| //===-- PoolAllocate.cpp - Pool Allocation Pass ---------------------------===// |
| // |
| // This transform changes programs so that disjoint data structures are |
| // allocated out of different pools of memory, increasing locality and shrinking |
| // pointer size. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/IPO/PoolAllocate.h" |
| #include "llvm/Transforms/CloneFunction.h" |
| #include "llvm/Analysis/DataStructure.h" |
| #include "llvm/Analysis/DataStructureGraph.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Module.h" |
| #include "llvm/Function.h" |
| #include "llvm/BasicBlock.h" |
| #include "llvm/iMemory.h" |
| #include "llvm/iTerminators.h" |
| #include "llvm/iOther.h" |
| #include "llvm/ConstantVals.h" |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/Support/InstVisitor.h" |
| #include "Support/DepthFirstIterator.h" |
| #include "Support/STLExtras.h" |
| #include <algorithm> |
| |
| |
| // FIXME: This is dependant on the sparc backend layout conventions!! |
| static TargetData TargetData("test"); |
| |
| namespace { |
| // ScalarInfo - Information about an LLVM value that we know points to some |
| // datastructure we are processing. |
| // |
| struct ScalarInfo { |
| Value *Val; // Scalar value in Current Function |
| DSNode *Node; // DataStructure node it points to |
| Value *PoolHandle; // PoolTy* LLVM value |
| |
| ScalarInfo(Value *V, DSNode *N, Value *PH) |
| : Val(V), Node(N), PoolHandle(PH) { |
| assert(V && N && PH && "Null value passed to ScalarInfo ctor!"); |
| } |
| }; |
| |
| // CallArgInfo - Information on one operand for a call that got expanded. |
| struct CallArgInfo { |
| int ArgNo; // Call argument number this corresponds to |
| DSNode *Node; // The graph node for the pool |
| Value *PoolHandle; // The LLVM value that is the pool pointer |
| |
| CallArgInfo(int Arg, DSNode *N, Value *PH) |
| : ArgNo(Arg), Node(N), PoolHandle(PH) { |
| assert(Arg >= -1 && N && PH && "Illegal values to CallArgInfo ctor!"); |
| } |
| |
| // operator< when sorting, sort by argument number. |
| bool operator<(const CallArgInfo &CAI) const { |
| return ArgNo < CAI.ArgNo; |
| } |
| }; |
| |
| // TransformFunctionInfo - Information about how a function eeds to be |
| // transformed. |
| // |
| struct TransformFunctionInfo { |
| // ArgInfo - Maintain information about the arguments that need to be |
| // processed. Each pair corresponds to an argument (whose number is the |
| // first element) that needs to have a pool pointer (the second element) |
| // passed into the transformed function with it. |
| // |
| // As a special case, "argument" number -1 corresponds to the return value. |
| // |
| vector<CallArgInfo> ArgInfo; |
| |
| // Func - The function to be transformed... |
| Function *Func; |
| |
| // The call instruction that is used to map CallArgInfo PoolHandle values |
| // into the new function values. |
| CallInst *Call; |
| |
| // default ctor... |
| TransformFunctionInfo() : Func(0), Call(0) {} |
| |
| bool operator<(const TransformFunctionInfo &TFI) const { |
| if (Func < TFI.Func) return true; |
| if (Func > TFI.Func) return false; |
| if (ArgInfo.size() < TFI.ArgInfo.size()) return true; |
| if (ArgInfo.size() > TFI.ArgInfo.size()) return false; |
| return ArgInfo < TFI.ArgInfo; |
| } |
| |
| void finalizeConstruction() { |
| // Sort the vector so that the return value is first, followed by the |
| // argument records, in order. Note that this must be a stable sort so |
| // that the entries with the same sorting criteria (ie they are multiple |
| // pool entries for the same argument) are kept in depth first order. |
| stable_sort(ArgInfo.begin(), ArgInfo.end()); |
| } |
| }; |
| |
| |
| // Define the pass class that we implement... |
| class PoolAllocate : public Pass { |
| // PoolTy - The type of a scalar value that contains a pool pointer. |
| PointerType *PoolTy; |
| public: |
| |
| PoolAllocate() { |
| // Initialize the PoolTy instance variable, since the type never changes. |
| vector<const Type*> PoolElements; |
| PoolElements.push_back(PointerType::get(Type::SByteTy)); |
| PoolElements.push_back(Type::UIntTy); |
| PoolTy = PointerType::get(StructType::get(PoolElements)); |
| // PoolTy = { sbyte*, uint }* |
| |
| CurModule = 0; DS = 0; |
| PoolInit = PoolDestroy = PoolAlloc = PoolFree = 0; |
| } |
| |
| bool run(Module *M); |
| |
| // getAnalysisUsageInfo - This function requires data structure information |
| // to be able to see what is pool allocatable. |
| // |
| virtual void getAnalysisUsageInfo(Pass::AnalysisSet &Required, |
| Pass::AnalysisSet &,Pass::AnalysisSet &) { |
| Required.push_back(DataStructure::ID); |
| } |
| |
| public: |
| // CurModule - The module being processed. |
| Module *CurModule; |
| |
| // DS - The data structure graph for the module being processed. |
| DataStructure *DS; |
| |
| // Prototypes that we add to support pool allocation... |
| Function *PoolInit, *PoolDestroy, *PoolAlloc, *PoolFree; |
| |
| // The map of already transformed functions... note that the keys of this |
| // map do not have meaningful values for 'Call' or the 'PoolHandle' elements |
| // of the ArgInfo elements. |
| // |
| map<TransformFunctionInfo, Function*> TransformedFunctions; |
| |
| // getTransformedFunction - Get a transformed function, or return null if |
| // the function specified hasn't been transformed yet. |
| // |
| Function *getTransformedFunction(TransformFunctionInfo &TFI) const { |
| map<TransformFunctionInfo, Function*>::const_iterator I = |
| TransformedFunctions.find(TFI); |
| if (I != TransformedFunctions.end()) return I->second; |
| return 0; |
| } |
| |
| |
| // addPoolPrototypes - Add prototypes for the pool methods to the specified |
| // module and update the Pool* instance variables to point to them. |
| // |
| void addPoolPrototypes(Module *M); |
| |
| |
| // CreatePools - Insert instructions into the function we are processing to |
| // create all of the memory pool objects themselves. This also inserts |
| // destruction code. Add an alloca for each pool that is allocated to the |
| // PoolDescriptors map. |
| // |
| void CreatePools(Function *F, const vector<AllocDSNode*> &Allocs, |
| map<DSNode*, Value*> &PoolDescriptors); |
| |
| // processFunction - Convert a function to use pool allocation where |
| // available. |
| // |
| bool processFunction(Function *F); |
| |
| // transformFunctionBody - This transforms the instruction in 'F' to use the |
| // pools specified in PoolDescriptors when modifying data structure nodes |
| // specified in the PoolDescriptors map. IPFGraph is the closed data |
| // structure graph for F, of which the PoolDescriptor nodes come from. |
| // |
| void transformFunctionBody(Function *F, FunctionDSGraph &IPFGraph, |
| map<DSNode*, Value*> &PoolDescriptors); |
| |
| // transformFunction - Transform the specified function the specified way. |
| // It we have already transformed that function that way, don't do anything. |
| // The nodes in the TransformFunctionInfo come out of callers data structure |
| // graph. |
| // |
| void transformFunction(TransformFunctionInfo &TFI, |
| FunctionDSGraph &CallerIPGraph); |
| |
| }; |
| } |
| |
| |
| |
| // isNotPoolableAlloc - This is a predicate that returns true if the specified |
| // allocation node in a data structure graph is eligable for pool allocation. |
| // |
| static bool isNotPoolableAlloc(const AllocDSNode *DS) { |
| if (DS->isAllocaNode()) return true; // Do not pool allocate alloca's. |
| |
| MallocInst *MI = cast<MallocInst>(DS->getAllocation()); |
| if (MI->isArrayAllocation() && !isa<Constant>(MI->getArraySize())) |
| return true; // Do not allow variable size allocations... |
| |
| return false; |
| } |
| |
| // processFunction - Convert a function to use pool allocation where |
| // available. |
| // |
| bool PoolAllocate::processFunction(Function *F) { |
| // Get the closed datastructure graph for the current function... if there are |
| // any allocations in this graph that are not escaping, we need to pool |
| // allocate them here! |
| // |
| FunctionDSGraph &IPGraph = DS->getClosedDSGraph(F); |
| |
| // Get all of the allocations that do not escape the current function. Since |
| // they are still live (they exist in the graph at all), this means we must |
| // have scalar references to these nodes, but the scalars are never returned. |
| // |
| vector<AllocDSNode*> Allocs; |
| IPGraph.getNonEscapingAllocations(Allocs); |
| |
| // Filter out allocations that we cannot handle. Currently, this includes |
| // variable sized array allocations and alloca's (which we do not want to |
| // pool allocate) |
| // |
| Allocs.erase(remove_if(Allocs.begin(), Allocs.end(), isNotPoolableAlloc), |
| Allocs.end()); |
| |
| |
| if (Allocs.empty()) return false; // Nothing to do. |
| |
| // Insert instructions into the function we are processing to create all of |
| // the memory pool objects themselves. This also inserts destruction code. |
| // This fills in the PoolDescriptors map to associate the alloc node with the |
| // allocation of the memory pool corresponding to it. |
| // |
| map<DSNode*, Value*> PoolDescriptors; |
| CreatePools(F, Allocs, PoolDescriptors); |
| |
| // Now we need to figure out what called methods we need to transform, and |
| // how. To do this, we look at all of the scalars, seeing which functions are |
| // either used as a scalar value (so they return a data structure), or are |
| // passed one of our scalar values. |
| // |
| transformFunctionBody(F, IPGraph, PoolDescriptors); |
| |
| return true; |
| } |
| |
| |
| class FunctionBodyTransformer : public InstVisitor<FunctionBodyTransformer> { |
| PoolAllocate &PoolAllocator; |
| vector<ScalarInfo> &Scalars; |
| map<CallInst*, TransformFunctionInfo> &CallMap; |
| |
| const ScalarInfo &getScalar(const Value *V) { |
| for (unsigned i = 0, e = Scalars.size(); i != e; ++i) |
| if (Scalars[i].Val == V) return Scalars[i]; |
| assert(0 && "Scalar not found in getScalar!"); |
| abort(); |
| return Scalars[0]; |
| } |
| |
| // updateScalars - Map the scalars array entries that look like 'From' to look |
| // like 'To'. |
| // |
| void updateScalars(Value *From, Value *To) { |
| for (unsigned i = 0, e = Scalars.size(); i != e; ++i) |
| if (Scalars[i].Val == From) Scalars[i].Val = To; |
| } |
| |
| public: |
| FunctionBodyTransformer(PoolAllocate &PA, vector<ScalarInfo> &S, |
| map<CallInst*, TransformFunctionInfo> &C) |
| : PoolAllocator(PA), Scalars(S), CallMap(C) {} |
| |
| void visitMemAccessInst(MemAccessInst *MAI) { |
| // Don't do anything to load, store, or GEP yet... |
| } |
| |
| // Convert a malloc instruction into a call to poolalloc |
| void visitMallocInst(MallocInst *I) { |
| const ScalarInfo &SC = getScalar(I); |
| BasicBlock *BB = I->getParent(); |
| BasicBlock::iterator MI = find(BB->begin(), BB->end(), I); |
| BB->getInstList().remove(MI); // Remove the Malloc instruction from the BB |
| |
| // Create a new call to poolalloc before the malloc instruction |
| vector<Value*> Args; |
| Args.push_back(SC.PoolHandle); |
| CallInst *Call = new CallInst(PoolAllocator.PoolAlloc, Args, I->getName()); |
| MI = BB->getInstList().insert(MI, Call)+1; |
| |
| // If the type desired is not void*, cast it now... |
| Value *Ptr = Call; |
| if (Call->getType() != I->getType()) { |
| CastInst *CI = new CastInst(Ptr, I->getType(), I->getName()); |
| BB->getInstList().insert(MI, CI); |
| Ptr = CI; |
| } |
| |
| // Change everything that used the malloc to now use the pool alloc... |
| I->replaceAllUsesWith(Ptr); |
| |
| // Update the scalars array... |
| updateScalars(I, Ptr); |
| |
| // Delete the instruction now. |
| delete I; |
| } |
| |
| // Convert the free instruction into a call to poolfree |
| void visitFreeInst(FreeInst *I) { |
| Value *Ptr = I->getOperand(0); |
| const ScalarInfo &SC = getScalar(Ptr); |
| BasicBlock *BB = I->getParent(); |
| BasicBlock::iterator FI = find(BB->begin(), BB->end(), I); |
| |
| // If the value is not an sbyte*, convert it now! |
| if (Ptr->getType() != PointerType::get(Type::SByteTy)) { |
| CastInst *CI = new CastInst(Ptr, PointerType::get(Type::SByteTy), |
| Ptr->getName()); |
| FI = BB->getInstList().insert(FI, CI)+1; |
| Ptr = CI; |
| } |
| |
| // Create a new call to poolfree before the free instruction |
| vector<Value*> Args; |
| Args.push_back(SC.PoolHandle); |
| Args.push_back(Ptr); |
| CallInst *Call = new CallInst(PoolAllocator.PoolFree, Args); |
| FI = BB->getInstList().insert(FI, Call)+1; |
| |
| // Remove the old free instruction... |
| delete BB->getInstList().remove(FI); |
| } |
| |
| // visitCallInst - Create a new call instruction with the extra arguments for |
| // all of the memory pools that the call needs. |
| // |
| void visitCallInst(CallInst *I) { |
| TransformFunctionInfo &TI = CallMap[I]; |
| BasicBlock *BB = I->getParent(); |
| BasicBlock::iterator CI = find(BB->begin(), BB->end(), I); |
| BB->getInstList().remove(CI); // Remove the old call instruction |
| |
| // Start with all of the old arguments... |
| vector<Value*> Args(I->op_begin()+1, I->op_end()); |
| |
| // Add all of the pool arguments... |
| for (unsigned i = 0, e = TI.ArgInfo.size(); i != e; ++i) |
| Args.push_back(TI.ArgInfo[i].PoolHandle); |
| |
| Function *NF = PoolAllocator.getTransformedFunction(TI); |
| CallInst *NewCall = new CallInst(NF, Args, I->getName()); |
| BB->getInstList().insert(CI, NewCall); |
| |
| // Change everything that used the malloc to now use the pool alloc... |
| if (I->getType() != Type::VoidTy) { |
| I->replaceAllUsesWith(NewCall); |
| |
| // Update the scalars array... |
| updateScalars(I, NewCall); |
| } |
| |
| delete I; // Delete the old call instruction now... |
| } |
| |
| void visitPHINode(PHINode *PN) { |
| // Handle PHI Node |
| } |
| |
| void visitReturnInst(ReturnInst *I) { |
| // Nothing of interest |
| } |
| |
| void visitSetCondInst(SetCondInst *SCI) { |
| // hrm, notice a pattern? |
| } |
| |
| void visitInstruction(Instruction *I) { |
| cerr << "Unknown instruction to FunctionBodyTransformer:\n"; |
| I->dump(); |
| } |
| |
| }; |
| |
| |
| static void addCallInfo(DataStructure *DS, |
| TransformFunctionInfo &TFI, CallInst *CI, int Arg, |
| DSNode *GraphNode, |
| map<DSNode*, Value*> &PoolDescriptors) { |
| assert(CI->getCalledFunction() && "Cannot handle indirect calls yet!"); |
| assert(TFI.Func == 0 || TFI.Func == CI->getCalledFunction() && |
| "Function call record should always call the same function!"); |
| assert(TFI.Call == 0 || TFI.Call == CI && |
| "Call element already filled in with different value!"); |
| TFI.Func = CI->getCalledFunction(); |
| TFI.Call = CI; |
| //FunctionDSGraph &CalledGraph = DS->getClosedDSGraph(TFI.Func); |
| |
| // For now, add the entire graph that is pointed to by the call argument. |
| // This graph can and should be pruned to only what the function itself will |
| // use, because often this will be a dramatically smaller subset of what we |
| // are providing. |
| // |
| for (df_iterator<DSNode*> I = df_begin(GraphNode), E = df_end(GraphNode); |
| I != E; ++I) { |
| TFI.ArgInfo.push_back(CallArgInfo(Arg, *I, PoolDescriptors[*I])); |
| } |
| } |
| |
| |
| // transformFunctionBody - This transforms the instruction in 'F' to use the |
| // pools specified in PoolDescriptors when modifying data structure nodes |
| // specified in the PoolDescriptors map. Specifically, scalar values specified |
| // in the Scalars vector must be remapped. IPFGraph is the closed data |
| // structure graph for F, of which the PoolDescriptor nodes come from. |
| // |
| void PoolAllocate::transformFunctionBody(Function *F, FunctionDSGraph &IPFGraph, |
| map<DSNode*, Value*> &PoolDescriptors) { |
| |
| // Loop through the value map looking for scalars that refer to nonescaping |
| // allocations. Add them to the Scalars vector. Note that we may have |
| // multiple entries in the Scalars vector for each value if it points to more |
| // than one object. |
| // |
| map<Value*, PointerValSet> &ValMap = IPFGraph.getValueMap(); |
| vector<ScalarInfo> Scalars; |
| |
| cerr << "Building scalar map:\n"; |
| |
| for (map<Value*, PointerValSet>::iterator I = ValMap.begin(), |
| E = ValMap.end(); I != E; ++I) { |
| const PointerValSet &PVS = I->second; // Set of things pointed to by scalar |
| |
| cerr << "Scalar Mapping from:"; I->first->dump(); |
| cerr << "\nScalar Mapping to: "; PVS.print(cerr); |
| |
| // Check to see if the scalar points to a data structure node... |
| for (unsigned i = 0, e = PVS.size(); i != e; ++i) { |
| assert(PVS[i].Index == 0 && "Nonzero not handled yet!"); |
| |
| // If the allocation is in the nonescaping set... |
| map<DSNode*, Value*>::iterator AI = PoolDescriptors.find(PVS[i].Node); |
| if (AI != PoolDescriptors.end()) // Add it to the list of scalars |
| Scalars.push_back(ScalarInfo(I->first, PVS[i].Node, AI->second)); |
| } |
| } |
| |
| |
| |
| cerr << "\nIn '" << F->getName() |
| << "': Found the following values that point to poolable nodes:\n"; |
| |
| for (unsigned i = 0, e = Scalars.size(); i != e; ++i) |
| Scalars[i].Val->dump(); |
| |
| // CallMap - Contain an entry for every call instruction that needs to be |
| // transformed. Each entry in the map contains information about what we need |
| // to do to each call site to change it to work. |
| // |
| map<CallInst*, TransformFunctionInfo> CallMap; |
| |
| // Now we need to figure out what called methods we need to transform, and |
| // how. To do this, we look at all of the scalars, seeing which functions are |
| // either used as a scalar value (so they return a data structure), or are |
| // passed one of our scalar values. |
| // |
| for (unsigned i = 0, e = Scalars.size(); i != e; ++i) { |
| Value *ScalarVal = Scalars[i].Val; |
| |
| // Check to see if the scalar _IS_ a call... |
| if (CallInst *CI = dyn_cast<CallInst>(ScalarVal)) |
| // If so, add information about the pool it will be returning... |
| addCallInfo(DS, CallMap[CI], CI, -1, Scalars[i].Node, PoolDescriptors); |
| |
| // Check to see if the scalar is an operand to a call... |
| for (Value::use_iterator UI = ScalarVal->use_begin(), |
| UE = ScalarVal->use_end(); UI != UE; ++UI) { |
| if (CallInst *CI = dyn_cast<CallInst>(*UI)) { |
| // Find out which operand this is to the call instruction... |
| User::op_iterator OI = find(CI->op_begin(), CI->op_end(), ScalarVal); |
| assert(OI != CI->op_end() && "Call on use list but not an operand!?"); |
| assert(OI != CI->op_begin() && "Pointer operand is call destination?"); |
| |
| // FIXME: This is broken if the same pointer is passed to a call more |
| // than once! It will get multiple entries for the first pointer. |
| |
| // Add the operand number and pool handle to the call table... |
| addCallInfo(DS, CallMap[CI], CI, OI-CI->op_begin()-1, Scalars[i].Node, |
| PoolDescriptors); |
| } |
| } |
| } |
| |
| // Print out call map... |
| for (map<CallInst*, TransformFunctionInfo>::iterator I = CallMap.begin(); |
| I != CallMap.end(); ++I) { |
| cerr << "\nFor call: "; |
| I->first->dump(); |
| I->second.finalizeConstruction(); |
| cerr << I->second.Func->getName() << " must pass pool pointer for args #"; |
| for (unsigned i = 0; i < I->second.ArgInfo.size(); ++i) |
| cerr << I->second.ArgInfo[i].ArgNo << ", "; |
| cerr << "\n"; |
| } |
| |
| // Loop through all of the call nodes, recursively creating the new functions |
| // that we want to call... This uses a map to prevent infinite recursion and |
| // to avoid duplicating functions unneccesarily. |
| // |
| for (map<CallInst*, TransformFunctionInfo>::iterator I = CallMap.begin(), |
| E = CallMap.end(); I != E; ++I) { |
| // Make sure the entries are sorted. |
| I->second.finalizeConstruction(); |
| |
| // Transform all of the functions we need, or at least ensure there is a |
| // cached version available. |
| transformFunction(I->second, IPFGraph); |
| } |
| |
| // Now that all of the functions that we want to call are available, transform |
| // the local method so that it uses the pools locally and passes them to the |
| // functions that we just hacked up. |
| // |
| |
| // First step, find the instructions to be modified. |
| vector<Instruction*> InstToFix; |
| for (unsigned i = 0, e = Scalars.size(); i != e; ++i) { |
| Value *ScalarVal = Scalars[i].Val; |
| |
| // Check to see if the scalar _IS_ an instruction. If so, it is involved. |
| if (Instruction *Inst = dyn_cast<Instruction>(ScalarVal)) |
| InstToFix.push_back(Inst); |
| |
| // All all of the instructions that use the scalar as an operand... |
| for (Value::use_iterator UI = ScalarVal->use_begin(), |
| UE = ScalarVal->use_end(); UI != UE; ++UI) |
| InstToFix.push_back(dyn_cast<Instruction>(*UI)); |
| } |
| |
| // Eliminate duplicates by sorting, then removing equal neighbors. |
| sort(InstToFix.begin(), InstToFix.end()); |
| InstToFix.erase(unique(InstToFix.begin(), InstToFix.end()), InstToFix.end()); |
| |
| // Use a FunctionBodyTransformer to transform all of the involved instructions |
| FunctionBodyTransformer FBT(*this, Scalars, CallMap); |
| for (unsigned i = 0, e = InstToFix.size(); i != e; ++i) |
| FBT.visit(InstToFix[i]); |
| |
| |
| // Since we have liberally hacked the function to pieces, we want to inform |
| // the datastructure pass that its internal representation is out of date. |
| // |
| DS->invalidateFunction(F); |
| } |
| |
| static void addNodeMapping(DSNode *SrcNode, const PointerValSet &PVS, |
| map<DSNode*, PointerValSet> &NodeMapping) { |
| for (unsigned i = 0, e = PVS.size(); i != e; ++i) |
| if (NodeMapping[SrcNode].add(PVS[i])) { // Not in map yet? |
| assert(PVS[i].Index == 0 && "Node indexing not supported yet!"); |
| DSNode *DestNode = PVS[i].Node; |
| |
| // Loop over all of the outgoing links in the mapped graph |
| for (unsigned l = 0, le = DestNode->getNumOutgoingLinks(); l != le; ++l) { |
| PointerValSet &SrcSet = SrcNode->getOutgoingLink(l); |
| const PointerValSet &DestSet = DestNode->getOutgoingLink(l); |
| |
| // Add all of the node mappings now! |
| for (unsigned si = 0, se = SrcSet.size(); si != se; ++si) { |
| assert(SrcSet[si].Index == 0 && "Can't handle node offset!"); |
| addNodeMapping(SrcSet[si].Node, DestSet, NodeMapping); |
| } |
| } |
| } |
| } |
| |
| // CalculateNodeMapping - There is a partial isomorphism between the graph |
| // passed in and the graph that is actually used by the function. We need to |
| // figure out what this mapping is so that we can transformFunctionBody the |
| // instructions in the function itself. Note that every node in the graph that |
| // we are interested in must be both in the local graph of the called function, |
| // and in the local graph of the calling function. Because of this, we only |
| // define the mapping for these nodes [conveniently these are the only nodes we |
| // CAN define a mapping for...] |
| // |
| // The roots of the graph that we are transforming is rooted in the arguments |
| // passed into the function from the caller. This is where we start our |
| // mapping calculation. |
| // |
| // The NodeMapping calculated maps from the callers graph to the called graph. |
| // |
| static void CalculateNodeMapping(Function *F, TransformFunctionInfo &TFI, |
| FunctionDSGraph &CallerGraph, |
| FunctionDSGraph &CalledGraph, |
| map<DSNode*, PointerValSet> &NodeMapping) { |
| int LastArgNo = -2; |
| for (unsigned i = 0, e = TFI.ArgInfo.size(); i != e; ++i) { |
| // Figure out what nodes in the called graph the TFI.ArgInfo[i].Node node |
| // corresponds to... |
| // |
| // Only consider first node of sequence. Extra nodes may may be added |
| // to the TFI if the data structure requires more nodes than just the |
| // one the argument points to. We are only interested in the one the |
| // argument points to though. |
| // |
| if (TFI.ArgInfo[i].ArgNo != LastArgNo) { |
| if (TFI.ArgInfo[i].ArgNo == -1) { |
| addNodeMapping(TFI.ArgInfo[i].Node, CalledGraph.getRetNodes(), |
| NodeMapping); |
| } else { |
| // Figure out which node argument # ArgNo points to in the called graph. |
| Value *Arg = F->getArgumentList()[TFI.ArgInfo[i].ArgNo]; |
| addNodeMapping(TFI.ArgInfo[i].Node, CalledGraph.getValueMap()[Arg], |
| NodeMapping); |
| } |
| LastArgNo = TFI.ArgInfo[i].ArgNo; |
| } |
| } |
| } |
| |
| |
| // transformFunction - Transform the specified function the specified way. It |
| // we have already transformed that function that way, don't do anything. The |
| // nodes in the TransformFunctionInfo come out of callers data structure graph. |
| // |
| void PoolAllocate::transformFunction(TransformFunctionInfo &TFI, |
| FunctionDSGraph &CallerIPGraph) { |
| if (getTransformedFunction(TFI)) return; // Function xformation already done? |
| |
| cerr << "**********\nEntering transformFunction for " |
| << TFI.Func->getName() << ":\n"; |
| for (unsigned i = 0, e = TFI.ArgInfo.size(); i != e; ++i) |
| cerr << " ArgInfo[" << i << "] = " << TFI.ArgInfo[i].ArgNo << "\n"; |
| cerr << "\n"; |
| |
| |
| const FunctionType *OldFuncType = TFI.Func->getFunctionType(); |
| |
| assert(!OldFuncType->isVarArg() && "Vararg functions not handled yet!"); |
| |
| // Build the type for the new function that we are transforming |
| vector<const Type*> ArgTys; |
| for (unsigned i = 0, e = OldFuncType->getNumParams(); i != e; ++i) |
| ArgTys.push_back(OldFuncType->getParamType(i)); |
| |
| // Add one pool pointer for every argument that needs to be supplemented. |
| ArgTys.insert(ArgTys.end(), TFI.ArgInfo.size(), PoolTy); |
| |
| // Build the new function type... |
| const // FIXME when types are not const |
| FunctionType *NewFuncType = FunctionType::get(OldFuncType->getReturnType(), |
| ArgTys,OldFuncType->isVarArg()); |
| |
| // The new function is internal, because we know that only we can call it. |
| // This also helps subsequent IP transformations to eliminate duplicated pool |
| // pointers. [in the future when they are implemented]. |
| // |
| Function *NewFunc = new Function(NewFuncType, true, |
| TFI.Func->getName()+".poolxform"); |
| CurModule->getFunctionList().push_back(NewFunc); |
| |
| // Add the newly formed function to the TransformedFunctions table so that |
| // infinite recursion does not occur! |
| // |
| TransformedFunctions[TFI] = NewFunc; |
| |
| // Add arguments to the function... starting with all of the old arguments |
| vector<Value*> ArgMap; |
| for (unsigned i = 0, e = TFI.Func->getArgumentList().size(); i != e; ++i) { |
| const FunctionArgument *OFA = TFI.Func->getArgumentList()[i]; |
| FunctionArgument *NFA = new FunctionArgument(OFA->getType(),OFA->getName()); |
| NewFunc->getArgumentList().push_back(NFA); |
| ArgMap.push_back(NFA); // Keep track of the arguments |
| } |
| |
| // Now add all of the arguments corresponding to pools passed in... |
| for (unsigned i = 0, e = TFI.ArgInfo.size(); i != e; ++i) { |
| string Name; |
| if (TFI.ArgInfo[i].ArgNo == -1) |
| Name = "retpool"; |
| else |
| Name = ArgMap[TFI.ArgInfo[i].ArgNo]->getName(); // Get the arg name |
| FunctionArgument *NFA = new FunctionArgument(PoolTy, Name+".pool"); |
| NewFunc->getArgumentList().push_back(NFA); |
| } |
| |
| // Now clone the body of the old function into the new function... |
| CloneFunctionInto(NewFunc, TFI.Func, ArgMap); |
| |
| // Okay, now we have a function that is identical to the old one, except that |
| // it has extra arguments for the pools coming in. Now we have to get the |
| // data structure graph for the function we are replacing, and figure out how |
| // our graph nodes map to the graph nodes in the dest function. |
| // |
| FunctionDSGraph &DSGraph = DS->getClosedDSGraph(NewFunc); |
| |
| // NodeMapping - Multimap from callers graph to called graph. |
| // |
| map<DSNode*, PointerValSet> NodeMapping; |
| |
| CalculateNodeMapping(NewFunc, TFI, CallerIPGraph, DSGraph, |
| NodeMapping); |
| |
| // Print out the node mapping... |
| cerr << "\nNode mapping for call of " << NewFunc->getName() << "\n"; |
| for (map<DSNode*, PointerValSet>::iterator I = NodeMapping.begin(); |
| I != NodeMapping.end(); ++I) { |
| cerr << "Map: "; I->first->print(cerr); |
| cerr << "To: "; I->second.print(cerr); |
| cerr << "\n"; |
| } |
| |
| // Fill in the PoolDescriptor information for the transformed function so that |
| // it can determine which value holds the pool descriptor for each data |
| // structure node that it accesses. |
| // |
| map<DSNode*, Value*> PoolDescriptors; |
| |
| cerr << "\nCalculating the pool descriptor map:\n"; |
| |
| // All of the pool descriptors must be passed in as arguments... |
| for (unsigned i = 0, e = TFI.ArgInfo.size(); i != e; ++i) { |
| DSNode *CallerNode = TFI.ArgInfo[i].Node; |
| Value *CallerPool = TFI.ArgInfo[i].PoolHandle; |
| |
| cerr << "Mapped caller node: "; CallerNode->print(cerr); |
| cerr << "Mapped caller pool: "; CallerPool->dump(); |
| |
| // Calculate the argument number that the pool is to the function call... |
| // The call instruction should not have the pool operands added yet. |
| unsigned ArgNo = TFI.Call->getNumOperands()-1+i; |
| cerr << "Should be argument #: " << ArgNo << "[i = " << i << "]\n"; |
| assert(ArgNo < NewFunc->getArgumentList().size() && |
| "Call already has pool arguments added??"); |
| |
| // Map the pool argument into the called function... |
| Value *CalleePool = NewFunc->getArgumentList()[ArgNo]; |
| |
| // Map the DSNode into the callee's DSGraph |
| const PointerValSet &CalleeNodes = NodeMapping[CallerNode]; |
| for (unsigned n = 0, ne = CalleeNodes.size(); n != ne; ++n) { |
| assert(CalleeNodes[n].Index == 0 && "Indexed node not handled yet!"); |
| DSNode *CalleeNode = CalleeNodes[n].Node; |
| |
| cerr << "*** to callee node: "; CalleeNode->print(cerr); |
| cerr << "*** to callee pool: "; CalleePool->dump(); |
| cerr << "\n"; |
| |
| assert(CalleeNode && CalleePool && "Invalid nodes!"); |
| Value *&PV = PoolDescriptors[CalleeNode]; |
| //assert((PV == 0 || PV == CalleePool) && "Invalid node remapping!"); |
| PV = CalleePool; // Update the pool descriptor map! |
| } |
| } |
| |
| // We must destroy the node mapping so that we don't have latent references |
| // into the data structure graph for the new function. Otherwise we get |
| // assertion failures when transformFunctionBody tries to invalidate the |
| // graph. |
| // |
| NodeMapping.clear(); |
| |
| // Now that we know everything we need about the function, transform the body |
| // now! |
| // |
| transformFunctionBody(NewFunc, DSGraph, PoolDescriptors); |
| |
| cerr << "Function after transformation:\n"; |
| NewFunc->dump(); |
| } |
| |
| |
| // CreatePools - Insert instructions into the function we are processing to |
| // create all of the memory pool objects themselves. This also inserts |
| // destruction code. Add an alloca for each pool that is allocated to the |
| // PoolDescriptors vector. |
| // |
| void PoolAllocate::CreatePools(Function *F, const vector<AllocDSNode*> &Allocs, |
| map<DSNode*, Value*> &PoolDescriptors) { |
| // FIXME: This should use an IP version of the UnifyAllExits pass! |
| vector<BasicBlock*> ReturnNodes; |
| for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) |
| if (isa<ReturnInst>((*I)->getTerminator())) |
| ReturnNodes.push_back(*I); |
| |
| |
| // Create the code that goes in the entry and exit nodes for the method... |
| vector<Instruction*> EntryNodeInsts; |
| for (unsigned i = 0, e = Allocs.size(); i != e; ++i) { |
| // Add an allocation and a free for each pool... |
| AllocaInst *PoolAlloc = new AllocaInst(PoolTy, 0, "pool"); |
| EntryNodeInsts.push_back(PoolAlloc); |
| PoolDescriptors[Allocs[i]] = PoolAlloc; // Keep track of pool allocas |
| AllocationInst *AI = Allocs[i]->getAllocation(); |
| |
| // Initialize the pool. We need to know how big each allocation is. For |
| // our purposes here, we assume we are allocating a scalar, or array of |
| // constant size. |
| // |
| unsigned ElSize = TargetData.getTypeSize(AI->getAllocatedType()); |
| ElSize *= cast<ConstantUInt>(AI->getArraySize())->getValue(); |
| |
| vector<Value*> Args; |
| Args.push_back(PoolAlloc); // Pool to initialize |
| Args.push_back(ConstantUInt::get(Type::UIntTy, ElSize)); |
| EntryNodeInsts.push_back(new CallInst(PoolInit, Args)); |
| |
| // Destroy the pool... |
| Args.pop_back(); |
| |
| for (unsigned EN = 0, ENE = ReturnNodes.size(); EN != ENE; ++EN) { |
| Instruction *Destroy = new CallInst(PoolDestroy, Args); |
| |
| // Insert it before the return instruction... |
| BasicBlock *RetNode = ReturnNodes[EN]; |
| RetNode->getInstList().insert(RetNode->end()-1, Destroy); |
| } |
| } |
| |
| // Insert the entry node code into the entry block... |
| F->getEntryNode()->getInstList().insert(F->getEntryNode()->begin()+1, |
| EntryNodeInsts.begin(), |
| EntryNodeInsts.end()); |
| } |
| |
| |
| // addPoolPrototypes - Add prototypes for the pool methods to the specified |
| // module and update the Pool* instance variables to point to them. |
| // |
| void PoolAllocate::addPoolPrototypes(Module *M) { |
| // Get PoolInit function... |
| vector<const Type*> Args; |
| Args.push_back(PoolTy); // Pool to initialize |
| Args.push_back(Type::UIntTy); // Num bytes per element |
| FunctionType *PoolInitTy = FunctionType::get(Type::VoidTy, Args, false); |
| PoolInit = M->getOrInsertFunction("poolinit", PoolInitTy); |
| |
| // Get pooldestroy function... |
| Args.pop_back(); // Only takes a pool... |
| FunctionType *PoolDestroyTy = FunctionType::get(Type::VoidTy, Args, false); |
| PoolDestroy = M->getOrInsertFunction("pooldestroy", PoolDestroyTy); |
| |
| const Type *PtrVoid = PointerType::get(Type::SByteTy); |
| |
| // Get the poolalloc function... |
| FunctionType *PoolAllocTy = FunctionType::get(PtrVoid, Args, false); |
| PoolAlloc = M->getOrInsertFunction("poolalloc", PoolAllocTy); |
| |
| // Get the poolfree function... |
| Args.push_back(PtrVoid); |
| FunctionType *PoolFreeTy = FunctionType::get(Type::VoidTy, Args, false); |
| PoolFree = M->getOrInsertFunction("poolfree", PoolFreeTy); |
| |
| // Add the %PoolTy type to the symbol table of the module... |
| M->addTypeName("PoolTy", PoolTy->getElementType()); |
| } |
| |
| |
| bool PoolAllocate::run(Module *M) { |
| addPoolPrototypes(M); |
| CurModule = M; |
| |
| DS = &getAnalysis<DataStructure>(); |
| bool Changed = false; |
| |
| // We cannot use an iterator here because it will get invalidated when we add |
| // functions to the module later... |
| for (unsigned i = 0; i != M->size(); ++i) |
| if (!M->getFunctionList()[i]->isExternal()) { |
| Changed |= processFunction(M->getFunctionList()[i]); |
| if (Changed) { |
| cerr << "Only processing one function\n"; |
| break; |
| } |
| } |
| |
| CurModule = 0; |
| DS = 0; |
| return false; |
| } |
| |
| |
| // createPoolAllocatePass - Global function to access the functionality of this |
| // pass... |
| // |
| Pass *createPoolAllocatePass() { return new PoolAllocate(); } |