|  | //===-- TargetInstrInfoImpl.cpp - Target Instruction Information ----------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the TargetInstrInfoImpl class, it just provides default | 
|  | // implementations of various methods. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Target/TargetInstrInfo.h" | 
|  | #include "llvm/Target/TargetLowering.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include "llvm/Target/TargetRegisterInfo.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineInstr.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineMemOperand.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/PostRAHazardRecognizer.h" | 
|  | #include "llvm/CodeGen/PseudoSourceValue.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything | 
|  | /// after it, replacing it with an unconditional branch to NewDest. | 
|  | void | 
|  | TargetInstrInfoImpl::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail, | 
|  | MachineBasicBlock *NewDest) const { | 
|  | MachineBasicBlock *MBB = Tail->getParent(); | 
|  |  | 
|  | // Remove all the old successors of MBB from the CFG. | 
|  | while (!MBB->succ_empty()) | 
|  | MBB->removeSuccessor(MBB->succ_begin()); | 
|  |  | 
|  | // Remove all the dead instructions from the end of MBB. | 
|  | MBB->erase(Tail, MBB->end()); | 
|  |  | 
|  | // If MBB isn't immediately before MBB, insert a branch to it. | 
|  | if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest)) | 
|  | InsertBranch(*MBB, NewDest, 0, SmallVector<MachineOperand, 0>(), | 
|  | Tail->getDebugLoc()); | 
|  | MBB->addSuccessor(NewDest); | 
|  | } | 
|  |  | 
|  | // commuteInstruction - The default implementation of this method just exchanges | 
|  | // the two operands returned by findCommutedOpIndices. | 
|  | MachineInstr *TargetInstrInfoImpl::commuteInstruction(MachineInstr *MI, | 
|  | bool NewMI) const { | 
|  | const TargetInstrDesc &TID = MI->getDesc(); | 
|  | bool HasDef = TID.getNumDefs(); | 
|  | if (HasDef && !MI->getOperand(0).isReg()) | 
|  | // No idea how to commute this instruction. Target should implement its own. | 
|  | return 0; | 
|  | unsigned Idx1, Idx2; | 
|  | if (!findCommutedOpIndices(MI, Idx1, Idx2)) { | 
|  | std::string msg; | 
|  | raw_string_ostream Msg(msg); | 
|  | Msg << "Don't know how to commute: " << *MI; | 
|  | report_fatal_error(Msg.str()); | 
|  | } | 
|  |  | 
|  | assert(MI->getOperand(Idx1).isReg() && MI->getOperand(Idx2).isReg() && | 
|  | "This only knows how to commute register operands so far"); | 
|  | unsigned Reg1 = MI->getOperand(Idx1).getReg(); | 
|  | unsigned Reg2 = MI->getOperand(Idx2).getReg(); | 
|  | bool Reg1IsKill = MI->getOperand(Idx1).isKill(); | 
|  | bool Reg2IsKill = MI->getOperand(Idx2).isKill(); | 
|  | bool ChangeReg0 = false; | 
|  | if (HasDef && MI->getOperand(0).getReg() == Reg1) { | 
|  | // Must be two address instruction! | 
|  | assert(MI->getDesc().getOperandConstraint(0, TOI::TIED_TO) && | 
|  | "Expecting a two-address instruction!"); | 
|  | Reg2IsKill = false; | 
|  | ChangeReg0 = true; | 
|  | } | 
|  |  | 
|  | if (NewMI) { | 
|  | // Create a new instruction. | 
|  | unsigned Reg0 = HasDef | 
|  | ? (ChangeReg0 ? Reg2 : MI->getOperand(0).getReg()) : 0; | 
|  | bool Reg0IsDead = HasDef ? MI->getOperand(0).isDead() : false; | 
|  | MachineFunction &MF = *MI->getParent()->getParent(); | 
|  | if (HasDef) | 
|  | return BuildMI(MF, MI->getDebugLoc(), MI->getDesc()) | 
|  | .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead)) | 
|  | .addReg(Reg2, getKillRegState(Reg2IsKill)) | 
|  | .addReg(Reg1, getKillRegState(Reg2IsKill)); | 
|  | else | 
|  | return BuildMI(MF, MI->getDebugLoc(), MI->getDesc()) | 
|  | .addReg(Reg2, getKillRegState(Reg2IsKill)) | 
|  | .addReg(Reg1, getKillRegState(Reg2IsKill)); | 
|  | } | 
|  |  | 
|  | if (ChangeReg0) | 
|  | MI->getOperand(0).setReg(Reg2); | 
|  | MI->getOperand(Idx2).setReg(Reg1); | 
|  | MI->getOperand(Idx1).setReg(Reg2); | 
|  | MI->getOperand(Idx2).setIsKill(Reg1IsKill); | 
|  | MI->getOperand(Idx1).setIsKill(Reg2IsKill); | 
|  | return MI; | 
|  | } | 
|  |  | 
|  | /// findCommutedOpIndices - If specified MI is commutable, return the two | 
|  | /// operand indices that would swap value. Return true if the instruction | 
|  | /// is not in a form which this routine understands. | 
|  | bool TargetInstrInfoImpl::findCommutedOpIndices(MachineInstr *MI, | 
|  | unsigned &SrcOpIdx1, | 
|  | unsigned &SrcOpIdx2) const { | 
|  | const TargetInstrDesc &TID = MI->getDesc(); | 
|  | if (!TID.isCommutable()) | 
|  | return false; | 
|  | // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this | 
|  | // is not true, then the target must implement this. | 
|  | SrcOpIdx1 = TID.getNumDefs(); | 
|  | SrcOpIdx2 = SrcOpIdx1 + 1; | 
|  | if (!MI->getOperand(SrcOpIdx1).isReg() || | 
|  | !MI->getOperand(SrcOpIdx2).isReg()) | 
|  | // No idea. | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | bool TargetInstrInfoImpl::PredicateInstruction(MachineInstr *MI, | 
|  | const SmallVectorImpl<MachineOperand> &Pred) const { | 
|  | bool MadeChange = false; | 
|  | const TargetInstrDesc &TID = MI->getDesc(); | 
|  | if (!TID.isPredicable()) | 
|  | return false; | 
|  |  | 
|  | for (unsigned j = 0, i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
|  | if (TID.OpInfo[i].isPredicate()) { | 
|  | MachineOperand &MO = MI->getOperand(i); | 
|  | if (MO.isReg()) { | 
|  | MO.setReg(Pred[j].getReg()); | 
|  | MadeChange = true; | 
|  | } else if (MO.isImm()) { | 
|  | MO.setImm(Pred[j].getImm()); | 
|  | MadeChange = true; | 
|  | } else if (MO.isMBB()) { | 
|  | MO.setMBB(Pred[j].getMBB()); | 
|  | MadeChange = true; | 
|  | } | 
|  | ++j; | 
|  | } | 
|  | } | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | void TargetInstrInfoImpl::reMaterialize(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator I, | 
|  | unsigned DestReg, | 
|  | unsigned SubIdx, | 
|  | const MachineInstr *Orig, | 
|  | const TargetRegisterInfo &TRI) const { | 
|  | MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig); | 
|  | MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI); | 
|  | MBB.insert(I, MI); | 
|  | } | 
|  |  | 
|  | bool TargetInstrInfoImpl::produceSameValue(const MachineInstr *MI0, | 
|  | const MachineInstr *MI1) const { | 
|  | return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs); | 
|  | } | 
|  |  | 
|  | MachineInstr *TargetInstrInfoImpl::duplicate(MachineInstr *Orig, | 
|  | MachineFunction &MF) const { | 
|  | assert(!Orig->getDesc().isNotDuplicable() && | 
|  | "Instruction cannot be duplicated"); | 
|  | return MF.CloneMachineInstr(Orig); | 
|  | } | 
|  |  | 
|  | unsigned | 
|  | TargetInstrInfoImpl::GetFunctionSizeInBytes(const MachineFunction &MF) const { | 
|  | unsigned FnSize = 0; | 
|  | for (MachineFunction::const_iterator MBBI = MF.begin(), E = MF.end(); | 
|  | MBBI != E; ++MBBI) { | 
|  | const MachineBasicBlock &MBB = *MBBI; | 
|  | for (MachineBasicBlock::const_iterator I = MBB.begin(),E = MBB.end(); | 
|  | I != E; ++I) | 
|  | FnSize += GetInstSizeInBytes(I); | 
|  | } | 
|  | return FnSize; | 
|  | } | 
|  |  | 
|  | /// foldMemoryOperand - Attempt to fold a load or store of the specified stack | 
|  | /// slot into the specified machine instruction for the specified operand(s). | 
|  | /// If this is possible, a new instruction is returned with the specified | 
|  | /// operand folded, otherwise NULL is returned. The client is responsible for | 
|  | /// removing the old instruction and adding the new one in the instruction | 
|  | /// stream. | 
|  | MachineInstr* | 
|  | TargetInstrInfo::foldMemoryOperand(MachineFunction &MF, | 
|  | MachineInstr* MI, | 
|  | const SmallVectorImpl<unsigned> &Ops, | 
|  | int FrameIndex) const { | 
|  | unsigned Flags = 0; | 
|  | for (unsigned i = 0, e = Ops.size(); i != e; ++i) | 
|  | if (MI->getOperand(Ops[i]).isDef()) | 
|  | Flags |= MachineMemOperand::MOStore; | 
|  | else | 
|  | Flags |= MachineMemOperand::MOLoad; | 
|  |  | 
|  | // Ask the target to do the actual folding. | 
|  | MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, FrameIndex); | 
|  | if (!NewMI) return 0; | 
|  |  | 
|  | assert((!(Flags & MachineMemOperand::MOStore) || | 
|  | NewMI->getDesc().mayStore()) && | 
|  | "Folded a def to a non-store!"); | 
|  | assert((!(Flags & MachineMemOperand::MOLoad) || | 
|  | NewMI->getDesc().mayLoad()) && | 
|  | "Folded a use to a non-load!"); | 
|  | const MachineFrameInfo &MFI = *MF.getFrameInfo(); | 
|  | assert(MFI.getObjectOffset(FrameIndex) != -1); | 
|  | MachineMemOperand *MMO = | 
|  | MF.getMachineMemOperand(PseudoSourceValue::getFixedStack(FrameIndex), | 
|  | Flags, /*Offset=*/0, | 
|  | MFI.getObjectSize(FrameIndex), | 
|  | MFI.getObjectAlignment(FrameIndex)); | 
|  | NewMI->addMemOperand(MF, MMO); | 
|  |  | 
|  | return NewMI; | 
|  | } | 
|  |  | 
|  | /// foldMemoryOperand - Same as the previous version except it allows folding | 
|  | /// of any load and store from / to any address, not just from a specific | 
|  | /// stack slot. | 
|  | MachineInstr* | 
|  | TargetInstrInfo::foldMemoryOperand(MachineFunction &MF, | 
|  | MachineInstr* MI, | 
|  | const SmallVectorImpl<unsigned> &Ops, | 
|  | MachineInstr* LoadMI) const { | 
|  | assert(LoadMI->getDesc().canFoldAsLoad() && "LoadMI isn't foldable!"); | 
|  | #ifndef NDEBUG | 
|  | for (unsigned i = 0, e = Ops.size(); i != e; ++i) | 
|  | assert(MI->getOperand(Ops[i]).isUse() && "Folding load into def!"); | 
|  | #endif | 
|  |  | 
|  | // Ask the target to do the actual folding. | 
|  | MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, LoadMI); | 
|  | if (!NewMI) return 0; | 
|  |  | 
|  | // Copy the memoperands from the load to the folded instruction. | 
|  | NewMI->setMemRefs(LoadMI->memoperands_begin(), | 
|  | LoadMI->memoperands_end()); | 
|  |  | 
|  | return NewMI; | 
|  | } | 
|  |  | 
|  | bool TargetInstrInfo:: | 
|  | isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI, | 
|  | AliasAnalysis *AA) const { | 
|  | const MachineFunction &MF = *MI->getParent()->getParent(); | 
|  | const MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  | const TargetMachine &TM = MF.getTarget(); | 
|  | const TargetInstrInfo &TII = *TM.getInstrInfo(); | 
|  | const TargetRegisterInfo &TRI = *TM.getRegisterInfo(); | 
|  |  | 
|  | // A load from a fixed stack slot can be rematerialized. This may be | 
|  | // redundant with subsequent checks, but it's target-independent, | 
|  | // simple, and a common case. | 
|  | int FrameIdx = 0; | 
|  | if (TII.isLoadFromStackSlot(MI, FrameIdx) && | 
|  | MF.getFrameInfo()->isImmutableObjectIndex(FrameIdx)) | 
|  | return true; | 
|  |  | 
|  | const TargetInstrDesc &TID = MI->getDesc(); | 
|  |  | 
|  | // Avoid instructions obviously unsafe for remat. | 
|  | if (TID.hasUnmodeledSideEffects() || TID.isNotDuplicable() || | 
|  | TID.mayStore()) | 
|  | return false; | 
|  |  | 
|  | // Avoid instructions which load from potentially varying memory. | 
|  | if (TID.mayLoad() && !MI->isInvariantLoad(AA)) | 
|  | return false; | 
|  |  | 
|  | // If any of the registers accessed are non-constant, conservatively assume | 
|  | // the instruction is not rematerializable. | 
|  | for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
|  | const MachineOperand &MO = MI->getOperand(i); | 
|  | if (!MO.isReg()) continue; | 
|  | unsigned Reg = MO.getReg(); | 
|  | if (Reg == 0) | 
|  | continue; | 
|  |  | 
|  | // Check for a well-behaved physical register. | 
|  | if (TargetRegisterInfo::isPhysicalRegister(Reg)) { | 
|  | if (MO.isUse()) { | 
|  | // If the physreg has no defs anywhere, it's just an ambient register | 
|  | // and we can freely move its uses. Alternatively, if it's allocatable, | 
|  | // it could get allocated to something with a def during allocation. | 
|  | if (!MRI.def_empty(Reg)) | 
|  | return false; | 
|  | BitVector AllocatableRegs = TRI.getAllocatableSet(MF, 0); | 
|  | if (AllocatableRegs.test(Reg)) | 
|  | return false; | 
|  | // Check for a def among the register's aliases too. | 
|  | for (const unsigned *Alias = TRI.getAliasSet(Reg); *Alias; ++Alias) { | 
|  | unsigned AliasReg = *Alias; | 
|  | if (!MRI.def_empty(AliasReg)) | 
|  | return false; | 
|  | if (AllocatableRegs.test(AliasReg)) | 
|  | return false; | 
|  | } | 
|  | } else { | 
|  | // A physreg def. We can't remat it. | 
|  | return false; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Only allow one virtual-register def, and that in the first operand. | 
|  | if (MO.isDef() != (i == 0)) | 
|  | return false; | 
|  |  | 
|  | // For the def, it should be the only def of that register. | 
|  | if (MO.isDef() && (llvm::next(MRI.def_begin(Reg)) != MRI.def_end() || | 
|  | MRI.isLiveIn(Reg))) | 
|  | return false; | 
|  |  | 
|  | // Don't allow any virtual-register uses. Rematting an instruction with | 
|  | // virtual register uses would length the live ranges of the uses, which | 
|  | // is not necessarily a good idea, certainly not "trivial". | 
|  | if (MO.isUse()) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Everything checked out. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isSchedulingBoundary - Test if the given instruction should be | 
|  | /// considered a scheduling boundary. This primarily includes labels | 
|  | /// and terminators. | 
|  | bool TargetInstrInfoImpl::isSchedulingBoundary(const MachineInstr *MI, | 
|  | const MachineBasicBlock *MBB, | 
|  | const MachineFunction &MF) const{ | 
|  | // Terminators and labels can't be scheduled around. | 
|  | if (MI->getDesc().isTerminator() || MI->isLabel()) | 
|  | return true; | 
|  |  | 
|  | // Don't attempt to schedule around any instruction that defines | 
|  | // a stack-oriented pointer, as it's unlikely to be profitable. This | 
|  | // saves compile time, because it doesn't require every single | 
|  | // stack slot reference to depend on the instruction that does the | 
|  | // modification. | 
|  | const TargetLowering &TLI = *MF.getTarget().getTargetLowering(); | 
|  | if (MI->definesRegister(TLI.getStackPointerRegisterToSaveRestore())) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Default implementation of CreateTargetPostRAHazardRecognizer. | 
|  | ScheduleHazardRecognizer *TargetInstrInfoImpl:: | 
|  | CreateTargetPostRAHazardRecognizer(const InstrItineraryData &II) const { | 
|  | return (ScheduleHazardRecognizer *)new PostRAHazardRecognizer(II); | 
|  | } |