent union type and a member | 
|  | /// of T is compatible with SubType, return the merged type, else return | 
|  | /// QualType() | 
|  | QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType, | 
|  | bool OfBlockPointer, | 
|  | bool Unqualified) { | 
|  | if (const RecordType *UT = T->getAsUnionType()) { | 
|  | RecordDecl *UD = UT->getDecl(); | 
|  | if (UD->hasAttr<TransparentUnionAttr>()) { | 
|  | for (const auto *I : UD->fields()) { | 
|  | QualType ET = I->getType().getUnqualifiedType(); | 
|  | QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified); | 
|  | if (!MT.isNull()) | 
|  | return MT; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | /// mergeFunctionParameterTypes - merge two types which appear as function | 
|  | /// parameter types | 
|  | QualType ASTContext::mergeFunctionParameterTypes(QualType lhs, QualType rhs, | 
|  | bool OfBlockPointer, | 
|  | bool Unqualified) { | 
|  | // GNU extension: two types are compatible if they appear as a function | 
|  | // argument, one of the types is a transparent union type and the other | 
|  | // type is compatible with a union member | 
|  | QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer, | 
|  | Unqualified); | 
|  | if (!lmerge.isNull()) | 
|  | return lmerge; | 
|  |  | 
|  | QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer, | 
|  | Unqualified); | 
|  | if (!rmerge.isNull()) | 
|  | return rmerge; | 
|  |  | 
|  | return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified); | 
|  | } | 
|  |  | 
|  | QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs, | 
|  | bool OfBlockPointer, | 
|  | bool Unqualified) { | 
|  | const FunctionType *lbase = lhs->getAs<FunctionType>(); | 
|  | const FunctionType *rbase = rhs->getAs<FunctionType>(); | 
|  | const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase); | 
|  | const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase); | 
|  | bool allLTypes = true; | 
|  | bool allRTypes = true; | 
|  |  | 
|  | // Check return type | 
|  | QualType retType; | 
|  | if (OfBlockPointer) { | 
|  | QualType RHS = rbase->getReturnType(); | 
|  | QualType LHS = lbase->getReturnType(); | 
|  | bool UnqualifiedResult = Unqualified; | 
|  | if (!UnqualifiedResult) | 
|  | UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers()); | 
|  | retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true); | 
|  | } | 
|  | else | 
|  | retType = mergeTypes(lbase->getReturnType(), rbase->getReturnType(), false, | 
|  | Unqualified); | 
|  | if (retType.isNull()) return QualType(); | 
|  |  | 
|  | if (Unqualified) | 
|  | retType = retType.getUnqualifiedType(); | 
|  |  | 
|  | CanQualType LRetType = getCanonicalType(lbase->getReturnType()); | 
|  | CanQualType RRetType = getCanonicalType(rbase->getReturnType()); | 
|  | if (Unqualified) { | 
|  | LRetType = LRetType.getUnqualifiedType(); | 
|  | RRetType = RRetType.getUnqualifiedType(); | 
|  | } | 
|  |  | 
|  | if (getCanonicalType(retType) != LRetType) | 
|  | allLTypes = false; | 
|  | if (getCanonicalType(retType) != RRetType) | 
|  | allRTypes = false; | 
|  |  | 
|  | // FIXME: double check this | 
|  | // FIXME: should we error if lbase->getRegParmAttr() != 0 && | 
|  | //                           rbase->getRegParmAttr() != 0 && | 
|  | //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()? | 
|  | FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo(); | 
|  | FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo(); | 
|  |  | 
|  | // Compatible functions must have compatible calling conventions | 
|  | if (lbaseInfo.getCC() != rbaseInfo.getCC()) | 
|  | return QualType(); | 
|  |  | 
|  | // Regparm is part of the calling convention. | 
|  | if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm()) | 
|  | return QualType(); | 
|  | if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm()) | 
|  | return QualType(); | 
|  |  | 
|  | if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult()) | 
|  | return QualType(); | 
|  |  | 
|  | // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'. | 
|  | bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn(); | 
|  |  | 
|  | if (lbaseInfo.getNoReturn() != NoReturn) | 
|  | allLTypes = false; | 
|  | if (rbaseInfo.getNoReturn() != NoReturn) | 
|  | allRTypes = false; | 
|  |  | 
|  | FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn); | 
|  |  | 
|  | if (lproto && rproto) { // two C99 style function prototypes | 
|  | assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() && | 
|  | "C++ shouldn't be here"); | 
|  | // Compatible functions must have the same number of parameters | 
|  | if (lproto->getNumParams() != rproto->getNumParams()) | 
|  | return QualType(); | 
|  |  | 
|  | // Variadic and non-variadic functions aren't compatible | 
|  | if (lproto->isVariadic() != rproto->isVariadic()) | 
|  | return QualType(); | 
|  |  | 
|  | if (lproto->getTypeQuals() != rproto->getTypeQuals()) | 
|  | return QualType(); | 
|  |  | 
|  | if (LangOpts.ObjCAutoRefCount && | 
|  | !FunctionTypesMatchOnNSConsumedAttrs(rproto, lproto)) | 
|  | return QualType(); | 
|  |  | 
|  | // Check parameter type compatibility | 
|  | SmallVector<QualType, 10> types; | 
|  | for (unsigned i = 0, n = lproto->getNumParams(); i < n; i++) { | 
|  | QualType lParamType = lproto->getParamType(i).getUnqualifiedType(); | 
|  | QualType rParamType = rproto->getParamType(i).getUnqualifiedType(); | 
|  | QualType paramType = mergeFunctionParameterTypes( | 
|  | lParamType, rParamType, OfBlockPointer, Unqualified); | 
|  | if (paramType.isNull()) | 
|  | return QualType(); | 
|  |  | 
|  | if (Unqualified) | 
|  | paramType = paramType.getUnqualifiedType(); | 
|  |  | 
|  | types.push_back(paramType); | 
|  | if (Unqualified) { | 
|  | lParamType = lParamType.getUnqualifiedType(); | 
|  | rParamType = rParamType.getUnqualifiedType(); | 
|  | } | 
|  |  | 
|  | if (getCanonicalType(paramType) != getCanonicalType(lParamType)) | 
|  | allLTypes = false; | 
|  | if (getCanonicalType(paramType) != getCanonicalType(rParamType)) | 
|  | allRTypes = false; | 
|  | } | 
|  |  | 
|  | if (allLTypes) return lhs; | 
|  | if (allRTypes) return rhs; | 
|  |  | 
|  | FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo(); | 
|  | EPI.ExtInfo = einfo; | 
|  | return getFunctionType(retType, types, EPI); | 
|  | } | 
|  |  | 
|  | if (lproto) allRTypes = false; | 
|  | if (rproto) allLTypes = false; | 
|  |  | 
|  | const FunctionProtoType *proto = lproto ? lproto : rproto; | 
|  | if (proto) { | 
|  | assert(!proto->hasExceptionSpec() && "C++ shouldn't be here"); | 
|  | if (proto->isVariadic()) return QualType(); | 
|  | // Check that the types are compatible with the types that | 
|  | // would result from default argument promotions (C99 6.7.5.3p15). | 
|  | // The only types actually affected are promotable integer | 
|  | // types and floats, which would be passed as a different | 
|  | // type depending on whether the prototype is visible. | 
|  | for (unsigned i = 0, n = proto->getNumParams(); i < n; ++i) { | 
|  | QualType paramTy = proto->getParamType(i); | 
|  |  | 
|  | // Look at the converted type of enum types, since that is the type used | 
|  | // to pass enum values. | 
|  | if (const EnumType *Enum = paramTy->getAs<EnumType>()) { | 
|  | paramTy = Enum->getDecl()->getIntegerType(); | 
|  | if (paramTy.isNull()) | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | if (paramTy->isPromotableIntegerType() || | 
|  | getCanonicalType(paramTy).getUnqualifiedType() == FloatTy) | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | if (allLTypes) return lhs; | 
|  | if (allRTypes) return rhs; | 
|  |  | 
|  | FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo(); | 
|  | EPI.ExtInfo = einfo; | 
|  | return getFunctionType(retType, proto->getParamTypes(), EPI); | 
|  | } | 
|  |  | 
|  | if (allLTypes) return lhs; | 
|  | if (allRTypes) return rhs; | 
|  | return getFunctionNoProtoType(retType, einfo); | 
|  | } | 
|  |  | 
|  | /// Given that we have an enum type and a non-enum type, try to merge them. | 
|  | static QualType mergeEnumWithInteger(ASTContext &Context, const EnumType *ET, | 
|  | QualType other, bool isBlockReturnType) { | 
|  | // C99 6.7.2.2p4: Each enumerated type shall be compatible with char, | 
|  | // a signed integer type, or an unsigned integer type. | 
|  | // Compatibility is based on the underlying type, not the promotion | 
|  | // type. | 
|  | QualType underlyingType = ET->getDecl()->getIntegerType(); | 
|  | if (underlyingType.isNull()) return QualType(); | 
|  | if (Context.hasSameType(underlyingType, other)) | 
|  | return other; | 
|  |  | 
|  | // In block return types, we're more permissive and accept any | 
|  | // integral type of the same size. | 
|  | if (isBlockReturnType && other->isIntegerType() && | 
|  | Context.getTypeSize(underlyingType) == Context.getTypeSize(other)) | 
|  | return other; | 
|  |  | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | QualType ASTContext::mergeTypes(QualType LHS, QualType RHS, | 
|  | bool OfBlockPointer, | 
|  | bool Unqualified, bool BlockReturnType) { | 
|  | // C++ [expr]: If an expression initially has the type "reference to T", the | 
|  | // type is adjusted to "T" prior to any further analysis, the expression | 
|  | // designates the object or function denoted by the reference, and the | 
|  | // expression is an lvalue unless the reference is an rvalue reference and | 
|  | // the expression is a function call (possibly inside parentheses). | 
|  | assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?"); | 
|  | assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?"); | 
|  |  | 
|  | if (Unqualified) { | 
|  | LHS = LHS.getUnqualifiedType(); | 
|  | RHS = RHS.getUnqualifiedType(); | 
|  | } | 
|  |  | 
|  | QualType LHSCan = getCanonicalType(LHS), | 
|  | RHSCan = getCanonicalType(RHS); | 
|  |  | 
|  | // If two types are identical, they are compatible. | 
|  | if (LHSCan == RHSCan) | 
|  | return LHS; | 
|  |  | 
|  | // If the qualifiers are different, the types aren't compatible... mostly. | 
|  | Qualifiers LQuals = LHSCan.getLocalQualifiers(); | 
|  | Qualifiers RQuals = RHSCan.getLocalQualifiers(); | 
|  | if (LQuals != RQuals) { | 
|  | // If any of these qualifiers are different, we have a type | 
|  | // mismatch. | 
|  | if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() || | 
|  | LQuals.getAddressSpace() != RQuals.getAddressSpace() || | 
|  | LQuals.getObjCLifetime() != RQuals.getObjCLifetime()) | 
|  | return QualType(); | 
|  |  | 
|  | // Exactly one GC qualifier difference is allowed: __strong is | 
|  | // okay if the other type has no GC qualifier but is an Objective | 
|  | // C object pointer (i.e. implicitly strong by default).  We fix | 
|  | // this by pretending that the unqualified type was actually | 
|  | // qualified __strong. | 
|  | Qualifiers::GC GC_L = LQuals.getObjCGCAttr(); | 
|  | Qualifiers::GC GC_R = RQuals.getObjCGCAttr(); | 
|  | assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements"); | 
|  |  | 
|  | if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak) | 
|  | return QualType(); | 
|  |  | 
|  | if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) { | 
|  | return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong)); | 
|  | } | 
|  | if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) { | 
|  | return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS); | 
|  | } | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | // Okay, qualifiers are equal. | 
|  |  | 
|  | Type::TypeClass LHSClass = LHSCan->getTypeClass(); | 
|  | Type::TypeClass RHSClass = RHSCan->getTypeClass(); | 
|  |  | 
|  | // We want to consider the two function types to be the same for these | 
|  | // comparisons, just force one to the other. | 
|  | if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto; | 
|  | if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto; | 
|  |  | 
|  | // Same as above for arrays | 
|  | if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray) | 
|  | LHSClass = Type::ConstantArray; | 
|  | if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray) | 
|  | RHSClass = Type::ConstantArray; | 
|  |  | 
|  | // ObjCInterfaces are just specialized ObjCObjects. | 
|  | if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject; | 
|  | if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject; | 
|  |  | 
|  | // Canonicalize ExtVector -> Vector. | 
|  | if (LHSClass == Type::ExtVector) LHSClass = Type::Vector; | 
|  | if (RHSClass == Type::ExtVector) RHSClass = Type::Vector; | 
|  |  | 
|  | // If the canonical type classes don't match. | 
|  | if (LHSClass != RHSClass) { | 
|  | // Note that we only have special rules for turning block enum | 
|  | // returns into block int returns, not vice-versa. | 
|  | if (const EnumType* ETy = LHS->getAs<EnumType>()) { | 
|  | return mergeEnumWithInteger(*this, ETy, RHS, false); | 
|  | } | 
|  | if (const EnumType* ETy = RHS->getAs<EnumType>()) { | 
|  | return mergeEnumWithInteger(*this, ETy, LHS, BlockReturnType); | 
|  | } | 
|  | // allow block pointer type to match an 'id' type. | 
|  | if (OfBlockPointer && !BlockReturnType) { | 
|  | if (LHS->isObjCIdType() && RHS->isBlockPointerType()) | 
|  | return LHS; | 
|  | if (RHS->isObjCIdType() && LHS->isBlockPointerType()) | 
|  | return RHS; | 
|  | } | 
|  |  | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | // The canonical type classes match. | 
|  | switch (LHSClass) { | 
|  | #define TYPE(Class, Base) | 
|  | #define ABSTRACT_TYPE(Class, Base) | 
|  | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: | 
|  | #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: | 
|  | #define DEPENDENT_TYPE(Class, Base) case Type::Class: | 
|  | #include "clang/AST/TypeNodes.def" | 
|  | llvm_unreachable("Non-canonical and dependent types shouldn't get here"); | 
|  |  | 
|  | case Type::Auto: | 
|  | case Type::LValueReference: | 
|  | case Type::RValueReference: | 
|  | case Type::MemberPointer: | 
|  | llvm_unreachable("C++ should never be in mergeTypes"); | 
|  |  | 
|  | case Type::ObjCInterface: | 
|  | case Type::IncompleteArray: | 
|  | case Type::VariableArray: | 
|  | case Type::FunctionProto: | 
|  | case Type::ExtVector: | 
|  | llvm_unreachable("Types are eliminated above"); | 
|  |  | 
|  | case Type::Pointer: | 
|  | { | 
|  | // Merge two pointer types, while trying to preserve typedef info | 
|  | QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType(); | 
|  | QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType(); | 
|  | if (Unqualified) { | 
|  | LHSPointee = LHSPointee.getUnqualifiedType(); | 
|  | RHSPointee = RHSPointee.getUnqualifiedType(); | 
|  | } | 
|  | QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false, | 
|  | Unqualified); | 
|  | if (ResultType.isNull()) return QualType(); | 
|  | if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType)) | 
|  | return LHS; | 
|  | if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType)) | 
|  | return RHS; | 
|  | return getPointerType(ResultType); | 
|  | } | 
|  | case Type::BlockPointer: | 
|  | { | 
|  | // Merge two block pointer types, while trying to preserve typedef info | 
|  | QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType(); | 
|  | QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType(); | 
|  | if (Unqualified) { | 
|  | LHSPointee = LHSPointee.getUnqualifiedType(); | 
|  | RHSPointee = RHSPointee.getUnqualifiedType(); | 
|  | } | 
|  | QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer, | 
|  | Unqualified); | 
|  | if (ResultType.isNull()) return QualType(); | 
|  | if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType)) | 
|  | return LHS; | 
|  | if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType)) | 
|  | return RHS; | 
|  | return getBlockPointerType(ResultType); | 
|  | } | 
|  | case Type::Atomic: | 
|  | { | 
|  | // Merge two pointer types, while trying to preserve typedef info | 
|  | QualType LHSValue = LHS->getAs<AtomicType>()->getValueType(); | 
|  | QualType RHSValue = RHS->getAs<AtomicType>()->getValueType(); | 
|  | if (Unqualified) { | 
|  | LHSValue = LHSValue.getUnqualifiedType(); | 
|  | RHSValue = RHSValue.getUnqualifiedType(); | 
|  | } | 
|  | QualType ResultType = mergeTypes(LHSValue, RHSValue, false, | 
|  | Unqualified); | 
|  | if (ResultType.isNull()) return QualType(); | 
|  | if (getCanonicalType(LHSValue) == getCanonicalType(ResultType)) | 
|  | return LHS; | 
|  | if (getCanonicalType(RHSValue) == getCanonicalType(ResultType)) | 
|  | return RHS; | 
|  | return getAtomicType(ResultType); | 
|  | } | 
|  | case Type::ConstantArray: | 
|  | { | 
|  | const ConstantArrayType* LCAT = getAsConstantArrayType(LHS); | 
|  | const ConstantArrayType* RCAT = getAsConstantArrayType(RHS); | 
|  | if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize()) | 
|  | return QualType(); | 
|  |  | 
|  | QualType LHSElem = getAsArrayType(LHS)->getElementType(); | 
|  | QualType RHSElem = getAsArrayType(RHS)->getElementType(); | 
|  | if (Unqualified) { | 
|  | LHSElem = LHSElem.getUnqualifiedType(); | 
|  | RHSElem = RHSElem.getUnqualifiedType(); | 
|  | } | 
|  |  | 
|  | QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified); | 
|  | if (ResultType.isNull()) return QualType(); | 
|  | if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType)) | 
|  | return LHS; | 
|  | if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType)) | 
|  | return RHS; | 
|  | if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(), | 
|  | ArrayType::ArraySizeModifier(), 0); | 
|  | if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(), | 
|  | ArrayType::ArraySizeModifier(), 0); | 
|  | const VariableArrayType* LVAT = getAsVariableArrayType(LHS); | 
|  | const VariableArrayType* RVAT = getAsVariableArrayType(RHS); | 
|  | if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType)) | 
|  | return LHS; | 
|  | if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType)) | 
|  | return RHS; | 
|  | if (LVAT) { | 
|  | // FIXME: This isn't correct! But tricky to implement because | 
|  | // the array's size has to be the size of LHS, but the type | 
|  | // has to be different. | 
|  | return LHS; | 
|  | } | 
|  | if (RVAT) { | 
|  | // FIXME: This isn't correct! But tricky to implement because | 
|  | // the array's size has to be the size of RHS, but the type | 
|  | // has to be different. | 
|  | return RHS; | 
|  | } | 
|  | if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS; | 
|  | if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS; | 
|  | return getIncompleteArrayType(ResultType, | 
|  | ArrayType::ArraySizeModifier(), 0); | 
|  | } | 
|  | case Type::FunctionNoProto: | 
|  | return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified); | 
|  | case Type::Record: | 
|  | case Type::Enum: | 
|  | return QualType(); | 
|  | case Type::Builtin: | 
|  | // Only exactly equal builtin types are compatible, which is tested above. | 
|  | return QualType(); | 
|  | case Type::Complex: | 
|  | // Distinct complex types are incompatible. | 
|  | return QualType(); | 
|  | case Type::Vector: | 
|  | // FIXME: The merged type should be an ExtVector! | 
|  | if (areCompatVectorTypes(LHSCan->getAs<VectorType>(), | 
|  | RHSCan->getAs<VectorType>())) | 
|  | return LHS; | 
|  | return QualType(); | 
|  | case Type::ObjCObject: { | 
|  | // Check if the types are assignment compatible. | 
|  | // FIXME: This should be type compatibility, e.g. whether | 
|  | // "LHS x; RHS x;" at global scope is legal. | 
|  | const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>(); | 
|  | const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>(); | 
|  | if (canAssignObjCInterfaces(LHSIface, RHSIface)) | 
|  | return LHS; | 
|  |  | 
|  | return QualType(); | 
|  | } | 
|  | case Type::ObjCObjectPointer: { | 
|  | if (OfBlockPointer) { | 
|  | if (canAssignObjCInterfacesInBlockPointer( | 
|  | LHS->getAs<ObjCObjectPointerType>(), | 
|  | RHS->getAs<ObjCObjectPointerType>(), | 
|  | BlockReturnType)) | 
|  | return LHS; | 
|  | return QualType(); | 
|  | } | 
|  | if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(), | 
|  | RHS->getAs<ObjCObjectPointerType>())) | 
|  | return LHS; | 
|  |  | 
|  | return QualType(); | 
|  | } | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Invalid Type::Class!"); | 
|  | } | 
|  |  | 
|  | bool ASTContext::FunctionTypesMatchOnNSConsumedAttrs( | 
|  | const FunctionProtoType *FromFunctionType, | 
|  | const FunctionProtoType *ToFunctionType) { | 
|  | if (FromFunctionType->hasAnyConsumedParams() != | 
|  | ToFunctionType->hasAnyConsumedParams()) | 
|  | return false; | 
|  | FunctionProtoType::ExtProtoInfo FromEPI = | 
|  | FromFunctionType->getExtProtoInfo(); | 
|  | FunctionProtoType::ExtProtoInfo ToEPI = | 
|  | ToFunctionType->getExtProtoInfo(); | 
|  | if (FromEPI.ConsumedParameters && ToEPI.ConsumedParameters) | 
|  | for (unsigned i = 0, n = FromFunctionType->getNumParams(); i != n; ++i) { | 
|  | if (FromEPI.ConsumedParameters[i] != ToEPI.ConsumedParameters[i]) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and | 
|  | /// 'RHS' attributes and returns the merged version; including for function | 
|  | /// return types. | 
|  | QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) { | 
|  | QualType LHSCan = getCanonicalType(LHS), | 
|  | RHSCan = getCanonicalType(RHS); | 
|  | // If two types are identical, they are compatible. | 
|  | if (LHSCan == RHSCan) | 
|  | return LHS; | 
|  | if (RHSCan->isFunctionType()) { | 
|  | if (!LHSCan->isFunctionType()) | 
|  | return QualType(); | 
|  | QualType OldReturnType = | 
|  | cast<FunctionType>(RHSCan.getTypePtr())->getReturnType(); | 
|  | QualType NewReturnType = | 
|  | cast<FunctionType>(LHSCan.getTypePtr())->getReturnType(); | 
|  | QualType ResReturnType = | 
|  | mergeObjCGCQualifiers(NewReturnType, OldReturnType); | 
|  | if (ResReturnType.isNull()) | 
|  | return QualType(); | 
|  | if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) { | 
|  | // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo(); | 
|  | // In either case, use OldReturnType to build the new function type. | 
|  | const FunctionType *F = LHS->getAs<FunctionType>(); | 
|  | if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) { | 
|  | FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); | 
|  | EPI.ExtInfo = getFunctionExtInfo(LHS); | 
|  | QualType ResultType = | 
|  | getFunctionType(OldReturnType, FPT->getParamTypes(), EPI); | 
|  | return ResultType; | 
|  | } | 
|  | } | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | // If the qualifiers are different, the types can still be merged. | 
|  | Qualifiers LQuals = LHSCan.getLocalQualifiers(); | 
|  | Qualifiers RQuals = RHSCan.getLocalQualifiers(); | 
|  | if (LQuals != RQuals) { | 
|  | // If any of these qualifiers are different, we have a type mismatch. | 
|  | if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() || | 
|  | LQuals.getAddressSpace() != RQuals.getAddressSpace()) | 
|  | return QualType(); | 
|  |  | 
|  | // Exactly one GC qualifier difference is allowed: __strong is | 
|  | // okay if the other type has no GC qualifier but is an Objective | 
|  | // C object pointer (i.e. implicitly strong by default).  We fix | 
|  | // this by pretending that the unqualified type was actually | 
|  | // qualified __strong. | 
|  | Qualifiers::GC GC_L = LQuals.getObjCGCAttr(); | 
|  | Qualifiers::GC GC_R = RQuals.getObjCGCAttr(); | 
|  | assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements"); | 
|  |  | 
|  | if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak) | 
|  | return QualType(); | 
|  |  | 
|  | if (GC_L == Qualifiers::Strong) | 
|  | return LHS; | 
|  | if (GC_R == Qualifiers::Strong) | 
|  | return RHS; | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) { | 
|  | QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType(); | 
|  | QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType(); | 
|  | QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT); | 
|  | if (ResQT == LHSBaseQT) | 
|  | return LHS; | 
|  | if (ResQT == RHSBaseQT) | 
|  | return RHS; | 
|  | } | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                         Integer Predicates | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | unsigned ASTContext::getIntWidth(QualType T) const { | 
|  | if (const EnumType *ET = T->getAs<EnumType>()) | 
|  | T = ET->getDecl()->getIntegerType(); | 
|  | if (T->isBooleanType()) | 
|  | return 1; | 
|  | // For builtin types, just use the standard type sizing method | 
|  | return (unsigned)getTypeSize(T); | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getCorrespondingUnsignedType(QualType T) const { | 
|  | assert(T->hasSignedIntegerRepresentation() && "Unexpected type"); | 
|  |  | 
|  | // Turn <4 x signed int> -> <4 x unsigned int> | 
|  | if (const VectorType *VTy = T->getAs<VectorType>()) | 
|  | return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()), | 
|  | VTy->getNumElements(), VTy->getVectorKind()); | 
|  |  | 
|  | // For enums, we return the unsigned version of the base type. | 
|  | if (const EnumType *ETy = T->getAs<EnumType>()) | 
|  | T = ETy->getDecl()->getIntegerType(); | 
|  |  | 
|  | const BuiltinType *BTy = T->getAs<BuiltinType>(); | 
|  | assert(BTy && "Unexpected signed integer type"); | 
|  | switch (BTy->getKind()) { | 
|  | case BuiltinType::Char_S: | 
|  | case BuiltinType::SChar: | 
|  | return UnsignedCharTy; | 
|  | case BuiltinType::Short: | 
|  | return UnsignedShortTy; | 
|  | case BuiltinType::Int: | 
|  | return UnsignedIntTy; | 
|  | case BuiltinType::Long: | 
|  | return UnsignedLongTy; | 
|  | case BuiltinType::LongLong: | 
|  | return UnsignedLongLongTy; | 
|  | case BuiltinType::Int128: | 
|  | return UnsignedInt128Ty; | 
|  | default: | 
|  | llvm_unreachable("Unexpected signed integer type"); | 
|  | } | 
|  | } | 
|  |  | 
|  | ASTMutationListener::~ASTMutationListener() { } | 
|  |  | 
|  | void ASTMutationListener::DeducedReturnType(const FunctionDecl *FD, | 
|  | QualType ReturnType) {} | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                          Builtin Type Computation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the | 
|  | /// pointer over the consumed characters.  This returns the resultant type.  If | 
|  | /// AllowTypeModifiers is false then modifier like * are not parsed, just basic | 
|  | /// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of | 
|  | /// a vector of "i*". | 
|  | /// | 
|  | /// RequiresICE is filled in on return to indicate whether the value is required | 
|  | /// to be an Integer Constant Expression. | 
|  | static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context, | 
|  | ASTContext::GetBuiltinTypeError &Error, | 
|  | bool &RequiresICE, | 
|  | bool AllowTypeModifiers) { | 
|  | // Modifiers. | 
|  | int HowLong = 0; | 
|  | bool Signed = false, Unsigned = false; | 
|  | RequiresICE = false; | 
|  |  | 
|  | // Read the prefixed modifiers first. | 
|  | bool Done = false; | 
|  | while (!Done) { | 
|  | switch (*Str++) { | 
|  | default: Done = true; --Str; break; | 
|  | case 'I': | 
|  | RequiresICE = true; | 
|  | break; | 
|  | case 'S': | 
|  | assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!"); | 
|  | assert(!Signed && "Can't use 'S' modifier multiple times!"); | 
|  | Signed = true; | 
|  | break; | 
|  | case 'U': | 
|  | assert(!Signed && "Can't use both 'S' and 'U' modifiers!"); | 
|  | assert(!Unsigned && "Can't use 'S' modifier multiple times!"); | 
|  | Unsigned = true; | 
|  | break; | 
|  | case 'L': | 
|  | assert(HowLong <= 2 && "Can't have LLLL modifier"); | 
|  | ++HowLong; | 
|  | break; | 
|  | case 'W': | 
|  | // This modifier represents int64 type. | 
|  | assert(HowLong == 0 && "Can't use both 'L' and 'W' modifiers!"); | 
|  | switch (Context.getTargetInfo().getInt64Type()) { | 
|  | default: | 
|  | llvm_unreachable("Unexpected integer type"); | 
|  | case TargetInfo::SignedLong: | 
|  | HowLong = 1; | 
|  | break; | 
|  | case TargetInfo::SignedLongLong: | 
|  | HowLong = 2; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | QualType Type; | 
|  |  | 
|  | // Read the base type. | 
|  | switch (*Str++) { | 
|  | default: llvm_unreachable("Unknown builtin type letter!"); | 
|  | case 'v': | 
|  | assert(HowLong == 0 && !Signed && !Unsigned && | 
|  | "Bad modifiers used with 'v'!"); | 
|  | Type = Context.VoidTy; | 
|  | break; | 
|  | case 'h': | 
|  | assert(HowLong == 0 && !Signed && !Unsigned && | 
|  | "Bad modifiers used with 'f'!"); | 
|  | Type = Context.HalfTy; | 
|  | break; | 
|  | case 'f': | 
|  | assert(HowLong == 0 && !Signed && !Unsigned && | 
|  | "Bad modifiers used with 'f'!"); | 
|  | Type = Context.FloatTy; | 
|  | break; | 
|  | case 'd': | 
|  | assert(HowLong < 2 && !Signed && !Unsigned && | 
|  | "Bad modifiers used with 'd'!"); | 
|  | if (HowLong) | 
|  | Type = Context.LongDoubleTy; | 
|  | else | 
|  | Type = Context.DoubleTy; | 
|  | break; | 
|  | case 's': | 
|  | assert(HowLong == 0 && "Bad modifiers used with 's'!"); | 
|  | if (Unsigned) | 
|  | Type = Context.UnsignedShortTy; | 
|  | else | 
|  | Type = Context.ShortTy; | 
|  | break; | 
|  | case 'i': | 
|  | if (HowLong == 3) | 
|  | Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty; | 
|  | else if (HowLong == 2) | 
|  | Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy; | 
|  | else if (HowLong == 1) | 
|  | Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy; | 
|  | else | 
|  | Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy; | 
|  | break; | 
|  | case 'c': | 
|  | assert(HowLong == 0 && "Bad modifiers used with 'c'!"); | 
|  | if (Signed) | 
|  | Type = Context.SignedCharTy; | 
|  | else if (Unsigned) | 
|  | Type = Context.UnsignedCharTy; | 
|  | else | 
|  | Type = Context.CharTy; | 
|  | break; | 
|  | case 'b': // boolean | 
|  | assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!"); | 
|  | Type = Context.BoolTy; | 
|  | break; | 
|  | case 'z':  // size_t. | 
|  | assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!"); | 
|  | Type = Context.getSizeType(); | 
|  | break; | 
|  | case 'F': | 
|  | Type = Context.getCFConstantStringType(); | 
|  | break; | 
|  | case 'G': | 
|  | Type = Context.getObjCIdType(); | 
|  | break; | 
|  | case 'H': | 
|  | Type = Context.getObjCSelType(); | 
|  | break; | 
|  | case 'M': | 
|  | Type = Context.getObjCSuperType(); | 
|  | break; | 
|  | case 'a': | 
|  | Type = Context.getBuiltinVaListType(); | 
|  | assert(!Type.isNull() && "builtin va list type not initialized!"); | 
|  | break; | 
|  | case 'A': | 
|  | // This is a "reference" to a va_list; however, what exactly | 
|  | // this means depends on how va_list is defined. There are two | 
|  | // different kinds of va_list: ones passed by value, and ones | 
|  | // passed by reference.  An example of a by-value va_list is | 
|  | // x86, where va_list is a char*. An example of by-ref va_list | 
|  | // is x86-64, where va_list is a __va_list_tag[1]. For x86, | 
|  | // we want this argument to be a char*&; for x86-64, we want | 
|  | // it to be a __va_list_tag*. | 
|  | Type = Context.getBuiltinVaListType(); | 
|  | assert(!Type.isNull() && "builtin va list type not initialized!"); | 
|  | if (Type->isArrayType()) | 
|  | Type = Context.getArrayDecayedType(Type); | 
|  | else | 
|  | Type = Context.getLValueReferenceType(Type); | 
|  | break; | 
|  | case 'V': { | 
|  | char *End; | 
|  | unsigned NumElements = strtoul(Str, &End, 10); | 
|  | assert(End != Str && "Missing vector size"); | 
|  | Str = End; | 
|  |  | 
|  | QualType ElementType = DecodeTypeFromStr(Str, Context, Error, | 
|  | RequiresICE, false); | 
|  | assert(!RequiresICE && "Can't require vector ICE"); | 
|  |  | 
|  | // TODO: No way to make AltiVec vectors in builtins yet. | 
|  | Type = Context.getVectorType(ElementType, NumElements, | 
|  | VectorType::GenericVector); | 
|  | break; | 
|  | } | 
|  | case 'E': { | 
|  | char *End; | 
|  |  | 
|  | unsigned NumElements = strtoul(Str, &End, 10); | 
|  | assert(End != Str && "Missing vector size"); | 
|  |  | 
|  | Str = End; | 
|  |  | 
|  | QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE, | 
|  | false); | 
|  | Type = Context.getExtVectorType(ElementType, NumElements); | 
|  | break; | 
|  | } | 
|  | case 'X': { | 
|  | QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE, | 
|  | false); | 
|  | assert(!RequiresICE && "Can't require complex ICE"); | 
|  | Type = Context.getComplexType(ElementType); | 
|  | break; | 
|  | } | 
|  | case 'Y' : { | 
|  | Type = Context.getPointerDiffType(); | 
|  | break; | 
|  | } | 
|  | case 'P': | 
|  | Type = Context.getFILEType(); | 
|  | if (Type.isNull()) { | 
|  | Error = ASTContext::GE_Missing_stdio; | 
|  | return QualType(); | 
|  | } | 
|  | break; | 
|  | case 'J': | 
|  | if (Signed) | 
|  | Type = Context.getsigjmp_bufType(); | 
|  | else | 
|  | Type = Context.getjmp_bufType(); | 
|  |  | 
|  | if (Type.isNull()) { | 
|  | Error = ASTContext::GE_Missing_setjmp; | 
|  | return QualType(); | 
|  | } | 
|  | break; | 
|  | case 'K': | 
|  | assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!"); | 
|  | Type = Context.getucontext_tType(); | 
|  |  | 
|  | if (Type.isNull()) { | 
|  | Error = ASTContext::GE_Missing_ucontext; | 
|  | return QualType(); | 
|  | } | 
|  | break; | 
|  | case 'p': | 
|  | Type = Context.getProcessIDType(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If there are modifiers and if we're allowed to parse them, go for it. | 
|  | Done = !AllowTypeModifiers; | 
|  | while (!Done) { | 
|  | switch (char c = *Str++) { | 
|  | default: Done = true; --Str; break; | 
|  | case '*': | 
|  | case '&': { | 
|  | // Both pointers and references can have their pointee types | 
|  | // qualified with an address space. | 
|  | char *End; | 
|  | unsigned AddrSpace = strtoul(Str, &End, 10); | 
|  | if (End != Str && AddrSpace != 0) { | 
|  | Type = Context.getAddrSpaceQualType(Type, AddrSpace); | 
|  | Str = End; | 
|  | } | 
|  | if (c == '*') | 
|  | Type = Context.getPointerType(Type); | 
|  | else | 
|  | Type = Context.getLValueReferenceType(Type); | 
|  | break; | 
|  | } | 
|  | // FIXME: There's no way to have a built-in with an rvalue ref arg. | 
|  | case 'C': | 
|  | Type = Type.withConst(); | 
|  | break; | 
|  | case 'D': | 
|  | Type = Context.getVolatileType(Type); | 
|  | break; | 
|  | case 'R': | 
|  | Type = Type.withRestrict(); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | assert((!RequiresICE || Type->isIntegralOrEnumerationType()) && | 
|  | "Integer constant 'I' type must be an integer"); | 
|  |  | 
|  | return Type; | 
|  | } | 
|  |  | 
|  | /// GetBuiltinType - Return the type for the specified builtin. | 
|  | QualType ASTContext::GetBuiltinType(unsigned Id, | 
|  | GetBuiltinTypeError &Error, | 
|  | unsigned *IntegerConstantArgs) const { | 
|  | const char *TypeStr = BuiltinInfo.GetTypeString(Id); | 
|  |  | 
|  | SmallVector<QualType, 8> ArgTypes; | 
|  |  | 
|  | bool RequiresICE = false; | 
|  | Error = GE_None; | 
|  | QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error, | 
|  | RequiresICE, true); | 
|  | if (Error != GE_None) | 
|  | return QualType(); | 
|  |  | 
|  | assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE"); | 
|  |  | 
|  | while (TypeStr[0] && TypeStr[0] != '.') { | 
|  | QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true); | 
|  | if (Error != GE_None) | 
|  | return QualType(); | 
|  |  | 
|  | // If this argument is required to be an IntegerConstantExpression and the | 
|  | // caller cares, fill in the bitmask we return. | 
|  | if (RequiresICE && IntegerConstantArgs) | 
|  | *IntegerConstantArgs |= 1 << ArgTypes.size(); | 
|  |  | 
|  | // Do array -> pointer decay.  The builtin should use the decayed type. | 
|  | if (Ty->isArrayType()) | 
|  | Ty = getArrayDecayedType(Ty); | 
|  |  | 
|  | ArgTypes.push_back(Ty); | 
|  | } | 
|  |  | 
|  | assert((TypeStr[0] != '.' || TypeStr[1] == 0) && | 
|  | "'.' should only occur at end of builtin type list!"); | 
|  |  | 
|  | FunctionType::ExtInfo EI(CC_C); | 
|  | if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true); | 
|  |  | 
|  | bool Variadic = (TypeStr[0] == '.'); | 
|  |  | 
|  | // We really shouldn't be making a no-proto type here, especially in C++. | 
|  | if (ArgTypes.empty() && Variadic) | 
|  | return getFunctionNoProtoType(ResType, EI); | 
|  |  | 
|  | FunctionProtoType::ExtProtoInfo EPI; | 
|  | EPI.ExtInfo = EI; | 
|  | EPI.Variadic = Variadic; | 
|  |  | 
|  | return getFunctionType(ResType, ArgTypes, EPI); | 
|  | } | 
|  |  | 
|  | static GVALinkage basicGVALinkageForFunction(const ASTContext &Context, | 
|  | const FunctionDecl *FD) { | 
|  | if (!FD->isExternallyVisible()) | 
|  | return GVA_Internal; | 
|  |  | 
|  | GVALinkage External = GVA_StrongExternal; | 
|  | switch (FD->getTemplateSpecializationKind()) { | 
|  | case TSK_Undeclared: | 
|  | case TSK_ExplicitSpecialization: | 
|  | External = GVA_StrongExternal; | 
|  | break; | 
|  |  | 
|  | case TSK_ExplicitInstantiationDefinition: | 
|  | return GVA_StrongODR; | 
|  |  | 
|  | // C++11 [temp.explicit]p10: | 
|  | //   [ Note: The intent is that an inline function that is the subject of | 
|  | //   an explicit instantiation declaration will still be implicitly | 
|  | //   instantiated when used so that the body can be considered for | 
|  | //   inlining, but that no out-of-line copy of the inline function would be | 
|  | //   generated in the translation unit. -- end note ] | 
|  | case TSK_ExplicitInstantiationDeclaration: | 
|  | return GVA_AvailableExternally; | 
|  |  | 
|  | case TSK_ImplicitInstantiation: | 
|  | External = GVA_DiscardableODR; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!FD->isInlined()) | 
|  | return External; | 
|  |  | 
|  | if ((!Context.getLangOpts().CPlusPlus && !Context.getLangOpts().MSVCCompat && | 
|  | !FD->hasAttr<DLLExportAttr>()) || | 
|  | FD->hasAttr<GNUInlineAttr>()) { | 
|  | // FIXME: This doesn't match gcc's behavior for dllexport inline functions. | 
|  |  | 
|  | // GNU or C99 inline semantics. Determine whether this symbol should be | 
|  | // externally visible. | 
|  | if (FD->isInlineDefinitionExternallyVisible()) | 
|  | return External; | 
|  |  | 
|  | // C99 inline semantics, where the symbol is not externally visible. | 
|  | return GVA_AvailableExternally; | 
|  | } | 
|  |  | 
|  | // Functions specified with extern and inline in -fms-compatibility mode | 
|  | // forcibly get emitted.  While the body of the function cannot be later | 
|  | // replaced, the function definition cannot be discarded. | 
|  | if (FD->getMostRecentDecl()->isMSExternInline()) | 
|  | return GVA_StrongODR; | 
|  |  | 
|  | return GVA_DiscardableODR; | 
|  | } | 
|  |  | 
|  | static GVALinkage adjustGVALinkageForDLLAttribute(GVALinkage L, const Decl *D) { | 
|  | // See http://msdn.microsoft.com/en-us/library/xa0d9ste.aspx | 
|  | // dllexport/dllimport on inline functions. | 
|  | if (D->hasAttr<DLLImportAttr>()) { | 
|  | if (L == GVA_DiscardableODR || L == GVA_StrongODR) | 
|  | return GVA_AvailableExternally; | 
|  | } else if (D->hasAttr<DLLExportAttr>()) { | 
|  | if (L == GVA_DiscardableODR) | 
|  | return GVA_StrongODR; | 
|  | } | 
|  | return L; | 
|  | } | 
|  |  | 
|  | GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) const { | 
|  | return adjustGVALinkageForDLLAttribute(basicGVALinkageForFunction(*this, FD), | 
|  | FD); | 
|  | } | 
|  |  | 
|  | static GVALinkage basicGVALinkageForVariable(const ASTContext &Context, | 
|  | const VarDecl *VD) { | 
|  | if (!VD->isExternallyVisible()) | 
|  | return GVA_Internal; | 
|  |  | 
|  | if (VD->isStaticLocal()) { | 
|  | GVALinkage StaticLocalLinkage = GVA_DiscardableODR; | 
|  | const DeclContext *LexicalContext = VD->getParentFunctionOrMethod(); | 
|  | while (LexicalContext && !isa<FunctionDecl>(LexicalContext)) | 
|  | LexicalContext = LexicalContext->getLexicalParent(); | 
|  |  | 
|  | // Let the static local variable inherit it's linkage from the nearest | 
|  | // enclosing function. | 
|  | if (LexicalContext) | 
|  | StaticLocalLinkage = | 
|  | Context.GetGVALinkageForFunction(cast<FunctionDecl>(LexicalContext)); | 
|  |  | 
|  | // GVA_StrongODR function linkage is stronger than what we need, | 
|  | // downgrade to GVA_DiscardableODR. | 
|  | // This allows us to discard the variable if we never end up needing it. | 
|  | return StaticLocalLinkage == GVA_StrongODR ? GVA_DiscardableODR | 
|  | : StaticLocalLinkage; | 
|  | } | 
|  |  | 
|  | // On Darwin, the backing variable for a C++11 thread_local variable always | 
|  | // has internal linkage; all accesses should just be calls to the | 
|  | // Itanium-specified entry point, which has the normal linkage of the | 
|  | // variable. | 
|  | if (VD->getTLSKind() == VarDecl::TLS_Dynamic && | 
|  | Context.getTargetInfo().getTriple().isMacOSX()) | 
|  | return GVA_Internal; | 
|  |  | 
|  | switch (VD->getTemplateSpecializationKind()) { | 
|  | case TSK_Undeclared: | 
|  | case TSK_ExplicitSpecialization: | 
|  | return GVA_StrongExternal; | 
|  |  | 
|  | case TSK_ExplicitInstantiationDefinition: | 
|  | return GVA_StrongODR; | 
|  |  | 
|  | case TSK_ExplicitInstantiationDeclaration: | 
|  | return GVA_AvailableExternally; | 
|  |  | 
|  | case TSK_ImplicitInstantiation: | 
|  | return GVA_DiscardableODR; | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Invalid Linkage!"); | 
|  | } | 
|  |  | 
|  | GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) { | 
|  | return adjustGVALinkageForDLLAttribute(basicGVALinkageForVariable(*this, VD), | 
|  | VD); | 
|  | } | 
|  |  | 
|  | bool ASTContext::DeclMustBeEmitted(const Decl *D) { | 
|  | if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { | 
|  | if (!VD->isFileVarDecl()) | 
|  | return false; | 
|  | // Global named register variables (GNU extension) are never emitted. | 
|  | if (VD->getStorageClass() == SC_Register) | 
|  | return false; | 
|  | } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { | 
|  | // We never need to emit an uninstantiated function template. | 
|  | if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate) | 
|  | return false; | 
|  | } else | 
|  | return false; | 
|  |  | 
|  | // If this is a member of a class template, we do not need to emit it. | 
|  | if (D->getDeclContext()->isDependentContext()) | 
|  | return false; | 
|  |  | 
|  | // Weak references don't produce any output by themselves. | 
|  | if (D->hasAttr<WeakRefAttr>()) | 
|  | return false; | 
|  |  | 
|  | // Aliases and used decls are required. | 
|  | if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>()) | 
|  | return true; | 
|  |  | 
|  | if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { | 
|  | // Forward declarations aren't required. | 
|  | if (!FD->doesThisDeclarationHaveABody()) | 
|  | return FD->doesDeclarationForceExternallyVisibleDefinition(); | 
|  |  | 
|  | // Constructors and destructors are required. | 
|  | if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>()) | 
|  | return true; | 
|  |  | 
|  | // The key function for a class is required.  This rule only comes | 
|  | // into play when inline functions can be key functions, though. | 
|  | if (getTargetInfo().getCXXABI().canKeyFunctionBeInline()) { | 
|  | if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { | 
|  | const CXXRecordDecl *RD = MD->getParent(); | 
|  | if (MD->isOutOfLine() && RD->isDynamicClass()) { | 
|  | const CXXMethodDecl *KeyFunc = getCurrentKeyFunction(RD); | 
|  | if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl()) | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | GVALinkage Linkage = GetGVALinkageForFunction(FD); | 
|  |  | 
|  | // static, static inline, always_inline, and extern inline functions can | 
|  | // always be deferred.  Normal inline functions can be deferred in C99/C++. | 
|  | // Implicit template instantiations can also be deferred in C++. | 
|  | if (Linkage == GVA_Internal || Linkage == GVA_AvailableExternally || | 
|  | Linkage == GVA_DiscardableODR) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | const VarDecl *VD = cast<VarDecl>(D); | 
|  | assert(VD->isFileVarDecl() && "Expected file scoped var"); | 
|  |  | 
|  | if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly) | 
|  | return false; | 
|  |  | 
|  | // Variables that can be needed in other TUs are required. | 
|  | GVALinkage L = GetGVALinkageForVariable(VD); | 
|  | if (L != GVA_Internal && L != GVA_AvailableExternally && | 
|  | L != GVA_DiscardableODR) | 
|  | return true; | 
|  |  | 
|  | // Variables that have destruction with side-effects are required. | 
|  | if (VD->getType().isDestructedType()) | 
|  | return true; | 
|  |  | 
|  | // Variables that have initialization with side-effects are required. | 
|  | if (VD->getInit() && VD->getInit()->HasSideEffects(*this)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | CallingConv ASTContext::getDefaultCallingConvention(bool IsVariadic, | 
|  | bool IsCXXMethod) const { | 
|  | // Pass through to the C++ ABI object | 
|  | if (IsCXXMethod) | 
|  | return ABI->getDefaultMethodCallConv(IsVariadic); | 
|  |  | 
|  | return (LangOpts.MRTD && !IsVariadic) ? CC_X86StdCall : CC_C; | 
|  | } | 
|  |  | 
|  | bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const { | 
|  | // Pass through to the C++ ABI object | 
|  | return ABI->isNearlyEmpty(RD); | 
|  | } | 
|  |  | 
|  | VTableContextBase *ASTContext::getVTableContext() { | 
|  | if (!VTContext.get()) { | 
|  | if (Target->getCXXABI().isMicrosoft()) | 
|  | VTContext.reset(new MicrosoftVTableContext(*this)); | 
|  | else | 
|  | VTContext.reset(new ItaniumVTableContext(*this)); | 
|  | } | 
|  | return VTContext.get(); | 
|  | } | 
|  |  | 
|  | MangleContext *ASTContext::createMangleContext() { | 
|  | switch (Target->getCXXABI().getKind()) { | 
|  | case TargetCXXABI::GenericAArch64: | 
|  | case TargetCXXABI::GenericItanium: | 
|  | case TargetCXXABI::GenericARM: | 
|  | case TargetCXXABI::iOS: | 
|  | case TargetCXXABI::iOS64: | 
|  | return ItaniumMangleContext::create(*this, getDiagnostics()); | 
|  | case TargetCXXABI::Microsoft: | 
|  | return MicrosoftMangleContext::create(*this, getDiagnostics()); | 
|  | } | 
|  | llvm_unreachable("Unsupported ABI"); | 
|  | } | 
|  |  | 
|  | CXXABI::~CXXABI() {} | 
|  |  | 
|  | size_t ASTContext::getSideTableAllocatedMemory() const { | 
|  | return ASTRecordLayouts.getMemorySize() + | 
|  | llvm::capacity_in_bytes(ObjCLayouts) + | 
|  | llvm::capacity_in_bytes(KeyFunctions) + | 
|  | llvm::capacity_in_bytes(ObjCImpls) + | 
|  | llvm::capacity_in_bytes(BlockVarCopyInits) + | 
|  | llvm::capacity_in_bytes(DeclAttrs) + | 
|  | llvm::capacity_in_bytes(TemplateOrInstantiation) + | 
|  | llvm::capacity_in_bytes(InstantiatedFromUsingDecl) + | 
|  | llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl) + | 
|  | llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl) + | 
|  | llvm::capacity_in_bytes(OverriddenMethods) + | 
|  | llvm::capacity_in_bytes(Types) + | 
|  | llvm::capacity_in_bytes(VariableArrayTypes) + | 
|  | llvm::capacity_in_bytes(ClassScopeSpecializationPattern); | 
|  | } | 
|  |  | 
|  | /// getIntTypeForBitwidth - | 
|  | /// sets integer QualTy according to specified details: | 
|  | /// bitwidth, signed/unsigned. | 
|  | /// Returns empty type if there is no appropriate target types. | 
|  | QualType ASTContext::getIntTypeForBitwidth(unsigned DestWidth, | 
|  | unsigned Signed) const { | 
|  | TargetInfo::IntType Ty = getTargetInfo().getIntTypeByWidth(DestWidth, Signed); | 
|  | CanQualType QualTy = getFromTargetType(Ty); | 
|  | if (!QualTy && DestWidth == 128) | 
|  | return Signed ? Int128Ty : UnsignedInt128Ty; | 
|  | return QualTy; | 
|  | } | 
|  |  | 
|  | /// getRealTypeForBitwidth - | 
|  | /// sets floating point QualTy according to specified bitwidth. | 
|  | /// Returns empty type if there is no appropriate target types. | 
|  | QualType ASTContext::getRealTypeForBitwidth(unsigned DestWidth) const { | 
|  | TargetInfo::RealType Ty = getTargetInfo().getRealTypeByWidth(DestWidth); | 
|  | switch (Ty) { | 
|  | case TargetInfo::Float: | 
|  | return FloatTy; | 
|  | case TargetInfo::Double: | 
|  | return DoubleTy; | 
|  | case TargetInfo::LongDouble: | 
|  | return LongDoubleTy; | 
|  | case TargetInfo::NoFloat: | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Unhandled TargetInfo::RealType value"); | 
|  | } | 
|  |  | 
|  | void ASTContext::setManglingNumber(const NamedDecl *ND, unsigned Number) { | 
|  | if (Number > 1) | 
|  | MangleNumbers[ND] = Number; | 
|  | } | 
|  |  | 
|  | unsigned ASTContext::getManglingNumber(const NamedDecl *ND) const { | 
|  | llvm::DenseMap<const NamedDecl *, unsigned>::const_iterator I = | 
|  | MangleNumbers.find(ND); | 
|  | return I != MangleNumbers.end() ? I->second : 1; | 
|  | } | 
|  |  | 
|  | void ASTContext::setStaticLocalNumber(const VarDecl *VD, unsigned Number) { | 
|  | if (Number > 1) | 
|  | StaticLocalNumbers[VD] = Number; | 
|  | } | 
|  |  | 
|  | unsigned ASTContext::getStaticLocalNumber(const VarDecl *VD) const { | 
|  | llvm::DenseMap<const VarDecl *, unsigned>::const_iterator I = | 
|  | StaticLocalNumbers.find(VD); | 
|  | return I != StaticLocalNumbers.end() ? I->second : 1; | 
|  | } | 
|  |  | 
|  | MangleNumberingContext & | 
|  | ASTContext::getManglingNumberContext(const DeclContext *DC) { | 
|  | assert(LangOpts.CPlusPlus);  // We don't need mangling numbers for plain C. | 
|  | MangleNumberingContext *&MCtx = MangleNumberingContexts[DC]; | 
|  | if (!MCtx) | 
|  | MCtx = createMangleNumberingContext(); | 
|  | return *MCtx; | 
|  | } | 
|  |  | 
|  | MangleNumberingContext *ASTContext::createMangleNumberingContext() const { | 
|  | return ABI->createMangleNumberingContext(); | 
|  | } | 
|  |  | 
|  | void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) { | 
|  | ParamIndices[D] = index; | 
|  | } | 
|  |  | 
|  | unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const { | 
|  | ParameterIndexTable::const_iterator I = ParamIndices.find(D); | 
|  | assert(I != ParamIndices.end() && | 
|  | "ParmIndices lacks entry set by ParmVarDecl"); | 
|  | return I->second; | 
|  | } | 
|  |  | 
|  | APValue * | 
|  | ASTContext::getMaterializedTemporaryValue(const MaterializeTemporaryExpr *E, | 
|  | bool MayCreate) { | 
|  | assert(E && E->getStorageDuration() == SD_Static && | 
|  | "don't need to cache the computed value for this temporary"); | 
|  | if (MayCreate) | 
|  | return &MaterializedTemporaryValues[E]; | 
|  |  | 
|  | llvm::DenseMap<const MaterializeTemporaryExpr *, APValue>::iterator I = | 
|  | MaterializedTemporaryValues.find(E); | 
|  | return I == MaterializedTemporaryValues.end() ? nullptr : &I->second; | 
|  | } | 
|  |  | 
|  | bool ASTContext::AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const { | 
|  | const llvm::Triple &T = getTargetInfo().getTriple(); | 
|  | if (!T.isOSDarwin()) | 
|  | return false; | 
|  |  | 
|  | if (!(T.isiOS() && T.isOSVersionLT(7)) && | 
|  | !(T.isMacOSX() && T.isOSVersionLT(10, 9))) | 
|  | return false; | 
|  |  | 
|  | QualType AtomicTy = E->getPtr()->getType()->getPointeeType(); | 
|  | CharUnits sizeChars = getTypeSizeInChars(AtomicTy); | 
|  | uint64_t Size = sizeChars.getQuantity(); | 
|  | CharUnits alignChars = getTypeAlignInChars(AtomicTy); | 
|  | unsigned Align = alignChars.getQuantity(); | 
|  | unsigned MaxInlineWidthInBits = getTargetInfo().getMaxAtomicInlineWidth(); | 
|  | return (Size != Align || toBits(sizeChars) > MaxInlineWidthInBits); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// \brief A \c RecursiveASTVisitor that builds a map from nodes to their | 
|  | /// parents as defined by the \c RecursiveASTVisitor. | 
|  | /// | 
|  | /// Note that the relationship described here is purely in terms of AST | 
|  | /// traversal - there are other relationships (for example declaration context) | 
|  | /// in the AST that are better modeled by special matchers. | 
|  | /// | 
|  | /// FIXME: Currently only builds up the map using \c Stmt and \c Decl nodes. | 
|  | class ParentMapASTVisitor : public RecursiveASTVisitor<ParentMapASTVisitor> { | 
|  |  | 
|  | public: | 
|  | /// \brief Builds and returns the translation unit's parent map. | 
|  | /// | 
|  | ///  The caller takes ownership of the returned \c ParentMap. | 
|  | static ASTContext::ParentMap *buildMap(TranslationUnitDecl &TU) { | 
|  | ParentMapASTVisitor Visitor(new ASTContext::ParentMap); | 
|  | Visitor.TraverseDecl(&TU); | 
|  | return Visitor.Parents; | 
|  | } | 
|  |  | 
|  | private: | 
|  | typedef RecursiveASTVisitor<ParentMapASTVisitor> VisitorBase; | 
|  |  | 
|  | ParentMapASTVisitor(ASTContext::ParentMap *Parents) : Parents(Parents) { | 
|  | } | 
|  |  | 
|  | bool shouldVisitTemplateInstantiations() const { | 
|  | return true; | 
|  | } | 
|  | bool shouldVisitImplicitCode() const { | 
|  | return true; | 
|  | } | 
|  | // Disables data recursion. We intercept Traverse* methods in the RAV, which | 
|  | // are not triggered during data recursion. | 
|  | bool shouldUseDataRecursionFor(clang::Stmt *S) const { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | bool TraverseNode(T *Node, bool(VisitorBase:: *traverse) (T *)) { | 
|  | if (!Node) | 
|  | return true; | 
|  | if (ParentStack.size() > 0) { | 
|  | // FIXME: Currently we add the same parent multiple times, for example | 
|  | // when we visit all subexpressions of template instantiations; this is | 
|  | // suboptimal, bug benign: the only way to visit those is with | 
|  | // hasAncestor / hasParent, and those do not create new matches. | 
|  | // The plan is to enable DynTypedNode to be storable in a map or hash | 
|  | // map. The main problem there is to implement hash functions / | 
|  | // comparison operators for all types that DynTypedNode supports that | 
|  | // do not have pointer identity. | 
|  | auto &NodeOrVector = (*Parents)[Node]; | 
|  | if (NodeOrVector.isNull()) { | 
|  | NodeOrVector = new ast_type_traits::DynTypedNode(ParentStack.back()); | 
|  | } else if (NodeOrVector | 
|  | .template is<ast_type_traits::DynTypedNode *>()) { | 
|  | auto *Node = | 
|  | NodeOrVector.template get<ast_type_traits::DynTypedNode *>(); | 
|  | auto *Vector = new ASTContext::ParentVector(1, *Node); | 
|  | Vector->push_back(ParentStack.back()); | 
|  | NodeOrVector = Vector; | 
|  | delete Node; | 
|  | } else { | 
|  | assert(NodeOrVector.template is<ASTContext::ParentVector *>()); | 
|  | NodeOrVector.template get<ASTContext::ParentVector *>()->push_back( | 
|  | ParentStack.back()); | 
|  | } | 
|  | } | 
|  | ParentStack.push_back(ast_type_traits::DynTypedNode::create(*Node)); | 
|  | bool Result = (this ->* traverse) (Node); | 
|  | ParentStack.pop_back(); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | bool TraverseDecl(Decl *DeclNode) { | 
|  | return TraverseNode(DeclNode, &VisitorBase::TraverseDecl); | 
|  | } | 
|  |  | 
|  | bool TraverseStmt(Stmt *StmtNode) { | 
|  | return TraverseNode(StmtNode, &VisitorBase::TraverseStmt); | 
|  | } | 
|  |  | 
|  | ASTContext::ParentMap *Parents; | 
|  | llvm::SmallVector<ast_type_traits::DynTypedNode, 16> ParentStack; | 
|  |  | 
|  | friend class RecursiveASTVisitor<ParentMapASTVisitor>; | 
|  | }; | 
|  |  | 
|  | } // end namespace | 
|  |  | 
|  | ASTContext::ParentVector | 
|  | ASTContext::getParents(const ast_type_traits::DynTypedNode &Node) { | 
|  | assert(Node.getMemoizationData() && | 
|  | "Invariant broken: only nodes that support memoization may be " | 
|  | "used in the parent map."); | 
|  | if (!AllParents) { | 
|  | // We always need to run over the whole translation unit, as | 
|  | // hasAncestor can escape any subtree. | 
|  | AllParents.reset( | 
|  | ParentMapASTVisitor::buildMap(*getTranslationUnitDecl())); | 
|  | } | 
|  | ParentMap::const_iterator I = AllParents->find(Node.getMemoizationData()); | 
|  | if (I == AllParents->end()) { | 
|  | return ParentVector(); | 
|  | } | 
|  | if (I->second.is<ast_type_traits::DynTypedNode *>()) { | 
|  | return ParentVector(1, *I->second.get<ast_type_traits::DynTypedNode *>()); | 
|  | } | 
|  | const auto &Parents = *I->second.get<ParentVector *>(); | 
|  | return ParentVector(Parents.begin(), Parents.end()); | 
|  | } | 
|  |  | 
|  | bool | 
|  | ASTContext::ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl, | 
|  | const ObjCMethodDecl *MethodImpl) { | 
|  | // No point trying to match an unavailable/deprecated mothod. | 
|  | if (MethodDecl->hasAttr<UnavailableAttr>() | 
|  | || MethodDecl->hasAttr<DeprecatedAttr>()) | 
|  | return false; | 
|  | if (MethodDecl->getObjCDeclQualifier() != | 
|  | MethodImpl->getObjCDeclQualifier()) | 
|  | return false; | 
|  | if (!hasSameType(MethodDecl->getReturnType(), MethodImpl->getReturnType())) | 
|  | return false; | 
|  |  | 
|  | if (MethodDecl->param_size() != MethodImpl->param_size()) | 
|  | return false; | 
|  |  | 
|  | for (ObjCMethodDecl::param_const_iterator IM = MethodImpl->param_begin(), | 
|  | IF = MethodDecl->param_begin(), EM = MethodImpl->param_end(), | 
|  | EF = MethodDecl->param_end(); | 
|  | IM != EM && IF != EF; ++IM, ++IF) { | 
|  | const ParmVarDecl *DeclVar = (*IF); | 
|  | const ParmVarDecl *ImplVar = (*IM); | 
|  | if (ImplVar->getObjCDeclQualifier() != DeclVar->getObjCDeclQualifier()) | 
|  | return false; | 
|  | if (!hasSameType(DeclVar->getType(), ImplVar->getType())) | 
|  | return false; | 
|  | } | 
|  | return (MethodDecl->isVariadic() == MethodImpl->isVariadic()); | 
|  |  | 
|  | } | 
|  |  | 
|  | // Explicitly instantiate this in case a Redeclarable<T> is used from a TU that | 
|  | // doesn't include ASTContext.h | 
|  | template | 
|  | clang::LazyGenerationalUpdatePtr< | 
|  | const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::ValueType | 
|  | clang::LazyGenerationalUpdatePtr< | 
|  | const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::makeValue( | 
|  | const clang::ASTContext &Ctx, Decl *Value); |