|  | //===- AMDGPULibCalls.cpp -------------------------------------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | /// \file | 
|  | /// This file does AMD library function optimizations. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #define DEBUG_TYPE "amdgpu-simplifylib" | 
|  |  | 
|  | #include "AMDGPU.h" | 
|  | #include "AMDGPULibFunc.h" | 
|  | #include "llvm/Analysis/AliasAnalysis.h" | 
|  | #include "llvm/Analysis/Loads.h" | 
|  | #include "llvm/ADT/StringSet.h" | 
|  | #include "llvm/ADT/StringRef.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/IRBuilder.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/IR/ValueSymbolTable.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Target/TargetOptions.h" | 
|  | #include <vector> | 
|  | #include <cmath> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | static cl::opt<bool> EnablePreLink("amdgpu-prelink", | 
|  | cl::desc("Enable pre-link mode optimizations"), | 
|  | cl::init(false), | 
|  | cl::Hidden); | 
|  |  | 
|  | static cl::list<std::string> UseNative("amdgpu-use-native", | 
|  | cl::desc("Comma separated list of functions to replace with native, or all"), | 
|  | cl::CommaSeparated, cl::ValueOptional, | 
|  | cl::Hidden); | 
|  |  | 
|  | #define MATH_PI     3.14159265358979323846264338327950288419716939937511 | 
|  | #define MATH_E      2.71828182845904523536028747135266249775724709369996 | 
|  | #define MATH_SQRT2  1.41421356237309504880168872420969807856967187537695 | 
|  |  | 
|  | #define MATH_LOG2E     1.4426950408889634073599246810018921374266459541529859 | 
|  | #define MATH_LOG10E    0.4342944819032518276511289189166050822943970058036665 | 
|  | // Value of log2(10) | 
|  | #define MATH_LOG2_10   3.3219280948873623478703194294893901758648313930245806 | 
|  | // Value of 1 / log2(10) | 
|  | #define MATH_RLOG2_10  0.3010299956639811952137388947244930267681898814621085 | 
|  | // Value of 1 / M_LOG2E_F = 1 / log2(e) | 
|  | #define MATH_RLOG2_E   0.6931471805599453094172321214581765680755001343602552 | 
|  |  | 
|  | namespace llvm { | 
|  |  | 
|  | class AMDGPULibCalls { | 
|  | private: | 
|  |  | 
|  | typedef llvm::AMDGPULibFunc FuncInfo; | 
|  |  | 
|  | // -fuse-native. | 
|  | bool AllNative = false; | 
|  |  | 
|  | bool useNativeFunc(const StringRef F) const; | 
|  |  | 
|  | // Return a pointer (pointer expr) to the function if function defintion with | 
|  | // "FuncName" exists. It may create a new function prototype in pre-link mode. | 
|  | Constant *getFunction(Module *M, const FuncInfo& fInfo); | 
|  |  | 
|  | // Replace a normal function with its native version. | 
|  | bool replaceWithNative(CallInst *CI, const FuncInfo &FInfo); | 
|  |  | 
|  | bool parseFunctionName(const StringRef& FMangledName, | 
|  | FuncInfo *FInfo=nullptr /*out*/); | 
|  |  | 
|  | bool TDOFold(CallInst *CI, const FuncInfo &FInfo); | 
|  |  | 
|  | /* Specialized optimizations */ | 
|  |  | 
|  | // recip (half or native) | 
|  | bool fold_recip(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); | 
|  |  | 
|  | // divide (half or native) | 
|  | bool fold_divide(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); | 
|  |  | 
|  | // pow/powr/pown | 
|  | bool fold_pow(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); | 
|  |  | 
|  | // rootn | 
|  | bool fold_rootn(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); | 
|  |  | 
|  | // fma/mad | 
|  | bool fold_fma_mad(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); | 
|  |  | 
|  | // -fuse-native for sincos | 
|  | bool sincosUseNative(CallInst *aCI, const FuncInfo &FInfo); | 
|  |  | 
|  | // evaluate calls if calls' arguments are constants. | 
|  | bool evaluateScalarMathFunc(FuncInfo &FInfo, double& Res0, | 
|  | double& Res1, Constant *copr0, Constant *copr1, Constant *copr2); | 
|  | bool evaluateCall(CallInst *aCI, FuncInfo &FInfo); | 
|  |  | 
|  | // exp | 
|  | bool fold_exp(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); | 
|  |  | 
|  | // exp2 | 
|  | bool fold_exp2(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); | 
|  |  | 
|  | // exp10 | 
|  | bool fold_exp10(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); | 
|  |  | 
|  | // log | 
|  | bool fold_log(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); | 
|  |  | 
|  | // log2 | 
|  | bool fold_log2(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); | 
|  |  | 
|  | // log10 | 
|  | bool fold_log10(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); | 
|  |  | 
|  | // sqrt | 
|  | bool fold_sqrt(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); | 
|  |  | 
|  | // sin/cos | 
|  | bool fold_sincos(CallInst * CI, IRBuilder<> &B, AliasAnalysis * AA); | 
|  |  | 
|  | // __read_pipe/__write_pipe | 
|  | bool fold_read_write_pipe(CallInst *CI, IRBuilder<> &B, FuncInfo &FInfo); | 
|  |  | 
|  | // Get insertion point at entry. | 
|  | BasicBlock::iterator getEntryIns(CallInst * UI); | 
|  | // Insert an Alloc instruction. | 
|  | AllocaInst* insertAlloca(CallInst * UI, IRBuilder<> &B, const char *prefix); | 
|  | // Get a scalar native builtin signle argument FP function | 
|  | Constant* getNativeFunction(Module* M, const FuncInfo &FInfo); | 
|  |  | 
|  | protected: | 
|  | CallInst *CI; | 
|  |  | 
|  | bool isUnsafeMath(const CallInst *CI) const; | 
|  |  | 
|  | void replaceCall(Value *With) { | 
|  | CI->replaceAllUsesWith(With); | 
|  | CI->eraseFromParent(); | 
|  | } | 
|  |  | 
|  | public: | 
|  | bool fold(CallInst *CI, AliasAnalysis *AA = nullptr); | 
|  |  | 
|  | void initNativeFuncs(); | 
|  |  | 
|  | // Replace a normal math function call with that native version | 
|  | bool useNative(CallInst *CI); | 
|  | }; | 
|  |  | 
|  | } // end llvm namespace | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class AMDGPUSimplifyLibCalls : public FunctionPass { | 
|  |  | 
|  | AMDGPULibCalls Simplifier; | 
|  |  | 
|  | const TargetOptions Options; | 
|  |  | 
|  | public: | 
|  | static char ID; // Pass identification | 
|  |  | 
|  | AMDGPUSimplifyLibCalls(const TargetOptions &Opt = TargetOptions()) | 
|  | : FunctionPass(ID), Options(Opt) { | 
|  | initializeAMDGPUSimplifyLibCallsPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.addRequired<AAResultsWrapperPass>(); | 
|  | } | 
|  |  | 
|  | bool runOnFunction(Function &M) override; | 
|  | }; | 
|  |  | 
|  | class AMDGPUUseNativeCalls : public FunctionPass { | 
|  |  | 
|  | AMDGPULibCalls Simplifier; | 
|  |  | 
|  | public: | 
|  | static char ID; // Pass identification | 
|  |  | 
|  | AMDGPUUseNativeCalls() : FunctionPass(ID) { | 
|  | initializeAMDGPUUseNativeCallsPass(*PassRegistry::getPassRegistry()); | 
|  | Simplifier.initNativeFuncs(); | 
|  | } | 
|  |  | 
|  | bool runOnFunction(Function &F) override; | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace. | 
|  |  | 
|  | char AMDGPUSimplifyLibCalls::ID = 0; | 
|  | char AMDGPUUseNativeCalls::ID = 0; | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN(AMDGPUSimplifyLibCalls, "amdgpu-simplifylib", | 
|  | "Simplify well-known AMD library calls", false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) | 
|  | INITIALIZE_PASS_END(AMDGPUSimplifyLibCalls, "amdgpu-simplifylib", | 
|  | "Simplify well-known AMD library calls", false, false) | 
|  |  | 
|  | INITIALIZE_PASS(AMDGPUUseNativeCalls, "amdgpu-usenative", | 
|  | "Replace builtin math calls with that native versions.", | 
|  | false, false) | 
|  |  | 
|  | template <typename IRB> | 
|  | static CallInst *CreateCallEx(IRB &B, Value *Callee, Value *Arg, | 
|  | const Twine &Name = "") { | 
|  | CallInst *R = B.CreateCall(Callee, Arg, Name); | 
|  | if (Function* F = dyn_cast<Function>(Callee)) | 
|  | R->setCallingConv(F->getCallingConv()); | 
|  | return R; | 
|  | } | 
|  |  | 
|  | template <typename IRB> | 
|  | static CallInst *CreateCallEx2(IRB &B, Value *Callee, Value *Arg1, Value *Arg2, | 
|  | const Twine &Name = "") { | 
|  | CallInst *R = B.CreateCall(Callee, {Arg1, Arg2}, Name); | 
|  | if (Function* F = dyn_cast<Function>(Callee)) | 
|  | R->setCallingConv(F->getCallingConv()); | 
|  | return R; | 
|  | } | 
|  |  | 
|  | //  Data structures for table-driven optimizations. | 
|  | //  FuncTbl works for both f32 and f64 functions with 1 input argument | 
|  |  | 
|  | struct TableEntry { | 
|  | double   result; | 
|  | double   input; | 
|  | }; | 
|  |  | 
|  | /* a list of {result, input} */ | 
|  | static const TableEntry tbl_acos[] = { | 
|  | {MATH_PI/2.0, 0.0}, | 
|  | {MATH_PI/2.0, -0.0}, | 
|  | {0.0, 1.0}, | 
|  | {MATH_PI, -1.0} | 
|  | }; | 
|  | static const TableEntry tbl_acosh[] = { | 
|  | {0.0, 1.0} | 
|  | }; | 
|  | static const TableEntry tbl_acospi[] = { | 
|  | {0.5, 0.0}, | 
|  | {0.5, -0.0}, | 
|  | {0.0, 1.0}, | 
|  | {1.0, -1.0} | 
|  | }; | 
|  | static const TableEntry tbl_asin[] = { | 
|  | {0.0, 0.0}, | 
|  | {-0.0, -0.0}, | 
|  | {MATH_PI/2.0, 1.0}, | 
|  | {-MATH_PI/2.0, -1.0} | 
|  | }; | 
|  | static const TableEntry tbl_asinh[] = { | 
|  | {0.0, 0.0}, | 
|  | {-0.0, -0.0} | 
|  | }; | 
|  | static const TableEntry tbl_asinpi[] = { | 
|  | {0.0, 0.0}, | 
|  | {-0.0, -0.0}, | 
|  | {0.5, 1.0}, | 
|  | {-0.5, -1.0} | 
|  | }; | 
|  | static const TableEntry tbl_atan[] = { | 
|  | {0.0, 0.0}, | 
|  | {-0.0, -0.0}, | 
|  | {MATH_PI/4.0, 1.0}, | 
|  | {-MATH_PI/4.0, -1.0} | 
|  | }; | 
|  | static const TableEntry tbl_atanh[] = { | 
|  | {0.0, 0.0}, | 
|  | {-0.0, -0.0} | 
|  | }; | 
|  | static const TableEntry tbl_atanpi[] = { | 
|  | {0.0, 0.0}, | 
|  | {-0.0, -0.0}, | 
|  | {0.25, 1.0}, | 
|  | {-0.25, -1.0} | 
|  | }; | 
|  | static const TableEntry tbl_cbrt[] = { | 
|  | {0.0, 0.0}, | 
|  | {-0.0, -0.0}, | 
|  | {1.0, 1.0}, | 
|  | {-1.0, -1.0}, | 
|  | }; | 
|  | static const TableEntry tbl_cos[] = { | 
|  | {1.0, 0.0}, | 
|  | {1.0, -0.0} | 
|  | }; | 
|  | static const TableEntry tbl_cosh[] = { | 
|  | {1.0, 0.0}, | 
|  | {1.0, -0.0} | 
|  | }; | 
|  | static const TableEntry tbl_cospi[] = { | 
|  | {1.0, 0.0}, | 
|  | {1.0, -0.0} | 
|  | }; | 
|  | static const TableEntry tbl_erfc[] = { | 
|  | {1.0, 0.0}, | 
|  | {1.0, -0.0} | 
|  | }; | 
|  | static const TableEntry tbl_erf[] = { | 
|  | {0.0, 0.0}, | 
|  | {-0.0, -0.0} | 
|  | }; | 
|  | static const TableEntry tbl_exp[] = { | 
|  | {1.0, 0.0}, | 
|  | {1.0, -0.0}, | 
|  | {MATH_E, 1.0} | 
|  | }; | 
|  | static const TableEntry tbl_exp2[] = { | 
|  | {1.0, 0.0}, | 
|  | {1.0, -0.0}, | 
|  | {2.0, 1.0} | 
|  | }; | 
|  | static const TableEntry tbl_exp10[] = { | 
|  | {1.0, 0.0}, | 
|  | {1.0, -0.0}, | 
|  | {10.0, 1.0} | 
|  | }; | 
|  | static const TableEntry tbl_expm1[] = { | 
|  | {0.0, 0.0}, | 
|  | {-0.0, -0.0} | 
|  | }; | 
|  | static const TableEntry tbl_log[] = { | 
|  | {0.0, 1.0}, | 
|  | {1.0, MATH_E} | 
|  | }; | 
|  | static const TableEntry tbl_log2[] = { | 
|  | {0.0, 1.0}, | 
|  | {1.0, 2.0} | 
|  | }; | 
|  | static const TableEntry tbl_log10[] = { | 
|  | {0.0, 1.0}, | 
|  | {1.0, 10.0} | 
|  | }; | 
|  | static const TableEntry tbl_rsqrt[] = { | 
|  | {1.0, 1.0}, | 
|  | {1.0/MATH_SQRT2, 2.0} | 
|  | }; | 
|  | static const TableEntry tbl_sin[] = { | 
|  | {0.0, 0.0}, | 
|  | {-0.0, -0.0} | 
|  | }; | 
|  | static const TableEntry tbl_sinh[] = { | 
|  | {0.0, 0.0}, | 
|  | {-0.0, -0.0} | 
|  | }; | 
|  | static const TableEntry tbl_sinpi[] = { | 
|  | {0.0, 0.0}, | 
|  | {-0.0, -0.0} | 
|  | }; | 
|  | static const TableEntry tbl_sqrt[] = { | 
|  | {0.0, 0.0}, | 
|  | {1.0, 1.0}, | 
|  | {MATH_SQRT2, 2.0} | 
|  | }; | 
|  | static const TableEntry tbl_tan[] = { | 
|  | {0.0, 0.0}, | 
|  | {-0.0, -0.0} | 
|  | }; | 
|  | static const TableEntry tbl_tanh[] = { | 
|  | {0.0, 0.0}, | 
|  | {-0.0, -0.0} | 
|  | }; | 
|  | static const TableEntry tbl_tanpi[] = { | 
|  | {0.0, 0.0}, | 
|  | {-0.0, -0.0} | 
|  | }; | 
|  | static const TableEntry tbl_tgamma[] = { | 
|  | {1.0, 1.0}, | 
|  | {1.0, 2.0}, | 
|  | {2.0, 3.0}, | 
|  | {6.0, 4.0} | 
|  | }; | 
|  |  | 
|  | static bool HasNative(AMDGPULibFunc::EFuncId id) { | 
|  | switch(id) { | 
|  | case AMDGPULibFunc::EI_DIVIDE: | 
|  | case AMDGPULibFunc::EI_COS: | 
|  | case AMDGPULibFunc::EI_EXP: | 
|  | case AMDGPULibFunc::EI_EXP2: | 
|  | case AMDGPULibFunc::EI_EXP10: | 
|  | case AMDGPULibFunc::EI_LOG: | 
|  | case AMDGPULibFunc::EI_LOG2: | 
|  | case AMDGPULibFunc::EI_LOG10: | 
|  | case AMDGPULibFunc::EI_POWR: | 
|  | case AMDGPULibFunc::EI_RECIP: | 
|  | case AMDGPULibFunc::EI_RSQRT: | 
|  | case AMDGPULibFunc::EI_SIN: | 
|  | case AMDGPULibFunc::EI_SINCOS: | 
|  | case AMDGPULibFunc::EI_SQRT: | 
|  | case AMDGPULibFunc::EI_TAN: | 
|  | return true; | 
|  | default:; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | struct TableRef { | 
|  | size_t size; | 
|  | const TableEntry *table; // variable size: from 0 to (size - 1) | 
|  |  | 
|  | TableRef() : size(0), table(nullptr) {} | 
|  |  | 
|  | template <size_t N> | 
|  | TableRef(const TableEntry (&tbl)[N]) : size(N), table(&tbl[0]) {} | 
|  | }; | 
|  |  | 
|  | static TableRef getOptTable(AMDGPULibFunc::EFuncId id) { | 
|  | switch(id) { | 
|  | case AMDGPULibFunc::EI_ACOS:    return TableRef(tbl_acos); | 
|  | case AMDGPULibFunc::EI_ACOSH:   return TableRef(tbl_acosh); | 
|  | case AMDGPULibFunc::EI_ACOSPI:  return TableRef(tbl_acospi); | 
|  | case AMDGPULibFunc::EI_ASIN:    return TableRef(tbl_asin); | 
|  | case AMDGPULibFunc::EI_ASINH:   return TableRef(tbl_asinh); | 
|  | case AMDGPULibFunc::EI_ASINPI:  return TableRef(tbl_asinpi); | 
|  | case AMDGPULibFunc::EI_ATAN:    return TableRef(tbl_atan); | 
|  | case AMDGPULibFunc::EI_ATANH:   return TableRef(tbl_atanh); | 
|  | case AMDGPULibFunc::EI_ATANPI:  return TableRef(tbl_atanpi); | 
|  | case AMDGPULibFunc::EI_CBRT:    return TableRef(tbl_cbrt); | 
|  | case AMDGPULibFunc::EI_NCOS: | 
|  | case AMDGPULibFunc::EI_COS:     return TableRef(tbl_cos); | 
|  | case AMDGPULibFunc::EI_COSH:    return TableRef(tbl_cosh); | 
|  | case AMDGPULibFunc::EI_COSPI:   return TableRef(tbl_cospi); | 
|  | case AMDGPULibFunc::EI_ERFC:    return TableRef(tbl_erfc); | 
|  | case AMDGPULibFunc::EI_ERF:     return TableRef(tbl_erf); | 
|  | case AMDGPULibFunc::EI_EXP:     return TableRef(tbl_exp); | 
|  | case AMDGPULibFunc::EI_NEXP2: | 
|  | case AMDGPULibFunc::EI_EXP2:    return TableRef(tbl_exp2); | 
|  | case AMDGPULibFunc::EI_EXP10:   return TableRef(tbl_exp10); | 
|  | case AMDGPULibFunc::EI_EXPM1:   return TableRef(tbl_expm1); | 
|  | case AMDGPULibFunc::EI_LOG:     return TableRef(tbl_log); | 
|  | case AMDGPULibFunc::EI_NLOG2: | 
|  | case AMDGPULibFunc::EI_LOG2:    return TableRef(tbl_log2); | 
|  | case AMDGPULibFunc::EI_LOG10:   return TableRef(tbl_log10); | 
|  | case AMDGPULibFunc::EI_NRSQRT: | 
|  | case AMDGPULibFunc::EI_RSQRT:   return TableRef(tbl_rsqrt); | 
|  | case AMDGPULibFunc::EI_NSIN: | 
|  | case AMDGPULibFunc::EI_SIN:     return TableRef(tbl_sin); | 
|  | case AMDGPULibFunc::EI_SINH:    return TableRef(tbl_sinh); | 
|  | case AMDGPULibFunc::EI_SINPI:   return TableRef(tbl_sinpi); | 
|  | case AMDGPULibFunc::EI_NSQRT: | 
|  | case AMDGPULibFunc::EI_SQRT:    return TableRef(tbl_sqrt); | 
|  | case AMDGPULibFunc::EI_TAN:     return TableRef(tbl_tan); | 
|  | case AMDGPULibFunc::EI_TANH:    return TableRef(tbl_tanh); | 
|  | case AMDGPULibFunc::EI_TANPI:   return TableRef(tbl_tanpi); | 
|  | case AMDGPULibFunc::EI_TGAMMA:  return TableRef(tbl_tgamma); | 
|  | default:; | 
|  | } | 
|  | return TableRef(); | 
|  | } | 
|  |  | 
|  | static inline int getVecSize(const AMDGPULibFunc& FInfo) { | 
|  | return FInfo.getLeads()[0].VectorSize; | 
|  | } | 
|  |  | 
|  | static inline AMDGPULibFunc::EType getArgType(const AMDGPULibFunc& FInfo) { | 
|  | return (AMDGPULibFunc::EType)FInfo.getLeads()[0].ArgType; | 
|  | } | 
|  |  | 
|  | Constant *AMDGPULibCalls::getFunction(Module *M, const FuncInfo& fInfo) { | 
|  | // If we are doing PreLinkOpt, the function is external. So it is safe to | 
|  | // use getOrInsertFunction() at this stage. | 
|  |  | 
|  | return EnablePreLink ? AMDGPULibFunc::getOrInsertFunction(M, fInfo) | 
|  | : AMDGPULibFunc::getFunction(M, fInfo); | 
|  | } | 
|  |  | 
|  | bool AMDGPULibCalls::parseFunctionName(const StringRef& FMangledName, | 
|  | FuncInfo *FInfo) { | 
|  | return AMDGPULibFunc::parse(FMangledName, *FInfo); | 
|  | } | 
|  |  | 
|  | bool AMDGPULibCalls::isUnsafeMath(const CallInst *CI) const { | 
|  | if (auto Op = dyn_cast<FPMathOperator>(CI)) | 
|  | if (Op->isFast()) | 
|  | return true; | 
|  | const Function *F = CI->getParent()->getParent(); | 
|  | Attribute Attr = F->getFnAttribute("unsafe-fp-math"); | 
|  | return Attr.getValueAsString() == "true"; | 
|  | } | 
|  |  | 
|  | bool AMDGPULibCalls::useNativeFunc(const StringRef F) const { | 
|  | return AllNative || | 
|  | std::find(UseNative.begin(), UseNative.end(), F) != UseNative.end(); | 
|  | } | 
|  |  | 
|  | void AMDGPULibCalls::initNativeFuncs() { | 
|  | AllNative = useNativeFunc("all") || | 
|  | (UseNative.getNumOccurrences() && UseNative.size() == 1 && | 
|  | UseNative.begin()->empty()); | 
|  | } | 
|  |  | 
|  | bool AMDGPULibCalls::sincosUseNative(CallInst *aCI, const FuncInfo &FInfo) { | 
|  | bool native_sin = useNativeFunc("sin"); | 
|  | bool native_cos = useNativeFunc("cos"); | 
|  |  | 
|  | if (native_sin && native_cos) { | 
|  | Module *M = aCI->getModule(); | 
|  | Value *opr0 = aCI->getArgOperand(0); | 
|  |  | 
|  | AMDGPULibFunc nf; | 
|  | nf.getLeads()[0].ArgType = FInfo.getLeads()[0].ArgType; | 
|  | nf.getLeads()[0].VectorSize = FInfo.getLeads()[0].VectorSize; | 
|  |  | 
|  | nf.setPrefix(AMDGPULibFunc::NATIVE); | 
|  | nf.setId(AMDGPULibFunc::EI_SIN); | 
|  | Constant *sinExpr = getFunction(M, nf); | 
|  |  | 
|  | nf.setPrefix(AMDGPULibFunc::NATIVE); | 
|  | nf.setId(AMDGPULibFunc::EI_COS); | 
|  | Constant *cosExpr = getFunction(M, nf); | 
|  | if (sinExpr && cosExpr) { | 
|  | Value *sinval = CallInst::Create(sinExpr, opr0, "splitsin", aCI); | 
|  | Value *cosval = CallInst::Create(cosExpr, opr0, "splitcos", aCI); | 
|  | new StoreInst(cosval, aCI->getArgOperand(1), aCI); | 
|  |  | 
|  | DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI | 
|  | << " with native version of sin/cos"); | 
|  |  | 
|  | replaceCall(sinval); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool AMDGPULibCalls::useNative(CallInst *aCI) { | 
|  | CI = aCI; | 
|  | Function *Callee = aCI->getCalledFunction(); | 
|  |  | 
|  | FuncInfo FInfo; | 
|  | if (!parseFunctionName(Callee->getName(), &FInfo) || !FInfo.isMangled() || | 
|  | FInfo.getPrefix() != AMDGPULibFunc::NOPFX || | 
|  | getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId()) || | 
|  | !(AllNative || useNativeFunc(FInfo.getName()))) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (FInfo.getId() == AMDGPULibFunc::EI_SINCOS) | 
|  | return sincosUseNative(aCI, FInfo); | 
|  |  | 
|  | FInfo.setPrefix(AMDGPULibFunc::NATIVE); | 
|  | Constant *F = getFunction(aCI->getModule(), FInfo); | 
|  | if (!F) | 
|  | return false; | 
|  |  | 
|  | aCI->setCalledFunction(F); | 
|  | DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI | 
|  | << " with native version"); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Clang emits call of __read_pipe_2 or __read_pipe_4 for OpenCL read_pipe | 
|  | // builtin, with appended type size and alignment arguments, where 2 or 4 | 
|  | // indicates the original number of arguments. The library has optimized version | 
|  | // of __read_pipe_2/__read_pipe_4 when the type size and alignment has the same | 
|  | // power of 2 value. This function transforms __read_pipe_2 to __read_pipe_2_N | 
|  | // for such cases where N is the size in bytes of the type (N = 1, 2, 4, 8, ..., | 
|  | // 128). The same for __read_pipe_4, write_pipe_2, and write_pipe_4. | 
|  | bool AMDGPULibCalls::fold_read_write_pipe(CallInst *CI, IRBuilder<> &B, | 
|  | FuncInfo &FInfo) { | 
|  | auto *Callee = CI->getCalledFunction(); | 
|  | if (!Callee->isDeclaration()) | 
|  | return false; | 
|  |  | 
|  | assert(Callee->hasName() && "Invalid read_pipe/write_pipe function"); | 
|  | auto *M = Callee->getParent(); | 
|  | auto &Ctx = M->getContext(); | 
|  | std::string Name = Callee->getName(); | 
|  | auto NumArg = CI->getNumArgOperands(); | 
|  | if (NumArg != 4 && NumArg != 6) | 
|  | return false; | 
|  | auto *PacketSize = CI->getArgOperand(NumArg - 2); | 
|  | auto *PacketAlign = CI->getArgOperand(NumArg - 1); | 
|  | if (!isa<ConstantInt>(PacketSize) || !isa<ConstantInt>(PacketAlign)) | 
|  | return false; | 
|  | unsigned Size = cast<ConstantInt>(PacketSize)->getZExtValue(); | 
|  | unsigned Align = cast<ConstantInt>(PacketAlign)->getZExtValue(); | 
|  | if (Size != Align || !isPowerOf2_32(Size)) | 
|  | return false; | 
|  |  | 
|  | Type *PtrElemTy; | 
|  | if (Size <= 8) | 
|  | PtrElemTy = Type::getIntNTy(Ctx, Size * 8); | 
|  | else | 
|  | PtrElemTy = VectorType::get(Type::getInt64Ty(Ctx), Size / 8); | 
|  | unsigned PtrArgLoc = CI->getNumArgOperands() - 3; | 
|  | auto PtrArg = CI->getArgOperand(PtrArgLoc); | 
|  | unsigned PtrArgAS = PtrArg->getType()->getPointerAddressSpace(); | 
|  | auto *PtrTy = llvm::PointerType::get(PtrElemTy, PtrArgAS); | 
|  |  | 
|  | SmallVector<llvm::Type *, 6> ArgTys; | 
|  | for (unsigned I = 0; I != PtrArgLoc; ++I) | 
|  | ArgTys.push_back(CI->getArgOperand(I)->getType()); | 
|  | ArgTys.push_back(PtrTy); | 
|  |  | 
|  | Name = Name + "_" + std::to_string(Size); | 
|  | auto *FTy = FunctionType::get(Callee->getReturnType(), | 
|  | ArrayRef<Type *>(ArgTys), false); | 
|  | AMDGPULibFunc NewLibFunc(Name, FTy); | 
|  | auto *F = AMDGPULibFunc::getOrInsertFunction(M, NewLibFunc); | 
|  | if (!F) | 
|  | return false; | 
|  |  | 
|  | auto *BCast = B.CreatePointerCast(PtrArg, PtrTy); | 
|  | SmallVector<Value *, 6> Args; | 
|  | for (unsigned I = 0; I != PtrArgLoc; ++I) | 
|  | Args.push_back(CI->getArgOperand(I)); | 
|  | Args.push_back(BCast); | 
|  |  | 
|  | auto *NCI = B.CreateCall(F, Args); | 
|  | NCI->setAttributes(CI->getAttributes()); | 
|  | CI->replaceAllUsesWith(NCI); | 
|  | CI->dropAllReferences(); | 
|  | CI->eraseFromParent(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // This function returns false if no change; return true otherwise. | 
|  | bool AMDGPULibCalls::fold(CallInst *CI, AliasAnalysis *AA) { | 
|  | this->CI = CI; | 
|  | Function *Callee = CI->getCalledFunction(); | 
|  |  | 
|  | // Ignore indirect calls. | 
|  | if (Callee == 0) return false; | 
|  |  | 
|  | FuncInfo FInfo; | 
|  | if (!parseFunctionName(Callee->getName(), &FInfo)) | 
|  | return false; | 
|  |  | 
|  | // Further check the number of arguments to see if they match. | 
|  | if (CI->getNumArgOperands() != FInfo.getNumArgs()) | 
|  | return false; | 
|  |  | 
|  | BasicBlock *BB = CI->getParent(); | 
|  | LLVMContext &Context = CI->getParent()->getContext(); | 
|  | IRBuilder<> B(Context); | 
|  |  | 
|  | // Set the builder to the instruction after the call. | 
|  | B.SetInsertPoint(BB, CI->getIterator()); | 
|  |  | 
|  | // Copy fast flags from the original call. | 
|  | if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(CI)) | 
|  | B.setFastMathFlags(FPOp->getFastMathFlags()); | 
|  |  | 
|  | if (TDOFold(CI, FInfo)) | 
|  | return true; | 
|  |  | 
|  | // Under unsafe-math, evaluate calls if possible. | 
|  | // According to Brian Sumner, we can do this for all f32 function calls | 
|  | // using host's double function calls. | 
|  | if (isUnsafeMath(CI) && evaluateCall(CI, FInfo)) | 
|  | return true; | 
|  |  | 
|  | // Specilized optimizations for each function call | 
|  | switch (FInfo.getId()) { | 
|  | case AMDGPULibFunc::EI_RECIP: | 
|  | // skip vector function | 
|  | assert ((FInfo.getPrefix() == AMDGPULibFunc::NATIVE || | 
|  | FInfo.getPrefix() == AMDGPULibFunc::HALF) && | 
|  | "recip must be an either native or half function"); | 
|  | return (getVecSize(FInfo) != 1) ? false : fold_recip(CI, B, FInfo); | 
|  |  | 
|  | case AMDGPULibFunc::EI_DIVIDE: | 
|  | // skip vector function | 
|  | assert ((FInfo.getPrefix() == AMDGPULibFunc::NATIVE || | 
|  | FInfo.getPrefix() == AMDGPULibFunc::HALF) && | 
|  | "divide must be an either native or half function"); | 
|  | return (getVecSize(FInfo) != 1) ? false : fold_divide(CI, B, FInfo); | 
|  |  | 
|  | case AMDGPULibFunc::EI_POW: | 
|  | case AMDGPULibFunc::EI_POWR: | 
|  | case AMDGPULibFunc::EI_POWN: | 
|  | return fold_pow(CI, B, FInfo); | 
|  |  | 
|  | case AMDGPULibFunc::EI_ROOTN: | 
|  | // skip vector function | 
|  | return (getVecSize(FInfo) != 1) ? false : fold_rootn(CI, B, FInfo); | 
|  |  | 
|  | case AMDGPULibFunc::EI_FMA: | 
|  | case AMDGPULibFunc::EI_MAD: | 
|  | case AMDGPULibFunc::EI_NFMA: | 
|  | // skip vector function | 
|  | return (getVecSize(FInfo) != 1) ? false : fold_fma_mad(CI, B, FInfo); | 
|  |  | 
|  | case AMDGPULibFunc::EI_SQRT: | 
|  | return isUnsafeMath(CI) && fold_sqrt(CI, B, FInfo); | 
|  | case AMDGPULibFunc::EI_COS: | 
|  | case AMDGPULibFunc::EI_SIN: | 
|  | if ((getArgType(FInfo) == AMDGPULibFunc::F32 || | 
|  | getArgType(FInfo) == AMDGPULibFunc::F64) | 
|  | && (FInfo.getPrefix() == AMDGPULibFunc::NOPFX)) | 
|  | return fold_sincos(CI, B, AA); | 
|  |  | 
|  | break; | 
|  | case AMDGPULibFunc::EI_READ_PIPE_2: | 
|  | case AMDGPULibFunc::EI_READ_PIPE_4: | 
|  | case AMDGPULibFunc::EI_WRITE_PIPE_2: | 
|  | case AMDGPULibFunc::EI_WRITE_PIPE_4: | 
|  | return fold_read_write_pipe(CI, B, FInfo); | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool AMDGPULibCalls::TDOFold(CallInst *CI, const FuncInfo &FInfo) { | 
|  | // Table-Driven optimization | 
|  | const TableRef tr = getOptTable(FInfo.getId()); | 
|  | if (tr.size==0) | 
|  | return false; | 
|  |  | 
|  | int const sz = (int)tr.size; | 
|  | const TableEntry * const ftbl = tr.table; | 
|  | Value *opr0 = CI->getArgOperand(0); | 
|  |  | 
|  | if (getVecSize(FInfo) > 1) { | 
|  | if (ConstantDataVector *CV = dyn_cast<ConstantDataVector>(opr0)) { | 
|  | SmallVector<double, 0> DVal; | 
|  | for (int eltNo = 0; eltNo < getVecSize(FInfo); ++eltNo) { | 
|  | ConstantFP *eltval = dyn_cast<ConstantFP>( | 
|  | CV->getElementAsConstant((unsigned)eltNo)); | 
|  | assert(eltval && "Non-FP arguments in math function!"); | 
|  | bool found = false; | 
|  | for (int i=0; i < sz; ++i) { | 
|  | if (eltval->isExactlyValue(ftbl[i].input)) { | 
|  | DVal.push_back(ftbl[i].result); | 
|  | found = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!found) { | 
|  | // This vector constants not handled yet. | 
|  | return false; | 
|  | } | 
|  | } | 
|  | LLVMContext &context = CI->getParent()->getParent()->getContext(); | 
|  | Constant *nval; | 
|  | if (getArgType(FInfo) == AMDGPULibFunc::F32) { | 
|  | SmallVector<float, 0> FVal; | 
|  | for (unsigned i = 0; i < DVal.size(); ++i) { | 
|  | FVal.push_back((float)DVal[i]); | 
|  | } | 
|  | ArrayRef<float> tmp(FVal); | 
|  | nval = ConstantDataVector::get(context, tmp); | 
|  | } else { // F64 | 
|  | ArrayRef<double> tmp(DVal); | 
|  | nval = ConstantDataVector::get(context, tmp); | 
|  | } | 
|  | LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n"); | 
|  | replaceCall(nval); | 
|  | return true; | 
|  | } | 
|  | } else { | 
|  | // Scalar version | 
|  | if (ConstantFP *CF = dyn_cast<ConstantFP>(opr0)) { | 
|  | for (int i = 0; i < sz; ++i) { | 
|  | if (CF->isExactlyValue(ftbl[i].input)) { | 
|  | Value *nval = ConstantFP::get(CF->getType(), ftbl[i].result); | 
|  | LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n"); | 
|  | replaceCall(nval); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool AMDGPULibCalls::replaceWithNative(CallInst *CI, const FuncInfo &FInfo) { | 
|  | Module *M = CI->getModule(); | 
|  | if (getArgType(FInfo) != AMDGPULibFunc::F32 || | 
|  | FInfo.getPrefix() != AMDGPULibFunc::NOPFX || | 
|  | !HasNative(FInfo.getId())) | 
|  | return false; | 
|  |  | 
|  | AMDGPULibFunc nf = FInfo; | 
|  | nf.setPrefix(AMDGPULibFunc::NATIVE); | 
|  | if (Constant *FPExpr = getFunction(M, nf)) { | 
|  | LLVM_DEBUG(dbgs() << "AMDIC: " << *CI << " ---> "); | 
|  |  | 
|  | CI->setCalledFunction(FPExpr); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << *CI << '\n'); | 
|  |  | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | //  [native_]half_recip(c) ==> 1.0/c | 
|  | bool AMDGPULibCalls::fold_recip(CallInst *CI, IRBuilder<> &B, | 
|  | const FuncInfo &FInfo) { | 
|  | Value *opr0 = CI->getArgOperand(0); | 
|  | if (ConstantFP *CF = dyn_cast<ConstantFP>(opr0)) { | 
|  | // Just create a normal div. Later, InstCombine will be able | 
|  | // to compute the divide into a constant (avoid check float infinity | 
|  | // or subnormal at this point). | 
|  | Value *nval = B.CreateFDiv(ConstantFP::get(CF->getType(), 1.0), | 
|  | opr0, | 
|  | "recip2div"); | 
|  | LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n"); | 
|  | replaceCall(nval); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | //  [native_]half_divide(x, c) ==> x/c | 
|  | bool AMDGPULibCalls::fold_divide(CallInst *CI, IRBuilder<> &B, | 
|  | const FuncInfo &FInfo) { | 
|  | Value *opr0 = CI->getArgOperand(0); | 
|  | Value *opr1 = CI->getArgOperand(1); | 
|  | ConstantFP *CF0 = dyn_cast<ConstantFP>(opr0); | 
|  | ConstantFP *CF1 = dyn_cast<ConstantFP>(opr1); | 
|  |  | 
|  | if ((CF0 && CF1) ||  // both are constants | 
|  | (CF1 && (getArgType(FInfo) == AMDGPULibFunc::F32))) | 
|  | // CF1 is constant && f32 divide | 
|  | { | 
|  | Value *nval1 = B.CreateFDiv(ConstantFP::get(opr1->getType(), 1.0), | 
|  | opr1, "__div2recip"); | 
|  | Value *nval  = B.CreateFMul(opr0, nval1, "__div2mul"); | 
|  | replaceCall(nval); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | namespace llvm { | 
|  | static double log2(double V) { | 
|  | #if _XOPEN_SOURCE >= 600 || _ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L | 
|  | return ::log2(V); | 
|  | #else | 
|  | return log(V) / 0.693147180559945309417; | 
|  | #endif | 
|  | } | 
|  | } | 
|  |  | 
|  | bool AMDGPULibCalls::fold_pow(CallInst *CI, IRBuilder<> &B, | 
|  | const FuncInfo &FInfo) { | 
|  | assert((FInfo.getId() == AMDGPULibFunc::EI_POW || | 
|  | FInfo.getId() == AMDGPULibFunc::EI_POWR || | 
|  | FInfo.getId() == AMDGPULibFunc::EI_POWN) && | 
|  | "fold_pow: encounter a wrong function call"); | 
|  |  | 
|  | Value *opr0, *opr1; | 
|  | ConstantFP *CF; | 
|  | ConstantInt *CINT; | 
|  | ConstantAggregateZero *CZero; | 
|  | Type *eltType; | 
|  |  | 
|  | opr0 = CI->getArgOperand(0); | 
|  | opr1 = CI->getArgOperand(1); | 
|  | CZero = dyn_cast<ConstantAggregateZero>(opr1); | 
|  | if (getVecSize(FInfo) == 1) { | 
|  | eltType = opr0->getType(); | 
|  | CF = dyn_cast<ConstantFP>(opr1); | 
|  | CINT = dyn_cast<ConstantInt>(opr1); | 
|  | } else { | 
|  | VectorType *VTy = dyn_cast<VectorType>(opr0->getType()); | 
|  | assert(VTy && "Oprand of vector function should be of vectortype"); | 
|  | eltType = VTy->getElementType(); | 
|  | ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr1); | 
|  |  | 
|  | // Now, only Handle vector const whose elements have the same value. | 
|  | CF = CDV ? dyn_cast_or_null<ConstantFP>(CDV->getSplatValue()) : nullptr; | 
|  | CINT = CDV ? dyn_cast_or_null<ConstantInt>(CDV->getSplatValue()) : nullptr; | 
|  | } | 
|  |  | 
|  | // No unsafe math , no constant argument, do nothing | 
|  | if (!isUnsafeMath(CI) && !CF && !CINT && !CZero) | 
|  | return false; | 
|  |  | 
|  | // 0x1111111 means that we don't do anything for this call. | 
|  | int ci_opr1 = (CINT ? (int)CINT->getSExtValue() : 0x1111111); | 
|  |  | 
|  | if ((CF && CF->isZero()) || (CINT && ci_opr1 == 0) || CZero) { | 
|  | //  pow/powr/pown(x, 0) == 1 | 
|  | LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1\n"); | 
|  | Constant *cnval = ConstantFP::get(eltType, 1.0); | 
|  | if (getVecSize(FInfo) > 1) { | 
|  | cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); | 
|  | } | 
|  | replaceCall(cnval); | 
|  | return true; | 
|  | } | 
|  | if ((CF && CF->isExactlyValue(1.0)) || (CINT && ci_opr1 == 1)) { | 
|  | // pow/powr/pown(x, 1.0) = x | 
|  | LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << "\n"); | 
|  | replaceCall(opr0); | 
|  | return true; | 
|  | } | 
|  | if ((CF && CF->isExactlyValue(2.0)) || (CINT && ci_opr1 == 2)) { | 
|  | // pow/powr/pown(x, 2.0) = x*x | 
|  | LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " * " << *opr0 | 
|  | << "\n"); | 
|  | Value *nval = B.CreateFMul(opr0, opr0, "__pow2"); | 
|  | replaceCall(nval); | 
|  | return true; | 
|  | } | 
|  | if ((CF && CF->isExactlyValue(-1.0)) || (CINT && ci_opr1 == -1)) { | 
|  | // pow/powr/pown(x, -1.0) = 1.0/x | 
|  | LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1 / " << *opr0 << "\n"); | 
|  | Constant *cnval = ConstantFP::get(eltType, 1.0); | 
|  | if (getVecSize(FInfo) > 1) { | 
|  | cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); | 
|  | } | 
|  | Value *nval = B.CreateFDiv(cnval, opr0, "__powrecip"); | 
|  | replaceCall(nval); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | Module *M = CI->getModule(); | 
|  | if (CF && (CF->isExactlyValue(0.5) || CF->isExactlyValue(-0.5))) { | 
|  | // pow[r](x, [-]0.5) = sqrt(x) | 
|  | bool issqrt = CF->isExactlyValue(0.5); | 
|  | if (Constant *FPExpr = getFunction(M, | 
|  | AMDGPULibFunc(issqrt ? AMDGPULibFunc::EI_SQRT | 
|  | : AMDGPULibFunc::EI_RSQRT, FInfo))) { | 
|  | LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " | 
|  | << FInfo.getName().c_str() << "(" << *opr0 << ")\n"); | 
|  | Value *nval = CreateCallEx(B,FPExpr, opr0, issqrt ? "__pow2sqrt" | 
|  | : "__pow2rsqrt"); | 
|  | replaceCall(nval); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!isUnsafeMath(CI)) | 
|  | return false; | 
|  |  | 
|  | // Unsafe Math optimization | 
|  |  | 
|  | // Remember that ci_opr1 is set if opr1 is integral | 
|  | if (CF) { | 
|  | double dval = (getArgType(FInfo) == AMDGPULibFunc::F32) | 
|  | ? (double)CF->getValueAPF().convertToFloat() | 
|  | : CF->getValueAPF().convertToDouble(); | 
|  | int ival = (int)dval; | 
|  | if ((double)ival == dval) { | 
|  | ci_opr1 = ival; | 
|  | } else | 
|  | ci_opr1 = 0x11111111; | 
|  | } | 
|  |  | 
|  | // pow/powr/pown(x, c) = [1/](x*x*..x); where | 
|  | //   trunc(c) == c && the number of x == c && |c| <= 12 | 
|  | unsigned abs_opr1 = (ci_opr1 < 0) ? -ci_opr1 : ci_opr1; | 
|  | if (abs_opr1 <= 12) { | 
|  | Constant *cnval; | 
|  | Value *nval; | 
|  | if (abs_opr1 == 0) { | 
|  | cnval = ConstantFP::get(eltType, 1.0); | 
|  | if (getVecSize(FInfo) > 1) { | 
|  | cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); | 
|  | } | 
|  | nval = cnval; | 
|  | } else { | 
|  | Value *valx2 = nullptr; | 
|  | nval = nullptr; | 
|  | while (abs_opr1 > 0) { | 
|  | valx2 = valx2 ? B.CreateFMul(valx2, valx2, "__powx2") : opr0; | 
|  | if (abs_opr1 & 1) { | 
|  | nval = nval ? B.CreateFMul(nval, valx2, "__powprod") : valx2; | 
|  | } | 
|  | abs_opr1 >>= 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ci_opr1 < 0) { | 
|  | cnval = ConstantFP::get(eltType, 1.0); | 
|  | if (getVecSize(FInfo) > 1) { | 
|  | cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); | 
|  | } | 
|  | nval = B.CreateFDiv(cnval, nval, "__1powprod"); | 
|  | } | 
|  | LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " | 
|  | << ((ci_opr1 < 0) ? "1/prod(" : "prod(") << *opr0 | 
|  | << ")\n"); | 
|  | replaceCall(nval); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // powr ---> exp2(y * log2(x)) | 
|  | // pown/pow ---> powr(fabs(x), y) | (x & ((int)y << 31)) | 
|  | Constant *ExpExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_EXP2, | 
|  | FInfo)); | 
|  | if (!ExpExpr) | 
|  | return false; | 
|  |  | 
|  | bool needlog = false; | 
|  | bool needabs = false; | 
|  | bool needcopysign = false; | 
|  | Constant *cnval = nullptr; | 
|  | if (getVecSize(FInfo) == 1) { | 
|  | CF = dyn_cast<ConstantFP>(opr0); | 
|  |  | 
|  | if (CF) { | 
|  | double V = (getArgType(FInfo) == AMDGPULibFunc::F32) | 
|  | ? (double)CF->getValueAPF().convertToFloat() | 
|  | : CF->getValueAPF().convertToDouble(); | 
|  |  | 
|  | V = log2(std::abs(V)); | 
|  | cnval = ConstantFP::get(eltType, V); | 
|  | needcopysign = (FInfo.getId() != AMDGPULibFunc::EI_POWR) && | 
|  | CF->isNegative(); | 
|  | } else { | 
|  | needlog = true; | 
|  | needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR && | 
|  | (!CF || CF->isNegative()); | 
|  | } | 
|  | } else { | 
|  | ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr0); | 
|  |  | 
|  | if (!CDV) { | 
|  | needlog = true; | 
|  | needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR; | 
|  | } else { | 
|  | assert ((int)CDV->getNumElements() == getVecSize(FInfo) && | 
|  | "Wrong vector size detected"); | 
|  |  | 
|  | SmallVector<double, 0> DVal; | 
|  | for (int i=0; i < getVecSize(FInfo); ++i) { | 
|  | double V = (getArgType(FInfo) == AMDGPULibFunc::F32) | 
|  | ? (double)CDV->getElementAsFloat(i) | 
|  | : CDV->getElementAsDouble(i); | 
|  | if (V < 0.0) needcopysign = true; | 
|  | V = log2(std::abs(V)); | 
|  | DVal.push_back(V); | 
|  | } | 
|  | if (getArgType(FInfo) == AMDGPULibFunc::F32) { | 
|  | SmallVector<float, 0> FVal; | 
|  | for (unsigned i=0; i < DVal.size(); ++i) { | 
|  | FVal.push_back((float)DVal[i]); | 
|  | } | 
|  | ArrayRef<float> tmp(FVal); | 
|  | cnval = ConstantDataVector::get(M->getContext(), tmp); | 
|  | } else { | 
|  | ArrayRef<double> tmp(DVal); | 
|  | cnval = ConstantDataVector::get(M->getContext(), tmp); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (needcopysign && (FInfo.getId() == AMDGPULibFunc::EI_POW)) { | 
|  | // We cannot handle corner cases for a general pow() function, give up | 
|  | // unless y is a constant integral value. Then proceed as if it were pown. | 
|  | if (getVecSize(FInfo) == 1) { | 
|  | if (const ConstantFP *CF = dyn_cast<ConstantFP>(opr1)) { | 
|  | double y = (getArgType(FInfo) == AMDGPULibFunc::F32) | 
|  | ? (double)CF->getValueAPF().convertToFloat() | 
|  | : CF->getValueAPF().convertToDouble(); | 
|  | if (y != (double)(int64_t)y) | 
|  | return false; | 
|  | } else | 
|  | return false; | 
|  | } else { | 
|  | if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr1)) { | 
|  | for (int i=0; i < getVecSize(FInfo); ++i) { | 
|  | double y = (getArgType(FInfo) == AMDGPULibFunc::F32) | 
|  | ? (double)CDV->getElementAsFloat(i) | 
|  | : CDV->getElementAsDouble(i); | 
|  | if (y != (double)(int64_t)y) | 
|  | return false; | 
|  | } | 
|  | } else | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | Value *nval; | 
|  | if (needabs) { | 
|  | Constant *AbsExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_FABS, | 
|  | FInfo)); | 
|  | if (!AbsExpr) | 
|  | return false; | 
|  | nval = CreateCallEx(B, AbsExpr, opr0, "__fabs"); | 
|  | } else { | 
|  | nval = cnval ? cnval : opr0; | 
|  | } | 
|  | if (needlog) { | 
|  | Constant *LogExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_LOG2, | 
|  | FInfo)); | 
|  | if (!LogExpr) | 
|  | return false; | 
|  | nval = CreateCallEx(B,LogExpr, nval, "__log2"); | 
|  | } | 
|  |  | 
|  | if (FInfo.getId() == AMDGPULibFunc::EI_POWN) { | 
|  | // convert int(32) to fp(f32 or f64) | 
|  | opr1 = B.CreateSIToFP(opr1, nval->getType(), "pownI2F"); | 
|  | } | 
|  | nval = B.CreateFMul(opr1, nval, "__ylogx"); | 
|  | nval = CreateCallEx(B,ExpExpr, nval, "__exp2"); | 
|  |  | 
|  | if (needcopysign) { | 
|  | Value *opr_n; | 
|  | Type* rTy = opr0->getType(); | 
|  | Type* nTyS = eltType->isDoubleTy() ? B.getInt64Ty() : B.getInt32Ty(); | 
|  | Type *nTy = nTyS; | 
|  | if (const VectorType *vTy = dyn_cast<VectorType>(rTy)) | 
|  | nTy = VectorType::get(nTyS, vTy->getNumElements()); | 
|  | unsigned size = nTy->getScalarSizeInBits(); | 
|  | opr_n = CI->getArgOperand(1); | 
|  | if (opr_n->getType()->isIntegerTy()) | 
|  | opr_n = B.CreateZExtOrBitCast(opr_n, nTy, "__ytou"); | 
|  | else | 
|  | opr_n = B.CreateFPToSI(opr1, nTy, "__ytou"); | 
|  |  | 
|  | Value *sign = B.CreateShl(opr_n, size-1, "__yeven"); | 
|  | sign = B.CreateAnd(B.CreateBitCast(opr0, nTy), sign, "__pow_sign"); | 
|  | nval = B.CreateOr(B.CreateBitCast(nval, nTy), sign); | 
|  | nval = B.CreateBitCast(nval, opr0->getType()); | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " | 
|  | << "exp2(" << *opr1 << " * log2(" << *opr0 << "))\n"); | 
|  | replaceCall(nval); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool AMDGPULibCalls::fold_rootn(CallInst *CI, IRBuilder<> &B, | 
|  | const FuncInfo &FInfo) { | 
|  | Value *opr0 = CI->getArgOperand(0); | 
|  | Value *opr1 = CI->getArgOperand(1); | 
|  |  | 
|  | ConstantInt *CINT = dyn_cast<ConstantInt>(opr1); | 
|  | if (!CINT) { | 
|  | return false; | 
|  | } | 
|  | int ci_opr1 = (int)CINT->getSExtValue(); | 
|  | if (ci_opr1 == 1) {  // rootn(x, 1) = x | 
|  | LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << "\n"); | 
|  | replaceCall(opr0); | 
|  | return true; | 
|  | } | 
|  | if (ci_opr1 == 2) {  // rootn(x, 2) = sqrt(x) | 
|  | std::vector<const Type*> ParamsTys; | 
|  | ParamsTys.push_back(opr0->getType()); | 
|  | Module *M = CI->getModule(); | 
|  | if (Constant *FPExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_SQRT, | 
|  | FInfo))) { | 
|  | LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> sqrt(" << *opr0 << ")\n"); | 
|  | Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2sqrt"); | 
|  | replaceCall(nval); | 
|  | return true; | 
|  | } | 
|  | } else if (ci_opr1 == 3) { // rootn(x, 3) = cbrt(x) | 
|  | Module *M = CI->getModule(); | 
|  | if (Constant *FPExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_CBRT, | 
|  | FInfo))) { | 
|  | LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> cbrt(" << *opr0 << ")\n"); | 
|  | Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2cbrt"); | 
|  | replaceCall(nval); | 
|  | return true; | 
|  | } | 
|  | } else if (ci_opr1 == -1) { // rootn(x, -1) = 1.0/x | 
|  | LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1.0 / " << *opr0 << "\n"); | 
|  | Value *nval = B.CreateFDiv(ConstantFP::get(opr0->getType(), 1.0), | 
|  | opr0, | 
|  | "__rootn2div"); | 
|  | replaceCall(nval); | 
|  | return true; | 
|  | } else if (ci_opr1 == -2) {  // rootn(x, -2) = rsqrt(x) | 
|  | std::vector<const Type*> ParamsTys; | 
|  | ParamsTys.push_back(opr0->getType()); | 
|  | Module *M = CI->getModule(); | 
|  | if (Constant *FPExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_RSQRT, | 
|  | FInfo))) { | 
|  | LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> rsqrt(" << *opr0 | 
|  | << ")\n"); | 
|  | Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2rsqrt"); | 
|  | replaceCall(nval); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool AMDGPULibCalls::fold_fma_mad(CallInst *CI, IRBuilder<> &B, | 
|  | const FuncInfo &FInfo) { | 
|  | Value *opr0 = CI->getArgOperand(0); | 
|  | Value *opr1 = CI->getArgOperand(1); | 
|  | Value *opr2 = CI->getArgOperand(2); | 
|  |  | 
|  | ConstantFP *CF0 = dyn_cast<ConstantFP>(opr0); | 
|  | ConstantFP *CF1 = dyn_cast<ConstantFP>(opr1); | 
|  | if ((CF0 && CF0->isZero()) || (CF1 && CF1->isZero())) { | 
|  | // fma/mad(a, b, c) = c if a=0 || b=0 | 
|  | LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr2 << "\n"); | 
|  | replaceCall(opr2); | 
|  | return true; | 
|  | } | 
|  | if (CF0 && CF0->isExactlyValue(1.0f)) { | 
|  | // fma/mad(a, b, c) = b+c if a=1 | 
|  | LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr1 << " + " << *opr2 | 
|  | << "\n"); | 
|  | Value *nval = B.CreateFAdd(opr1, opr2, "fmaadd"); | 
|  | replaceCall(nval); | 
|  | return true; | 
|  | } | 
|  | if (CF1 && CF1->isExactlyValue(1.0f)) { | 
|  | // fma/mad(a, b, c) = a+c if b=1 | 
|  | LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " + " << *opr2 | 
|  | << "\n"); | 
|  | Value *nval = B.CreateFAdd(opr0, opr2, "fmaadd"); | 
|  | replaceCall(nval); | 
|  | return true; | 
|  | } | 
|  | if (ConstantFP *CF = dyn_cast<ConstantFP>(opr2)) { | 
|  | if (CF->isZero()) { | 
|  | // fma/mad(a, b, c) = a*b if c=0 | 
|  | LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " * " | 
|  | << *opr1 << "\n"); | 
|  | Value *nval = B.CreateFMul(opr0, opr1, "fmamul"); | 
|  | replaceCall(nval); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Get a scalar native builtin signle argument FP function | 
|  | Constant* AMDGPULibCalls::getNativeFunction(Module* M, const FuncInfo& FInfo) { | 
|  | if (getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId())) | 
|  | return nullptr; | 
|  | FuncInfo nf = FInfo; | 
|  | nf.setPrefix(AMDGPULibFunc::NATIVE); | 
|  | return getFunction(M, nf); | 
|  | } | 
|  |  | 
|  | // fold sqrt -> native_sqrt (x) | 
|  | bool AMDGPULibCalls::fold_sqrt(CallInst *CI, IRBuilder<> &B, | 
|  | const FuncInfo &FInfo) { | 
|  | if (getArgType(FInfo) == AMDGPULibFunc::F32 && (getVecSize(FInfo) == 1) && | 
|  | (FInfo.getPrefix() != AMDGPULibFunc::NATIVE)) { | 
|  | if (Constant *FPExpr = getNativeFunction( | 
|  | CI->getModule(), AMDGPULibFunc(AMDGPULibFunc::EI_SQRT, FInfo))) { | 
|  | Value *opr0 = CI->getArgOperand(0); | 
|  | LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " | 
|  | << "sqrt(" << *opr0 << ")\n"); | 
|  | Value *nval = CreateCallEx(B,FPExpr, opr0, "__sqrt"); | 
|  | replaceCall(nval); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // fold sin, cos -> sincos. | 
|  | bool AMDGPULibCalls::fold_sincos(CallInst *CI, IRBuilder<> &B, | 
|  | AliasAnalysis *AA) { | 
|  | AMDGPULibFunc fInfo; | 
|  | if (!AMDGPULibFunc::parse(CI->getCalledFunction()->getName(), fInfo)) | 
|  | return false; | 
|  |  | 
|  | assert(fInfo.getId() == AMDGPULibFunc::EI_SIN || | 
|  | fInfo.getId() == AMDGPULibFunc::EI_COS); | 
|  | bool const isSin = fInfo.getId() == AMDGPULibFunc::EI_SIN; | 
|  |  | 
|  | Value *CArgVal = CI->getArgOperand(0); | 
|  | BasicBlock * const CBB = CI->getParent(); | 
|  |  | 
|  | int const MaxScan = 30; | 
|  |  | 
|  | { // fold in load value. | 
|  | LoadInst *LI = dyn_cast<LoadInst>(CArgVal); | 
|  | if (LI && LI->getParent() == CBB) { | 
|  | BasicBlock::iterator BBI = LI->getIterator(); | 
|  | Value *AvailableVal = FindAvailableLoadedValue(LI, CBB, BBI, MaxScan, AA); | 
|  | if (AvailableVal) { | 
|  | CArgVal->replaceAllUsesWith(AvailableVal); | 
|  | if (CArgVal->getNumUses() == 0) | 
|  | LI->eraseFromParent(); | 
|  | CArgVal = CI->getArgOperand(0); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | Module *M = CI->getModule(); | 
|  | fInfo.setId(isSin ? AMDGPULibFunc::EI_COS : AMDGPULibFunc::EI_SIN); | 
|  | std::string const PairName = fInfo.mangle(); | 
|  |  | 
|  | CallInst *UI = nullptr; | 
|  | for (User* U : CArgVal->users()) { | 
|  | CallInst *XI = dyn_cast_or_null<CallInst>(U); | 
|  | if (!XI || XI == CI || XI->getParent() != CBB) | 
|  | continue; | 
|  |  | 
|  | Function *UCallee = XI->getCalledFunction(); | 
|  | if (!UCallee || !UCallee->getName().equals(PairName)) | 
|  | continue; | 
|  |  | 
|  | BasicBlock::iterator BBI = CI->getIterator(); | 
|  | if (BBI == CI->getParent()->begin()) | 
|  | break; | 
|  | --BBI; | 
|  | for (int I = MaxScan; I > 0 && BBI != CBB->begin(); --BBI, --I) { | 
|  | if (cast<Instruction>(BBI) == XI) { | 
|  | UI = XI; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (UI) break; | 
|  | } | 
|  |  | 
|  | if (!UI) return false; | 
|  |  | 
|  | // Merge the sin and cos. | 
|  |  | 
|  | // for OpenCL 2.0 we have only generic implementation of sincos | 
|  | // function. | 
|  | AMDGPULibFunc nf(AMDGPULibFunc::EI_SINCOS, fInfo); | 
|  | const AMDGPUAS AS = AMDGPU::getAMDGPUAS(*M); | 
|  | nf.getLeads()[0].PtrKind = AMDGPULibFunc::getEPtrKindFromAddrSpace(AS.FLAT_ADDRESS); | 
|  | Function *Fsincos = dyn_cast_or_null<Function>(getFunction(M, nf)); | 
|  | if (!Fsincos) return false; | 
|  |  | 
|  | BasicBlock::iterator ItOld = B.GetInsertPoint(); | 
|  | AllocaInst *Alloc = insertAlloca(UI, B, "__sincos_"); | 
|  | B.SetInsertPoint(UI); | 
|  |  | 
|  | Value *P = Alloc; | 
|  | Type *PTy = Fsincos->getFunctionType()->getParamType(1); | 
|  | // The allocaInst allocates the memory in private address space. This need | 
|  | // to be bitcasted to point to the address space of cos pointer type. | 
|  | // In OpenCL 2.0 this is generic, while in 1.2 that is private. | 
|  | if (PTy->getPointerAddressSpace() != AS.PRIVATE_ADDRESS) | 
|  | P = B.CreateAddrSpaceCast(Alloc, PTy); | 
|  | CallInst *Call = CreateCallEx2(B, Fsincos, UI->getArgOperand(0), P); | 
|  |  | 
|  | LLVM_DEBUG(errs() << "AMDIC: fold_sincos (" << *CI << ", " << *UI << ") with " | 
|  | << *Call << "\n"); | 
|  |  | 
|  | if (!isSin) { // CI->cos, UI->sin | 
|  | B.SetInsertPoint(&*ItOld); | 
|  | UI->replaceAllUsesWith(&*Call); | 
|  | Instruction *Reload = B.CreateLoad(Alloc); | 
|  | CI->replaceAllUsesWith(Reload); | 
|  | UI->eraseFromParent(); | 
|  | CI->eraseFromParent(); | 
|  | } else { // CI->sin, UI->cos | 
|  | Instruction *Reload = B.CreateLoad(Alloc); | 
|  | UI->replaceAllUsesWith(Reload); | 
|  | CI->replaceAllUsesWith(Call); | 
|  | UI->eraseFromParent(); | 
|  | CI->eraseFromParent(); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Get insertion point at entry. | 
|  | BasicBlock::iterator AMDGPULibCalls::getEntryIns(CallInst * UI) { | 
|  | Function * Func = UI->getParent()->getParent(); | 
|  | BasicBlock * BB = &Func->getEntryBlock(); | 
|  | assert(BB && "Entry block not found!"); | 
|  | BasicBlock::iterator ItNew = BB->begin(); | 
|  | return ItNew; | 
|  | } | 
|  |  | 
|  | // Insert a AllocsInst at the beginning of function entry block. | 
|  | AllocaInst* AMDGPULibCalls::insertAlloca(CallInst *UI, IRBuilder<> &B, | 
|  | const char *prefix) { | 
|  | BasicBlock::iterator ItNew = getEntryIns(UI); | 
|  | Function *UCallee = UI->getCalledFunction(); | 
|  | Type *RetType = UCallee->getReturnType(); | 
|  | B.SetInsertPoint(&*ItNew); | 
|  | AllocaInst *Alloc = B.CreateAlloca(RetType, 0, | 
|  | std::string(prefix) + UI->getName()); | 
|  | Alloc->setAlignment(UCallee->getParent()->getDataLayout() | 
|  | .getTypeAllocSize(RetType)); | 
|  | return Alloc; | 
|  | } | 
|  |  | 
|  | bool AMDGPULibCalls::evaluateScalarMathFunc(FuncInfo &FInfo, | 
|  | double& Res0, double& Res1, | 
|  | Constant *copr0, Constant *copr1, | 
|  | Constant *copr2) { | 
|  | // By default, opr0/opr1/opr3 holds values of float/double type. | 
|  | // If they are not float/double, each function has to its | 
|  | // operand separately. | 
|  | double opr0=0.0, opr1=0.0, opr2=0.0; | 
|  | ConstantFP *fpopr0 = dyn_cast_or_null<ConstantFP>(copr0); | 
|  | ConstantFP *fpopr1 = dyn_cast_or_null<ConstantFP>(copr1); | 
|  | ConstantFP *fpopr2 = dyn_cast_or_null<ConstantFP>(copr2); | 
|  | if (fpopr0) { | 
|  | opr0 = (getArgType(FInfo) == AMDGPULibFunc::F64) | 
|  | ? fpopr0->getValueAPF().convertToDouble() | 
|  | : (double)fpopr0->getValueAPF().convertToFloat(); | 
|  | } | 
|  |  | 
|  | if (fpopr1) { | 
|  | opr1 = (getArgType(FInfo) == AMDGPULibFunc::F64) | 
|  | ? fpopr1->getValueAPF().convertToDouble() | 
|  | : (double)fpopr1->getValueAPF().convertToFloat(); | 
|  | } | 
|  |  | 
|  | if (fpopr2) { | 
|  | opr2 = (getArgType(FInfo) == AMDGPULibFunc::F64) | 
|  | ? fpopr2->getValueAPF().convertToDouble() | 
|  | : (double)fpopr2->getValueAPF().convertToFloat(); | 
|  | } | 
|  |  | 
|  | switch (FInfo.getId()) { | 
|  | default : return false; | 
|  |  | 
|  | case AMDGPULibFunc::EI_ACOS: | 
|  | Res0 = acos(opr0); | 
|  | return true; | 
|  |  | 
|  | case AMDGPULibFunc::EI_ACOSH: | 
|  | // acosh(x) == log(x + sqrt(x*x - 1)) | 
|  | Res0 = log(opr0 + sqrt(opr0*opr0 - 1.0)); | 
|  | return true; | 
|  |  | 
|  | case AMDGPULibFunc::EI_ACOSPI: | 
|  | Res0 = acos(opr0) / MATH_PI; | 
|  | return true; | 
|  |  | 
|  | case AMDGPULibFunc::EI_ASIN: | 
|  | Res0 = asin(opr0); | 
|  | return true; | 
|  |  | 
|  | case AMDGPULibFunc::EI_ASINH: | 
|  | // asinh(x) == log(x + sqrt(x*x + 1)) | 
|  | Res0 = log(opr0 + sqrt(opr0*opr0 + 1.0)); | 
|  | return true; | 
|  |  | 
|  | case AMDGPULibFunc::EI_ASINPI: | 
|  | Res0 = asin(opr0) / MATH_PI; | 
|  | return true; | 
|  |  | 
|  | case AMDGPULibFunc::EI_ATAN: | 
|  | Res0 = atan(opr0); | 
|  | return true; | 
|  |  | 
|  | case AMDGPULibFunc::EI_ATANH: | 
|  | // atanh(x) == (log(x+1) - log(x-1))/2; | 
|  | Res0 = (log(opr0 + 1.0) - log(opr0 - 1.0))/2.0; | 
|  | return true; | 
|  |  | 
|  | case AMDGPULibFunc::EI_ATANPI: | 
|  | Res0 = atan(opr0) / MATH_PI; | 
|  | return true; | 
|  |  | 
|  | case AMDGPULibFunc::EI_CBRT: | 
|  | Res0 = (opr0 < 0.0) ? -pow(-opr0, 1.0/3.0) : pow(opr0, 1.0/3.0); | 
|  | return true; | 
|  |  | 
|  | case AMDGPULibFunc::EI_COS: | 
|  | Res0 = cos(opr0); | 
|  | return true; | 
|  |  | 
|  | case AMDGPULibFunc::EI_COSH: | 
|  | Res0 = cosh(opr0); | 
|  | return true; | 
|  |  | 
|  | case AMDGPULibFunc::EI_COSPI: | 
|  | Res0 = cos(MATH_PI * opr0); | 
|  | return true; | 
|  |  | 
|  | case AMDGPULibFunc::EI_EXP: | 
|  | Res0 = exp(opr0); | 
|  | return true; | 
|  |  | 
|  | case AMDGPULibFunc::EI_EXP2: | 
|  | Res0 = pow(2.0, opr0); | 
|  | return true; | 
|  |  | 
|  | case AMDGPULibFunc::EI_EXP10: | 
|  | Res0 = pow(10.0, opr0); | 
|  | return true; | 
|  |  | 
|  | case AMDGPULibFunc::EI_EXPM1: | 
|  | Res0 = exp(opr0) - 1.0; | 
|  | return true; | 
|  |  | 
|  | case AMDGPULibFunc::EI_LOG: | 
|  | Res0 = log(opr0); | 
|  | return true; | 
|  |  | 
|  | case AMDGPULibFunc::EI_LOG2: | 
|  | Res0 = log(opr0) / log(2.0); | 
|  | return true; | 
|  |  | 
|  | case AMDGPULibFunc::EI_LOG10: | 
|  | Res0 = log(opr0) / log(10.0); | 
|  | return true; | 
|  |  | 
|  | case AMDGPULibFunc::EI_RSQRT: | 
|  | Res0 = 1.0 / sqrt(opr0); | 
|  | return true; | 
|  |  | 
|  | case AMDGPULibFunc::EI_SIN: | 
|  | Res0 = sin(opr0); | 
|  | return true; | 
|  |  | 
|  | case AMDGPULibFunc::EI_SINH: | 
|  | Res0 = sinh(opr0); | 
|  | return true; | 
|  |  | 
|  | case AMDGPULibFunc::EI_SINPI: | 
|  | Res0 = sin(MATH_PI * opr0); | 
|  | return true; | 
|  |  | 
|  | case AMDGPULibFunc::EI_SQRT: | 
|  | Res0 = sqrt(opr0); | 
|  | return true; | 
|  |  | 
|  | case AMDGPULibFunc::EI_TAN: | 
|  | Res0 = tan(opr0); | 
|  | return true; | 
|  |  | 
|  | case AMDGPULibFunc::EI_TANH: | 
|  | Res0 = tanh(opr0); | 
|  | return true; | 
|  |  | 
|  | case AMDGPULibFunc::EI_TANPI: | 
|  | Res0 = tan(MATH_PI * opr0); | 
|  | return true; | 
|  |  | 
|  | case AMDGPULibFunc::EI_RECIP: | 
|  | Res0 = 1.0 / opr0; | 
|  | return true; | 
|  |  | 
|  | // two-arg functions | 
|  | case AMDGPULibFunc::EI_DIVIDE: | 
|  | Res0 = opr0 / opr1; | 
|  | return true; | 
|  |  | 
|  | case AMDGPULibFunc::EI_POW: | 
|  | case AMDGPULibFunc::EI_POWR: | 
|  | Res0 = pow(opr0, opr1); | 
|  | return true; | 
|  |  | 
|  | case AMDGPULibFunc::EI_POWN: { | 
|  | if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) { | 
|  | double val = (double)iopr1->getSExtValue(); | 
|  | Res0 = pow(opr0, val); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | case AMDGPULibFunc::EI_ROOTN: { | 
|  | if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) { | 
|  | double val = (double)iopr1->getSExtValue(); | 
|  | Res0 = pow(opr0, 1.0 / val); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // with ptr arg | 
|  | case AMDGPULibFunc::EI_SINCOS: | 
|  | Res0 = sin(opr0); | 
|  | Res1 = cos(opr0); | 
|  | return true; | 
|  |  | 
|  | // three-arg functions | 
|  | case AMDGPULibFunc::EI_FMA: | 
|  | case AMDGPULibFunc::EI_MAD: | 
|  | Res0 = opr0 * opr1 + opr2; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool AMDGPULibCalls::evaluateCall(CallInst *aCI, FuncInfo &FInfo) { | 
|  | int numArgs = (int)aCI->getNumArgOperands(); | 
|  | if (numArgs > 3) | 
|  | return false; | 
|  |  | 
|  | Constant *copr0 = nullptr; | 
|  | Constant *copr1 = nullptr; | 
|  | Constant *copr2 = nullptr; | 
|  | if (numArgs > 0) { | 
|  | if ((copr0 = dyn_cast<Constant>(aCI->getArgOperand(0))) == nullptr) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (numArgs > 1) { | 
|  | if ((copr1 = dyn_cast<Constant>(aCI->getArgOperand(1))) == nullptr) { | 
|  | if (FInfo.getId() != AMDGPULibFunc::EI_SINCOS) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (numArgs > 2) { | 
|  | if ((copr2 = dyn_cast<Constant>(aCI->getArgOperand(2))) == nullptr) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // At this point, all arguments to aCI are constants. | 
|  |  | 
|  | // max vector size is 16, and sincos will generate two results. | 
|  | double DVal0[16], DVal1[16]; | 
|  | bool hasTwoResults = (FInfo.getId() == AMDGPULibFunc::EI_SINCOS); | 
|  | if (getVecSize(FInfo) == 1) { | 
|  | if (!evaluateScalarMathFunc(FInfo, DVal0[0], | 
|  | DVal1[0], copr0, copr1, copr2)) { | 
|  | return false; | 
|  | } | 
|  | } else { | 
|  | ConstantDataVector *CDV0 = dyn_cast_or_null<ConstantDataVector>(copr0); | 
|  | ConstantDataVector *CDV1 = dyn_cast_or_null<ConstantDataVector>(copr1); | 
|  | ConstantDataVector *CDV2 = dyn_cast_or_null<ConstantDataVector>(copr2); | 
|  | for (int i=0; i < getVecSize(FInfo); ++i) { | 
|  | Constant *celt0 = CDV0 ? CDV0->getElementAsConstant(i) : nullptr; | 
|  | Constant *celt1 = CDV1 ? CDV1->getElementAsConstant(i) : nullptr; | 
|  | Constant *celt2 = CDV2 ? CDV2->getElementAsConstant(i) : nullptr; | 
|  | if (!evaluateScalarMathFunc(FInfo, DVal0[i], | 
|  | DVal1[i], celt0, celt1, celt2)) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | LLVMContext &context = CI->getParent()->getParent()->getContext(); | 
|  | Constant *nval0, *nval1; | 
|  | if (getVecSize(FInfo) == 1) { | 
|  | nval0 = ConstantFP::get(CI->getType(), DVal0[0]); | 
|  | if (hasTwoResults) | 
|  | nval1 = ConstantFP::get(CI->getType(), DVal1[0]); | 
|  | } else { | 
|  | if (getArgType(FInfo) == AMDGPULibFunc::F32) { | 
|  | SmallVector <float, 0> FVal0, FVal1; | 
|  | for (int i=0; i < getVecSize(FInfo); ++i) | 
|  | FVal0.push_back((float)DVal0[i]); | 
|  | ArrayRef<float> tmp0(FVal0); | 
|  | nval0 = ConstantDataVector::get(context, tmp0); | 
|  | if (hasTwoResults) { | 
|  | for (int i=0; i < getVecSize(FInfo); ++i) | 
|  | FVal1.push_back((float)DVal1[i]); | 
|  | ArrayRef<float> tmp1(FVal1); | 
|  | nval1 = ConstantDataVector::get(context, tmp1); | 
|  | } | 
|  | } else { | 
|  | ArrayRef<double> tmp0(DVal0); | 
|  | nval0 = ConstantDataVector::get(context, tmp0); | 
|  | if (hasTwoResults) { | 
|  | ArrayRef<double> tmp1(DVal1); | 
|  | nval1 = ConstantDataVector::get(context, tmp1); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (hasTwoResults) { | 
|  | // sincos | 
|  | assert(FInfo.getId() == AMDGPULibFunc::EI_SINCOS && | 
|  | "math function with ptr arg not supported yet"); | 
|  | new StoreInst(nval1, aCI->getArgOperand(1), aCI); | 
|  | } | 
|  |  | 
|  | replaceCall(nval0); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Public interface to the Simplify LibCalls pass. | 
|  | FunctionPass *llvm::createAMDGPUSimplifyLibCallsPass(const TargetOptions &Opt) { | 
|  | return new AMDGPUSimplifyLibCalls(Opt); | 
|  | } | 
|  |  | 
|  | FunctionPass *llvm::createAMDGPUUseNativeCallsPass() { | 
|  | return new AMDGPUUseNativeCalls(); | 
|  | } | 
|  |  | 
|  | static bool setFastFlags(Function &F, const TargetOptions &Options) { | 
|  | AttrBuilder B; | 
|  |  | 
|  | if (Options.UnsafeFPMath || Options.NoInfsFPMath) | 
|  | B.addAttribute("no-infs-fp-math", "true"); | 
|  | if (Options.UnsafeFPMath || Options.NoNaNsFPMath) | 
|  | B.addAttribute("no-nans-fp-math", "true"); | 
|  | if (Options.UnsafeFPMath) { | 
|  | B.addAttribute("less-precise-fpmad", "true"); | 
|  | B.addAttribute("unsafe-fp-math", "true"); | 
|  | } | 
|  |  | 
|  | if (!B.hasAttributes()) | 
|  | return false; | 
|  |  | 
|  | F.addAttributes(AttributeList::FunctionIndex, B); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool AMDGPUSimplifyLibCalls::runOnFunction(Function &F) { | 
|  | if (skipFunction(F)) | 
|  | return false; | 
|  |  | 
|  | bool Changed = false; | 
|  | auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "AMDIC: process function "; | 
|  | F.printAsOperand(dbgs(), false, F.getParent()); dbgs() << '\n';); | 
|  |  | 
|  | if (!EnablePreLink) | 
|  | Changed |= setFastFlags(F, Options); | 
|  |  | 
|  | for (auto &BB : F) { | 
|  | for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ) { | 
|  | // Ignore non-calls. | 
|  | CallInst *CI = dyn_cast<CallInst>(I); | 
|  | ++I; | 
|  | if (!CI) continue; | 
|  |  | 
|  | // Ignore indirect calls. | 
|  | Function *Callee = CI->getCalledFunction(); | 
|  | if (Callee == 0) continue; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "AMDIC: try folding " << *CI << "\n"; | 
|  | dbgs().flush()); | 
|  | if(Simplifier.fold(CI, AA)) | 
|  | Changed = true; | 
|  | } | 
|  | } | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | bool AMDGPUUseNativeCalls::runOnFunction(Function &F) { | 
|  | if (skipFunction(F) || UseNative.empty()) | 
|  | return false; | 
|  |  | 
|  | bool Changed = false; | 
|  | for (auto &BB : F) { | 
|  | for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ) { | 
|  | // Ignore non-calls. | 
|  | CallInst *CI = dyn_cast<CallInst>(I); | 
|  | ++I; | 
|  | if (!CI) continue; | 
|  |  | 
|  | // Ignore indirect calls. | 
|  | Function *Callee = CI->getCalledFunction(); | 
|  | if (Callee == 0) continue; | 
|  |  | 
|  | if(Simplifier.useNative(CI)) | 
|  | Changed = true; | 
|  | } | 
|  | } | 
|  | return Changed; | 
|  | } |