|  | //===-- PreAllocSplitting.cpp - Pre-allocation Interval Spltting Pass. ----===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the machine instruction level pre-register allocation | 
|  | // live interval splitting pass. It finds live interval barriers, i.e. | 
|  | // instructions which will kill all physical registers in certain register | 
|  | // classes, and split all live intervals which cross the barrier. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #define DEBUG_TYPE "pre-alloc-split" | 
|  | #include "VirtRegMap.h" | 
|  | #include "llvm/CodeGen/CalcSpillWeights.h" | 
|  | #include "llvm/CodeGen/LiveIntervalAnalysis.h" | 
|  | #include "llvm/CodeGen/LiveStackAnalysis.h" | 
|  | #include "llvm/CodeGen/MachineDominators.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineFunctionPass.h" | 
|  | #include "llvm/CodeGen/MachineLoopInfo.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/Passes.h" | 
|  | #include "llvm/CodeGen/RegisterCoalescer.h" | 
|  | #include "llvm/Target/TargetInstrInfo.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include "llvm/Target/TargetOptions.h" | 
|  | #include "llvm/Target/TargetRegisterInfo.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/DepthFirstIterator.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | static cl::opt<int> PreSplitLimit("pre-split-limit", cl::init(-1), cl::Hidden); | 
|  | static cl::opt<int> DeadSplitLimit("dead-split-limit", cl::init(-1), | 
|  | cl::Hidden); | 
|  | static cl::opt<int> RestoreFoldLimit("restore-fold-limit", cl::init(-1), | 
|  | cl::Hidden); | 
|  |  | 
|  | STATISTIC(NumSplits, "Number of intervals split"); | 
|  | STATISTIC(NumRemats, "Number of intervals split by rematerialization"); | 
|  | STATISTIC(NumFolds, "Number of intervals split with spill folding"); | 
|  | STATISTIC(NumRestoreFolds, "Number of intervals split with restore folding"); | 
|  | STATISTIC(NumRenumbers, "Number of intervals renumbered into new registers"); | 
|  | STATISTIC(NumDeadSpills, "Number of dead spills removed"); | 
|  |  | 
|  | namespace { | 
|  | class PreAllocSplitting : public MachineFunctionPass { | 
|  | MachineFunction       *CurrMF; | 
|  | const TargetMachine   *TM; | 
|  | const TargetInstrInfo *TII; | 
|  | const TargetRegisterInfo* TRI; | 
|  | MachineFrameInfo      *MFI; | 
|  | MachineRegisterInfo   *MRI; | 
|  | SlotIndexes           *SIs; | 
|  | LiveIntervals         *LIs; | 
|  | LiveStacks            *LSs; | 
|  | VirtRegMap            *VRM; | 
|  |  | 
|  | // Barrier - Current barrier being processed. | 
|  | MachineInstr          *Barrier; | 
|  |  | 
|  | // BarrierMBB - Basic block where the barrier resides in. | 
|  | MachineBasicBlock     *BarrierMBB; | 
|  |  | 
|  | // Barrier - Current barrier index. | 
|  | SlotIndex     BarrierIdx; | 
|  |  | 
|  | // CurrLI - Current live interval being split. | 
|  | LiveInterval          *CurrLI; | 
|  |  | 
|  | // CurrSLI - Current stack slot live interval. | 
|  | LiveInterval          *CurrSLI; | 
|  |  | 
|  | // CurrSValNo - Current val# for the stack slot live interval. | 
|  | VNInfo                *CurrSValNo; | 
|  |  | 
|  | // IntervalSSMap - A map from live interval to spill slots. | 
|  | DenseMap<unsigned, int> IntervalSSMap; | 
|  |  | 
|  | // Def2SpillMap - A map from a def instruction index to spill index. | 
|  | DenseMap<SlotIndex, SlotIndex> Def2SpillMap; | 
|  |  | 
|  | public: | 
|  | static char ID; | 
|  | PreAllocSplitting() | 
|  | : MachineFunctionPass(&ID) {} | 
|  |  | 
|  | virtual bool runOnMachineFunction(MachineFunction &MF); | 
|  |  | 
|  | virtual void getAnalysisUsage(AnalysisUsage &AU) const { | 
|  | AU.setPreservesCFG(); | 
|  | AU.addRequired<SlotIndexes>(); | 
|  | AU.addPreserved<SlotIndexes>(); | 
|  | AU.addRequired<LiveIntervals>(); | 
|  | AU.addPreserved<LiveIntervals>(); | 
|  | AU.addRequired<LiveStacks>(); | 
|  | AU.addPreserved<LiveStacks>(); | 
|  | AU.addPreserved<RegisterCoalescer>(); | 
|  | AU.addPreserved<CalculateSpillWeights>(); | 
|  | if (StrongPHIElim) | 
|  | AU.addPreservedID(StrongPHIEliminationID); | 
|  | else | 
|  | AU.addPreservedID(PHIEliminationID); | 
|  | AU.addRequired<MachineDominatorTree>(); | 
|  | AU.addRequired<MachineLoopInfo>(); | 
|  | AU.addRequired<VirtRegMap>(); | 
|  | AU.addPreserved<MachineDominatorTree>(); | 
|  | AU.addPreserved<MachineLoopInfo>(); | 
|  | AU.addPreserved<VirtRegMap>(); | 
|  | MachineFunctionPass::getAnalysisUsage(AU); | 
|  | } | 
|  |  | 
|  | virtual void releaseMemory() { | 
|  | IntervalSSMap.clear(); | 
|  | Def2SpillMap.clear(); | 
|  | } | 
|  |  | 
|  | virtual const char *getPassName() const { | 
|  | return "Pre-Register Allocaton Live Interval Splitting"; | 
|  | } | 
|  |  | 
|  | /// print - Implement the dump method. | 
|  | virtual void print(raw_ostream &O, const Module* M = 0) const { | 
|  | LIs->print(O, M); | 
|  | } | 
|  |  | 
|  |  | 
|  | private: | 
|  |  | 
|  | MachineBasicBlock::iterator | 
|  | findSpillPoint(MachineBasicBlock*, MachineInstr*, MachineInstr*, | 
|  | SmallPtrSet<MachineInstr*, 4>&); | 
|  |  | 
|  | MachineBasicBlock::iterator | 
|  | findRestorePoint(MachineBasicBlock*, MachineInstr*, SlotIndex, | 
|  | SmallPtrSet<MachineInstr*, 4>&); | 
|  |  | 
|  | int CreateSpillStackSlot(unsigned, const TargetRegisterClass *); | 
|  |  | 
|  | bool IsAvailableInStack(MachineBasicBlock*, unsigned, | 
|  | SlotIndex, SlotIndex, | 
|  | SlotIndex&, int&) const; | 
|  |  | 
|  | void UpdateSpillSlotInterval(VNInfo*, SlotIndex, SlotIndex); | 
|  |  | 
|  | bool SplitRegLiveInterval(LiveInterval*); | 
|  |  | 
|  | bool SplitRegLiveIntervals(const TargetRegisterClass **, | 
|  | SmallPtrSet<LiveInterval*, 8>&); | 
|  |  | 
|  | bool createsNewJoin(LiveRange* LR, MachineBasicBlock* DefMBB, | 
|  | MachineBasicBlock* BarrierMBB); | 
|  | bool Rematerialize(unsigned vreg, VNInfo* ValNo, | 
|  | MachineInstr* DefMI, | 
|  | MachineBasicBlock::iterator RestorePt, | 
|  | SmallPtrSet<MachineInstr*, 4>& RefsInMBB); | 
|  | MachineInstr* FoldSpill(unsigned vreg, const TargetRegisterClass* RC, | 
|  | MachineInstr* DefMI, | 
|  | MachineInstr* Barrier, | 
|  | MachineBasicBlock* MBB, | 
|  | int& SS, | 
|  | SmallPtrSet<MachineInstr*, 4>& RefsInMBB); | 
|  | MachineInstr* FoldRestore(unsigned vreg, | 
|  | const TargetRegisterClass* RC, | 
|  | MachineInstr* Barrier, | 
|  | MachineBasicBlock* MBB, | 
|  | int SS, | 
|  | SmallPtrSet<MachineInstr*, 4>& RefsInMBB); | 
|  | void RenumberValno(VNInfo* VN); | 
|  | void ReconstructLiveInterval(LiveInterval* LI); | 
|  | bool removeDeadSpills(SmallPtrSet<LiveInterval*, 8>& split); | 
|  | unsigned getNumberOfNonSpills(SmallPtrSet<MachineInstr*, 4>& MIs, | 
|  | unsigned Reg, int FrameIndex, bool& TwoAddr); | 
|  | VNInfo* PerformPHIConstruction(MachineBasicBlock::iterator Use, | 
|  | MachineBasicBlock* MBB, LiveInterval* LI, | 
|  | SmallPtrSet<MachineInstr*, 4>& Visited, | 
|  | DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs, | 
|  | DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses, | 
|  | DenseMap<MachineInstr*, VNInfo*>& NewVNs, | 
|  | DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut, | 
|  | DenseMap<MachineBasicBlock*, VNInfo*>& Phis, | 
|  | bool IsTopLevel, bool IsIntraBlock); | 
|  | VNInfo* PerformPHIConstructionFallBack(MachineBasicBlock::iterator Use, | 
|  | MachineBasicBlock* MBB, LiveInterval* LI, | 
|  | SmallPtrSet<MachineInstr*, 4>& Visited, | 
|  | DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs, | 
|  | DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses, | 
|  | DenseMap<MachineInstr*, VNInfo*>& NewVNs, | 
|  | DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut, | 
|  | DenseMap<MachineBasicBlock*, VNInfo*>& Phis, | 
|  | bool IsTopLevel, bool IsIntraBlock); | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | char PreAllocSplitting::ID = 0; | 
|  |  | 
|  | static RegisterPass<PreAllocSplitting> | 
|  | X("pre-alloc-splitting", "Pre-Register Allocation Live Interval Splitting"); | 
|  |  | 
|  | const PassInfo *const llvm::PreAllocSplittingID = &X; | 
|  |  | 
|  | /// findSpillPoint - Find a gap as far away from the given MI that's suitable | 
|  | /// for spilling the current live interval. The index must be before any | 
|  | /// defs and uses of the live interval register in the mbb. Return begin() if | 
|  | /// none is found. | 
|  | MachineBasicBlock::iterator | 
|  | PreAllocSplitting::findSpillPoint(MachineBasicBlock *MBB, MachineInstr *MI, | 
|  | MachineInstr *DefMI, | 
|  | SmallPtrSet<MachineInstr*, 4> &RefsInMBB) { | 
|  | MachineBasicBlock::iterator Pt = MBB->begin(); | 
|  |  | 
|  | MachineBasicBlock::iterator MII = MI; | 
|  | MachineBasicBlock::iterator EndPt = DefMI | 
|  | ? MachineBasicBlock::iterator(DefMI) : MBB->begin(); | 
|  |  | 
|  | while (MII != EndPt && !RefsInMBB.count(MII) && | 
|  | MII->getOpcode() != TRI->getCallFrameSetupOpcode()) | 
|  | --MII; | 
|  | if (MII == EndPt || RefsInMBB.count(MII)) return Pt; | 
|  |  | 
|  | while (MII != EndPt && !RefsInMBB.count(MII)) { | 
|  | // We can't insert the spill between the barrier (a call), and its | 
|  | // corresponding call frame setup. | 
|  | if (MII->getOpcode() == TRI->getCallFrameDestroyOpcode()) { | 
|  | while (MII->getOpcode() != TRI->getCallFrameSetupOpcode()) { | 
|  | --MII; | 
|  | if (MII == EndPt) { | 
|  | return Pt; | 
|  | } | 
|  | } | 
|  | continue; | 
|  | } else { | 
|  | Pt = MII; | 
|  | } | 
|  |  | 
|  | if (RefsInMBB.count(MII)) | 
|  | return Pt; | 
|  |  | 
|  |  | 
|  | --MII; | 
|  | } | 
|  |  | 
|  | return Pt; | 
|  | } | 
|  |  | 
|  | /// findRestorePoint - Find a gap in the instruction index map that's suitable | 
|  | /// for restoring the current live interval value. The index must be before any | 
|  | /// uses of the live interval register in the mbb. Return end() if none is | 
|  | /// found. | 
|  | MachineBasicBlock::iterator | 
|  | PreAllocSplitting::findRestorePoint(MachineBasicBlock *MBB, MachineInstr *MI, | 
|  | SlotIndex LastIdx, | 
|  | SmallPtrSet<MachineInstr*, 4> &RefsInMBB) { | 
|  | // FIXME: Allow spill to be inserted to the beginning of the mbb. Update mbb | 
|  | // begin index accordingly. | 
|  | MachineBasicBlock::iterator Pt = MBB->end(); | 
|  | MachineBasicBlock::iterator EndPt = MBB->getFirstTerminator(); | 
|  |  | 
|  | // We start at the call, so walk forward until we find the call frame teardown | 
|  | // since we can't insert restores before that.  Bail if we encounter a use | 
|  | // during this time. | 
|  | MachineBasicBlock::iterator MII = MI; | 
|  | if (MII == EndPt) return Pt; | 
|  |  | 
|  | while (MII != EndPt && !RefsInMBB.count(MII) && | 
|  | MII->getOpcode() != TRI->getCallFrameDestroyOpcode()) | 
|  | ++MII; | 
|  | if (MII == EndPt || RefsInMBB.count(MII)) return Pt; | 
|  | ++MII; | 
|  |  | 
|  | // FIXME: Limit the number of instructions to examine to reduce | 
|  | // compile time? | 
|  | while (MII != EndPt) { | 
|  | SlotIndex Index = LIs->getInstructionIndex(MII); | 
|  | if (Index > LastIdx) | 
|  | break; | 
|  |  | 
|  | // We can't insert a restore between the barrier (a call) and its | 
|  | // corresponding call frame teardown. | 
|  | if (MII->getOpcode() == TRI->getCallFrameSetupOpcode()) { | 
|  | do { | 
|  | if (MII == EndPt || RefsInMBB.count(MII)) return Pt; | 
|  | ++MII; | 
|  | } while (MII->getOpcode() != TRI->getCallFrameDestroyOpcode()); | 
|  | } else { | 
|  | Pt = MII; | 
|  | } | 
|  |  | 
|  | if (RefsInMBB.count(MII)) | 
|  | return Pt; | 
|  |  | 
|  | ++MII; | 
|  | } | 
|  |  | 
|  | return Pt; | 
|  | } | 
|  |  | 
|  | /// CreateSpillStackSlot - Create a stack slot for the live interval being | 
|  | /// split. If the live interval was previously split, just reuse the same | 
|  | /// slot. | 
|  | int PreAllocSplitting::CreateSpillStackSlot(unsigned Reg, | 
|  | const TargetRegisterClass *RC) { | 
|  | int SS; | 
|  | DenseMap<unsigned, int>::iterator I = IntervalSSMap.find(Reg); | 
|  | if (I != IntervalSSMap.end()) { | 
|  | SS = I->second; | 
|  | } else { | 
|  | SS = MFI->CreateSpillStackObject(RC->getSize(), RC->getAlignment()); | 
|  | IntervalSSMap[Reg] = SS; | 
|  | } | 
|  |  | 
|  | // Create live interval for stack slot. | 
|  | CurrSLI = &LSs->getOrCreateInterval(SS, RC); | 
|  | if (CurrSLI->hasAtLeastOneValue()) | 
|  | CurrSValNo = CurrSLI->getValNumInfo(0); | 
|  | else | 
|  | CurrSValNo = CurrSLI->getNextValue(SlotIndex(), 0, false, | 
|  | LSs->getVNInfoAllocator()); | 
|  | return SS; | 
|  | } | 
|  |  | 
|  | /// IsAvailableInStack - Return true if register is available in a split stack | 
|  | /// slot at the specified index. | 
|  | bool | 
|  | PreAllocSplitting::IsAvailableInStack(MachineBasicBlock *DefMBB, | 
|  | unsigned Reg, SlotIndex DefIndex, | 
|  | SlotIndex RestoreIndex, | 
|  | SlotIndex &SpillIndex, | 
|  | int& SS) const { | 
|  | if (!DefMBB) | 
|  | return false; | 
|  |  | 
|  | DenseMap<unsigned, int>::const_iterator I = IntervalSSMap.find(Reg); | 
|  | if (I == IntervalSSMap.end()) | 
|  | return false; | 
|  | DenseMap<SlotIndex, SlotIndex>::const_iterator | 
|  | II = Def2SpillMap.find(DefIndex); | 
|  | if (II == Def2SpillMap.end()) | 
|  | return false; | 
|  |  | 
|  | // If last spill of def is in the same mbb as barrier mbb (where restore will | 
|  | // be), make sure it's not below the intended restore index. | 
|  | // FIXME: Undo the previous spill? | 
|  | assert(LIs->getMBBFromIndex(II->second) == DefMBB); | 
|  | if (DefMBB == BarrierMBB && II->second >= RestoreIndex) | 
|  | return false; | 
|  |  | 
|  | SS = I->second; | 
|  | SpillIndex = II->second; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// UpdateSpillSlotInterval - Given the specified val# of the register live | 
|  | /// interval being split, and the spill and restore indicies, update the live | 
|  | /// interval of the spill stack slot. | 
|  | void | 
|  | PreAllocSplitting::UpdateSpillSlotInterval(VNInfo *ValNo, SlotIndex SpillIndex, | 
|  | SlotIndex RestoreIndex) { | 
|  | assert(LIs->getMBBFromIndex(RestoreIndex) == BarrierMBB && | 
|  | "Expect restore in the barrier mbb"); | 
|  |  | 
|  | MachineBasicBlock *MBB = LIs->getMBBFromIndex(SpillIndex); | 
|  | if (MBB == BarrierMBB) { | 
|  | // Intra-block spill + restore. We are done. | 
|  | LiveRange SLR(SpillIndex, RestoreIndex, CurrSValNo); | 
|  | CurrSLI->addRange(SLR); | 
|  | return; | 
|  | } | 
|  |  | 
|  | SmallPtrSet<MachineBasicBlock*, 4> Processed; | 
|  | SlotIndex EndIdx = LIs->getMBBEndIdx(MBB); | 
|  | LiveRange SLR(SpillIndex, EndIdx, CurrSValNo); | 
|  | CurrSLI->addRange(SLR); | 
|  | Processed.insert(MBB); | 
|  |  | 
|  | // Start from the spill mbb, figure out the extend of the spill slot's | 
|  | // live interval. | 
|  | SmallVector<MachineBasicBlock*, 4> WorkList; | 
|  | const LiveRange *LR = CurrLI->getLiveRangeContaining(SpillIndex); | 
|  | if (LR->end > EndIdx) | 
|  | // If live range extend beyond end of mbb, add successors to work list. | 
|  | for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(), | 
|  | SE = MBB->succ_end(); SI != SE; ++SI) | 
|  | WorkList.push_back(*SI); | 
|  |  | 
|  | while (!WorkList.empty()) { | 
|  | MachineBasicBlock *MBB = WorkList.back(); | 
|  | WorkList.pop_back(); | 
|  | if (Processed.count(MBB)) | 
|  | continue; | 
|  | SlotIndex Idx = LIs->getMBBStartIdx(MBB); | 
|  | LR = CurrLI->getLiveRangeContaining(Idx); | 
|  | if (LR && LR->valno == ValNo) { | 
|  | EndIdx = LIs->getMBBEndIdx(MBB); | 
|  | if (Idx <= RestoreIndex && RestoreIndex < EndIdx) { | 
|  | // Spill slot live interval stops at the restore. | 
|  | LiveRange SLR(Idx, RestoreIndex, CurrSValNo); | 
|  | CurrSLI->addRange(SLR); | 
|  | } else if (LR->end > EndIdx) { | 
|  | // Live range extends beyond end of mbb, process successors. | 
|  | LiveRange SLR(Idx, EndIdx.getNextIndex(), CurrSValNo); | 
|  | CurrSLI->addRange(SLR); | 
|  | for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(), | 
|  | SE = MBB->succ_end(); SI != SE; ++SI) | 
|  | WorkList.push_back(*SI); | 
|  | } else { | 
|  | LiveRange SLR(Idx, LR->end, CurrSValNo); | 
|  | CurrSLI->addRange(SLR); | 
|  | } | 
|  | Processed.insert(MBB); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// PerformPHIConstruction - From properly set up use and def lists, use a PHI | 
|  | /// construction algorithm to compute the ranges and valnos for an interval. | 
|  | VNInfo* | 
|  | PreAllocSplitting::PerformPHIConstruction(MachineBasicBlock::iterator UseI, | 
|  | MachineBasicBlock* MBB, LiveInterval* LI, | 
|  | SmallPtrSet<MachineInstr*, 4>& Visited, | 
|  | DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs, | 
|  | DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses, | 
|  | DenseMap<MachineInstr*, VNInfo*>& NewVNs, | 
|  | DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut, | 
|  | DenseMap<MachineBasicBlock*, VNInfo*>& Phis, | 
|  | bool IsTopLevel, bool IsIntraBlock) { | 
|  | // Return memoized result if it's available. | 
|  | if (IsTopLevel && Visited.count(UseI) && NewVNs.count(UseI)) | 
|  | return NewVNs[UseI]; | 
|  | else if (!IsTopLevel && IsIntraBlock && NewVNs.count(UseI)) | 
|  | return NewVNs[UseI]; | 
|  | else if (!IsIntraBlock && LiveOut.count(MBB)) | 
|  | return LiveOut[MBB]; | 
|  |  | 
|  | // Check if our block contains any uses or defs. | 
|  | bool ContainsDefs = Defs.count(MBB); | 
|  | bool ContainsUses = Uses.count(MBB); | 
|  |  | 
|  | VNInfo* RetVNI = 0; | 
|  |  | 
|  | // Enumerate the cases of use/def contaning blocks. | 
|  | if (!ContainsDefs && !ContainsUses) { | 
|  | return PerformPHIConstructionFallBack(UseI, MBB, LI, Visited, Defs, Uses, | 
|  | NewVNs, LiveOut, Phis, | 
|  | IsTopLevel, IsIntraBlock); | 
|  | } else if (ContainsDefs && !ContainsUses) { | 
|  | SmallPtrSet<MachineInstr*, 2>& BlockDefs = Defs[MBB]; | 
|  |  | 
|  | // Search for the def in this block.  If we don't find it before the | 
|  | // instruction we care about, go to the fallback case.  Note that that | 
|  | // should never happen: this cannot be intrablock, so use should | 
|  | // always be an end() iterator. | 
|  | assert(UseI == MBB->end() && "No use marked in intrablock"); | 
|  |  | 
|  | MachineBasicBlock::iterator Walker = UseI; | 
|  | --Walker; | 
|  | while (Walker != MBB->begin()) { | 
|  | if (BlockDefs.count(Walker)) | 
|  | break; | 
|  | --Walker; | 
|  | } | 
|  |  | 
|  | // Once we've found it, extend its VNInfo to our instruction. | 
|  | SlotIndex DefIndex = LIs->getInstructionIndex(Walker); | 
|  | DefIndex = DefIndex.getDefIndex(); | 
|  | SlotIndex EndIndex = LIs->getMBBEndIdx(MBB); | 
|  |  | 
|  | RetVNI = NewVNs[Walker]; | 
|  | LI->addRange(LiveRange(DefIndex, EndIndex, RetVNI)); | 
|  | } else if (!ContainsDefs && ContainsUses) { | 
|  | SmallPtrSet<MachineInstr*, 2>& BlockUses = Uses[MBB]; | 
|  |  | 
|  | // Search for the use in this block that precedes the instruction we care | 
|  | // about, going to the fallback case if we don't find it. | 
|  | MachineBasicBlock::iterator Walker = UseI; | 
|  | bool found = false; | 
|  | while (Walker != MBB->begin()) { | 
|  | --Walker; | 
|  | if (BlockUses.count(Walker)) { | 
|  | found = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!found) | 
|  | return PerformPHIConstructionFallBack(UseI, MBB, LI, Visited, Defs, | 
|  | Uses, NewVNs, LiveOut, Phis, | 
|  | IsTopLevel, IsIntraBlock); | 
|  |  | 
|  | SlotIndex UseIndex = LIs->getInstructionIndex(Walker); | 
|  | UseIndex = UseIndex.getUseIndex(); | 
|  | SlotIndex EndIndex; | 
|  | if (IsIntraBlock) { | 
|  | EndIndex = LIs->getInstructionIndex(UseI).getDefIndex(); | 
|  | } else | 
|  | EndIndex = LIs->getMBBEndIdx(MBB); | 
|  |  | 
|  | // Now, recursively phi construct the VNInfo for the use we found, | 
|  | // and then extend it to include the instruction we care about | 
|  | RetVNI = PerformPHIConstruction(Walker, MBB, LI, Visited, Defs, Uses, | 
|  | NewVNs, LiveOut, Phis, false, true); | 
|  |  | 
|  | LI->addRange(LiveRange(UseIndex, EndIndex, RetVNI)); | 
|  |  | 
|  | // FIXME: Need to set kills properly for inter-block stuff. | 
|  | } else if (ContainsDefs && ContainsUses) { | 
|  | SmallPtrSet<MachineInstr*, 2>& BlockDefs = Defs[MBB]; | 
|  | SmallPtrSet<MachineInstr*, 2>& BlockUses = Uses[MBB]; | 
|  |  | 
|  | // This case is basically a merging of the two preceding case, with the | 
|  | // special note that checking for defs must take precedence over checking | 
|  | // for uses, because of two-address instructions. | 
|  | MachineBasicBlock::iterator Walker = UseI; | 
|  | bool foundDef = false; | 
|  | bool foundUse = false; | 
|  | while (Walker != MBB->begin()) { | 
|  | --Walker; | 
|  | if (BlockDefs.count(Walker)) { | 
|  | foundDef = true; | 
|  | break; | 
|  | } else if (BlockUses.count(Walker)) { | 
|  | foundUse = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!foundDef && !foundUse) | 
|  | return PerformPHIConstructionFallBack(UseI, MBB, LI, Visited, Defs, | 
|  | Uses, NewVNs, LiveOut, Phis, | 
|  | IsTopLevel, IsIntraBlock); | 
|  |  | 
|  | SlotIndex StartIndex = LIs->getInstructionIndex(Walker); | 
|  | StartIndex = foundDef ? StartIndex.getDefIndex() : StartIndex.getUseIndex(); | 
|  | SlotIndex EndIndex; | 
|  | if (IsIntraBlock) { | 
|  | EndIndex = LIs->getInstructionIndex(UseI).getDefIndex(); | 
|  | } else | 
|  | EndIndex = LIs->getMBBEndIdx(MBB); | 
|  |  | 
|  | if (foundDef) | 
|  | RetVNI = NewVNs[Walker]; | 
|  | else | 
|  | RetVNI = PerformPHIConstruction(Walker, MBB, LI, Visited, Defs, Uses, | 
|  | NewVNs, LiveOut, Phis, false, true); | 
|  |  | 
|  | LI->addRange(LiveRange(StartIndex, EndIndex, RetVNI)); | 
|  | } | 
|  |  | 
|  | // Memoize results so we don't have to recompute them. | 
|  | if (!IsIntraBlock) LiveOut[MBB] = RetVNI; | 
|  | else { | 
|  | if (!NewVNs.count(UseI)) | 
|  | NewVNs[UseI] = RetVNI; | 
|  | Visited.insert(UseI); | 
|  | } | 
|  |  | 
|  | return RetVNI; | 
|  | } | 
|  |  | 
|  | /// PerformPHIConstructionFallBack - PerformPHIConstruction fall back path. | 
|  | /// | 
|  | VNInfo* | 
|  | PreAllocSplitting::PerformPHIConstructionFallBack(MachineBasicBlock::iterator UseI, | 
|  | MachineBasicBlock* MBB, LiveInterval* LI, | 
|  | SmallPtrSet<MachineInstr*, 4>& Visited, | 
|  | DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs, | 
|  | DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses, | 
|  | DenseMap<MachineInstr*, VNInfo*>& NewVNs, | 
|  | DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut, | 
|  | DenseMap<MachineBasicBlock*, VNInfo*>& Phis, | 
|  | bool IsTopLevel, bool IsIntraBlock) { | 
|  | // NOTE: Because this is the fallback case from other cases, we do NOT | 
|  | // assume that we are not intrablock here. | 
|  | if (Phis.count(MBB)) return Phis[MBB]; | 
|  |  | 
|  | SlotIndex StartIndex = LIs->getMBBStartIdx(MBB); | 
|  | VNInfo *RetVNI = Phis[MBB] = | 
|  | LI->getNextValue(SlotIndex(), /*FIXME*/ 0, false, | 
|  | LIs->getVNInfoAllocator()); | 
|  |  | 
|  | if (!IsIntraBlock) LiveOut[MBB] = RetVNI; | 
|  |  | 
|  | // If there are no uses or defs between our starting point and the | 
|  | // beginning of the block, then recursive perform phi construction | 
|  | // on our predecessors. | 
|  | DenseMap<MachineBasicBlock*, VNInfo*> IncomingVNs; | 
|  | for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), | 
|  | PE = MBB->pred_end(); PI != PE; ++PI) { | 
|  | VNInfo* Incoming = PerformPHIConstruction((*PI)->end(), *PI, LI, | 
|  | Visited, Defs, Uses, NewVNs, | 
|  | LiveOut, Phis, false, false); | 
|  | if (Incoming != 0) | 
|  | IncomingVNs[*PI] = Incoming; | 
|  | } | 
|  |  | 
|  | if (MBB->pred_size() == 1 && !RetVNI->hasPHIKill()) { | 
|  | VNInfo* OldVN = RetVNI; | 
|  | VNInfo* NewVN = IncomingVNs.begin()->second; | 
|  | VNInfo* MergedVN = LI->MergeValueNumberInto(OldVN, NewVN); | 
|  | if (MergedVN == OldVN) std::swap(OldVN, NewVN); | 
|  |  | 
|  | for (DenseMap<MachineBasicBlock*, VNInfo*>::iterator LOI = LiveOut.begin(), | 
|  | LOE = LiveOut.end(); LOI != LOE; ++LOI) | 
|  | if (LOI->second == OldVN) | 
|  | LOI->second = MergedVN; | 
|  | for (DenseMap<MachineInstr*, VNInfo*>::iterator NVI = NewVNs.begin(), | 
|  | NVE = NewVNs.end(); NVI != NVE; ++NVI) | 
|  | if (NVI->second == OldVN) | 
|  | NVI->second = MergedVN; | 
|  | for (DenseMap<MachineBasicBlock*, VNInfo*>::iterator PI = Phis.begin(), | 
|  | PE = Phis.end(); PI != PE; ++PI) | 
|  | if (PI->second == OldVN) | 
|  | PI->second = MergedVN; | 
|  | RetVNI = MergedVN; | 
|  | } else { | 
|  | // Otherwise, merge the incoming VNInfos with a phi join.  Create a new | 
|  | // VNInfo to represent the joined value. | 
|  | for (DenseMap<MachineBasicBlock*, VNInfo*>::iterator I = | 
|  | IncomingVNs.begin(), E = IncomingVNs.end(); I != E; ++I) { | 
|  | I->second->setHasPHIKill(true); | 
|  | } | 
|  | } | 
|  |  | 
|  | SlotIndex EndIndex; | 
|  | if (IsIntraBlock) { | 
|  | EndIndex = LIs->getInstructionIndex(UseI).getDefIndex(); | 
|  | } else | 
|  | EndIndex = LIs->getMBBEndIdx(MBB); | 
|  | LI->addRange(LiveRange(StartIndex, EndIndex, RetVNI)); | 
|  |  | 
|  | // Memoize results so we don't have to recompute them. | 
|  | if (!IsIntraBlock) | 
|  | LiveOut[MBB] = RetVNI; | 
|  | else { | 
|  | if (!NewVNs.count(UseI)) | 
|  | NewVNs[UseI] = RetVNI; | 
|  | Visited.insert(UseI); | 
|  | } | 
|  |  | 
|  | return RetVNI; | 
|  | } | 
|  |  | 
|  | /// ReconstructLiveInterval - Recompute a live interval from scratch. | 
|  | void PreAllocSplitting::ReconstructLiveInterval(LiveInterval* LI) { | 
|  | VNInfo::Allocator& Alloc = LIs->getVNInfoAllocator(); | 
|  |  | 
|  | // Clear the old ranges and valnos; | 
|  | LI->clear(); | 
|  |  | 
|  | // Cache the uses and defs of the register | 
|  | typedef DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> > RegMap; | 
|  | RegMap Defs, Uses; | 
|  |  | 
|  | // Keep track of the new VNs we're creating. | 
|  | DenseMap<MachineInstr*, VNInfo*> NewVNs; | 
|  | SmallPtrSet<VNInfo*, 2> PhiVNs; | 
|  |  | 
|  | // Cache defs, and create a new VNInfo for each def. | 
|  | for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(LI->reg), | 
|  | DE = MRI->def_end(); DI != DE; ++DI) { | 
|  | Defs[(*DI).getParent()].insert(&*DI); | 
|  |  | 
|  | SlotIndex DefIdx = LIs->getInstructionIndex(&*DI); | 
|  | DefIdx = DefIdx.getDefIndex(); | 
|  |  | 
|  | assert(!DI->isPHI() && "PHI instr in code during pre-alloc splitting."); | 
|  | VNInfo* NewVN = LI->getNextValue(DefIdx, 0, true, Alloc); | 
|  |  | 
|  | // If the def is a move, set the copy field. | 
|  | unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx; | 
|  | if (TII->isMoveInstr(*DI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)) | 
|  | if (DstReg == LI->reg) | 
|  | NewVN->setCopy(&*DI); | 
|  |  | 
|  | NewVNs[&*DI] = NewVN; | 
|  | } | 
|  |  | 
|  | // Cache uses as a separate pass from actually processing them. | 
|  | for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(LI->reg), | 
|  | UE = MRI->use_end(); UI != UE; ++UI) | 
|  | Uses[(*UI).getParent()].insert(&*UI); | 
|  |  | 
|  | // Now, actually process every use and use a phi construction algorithm | 
|  | // to walk from it to its reaching definitions, building VNInfos along | 
|  | // the way. | 
|  | DenseMap<MachineBasicBlock*, VNInfo*> LiveOut; | 
|  | DenseMap<MachineBasicBlock*, VNInfo*> Phis; | 
|  | SmallPtrSet<MachineInstr*, 4> Visited; | 
|  | for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(LI->reg), | 
|  | UE = MRI->use_end(); UI != UE; ++UI) { | 
|  | PerformPHIConstruction(&*UI, UI->getParent(), LI, Visited, Defs, | 
|  | Uses, NewVNs, LiveOut, Phis, true, true); | 
|  | } | 
|  |  | 
|  | // Add ranges for dead defs | 
|  | for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(LI->reg), | 
|  | DE = MRI->def_end(); DI != DE; ++DI) { | 
|  | SlotIndex DefIdx = LIs->getInstructionIndex(&*DI); | 
|  | DefIdx = DefIdx.getDefIndex(); | 
|  |  | 
|  | if (LI->liveAt(DefIdx)) continue; | 
|  |  | 
|  | VNInfo* DeadVN = NewVNs[&*DI]; | 
|  | LI->addRange(LiveRange(DefIdx, DefIdx.getNextSlot(), DeadVN)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// RenumberValno - Split the given valno out into a new vreg, allowing it to | 
|  | /// be allocated to a different register.  This function creates a new vreg, | 
|  | /// copies the valno and its live ranges over to the new vreg's interval, | 
|  | /// removes them from the old interval, and rewrites all uses and defs of | 
|  | /// the original reg to the new vreg within those ranges. | 
|  | void PreAllocSplitting::RenumberValno(VNInfo* VN) { | 
|  | SmallVector<VNInfo*, 4> Stack; | 
|  | SmallVector<VNInfo*, 4> VNsToCopy; | 
|  | Stack.push_back(VN); | 
|  |  | 
|  | // Walk through and copy the valno we care about, and any other valnos | 
|  | // that are two-address redefinitions of the one we care about.  These | 
|  | // will need to be rewritten as well.  We also check for safety of the | 
|  | // renumbering here, by making sure that none of the valno involved has | 
|  | // phi kills. | 
|  | while (!Stack.empty()) { | 
|  | VNInfo* OldVN = Stack.back(); | 
|  | Stack.pop_back(); | 
|  |  | 
|  | // Bail out if we ever encounter a valno that has a PHI kill.  We can't | 
|  | // renumber these. | 
|  | if (OldVN->hasPHIKill()) return; | 
|  |  | 
|  | VNsToCopy.push_back(OldVN); | 
|  |  | 
|  | // Locate two-address redefinitions | 
|  | for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(CurrLI->reg), | 
|  | DE = MRI->def_end(); DI != DE; ++DI) { | 
|  | if (!DI->isRegTiedToUseOperand(DI.getOperandNo())) continue; | 
|  | SlotIndex DefIdx = LIs->getInstructionIndex(&*DI).getDefIndex(); | 
|  | VNInfo* NextVN = CurrLI->findDefinedVNInfoForRegInt(DefIdx); | 
|  | if (std::find(VNsToCopy.begin(), VNsToCopy.end(), NextVN) != | 
|  | VNsToCopy.end()) | 
|  | Stack.push_back(NextVN); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Create the new vreg | 
|  | unsigned NewVReg = MRI->createVirtualRegister(MRI->getRegClass(CurrLI->reg)); | 
|  |  | 
|  | // Create the new live interval | 
|  | LiveInterval& NewLI = LIs->getOrCreateInterval(NewVReg); | 
|  |  | 
|  | for (SmallVector<VNInfo*, 4>::iterator OI = VNsToCopy.begin(), OE = | 
|  | VNsToCopy.end(); OI != OE; ++OI) { | 
|  | VNInfo* OldVN = *OI; | 
|  |  | 
|  | // Copy the valno over | 
|  | VNInfo* NewVN = NewLI.createValueCopy(OldVN, LIs->getVNInfoAllocator()); | 
|  | NewLI.MergeValueInAsValue(*CurrLI, OldVN, NewVN); | 
|  |  | 
|  | // Remove the valno from the old interval | 
|  | CurrLI->removeValNo(OldVN); | 
|  | } | 
|  |  | 
|  | // Rewrite defs and uses.  This is done in two stages to avoid invalidating | 
|  | // the reg_iterator. | 
|  | SmallVector<std::pair<MachineInstr*, unsigned>, 8> OpsToChange; | 
|  |  | 
|  | for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(CurrLI->reg), | 
|  | E = MRI->reg_end(); I != E; ++I) { | 
|  | MachineOperand& MO = I.getOperand(); | 
|  | SlotIndex InstrIdx = LIs->getInstructionIndex(&*I); | 
|  |  | 
|  | if ((MO.isUse() && NewLI.liveAt(InstrIdx.getUseIndex())) || | 
|  | (MO.isDef() && NewLI.liveAt(InstrIdx.getDefIndex()))) | 
|  | OpsToChange.push_back(std::make_pair(&*I, I.getOperandNo())); | 
|  | } | 
|  |  | 
|  | for (SmallVector<std::pair<MachineInstr*, unsigned>, 8>::iterator I = | 
|  | OpsToChange.begin(), E = OpsToChange.end(); I != E; ++I) { | 
|  | MachineInstr* Inst = I->first; | 
|  | unsigned OpIdx = I->second; | 
|  | MachineOperand& MO = Inst->getOperand(OpIdx); | 
|  | MO.setReg(NewVReg); | 
|  | } | 
|  |  | 
|  | // Grow the VirtRegMap, since we've created a new vreg. | 
|  | VRM->grow(); | 
|  |  | 
|  | // The renumbered vreg shares a stack slot with the old register. | 
|  | if (IntervalSSMap.count(CurrLI->reg)) | 
|  | IntervalSSMap[NewVReg] = IntervalSSMap[CurrLI->reg]; | 
|  |  | 
|  | ++NumRenumbers; | 
|  | } | 
|  |  | 
|  | bool PreAllocSplitting::Rematerialize(unsigned VReg, VNInfo* ValNo, | 
|  | MachineInstr* DefMI, | 
|  | MachineBasicBlock::iterator RestorePt, | 
|  | SmallPtrSet<MachineInstr*, 4>& RefsInMBB) { | 
|  | MachineBasicBlock& MBB = *RestorePt->getParent(); | 
|  |  | 
|  | MachineBasicBlock::iterator KillPt = BarrierMBB->end(); | 
|  | if (!ValNo->isDefAccurate() || DefMI->getParent() == BarrierMBB) | 
|  | KillPt = findSpillPoint(BarrierMBB, Barrier, NULL, RefsInMBB); | 
|  | else | 
|  | KillPt = llvm::next(MachineBasicBlock::iterator(DefMI)); | 
|  |  | 
|  | if (KillPt == DefMI->getParent()->end()) | 
|  | return false; | 
|  |  | 
|  | TII->reMaterialize(MBB, RestorePt, VReg, 0, DefMI, *TRI); | 
|  | SlotIndex RematIdx = LIs->InsertMachineInstrInMaps(prior(RestorePt)); | 
|  |  | 
|  | ReconstructLiveInterval(CurrLI); | 
|  | RematIdx = RematIdx.getDefIndex(); | 
|  | RenumberValno(CurrLI->findDefinedVNInfoForRegInt(RematIdx)); | 
|  |  | 
|  | ++NumSplits; | 
|  | ++NumRemats; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | MachineInstr* PreAllocSplitting::FoldSpill(unsigned vreg, | 
|  | const TargetRegisterClass* RC, | 
|  | MachineInstr* DefMI, | 
|  | MachineInstr* Barrier, | 
|  | MachineBasicBlock* MBB, | 
|  | int& SS, | 
|  | SmallPtrSet<MachineInstr*, 4>& RefsInMBB) { | 
|  | // Go top down if RefsInMBB is empty. | 
|  | if (RefsInMBB.empty()) | 
|  | return 0; | 
|  |  | 
|  | MachineBasicBlock::iterator FoldPt = Barrier; | 
|  | while (&*FoldPt != DefMI && FoldPt != MBB->begin() && | 
|  | !RefsInMBB.count(FoldPt)) | 
|  | --FoldPt; | 
|  |  | 
|  | int OpIdx = FoldPt->findRegisterDefOperandIdx(vreg); | 
|  | if (OpIdx == -1) | 
|  | return 0; | 
|  |  | 
|  | SmallVector<unsigned, 1> Ops; | 
|  | Ops.push_back(OpIdx); | 
|  |  | 
|  | if (!TII->canFoldMemoryOperand(FoldPt, Ops)) | 
|  | return 0; | 
|  |  | 
|  | DenseMap<unsigned, int>::iterator I = IntervalSSMap.find(vreg); | 
|  | if (I != IntervalSSMap.end()) { | 
|  | SS = I->second; | 
|  | } else { | 
|  | SS = MFI->CreateSpillStackObject(RC->getSize(), RC->getAlignment()); | 
|  | } | 
|  |  | 
|  | MachineInstr* FMI = TII->foldMemoryOperand(*MBB->getParent(), | 
|  | FoldPt, Ops, SS); | 
|  |  | 
|  | if (FMI) { | 
|  | LIs->ReplaceMachineInstrInMaps(FoldPt, FMI); | 
|  | FMI = MBB->insert(MBB->erase(FoldPt), FMI); | 
|  | ++NumFolds; | 
|  |  | 
|  | IntervalSSMap[vreg] = SS; | 
|  | CurrSLI = &LSs->getOrCreateInterval(SS, RC); | 
|  | if (CurrSLI->hasAtLeastOneValue()) | 
|  | CurrSValNo = CurrSLI->getValNumInfo(0); | 
|  | else | 
|  | CurrSValNo = CurrSLI->getNextValue(SlotIndex(), 0, false, | 
|  | LSs->getVNInfoAllocator()); | 
|  | } | 
|  |  | 
|  | return FMI; | 
|  | } | 
|  |  | 
|  | MachineInstr* PreAllocSplitting::FoldRestore(unsigned vreg, | 
|  | const TargetRegisterClass* RC, | 
|  | MachineInstr* Barrier, | 
|  | MachineBasicBlock* MBB, | 
|  | int SS, | 
|  | SmallPtrSet<MachineInstr*, 4>& RefsInMBB) { | 
|  | if ((int)RestoreFoldLimit != -1 && RestoreFoldLimit == (int)NumRestoreFolds) | 
|  | return 0; | 
|  |  | 
|  | // Go top down if RefsInMBB is empty. | 
|  | if (RefsInMBB.empty()) | 
|  | return 0; | 
|  |  | 
|  | // Can't fold a restore between a call stack setup and teardown. | 
|  | MachineBasicBlock::iterator FoldPt = Barrier; | 
|  |  | 
|  | // Advance from barrier to call frame teardown. | 
|  | while (FoldPt != MBB->getFirstTerminator() && | 
|  | FoldPt->getOpcode() != TRI->getCallFrameDestroyOpcode()) { | 
|  | if (RefsInMBB.count(FoldPt)) | 
|  | return 0; | 
|  |  | 
|  | ++FoldPt; | 
|  | } | 
|  |  | 
|  | if (FoldPt == MBB->getFirstTerminator()) | 
|  | return 0; | 
|  | else | 
|  | ++FoldPt; | 
|  |  | 
|  | // Now find the restore point. | 
|  | while (FoldPt != MBB->getFirstTerminator() && !RefsInMBB.count(FoldPt)) { | 
|  | if (FoldPt->getOpcode() == TRI->getCallFrameSetupOpcode()) { | 
|  | while (FoldPt != MBB->getFirstTerminator() && | 
|  | FoldPt->getOpcode() != TRI->getCallFrameDestroyOpcode()) { | 
|  | if (RefsInMBB.count(FoldPt)) | 
|  | return 0; | 
|  |  | 
|  | ++FoldPt; | 
|  | } | 
|  |  | 
|  | if (FoldPt == MBB->getFirstTerminator()) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ++FoldPt; | 
|  | } | 
|  |  | 
|  | if (FoldPt == MBB->getFirstTerminator()) | 
|  | return 0; | 
|  |  | 
|  | int OpIdx = FoldPt->findRegisterUseOperandIdx(vreg, true); | 
|  | if (OpIdx == -1) | 
|  | return 0; | 
|  |  | 
|  | SmallVector<unsigned, 1> Ops; | 
|  | Ops.push_back(OpIdx); | 
|  |  | 
|  | if (!TII->canFoldMemoryOperand(FoldPt, Ops)) | 
|  | return 0; | 
|  |  | 
|  | MachineInstr* FMI = TII->foldMemoryOperand(*MBB->getParent(), | 
|  | FoldPt, Ops, SS); | 
|  |  | 
|  | if (FMI) { | 
|  | LIs->ReplaceMachineInstrInMaps(FoldPt, FMI); | 
|  | FMI = MBB->insert(MBB->erase(FoldPt), FMI); | 
|  | ++NumRestoreFolds; | 
|  | } | 
|  |  | 
|  | return FMI; | 
|  | } | 
|  |  | 
|  | /// SplitRegLiveInterval - Split (spill and restore) the given live interval | 
|  | /// so it would not cross the barrier that's being processed. Shrink wrap | 
|  | /// (minimize) the live interval to the last uses. | 
|  | bool PreAllocSplitting::SplitRegLiveInterval(LiveInterval *LI) { | 
|  | DEBUG(dbgs() << "Pre-alloc splitting " << LI->reg << " for " << *Barrier | 
|  | << "  result: "); | 
|  |  | 
|  | CurrLI = LI; | 
|  |  | 
|  | // Find live range where current interval cross the barrier. | 
|  | LiveInterval::iterator LR = | 
|  | CurrLI->FindLiveRangeContaining(BarrierIdx.getUseIndex()); | 
|  | VNInfo *ValNo = LR->valno; | 
|  |  | 
|  | assert(!ValNo->isUnused() && "Val# is defined by a dead def?"); | 
|  |  | 
|  | MachineInstr *DefMI = ValNo->isDefAccurate() | 
|  | ? LIs->getInstructionFromIndex(ValNo->def) : NULL; | 
|  |  | 
|  | // If this would create a new join point, do not split. | 
|  | if (DefMI && createsNewJoin(LR, DefMI->getParent(), Barrier->getParent())) { | 
|  | DEBUG(dbgs() << "FAILED (would create a new join point).\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Find all references in the barrier mbb. | 
|  | SmallPtrSet<MachineInstr*, 4> RefsInMBB; | 
|  | for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(CurrLI->reg), | 
|  | E = MRI->reg_end(); I != E; ++I) { | 
|  | MachineInstr *RefMI = &*I; | 
|  | if (RefMI->getParent() == BarrierMBB) | 
|  | RefsInMBB.insert(RefMI); | 
|  | } | 
|  |  | 
|  | // Find a point to restore the value after the barrier. | 
|  | MachineBasicBlock::iterator RestorePt = | 
|  | findRestorePoint(BarrierMBB, Barrier, LR->end, RefsInMBB); | 
|  | if (RestorePt == BarrierMBB->end()) { | 
|  | DEBUG(dbgs() << "FAILED (could not find a suitable restore point).\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (DefMI && LIs->isReMaterializable(*LI, ValNo, DefMI)) | 
|  | if (Rematerialize(LI->reg, ValNo, DefMI, RestorePt, RefsInMBB)) { | 
|  | DEBUG(dbgs() << "success (remat).\n"); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Add a spill either before the barrier or after the definition. | 
|  | MachineBasicBlock *DefMBB = DefMI ? DefMI->getParent() : NULL; | 
|  | const TargetRegisterClass *RC = MRI->getRegClass(CurrLI->reg); | 
|  | SlotIndex SpillIndex; | 
|  | MachineInstr *SpillMI = NULL; | 
|  | int SS = -1; | 
|  | if (!ValNo->isDefAccurate()) { | 
|  | // If we don't know where the def is we must split just before the barrier. | 
|  | if ((SpillMI = FoldSpill(LI->reg, RC, 0, Barrier, | 
|  | BarrierMBB, SS, RefsInMBB))) { | 
|  | SpillIndex = LIs->getInstructionIndex(SpillMI); | 
|  | } else { | 
|  | MachineBasicBlock::iterator SpillPt = | 
|  | findSpillPoint(BarrierMBB, Barrier, NULL, RefsInMBB); | 
|  | if (SpillPt == BarrierMBB->begin()) { | 
|  | DEBUG(dbgs() << "FAILED (could not find a suitable spill point).\n"); | 
|  | return false; // No gap to insert spill. | 
|  | } | 
|  | // Add spill. | 
|  |  | 
|  | SS = CreateSpillStackSlot(CurrLI->reg, RC); | 
|  | TII->storeRegToStackSlot(*BarrierMBB, SpillPt, CurrLI->reg, true, SS, RC, | 
|  | TRI); | 
|  | SpillMI = prior(SpillPt); | 
|  | SpillIndex = LIs->InsertMachineInstrInMaps(SpillMI); | 
|  | } | 
|  | } else if (!IsAvailableInStack(DefMBB, CurrLI->reg, ValNo->def, | 
|  | LIs->getZeroIndex(), SpillIndex, SS)) { | 
|  | // If it's already split, just restore the value. There is no need to spill | 
|  | // the def again. | 
|  | if (!DefMI) { | 
|  | DEBUG(dbgs() << "FAILED (def is dead).\n"); | 
|  | return false; // Def is dead. Do nothing. | 
|  | } | 
|  |  | 
|  | if ((SpillMI = FoldSpill(LI->reg, RC, DefMI, Barrier, | 
|  | BarrierMBB, SS, RefsInMBB))) { | 
|  | SpillIndex = LIs->getInstructionIndex(SpillMI); | 
|  | } else { | 
|  | // Check if it's possible to insert a spill after the def MI. | 
|  | MachineBasicBlock::iterator SpillPt; | 
|  | if (DefMBB == BarrierMBB) { | 
|  | // Add spill after the def and the last use before the barrier. | 
|  | SpillPt = findSpillPoint(BarrierMBB, Barrier, DefMI, | 
|  | RefsInMBB); | 
|  | if (SpillPt == DefMBB->begin()) { | 
|  | DEBUG(dbgs() << "FAILED (could not find a suitable spill point).\n"); | 
|  | return false; // No gap to insert spill. | 
|  | } | 
|  | } else { | 
|  | SpillPt = llvm::next(MachineBasicBlock::iterator(DefMI)); | 
|  | if (SpillPt == DefMBB->end()) { | 
|  | DEBUG(dbgs() << "FAILED (could not find a suitable spill point).\n"); | 
|  | return false; // No gap to insert spill. | 
|  | } | 
|  | } | 
|  | // Add spill. | 
|  | SS = CreateSpillStackSlot(CurrLI->reg, RC); | 
|  | TII->storeRegToStackSlot(*DefMBB, SpillPt, CurrLI->reg, false, SS, RC, | 
|  | TRI); | 
|  | SpillMI = prior(SpillPt); | 
|  | SpillIndex = LIs->InsertMachineInstrInMaps(SpillMI); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Remember def instruction index to spill index mapping. | 
|  | if (DefMI && SpillMI) | 
|  | Def2SpillMap[ValNo->def] = SpillIndex; | 
|  |  | 
|  | // Add restore. | 
|  | bool FoldedRestore = false; | 
|  | SlotIndex RestoreIndex; | 
|  | if (MachineInstr* LMI = FoldRestore(CurrLI->reg, RC, Barrier, | 
|  | BarrierMBB, SS, RefsInMBB)) { | 
|  | RestorePt = LMI; | 
|  | RestoreIndex = LIs->getInstructionIndex(RestorePt); | 
|  | FoldedRestore = true; | 
|  | } else { | 
|  | TII->loadRegFromStackSlot(*BarrierMBB, RestorePt, CurrLI->reg, SS, RC, TRI); | 
|  | MachineInstr *LoadMI = prior(RestorePt); | 
|  | RestoreIndex = LIs->InsertMachineInstrInMaps(LoadMI); | 
|  | } | 
|  |  | 
|  | // Update spill stack slot live interval. | 
|  | UpdateSpillSlotInterval(ValNo, SpillIndex.getUseIndex().getNextSlot(), | 
|  | RestoreIndex.getDefIndex()); | 
|  |  | 
|  | ReconstructLiveInterval(CurrLI); | 
|  |  | 
|  | if (!FoldedRestore) { | 
|  | SlotIndex RestoreIdx = LIs->getInstructionIndex(prior(RestorePt)); | 
|  | RestoreIdx = RestoreIdx.getDefIndex(); | 
|  | RenumberValno(CurrLI->findDefinedVNInfoForRegInt(RestoreIdx)); | 
|  | } | 
|  |  | 
|  | ++NumSplits; | 
|  | DEBUG(dbgs() << "success.\n"); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// SplitRegLiveIntervals - Split all register live intervals that cross the | 
|  | /// barrier that's being processed. | 
|  | bool | 
|  | PreAllocSplitting::SplitRegLiveIntervals(const TargetRegisterClass **RCs, | 
|  | SmallPtrSet<LiveInterval*, 8>& Split) { | 
|  | // First find all the virtual registers whose live intervals are intercepted | 
|  | // by the current barrier. | 
|  | SmallVector<LiveInterval*, 8> Intervals; | 
|  | for (const TargetRegisterClass **RC = RCs; *RC; ++RC) { | 
|  | // FIXME: If it's not safe to move any instruction that defines the barrier | 
|  | // register class, then it means there are some special dependencies which | 
|  | // codegen is not modelling. Ignore these barriers for now. | 
|  | if (!TII->isSafeToMoveRegClassDefs(*RC)) | 
|  | continue; | 
|  | const std::vector<unsigned> &VRs = MRI->getRegClassVirtRegs(*RC); | 
|  | for (unsigned i = 0, e = VRs.size(); i != e; ++i) { | 
|  | unsigned Reg = VRs[i]; | 
|  | if (!LIs->hasInterval(Reg)) | 
|  | continue; | 
|  | LiveInterval *LI = &LIs->getInterval(Reg); | 
|  | if (LI->liveAt(BarrierIdx) && !Barrier->readsRegister(Reg)) | 
|  | // Virtual register live interval is intercepted by the barrier. We | 
|  | // should split and shrink wrap its interval if possible. | 
|  | Intervals.push_back(LI); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Process the affected live intervals. | 
|  | bool Change = false; | 
|  | while (!Intervals.empty()) { | 
|  | if (PreSplitLimit != -1 && (int)NumSplits == PreSplitLimit) | 
|  | break; | 
|  | LiveInterval *LI = Intervals.back(); | 
|  | Intervals.pop_back(); | 
|  | bool result = SplitRegLiveInterval(LI); | 
|  | if (result) Split.insert(LI); | 
|  | Change |= result; | 
|  | } | 
|  |  | 
|  | return Change; | 
|  | } | 
|  |  | 
|  | unsigned PreAllocSplitting::getNumberOfNonSpills( | 
|  | SmallPtrSet<MachineInstr*, 4>& MIs, | 
|  | unsigned Reg, int FrameIndex, | 
|  | bool& FeedsTwoAddr) { | 
|  | unsigned NonSpills = 0; | 
|  | for (SmallPtrSet<MachineInstr*, 4>::iterator UI = MIs.begin(), UE = MIs.end(); | 
|  | UI != UE; ++UI) { | 
|  | int StoreFrameIndex; | 
|  | unsigned StoreVReg = TII->isStoreToStackSlot(*UI, StoreFrameIndex); | 
|  | if (StoreVReg != Reg || StoreFrameIndex != FrameIndex) | 
|  | ++NonSpills; | 
|  |  | 
|  | int DefIdx = (*UI)->findRegisterDefOperandIdx(Reg); | 
|  | if (DefIdx != -1 && (*UI)->isRegTiedToUseOperand(DefIdx)) | 
|  | FeedsTwoAddr = true; | 
|  | } | 
|  |  | 
|  | return NonSpills; | 
|  | } | 
|  |  | 
|  | /// removeDeadSpills - After doing splitting, filter through all intervals we've | 
|  | /// split, and see if any of the spills are unnecessary.  If so, remove them. | 
|  | bool PreAllocSplitting::removeDeadSpills(SmallPtrSet<LiveInterval*, 8>& split) { | 
|  | bool changed = false; | 
|  |  | 
|  | // Walk over all of the live intervals that were touched by the splitter, | 
|  | // and see if we can do any DCE and/or folding. | 
|  | for (SmallPtrSet<LiveInterval*, 8>::iterator LI = split.begin(), | 
|  | LE = split.end(); LI != LE; ++LI) { | 
|  | DenseMap<VNInfo*, SmallPtrSet<MachineInstr*, 4> > VNUseCount; | 
|  |  | 
|  | // First, collect all the uses of the vreg, and sort them by their | 
|  | // reaching definition (VNInfo). | 
|  | for (MachineRegisterInfo::use_iterator UI = MRI->use_begin((*LI)->reg), | 
|  | UE = MRI->use_end(); UI != UE; ++UI) { | 
|  | SlotIndex index = LIs->getInstructionIndex(&*UI); | 
|  | index = index.getUseIndex(); | 
|  |  | 
|  | const LiveRange* LR = (*LI)->getLiveRangeContaining(index); | 
|  | VNUseCount[LR->valno].insert(&*UI); | 
|  | } | 
|  |  | 
|  | // Now, take the definitions (VNInfo's) one at a time and try to DCE | 
|  | // and/or fold them away. | 
|  | for (LiveInterval::vni_iterator VI = (*LI)->vni_begin(), | 
|  | VE = (*LI)->vni_end(); VI != VE; ++VI) { | 
|  |  | 
|  | if (DeadSplitLimit != -1 && (int)NumDeadSpills == DeadSplitLimit) | 
|  | return changed; | 
|  |  | 
|  | VNInfo* CurrVN = *VI; | 
|  |  | 
|  | // We don't currently try to handle definitions with PHI kills, because | 
|  | // it would involve processing more than one VNInfo at once. | 
|  | if (CurrVN->hasPHIKill()) continue; | 
|  |  | 
|  | // We also don't try to handle the results of PHI joins, since there's | 
|  | // no defining instruction to analyze. | 
|  | if (!CurrVN->isDefAccurate() || CurrVN->isUnused()) continue; | 
|  |  | 
|  | // We're only interested in eliminating cruft introduced by the splitter, | 
|  | // is of the form load-use or load-use-store.  First, check that the | 
|  | // definition is a load, and remember what stack slot we loaded it from. | 
|  | MachineInstr* DefMI = LIs->getInstructionFromIndex(CurrVN->def); | 
|  | int FrameIndex; | 
|  | if (!TII->isLoadFromStackSlot(DefMI, FrameIndex)) continue; | 
|  |  | 
|  | // If the definition has no uses at all, just DCE it. | 
|  | if (VNUseCount[CurrVN].size() == 0) { | 
|  | LIs->RemoveMachineInstrFromMaps(DefMI); | 
|  | (*LI)->removeValNo(CurrVN); | 
|  | DefMI->eraseFromParent(); | 
|  | VNUseCount.erase(CurrVN); | 
|  | ++NumDeadSpills; | 
|  | changed = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Second, get the number of non-store uses of the definition, as well as | 
|  | // a flag indicating whether it feeds into a later two-address definition. | 
|  | bool FeedsTwoAddr = false; | 
|  | unsigned NonSpillCount = getNumberOfNonSpills(VNUseCount[CurrVN], | 
|  | (*LI)->reg, FrameIndex, | 
|  | FeedsTwoAddr); | 
|  |  | 
|  | // If there's one non-store use and it doesn't feed a two-addr, then | 
|  | // this is a load-use-store case that we can try to fold. | 
|  | if (NonSpillCount == 1 && !FeedsTwoAddr) { | 
|  | // Start by finding the non-store use MachineInstr. | 
|  | SmallPtrSet<MachineInstr*, 4>::iterator UI = VNUseCount[CurrVN].begin(); | 
|  | int StoreFrameIndex; | 
|  | unsigned StoreVReg = TII->isStoreToStackSlot(*UI, StoreFrameIndex); | 
|  | while (UI != VNUseCount[CurrVN].end() && | 
|  | (StoreVReg == (*LI)->reg && StoreFrameIndex == FrameIndex)) { | 
|  | ++UI; | 
|  | if (UI != VNUseCount[CurrVN].end()) | 
|  | StoreVReg = TII->isStoreToStackSlot(*UI, StoreFrameIndex); | 
|  | } | 
|  | if (UI == VNUseCount[CurrVN].end()) continue; | 
|  |  | 
|  | MachineInstr* use = *UI; | 
|  |  | 
|  | // Attempt to fold it away! | 
|  | int OpIdx = use->findRegisterUseOperandIdx((*LI)->reg, false); | 
|  | if (OpIdx == -1) continue; | 
|  | SmallVector<unsigned, 1> Ops; | 
|  | Ops.push_back(OpIdx); | 
|  | if (!TII->canFoldMemoryOperand(use, Ops)) continue; | 
|  |  | 
|  | MachineInstr* NewMI = | 
|  | TII->foldMemoryOperand(*use->getParent()->getParent(), | 
|  | use, Ops, FrameIndex); | 
|  |  | 
|  | if (!NewMI) continue; | 
|  |  | 
|  | // Update relevant analyses. | 
|  | LIs->RemoveMachineInstrFromMaps(DefMI); | 
|  | LIs->ReplaceMachineInstrInMaps(use, NewMI); | 
|  | (*LI)->removeValNo(CurrVN); | 
|  |  | 
|  | DefMI->eraseFromParent(); | 
|  | MachineBasicBlock* MBB = use->getParent(); | 
|  | NewMI = MBB->insert(MBB->erase(use), NewMI); | 
|  | VNUseCount[CurrVN].erase(use); | 
|  |  | 
|  | // Remove deleted instructions.  Note that we need to remove them from | 
|  | // the VNInfo->use map as well, just to be safe. | 
|  | for (SmallPtrSet<MachineInstr*, 4>::iterator II = | 
|  | VNUseCount[CurrVN].begin(), IE = VNUseCount[CurrVN].end(); | 
|  | II != IE; ++II) { | 
|  | for (DenseMap<VNInfo*, SmallPtrSet<MachineInstr*, 4> >::iterator | 
|  | VNI = VNUseCount.begin(), VNE = VNUseCount.end(); VNI != VNE; | 
|  | ++VNI) | 
|  | if (VNI->first != CurrVN) | 
|  | VNI->second.erase(*II); | 
|  | LIs->RemoveMachineInstrFromMaps(*II); | 
|  | (*II)->eraseFromParent(); | 
|  | } | 
|  |  | 
|  | VNUseCount.erase(CurrVN); | 
|  |  | 
|  | for (DenseMap<VNInfo*, SmallPtrSet<MachineInstr*, 4> >::iterator | 
|  | VI = VNUseCount.begin(), VE = VNUseCount.end(); VI != VE; ++VI) | 
|  | if (VI->second.erase(use)) | 
|  | VI->second.insert(NewMI); | 
|  |  | 
|  | ++NumDeadSpills; | 
|  | changed = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If there's more than one non-store instruction, we can't profitably | 
|  | // fold it, so bail. | 
|  | if (NonSpillCount) continue; | 
|  |  | 
|  | // Otherwise, this is a load-store case, so DCE them. | 
|  | for (SmallPtrSet<MachineInstr*, 4>::iterator UI = | 
|  | VNUseCount[CurrVN].begin(), UE = VNUseCount[CurrVN].end(); | 
|  | UI != UE; ++UI) { | 
|  | LIs->RemoveMachineInstrFromMaps(*UI); | 
|  | (*UI)->eraseFromParent(); | 
|  | } | 
|  |  | 
|  | VNUseCount.erase(CurrVN); | 
|  |  | 
|  | LIs->RemoveMachineInstrFromMaps(DefMI); | 
|  | (*LI)->removeValNo(CurrVN); | 
|  | DefMI->eraseFromParent(); | 
|  | ++NumDeadSpills; | 
|  | changed = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return changed; | 
|  | } | 
|  |  | 
|  | bool PreAllocSplitting::createsNewJoin(LiveRange* LR, | 
|  | MachineBasicBlock* DefMBB, | 
|  | MachineBasicBlock* BarrierMBB) { | 
|  | if (DefMBB == BarrierMBB) | 
|  | return false; | 
|  |  | 
|  | if (LR->valno->hasPHIKill()) | 
|  | return false; | 
|  |  | 
|  | SlotIndex MBBEnd = LIs->getMBBEndIdx(BarrierMBB); | 
|  | if (LR->end < MBBEnd) | 
|  | return false; | 
|  |  | 
|  | MachineLoopInfo& MLI = getAnalysis<MachineLoopInfo>(); | 
|  | if (MLI.getLoopFor(DefMBB) != MLI.getLoopFor(BarrierMBB)) | 
|  | return true; | 
|  |  | 
|  | MachineDominatorTree& MDT = getAnalysis<MachineDominatorTree>(); | 
|  | SmallPtrSet<MachineBasicBlock*, 4> Visited; | 
|  | typedef std::pair<MachineBasicBlock*, | 
|  | MachineBasicBlock::succ_iterator> ItPair; | 
|  | SmallVector<ItPair, 4> Stack; | 
|  | Stack.push_back(std::make_pair(BarrierMBB, BarrierMBB->succ_begin())); | 
|  |  | 
|  | while (!Stack.empty()) { | 
|  | ItPair P = Stack.back(); | 
|  | Stack.pop_back(); | 
|  |  | 
|  | MachineBasicBlock* PredMBB = P.first; | 
|  | MachineBasicBlock::succ_iterator S = P.second; | 
|  |  | 
|  | if (S == PredMBB->succ_end()) | 
|  | continue; | 
|  | else if (Visited.count(*S)) { | 
|  | Stack.push_back(std::make_pair(PredMBB, ++S)); | 
|  | continue; | 
|  | } else | 
|  | Stack.push_back(std::make_pair(PredMBB, S+1)); | 
|  |  | 
|  | MachineBasicBlock* MBB = *S; | 
|  | Visited.insert(MBB); | 
|  |  | 
|  | if (MBB == BarrierMBB) | 
|  | return true; | 
|  |  | 
|  | MachineDomTreeNode* DefMDTN = MDT.getNode(DefMBB); | 
|  | MachineDomTreeNode* BarrierMDTN = MDT.getNode(BarrierMBB); | 
|  | MachineDomTreeNode* MDTN = MDT.getNode(MBB)->getIDom(); | 
|  | while (MDTN) { | 
|  | if (MDTN == DefMDTN) | 
|  | return true; | 
|  | else if (MDTN == BarrierMDTN) | 
|  | break; | 
|  | MDTN = MDTN->getIDom(); | 
|  | } | 
|  |  | 
|  | MBBEnd = LIs->getMBBEndIdx(MBB); | 
|  | if (LR->end > MBBEnd) | 
|  | Stack.push_back(std::make_pair(MBB, MBB->succ_begin())); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | bool PreAllocSplitting::runOnMachineFunction(MachineFunction &MF) { | 
|  | CurrMF = &MF; | 
|  | TM     = &MF.getTarget(); | 
|  | TRI    = TM->getRegisterInfo(); | 
|  | TII    = TM->getInstrInfo(); | 
|  | MFI    = MF.getFrameInfo(); | 
|  | MRI    = &MF.getRegInfo(); | 
|  | SIs    = &getAnalysis<SlotIndexes>(); | 
|  | LIs    = &getAnalysis<LiveIntervals>(); | 
|  | LSs    = &getAnalysis<LiveStacks>(); | 
|  | VRM    = &getAnalysis<VirtRegMap>(); | 
|  |  | 
|  | bool MadeChange = false; | 
|  |  | 
|  | // Make sure blocks are numbered in order. | 
|  | MF.RenumberBlocks(); | 
|  |  | 
|  | MachineBasicBlock *Entry = MF.begin(); | 
|  | SmallPtrSet<MachineBasicBlock*,16> Visited; | 
|  |  | 
|  | SmallPtrSet<LiveInterval*, 8> Split; | 
|  |  | 
|  | for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*,16> > | 
|  | DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited); | 
|  | DFI != E; ++DFI) { | 
|  | BarrierMBB = *DFI; | 
|  | for (MachineBasicBlock::iterator I = BarrierMBB->begin(), | 
|  | E = BarrierMBB->end(); I != E; ++I) { | 
|  | Barrier = &*I; | 
|  | const TargetRegisterClass **BarrierRCs = | 
|  | Barrier->getDesc().getRegClassBarriers(); | 
|  | if (!BarrierRCs) | 
|  | continue; | 
|  | BarrierIdx = LIs->getInstructionIndex(Barrier); | 
|  | MadeChange |= SplitRegLiveIntervals(BarrierRCs, Split); | 
|  | } | 
|  | } | 
|  |  | 
|  | MadeChange |= removeDeadSpills(Split); | 
|  |  | 
|  | return MadeChange; | 
|  | } |