|  | //===-- llvm/CodeGen/Rewriter.cpp -  Rewriter -----------------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #define DEBUG_TYPE "virtregrewriter" | 
|  | #include "VirtRegRewriter.h" | 
|  | #include "VirtRegMap.h" | 
|  | #include "llvm/Function.h" | 
|  | #include "llvm/CodeGen/LiveIntervalAnalysis.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Target/TargetInstrInfo.h" | 
|  | #include "llvm/Target/TargetLowering.h" | 
|  | #include "llvm/ADT/DepthFirstIterator.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include <algorithm> | 
|  | using namespace llvm; | 
|  |  | 
|  | STATISTIC(NumDSE     , "Number of dead stores elided"); | 
|  | STATISTIC(NumDSS     , "Number of dead spill slots removed"); | 
|  | STATISTIC(NumCommutes, "Number of instructions commuted"); | 
|  | STATISTIC(NumDRM     , "Number of re-materializable defs elided"); | 
|  | STATISTIC(NumStores  , "Number of stores added"); | 
|  | STATISTIC(NumPSpills , "Number of physical register spills"); | 
|  | STATISTIC(NumOmitted , "Number of reloads omited"); | 
|  | STATISTIC(NumAvoided , "Number of reloads deemed unnecessary"); | 
|  | STATISTIC(NumCopified, "Number of available reloads turned into copies"); | 
|  | STATISTIC(NumReMats  , "Number of re-materialization"); | 
|  | STATISTIC(NumLoads   , "Number of loads added"); | 
|  | STATISTIC(NumReused  , "Number of values reused"); | 
|  | STATISTIC(NumDCE     , "Number of copies elided"); | 
|  | STATISTIC(NumSUnfold , "Number of stores unfolded"); | 
|  | STATISTIC(NumModRefUnfold, "Number of modref unfolded"); | 
|  |  | 
|  | namespace { | 
|  | enum RewriterName { local, trivial }; | 
|  | } | 
|  |  | 
|  | static cl::opt<RewriterName> | 
|  | RewriterOpt("rewriter", | 
|  | cl::desc("Rewriter to use (default=local)"), | 
|  | cl::Prefix, | 
|  | cl::values(clEnumVal(local,   "local rewriter"), | 
|  | clEnumVal(trivial, "trivial rewriter"), | 
|  | clEnumValEnd), | 
|  | cl::init(local)); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | ScheduleSpills("schedule-spills", | 
|  | cl::desc("Schedule spill code"), | 
|  | cl::init(false)); | 
|  |  | 
|  | VirtRegRewriter::~VirtRegRewriter() {} | 
|  |  | 
|  | /// substitutePhysReg - Replace virtual register in MachineOperand with a | 
|  | /// physical register. Do the right thing with the sub-register index. | 
|  | /// Note that operands may be added, so the MO reference is no longer valid. | 
|  | static void substitutePhysReg(MachineOperand &MO, unsigned Reg, | 
|  | const TargetRegisterInfo &TRI) { | 
|  | if (unsigned SubIdx = MO.getSubReg()) { | 
|  | // Insert the physical subreg and reset the subreg field. | 
|  | MO.setReg(TRI.getSubReg(Reg, SubIdx)); | 
|  | MO.setSubReg(0); | 
|  |  | 
|  | // Any def, dead, and kill flags apply to the full virtual register, so they | 
|  | // also apply to the full physical register. Add imp-def/dead and imp-kill | 
|  | // as needed. | 
|  | MachineInstr &MI = *MO.getParent(); | 
|  | if (MO.isDef()) | 
|  | if (MO.isDead()) | 
|  | MI.addRegisterDead(Reg, &TRI, /*AddIfNotFound=*/ true); | 
|  | else | 
|  | MI.addRegisterDefined(Reg, &TRI); | 
|  | else if (!MO.isUndef() && | 
|  | (MO.isKill() || | 
|  | MI.isRegTiedToDefOperand(&MO-&MI.getOperand(0)))) | 
|  | MI.addRegisterKilled(Reg, &TRI, /*AddIfNotFound=*/ true); | 
|  | } else { | 
|  | MO.setReg(Reg); | 
|  | } | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// This class is intended for use with the new spilling framework only. It | 
|  | /// rewrites vreg def/uses to use the assigned preg, but does not insert any | 
|  | /// spill code. | 
|  | struct TrivialRewriter : public VirtRegRewriter { | 
|  |  | 
|  | bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM, | 
|  | LiveIntervals* LIs) { | 
|  | DEBUG(dbgs() << "********** REWRITE MACHINE CODE **********\n"); | 
|  | DEBUG(dbgs() << "********** Function: " | 
|  | << MF.getFunction()->getName() << '\n'); | 
|  | DEBUG(dbgs() << "**** Machine Instrs" | 
|  | << "(NOTE! Does not include spills and reloads!) ****\n"); | 
|  | DEBUG(MF.dump()); | 
|  |  | 
|  | MachineRegisterInfo *mri = &MF.getRegInfo(); | 
|  | const TargetRegisterInfo *tri = MF.getTarget().getRegisterInfo(); | 
|  |  | 
|  | bool changed = false; | 
|  |  | 
|  | for (LiveIntervals::iterator liItr = LIs->begin(), liEnd = LIs->end(); | 
|  | liItr != liEnd; ++liItr) { | 
|  |  | 
|  | const LiveInterval *li = liItr->second; | 
|  | unsigned reg = li->reg; | 
|  |  | 
|  | if (TargetRegisterInfo::isPhysicalRegister(reg)) { | 
|  | if (!li->empty()) | 
|  | mri->setPhysRegUsed(reg); | 
|  | } | 
|  | else { | 
|  | if (!VRM.hasPhys(reg)) | 
|  | continue; | 
|  | unsigned pReg = VRM.getPhys(reg); | 
|  | mri->setPhysRegUsed(pReg); | 
|  | // Copy the register use-list before traversing it. | 
|  | SmallVector<std::pair<MachineInstr*, unsigned>, 32> reglist; | 
|  | for (MachineRegisterInfo::reg_iterator I = mri->reg_begin(reg), | 
|  | E = mri->reg_end(); I != E; ++I) | 
|  | reglist.push_back(std::make_pair(&*I, I.getOperandNo())); | 
|  | for (unsigned N=0; N != reglist.size(); ++N) | 
|  | substitutePhysReg(reglist[N].first->getOperand(reglist[N].second), | 
|  | pReg, *tri); | 
|  | changed |= !reglist.empty(); | 
|  | } | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "**** Post Machine Instrs ****\n"); | 
|  | DEBUG(MF.dump()); | 
|  |  | 
|  | return changed; | 
|  | } | 
|  |  | 
|  | }; | 
|  |  | 
|  | } | 
|  |  | 
|  | // ************************************************************************ // | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// AvailableSpills - As the local rewriter is scanning and rewriting an MBB | 
|  | /// from top down, keep track of which spill slots or remat are available in | 
|  | /// each register. | 
|  | /// | 
|  | /// Note that not all physregs are created equal here.  In particular, some | 
|  | /// physregs are reloads that we are allowed to clobber or ignore at any time. | 
|  | /// Other physregs are values that the register allocated program is using | 
|  | /// that we cannot CHANGE, but we can read if we like.  We keep track of this | 
|  | /// on a per-stack-slot / remat id basis as the low bit in the value of the | 
|  | /// SpillSlotsAvailable entries.  The predicate 'canClobberPhysReg()' checks | 
|  | /// this bit and addAvailable sets it if. | 
|  | class AvailableSpills { | 
|  | const TargetRegisterInfo *TRI; | 
|  | const TargetInstrInfo *TII; | 
|  |  | 
|  | // SpillSlotsOrReMatsAvailable - This map keeps track of all of the spilled | 
|  | // or remat'ed virtual register values that are still available, due to | 
|  | // being loaded or stored to, but not invalidated yet. | 
|  | std::map<int, unsigned> SpillSlotsOrReMatsAvailable; | 
|  |  | 
|  | // PhysRegsAvailable - This is the inverse of SpillSlotsOrReMatsAvailable, | 
|  | // indicating which stack slot values are currently held by a physreg.  This | 
|  | // is used to invalidate entries in SpillSlotsOrReMatsAvailable when a | 
|  | // physreg is modified. | 
|  | std::multimap<unsigned, int> PhysRegsAvailable; | 
|  |  | 
|  | void disallowClobberPhysRegOnly(unsigned PhysReg); | 
|  |  | 
|  | void ClobberPhysRegOnly(unsigned PhysReg); | 
|  | public: | 
|  | AvailableSpills(const TargetRegisterInfo *tri, const TargetInstrInfo *tii) | 
|  | : TRI(tri), TII(tii) { | 
|  | } | 
|  |  | 
|  | /// clear - Reset the state. | 
|  | void clear() { | 
|  | SpillSlotsOrReMatsAvailable.clear(); | 
|  | PhysRegsAvailable.clear(); | 
|  | } | 
|  |  | 
|  | const TargetRegisterInfo *getRegInfo() const { return TRI; } | 
|  |  | 
|  | /// getSpillSlotOrReMatPhysReg - If the specified stack slot or remat is | 
|  | /// available in a physical register, return that PhysReg, otherwise | 
|  | /// return 0. | 
|  | unsigned getSpillSlotOrReMatPhysReg(int Slot) const { | 
|  | std::map<int, unsigned>::const_iterator I = | 
|  | SpillSlotsOrReMatsAvailable.find(Slot); | 
|  | if (I != SpillSlotsOrReMatsAvailable.end()) { | 
|  | return I->second >> 1;  // Remove the CanClobber bit. | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// addAvailable - Mark that the specified stack slot / remat is available | 
|  | /// in the specified physreg.  If CanClobber is true, the physreg can be | 
|  | /// modified at any time without changing the semantics of the program. | 
|  | void addAvailable(int SlotOrReMat, unsigned Reg, bool CanClobber = true) { | 
|  | // If this stack slot is thought to be available in some other physreg, | 
|  | // remove its record. | 
|  | ModifyStackSlotOrReMat(SlotOrReMat); | 
|  |  | 
|  | PhysRegsAvailable.insert(std::make_pair(Reg, SlotOrReMat)); | 
|  | SpillSlotsOrReMatsAvailable[SlotOrReMat]= (Reg << 1) | | 
|  | (unsigned)CanClobber; | 
|  |  | 
|  | if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT) | 
|  | DEBUG(dbgs() << "Remembering RM#" | 
|  | << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1); | 
|  | else | 
|  | DEBUG(dbgs() << "Remembering SS#" << SlotOrReMat); | 
|  | DEBUG(dbgs() << " in physreg " << TRI->getName(Reg) << "\n"); | 
|  | } | 
|  |  | 
|  | /// canClobberPhysRegForSS - Return true if the spiller is allowed to change | 
|  | /// the value of the specified stackslot register if it desires. The | 
|  | /// specified stack slot must be available in a physreg for this query to | 
|  | /// make sense. | 
|  | bool canClobberPhysRegForSS(int SlotOrReMat) const { | 
|  | assert(SpillSlotsOrReMatsAvailable.count(SlotOrReMat) && | 
|  | "Value not available!"); | 
|  | return SpillSlotsOrReMatsAvailable.find(SlotOrReMat)->second & 1; | 
|  | } | 
|  |  | 
|  | /// canClobberPhysReg - Return true if the spiller is allowed to clobber the | 
|  | /// physical register where values for some stack slot(s) might be | 
|  | /// available. | 
|  | bool canClobberPhysReg(unsigned PhysReg) const { | 
|  | std::multimap<unsigned, int>::const_iterator I = | 
|  | PhysRegsAvailable.lower_bound(PhysReg); | 
|  | while (I != PhysRegsAvailable.end() && I->first == PhysReg) { | 
|  | int SlotOrReMat = I->second; | 
|  | I++; | 
|  | if (!canClobberPhysRegForSS(SlotOrReMat)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// disallowClobberPhysReg - Unset the CanClobber bit of the specified | 
|  | /// stackslot register. The register is still available but is no longer | 
|  | /// allowed to be modifed. | 
|  | void disallowClobberPhysReg(unsigned PhysReg); | 
|  |  | 
|  | /// ClobberPhysReg - This is called when the specified physreg changes | 
|  | /// value.  We use this to invalidate any info about stuff that lives in | 
|  | /// it and any of its aliases. | 
|  | void ClobberPhysReg(unsigned PhysReg); | 
|  |  | 
|  | /// ModifyStackSlotOrReMat - This method is called when the value in a stack | 
|  | /// slot changes.  This removes information about which register the | 
|  | /// previous value for this slot lives in (as the previous value is dead | 
|  | /// now). | 
|  | void ModifyStackSlotOrReMat(int SlotOrReMat); | 
|  |  | 
|  | /// AddAvailableRegsToLiveIn - Availability information is being kept coming | 
|  | /// into the specified MBB. Add available physical registers as potential | 
|  | /// live-in's. If they are reused in the MBB, they will be added to the | 
|  | /// live-in set to make register scavenger and post-allocation scheduler. | 
|  | void AddAvailableRegsToLiveIn(MachineBasicBlock &MBB, BitVector &RegKills, | 
|  | std::vector<MachineOperand*> &KillOps); | 
|  | }; | 
|  |  | 
|  | } | 
|  |  | 
|  | // ************************************************************************ // | 
|  |  | 
|  | // Given a location where a reload of a spilled register or a remat of | 
|  | // a constant is to be inserted, attempt to find a safe location to | 
|  | // insert the load at an earlier point in the basic-block, to hide | 
|  | // latency of the load and to avoid address-generation interlock | 
|  | // issues. | 
|  | static MachineBasicBlock::iterator | 
|  | ComputeReloadLoc(MachineBasicBlock::iterator const InsertLoc, | 
|  | MachineBasicBlock::iterator const Begin, | 
|  | unsigned PhysReg, | 
|  | const TargetRegisterInfo *TRI, | 
|  | bool DoReMat, | 
|  | int SSorRMId, | 
|  | const TargetInstrInfo *TII, | 
|  | const MachineFunction &MF) | 
|  | { | 
|  | if (!ScheduleSpills) | 
|  | return InsertLoc; | 
|  |  | 
|  | // Spill backscheduling is of primary interest to addresses, so | 
|  | // don't do anything if the register isn't in the register class | 
|  | // used for pointers. | 
|  |  | 
|  | const TargetLowering *TL = MF.getTarget().getTargetLowering(); | 
|  |  | 
|  | if (!TL->isTypeLegal(TL->getPointerTy())) | 
|  | // Believe it or not, this is true on PIC16. | 
|  | return InsertLoc; | 
|  |  | 
|  | const TargetRegisterClass *ptrRegClass = | 
|  | TL->getRegClassFor(TL->getPointerTy()); | 
|  | if (!ptrRegClass->contains(PhysReg)) | 
|  | return InsertLoc; | 
|  |  | 
|  | // Scan upwards through the preceding instructions. If an instruction doesn't | 
|  | // reference the stack slot or the register we're loading, we can | 
|  | // backschedule the reload up past it. | 
|  | MachineBasicBlock::iterator NewInsertLoc = InsertLoc; | 
|  | while (NewInsertLoc != Begin) { | 
|  | MachineBasicBlock::iterator Prev = prior(NewInsertLoc); | 
|  | for (unsigned i = 0; i < Prev->getNumOperands(); ++i) { | 
|  | MachineOperand &Op = Prev->getOperand(i); | 
|  | if (!DoReMat && Op.isFI() && Op.getIndex() == SSorRMId) | 
|  | goto stop; | 
|  | } | 
|  | if (Prev->findRegisterUseOperandIdx(PhysReg) != -1 || | 
|  | Prev->findRegisterDefOperand(PhysReg)) | 
|  | goto stop; | 
|  | for (const unsigned *Alias = TRI->getAliasSet(PhysReg); *Alias; ++Alias) | 
|  | if (Prev->findRegisterUseOperandIdx(*Alias) != -1 || | 
|  | Prev->findRegisterDefOperand(*Alias)) | 
|  | goto stop; | 
|  | NewInsertLoc = Prev; | 
|  | } | 
|  | stop:; | 
|  |  | 
|  | // If we made it to the beginning of the block, turn around and move back | 
|  | // down just past any existing reloads. They're likely to be reloads/remats | 
|  | // for instructions earlier than what our current reload/remat is for, so | 
|  | // they should be scheduled earlier. | 
|  | if (NewInsertLoc == Begin) { | 
|  | int FrameIdx; | 
|  | while (InsertLoc != NewInsertLoc && | 
|  | (TII->isLoadFromStackSlot(NewInsertLoc, FrameIdx) || | 
|  | TII->isTriviallyReMaterializable(NewInsertLoc))) | 
|  | ++NewInsertLoc; | 
|  | } | 
|  |  | 
|  | return NewInsertLoc; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | // ReusedOp - For each reused operand, we keep track of a bit of information, | 
|  | // in case we need to rollback upon processing a new operand.  See comments | 
|  | // below. | 
|  | struct ReusedOp { | 
|  | // The MachineInstr operand that reused an available value. | 
|  | unsigned Operand; | 
|  |  | 
|  | // StackSlotOrReMat - The spill slot or remat id of the value being reused. | 
|  | unsigned StackSlotOrReMat; | 
|  |  | 
|  | // PhysRegReused - The physical register the value was available in. | 
|  | unsigned PhysRegReused; | 
|  |  | 
|  | // AssignedPhysReg - The physreg that was assigned for use by the reload. | 
|  | unsigned AssignedPhysReg; | 
|  |  | 
|  | // VirtReg - The virtual register itself. | 
|  | unsigned VirtReg; | 
|  |  | 
|  | ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr, | 
|  | unsigned vreg) | 
|  | : Operand(o), StackSlotOrReMat(ss), PhysRegReused(prr), | 
|  | AssignedPhysReg(apr), VirtReg(vreg) {} | 
|  | }; | 
|  |  | 
|  | /// ReuseInfo - This maintains a collection of ReuseOp's for each operand that | 
|  | /// is reused instead of reloaded. | 
|  | class ReuseInfo { | 
|  | MachineInstr &MI; | 
|  | std::vector<ReusedOp> Reuses; | 
|  | BitVector PhysRegsClobbered; | 
|  | public: | 
|  | ReuseInfo(MachineInstr &mi, const TargetRegisterInfo *tri) : MI(mi) { | 
|  | PhysRegsClobbered.resize(tri->getNumRegs()); | 
|  | } | 
|  |  | 
|  | bool hasReuses() const { | 
|  | return !Reuses.empty(); | 
|  | } | 
|  |  | 
|  | /// addReuse - If we choose to reuse a virtual register that is already | 
|  | /// available instead of reloading it, remember that we did so. | 
|  | void addReuse(unsigned OpNo, unsigned StackSlotOrReMat, | 
|  | unsigned PhysRegReused, unsigned AssignedPhysReg, | 
|  | unsigned VirtReg) { | 
|  | // If the reload is to the assigned register anyway, no undo will be | 
|  | // required. | 
|  | if (PhysRegReused == AssignedPhysReg) return; | 
|  |  | 
|  | // Otherwise, remember this. | 
|  | Reuses.push_back(ReusedOp(OpNo, StackSlotOrReMat, PhysRegReused, | 
|  | AssignedPhysReg, VirtReg)); | 
|  | } | 
|  |  | 
|  | void markClobbered(unsigned PhysReg) { | 
|  | PhysRegsClobbered.set(PhysReg); | 
|  | } | 
|  |  | 
|  | bool isClobbered(unsigned PhysReg) const { | 
|  | return PhysRegsClobbered.test(PhysReg); | 
|  | } | 
|  |  | 
|  | /// GetRegForReload - We are about to emit a reload into PhysReg.  If there | 
|  | /// is some other operand that is using the specified register, either pick | 
|  | /// a new register to use, or evict the previous reload and use this reg. | 
|  | unsigned GetRegForReload(const TargetRegisterClass *RC, unsigned PhysReg, | 
|  | MachineFunction &MF, MachineInstr *MI, | 
|  | AvailableSpills &Spills, | 
|  | std::vector<MachineInstr*> &MaybeDeadStores, | 
|  | SmallSet<unsigned, 8> &Rejected, | 
|  | BitVector &RegKills, | 
|  | std::vector<MachineOperand*> &KillOps, | 
|  | VirtRegMap &VRM); | 
|  |  | 
|  | /// GetRegForReload - Helper for the above GetRegForReload(). Add a | 
|  | /// 'Rejected' set to remember which registers have been considered and | 
|  | /// rejected for the reload. This avoids infinite looping in case like | 
|  | /// this: | 
|  | /// t1 := op t2, t3 | 
|  | /// t2 <- assigned r0 for use by the reload but ended up reuse r1 | 
|  | /// t3 <- assigned r1 for use by the reload but ended up reuse r0 | 
|  | /// t1 <- desires r1 | 
|  | ///       sees r1 is taken by t2, tries t2's reload register r0 | 
|  | ///       sees r0 is taken by t3, tries t3's reload register r1 | 
|  | ///       sees r1 is taken by t2, tries t2's reload register r0 ... | 
|  | unsigned GetRegForReload(unsigned VirtReg, unsigned PhysReg, MachineInstr *MI, | 
|  | AvailableSpills &Spills, | 
|  | std::vector<MachineInstr*> &MaybeDeadStores, | 
|  | BitVector &RegKills, | 
|  | std::vector<MachineOperand*> &KillOps, | 
|  | VirtRegMap &VRM) { | 
|  | SmallSet<unsigned, 8> Rejected; | 
|  | MachineFunction &MF = *MI->getParent()->getParent(); | 
|  | const TargetRegisterClass* RC = MF.getRegInfo().getRegClass(VirtReg); | 
|  | return GetRegForReload(RC, PhysReg, MF, MI, Spills, MaybeDeadStores, | 
|  | Rejected, RegKills, KillOps, VRM); | 
|  | } | 
|  | }; | 
|  |  | 
|  | } | 
|  |  | 
|  | // ****************** // | 
|  | // Utility Functions  // | 
|  | // ****************** // | 
|  |  | 
|  | /// findSinglePredSuccessor - Return via reference a vector of machine basic | 
|  | /// blocks each of which is a successor of the specified BB and has no other | 
|  | /// predecessor. | 
|  | static void findSinglePredSuccessor(MachineBasicBlock *MBB, | 
|  | SmallVectorImpl<MachineBasicBlock *> &Succs) { | 
|  | for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(), | 
|  | SE = MBB->succ_end(); SI != SE; ++SI) { | 
|  | MachineBasicBlock *SuccMBB = *SI; | 
|  | if (SuccMBB->pred_size() == 1) | 
|  | Succs.push_back(SuccMBB); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// InvalidateKill - Invalidate register kill information for a specific | 
|  | /// register. This also unsets the kills marker on the last kill operand. | 
|  | static void InvalidateKill(unsigned Reg, | 
|  | const TargetRegisterInfo* TRI, | 
|  | BitVector &RegKills, | 
|  | std::vector<MachineOperand*> &KillOps) { | 
|  | if (RegKills[Reg]) { | 
|  | KillOps[Reg]->setIsKill(false); | 
|  | // KillOps[Reg] might be a def of a super-register. | 
|  | unsigned KReg = KillOps[Reg]->getReg(); | 
|  | KillOps[KReg] = NULL; | 
|  | RegKills.reset(KReg); | 
|  | for (const unsigned *SR = TRI->getSubRegisters(KReg); *SR; ++SR) { | 
|  | if (RegKills[*SR]) { | 
|  | KillOps[*SR]->setIsKill(false); | 
|  | KillOps[*SR] = NULL; | 
|  | RegKills.reset(*SR); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// InvalidateKills - MI is going to be deleted. If any of its operands are | 
|  | /// marked kill, then invalidate the information. | 
|  | static void InvalidateKills(MachineInstr &MI, | 
|  | const TargetRegisterInfo* TRI, | 
|  | BitVector &RegKills, | 
|  | std::vector<MachineOperand*> &KillOps, | 
|  | SmallVector<unsigned, 2> *KillRegs = NULL) { | 
|  | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &MO = MI.getOperand(i); | 
|  | if (!MO.isReg() || !MO.isUse() || !MO.isKill() || MO.isUndef()) | 
|  | continue; | 
|  | unsigned Reg = MO.getReg(); | 
|  | if (TargetRegisterInfo::isVirtualRegister(Reg)) | 
|  | continue; | 
|  | if (KillRegs) | 
|  | KillRegs->push_back(Reg); | 
|  | assert(Reg < KillOps.size()); | 
|  | if (KillOps[Reg] == &MO) { | 
|  | KillOps[Reg] = NULL; | 
|  | RegKills.reset(Reg); | 
|  | for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) { | 
|  | if (RegKills[*SR]) { | 
|  | KillOps[*SR] = NULL; | 
|  | RegKills.reset(*SR); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// InvalidateRegDef - If the def operand of the specified def MI is now dead | 
|  | /// (since its spill instruction is removed), mark it isDead. Also checks if | 
|  | /// the def MI has other definition operands that are not dead. Returns it by | 
|  | /// reference. | 
|  | static bool InvalidateRegDef(MachineBasicBlock::iterator I, | 
|  | MachineInstr &NewDef, unsigned Reg, | 
|  | bool &HasLiveDef, | 
|  | const TargetRegisterInfo *TRI) { | 
|  | // Due to remat, it's possible this reg isn't being reused. That is, | 
|  | // the def of this reg (by prev MI) is now dead. | 
|  | MachineInstr *DefMI = I; | 
|  | MachineOperand *DefOp = NULL; | 
|  | for (unsigned i = 0, e = DefMI->getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &MO = DefMI->getOperand(i); | 
|  | if (!MO.isReg() || !MO.isDef() || !MO.isKill() || MO.isUndef()) | 
|  | continue; | 
|  | if (MO.getReg() == Reg) | 
|  | DefOp = &MO; | 
|  | else if (!MO.isDead()) | 
|  | HasLiveDef = true; | 
|  | } | 
|  | if (!DefOp) | 
|  | return false; | 
|  |  | 
|  | bool FoundUse = false, Done = false; | 
|  | MachineBasicBlock::iterator E = &NewDef; | 
|  | ++I; ++E; | 
|  | for (; !Done && I != E; ++I) { | 
|  | MachineInstr *NMI = I; | 
|  | for (unsigned j = 0, ee = NMI->getNumOperands(); j != ee; ++j) { | 
|  | MachineOperand &MO = NMI->getOperand(j); | 
|  | if (!MO.isReg() || MO.getReg() == 0 || | 
|  | (MO.getReg() != Reg && !TRI->isSubRegister(Reg, MO.getReg()))) | 
|  | continue; | 
|  | if (MO.isUse()) | 
|  | FoundUse = true; | 
|  | Done = true; // Stop after scanning all the operands of this MI. | 
|  | } | 
|  | } | 
|  | if (!FoundUse) { | 
|  | // Def is dead! | 
|  | DefOp->setIsDead(); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// UpdateKills - Track and update kill info. If a MI reads a register that is | 
|  | /// marked kill, then it must be due to register reuse. Transfer the kill info | 
|  | /// over. | 
|  | static void UpdateKills(MachineInstr &MI, const TargetRegisterInfo* TRI, | 
|  | BitVector &RegKills, | 
|  | std::vector<MachineOperand*> &KillOps) { | 
|  | // These do not affect kill info at all. | 
|  | if (MI.isDebugValue()) | 
|  | return; | 
|  | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &MO = MI.getOperand(i); | 
|  | if (!MO.isReg() || !MO.isUse() || MO.isUndef()) | 
|  | continue; | 
|  | unsigned Reg = MO.getReg(); | 
|  | if (Reg == 0) | 
|  | continue; | 
|  |  | 
|  | if (RegKills[Reg] && KillOps[Reg]->getParent() != &MI) { | 
|  | // That can't be right. Register is killed but not re-defined and it's | 
|  | // being reused. Let's fix that. | 
|  | KillOps[Reg]->setIsKill(false); | 
|  | // KillOps[Reg] might be a def of a super-register. | 
|  | unsigned KReg = KillOps[Reg]->getReg(); | 
|  | KillOps[KReg] = NULL; | 
|  | RegKills.reset(KReg); | 
|  |  | 
|  | // Must be a def of a super-register. Its other sub-regsters are no | 
|  | // longer killed as well. | 
|  | for (const unsigned *SR = TRI->getSubRegisters(KReg); *SR; ++SR) { | 
|  | KillOps[*SR] = NULL; | 
|  | RegKills.reset(*SR); | 
|  | } | 
|  | } else { | 
|  | // Check for subreg kills as well. | 
|  | // d4 = | 
|  | // store d4, fi#0 | 
|  | // ... | 
|  | //    = s8<kill> | 
|  | // ... | 
|  | //    = d4  <avoiding reload> | 
|  | for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) { | 
|  | unsigned SReg = *SR; | 
|  | if (RegKills[SReg] && KillOps[SReg]->getParent() != &MI) { | 
|  | KillOps[SReg]->setIsKill(false); | 
|  | unsigned KReg = KillOps[SReg]->getReg(); | 
|  | KillOps[KReg] = NULL; | 
|  | RegKills.reset(KReg); | 
|  |  | 
|  | for (const unsigned *SSR = TRI->getSubRegisters(KReg); *SSR; ++SSR) { | 
|  | KillOps[*SSR] = NULL; | 
|  | RegKills.reset(*SSR); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (MO.isKill()) { | 
|  | RegKills.set(Reg); | 
|  | KillOps[Reg] = &MO; | 
|  | for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) { | 
|  | RegKills.set(*SR); | 
|  | KillOps[*SR] = &MO; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { | 
|  | const MachineOperand &MO = MI.getOperand(i); | 
|  | if (!MO.isReg() || !MO.getReg() || !MO.isDef()) | 
|  | continue; | 
|  | unsigned Reg = MO.getReg(); | 
|  | RegKills.reset(Reg); | 
|  | KillOps[Reg] = NULL; | 
|  | // It also defines (or partially define) aliases. | 
|  | for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) { | 
|  | RegKills.reset(*SR); | 
|  | KillOps[*SR] = NULL; | 
|  | } | 
|  | for (const unsigned *SR = TRI->getSuperRegisters(Reg); *SR; ++SR) { | 
|  | RegKills.reset(*SR); | 
|  | KillOps[*SR] = NULL; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// ReMaterialize - Re-materialize definition for Reg targetting DestReg. | 
|  | /// | 
|  | static void ReMaterialize(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator &MII, | 
|  | unsigned DestReg, unsigned Reg, | 
|  | const TargetInstrInfo *TII, | 
|  | const TargetRegisterInfo *TRI, | 
|  | VirtRegMap &VRM) { | 
|  | MachineInstr *ReMatDefMI = VRM.getReMaterializedMI(Reg); | 
|  | #ifndef NDEBUG | 
|  | const TargetInstrDesc &TID = ReMatDefMI->getDesc(); | 
|  | assert(TID.getNumDefs() == 1 && | 
|  | "Don't know how to remat instructions that define > 1 values!"); | 
|  | #endif | 
|  | TII->reMaterialize(MBB, MII, DestReg, 0, ReMatDefMI, *TRI); | 
|  | MachineInstr *NewMI = prior(MII); | 
|  | for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &MO = NewMI->getOperand(i); | 
|  | if (!MO.isReg() || MO.getReg() == 0) | 
|  | continue; | 
|  | unsigned VirtReg = MO.getReg(); | 
|  | if (TargetRegisterInfo::isPhysicalRegister(VirtReg)) | 
|  | continue; | 
|  | assert(MO.isUse()); | 
|  | unsigned Phys = VRM.getPhys(VirtReg); | 
|  | assert(Phys && "Virtual register is not assigned a register?"); | 
|  | substitutePhysReg(MO, Phys, *TRI); | 
|  | } | 
|  | ++NumReMats; | 
|  | } | 
|  |  | 
|  | /// findSuperReg - Find the SubReg's super-register of given register class | 
|  | /// where its SubIdx sub-register is SubReg. | 
|  | static unsigned findSuperReg(const TargetRegisterClass *RC, unsigned SubReg, | 
|  | unsigned SubIdx, const TargetRegisterInfo *TRI) { | 
|  | for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); | 
|  | I != E; ++I) { | 
|  | unsigned Reg = *I; | 
|  | if (TRI->getSubReg(Reg, SubIdx) == SubReg) | 
|  | return Reg; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // ******************************** // | 
|  | // Available Spills Implementation  // | 
|  | // ******************************** // | 
|  |  | 
|  | /// disallowClobberPhysRegOnly - Unset the CanClobber bit of the specified | 
|  | /// stackslot register. The register is still available but is no longer | 
|  | /// allowed to be modifed. | 
|  | void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) { | 
|  | std::multimap<unsigned, int>::iterator I = | 
|  | PhysRegsAvailable.lower_bound(PhysReg); | 
|  | while (I != PhysRegsAvailable.end() && I->first == PhysReg) { | 
|  | int SlotOrReMat = I->second; | 
|  | I++; | 
|  | assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg && | 
|  | "Bidirectional map mismatch!"); | 
|  | SpillSlotsOrReMatsAvailable[SlotOrReMat] &= ~1; | 
|  | DEBUG(dbgs() << "PhysReg " << TRI->getName(PhysReg) | 
|  | << " copied, it is available for use but can no longer be modified\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// disallowClobberPhysReg - Unset the CanClobber bit of the specified | 
|  | /// stackslot register and its aliases. The register and its aliases may | 
|  | /// still available but is no longer allowed to be modifed. | 
|  | void AvailableSpills::disallowClobberPhysReg(unsigned PhysReg) { | 
|  | for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS) | 
|  | disallowClobberPhysRegOnly(*AS); | 
|  | disallowClobberPhysRegOnly(PhysReg); | 
|  | } | 
|  |  | 
|  | /// ClobberPhysRegOnly - This is called when the specified physreg changes | 
|  | /// value.  We use this to invalidate any info about stuff we thing lives in it. | 
|  | void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) { | 
|  | std::multimap<unsigned, int>::iterator I = | 
|  | PhysRegsAvailable.lower_bound(PhysReg); | 
|  | while (I != PhysRegsAvailable.end() && I->first == PhysReg) { | 
|  | int SlotOrReMat = I->second; | 
|  | PhysRegsAvailable.erase(I++); | 
|  | assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg && | 
|  | "Bidirectional map mismatch!"); | 
|  | SpillSlotsOrReMatsAvailable.erase(SlotOrReMat); | 
|  | DEBUG(dbgs() << "PhysReg " << TRI->getName(PhysReg) | 
|  | << " clobbered, invalidating "); | 
|  | if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT) | 
|  | DEBUG(dbgs() << "RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1 <<"\n"); | 
|  | else | 
|  | DEBUG(dbgs() << "SS#" << SlotOrReMat << "\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// ClobberPhysReg - This is called when the specified physreg changes | 
|  | /// value.  We use this to invalidate any info about stuff we thing lives in | 
|  | /// it and any of its aliases. | 
|  | void AvailableSpills::ClobberPhysReg(unsigned PhysReg) { | 
|  | for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS) | 
|  | ClobberPhysRegOnly(*AS); | 
|  | ClobberPhysRegOnly(PhysReg); | 
|  | } | 
|  |  | 
|  | /// AddAvailableRegsToLiveIn - Availability information is being kept coming | 
|  | /// into the specified MBB. Add available physical registers as potential | 
|  | /// live-in's. If they are reused in the MBB, they will be added to the | 
|  | /// live-in set to make register scavenger and post-allocation scheduler. | 
|  | void AvailableSpills::AddAvailableRegsToLiveIn(MachineBasicBlock &MBB, | 
|  | BitVector &RegKills, | 
|  | std::vector<MachineOperand*> &KillOps) { | 
|  | std::set<unsigned> NotAvailable; | 
|  | for (std::multimap<unsigned, int>::iterator | 
|  | I = PhysRegsAvailable.begin(), E = PhysRegsAvailable.end(); | 
|  | I != E; ++I) { | 
|  | unsigned Reg = I->first; | 
|  | const TargetRegisterClass* RC = TRI->getPhysicalRegisterRegClass(Reg); | 
|  | // FIXME: A temporary workaround. We can't reuse available value if it's | 
|  | // not safe to move the def of the virtual register's class. e.g. | 
|  | // X86::RFP* register classes. Do not add it as a live-in. | 
|  | if (!TII->isSafeToMoveRegClassDefs(RC)) | 
|  | // This is no longer available. | 
|  | NotAvailable.insert(Reg); | 
|  | else { | 
|  | MBB.addLiveIn(Reg); | 
|  | InvalidateKill(Reg, TRI, RegKills, KillOps); | 
|  | } | 
|  |  | 
|  | // Skip over the same register. | 
|  | std::multimap<unsigned, int>::iterator NI = llvm::next(I); | 
|  | while (NI != E && NI->first == Reg) { | 
|  | ++I; | 
|  | ++NI; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (std::set<unsigned>::iterator I = NotAvailable.begin(), | 
|  | E = NotAvailable.end(); I != E; ++I) { | 
|  | ClobberPhysReg(*I); | 
|  | for (const unsigned *SubRegs = TRI->getSubRegisters(*I); | 
|  | *SubRegs; ++SubRegs) | 
|  | ClobberPhysReg(*SubRegs); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// ModifyStackSlotOrReMat - This method is called when the value in a stack | 
|  | /// slot changes.  This removes information about which register the previous | 
|  | /// value for this slot lives in (as the previous value is dead now). | 
|  | void AvailableSpills::ModifyStackSlotOrReMat(int SlotOrReMat) { | 
|  | std::map<int, unsigned>::iterator It = | 
|  | SpillSlotsOrReMatsAvailable.find(SlotOrReMat); | 
|  | if (It == SpillSlotsOrReMatsAvailable.end()) return; | 
|  | unsigned Reg = It->second >> 1; | 
|  | SpillSlotsOrReMatsAvailable.erase(It); | 
|  |  | 
|  | // This register may hold the value of multiple stack slots, only remove this | 
|  | // stack slot from the set of values the register contains. | 
|  | std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg); | 
|  | for (; ; ++I) { | 
|  | assert(I != PhysRegsAvailable.end() && I->first == Reg && | 
|  | "Map inverse broken!"); | 
|  | if (I->second == SlotOrReMat) break; | 
|  | } | 
|  | PhysRegsAvailable.erase(I); | 
|  | } | 
|  |  | 
|  | // ************************** // | 
|  | // Reuse Info Implementation  // | 
|  | // ************************** // | 
|  |  | 
|  | /// GetRegForReload - We are about to emit a reload into PhysReg.  If there | 
|  | /// is some other operand that is using the specified register, either pick | 
|  | /// a new register to use, or evict the previous reload and use this reg. | 
|  | unsigned ReuseInfo::GetRegForReload(const TargetRegisterClass *RC, | 
|  | unsigned PhysReg, | 
|  | MachineFunction &MF, | 
|  | MachineInstr *MI, AvailableSpills &Spills, | 
|  | std::vector<MachineInstr*> &MaybeDeadStores, | 
|  | SmallSet<unsigned, 8> &Rejected, | 
|  | BitVector &RegKills, | 
|  | std::vector<MachineOperand*> &KillOps, | 
|  | VirtRegMap &VRM) { | 
|  | const TargetInstrInfo* TII = MF.getTarget().getInstrInfo(); | 
|  | const TargetRegisterInfo *TRI = Spills.getRegInfo(); | 
|  |  | 
|  | if (Reuses.empty()) return PhysReg;  // This is most often empty. | 
|  |  | 
|  | for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) { | 
|  | ReusedOp &Op = Reuses[ro]; | 
|  | // If we find some other reuse that was supposed to use this register | 
|  | // exactly for its reload, we can change this reload to use ITS reload | 
|  | // register. That is, unless its reload register has already been | 
|  | // considered and subsequently rejected because it has also been reused | 
|  | // by another operand. | 
|  | if (Op.PhysRegReused == PhysReg && | 
|  | Rejected.count(Op.AssignedPhysReg) == 0 && | 
|  | RC->contains(Op.AssignedPhysReg)) { | 
|  | // Yup, use the reload register that we didn't use before. | 
|  | unsigned NewReg = Op.AssignedPhysReg; | 
|  | Rejected.insert(PhysReg); | 
|  | return GetRegForReload(RC, NewReg, MF, MI, Spills, MaybeDeadStores, Rejected, | 
|  | RegKills, KillOps, VRM); | 
|  | } else { | 
|  | // Otherwise, we might also have a problem if a previously reused | 
|  | // value aliases the new register. If so, codegen the previous reload | 
|  | // and use this one. | 
|  | unsigned PRRU = Op.PhysRegReused; | 
|  | if (TRI->regsOverlap(PRRU, PhysReg)) { | 
|  | // Okay, we found out that an alias of a reused register | 
|  | // was used.  This isn't good because it means we have | 
|  | // to undo a previous reuse. | 
|  | MachineBasicBlock *MBB = MI->getParent(); | 
|  | const TargetRegisterClass *AliasRC = | 
|  | MBB->getParent()->getRegInfo().getRegClass(Op.VirtReg); | 
|  |  | 
|  | // Copy Op out of the vector and remove it, we're going to insert an | 
|  | // explicit load for it. | 
|  | ReusedOp NewOp = Op; | 
|  | Reuses.erase(Reuses.begin()+ro); | 
|  |  | 
|  | // MI may be using only a sub-register of PhysRegUsed. | 
|  | unsigned RealPhysRegUsed = MI->getOperand(NewOp.Operand).getReg(); | 
|  | unsigned SubIdx = 0; | 
|  | assert(TargetRegisterInfo::isPhysicalRegister(RealPhysRegUsed) && | 
|  | "A reuse cannot be a virtual register"); | 
|  | if (PRRU != RealPhysRegUsed) { | 
|  | // What was the sub-register index? | 
|  | SubIdx = TRI->getSubRegIndex(PRRU, RealPhysRegUsed); | 
|  | assert(SubIdx && | 
|  | "Operand physreg is not a sub-register of PhysRegUsed"); | 
|  | } | 
|  |  | 
|  | // Ok, we're going to try to reload the assigned physreg into the | 
|  | // slot that we were supposed to in the first place.  However, that | 
|  | // register could hold a reuse.  Check to see if it conflicts or | 
|  | // would prefer us to use a different register. | 
|  | unsigned NewPhysReg = GetRegForReload(RC, NewOp.AssignedPhysReg, | 
|  | MF, MI, Spills, MaybeDeadStores, | 
|  | Rejected, RegKills, KillOps, VRM); | 
|  |  | 
|  | bool DoReMat = NewOp.StackSlotOrReMat > VirtRegMap::MAX_STACK_SLOT; | 
|  | int SSorRMId = DoReMat | 
|  | ? VRM.getReMatId(NewOp.VirtReg) : (int) NewOp.StackSlotOrReMat; | 
|  |  | 
|  | // Back-schedule reloads and remats. | 
|  | MachineBasicBlock::iterator InsertLoc = | 
|  | ComputeReloadLoc(MI, MBB->begin(), PhysReg, TRI, | 
|  | DoReMat, SSorRMId, TII, MF); | 
|  |  | 
|  | if (DoReMat) { | 
|  | ReMaterialize(*MBB, InsertLoc, NewPhysReg, NewOp.VirtReg, TII, | 
|  | TRI, VRM); | 
|  | } else { | 
|  | TII->loadRegFromStackSlot(*MBB, InsertLoc, NewPhysReg, | 
|  | NewOp.StackSlotOrReMat, AliasRC, TRI); | 
|  | MachineInstr *LoadMI = prior(InsertLoc); | 
|  | VRM.addSpillSlotUse(NewOp.StackSlotOrReMat, LoadMI); | 
|  | // Any stores to this stack slot are not dead anymore. | 
|  | MaybeDeadStores[NewOp.StackSlotOrReMat] = NULL; | 
|  | ++NumLoads; | 
|  | } | 
|  | Spills.ClobberPhysReg(NewPhysReg); | 
|  | Spills.ClobberPhysReg(NewOp.PhysRegReused); | 
|  |  | 
|  | unsigned RReg = SubIdx ? TRI->getSubReg(NewPhysReg, SubIdx) :NewPhysReg; | 
|  | MI->getOperand(NewOp.Operand).setReg(RReg); | 
|  | MI->getOperand(NewOp.Operand).setSubReg(0); | 
|  |  | 
|  | Spills.addAvailable(NewOp.StackSlotOrReMat, NewPhysReg); | 
|  | UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps); | 
|  | DEBUG(dbgs() << '\t' << *prior(InsertLoc)); | 
|  |  | 
|  | DEBUG(dbgs() << "Reuse undone!\n"); | 
|  | --NumReused; | 
|  |  | 
|  | // Finally, PhysReg is now available, go ahead and use it. | 
|  | return PhysReg; | 
|  | } | 
|  | } | 
|  | } | 
|  | return PhysReg; | 
|  | } | 
|  |  | 
|  | // ************************************************************************ // | 
|  |  | 
|  | /// FoldsStackSlotModRef - Return true if the specified MI folds the specified | 
|  | /// stack slot mod/ref. It also checks if it's possible to unfold the | 
|  | /// instruction by having it define a specified physical register instead. | 
|  | static bool FoldsStackSlotModRef(MachineInstr &MI, int SS, unsigned PhysReg, | 
|  | const TargetInstrInfo *TII, | 
|  | const TargetRegisterInfo *TRI, | 
|  | VirtRegMap &VRM) { | 
|  | if (VRM.hasEmergencySpills(&MI) || VRM.isSpillPt(&MI)) | 
|  | return false; | 
|  |  | 
|  | bool Found = false; | 
|  | VirtRegMap::MI2VirtMapTy::const_iterator I, End; | 
|  | for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) { | 
|  | unsigned VirtReg = I->second.first; | 
|  | VirtRegMap::ModRef MR = I->second.second; | 
|  | if (MR & VirtRegMap::isModRef) | 
|  | if (VRM.getStackSlot(VirtReg) == SS) { | 
|  | Found= TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), true, true) != 0; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!Found) | 
|  | return false; | 
|  |  | 
|  | // Does the instruction uses a register that overlaps the scratch register? | 
|  | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &MO = MI.getOperand(i); | 
|  | if (!MO.isReg() || MO.getReg() == 0) | 
|  | continue; | 
|  | unsigned Reg = MO.getReg(); | 
|  | if (TargetRegisterInfo::isVirtualRegister(Reg)) { | 
|  | if (!VRM.hasPhys(Reg)) | 
|  | continue; | 
|  | Reg = VRM.getPhys(Reg); | 
|  | } | 
|  | if (TRI->regsOverlap(PhysReg, Reg)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// FindFreeRegister - Find a free register of a given register class by looking | 
|  | /// at (at most) the last two machine instructions. | 
|  | static unsigned FindFreeRegister(MachineBasicBlock::iterator MII, | 
|  | MachineBasicBlock &MBB, | 
|  | const TargetRegisterClass *RC, | 
|  | const TargetRegisterInfo *TRI, | 
|  | BitVector &AllocatableRegs) { | 
|  | BitVector Defs(TRI->getNumRegs()); | 
|  | BitVector Uses(TRI->getNumRegs()); | 
|  | SmallVector<unsigned, 4> LocalUses; | 
|  | SmallVector<unsigned, 4> Kills; | 
|  |  | 
|  | // Take a look at 2 instructions at most. | 
|  | unsigned Count = 0; | 
|  | while (Count < 2) { | 
|  | if (MII == MBB.begin()) | 
|  | break; | 
|  | MachineInstr *PrevMI = prior(MII); | 
|  | MII = PrevMI; | 
|  |  | 
|  | if (PrevMI->isDebugValue()) | 
|  | continue; // Skip over dbg_value instructions. | 
|  | ++Count; | 
|  |  | 
|  | for (unsigned i = 0, e = PrevMI->getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &MO = PrevMI->getOperand(i); | 
|  | if (!MO.isReg() || MO.getReg() == 0) | 
|  | continue; | 
|  | unsigned Reg = MO.getReg(); | 
|  | if (MO.isDef()) { | 
|  | Defs.set(Reg); | 
|  | for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS) | 
|  | Defs.set(*AS); | 
|  | } else  { | 
|  | LocalUses.push_back(Reg); | 
|  | if (MO.isKill() && AllocatableRegs[Reg]) | 
|  | Kills.push_back(Reg); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (unsigned i = 0, e = Kills.size(); i != e; ++i) { | 
|  | unsigned Kill = Kills[i]; | 
|  | if (!Defs[Kill] && !Uses[Kill] && | 
|  | TRI->getPhysicalRegisterRegClass(Kill) == RC) | 
|  | return Kill; | 
|  | } | 
|  | for (unsigned i = 0, e = LocalUses.size(); i != e; ++i) { | 
|  | unsigned Reg = LocalUses[i]; | 
|  | Uses.set(Reg); | 
|  | for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS) | 
|  | Uses.set(*AS); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static | 
|  | void AssignPhysToVirtReg(MachineInstr *MI, unsigned VirtReg, unsigned PhysReg, | 
|  | const TargetRegisterInfo &TRI) { | 
|  | for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &MO = MI->getOperand(i); | 
|  | if (MO.isReg() && MO.getReg() == VirtReg) | 
|  | substitutePhysReg(MO, PhysReg, TRI); | 
|  | } | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | struct RefSorter { | 
|  | bool operator()(const std::pair<MachineInstr*, int> &A, | 
|  | const std::pair<MachineInstr*, int> &B) { | 
|  | return A.second < B.second; | 
|  | } | 
|  | }; | 
|  |  | 
|  | // ***************************** // | 
|  | // Local Spiller Implementation  // | 
|  | // ***************************** // | 
|  |  | 
|  | class LocalRewriter : public VirtRegRewriter { | 
|  | MachineRegisterInfo *MRI; | 
|  | const TargetRegisterInfo *TRI; | 
|  | const TargetInstrInfo *TII; | 
|  | VirtRegMap *VRM; | 
|  | BitVector AllocatableRegs; | 
|  | DenseMap<MachineInstr*, unsigned> DistanceMap; | 
|  | DenseMap<int, SmallVector<MachineInstr*,4> > Slot2DbgValues; | 
|  |  | 
|  | MachineBasicBlock *MBB;       // Basic block currently being processed. | 
|  |  | 
|  | public: | 
|  |  | 
|  | bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM, | 
|  | LiveIntervals* LIs); | 
|  |  | 
|  | private: | 
|  |  | 
|  | bool OptimizeByUnfold2(unsigned VirtReg, int SS, | 
|  | MachineBasicBlock::iterator &MII, | 
|  | std::vector<MachineInstr*> &MaybeDeadStores, | 
|  | AvailableSpills &Spills, | 
|  | BitVector &RegKills, | 
|  | std::vector<MachineOperand*> &KillOps); | 
|  |  | 
|  | bool OptimizeByUnfold(MachineBasicBlock::iterator &MII, | 
|  | std::vector<MachineInstr*> &MaybeDeadStores, | 
|  | AvailableSpills &Spills, | 
|  | BitVector &RegKills, | 
|  | std::vector<MachineOperand*> &KillOps); | 
|  |  | 
|  | bool CommuteToFoldReload(MachineBasicBlock::iterator &MII, | 
|  | unsigned VirtReg, unsigned SrcReg, int SS, | 
|  | AvailableSpills &Spills, | 
|  | BitVector &RegKills, | 
|  | std::vector<MachineOperand*> &KillOps, | 
|  | const TargetRegisterInfo *TRI); | 
|  |  | 
|  | void SpillRegToStackSlot(MachineBasicBlock::iterator &MII, | 
|  | int Idx, unsigned PhysReg, int StackSlot, | 
|  | const TargetRegisterClass *RC, | 
|  | bool isAvailable, MachineInstr *&LastStore, | 
|  | AvailableSpills &Spills, | 
|  | SmallSet<MachineInstr*, 4> &ReMatDefs, | 
|  | BitVector &RegKills, | 
|  | std::vector<MachineOperand*> &KillOps); | 
|  |  | 
|  | void TransferDeadness(unsigned Reg, BitVector &RegKills, | 
|  | std::vector<MachineOperand*> &KillOps); | 
|  |  | 
|  | bool InsertEmergencySpills(MachineInstr *MI); | 
|  |  | 
|  | bool InsertRestores(MachineInstr *MI, | 
|  | AvailableSpills &Spills, | 
|  | BitVector &RegKills, | 
|  | std::vector<MachineOperand*> &KillOps); | 
|  |  | 
|  | bool InsertSpills(MachineInstr *MI); | 
|  |  | 
|  | void RewriteMBB(LiveIntervals *LIs, | 
|  | AvailableSpills &Spills, BitVector &RegKills, | 
|  | std::vector<MachineOperand*> &KillOps); | 
|  | }; | 
|  | } | 
|  |  | 
|  | bool LocalRewriter::runOnMachineFunction(MachineFunction &MF, VirtRegMap &vrm, | 
|  | LiveIntervals* LIs) { | 
|  | MRI = &MF.getRegInfo(); | 
|  | TRI = MF.getTarget().getRegisterInfo(); | 
|  | TII = MF.getTarget().getInstrInfo(); | 
|  | VRM = &vrm; | 
|  | AllocatableRegs = TRI->getAllocatableSet(MF); | 
|  | DEBUG(dbgs() << "\n**** Local spiller rewriting function '" | 
|  | << MF.getFunction()->getName() << "':\n"); | 
|  | DEBUG(dbgs() << "**** Machine Instrs (NOTE! Does not include spills and" | 
|  | " reloads!) ****\n"); | 
|  | DEBUG(MF.dump()); | 
|  |  | 
|  | // Spills - Keep track of which spilled values are available in physregs | 
|  | // so that we can choose to reuse the physregs instead of emitting | 
|  | // reloads. This is usually refreshed per basic block. | 
|  | AvailableSpills Spills(TRI, TII); | 
|  |  | 
|  | // Keep track of kill information. | 
|  | BitVector RegKills(TRI->getNumRegs()); | 
|  | std::vector<MachineOperand*> KillOps; | 
|  | KillOps.resize(TRI->getNumRegs(), NULL); | 
|  |  | 
|  | // SingleEntrySuccs - Successor blocks which have a single predecessor. | 
|  | SmallVector<MachineBasicBlock*, 4> SinglePredSuccs; | 
|  | SmallPtrSet<MachineBasicBlock*,16> EarlyVisited; | 
|  |  | 
|  | // Traverse the basic blocks depth first. | 
|  | MachineBasicBlock *Entry = MF.begin(); | 
|  | SmallPtrSet<MachineBasicBlock*,16> Visited; | 
|  | for (df_ext_iterator<MachineBasicBlock*, | 
|  | SmallPtrSet<MachineBasicBlock*,16> > | 
|  | DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited); | 
|  | DFI != E; ++DFI) { | 
|  | MBB = *DFI; | 
|  | if (!EarlyVisited.count(MBB)) | 
|  | RewriteMBB(LIs, Spills, RegKills, KillOps); | 
|  |  | 
|  | // If this MBB is the only predecessor of a successor. Keep the | 
|  | // availability information and visit it next. | 
|  | do { | 
|  | // Keep visiting single predecessor successor as long as possible. | 
|  | SinglePredSuccs.clear(); | 
|  | findSinglePredSuccessor(MBB, SinglePredSuccs); | 
|  | if (SinglePredSuccs.empty()) | 
|  | MBB = 0; | 
|  | else { | 
|  | // FIXME: More than one successors, each of which has MBB has | 
|  | // the only predecessor. | 
|  | MBB = SinglePredSuccs[0]; | 
|  | if (!Visited.count(MBB) && EarlyVisited.insert(MBB)) { | 
|  | Spills.AddAvailableRegsToLiveIn(*MBB, RegKills, KillOps); | 
|  | RewriteMBB(LIs, Spills, RegKills, KillOps); | 
|  | } | 
|  | } | 
|  | } while (MBB); | 
|  |  | 
|  | // Clear the availability info. | 
|  | Spills.clear(); | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "**** Post Machine Instrs ****\n"); | 
|  | DEBUG(MF.dump()); | 
|  |  | 
|  | // Mark unused spill slots. | 
|  | MachineFrameInfo *MFI = MF.getFrameInfo(); | 
|  | int SS = VRM->getLowSpillSlot(); | 
|  | if (SS != VirtRegMap::NO_STACK_SLOT) { | 
|  | for (int e = VRM->getHighSpillSlot(); SS <= e; ++SS) { | 
|  | SmallVector<MachineInstr*, 4> &DbgValues = Slot2DbgValues[SS]; | 
|  | if (!VRM->isSpillSlotUsed(SS)) { | 
|  | MFI->RemoveStackObject(SS); | 
|  | for (unsigned j = 0, ee = DbgValues.size(); j != ee; ++j) { | 
|  | MachineInstr *DVMI = DbgValues[j]; | 
|  | MachineBasicBlock *DVMBB = DVMI->getParent(); | 
|  | DEBUG(dbgs() << "Removing debug info referencing FI#" << SS << '\n'); | 
|  | VRM->RemoveMachineInstrFromMaps(DVMI); | 
|  | DVMBB->erase(DVMI); | 
|  | } | 
|  | ++NumDSS; | 
|  | } | 
|  | DbgValues.clear(); | 
|  | } | 
|  | } | 
|  | Slot2DbgValues.clear(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// OptimizeByUnfold2 - Unfold a series of load / store folding instructions if | 
|  | /// a scratch register is available. | 
|  | ///     xorq  %r12<kill>, %r13 | 
|  | ///     addq  %rax, -184(%rbp) | 
|  | ///     addq  %r13, -184(%rbp) | 
|  | /// ==> | 
|  | ///     xorq  %r12<kill>, %r13 | 
|  | ///     movq  -184(%rbp), %r12 | 
|  | ///     addq  %rax, %r12 | 
|  | ///     addq  %r13, %r12 | 
|  | ///     movq  %r12, -184(%rbp) | 
|  | bool LocalRewriter:: | 
|  | OptimizeByUnfold2(unsigned VirtReg, int SS, | 
|  | MachineBasicBlock::iterator &MII, | 
|  | std::vector<MachineInstr*> &MaybeDeadStores, | 
|  | AvailableSpills &Spills, | 
|  | BitVector &RegKills, | 
|  | std::vector<MachineOperand*> &KillOps) { | 
|  |  | 
|  | MachineBasicBlock::iterator NextMII = llvm::next(MII); | 
|  | // Skip over dbg_value instructions. | 
|  | while (NextMII != MBB->end() && NextMII->isDebugValue()) | 
|  | NextMII = llvm::next(NextMII); | 
|  | if (NextMII == MBB->end()) | 
|  | return false; | 
|  |  | 
|  | if (TII->getOpcodeAfterMemoryUnfold(MII->getOpcode(), true, true) == 0) | 
|  | return false; | 
|  |  | 
|  | // Now let's see if the last couple of instructions happens to have freed up | 
|  | // a register. | 
|  | const TargetRegisterClass* RC = MRI->getRegClass(VirtReg); | 
|  | unsigned PhysReg = FindFreeRegister(MII, *MBB, RC, TRI, AllocatableRegs); | 
|  | if (!PhysReg) | 
|  | return false; | 
|  |  | 
|  | MachineFunction &MF = *MBB->getParent(); | 
|  | TRI = MF.getTarget().getRegisterInfo(); | 
|  | MachineInstr &MI = *MII; | 
|  | if (!FoldsStackSlotModRef(MI, SS, PhysReg, TII, TRI, *VRM)) | 
|  | return false; | 
|  |  | 
|  | // If the next instruction also folds the same SS modref and can be unfoled, | 
|  | // then it's worthwhile to issue a load from SS into the free register and | 
|  | // then unfold these instructions. | 
|  | if (!FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, *VRM)) | 
|  | return false; | 
|  |  | 
|  | // Back-schedule reloads and remats. | 
|  | ComputeReloadLoc(MII, MBB->begin(), PhysReg, TRI, false, SS, TII, MF); | 
|  |  | 
|  | // Load from SS to the spare physical register. | 
|  | TII->loadRegFromStackSlot(*MBB, MII, PhysReg, SS, RC, TRI); | 
|  | // This invalidates Phys. | 
|  | Spills.ClobberPhysReg(PhysReg); | 
|  | // Remember it's available. | 
|  | Spills.addAvailable(SS, PhysReg); | 
|  | MaybeDeadStores[SS] = NULL; | 
|  |  | 
|  | // Unfold current MI. | 
|  | SmallVector<MachineInstr*, 4> NewMIs; | 
|  | if (!TII->unfoldMemoryOperand(MF, &MI, VirtReg, false, false, NewMIs)) | 
|  | llvm_unreachable("Unable unfold the load / store folding instruction!"); | 
|  | assert(NewMIs.size() == 1); | 
|  | AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg, *TRI); | 
|  | VRM->transferRestorePts(&MI, NewMIs[0]); | 
|  | MII = MBB->insert(MII, NewMIs[0]); | 
|  | InvalidateKills(MI, TRI, RegKills, KillOps); | 
|  | VRM->RemoveMachineInstrFromMaps(&MI); | 
|  | MBB->erase(&MI); | 
|  | ++NumModRefUnfold; | 
|  |  | 
|  | // Unfold next instructions that fold the same SS. | 
|  | do { | 
|  | MachineInstr &NextMI = *NextMII; | 
|  | NextMII = llvm::next(NextMII); | 
|  | NewMIs.clear(); | 
|  | if (!TII->unfoldMemoryOperand(MF, &NextMI, VirtReg, false, false, NewMIs)) | 
|  | llvm_unreachable("Unable unfold the load / store folding instruction!"); | 
|  | assert(NewMIs.size() == 1); | 
|  | AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg, *TRI); | 
|  | VRM->transferRestorePts(&NextMI, NewMIs[0]); | 
|  | MBB->insert(NextMII, NewMIs[0]); | 
|  | InvalidateKills(NextMI, TRI, RegKills, KillOps); | 
|  | VRM->RemoveMachineInstrFromMaps(&NextMI); | 
|  | MBB->erase(&NextMI); | 
|  | ++NumModRefUnfold; | 
|  | // Skip over dbg_value instructions. | 
|  | while (NextMII != MBB->end() && NextMII->isDebugValue()) | 
|  | NextMII = llvm::next(NextMII); | 
|  | if (NextMII == MBB->end()) | 
|  | break; | 
|  | } while (FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, *VRM)); | 
|  |  | 
|  | // Store the value back into SS. | 
|  | TII->storeRegToStackSlot(*MBB, NextMII, PhysReg, true, SS, RC, TRI); | 
|  | MachineInstr *StoreMI = prior(NextMII); | 
|  | VRM->addSpillSlotUse(SS, StoreMI); | 
|  | VRM->virtFolded(VirtReg, StoreMI, VirtRegMap::isMod); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// OptimizeByUnfold - Turn a store folding instruction into a load folding | 
|  | /// instruction. e.g. | 
|  | ///     xorl  %edi, %eax | 
|  | ///     movl  %eax, -32(%ebp) | 
|  | ///     movl  -36(%ebp), %eax | 
|  | ///     orl   %eax, -32(%ebp) | 
|  | /// ==> | 
|  | ///     xorl  %edi, %eax | 
|  | ///     orl   -36(%ebp), %eax | 
|  | ///     mov   %eax, -32(%ebp) | 
|  | /// This enables unfolding optimization for a subsequent instruction which will | 
|  | /// also eliminate the newly introduced store instruction. | 
|  | bool LocalRewriter:: | 
|  | OptimizeByUnfold(MachineBasicBlock::iterator &MII, | 
|  | std::vector<MachineInstr*> &MaybeDeadStores, | 
|  | AvailableSpills &Spills, | 
|  | BitVector &RegKills, | 
|  | std::vector<MachineOperand*> &KillOps) { | 
|  | MachineFunction &MF = *MBB->getParent(); | 
|  | MachineInstr &MI = *MII; | 
|  | unsigned UnfoldedOpc = 0; | 
|  | unsigned UnfoldPR = 0; | 
|  | unsigned UnfoldVR = 0; | 
|  | int FoldedSS = VirtRegMap::NO_STACK_SLOT; | 
|  | VirtRegMap::MI2VirtMapTy::const_iterator I, End; | 
|  | for (tie(I, End) = VRM->getFoldedVirts(&MI); I != End; ) { | 
|  | // Only transform a MI that folds a single register. | 
|  | if (UnfoldedOpc) | 
|  | return false; | 
|  | UnfoldVR = I->second.first; | 
|  | VirtRegMap::ModRef MR = I->second.second; | 
|  | // MI2VirtMap be can updated which invalidate the iterator. | 
|  | // Increment the iterator first. | 
|  | ++I; | 
|  | if (VRM->isAssignedReg(UnfoldVR)) | 
|  | continue; | 
|  | // If this reference is not a use, any previous store is now dead. | 
|  | // Otherwise, the store to this stack slot is not dead anymore. | 
|  | FoldedSS = VRM->getStackSlot(UnfoldVR); | 
|  | MachineInstr* DeadStore = MaybeDeadStores[FoldedSS]; | 
|  | if (DeadStore && (MR & VirtRegMap::isModRef)) { | 
|  | unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(FoldedSS); | 
|  | if (!PhysReg || !DeadStore->readsRegister(PhysReg)) | 
|  | continue; | 
|  | UnfoldPR = PhysReg; | 
|  | UnfoldedOpc = TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), | 
|  | false, true); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!UnfoldedOpc) { | 
|  | if (!UnfoldVR) | 
|  | return false; | 
|  |  | 
|  | // Look for other unfolding opportunities. | 
|  | return OptimizeByUnfold2(UnfoldVR, FoldedSS, MII, MaybeDeadStores, Spills, | 
|  | RegKills, KillOps); | 
|  | } | 
|  |  | 
|  | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &MO = MI.getOperand(i); | 
|  | if (!MO.isReg() || MO.getReg() == 0 || !MO.isUse()) | 
|  | continue; | 
|  | unsigned VirtReg = MO.getReg(); | 
|  | if (TargetRegisterInfo::isPhysicalRegister(VirtReg) || MO.getSubReg()) | 
|  | continue; | 
|  | if (VRM->isAssignedReg(VirtReg)) { | 
|  | unsigned PhysReg = VRM->getPhys(VirtReg); | 
|  | if (PhysReg && TRI->regsOverlap(PhysReg, UnfoldPR)) | 
|  | return false; | 
|  | } else if (VRM->isReMaterialized(VirtReg)) | 
|  | continue; | 
|  | int SS = VRM->getStackSlot(VirtReg); | 
|  | unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS); | 
|  | if (PhysReg) { | 
|  | if (TRI->regsOverlap(PhysReg, UnfoldPR)) | 
|  | return false; | 
|  | continue; | 
|  | } | 
|  | if (VRM->hasPhys(VirtReg)) { | 
|  | PhysReg = VRM->getPhys(VirtReg); | 
|  | if (!TRI->regsOverlap(PhysReg, UnfoldPR)) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Ok, we'll need to reload the value into a register which makes | 
|  | // it impossible to perform the store unfolding optimization later. | 
|  | // Let's see if it is possible to fold the load if the store is | 
|  | // unfolded. This allows us to perform the store unfolding | 
|  | // optimization. | 
|  | SmallVector<MachineInstr*, 4> NewMIs; | 
|  | if (TII->unfoldMemoryOperand(MF, &MI, UnfoldVR, false, false, NewMIs)) { | 
|  | assert(NewMIs.size() == 1); | 
|  | MachineInstr *NewMI = NewMIs.back(); | 
|  | NewMIs.clear(); | 
|  | int Idx = NewMI->findRegisterUseOperandIdx(VirtReg, false); | 
|  | assert(Idx != -1); | 
|  | SmallVector<unsigned, 1> Ops; | 
|  | Ops.push_back(Idx); | 
|  | MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, NewMI, Ops, SS); | 
|  | if (FoldedMI) { | 
|  | VRM->addSpillSlotUse(SS, FoldedMI); | 
|  | if (!VRM->hasPhys(UnfoldVR)) | 
|  | VRM->assignVirt2Phys(UnfoldVR, UnfoldPR); | 
|  | VRM->virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef); | 
|  | MII = MBB->insert(MII, FoldedMI); | 
|  | InvalidateKills(MI, TRI, RegKills, KillOps); | 
|  | VRM->RemoveMachineInstrFromMaps(&MI); | 
|  | MBB->erase(&MI); | 
|  | MF.DeleteMachineInstr(NewMI); | 
|  | return true; | 
|  | } | 
|  | MF.DeleteMachineInstr(NewMI); | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// CommuteChangesDestination - We are looking for r0 = op r1, r2 and | 
|  | /// where SrcReg is r1 and it is tied to r0. Return true if after | 
|  | /// commuting this instruction it will be r0 = op r2, r1. | 
|  | static bool CommuteChangesDestination(MachineInstr *DefMI, | 
|  | const TargetInstrDesc &TID, | 
|  | unsigned SrcReg, | 
|  | const TargetInstrInfo *TII, | 
|  | unsigned &DstIdx) { | 
|  | if (TID.getNumDefs() != 1 && TID.getNumOperands() != 3) | 
|  | return false; | 
|  | if (!DefMI->getOperand(1).isReg() || | 
|  | DefMI->getOperand(1).getReg() != SrcReg) | 
|  | return false; | 
|  | unsigned DefIdx; | 
|  | if (!DefMI->isRegTiedToDefOperand(1, &DefIdx) || DefIdx != 0) | 
|  | return false; | 
|  | unsigned SrcIdx1, SrcIdx2; | 
|  | if (!TII->findCommutedOpIndices(DefMI, SrcIdx1, SrcIdx2)) | 
|  | return false; | 
|  | if (SrcIdx1 == 1 && SrcIdx2 == 2) { | 
|  | DstIdx = 2; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// CommuteToFoldReload - | 
|  | /// Look for | 
|  | /// r1 = load fi#1 | 
|  | /// r1 = op r1, r2<kill> | 
|  | /// store r1, fi#1 | 
|  | /// | 
|  | /// If op is commutable and r2 is killed, then we can xform these to | 
|  | /// r2 = op r2, fi#1 | 
|  | /// store r2, fi#1 | 
|  | bool LocalRewriter:: | 
|  | CommuteToFoldReload(MachineBasicBlock::iterator &MII, | 
|  | unsigned VirtReg, unsigned SrcReg, int SS, | 
|  | AvailableSpills &Spills, | 
|  | BitVector &RegKills, | 
|  | std::vector<MachineOperand*> &KillOps, | 
|  | const TargetRegisterInfo *TRI) { | 
|  | if (MII == MBB->begin() || !MII->killsRegister(SrcReg)) | 
|  | return false; | 
|  |  | 
|  | MachineFunction &MF = *MBB->getParent(); | 
|  | MachineInstr &MI = *MII; | 
|  | MachineBasicBlock::iterator DefMII = prior(MII); | 
|  | MachineInstr *DefMI = DefMII; | 
|  | const TargetInstrDesc &TID = DefMI->getDesc(); | 
|  | unsigned NewDstIdx; | 
|  | if (DefMII != MBB->begin() && | 
|  | TID.isCommutable() && | 
|  | CommuteChangesDestination(DefMI, TID, SrcReg, TII, NewDstIdx)) { | 
|  | MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx); | 
|  | unsigned NewReg = NewDstMO.getReg(); | 
|  | if (!NewDstMO.isKill() || TRI->regsOverlap(NewReg, SrcReg)) | 
|  | return false; | 
|  | MachineInstr *ReloadMI = prior(DefMII); | 
|  | int FrameIdx; | 
|  | unsigned DestReg = TII->isLoadFromStackSlot(ReloadMI, FrameIdx); | 
|  | if (DestReg != SrcReg || FrameIdx != SS) | 
|  | return false; | 
|  | int UseIdx = DefMI->findRegisterUseOperandIdx(DestReg, false); | 
|  | if (UseIdx == -1) | 
|  | return false; | 
|  | unsigned DefIdx; | 
|  | if (!MI.isRegTiedToDefOperand(UseIdx, &DefIdx)) | 
|  | return false; | 
|  | assert(DefMI->getOperand(DefIdx).isReg() && | 
|  | DefMI->getOperand(DefIdx).getReg() == SrcReg); | 
|  |  | 
|  | // Now commute def instruction. | 
|  | MachineInstr *CommutedMI = TII->commuteInstruction(DefMI, true); | 
|  | if (!CommutedMI) | 
|  | return false; | 
|  | SmallVector<unsigned, 1> Ops; | 
|  | Ops.push_back(NewDstIdx); | 
|  | MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, CommutedMI, Ops, SS); | 
|  | // Not needed since foldMemoryOperand returns new MI. | 
|  | MF.DeleteMachineInstr(CommutedMI); | 
|  | if (!FoldedMI) | 
|  | return false; | 
|  |  | 
|  | VRM->addSpillSlotUse(SS, FoldedMI); | 
|  | VRM->virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef); | 
|  | // Insert new def MI and spill MI. | 
|  | const TargetRegisterClass* RC = MRI->getRegClass(VirtReg); | 
|  | TII->storeRegToStackSlot(*MBB, &MI, NewReg, true, SS, RC, TRI); | 
|  | MII = prior(MII); | 
|  | MachineInstr *StoreMI = MII; | 
|  | VRM->addSpillSlotUse(SS, StoreMI); | 
|  | VRM->virtFolded(VirtReg, StoreMI, VirtRegMap::isMod); | 
|  | MII = MBB->insert(MII, FoldedMI);  // Update MII to backtrack. | 
|  |  | 
|  | // Delete all 3 old instructions. | 
|  | InvalidateKills(*ReloadMI, TRI, RegKills, KillOps); | 
|  | VRM->RemoveMachineInstrFromMaps(ReloadMI); | 
|  | MBB->erase(ReloadMI); | 
|  | InvalidateKills(*DefMI, TRI, RegKills, KillOps); | 
|  | VRM->RemoveMachineInstrFromMaps(DefMI); | 
|  | MBB->erase(DefMI); | 
|  | InvalidateKills(MI, TRI, RegKills, KillOps); | 
|  | VRM->RemoveMachineInstrFromMaps(&MI); | 
|  | MBB->erase(&MI); | 
|  |  | 
|  | // If NewReg was previously holding value of some SS, it's now clobbered. | 
|  | // This has to be done now because it's a physical register. When this | 
|  | // instruction is re-visited, it's ignored. | 
|  | Spills.ClobberPhysReg(NewReg); | 
|  |  | 
|  | ++NumCommutes; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// SpillRegToStackSlot - Spill a register to a specified stack slot. Check if | 
|  | /// the last store to the same slot is now dead. If so, remove the last store. | 
|  | void LocalRewriter:: | 
|  | SpillRegToStackSlot(MachineBasicBlock::iterator &MII, | 
|  | int Idx, unsigned PhysReg, int StackSlot, | 
|  | const TargetRegisterClass *RC, | 
|  | bool isAvailable, MachineInstr *&LastStore, | 
|  | AvailableSpills &Spills, | 
|  | SmallSet<MachineInstr*, 4> &ReMatDefs, | 
|  | BitVector &RegKills, | 
|  | std::vector<MachineOperand*> &KillOps) { | 
|  |  | 
|  | MachineBasicBlock::iterator oldNextMII = llvm::next(MII); | 
|  | TII->storeRegToStackSlot(*MBB, llvm::next(MII), PhysReg, true, StackSlot, RC, | 
|  | TRI); | 
|  | MachineInstr *StoreMI = prior(oldNextMII); | 
|  | VRM->addSpillSlotUse(StackSlot, StoreMI); | 
|  | DEBUG(dbgs() << "Store:\t" << *StoreMI); | 
|  |  | 
|  | // If there is a dead store to this stack slot, nuke it now. | 
|  | if (LastStore) { | 
|  | DEBUG(dbgs() << "Removed dead store:\t" << *LastStore); | 
|  | ++NumDSE; | 
|  | SmallVector<unsigned, 2> KillRegs; | 
|  | InvalidateKills(*LastStore, TRI, RegKills, KillOps, &KillRegs); | 
|  | MachineBasicBlock::iterator PrevMII = LastStore; | 
|  | bool CheckDef = PrevMII != MBB->begin(); | 
|  | if (CheckDef) | 
|  | --PrevMII; | 
|  | VRM->RemoveMachineInstrFromMaps(LastStore); | 
|  | MBB->erase(LastStore); | 
|  | if (CheckDef) { | 
|  | // Look at defs of killed registers on the store. Mark the defs | 
|  | // as dead since the store has been deleted and they aren't | 
|  | // being reused. | 
|  | for (unsigned j = 0, ee = KillRegs.size(); j != ee; ++j) { | 
|  | bool HasOtherDef = false; | 
|  | if (InvalidateRegDef(PrevMII, *MII, KillRegs[j], HasOtherDef, TRI)) { | 
|  | MachineInstr *DeadDef = PrevMII; | 
|  | if (ReMatDefs.count(DeadDef) && !HasOtherDef) { | 
|  | // FIXME: This assumes a remat def does not have side effects. | 
|  | VRM->RemoveMachineInstrFromMaps(DeadDef); | 
|  | MBB->erase(DeadDef); | 
|  | ++NumDRM; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Allow for multi-instruction spill sequences, as on PPC Altivec.  Presume | 
|  | // the last of multiple instructions is the actual store. | 
|  | LastStore = prior(oldNextMII); | 
|  |  | 
|  | // If the stack slot value was previously available in some other | 
|  | // register, change it now.  Otherwise, make the register available, | 
|  | // in PhysReg. | 
|  | Spills.ModifyStackSlotOrReMat(StackSlot); | 
|  | Spills.ClobberPhysReg(PhysReg); | 
|  | Spills.addAvailable(StackSlot, PhysReg, isAvailable); | 
|  | ++NumStores; | 
|  | } | 
|  |  | 
|  | /// isSafeToDelete - Return true if this instruction doesn't produce any side | 
|  | /// effect and all of its defs are dead. | 
|  | static bool isSafeToDelete(MachineInstr &MI) { | 
|  | const TargetInstrDesc &TID = MI.getDesc(); | 
|  | if (TID.mayLoad() || TID.mayStore() || TID.isCall() || TID.isTerminator() || | 
|  | TID.isCall() || TID.isBarrier() || TID.isReturn() || | 
|  | TID.hasUnmodeledSideEffects()) | 
|  | return false; | 
|  | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &MO = MI.getOperand(i); | 
|  | if (!MO.isReg() || !MO.getReg()) | 
|  | continue; | 
|  | if (MO.isDef() && !MO.isDead()) | 
|  | return false; | 
|  | if (MO.isUse() && MO.isKill()) | 
|  | // FIXME: We can't remove kill markers or else the scavenger will assert. | 
|  | // An alternative is to add a ADD pseudo instruction to replace kill | 
|  | // markers. | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// TransferDeadness - A identity copy definition is dead and it's being | 
|  | /// removed. Find the last def or use and mark it as dead / kill. | 
|  | void LocalRewriter:: | 
|  | TransferDeadness(unsigned Reg, BitVector &RegKills, | 
|  | std::vector<MachineOperand*> &KillOps) { | 
|  | SmallPtrSet<MachineInstr*, 4> Seens; | 
|  | SmallVector<std::pair<MachineInstr*, int>,8> Refs; | 
|  | for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(Reg), | 
|  | RE = MRI->reg_end(); RI != RE; ++RI) { | 
|  | MachineInstr *UDMI = &*RI; | 
|  | if (UDMI->isDebugValue() || UDMI->getParent() != MBB) | 
|  | continue; | 
|  | DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UDMI); | 
|  | if (DI == DistanceMap.end()) | 
|  | continue; | 
|  | if (Seens.insert(UDMI)) | 
|  | Refs.push_back(std::make_pair(UDMI, DI->second)); | 
|  | } | 
|  |  | 
|  | if (Refs.empty()) | 
|  | return; | 
|  | std::sort(Refs.begin(), Refs.end(), RefSorter()); | 
|  |  | 
|  | while (!Refs.empty()) { | 
|  | MachineInstr *LastUDMI = Refs.back().first; | 
|  | Refs.pop_back(); | 
|  |  | 
|  | MachineOperand *LastUD = NULL; | 
|  | for (unsigned i = 0, e = LastUDMI->getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &MO = LastUDMI->getOperand(i); | 
|  | if (!MO.isReg() || MO.getReg() != Reg) | 
|  | continue; | 
|  | if (!LastUD || (LastUD->isUse() && MO.isDef())) | 
|  | LastUD = &MO; | 
|  | if (LastUDMI->isRegTiedToDefOperand(i)) | 
|  | break; | 
|  | } | 
|  | if (LastUD->isDef()) { | 
|  | // If the instruction has no side effect, delete it and propagate | 
|  | // backward further. Otherwise, mark is dead and we are done. | 
|  | if (!isSafeToDelete(*LastUDMI)) { | 
|  | LastUD->setIsDead(); | 
|  | break; | 
|  | } | 
|  | VRM->RemoveMachineInstrFromMaps(LastUDMI); | 
|  | MBB->erase(LastUDMI); | 
|  | } else { | 
|  | LastUD->setIsKill(); | 
|  | RegKills.set(Reg); | 
|  | KillOps[Reg] = LastUD; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// InsertEmergencySpills - Insert emergency spills before MI if requested by | 
|  | /// VRM. Return true if spills were inserted. | 
|  | bool LocalRewriter::InsertEmergencySpills(MachineInstr *MI) { | 
|  | if (!VRM->hasEmergencySpills(MI)) | 
|  | return false; | 
|  | MachineBasicBlock::iterator MII = MI; | 
|  | SmallSet<int, 4> UsedSS; | 
|  | std::vector<unsigned> &EmSpills = VRM->getEmergencySpills(MI); | 
|  | for (unsigned i = 0, e = EmSpills.size(); i != e; ++i) { | 
|  | unsigned PhysReg = EmSpills[i]; | 
|  | const TargetRegisterClass *RC = TRI->getPhysicalRegisterRegClass(PhysReg); | 
|  | assert(RC && "Unable to determine register class!"); | 
|  | int SS = VRM->getEmergencySpillSlot(RC); | 
|  | if (UsedSS.count(SS)) | 
|  | llvm_unreachable("Need to spill more than one physical registers!"); | 
|  | UsedSS.insert(SS); | 
|  | TII->storeRegToStackSlot(*MBB, MII, PhysReg, true, SS, RC, TRI); | 
|  | MachineInstr *StoreMI = prior(MII); | 
|  | VRM->addSpillSlotUse(SS, StoreMI); | 
|  |  | 
|  | // Back-schedule reloads and remats. | 
|  | MachineBasicBlock::iterator InsertLoc = | 
|  | ComputeReloadLoc(llvm::next(MII), MBB->begin(), PhysReg, TRI, false, SS, | 
|  | TII, *MBB->getParent()); | 
|  |  | 
|  | TII->loadRegFromStackSlot(*MBB, InsertLoc, PhysReg, SS, RC, TRI); | 
|  |  | 
|  | MachineInstr *LoadMI = prior(InsertLoc); | 
|  | VRM->addSpillSlotUse(SS, LoadMI); | 
|  | ++NumPSpills; | 
|  | DistanceMap.insert(std::make_pair(LoadMI, DistanceMap.size())); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// InsertRestores - Restore registers before MI is requested by VRM. Return | 
|  | /// true is any instructions were inserted. | 
|  | bool LocalRewriter::InsertRestores(MachineInstr *MI, | 
|  | AvailableSpills &Spills, | 
|  | BitVector &RegKills, | 
|  | std::vector<MachineOperand*> &KillOps) { | 
|  | if (!VRM->isRestorePt(MI)) | 
|  | return false; | 
|  | MachineBasicBlock::iterator MII = MI; | 
|  | std::vector<unsigned> &RestoreRegs = VRM->getRestorePtRestores(MI); | 
|  | for (unsigned i = 0, e = RestoreRegs.size(); i != e; ++i) { | 
|  | unsigned VirtReg = RestoreRegs[e-i-1];  // Reverse order. | 
|  | if (!VRM->getPreSplitReg(VirtReg)) | 
|  | continue; // Split interval spilled again. | 
|  | unsigned Phys = VRM->getPhys(VirtReg); | 
|  | MRI->setPhysRegUsed(Phys); | 
|  |  | 
|  | // Check if the value being restored if available. If so, it must be | 
|  | // from a predecessor BB that fallthrough into this BB. We do not | 
|  | // expect: | 
|  | // BB1: | 
|  | // r1 = load fi#1 | 
|  | // ... | 
|  | //    = r1<kill> | 
|  | // ... # r1 not clobbered | 
|  | // ... | 
|  | //    = load fi#1 | 
|  | bool DoReMat = VRM->isReMaterialized(VirtReg); | 
|  | int SSorRMId = DoReMat | 
|  | ? VRM->getReMatId(VirtReg) : VRM->getStackSlot(VirtReg); | 
|  | const TargetRegisterClass* RC = MRI->getRegClass(VirtReg); | 
|  | unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId); | 
|  | if (InReg == Phys) { | 
|  | // If the value is already available in the expected register, save | 
|  | // a reload / remat. | 
|  | if (SSorRMId) | 
|  | DEBUG(dbgs() << "Reusing RM#" | 
|  | << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1); | 
|  | else | 
|  | DEBUG(dbgs() << "Reusing SS#" << SSorRMId); | 
|  | DEBUG(dbgs() << " from physreg " | 
|  | << TRI->getName(InReg) << " for vreg" | 
|  | << VirtReg <<" instead of reloading into physreg " | 
|  | << TRI->getName(Phys) << '\n'); | 
|  | ++NumOmitted; | 
|  | continue; | 
|  | } else if (InReg && InReg != Phys) { | 
|  | if (SSorRMId) | 
|  | DEBUG(dbgs() << "Reusing RM#" | 
|  | << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1); | 
|  | else | 
|  | DEBUG(dbgs() << "Reusing SS#" << SSorRMId); | 
|  | DEBUG(dbgs() << " from physreg " | 
|  | << TRI->getName(InReg) << " for vreg" | 
|  | << VirtReg <<" by copying it into physreg " | 
|  | << TRI->getName(Phys) << '\n'); | 
|  |  | 
|  | // If the reloaded / remat value is available in another register, | 
|  | // copy it to the desired register. | 
|  |  | 
|  | // Back-schedule reloads and remats. | 
|  | MachineBasicBlock::iterator InsertLoc = | 
|  | ComputeReloadLoc(MII, MBB->begin(), Phys, TRI, DoReMat, SSorRMId, TII, | 
|  | *MBB->getParent()); | 
|  |  | 
|  | TII->copyRegToReg(*MBB, InsertLoc, Phys, InReg, RC, RC, | 
|  | MI->getDebugLoc()); | 
|  |  | 
|  | // This invalidates Phys. | 
|  | Spills.ClobberPhysReg(Phys); | 
|  | // Remember it's available. | 
|  | Spills.addAvailable(SSorRMId, Phys); | 
|  |  | 
|  | // Mark is killed. | 
|  | MachineInstr *CopyMI = prior(InsertLoc); | 
|  | CopyMI->setAsmPrinterFlag(MachineInstr::ReloadReuse); | 
|  | MachineOperand *KillOpnd = CopyMI->findRegisterUseOperand(InReg); | 
|  | KillOpnd->setIsKill(); | 
|  | UpdateKills(*CopyMI, TRI, RegKills, KillOps); | 
|  |  | 
|  | DEBUG(dbgs() << '\t' << *CopyMI); | 
|  | ++NumCopified; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Back-schedule reloads and remats. | 
|  | MachineBasicBlock::iterator InsertLoc = | 
|  | ComputeReloadLoc(MII, MBB->begin(), Phys, TRI, DoReMat, SSorRMId, TII, | 
|  | *MBB->getParent()); | 
|  |  | 
|  | if (VRM->isReMaterialized(VirtReg)) { | 
|  | ReMaterialize(*MBB, InsertLoc, Phys, VirtReg, TII, TRI, *VRM); | 
|  | } else { | 
|  | const TargetRegisterClass* RC = MRI->getRegClass(VirtReg); | 
|  | TII->loadRegFromStackSlot(*MBB, InsertLoc, Phys, SSorRMId, RC, TRI); | 
|  | MachineInstr *LoadMI = prior(InsertLoc); | 
|  | VRM->addSpillSlotUse(SSorRMId, LoadMI); | 
|  | ++NumLoads; | 
|  | DistanceMap.insert(std::make_pair(LoadMI, DistanceMap.size())); | 
|  | } | 
|  |  | 
|  | // This invalidates Phys. | 
|  | Spills.ClobberPhysReg(Phys); | 
|  | // Remember it's available. | 
|  | Spills.addAvailable(SSorRMId, Phys); | 
|  |  | 
|  | UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps); | 
|  | DEBUG(dbgs() << '\t' << *prior(MII)); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// InsertEmergencySpills - Insert spills after MI if requested by VRM. Return | 
|  | /// true if spills were inserted. | 
|  | bool LocalRewriter::InsertSpills(MachineInstr *MI) { | 
|  | if (!VRM->isSpillPt(MI)) | 
|  | return false; | 
|  | MachineBasicBlock::iterator MII = MI; | 
|  | std::vector<std::pair<unsigned,bool> > &SpillRegs = | 
|  | VRM->getSpillPtSpills(MI); | 
|  | for (unsigned i = 0, e = SpillRegs.size(); i != e; ++i) { | 
|  | unsigned VirtReg = SpillRegs[i].first; | 
|  | bool isKill = SpillRegs[i].second; | 
|  | if (!VRM->getPreSplitReg(VirtReg)) | 
|  | continue; // Split interval spilled again. | 
|  | const TargetRegisterClass *RC = MRI->getRegClass(VirtReg); | 
|  | unsigned Phys = VRM->getPhys(VirtReg); | 
|  | int StackSlot = VRM->getStackSlot(VirtReg); | 
|  | MachineBasicBlock::iterator oldNextMII = llvm::next(MII); | 
|  | TII->storeRegToStackSlot(*MBB, llvm::next(MII), Phys, isKill, StackSlot, | 
|  | RC, TRI); | 
|  | MachineInstr *StoreMI = prior(oldNextMII); | 
|  | VRM->addSpillSlotUse(StackSlot, StoreMI); | 
|  | DEBUG(dbgs() << "Store:\t" << *StoreMI); | 
|  | VRM->virtFolded(VirtReg, StoreMI, VirtRegMap::isMod); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// rewriteMBB - Keep track of which spills are available even after the | 
|  | /// register allocator is done with them.  If possible, avid reloading vregs. | 
|  | void | 
|  | LocalRewriter::RewriteMBB(LiveIntervals *LIs, | 
|  | AvailableSpills &Spills, BitVector &RegKills, | 
|  | std::vector<MachineOperand*> &KillOps) { | 
|  |  | 
|  | DEBUG(dbgs() << "\n**** Local spiller rewriting MBB '" | 
|  | << MBB->getName() << "':\n"); | 
|  |  | 
|  | MachineFunction &MF = *MBB->getParent(); | 
|  |  | 
|  | // MaybeDeadStores - When we need to write a value back into a stack slot, | 
|  | // keep track of the inserted store.  If the stack slot value is never read | 
|  | // (because the value was used from some available register, for example), and | 
|  | // subsequently stored to, the original store is dead.  This map keeps track | 
|  | // of inserted stores that are not used.  If we see a subsequent store to the | 
|  | // same stack slot, the original store is deleted. | 
|  | std::vector<MachineInstr*> MaybeDeadStores; | 
|  | MaybeDeadStores.resize(MF.getFrameInfo()->getObjectIndexEnd(), NULL); | 
|  |  | 
|  | // ReMatDefs - These are rematerializable def MIs which are not deleted. | 
|  | SmallSet<MachineInstr*, 4> ReMatDefs; | 
|  |  | 
|  | // Clear kill info. | 
|  | SmallSet<unsigned, 2> KilledMIRegs; | 
|  |  | 
|  | // Keep track of the registers we have already spilled in case there are | 
|  | // multiple defs of the same register in MI. | 
|  | SmallSet<unsigned, 8> SpilledMIRegs; | 
|  |  | 
|  | RegKills.reset(); | 
|  | KillOps.clear(); | 
|  | KillOps.resize(TRI->getNumRegs(), NULL); | 
|  |  | 
|  | DistanceMap.clear(); | 
|  | for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end(); | 
|  | MII != E; ) { | 
|  | MachineBasicBlock::iterator NextMII = llvm::next(MII); | 
|  |  | 
|  | if (OptimizeByUnfold(MII, MaybeDeadStores, Spills, RegKills, KillOps)) | 
|  | NextMII = llvm::next(MII); | 
|  |  | 
|  | if (InsertEmergencySpills(MII)) | 
|  | NextMII = llvm::next(MII); | 
|  |  | 
|  | InsertRestores(MII, Spills, RegKills, KillOps); | 
|  |  | 
|  | if (InsertSpills(MII)) | 
|  | NextMII = llvm::next(MII); | 
|  |  | 
|  | VirtRegMap::MI2VirtMapTy::const_iterator I, End; | 
|  | bool Erased = false; | 
|  | bool BackTracked = false; | 
|  | MachineInstr &MI = *MII; | 
|  |  | 
|  | // Remember DbgValue's which reference stack slots. | 
|  | if (MI.isDebugValue() && MI.getOperand(0).isFI()) | 
|  | Slot2DbgValues[MI.getOperand(0).getIndex()].push_back(&MI); | 
|  |  | 
|  | /// ReusedOperands - Keep track of operand reuse in case we need to undo | 
|  | /// reuse. | 
|  | ReuseInfo ReusedOperands(MI, TRI); | 
|  | SmallVector<unsigned, 4> VirtUseOps; | 
|  | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &MO = MI.getOperand(i); | 
|  | if (!MO.isReg() || MO.getReg() == 0) | 
|  | continue;   // Ignore non-register operands. | 
|  |  | 
|  | unsigned VirtReg = MO.getReg(); | 
|  | if (TargetRegisterInfo::isPhysicalRegister(VirtReg)) { | 
|  | // Ignore physregs for spilling, but remember that it is used by this | 
|  | // function. | 
|  | MRI->setPhysRegUsed(VirtReg); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // We want to process implicit virtual register uses first. | 
|  | if (MO.isImplicit()) | 
|  | // If the virtual register is implicitly defined, emit a implicit_def | 
|  | // before so scavenger knows it's "defined". | 
|  | // FIXME: This is a horrible hack done the by register allocator to | 
|  | // remat a definition with virtual register operand. | 
|  | VirtUseOps.insert(VirtUseOps.begin(), i); | 
|  | else | 
|  | VirtUseOps.push_back(i); | 
|  | } | 
|  |  | 
|  | // Process all of the spilled uses and all non spilled reg references. | 
|  | SmallVector<int, 2> PotentialDeadStoreSlots; | 
|  | KilledMIRegs.clear(); | 
|  | for (unsigned j = 0, e = VirtUseOps.size(); j != e; ++j) { | 
|  | unsigned i = VirtUseOps[j]; | 
|  | unsigned VirtReg = MI.getOperand(i).getReg(); | 
|  | assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && | 
|  | "Not a virtual register?"); | 
|  |  | 
|  | unsigned SubIdx = MI.getOperand(i).getSubReg(); | 
|  | if (VRM->isAssignedReg(VirtReg)) { | 
|  | // This virtual register was assigned a physreg! | 
|  | unsigned Phys = VRM->getPhys(VirtReg); | 
|  | MRI->setPhysRegUsed(Phys); | 
|  | if (MI.getOperand(i).isDef()) | 
|  | ReusedOperands.markClobbered(Phys); | 
|  | substitutePhysReg(MI.getOperand(i), Phys, *TRI); | 
|  | if (VRM->isImplicitlyDefined(VirtReg)) | 
|  | // FIXME: Is this needed? | 
|  | BuildMI(*MBB, &MI, MI.getDebugLoc(), | 
|  | TII->get(TargetOpcode::IMPLICIT_DEF), Phys); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // This virtual register is now known to be a spilled value. | 
|  | if (!MI.getOperand(i).isUse()) | 
|  | continue;  // Handle defs in the loop below (handle use&def here though) | 
|  |  | 
|  | bool AvoidReload = MI.getOperand(i).isUndef(); | 
|  | // Check if it is defined by an implicit def. It should not be spilled. | 
|  | // Note, this is for correctness reason. e.g. | 
|  | // 8   %reg1024<def> = IMPLICIT_DEF | 
|  | // 12  %reg1024<def> = INSERT_SUBREG %reg1024<kill>, %reg1025, 2 | 
|  | // The live range [12, 14) are not part of the r1024 live interval since | 
|  | // it's defined by an implicit def. It will not conflicts with live | 
|  | // interval of r1025. Now suppose both registers are spilled, you can | 
|  | // easily see a situation where both registers are reloaded before | 
|  | // the INSERT_SUBREG and both target registers that would overlap. | 
|  | bool DoReMat = VRM->isReMaterialized(VirtReg); | 
|  | int SSorRMId = DoReMat | 
|  | ? VRM->getReMatId(VirtReg) : VRM->getStackSlot(VirtReg); | 
|  | int ReuseSlot = SSorRMId; | 
|  |  | 
|  | // Check to see if this stack slot is available. | 
|  | unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId); | 
|  |  | 
|  | // If this is a sub-register use, make sure the reuse register is in the | 
|  | // right register class. For example, for x86 not all of the 32-bit | 
|  | // registers have accessible sub-registers. | 
|  | // Similarly so for EXTRACT_SUBREG. Consider this: | 
|  | // EDI = op | 
|  | // MOV32_mr fi#1, EDI | 
|  | // ... | 
|  | //       = EXTRACT_SUBREG fi#1 | 
|  | // fi#1 is available in EDI, but it cannot be reused because it's not in | 
|  | // the right register file. | 
|  | if (PhysReg && !AvoidReload && (SubIdx || MI.isExtractSubreg())) { | 
|  | const TargetRegisterClass* RC = MRI->getRegClass(VirtReg); | 
|  | if (!RC->contains(PhysReg)) | 
|  | PhysReg = 0; | 
|  | } | 
|  |  | 
|  | if (PhysReg && !AvoidReload) { | 
|  | // This spilled operand might be part of a two-address operand.  If this | 
|  | // is the case, then changing it will necessarily require changing the | 
|  | // def part of the instruction as well.  However, in some cases, we | 
|  | // aren't allowed to modify the reused register.  If none of these cases | 
|  | // apply, reuse it. | 
|  | bool CanReuse = true; | 
|  | bool isTied = MI.isRegTiedToDefOperand(i); | 
|  | if (isTied) { | 
|  | // Okay, we have a two address operand.  We can reuse this physreg as | 
|  | // long as we are allowed to clobber the value and there isn't an | 
|  | // earlier def that has already clobbered the physreg. | 
|  | CanReuse = !ReusedOperands.isClobbered(PhysReg) && | 
|  | Spills.canClobberPhysReg(PhysReg); | 
|  | } | 
|  | // If this is an asm, and PhysReg is used elsewhere as an earlyclobber | 
|  | // operand, we can't also use it as an input.  (Outputs always come | 
|  | // before inputs, so we can stop looking at i.) | 
|  | if (MI.isInlineAsm()) { | 
|  | for (unsigned k=0; k<i; ++k) { | 
|  | MachineOperand &MOk = MI.getOperand(k); | 
|  | if (MOk.isReg() && MOk.getReg()==PhysReg && MOk.isEarlyClobber()) { | 
|  | CanReuse = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (CanReuse) { | 
|  | // If this stack slot value is already available, reuse it! | 
|  | if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT) | 
|  | DEBUG(dbgs() << "Reusing RM#" | 
|  | << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1); | 
|  | else | 
|  | DEBUG(dbgs() << "Reusing SS#" << ReuseSlot); | 
|  | DEBUG(dbgs() << " from physreg " | 
|  | << TRI->getName(PhysReg) << " for vreg" | 
|  | << VirtReg <<" instead of reloading into physreg " | 
|  | << TRI->getName(VRM->getPhys(VirtReg)) << '\n'); | 
|  | unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg; | 
|  | MI.getOperand(i).setReg(RReg); | 
|  | MI.getOperand(i).setSubReg(0); | 
|  |  | 
|  | // The only technical detail we have is that we don't know that | 
|  | // PhysReg won't be clobbered by a reloaded stack slot that occurs | 
|  | // later in the instruction.  In particular, consider 'op V1, V2'. | 
|  | // If V1 is available in physreg R0, we would choose to reuse it | 
|  | // here, instead of reloading it into the register the allocator | 
|  | // indicated (say R1).  However, V2 might have to be reloaded | 
|  | // later, and it might indicate that it needs to live in R0.  When | 
|  | // this occurs, we need to have information available that | 
|  | // indicates it is safe to use R1 for the reload instead of R0. | 
|  | // | 
|  | // To further complicate matters, we might conflict with an alias, | 
|  | // or R0 and R1 might not be compatible with each other.  In this | 
|  | // case, we actually insert a reload for V1 in R1, ensuring that | 
|  | // we can get at R0 or its alias. | 
|  | ReusedOperands.addReuse(i, ReuseSlot, PhysReg, | 
|  | VRM->getPhys(VirtReg), VirtReg); | 
|  | if (isTied) | 
|  | // Only mark it clobbered if this is a use&def operand. | 
|  | ReusedOperands.markClobbered(PhysReg); | 
|  | ++NumReused; | 
|  |  | 
|  | if (MI.getOperand(i).isKill() && | 
|  | ReuseSlot <= VirtRegMap::MAX_STACK_SLOT) { | 
|  |  | 
|  | // The store of this spilled value is potentially dead, but we | 
|  | // won't know for certain until we've confirmed that the re-use | 
|  | // above is valid, which means waiting until the other operands | 
|  | // are processed. For now we just track the spill slot, we'll | 
|  | // remove it after the other operands are processed if valid. | 
|  |  | 
|  | PotentialDeadStoreSlots.push_back(ReuseSlot); | 
|  | } | 
|  |  | 
|  | // Mark is isKill if it's there no other uses of the same virtual | 
|  | // register and it's not a two-address operand. IsKill will be | 
|  | // unset if reg is reused. | 
|  | if (!isTied && KilledMIRegs.count(VirtReg) == 0) { | 
|  | MI.getOperand(i).setIsKill(); | 
|  | KilledMIRegs.insert(VirtReg); | 
|  | } | 
|  |  | 
|  | continue; | 
|  | }  // CanReuse | 
|  |  | 
|  | // Otherwise we have a situation where we have a two-address instruction | 
|  | // whose mod/ref operand needs to be reloaded.  This reload is already | 
|  | // available in some register "PhysReg", but if we used PhysReg as the | 
|  | // operand to our 2-addr instruction, the instruction would modify | 
|  | // PhysReg.  This isn't cool if something later uses PhysReg and expects | 
|  | // to get its initial value. | 
|  | // | 
|  | // To avoid this problem, and to avoid doing a load right after a store, | 
|  | // we emit a copy from PhysReg into the designated register for this | 
|  | // operand. | 
|  | // | 
|  | // This case also applies to an earlyclobber'd PhysReg. | 
|  | unsigned DesignatedReg = VRM->getPhys(VirtReg); | 
|  | assert(DesignatedReg && "Must map virtreg to physreg!"); | 
|  |  | 
|  | // Note that, if we reused a register for a previous operand, the | 
|  | // register we want to reload into might not actually be | 
|  | // available.  If this occurs, use the register indicated by the | 
|  | // reuser. | 
|  | if (ReusedOperands.hasReuses()) | 
|  | DesignatedReg = ReusedOperands. | 
|  | GetRegForReload(VirtReg, DesignatedReg, &MI, Spills, | 
|  | MaybeDeadStores, RegKills, KillOps, *VRM); | 
|  |  | 
|  | // If the mapped designated register is actually the physreg we have | 
|  | // incoming, we don't need to inserted a dead copy. | 
|  | if (DesignatedReg == PhysReg) { | 
|  | // If this stack slot value is already available, reuse it! | 
|  | if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT) | 
|  | DEBUG(dbgs() << "Reusing RM#" | 
|  | << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1); | 
|  | else | 
|  | DEBUG(dbgs() << "Reusing SS#" << ReuseSlot); | 
|  | DEBUG(dbgs() << " from physreg " << TRI->getName(PhysReg) | 
|  | << " for vreg" << VirtReg | 
|  | << " instead of reloading into same physreg.\n"); | 
|  | unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg; | 
|  | MI.getOperand(i).setReg(RReg); | 
|  | MI.getOperand(i).setSubReg(0); | 
|  | ReusedOperands.markClobbered(RReg); | 
|  | ++NumReused; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | const TargetRegisterClass* RC = MRI->getRegClass(VirtReg); | 
|  | MRI->setPhysRegUsed(DesignatedReg); | 
|  | ReusedOperands.markClobbered(DesignatedReg); | 
|  |  | 
|  | // Back-schedule reloads and remats. | 
|  | MachineBasicBlock::iterator InsertLoc = | 
|  | ComputeReloadLoc(&MI, MBB->begin(), PhysReg, TRI, DoReMat, | 
|  | SSorRMId, TII, MF); | 
|  |  | 
|  | TII->copyRegToReg(*MBB, InsertLoc, DesignatedReg, PhysReg, RC, RC, | 
|  | MI.getDebugLoc()); | 
|  |  | 
|  | MachineInstr *CopyMI = prior(InsertLoc); | 
|  | CopyMI->setAsmPrinterFlag(MachineInstr::ReloadReuse); | 
|  | UpdateKills(*CopyMI, TRI, RegKills, KillOps); | 
|  |  | 
|  | // This invalidates DesignatedReg. | 
|  | Spills.ClobberPhysReg(DesignatedReg); | 
|  |  | 
|  | Spills.addAvailable(ReuseSlot, DesignatedReg); | 
|  | unsigned RReg = | 
|  | SubIdx ? TRI->getSubReg(DesignatedReg, SubIdx) : DesignatedReg; | 
|  | MI.getOperand(i).setReg(RReg); | 
|  | MI.getOperand(i).setSubReg(0); | 
|  | DEBUG(dbgs() << '\t' << *prior(MII)); | 
|  | ++NumReused; | 
|  | continue; | 
|  | } // if (PhysReg) | 
|  |  | 
|  | // Otherwise, reload it and remember that we have it. | 
|  | PhysReg = VRM->getPhys(VirtReg); | 
|  | assert(PhysReg && "Must map virtreg to physreg!"); | 
|  |  | 
|  | // Note that, if we reused a register for a previous operand, the | 
|  | // register we want to reload into might not actually be | 
|  | // available.  If this occurs, use the register indicated by the | 
|  | // reuser. | 
|  | if (ReusedOperands.hasReuses()) | 
|  | PhysReg = ReusedOperands.GetRegForReload(VirtReg, PhysReg, &MI, | 
|  | Spills, MaybeDeadStores, RegKills, KillOps, *VRM); | 
|  |  | 
|  | MRI->setPhysRegUsed(PhysReg); | 
|  | ReusedOperands.markClobbered(PhysReg); | 
|  | if (AvoidReload) | 
|  | ++NumAvoided; | 
|  | else { | 
|  | // Back-schedule reloads and remats. | 
|  | MachineBasicBlock::iterator InsertLoc = | 
|  | ComputeReloadLoc(MII, MBB->begin(), PhysReg, TRI, DoReMat, | 
|  | SSorRMId, TII, MF); | 
|  |  | 
|  | if (DoReMat) { | 
|  | ReMaterialize(*MBB, InsertLoc, PhysReg, VirtReg, TII, TRI, *VRM); | 
|  | } else { | 
|  | const TargetRegisterClass* RC = MRI->getRegClass(VirtReg); | 
|  | TII->loadRegFromStackSlot(*MBB, InsertLoc, PhysReg, SSorRMId, RC,TRI); | 
|  | MachineInstr *LoadMI = prior(InsertLoc); | 
|  | VRM->addSpillSlotUse(SSorRMId, LoadMI); | 
|  | ++NumLoads; | 
|  | DistanceMap.insert(std::make_pair(LoadMI, DistanceMap.size())); | 
|  | } | 
|  | // This invalidates PhysReg. | 
|  | Spills.ClobberPhysReg(PhysReg); | 
|  |  | 
|  | // Any stores to this stack slot are not dead anymore. | 
|  | if (!DoReMat) | 
|  | MaybeDeadStores[SSorRMId] = NULL; | 
|  | Spills.addAvailable(SSorRMId, PhysReg); | 
|  | // Assumes this is the last use. IsKill will be unset if reg is reused | 
|  | // unless it's a two-address operand. | 
|  | if (!MI.isRegTiedToDefOperand(i) && | 
|  | KilledMIRegs.count(VirtReg) == 0) { | 
|  | MI.getOperand(i).setIsKill(); | 
|  | KilledMIRegs.insert(VirtReg); | 
|  | } | 
|  |  | 
|  | UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps); | 
|  | DEBUG(dbgs() << '\t' << *prior(InsertLoc)); | 
|  | } | 
|  | unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg; | 
|  | MI.getOperand(i).setReg(RReg); | 
|  | MI.getOperand(i).setSubReg(0); | 
|  | } | 
|  |  | 
|  | // Ok - now we can remove stores that have been confirmed dead. | 
|  | for (unsigned j = 0, e = PotentialDeadStoreSlots.size(); j != e; ++j) { | 
|  | // This was the last use and the spilled value is still available | 
|  | // for reuse. That means the spill was unnecessary! | 
|  | int PDSSlot = PotentialDeadStoreSlots[j]; | 
|  | MachineInstr* DeadStore = MaybeDeadStores[PDSSlot]; | 
|  | if (DeadStore) { | 
|  | DEBUG(dbgs() << "Removed dead store:\t" << *DeadStore); | 
|  | InvalidateKills(*DeadStore, TRI, RegKills, KillOps); | 
|  | VRM->RemoveMachineInstrFromMaps(DeadStore); | 
|  | MBB->erase(DeadStore); | 
|  | MaybeDeadStores[PDSSlot] = NULL; | 
|  | ++NumDSE; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | DEBUG(dbgs() << '\t' << MI); | 
|  |  | 
|  |  | 
|  | // If we have folded references to memory operands, make sure we clear all | 
|  | // physical registers that may contain the value of the spilled virtual | 
|  | // register | 
|  | SmallSet<int, 2> FoldedSS; | 
|  | for (tie(I, End) = VRM->getFoldedVirts(&MI); I != End; ) { | 
|  | unsigned VirtReg = I->second.first; | 
|  | VirtRegMap::ModRef MR = I->second.second; | 
|  | DEBUG(dbgs() << "Folded vreg: " << VirtReg << "  MR: " << MR); | 
|  |  | 
|  | // MI2VirtMap be can updated which invalidate the iterator. | 
|  | // Increment the iterator first. | 
|  | ++I; | 
|  | int SS = VRM->getStackSlot(VirtReg); | 
|  | if (SS == VirtRegMap::NO_STACK_SLOT) | 
|  | continue; | 
|  | FoldedSS.insert(SS); | 
|  | DEBUG(dbgs() << " - StackSlot: " << SS << "\n"); | 
|  |  | 
|  | // If this folded instruction is just a use, check to see if it's a | 
|  | // straight load from the virt reg slot. | 
|  | if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) { | 
|  | int FrameIdx; | 
|  | unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx); | 
|  | if (DestReg && FrameIdx == SS) { | 
|  | // If this spill slot is available, turn it into a copy (or nothing) | 
|  | // instead of leaving it as a load! | 
|  | if (unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SS)) { | 
|  | DEBUG(dbgs() << "Promoted Load To Copy: " << MI); | 
|  | if (DestReg != InReg) { | 
|  | const TargetRegisterClass *RC = MRI->getRegClass(VirtReg); | 
|  | TII->copyRegToReg(*MBB, &MI, DestReg, InReg, RC, RC, | 
|  | MI.getDebugLoc()); | 
|  | MachineOperand *DefMO = MI.findRegisterDefOperand(DestReg); | 
|  | unsigned SubIdx = DefMO->getSubReg(); | 
|  | // Revisit the copy so we make sure to notice the effects of the | 
|  | // operation on the destreg (either needing to RA it if it's | 
|  | // virtual or needing to clobber any values if it's physical). | 
|  | NextMII = &MI; | 
|  | --NextMII;  // backtrack to the copy. | 
|  | NextMII->setAsmPrinterFlag(MachineInstr::ReloadReuse); | 
|  | // Propagate the sub-register index over. | 
|  | if (SubIdx) { | 
|  | DefMO = NextMII->findRegisterDefOperand(DestReg); | 
|  | DefMO->setSubReg(SubIdx); | 
|  | } | 
|  |  | 
|  | // Mark is killed. | 
|  | MachineOperand *KillOpnd = NextMII->findRegisterUseOperand(InReg); | 
|  | KillOpnd->setIsKill(); | 
|  |  | 
|  | BackTracked = true; | 
|  | } else { | 
|  | DEBUG(dbgs() << "Removing now-noop copy: " << MI); | 
|  | // Unset last kill since it's being reused. | 
|  | InvalidateKill(InReg, TRI, RegKills, KillOps); | 
|  | Spills.disallowClobberPhysReg(InReg); | 
|  | } | 
|  |  | 
|  | InvalidateKills(MI, TRI, RegKills, KillOps); | 
|  | VRM->RemoveMachineInstrFromMaps(&MI); | 
|  | MBB->erase(&MI); | 
|  | Erased = true; | 
|  | goto ProcessNextInst; | 
|  | } | 
|  | } else { | 
|  | unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS); | 
|  | SmallVector<MachineInstr*, 4> NewMIs; | 
|  | if (PhysReg && | 
|  | TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, false, NewMIs)) { | 
|  | MBB->insert(MII, NewMIs[0]); | 
|  | InvalidateKills(MI, TRI, RegKills, KillOps); | 
|  | VRM->RemoveMachineInstrFromMaps(&MI); | 
|  | MBB->erase(&MI); | 
|  | Erased = true; | 
|  | --NextMII;  // backtrack to the unfolded instruction. | 
|  | BackTracked = true; | 
|  | goto ProcessNextInst; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this reference is not a use, any previous store is now dead. | 
|  | // Otherwise, the store to this stack slot is not dead anymore. | 
|  | MachineInstr* DeadStore = MaybeDeadStores[SS]; | 
|  | if (DeadStore) { | 
|  | bool isDead = !(MR & VirtRegMap::isRef); | 
|  | MachineInstr *NewStore = NULL; | 
|  | if (MR & VirtRegMap::isModRef) { | 
|  | unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS); | 
|  | SmallVector<MachineInstr*, 4> NewMIs; | 
|  | // We can reuse this physreg as long as we are allowed to clobber | 
|  | // the value and there isn't an earlier def that has already clobbered | 
|  | // the physreg. | 
|  | if (PhysReg && | 
|  | !ReusedOperands.isClobbered(PhysReg) && | 
|  | Spills.canClobberPhysReg(PhysReg) && | 
|  | !TII->isStoreToStackSlot(&MI, SS)) { // Not profitable! | 
|  | MachineOperand *KillOpnd = | 
|  | DeadStore->findRegisterUseOperand(PhysReg, true); | 
|  | // Note, if the store is storing a sub-register, it's possible the | 
|  | // super-register is needed below. | 
|  | if (KillOpnd && !KillOpnd->getSubReg() && | 
|  | TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, true,NewMIs)){ | 
|  | MBB->insert(MII, NewMIs[0]); | 
|  | NewStore = NewMIs[1]; | 
|  | MBB->insert(MII, NewStore); | 
|  | VRM->addSpillSlotUse(SS, NewStore); | 
|  | InvalidateKills(MI, TRI, RegKills, KillOps); | 
|  | VRM->RemoveMachineInstrFromMaps(&MI); | 
|  | MBB->erase(&MI); | 
|  | Erased = true; | 
|  | --NextMII; | 
|  | --NextMII;  // backtrack to the unfolded instruction. | 
|  | BackTracked = true; | 
|  | isDead = true; | 
|  | ++NumSUnfold; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (isDead) {  // Previous store is dead. | 
|  | // If we get here, the store is dead, nuke it now. | 
|  | DEBUG(dbgs() << "Removed dead store:\t" << *DeadStore); | 
|  | InvalidateKills(*DeadStore, TRI, RegKills, KillOps); | 
|  | VRM->RemoveMachineInstrFromMaps(DeadStore); | 
|  | MBB->erase(DeadStore); | 
|  | if (!NewStore) | 
|  | ++NumDSE; | 
|  | } | 
|  |  | 
|  | MaybeDeadStores[SS] = NULL; | 
|  | if (NewStore) { | 
|  | // Treat this store as a spill merged into a copy. That makes the | 
|  | // stack slot value available. | 
|  | VRM->virtFolded(VirtReg, NewStore, VirtRegMap::isMod); | 
|  | goto ProcessNextInst; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the spill slot value is available, and this is a new definition of | 
|  | // the value, the value is not available anymore. | 
|  | if (MR & VirtRegMap::isMod) { | 
|  | // Notice that the value in this stack slot has been modified. | 
|  | Spills.ModifyStackSlotOrReMat(SS); | 
|  |  | 
|  | // If this is *just* a mod of the value, check to see if this is just a | 
|  | // store to the spill slot (i.e. the spill got merged into the copy). If | 
|  | // so, realize that the vreg is available now, and add the store to the | 
|  | // MaybeDeadStore info. | 
|  | int StackSlot; | 
|  | if (!(MR & VirtRegMap::isRef)) { | 
|  | if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) { | 
|  | assert(TargetRegisterInfo::isPhysicalRegister(SrcReg) && | 
|  | "Src hasn't been allocated yet?"); | 
|  |  | 
|  | if (CommuteToFoldReload(MII, VirtReg, SrcReg, StackSlot, | 
|  | Spills, RegKills, KillOps, TRI)) { | 
|  | NextMII = llvm::next(MII); | 
|  | BackTracked = true; | 
|  | goto ProcessNextInst; | 
|  | } | 
|  |  | 
|  | // Okay, this is certainly a store of SrcReg to [StackSlot].  Mark | 
|  | // this as a potentially dead store in case there is a subsequent | 
|  | // store into the stack slot without a read from it. | 
|  | MaybeDeadStores[StackSlot] = &MI; | 
|  |  | 
|  | // If the stack slot value was previously available in some other | 
|  | // register, change it now.  Otherwise, make the register | 
|  | // available in PhysReg. | 
|  | Spills.addAvailable(StackSlot, SrcReg, MI.killsRegister(SrcReg)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Process all of the spilled defs. | 
|  | SpilledMIRegs.clear(); | 
|  | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &MO = MI.getOperand(i); | 
|  | if (!(MO.isReg() && MO.getReg() && MO.isDef())) | 
|  | continue; | 
|  |  | 
|  | unsigned VirtReg = MO.getReg(); | 
|  | if (!TargetRegisterInfo::isVirtualRegister(VirtReg)) { | 
|  | // Check to see if this is a noop copy.  If so, eliminate the | 
|  | // instruction before considering the dest reg to be changed. | 
|  | // Also check if it's copying from an "undef", if so, we can't | 
|  | // eliminate this or else the undef marker is lost and it will | 
|  | // confuses the scavenger. This is extremely rare. | 
|  | unsigned Src, Dst, SrcSR, DstSR; | 
|  | if (TII->isMoveInstr(MI, Src, Dst, SrcSR, DstSR) && | 
|  | Src == Dst && SrcSR == DstSR && | 
|  | !MI.findRegisterUseOperand(Src)->isUndef()) { | 
|  | ++NumDCE; | 
|  | DEBUG(dbgs() << "Removing now-noop copy: " << MI); | 
|  | SmallVector<unsigned, 2> KillRegs; | 
|  | InvalidateKills(MI, TRI, RegKills, KillOps, &KillRegs); | 
|  | if (MO.isDead() && !KillRegs.empty()) { | 
|  | // Source register or an implicit super/sub-register use is killed. | 
|  | assert(KillRegs[0] == Dst || | 
|  | TRI->isSubRegister(KillRegs[0], Dst) || | 
|  | TRI->isSuperRegister(KillRegs[0], Dst)); | 
|  | // Last def is now dead. | 
|  | TransferDeadness(Src, RegKills, KillOps); | 
|  | } | 
|  | VRM->RemoveMachineInstrFromMaps(&MI); | 
|  | MBB->erase(&MI); | 
|  | Erased = true; | 
|  | Spills.disallowClobberPhysReg(VirtReg); | 
|  | goto ProcessNextInst; | 
|  | } | 
|  |  | 
|  | // If it's not a no-op copy, it clobbers the value in the destreg. | 
|  | Spills.ClobberPhysReg(VirtReg); | 
|  | ReusedOperands.markClobbered(VirtReg); | 
|  |  | 
|  | // Check to see if this instruction is a load from a stack slot into | 
|  | // a register.  If so, this provides the stack slot value in the reg. | 
|  | int FrameIdx; | 
|  | if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) { | 
|  | assert(DestReg == VirtReg && "Unknown load situation!"); | 
|  |  | 
|  | // If it is a folded reference, then it's not safe to clobber. | 
|  | bool Folded = FoldedSS.count(FrameIdx); | 
|  | // Otherwise, if it wasn't available, remember that it is now! | 
|  | Spills.addAvailable(FrameIdx, DestReg, !Folded); | 
|  | goto ProcessNextInst; | 
|  | } | 
|  |  | 
|  | continue; | 
|  | } | 
|  |  | 
|  | unsigned SubIdx = MO.getSubReg(); | 
|  | bool DoReMat = VRM->isReMaterialized(VirtReg); | 
|  | if (DoReMat) | 
|  | ReMatDefs.insert(&MI); | 
|  |  | 
|  | // The only vregs left are stack slot definitions. | 
|  | int StackSlot = VRM->getStackSlot(VirtReg); | 
|  | const TargetRegisterClass *RC = MRI->getRegClass(VirtReg); | 
|  |  | 
|  | // If this def is part of a two-address operand, make sure to execute | 
|  | // the store from the correct physical register. | 
|  | unsigned PhysReg; | 
|  | unsigned TiedOp; | 
|  | if (MI.isRegTiedToUseOperand(i, &TiedOp)) { | 
|  | PhysReg = MI.getOperand(TiedOp).getReg(); | 
|  | if (SubIdx) { | 
|  | unsigned SuperReg = findSuperReg(RC, PhysReg, SubIdx, TRI); | 
|  | assert(SuperReg && TRI->getSubReg(SuperReg, SubIdx) == PhysReg && | 
|  | "Can't find corresponding super-register!"); | 
|  | PhysReg = SuperReg; | 
|  | } | 
|  | } else { | 
|  | PhysReg = VRM->getPhys(VirtReg); | 
|  | if (ReusedOperands.isClobbered(PhysReg)) { | 
|  | // Another def has taken the assigned physreg. It must have been a | 
|  | // use&def which got it due to reuse. Undo the reuse! | 
|  | PhysReg = ReusedOperands.GetRegForReload(VirtReg, PhysReg, &MI, | 
|  | Spills, MaybeDeadStores, RegKills, KillOps, *VRM); | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(PhysReg && "VR not assigned a physical register?"); | 
|  | MRI->setPhysRegUsed(PhysReg); | 
|  | unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg; | 
|  | ReusedOperands.markClobbered(RReg); | 
|  | MI.getOperand(i).setReg(RReg); | 
|  | MI.getOperand(i).setSubReg(0); | 
|  |  | 
|  | if (!MO.isDead() && SpilledMIRegs.insert(VirtReg)) { | 
|  | MachineInstr *&LastStore = MaybeDeadStores[StackSlot]; | 
|  | SpillRegToStackSlot(MII, -1, PhysReg, StackSlot, RC, true, | 
|  | LastStore, Spills, ReMatDefs, RegKills, KillOps); | 
|  | NextMII = llvm::next(MII); | 
|  |  | 
|  | // Check to see if this is a noop copy.  If so, eliminate the | 
|  | // instruction before considering the dest reg to be changed. | 
|  | { | 
|  | unsigned Src, Dst, SrcSR, DstSR; | 
|  | if (TII->isMoveInstr(MI, Src, Dst, SrcSR, DstSR) && | 
|  | Src == Dst && SrcSR == DstSR) { | 
|  | ++NumDCE; | 
|  | DEBUG(dbgs() << "Removing now-noop copy: " << MI); | 
|  | InvalidateKills(MI, TRI, RegKills, KillOps); | 
|  | VRM->RemoveMachineInstrFromMaps(&MI); | 
|  | MBB->erase(&MI); | 
|  | Erased = true; | 
|  | UpdateKills(*LastStore, TRI, RegKills, KillOps); | 
|  | goto ProcessNextInst; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | ProcessNextInst: | 
|  | // Delete dead instructions without side effects. | 
|  | if (!Erased && !BackTracked && isSafeToDelete(MI)) { | 
|  | InvalidateKills(MI, TRI, RegKills, KillOps); | 
|  | VRM->RemoveMachineInstrFromMaps(&MI); | 
|  | MBB->erase(&MI); | 
|  | Erased = true; | 
|  | } | 
|  | if (!Erased) | 
|  | DistanceMap.insert(std::make_pair(&MI, DistanceMap.size())); | 
|  | if (!Erased && !BackTracked) { | 
|  | for (MachineBasicBlock::iterator II = &MI; II != NextMII; ++II) | 
|  | UpdateKills(*II, TRI, RegKills, KillOps); | 
|  | } | 
|  | MII = NextMII; | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | llvm::VirtRegRewriter* llvm::createVirtRegRewriter() { | 
|  | switch (RewriterOpt) { | 
|  | default: llvm_unreachable("Unreachable!"); | 
|  | case local: | 
|  | return new LocalRewriter(); | 
|  | case trivial: | 
|  | return new TrivialRewriter(); | 
|  | } | 
|  | } |