|  | //===-- AMDGPUAsmPrinter.cpp - AMDGPU assembly printer  -------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | /// \file | 
|  | /// | 
|  | /// The AMDGPUAsmPrinter is used to print both assembly string and also binary | 
|  | /// code.  When passed an MCAsmStreamer it prints assembly and when passed | 
|  | /// an MCObjectStreamer it outputs binary code. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  |  | 
|  | #include "AMDGPUAsmPrinter.h" | 
|  | #include "AMDGPU.h" | 
|  | #include "AMDGPUSubtarget.h" | 
|  | #include "AMDGPUTargetMachine.h" | 
|  | #include "InstPrinter/AMDGPUInstPrinter.h" | 
|  | #include "MCTargetDesc/AMDGPUMCTargetDesc.h" | 
|  | #include "MCTargetDesc/AMDGPUTargetStreamer.h" | 
|  | #include "R600AsmPrinter.h" | 
|  | #include "R600Defines.h" | 
|  | #include "R600MachineFunctionInfo.h" | 
|  | #include "R600RegisterInfo.h" | 
|  | #include "SIDefines.h" | 
|  | #include "SIInstrInfo.h" | 
|  | #include "SIMachineFunctionInfo.h" | 
|  | #include "SIRegisterInfo.h" | 
|  | #include "Utils/AMDGPUBaseInfo.h" | 
|  | #include "llvm/BinaryFormat/ELF.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/IR/DiagnosticInfo.h" | 
|  | #include "llvm/MC/MCContext.h" | 
|  | #include "llvm/MC/MCSectionELF.h" | 
|  | #include "llvm/MC/MCStreamer.h" | 
|  | #include "llvm/Support/AMDGPUMetadata.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/TargetParser.h" | 
|  | #include "llvm/Support/TargetRegistry.h" | 
|  | #include "llvm/Target/TargetLoweringObjectFile.h" | 
|  |  | 
|  | using namespace llvm; | 
|  | using namespace llvm::AMDGPU; | 
|  |  | 
|  | // TODO: This should get the default rounding mode from the kernel. We just set | 
|  | // the default here, but this could change if the OpenCL rounding mode pragmas | 
|  | // are used. | 
|  | // | 
|  | // The denormal mode here should match what is reported by the OpenCL runtime | 
|  | // for the CL_FP_DENORM bit from CL_DEVICE_{HALF|SINGLE|DOUBLE}_FP_CONFIG, but | 
|  | // can also be override to flush with the -cl-denorms-are-zero compiler flag. | 
|  | // | 
|  | // AMD OpenCL only sets flush none and reports CL_FP_DENORM for double | 
|  | // precision, and leaves single precision to flush all and does not report | 
|  | // CL_FP_DENORM for CL_DEVICE_SINGLE_FP_CONFIG. Mesa's OpenCL currently reports | 
|  | // CL_FP_DENORM for both. | 
|  | // | 
|  | // FIXME: It seems some instructions do not support single precision denormals | 
|  | // regardless of the mode (exp_*_f32, rcp_*_f32, rsq_*_f32, rsq_*f32, sqrt_f32, | 
|  | // and sin_f32, cos_f32 on most parts). | 
|  |  | 
|  | // We want to use these instructions, and using fp32 denormals also causes | 
|  | // instructions to run at the double precision rate for the device so it's | 
|  | // probably best to just report no single precision denormals. | 
|  | static uint32_t getFPMode(const MachineFunction &F) { | 
|  | const GCNSubtarget& ST = F.getSubtarget<GCNSubtarget>(); | 
|  | // TODO: Is there any real use for the flush in only / flush out only modes? | 
|  |  | 
|  | uint32_t FP32Denormals = | 
|  | ST.hasFP32Denormals() ? FP_DENORM_FLUSH_NONE : FP_DENORM_FLUSH_IN_FLUSH_OUT; | 
|  |  | 
|  | uint32_t FP64Denormals = | 
|  | ST.hasFP64Denormals() ? FP_DENORM_FLUSH_NONE : FP_DENORM_FLUSH_IN_FLUSH_OUT; | 
|  |  | 
|  | return FP_ROUND_MODE_SP(FP_ROUND_ROUND_TO_NEAREST) | | 
|  | FP_ROUND_MODE_DP(FP_ROUND_ROUND_TO_NEAREST) | | 
|  | FP_DENORM_MODE_SP(FP32Denormals) | | 
|  | FP_DENORM_MODE_DP(FP64Denormals); | 
|  | } | 
|  |  | 
|  | static AsmPrinter * | 
|  | createAMDGPUAsmPrinterPass(TargetMachine &tm, | 
|  | std::unique_ptr<MCStreamer> &&Streamer) { | 
|  | return new AMDGPUAsmPrinter(tm, std::move(Streamer)); | 
|  | } | 
|  |  | 
|  | extern "C" void LLVMInitializeAMDGPUAsmPrinter() { | 
|  | TargetRegistry::RegisterAsmPrinter(getTheAMDGPUTarget(), | 
|  | llvm::createR600AsmPrinterPass); | 
|  | TargetRegistry::RegisterAsmPrinter(getTheGCNTarget(), | 
|  | createAMDGPUAsmPrinterPass); | 
|  | } | 
|  |  | 
|  | AMDGPUAsmPrinter::AMDGPUAsmPrinter(TargetMachine &TM, | 
|  | std::unique_ptr<MCStreamer> Streamer) | 
|  | : AsmPrinter(TM, std::move(Streamer)) { | 
|  | } | 
|  |  | 
|  | StringRef AMDGPUAsmPrinter::getPassName() const { | 
|  | return "AMDGPU Assembly Printer"; | 
|  | } | 
|  |  | 
|  | const MCSubtargetInfo* AMDGPUAsmPrinter::getSTI() const { | 
|  | return TM.getMCSubtargetInfo(); | 
|  | } | 
|  |  | 
|  | AMDGPUTargetStreamer* AMDGPUAsmPrinter::getTargetStreamer() const { | 
|  | if (!OutStreamer) | 
|  | return nullptr; | 
|  | return static_cast<AMDGPUTargetStreamer*>(OutStreamer->getTargetStreamer()); | 
|  | } | 
|  |  | 
|  | void AMDGPUAsmPrinter::EmitStartOfAsmFile(Module &M) { | 
|  | if (IsaInfo::hasCodeObjectV3(getSTI()) && | 
|  | TM.getTargetTriple().getOS() == Triple::AMDHSA) | 
|  | return; | 
|  |  | 
|  | if (TM.getTargetTriple().getOS() != Triple::AMDHSA && | 
|  | TM.getTargetTriple().getOS() != Triple::AMDPAL) | 
|  | return; | 
|  |  | 
|  | if (TM.getTargetTriple().getOS() == Triple::AMDHSA) | 
|  | HSAMetadataStream.begin(M); | 
|  |  | 
|  | if (TM.getTargetTriple().getOS() == Triple::AMDPAL) | 
|  | readPALMetadata(M); | 
|  |  | 
|  | // HSA emits NT_AMDGPU_HSA_CODE_OBJECT_VERSION for code objects v2. | 
|  | if (TM.getTargetTriple().getOS() == Triple::AMDHSA) | 
|  | getTargetStreamer()->EmitDirectiveHSACodeObjectVersion(2, 1); | 
|  |  | 
|  | // HSA and PAL emit NT_AMDGPU_HSA_ISA for code objects v2. | 
|  | IsaVersion Version = getIsaVersion(getSTI()->getCPU()); | 
|  | getTargetStreamer()->EmitDirectiveHSACodeObjectISA( | 
|  | Version.Major, Version.Minor, Version.Stepping, "AMD", "AMDGPU"); | 
|  | } | 
|  |  | 
|  | void AMDGPUAsmPrinter::EmitEndOfAsmFile(Module &M) { | 
|  | // TODO: Add metadata to code object v3. | 
|  | if (IsaInfo::hasCodeObjectV3(getSTI()) && | 
|  | TM.getTargetTriple().getOS() == Triple::AMDHSA) | 
|  | return; | 
|  |  | 
|  | // Following code requires TargetStreamer to be present. | 
|  | if (!getTargetStreamer()) | 
|  | return; | 
|  |  | 
|  | // Emit ISA Version (NT_AMD_AMDGPU_ISA). | 
|  | std::string ISAVersionString; | 
|  | raw_string_ostream ISAVersionStream(ISAVersionString); | 
|  | IsaInfo::streamIsaVersion(getSTI(), ISAVersionStream); | 
|  | getTargetStreamer()->EmitISAVersion(ISAVersionStream.str()); | 
|  |  | 
|  | // Emit HSA Metadata (NT_AMD_AMDGPU_HSA_METADATA). | 
|  | if (TM.getTargetTriple().getOS() == Triple::AMDHSA) { | 
|  | HSAMetadataStream.end(); | 
|  | getTargetStreamer()->EmitHSAMetadata(HSAMetadataStream.getHSAMetadata()); | 
|  | } | 
|  |  | 
|  | // Emit PAL Metadata (NT_AMD_AMDGPU_PAL_METADATA). | 
|  | if (TM.getTargetTriple().getOS() == Triple::AMDPAL) { | 
|  | // Copy the PAL metadata from the map where we collected it into a vector, | 
|  | // then write it as a .note. | 
|  | PALMD::Metadata PALMetadataVector; | 
|  | for (auto i : PALMetadataMap) { | 
|  | PALMetadataVector.push_back(i.first); | 
|  | PALMetadataVector.push_back(i.second); | 
|  | } | 
|  | getTargetStreamer()->EmitPALMetadata(PALMetadataVector); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool AMDGPUAsmPrinter::isBlockOnlyReachableByFallthrough( | 
|  | const MachineBasicBlock *MBB) const { | 
|  | if (!AsmPrinter::isBlockOnlyReachableByFallthrough(MBB)) | 
|  | return false; | 
|  |  | 
|  | if (MBB->empty()) | 
|  | return true; | 
|  |  | 
|  | // If this is a block implementing a long branch, an expression relative to | 
|  | // the start of the block is needed.  to the start of the block. | 
|  | // XXX - Is there a smarter way to check this? | 
|  | return (MBB->back().getOpcode() != AMDGPU::S_SETPC_B64); | 
|  | } | 
|  |  | 
|  | void AMDGPUAsmPrinter::EmitFunctionBodyStart() { | 
|  | const SIMachineFunctionInfo &MFI = *MF->getInfo<SIMachineFunctionInfo>(); | 
|  | if (!MFI.isEntryFunction()) | 
|  | return; | 
|  | if (IsaInfo::hasCodeObjectV3(getSTI()) && | 
|  | TM.getTargetTriple().getOS() == Triple::AMDHSA) | 
|  | return; | 
|  |  | 
|  | const GCNSubtarget &STM = MF->getSubtarget<GCNSubtarget>(); | 
|  | const Function &F = MF->getFunction(); | 
|  | if (STM.isAmdCodeObjectV2(F) && | 
|  | (F.getCallingConv() == CallingConv::AMDGPU_KERNEL || | 
|  | F.getCallingConv() == CallingConv::SPIR_KERNEL)) { | 
|  | amd_kernel_code_t KernelCode; | 
|  | getAmdKernelCode(KernelCode, CurrentProgramInfo, *MF); | 
|  | getTargetStreamer()->EmitAMDKernelCodeT(KernelCode); | 
|  | } | 
|  |  | 
|  | if (TM.getTargetTriple().getOS() != Triple::AMDHSA) | 
|  | return; | 
|  |  | 
|  | HSAMetadataStream.emitKernel(*MF, CurrentProgramInfo); | 
|  | } | 
|  |  | 
|  | void AMDGPUAsmPrinter::EmitFunctionBodyEnd() { | 
|  | const SIMachineFunctionInfo &MFI = *MF->getInfo<SIMachineFunctionInfo>(); | 
|  | if (!MFI.isEntryFunction()) | 
|  | return; | 
|  | if (!IsaInfo::hasCodeObjectV3(getSTI()) || | 
|  | TM.getTargetTriple().getOS() != Triple::AMDHSA) | 
|  | return; | 
|  |  | 
|  | auto &Streamer = getTargetStreamer()->getStreamer(); | 
|  | auto &Context = Streamer.getContext(); | 
|  | auto &ObjectFileInfo = *Context.getObjectFileInfo(); | 
|  | auto &ReadOnlySection = *ObjectFileInfo.getReadOnlySection(); | 
|  |  | 
|  | Streamer.PushSection(); | 
|  | Streamer.SwitchSection(&ReadOnlySection); | 
|  |  | 
|  | // CP microcode requires the kernel descriptor to be allocated on 64 byte | 
|  | // alignment. | 
|  | Streamer.EmitValueToAlignment(64, 0, 1, 0); | 
|  | if (ReadOnlySection.getAlignment() < 64) | 
|  | ReadOnlySection.setAlignment(64); | 
|  |  | 
|  | SmallString<128> KernelName; | 
|  | getNameWithPrefix(KernelName, &MF->getFunction()); | 
|  | getTargetStreamer()->EmitAmdhsaKernelDescriptor( | 
|  | *getSTI(), KernelName, getAmdhsaKernelDescriptor(*MF, CurrentProgramInfo), | 
|  | CurrentProgramInfo.NumVGPRsForWavesPerEU, | 
|  | CurrentProgramInfo.NumSGPRsForWavesPerEU - | 
|  | IsaInfo::getNumExtraSGPRs(getSTI(), | 
|  | CurrentProgramInfo.VCCUsed, | 
|  | CurrentProgramInfo.FlatUsed), | 
|  | CurrentProgramInfo.VCCUsed, CurrentProgramInfo.FlatUsed, | 
|  | hasXNACK(*getSTI())); | 
|  |  | 
|  | Streamer.PopSection(); | 
|  | } | 
|  |  | 
|  | void AMDGPUAsmPrinter::EmitFunctionEntryLabel() { | 
|  | if (IsaInfo::hasCodeObjectV3(getSTI()) && | 
|  | TM.getTargetTriple().getOS() == Triple::AMDHSA) { | 
|  | AsmPrinter::EmitFunctionEntryLabel(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | const SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>(); | 
|  | const GCNSubtarget &STM = MF->getSubtarget<GCNSubtarget>(); | 
|  | if (MFI->isEntryFunction() && STM.isAmdCodeObjectV2(MF->getFunction())) { | 
|  | SmallString<128> SymbolName; | 
|  | getNameWithPrefix(SymbolName, &MF->getFunction()), | 
|  | getTargetStreamer()->EmitAMDGPUSymbolType( | 
|  | SymbolName, ELF::STT_AMDGPU_HSA_KERNEL); | 
|  | } | 
|  | const GCNSubtarget &STI = MF->getSubtarget<GCNSubtarget>(); | 
|  | if (STI.dumpCode()) { | 
|  | // Disassemble function name label to text. | 
|  | DisasmLines.push_back(MF->getName().str() + ":"); | 
|  | DisasmLineMaxLen = std::max(DisasmLineMaxLen, DisasmLines.back().size()); | 
|  | HexLines.push_back(""); | 
|  | } | 
|  |  | 
|  | AsmPrinter::EmitFunctionEntryLabel(); | 
|  | } | 
|  |  | 
|  | void AMDGPUAsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const { | 
|  | const GCNSubtarget &STI = MBB.getParent()->getSubtarget<GCNSubtarget>(); | 
|  | if (STI.dumpCode() && !isBlockOnlyReachableByFallthrough(&MBB)) { | 
|  | // Write a line for the basic block label if it is not only fallthrough. | 
|  | DisasmLines.push_back( | 
|  | (Twine("BB") + Twine(getFunctionNumber()) | 
|  | + "_" + Twine(MBB.getNumber()) + ":").str()); | 
|  | DisasmLineMaxLen = std::max(DisasmLineMaxLen, DisasmLines.back().size()); | 
|  | HexLines.push_back(""); | 
|  | } | 
|  | AsmPrinter::EmitBasicBlockStart(MBB); | 
|  | } | 
|  |  | 
|  | void AMDGPUAsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { | 
|  |  | 
|  | // Group segment variables aren't emitted in HSA. | 
|  | if (AMDGPU::isGroupSegment(GV)) | 
|  | return; | 
|  |  | 
|  | AsmPrinter::EmitGlobalVariable(GV); | 
|  | } | 
|  |  | 
|  | bool AMDGPUAsmPrinter::doFinalization(Module &M) { | 
|  | CallGraphResourceInfo.clear(); | 
|  | return AsmPrinter::doFinalization(M); | 
|  | } | 
|  |  | 
|  | // For the amdpal OS type, read the amdgpu.pal.metadata supplied by the | 
|  | // frontend into our PALMetadataMap, ready for per-function modification.  It | 
|  | // is a NamedMD containing an MDTuple containing a number of MDNodes each of | 
|  | // which is an integer value, and each two integer values forms a key=value | 
|  | // pair that we store as PALMetadataMap[key]=value in the map. | 
|  | void AMDGPUAsmPrinter::readPALMetadata(Module &M) { | 
|  | auto NamedMD = M.getNamedMetadata("amdgpu.pal.metadata"); | 
|  | if (!NamedMD || !NamedMD->getNumOperands()) | 
|  | return; | 
|  | auto Tuple = dyn_cast<MDTuple>(NamedMD->getOperand(0)); | 
|  | if (!Tuple) | 
|  | return; | 
|  | for (unsigned I = 0, E = Tuple->getNumOperands() & -2; I != E; I += 2) { | 
|  | auto Key = mdconst::dyn_extract<ConstantInt>(Tuple->getOperand(I)); | 
|  | auto Val = mdconst::dyn_extract<ConstantInt>(Tuple->getOperand(I + 1)); | 
|  | if (!Key || !Val) | 
|  | continue; | 
|  | PALMetadataMap[Key->getZExtValue()] = Val->getZExtValue(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Print comments that apply to both callable functions and entry points. | 
|  | void AMDGPUAsmPrinter::emitCommonFunctionComments( | 
|  | uint32_t NumVGPR, | 
|  | uint32_t NumSGPR, | 
|  | uint64_t ScratchSize, | 
|  | uint64_t CodeSize, | 
|  | const AMDGPUMachineFunction *MFI) { | 
|  | OutStreamer->emitRawComment(" codeLenInByte = " + Twine(CodeSize), false); | 
|  | OutStreamer->emitRawComment(" NumSgprs: " + Twine(NumSGPR), false); | 
|  | OutStreamer->emitRawComment(" NumVgprs: " + Twine(NumVGPR), false); | 
|  | OutStreamer->emitRawComment(" ScratchSize: " + Twine(ScratchSize), false); | 
|  | OutStreamer->emitRawComment(" MemoryBound: " + Twine(MFI->isMemoryBound()), | 
|  | false); | 
|  | } | 
|  |  | 
|  | uint16_t AMDGPUAsmPrinter::getAmdhsaKernelCodeProperties( | 
|  | const MachineFunction &MF) const { | 
|  | const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>(); | 
|  | uint16_t KernelCodeProperties = 0; | 
|  |  | 
|  | if (MFI.hasPrivateSegmentBuffer()) { | 
|  | KernelCodeProperties |= | 
|  | amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER; | 
|  | } | 
|  | if (MFI.hasDispatchPtr()) { | 
|  | KernelCodeProperties |= | 
|  | amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR; | 
|  | } | 
|  | if (MFI.hasQueuePtr()) { | 
|  | KernelCodeProperties |= | 
|  | amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR; | 
|  | } | 
|  | if (MFI.hasKernargSegmentPtr()) { | 
|  | KernelCodeProperties |= | 
|  | amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR; | 
|  | } | 
|  | if (MFI.hasDispatchID()) { | 
|  | KernelCodeProperties |= | 
|  | amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID; | 
|  | } | 
|  | if (MFI.hasFlatScratchInit()) { | 
|  | KernelCodeProperties |= | 
|  | amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT; | 
|  | } | 
|  |  | 
|  | return KernelCodeProperties; | 
|  | } | 
|  |  | 
|  | amdhsa::kernel_descriptor_t AMDGPUAsmPrinter::getAmdhsaKernelDescriptor( | 
|  | const MachineFunction &MF, | 
|  | const SIProgramInfo &PI) const { | 
|  | amdhsa::kernel_descriptor_t KernelDescriptor; | 
|  | memset(&KernelDescriptor, 0x0, sizeof(KernelDescriptor)); | 
|  |  | 
|  | assert(isUInt<32>(PI.ScratchSize)); | 
|  | assert(isUInt<32>(PI.ComputePGMRSrc1)); | 
|  | assert(isUInt<32>(PI.ComputePGMRSrc2)); | 
|  |  | 
|  | KernelDescriptor.group_segment_fixed_size = PI.LDSSize; | 
|  | KernelDescriptor.private_segment_fixed_size = PI.ScratchSize; | 
|  | KernelDescriptor.compute_pgm_rsrc1 = PI.ComputePGMRSrc1; | 
|  | KernelDescriptor.compute_pgm_rsrc2 = PI.ComputePGMRSrc2; | 
|  | KernelDescriptor.kernel_code_properties = getAmdhsaKernelCodeProperties(MF); | 
|  |  | 
|  | return KernelDescriptor; | 
|  | } | 
|  |  | 
|  | bool AMDGPUAsmPrinter::runOnMachineFunction(MachineFunction &MF) { | 
|  | CurrentProgramInfo = SIProgramInfo(); | 
|  |  | 
|  | const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); | 
|  |  | 
|  | // The starting address of all shader programs must be 256 bytes aligned. | 
|  | // Regular functions just need the basic required instruction alignment. | 
|  | MF.setAlignment(MFI->isEntryFunction() ? 8 : 2); | 
|  |  | 
|  | SetupMachineFunction(MF); | 
|  |  | 
|  | const GCNSubtarget &STM = MF.getSubtarget<GCNSubtarget>(); | 
|  | MCContext &Context = getObjFileLowering().getContext(); | 
|  | // FIXME: This should be an explicit check for Mesa. | 
|  | if (!STM.isAmdHsaOS() && !STM.isAmdPalOS()) { | 
|  | MCSectionELF *ConfigSection = | 
|  | Context.getELFSection(".AMDGPU.config", ELF::SHT_PROGBITS, 0); | 
|  | OutStreamer->SwitchSection(ConfigSection); | 
|  | } | 
|  |  | 
|  | if (MFI->isEntryFunction()) { | 
|  | getSIProgramInfo(CurrentProgramInfo, MF); | 
|  | } else { | 
|  | auto I = CallGraphResourceInfo.insert( | 
|  | std::make_pair(&MF.getFunction(), SIFunctionResourceInfo())); | 
|  | SIFunctionResourceInfo &Info = I.first->second; | 
|  | assert(I.second && "should only be called once per function"); | 
|  | Info = analyzeResourceUsage(MF); | 
|  | } | 
|  |  | 
|  | if (STM.isAmdPalOS()) | 
|  | EmitPALMetadata(MF, CurrentProgramInfo); | 
|  | else if (!STM.isAmdHsaOS()) { | 
|  | EmitProgramInfoSI(MF, CurrentProgramInfo); | 
|  | } | 
|  |  | 
|  | DisasmLines.clear(); | 
|  | HexLines.clear(); | 
|  | DisasmLineMaxLen = 0; | 
|  |  | 
|  | EmitFunctionBody(); | 
|  |  | 
|  | if (isVerbose()) { | 
|  | MCSectionELF *CommentSection = | 
|  | Context.getELFSection(".AMDGPU.csdata", ELF::SHT_PROGBITS, 0); | 
|  | OutStreamer->SwitchSection(CommentSection); | 
|  |  | 
|  | if (!MFI->isEntryFunction()) { | 
|  | OutStreamer->emitRawComment(" Function info:", false); | 
|  | SIFunctionResourceInfo &Info = CallGraphResourceInfo[&MF.getFunction()]; | 
|  | emitCommonFunctionComments( | 
|  | Info.NumVGPR, | 
|  | Info.getTotalNumSGPRs(MF.getSubtarget<GCNSubtarget>()), | 
|  | Info.PrivateSegmentSize, | 
|  | getFunctionCodeSize(MF), MFI); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | OutStreamer->emitRawComment(" Kernel info:", false); | 
|  | emitCommonFunctionComments(CurrentProgramInfo.NumVGPR, | 
|  | CurrentProgramInfo.NumSGPR, | 
|  | CurrentProgramInfo.ScratchSize, | 
|  | getFunctionCodeSize(MF), MFI); | 
|  |  | 
|  | OutStreamer->emitRawComment( | 
|  | " FloatMode: " + Twine(CurrentProgramInfo.FloatMode), false); | 
|  | OutStreamer->emitRawComment( | 
|  | " IeeeMode: " + Twine(CurrentProgramInfo.IEEEMode), false); | 
|  | OutStreamer->emitRawComment( | 
|  | " LDSByteSize: " + Twine(CurrentProgramInfo.LDSSize) + | 
|  | " bytes/workgroup (compile time only)", false); | 
|  |  | 
|  | OutStreamer->emitRawComment( | 
|  | " SGPRBlocks: " + Twine(CurrentProgramInfo.SGPRBlocks), false); | 
|  | OutStreamer->emitRawComment( | 
|  | " VGPRBlocks: " + Twine(CurrentProgramInfo.VGPRBlocks), false); | 
|  |  | 
|  | OutStreamer->emitRawComment( | 
|  | " NumSGPRsForWavesPerEU: " + | 
|  | Twine(CurrentProgramInfo.NumSGPRsForWavesPerEU), false); | 
|  | OutStreamer->emitRawComment( | 
|  | " NumVGPRsForWavesPerEU: " + | 
|  | Twine(CurrentProgramInfo.NumVGPRsForWavesPerEU), false); | 
|  |  | 
|  | OutStreamer->emitRawComment( | 
|  | " WaveLimiterHint : " + Twine(MFI->needsWaveLimiter()), false); | 
|  |  | 
|  | if (MF.getSubtarget<GCNSubtarget>().debuggerEmitPrologue()) { | 
|  | OutStreamer->emitRawComment( | 
|  | " DebuggerWavefrontPrivateSegmentOffsetSGPR: s" + | 
|  | Twine(CurrentProgramInfo.DebuggerWavefrontPrivateSegmentOffsetSGPR), false); | 
|  | OutStreamer->emitRawComment( | 
|  | " DebuggerPrivateSegmentBufferSGPR: s" + | 
|  | Twine(CurrentProgramInfo.DebuggerPrivateSegmentBufferSGPR), false); | 
|  | } | 
|  |  | 
|  | OutStreamer->emitRawComment( | 
|  | " COMPUTE_PGM_RSRC2:USER_SGPR: " + | 
|  | Twine(G_00B84C_USER_SGPR(CurrentProgramInfo.ComputePGMRSrc2)), false); | 
|  | OutStreamer->emitRawComment( | 
|  | " COMPUTE_PGM_RSRC2:TRAP_HANDLER: " + | 
|  | Twine(G_00B84C_TRAP_HANDLER(CurrentProgramInfo.ComputePGMRSrc2)), false); | 
|  | OutStreamer->emitRawComment( | 
|  | " COMPUTE_PGM_RSRC2:TGID_X_EN: " + | 
|  | Twine(G_00B84C_TGID_X_EN(CurrentProgramInfo.ComputePGMRSrc2)), false); | 
|  | OutStreamer->emitRawComment( | 
|  | " COMPUTE_PGM_RSRC2:TGID_Y_EN: " + | 
|  | Twine(G_00B84C_TGID_Y_EN(CurrentProgramInfo.ComputePGMRSrc2)), false); | 
|  | OutStreamer->emitRawComment( | 
|  | " COMPUTE_PGM_RSRC2:TGID_Z_EN: " + | 
|  | Twine(G_00B84C_TGID_Z_EN(CurrentProgramInfo.ComputePGMRSrc2)), false); | 
|  | OutStreamer->emitRawComment( | 
|  | " COMPUTE_PGM_RSRC2:TIDIG_COMP_CNT: " + | 
|  | Twine(G_00B84C_TIDIG_COMP_CNT(CurrentProgramInfo.ComputePGMRSrc2)), | 
|  | false); | 
|  | } | 
|  |  | 
|  | if (STM.dumpCode()) { | 
|  |  | 
|  | OutStreamer->SwitchSection( | 
|  | Context.getELFSection(".AMDGPU.disasm", ELF::SHT_NOTE, 0)); | 
|  |  | 
|  | for (size_t i = 0; i < DisasmLines.size(); ++i) { | 
|  | std::string Comment = "\n"; | 
|  | if (!HexLines[i].empty()) { | 
|  | Comment = std::string(DisasmLineMaxLen - DisasmLines[i].size(), ' '); | 
|  | Comment += " ; " + HexLines[i] + "\n"; | 
|  | } | 
|  |  | 
|  | OutStreamer->EmitBytes(StringRef(DisasmLines[i])); | 
|  | OutStreamer->EmitBytes(StringRef(Comment)); | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | uint64_t AMDGPUAsmPrinter::getFunctionCodeSize(const MachineFunction &MF) const { | 
|  | const GCNSubtarget &STM = MF.getSubtarget<GCNSubtarget>(); | 
|  | const SIInstrInfo *TII = STM.getInstrInfo(); | 
|  |  | 
|  | uint64_t CodeSize = 0; | 
|  |  | 
|  | for (const MachineBasicBlock &MBB : MF) { | 
|  | for (const MachineInstr &MI : MBB) { | 
|  | // TODO: CodeSize should account for multiple functions. | 
|  |  | 
|  | // TODO: Should we count size of debug info? | 
|  | if (MI.isDebugInstr()) | 
|  | continue; | 
|  |  | 
|  | CodeSize += TII->getInstSizeInBytes(MI); | 
|  | } | 
|  | } | 
|  |  | 
|  | return CodeSize; | 
|  | } | 
|  |  | 
|  | static bool hasAnyNonFlatUseOfReg(const MachineRegisterInfo &MRI, | 
|  | const SIInstrInfo &TII, | 
|  | unsigned Reg) { | 
|  | for (const MachineOperand &UseOp : MRI.reg_operands(Reg)) { | 
|  | if (!UseOp.isImplicit() || !TII.isFLAT(*UseOp.getParent())) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | int32_t AMDGPUAsmPrinter::SIFunctionResourceInfo::getTotalNumSGPRs( | 
|  | const GCNSubtarget &ST) const { | 
|  | return NumExplicitSGPR + IsaInfo::getNumExtraSGPRs(&ST, | 
|  | UsesVCC, UsesFlatScratch); | 
|  | } | 
|  |  | 
|  | AMDGPUAsmPrinter::SIFunctionResourceInfo AMDGPUAsmPrinter::analyzeResourceUsage( | 
|  | const MachineFunction &MF) const { | 
|  | SIFunctionResourceInfo Info; | 
|  |  | 
|  | const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); | 
|  | const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); | 
|  | const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); | 
|  | const MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  | const SIInstrInfo *TII = ST.getInstrInfo(); | 
|  | const SIRegisterInfo &TRI = TII->getRegisterInfo(); | 
|  |  | 
|  | Info.UsesFlatScratch = MRI.isPhysRegUsed(AMDGPU::FLAT_SCR_LO) || | 
|  | MRI.isPhysRegUsed(AMDGPU::FLAT_SCR_HI); | 
|  |  | 
|  | // Even if FLAT_SCRATCH is implicitly used, it has no effect if flat | 
|  | // instructions aren't used to access the scratch buffer. Inline assembly may | 
|  | // need it though. | 
|  | // | 
|  | // If we only have implicit uses of flat_scr on flat instructions, it is not | 
|  | // really needed. | 
|  | if (Info.UsesFlatScratch && !MFI->hasFlatScratchInit() && | 
|  | (!hasAnyNonFlatUseOfReg(MRI, *TII, AMDGPU::FLAT_SCR) && | 
|  | !hasAnyNonFlatUseOfReg(MRI, *TII, AMDGPU::FLAT_SCR_LO) && | 
|  | !hasAnyNonFlatUseOfReg(MRI, *TII, AMDGPU::FLAT_SCR_HI))) { | 
|  | Info.UsesFlatScratch = false; | 
|  | } | 
|  |  | 
|  | Info.HasDynamicallySizedStack = FrameInfo.hasVarSizedObjects(); | 
|  | Info.PrivateSegmentSize = FrameInfo.getStackSize(); | 
|  | if (MFI->isStackRealigned()) | 
|  | Info.PrivateSegmentSize += FrameInfo.getMaxAlignment(); | 
|  |  | 
|  |  | 
|  | Info.UsesVCC = MRI.isPhysRegUsed(AMDGPU::VCC_LO) || | 
|  | MRI.isPhysRegUsed(AMDGPU::VCC_HI); | 
|  |  | 
|  | // If there are no calls, MachineRegisterInfo can tell us the used register | 
|  | // count easily. | 
|  | // A tail call isn't considered a call for MachineFrameInfo's purposes. | 
|  | if (!FrameInfo.hasCalls() && !FrameInfo.hasTailCall()) { | 
|  | MCPhysReg HighestVGPRReg = AMDGPU::NoRegister; | 
|  | for (MCPhysReg Reg : reverse(AMDGPU::VGPR_32RegClass.getRegisters())) { | 
|  | if (MRI.isPhysRegUsed(Reg)) { | 
|  | HighestVGPRReg = Reg; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | MCPhysReg HighestSGPRReg = AMDGPU::NoRegister; | 
|  | for (MCPhysReg Reg : reverse(AMDGPU::SGPR_32RegClass.getRegisters())) { | 
|  | if (MRI.isPhysRegUsed(Reg)) { | 
|  | HighestSGPRReg = Reg; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // We found the maximum register index. They start at 0, so add one to get the | 
|  | // number of registers. | 
|  | Info.NumVGPR = HighestVGPRReg == AMDGPU::NoRegister ? 0 : | 
|  | TRI.getHWRegIndex(HighestVGPRReg) + 1; | 
|  | Info.NumExplicitSGPR = HighestSGPRReg == AMDGPU::NoRegister ? 0 : | 
|  | TRI.getHWRegIndex(HighestSGPRReg) + 1; | 
|  |  | 
|  | return Info; | 
|  | } | 
|  |  | 
|  | int32_t MaxVGPR = -1; | 
|  | int32_t MaxSGPR = -1; | 
|  | uint64_t CalleeFrameSize = 0; | 
|  |  | 
|  | for (const MachineBasicBlock &MBB : MF) { | 
|  | for (const MachineInstr &MI : MBB) { | 
|  | // TODO: Check regmasks? Do they occur anywhere except calls? | 
|  | for (const MachineOperand &MO : MI.operands()) { | 
|  | unsigned Width = 0; | 
|  | bool IsSGPR = false; | 
|  |  | 
|  | if (!MO.isReg()) | 
|  | continue; | 
|  |  | 
|  | unsigned Reg = MO.getReg(); | 
|  | switch (Reg) { | 
|  | case AMDGPU::EXEC: | 
|  | case AMDGPU::EXEC_LO: | 
|  | case AMDGPU::EXEC_HI: | 
|  | case AMDGPU::SCC: | 
|  | case AMDGPU::M0: | 
|  | case AMDGPU::SRC_SHARED_BASE: | 
|  | case AMDGPU::SRC_SHARED_LIMIT: | 
|  | case AMDGPU::SRC_PRIVATE_BASE: | 
|  | case AMDGPU::SRC_PRIVATE_LIMIT: | 
|  | continue; | 
|  |  | 
|  | case AMDGPU::NoRegister: | 
|  | assert(MI.isDebugInstr()); | 
|  | continue; | 
|  |  | 
|  | case AMDGPU::VCC: | 
|  | case AMDGPU::VCC_LO: | 
|  | case AMDGPU::VCC_HI: | 
|  | Info.UsesVCC = true; | 
|  | continue; | 
|  |  | 
|  | case AMDGPU::FLAT_SCR: | 
|  | case AMDGPU::FLAT_SCR_LO: | 
|  | case AMDGPU::FLAT_SCR_HI: | 
|  | continue; | 
|  |  | 
|  | case AMDGPU::XNACK_MASK: | 
|  | case AMDGPU::XNACK_MASK_LO: | 
|  | case AMDGPU::XNACK_MASK_HI: | 
|  | llvm_unreachable("xnack_mask registers should not be used"); | 
|  |  | 
|  | case AMDGPU::TBA: | 
|  | case AMDGPU::TBA_LO: | 
|  | case AMDGPU::TBA_HI: | 
|  | case AMDGPU::TMA: | 
|  | case AMDGPU::TMA_LO: | 
|  | case AMDGPU::TMA_HI: | 
|  | llvm_unreachable("trap handler registers should not be used"); | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (AMDGPU::SReg_32RegClass.contains(Reg)) { | 
|  | assert(!AMDGPU::TTMP_32RegClass.contains(Reg) && | 
|  | "trap handler registers should not be used"); | 
|  | IsSGPR = true; | 
|  | Width = 1; | 
|  | } else if (AMDGPU::VGPR_32RegClass.contains(Reg)) { | 
|  | IsSGPR = false; | 
|  | Width = 1; | 
|  | } else if (AMDGPU::SReg_64RegClass.contains(Reg)) { | 
|  | assert(!AMDGPU::TTMP_64RegClass.contains(Reg) && | 
|  | "trap handler registers should not be used"); | 
|  | IsSGPR = true; | 
|  | Width = 2; | 
|  | } else if (AMDGPU::VReg_64RegClass.contains(Reg)) { | 
|  | IsSGPR = false; | 
|  | Width = 2; | 
|  | } else if (AMDGPU::VReg_96RegClass.contains(Reg)) { | 
|  | IsSGPR = false; | 
|  | Width = 3; | 
|  | } else if (AMDGPU::SReg_128RegClass.contains(Reg)) { | 
|  | assert(!AMDGPU::TTMP_128RegClass.contains(Reg) && | 
|  | "trap handler registers should not be used"); | 
|  | IsSGPR = true; | 
|  | Width = 4; | 
|  | } else if (AMDGPU::VReg_128RegClass.contains(Reg)) { | 
|  | IsSGPR = false; | 
|  | Width = 4; | 
|  | } else if (AMDGPU::SReg_256RegClass.contains(Reg)) { | 
|  | assert(!AMDGPU::TTMP_256RegClass.contains(Reg) && | 
|  | "trap handler registers should not be used"); | 
|  | IsSGPR = true; | 
|  | Width = 8; | 
|  | } else if (AMDGPU::VReg_256RegClass.contains(Reg)) { | 
|  | IsSGPR = false; | 
|  | Width = 8; | 
|  | } else if (AMDGPU::SReg_512RegClass.contains(Reg)) { | 
|  | assert(!AMDGPU::TTMP_512RegClass.contains(Reg) && | 
|  | "trap handler registers should not be used"); | 
|  | IsSGPR = true; | 
|  | Width = 16; | 
|  | } else if (AMDGPU::VReg_512RegClass.contains(Reg)) { | 
|  | IsSGPR = false; | 
|  | Width = 16; | 
|  | } else { | 
|  | llvm_unreachable("Unknown register class"); | 
|  | } | 
|  | unsigned HWReg = TRI.getHWRegIndex(Reg); | 
|  | int MaxUsed = HWReg + Width - 1; | 
|  | if (IsSGPR) { | 
|  | MaxSGPR = MaxUsed > MaxSGPR ? MaxUsed : MaxSGPR; | 
|  | } else { | 
|  | MaxVGPR = MaxUsed > MaxVGPR ? MaxUsed : MaxVGPR; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (MI.isCall()) { | 
|  | // Pseudo used just to encode the underlying global. Is there a better | 
|  | // way to track this? | 
|  |  | 
|  | const MachineOperand *CalleeOp | 
|  | = TII->getNamedOperand(MI, AMDGPU::OpName::callee); | 
|  | const Function *Callee = cast<Function>(CalleeOp->getGlobal()); | 
|  | if (Callee->isDeclaration()) { | 
|  | // If this is a call to an external function, we can't do much. Make | 
|  | // conservative guesses. | 
|  |  | 
|  | // 48 SGPRs - vcc, - flat_scr, -xnack | 
|  | int MaxSGPRGuess = | 
|  | 47 - IsaInfo::getNumExtraSGPRs(getSTI(), true, | 
|  | ST.hasFlatAddressSpace()); | 
|  | MaxSGPR = std::max(MaxSGPR, MaxSGPRGuess); | 
|  | MaxVGPR = std::max(MaxVGPR, 23); | 
|  |  | 
|  | CalleeFrameSize = std::max(CalleeFrameSize, UINT64_C(16384)); | 
|  | Info.UsesVCC = true; | 
|  | Info.UsesFlatScratch = ST.hasFlatAddressSpace(); | 
|  | Info.HasDynamicallySizedStack = true; | 
|  | } else { | 
|  | // We force CodeGen to run in SCC order, so the callee's register | 
|  | // usage etc. should be the cumulative usage of all callees. | 
|  | auto I = CallGraphResourceInfo.find(Callee); | 
|  | assert(I != CallGraphResourceInfo.end() && | 
|  | "callee should have been handled before caller"); | 
|  |  | 
|  | MaxSGPR = std::max(I->second.NumExplicitSGPR - 1, MaxSGPR); | 
|  | MaxVGPR = std::max(I->second.NumVGPR - 1, MaxVGPR); | 
|  | CalleeFrameSize | 
|  | = std::max(I->second.PrivateSegmentSize, CalleeFrameSize); | 
|  | Info.UsesVCC |= I->second.UsesVCC; | 
|  | Info.UsesFlatScratch |= I->second.UsesFlatScratch; | 
|  | Info.HasDynamicallySizedStack |= I->second.HasDynamicallySizedStack; | 
|  | Info.HasRecursion |= I->second.HasRecursion; | 
|  | } | 
|  |  | 
|  | if (!Callee->doesNotRecurse()) | 
|  | Info.HasRecursion = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | Info.NumExplicitSGPR = MaxSGPR + 1; | 
|  | Info.NumVGPR = MaxVGPR + 1; | 
|  | Info.PrivateSegmentSize += CalleeFrameSize; | 
|  |  | 
|  | return Info; | 
|  | } | 
|  |  | 
|  | void AMDGPUAsmPrinter::getSIProgramInfo(SIProgramInfo &ProgInfo, | 
|  | const MachineFunction &MF) { | 
|  | SIFunctionResourceInfo Info = analyzeResourceUsage(MF); | 
|  |  | 
|  | ProgInfo.NumVGPR = Info.NumVGPR; | 
|  | ProgInfo.NumSGPR = Info.NumExplicitSGPR; | 
|  | ProgInfo.ScratchSize = Info.PrivateSegmentSize; | 
|  | ProgInfo.VCCUsed = Info.UsesVCC; | 
|  | ProgInfo.FlatUsed = Info.UsesFlatScratch; | 
|  | ProgInfo.DynamicCallStack = Info.HasDynamicallySizedStack || Info.HasRecursion; | 
|  |  | 
|  | if (!isUInt<32>(ProgInfo.ScratchSize)) { | 
|  | DiagnosticInfoStackSize DiagStackSize(MF.getFunction(), | 
|  | ProgInfo.ScratchSize, DS_Error); | 
|  | MF.getFunction().getContext().diagnose(DiagStackSize); | 
|  | } | 
|  |  | 
|  | const GCNSubtarget &STM = MF.getSubtarget<GCNSubtarget>(); | 
|  | const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); | 
|  | const SIInstrInfo *TII = STM.getInstrInfo(); | 
|  | const SIRegisterInfo *RI = &TII->getRegisterInfo(); | 
|  |  | 
|  | // TODO(scott.linder): The calculations related to SGPR/VGPR blocks are | 
|  | // duplicated in part in AMDGPUAsmParser::calculateGPRBlocks, and could be | 
|  | // unified. | 
|  | unsigned ExtraSGPRs = IsaInfo::getNumExtraSGPRs( | 
|  | getSTI(), ProgInfo.VCCUsed, ProgInfo.FlatUsed); | 
|  |  | 
|  | // Check the addressable register limit before we add ExtraSGPRs. | 
|  | if (STM.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS && | 
|  | !STM.hasSGPRInitBug()) { | 
|  | unsigned MaxAddressableNumSGPRs = STM.getAddressableNumSGPRs(); | 
|  | if (ProgInfo.NumSGPR > MaxAddressableNumSGPRs) { | 
|  | // This can happen due to a compiler bug or when using inline asm. | 
|  | LLVMContext &Ctx = MF.getFunction().getContext(); | 
|  | DiagnosticInfoResourceLimit Diag(MF.getFunction(), | 
|  | "addressable scalar registers", | 
|  | ProgInfo.NumSGPR, DS_Error, | 
|  | DK_ResourceLimit, | 
|  | MaxAddressableNumSGPRs); | 
|  | Ctx.diagnose(Diag); | 
|  | ProgInfo.NumSGPR = MaxAddressableNumSGPRs - 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Account for extra SGPRs and VGPRs reserved for debugger use. | 
|  | ProgInfo.NumSGPR += ExtraSGPRs; | 
|  |  | 
|  | // Ensure there are enough SGPRs and VGPRs for wave dispatch, where wave | 
|  | // dispatch registers are function args. | 
|  | unsigned WaveDispatchNumSGPR = 0, WaveDispatchNumVGPR = 0; | 
|  | for (auto &Arg : MF.getFunction().args()) { | 
|  | unsigned NumRegs = (Arg.getType()->getPrimitiveSizeInBits() + 31) / 32; | 
|  | if (Arg.hasAttribute(Attribute::InReg)) | 
|  | WaveDispatchNumSGPR += NumRegs; | 
|  | else | 
|  | WaveDispatchNumVGPR += NumRegs; | 
|  | } | 
|  | ProgInfo.NumSGPR = std::max(ProgInfo.NumSGPR, WaveDispatchNumSGPR); | 
|  | ProgInfo.NumVGPR = std::max(ProgInfo.NumVGPR, WaveDispatchNumVGPR); | 
|  |  | 
|  | // Adjust number of registers used to meet default/requested minimum/maximum | 
|  | // number of waves per execution unit request. | 
|  | ProgInfo.NumSGPRsForWavesPerEU = std::max( | 
|  | std::max(ProgInfo.NumSGPR, 1u), STM.getMinNumSGPRs(MFI->getMaxWavesPerEU())); | 
|  | ProgInfo.NumVGPRsForWavesPerEU = std::max( | 
|  | std::max(ProgInfo.NumVGPR, 1u), STM.getMinNumVGPRs(MFI->getMaxWavesPerEU())); | 
|  |  | 
|  | if (STM.getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS || | 
|  | STM.hasSGPRInitBug()) { | 
|  | unsigned MaxAddressableNumSGPRs = STM.getAddressableNumSGPRs(); | 
|  | if (ProgInfo.NumSGPR > MaxAddressableNumSGPRs) { | 
|  | // This can happen due to a compiler bug or when using inline asm to use | 
|  | // the registers which are usually reserved for vcc etc. | 
|  | LLVMContext &Ctx = MF.getFunction().getContext(); | 
|  | DiagnosticInfoResourceLimit Diag(MF.getFunction(), | 
|  | "scalar registers", | 
|  | ProgInfo.NumSGPR, DS_Error, | 
|  | DK_ResourceLimit, | 
|  | MaxAddressableNumSGPRs); | 
|  | Ctx.diagnose(Diag); | 
|  | ProgInfo.NumSGPR = MaxAddressableNumSGPRs; | 
|  | ProgInfo.NumSGPRsForWavesPerEU = MaxAddressableNumSGPRs; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (STM.hasSGPRInitBug()) { | 
|  | ProgInfo.NumSGPR = | 
|  | AMDGPU::IsaInfo::FIXED_NUM_SGPRS_FOR_INIT_BUG; | 
|  | ProgInfo.NumSGPRsForWavesPerEU = | 
|  | AMDGPU::IsaInfo::FIXED_NUM_SGPRS_FOR_INIT_BUG; | 
|  | } | 
|  |  | 
|  | if (MFI->getNumUserSGPRs() > STM.getMaxNumUserSGPRs()) { | 
|  | LLVMContext &Ctx = MF.getFunction().getContext(); | 
|  | DiagnosticInfoResourceLimit Diag(MF.getFunction(), "user SGPRs", | 
|  | MFI->getNumUserSGPRs(), DS_Error); | 
|  | Ctx.diagnose(Diag); | 
|  | } | 
|  |  | 
|  | if (MFI->getLDSSize() > static_cast<unsigned>(STM.getLocalMemorySize())) { | 
|  | LLVMContext &Ctx = MF.getFunction().getContext(); | 
|  | DiagnosticInfoResourceLimit Diag(MF.getFunction(), "local memory", | 
|  | MFI->getLDSSize(), DS_Error); | 
|  | Ctx.diagnose(Diag); | 
|  | } | 
|  |  | 
|  | ProgInfo.SGPRBlocks = IsaInfo::getNumSGPRBlocks( | 
|  | getSTI(), ProgInfo.NumSGPRsForWavesPerEU); | 
|  | ProgInfo.VGPRBlocks = IsaInfo::getNumVGPRBlocks( | 
|  | getSTI(), ProgInfo.NumVGPRsForWavesPerEU); | 
|  |  | 
|  | // Update DebuggerWavefrontPrivateSegmentOffsetSGPR and | 
|  | // DebuggerPrivateSegmentBufferSGPR fields if "amdgpu-debugger-emit-prologue" | 
|  | // attribute was requested. | 
|  | if (STM.debuggerEmitPrologue()) { | 
|  | ProgInfo.DebuggerWavefrontPrivateSegmentOffsetSGPR = | 
|  | RI->getHWRegIndex(MFI->getScratchWaveOffsetReg()); | 
|  | ProgInfo.DebuggerPrivateSegmentBufferSGPR = | 
|  | RI->getHWRegIndex(MFI->getScratchRSrcReg()); | 
|  | } | 
|  |  | 
|  | // Set the value to initialize FP_ROUND and FP_DENORM parts of the mode | 
|  | // register. | 
|  | ProgInfo.FloatMode = getFPMode(MF); | 
|  |  | 
|  | ProgInfo.IEEEMode = STM.enableIEEEBit(MF); | 
|  |  | 
|  | // Make clamp modifier on NaN input returns 0. | 
|  | ProgInfo.DX10Clamp = STM.enableDX10Clamp(); | 
|  |  | 
|  | unsigned LDSAlignShift; | 
|  | if (STM.getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) { | 
|  | // LDS is allocated in 64 dword blocks. | 
|  | LDSAlignShift = 8; | 
|  | } else { | 
|  | // LDS is allocated in 128 dword blocks. | 
|  | LDSAlignShift = 9; | 
|  | } | 
|  |  | 
|  | unsigned LDSSpillSize = | 
|  | MFI->getLDSWaveSpillSize() * MFI->getMaxFlatWorkGroupSize(); | 
|  |  | 
|  | ProgInfo.LDSSize = MFI->getLDSSize() + LDSSpillSize; | 
|  | ProgInfo.LDSBlocks = | 
|  | alignTo(ProgInfo.LDSSize, 1ULL << LDSAlignShift) >> LDSAlignShift; | 
|  |  | 
|  | // Scratch is allocated in 256 dword blocks. | 
|  | unsigned ScratchAlignShift = 10; | 
|  | // We need to program the hardware with the amount of scratch memory that | 
|  | // is used by the entire wave.  ProgInfo.ScratchSize is the amount of | 
|  | // scratch memory used per thread. | 
|  | ProgInfo.ScratchBlocks = | 
|  | alignTo(ProgInfo.ScratchSize * STM.getWavefrontSize(), | 
|  | 1ULL << ScratchAlignShift) >> | 
|  | ScratchAlignShift; | 
|  |  | 
|  | ProgInfo.ComputePGMRSrc1 = | 
|  | S_00B848_VGPRS(ProgInfo.VGPRBlocks) | | 
|  | S_00B848_SGPRS(ProgInfo.SGPRBlocks) | | 
|  | S_00B848_PRIORITY(ProgInfo.Priority) | | 
|  | S_00B848_FLOAT_MODE(ProgInfo.FloatMode) | | 
|  | S_00B848_PRIV(ProgInfo.Priv) | | 
|  | S_00B848_DX10_CLAMP(ProgInfo.DX10Clamp) | | 
|  | S_00B848_DEBUG_MODE(ProgInfo.DebugMode) | | 
|  | S_00B848_IEEE_MODE(ProgInfo.IEEEMode); | 
|  |  | 
|  | // 0 = X, 1 = XY, 2 = XYZ | 
|  | unsigned TIDIGCompCnt = 0; | 
|  | if (MFI->hasWorkItemIDZ()) | 
|  | TIDIGCompCnt = 2; | 
|  | else if (MFI->hasWorkItemIDY()) | 
|  | TIDIGCompCnt = 1; | 
|  |  | 
|  | ProgInfo.ComputePGMRSrc2 = | 
|  | S_00B84C_SCRATCH_EN(ProgInfo.ScratchBlocks > 0) | | 
|  | S_00B84C_USER_SGPR(MFI->getNumUserSGPRs()) | | 
|  | // For AMDHSA, TRAP_HANDLER must be zero, as it is populated by the CP. | 
|  | S_00B84C_TRAP_HANDLER(STM.isAmdHsaOS() ? 0 : STM.isTrapHandlerEnabled()) | | 
|  | S_00B84C_TGID_X_EN(MFI->hasWorkGroupIDX()) | | 
|  | S_00B84C_TGID_Y_EN(MFI->hasWorkGroupIDY()) | | 
|  | S_00B84C_TGID_Z_EN(MFI->hasWorkGroupIDZ()) | | 
|  | S_00B84C_TG_SIZE_EN(MFI->hasWorkGroupInfo()) | | 
|  | S_00B84C_TIDIG_COMP_CNT(TIDIGCompCnt) | | 
|  | S_00B84C_EXCP_EN_MSB(0) | | 
|  | // For AMDHSA, LDS_SIZE must be zero, as it is populated by the CP. | 
|  | S_00B84C_LDS_SIZE(STM.isAmdHsaOS() ? 0 : ProgInfo.LDSBlocks) | | 
|  | S_00B84C_EXCP_EN(0); | 
|  | } | 
|  |  | 
|  | static unsigned getRsrcReg(CallingConv::ID CallConv) { | 
|  | switch (CallConv) { | 
|  | default: LLVM_FALLTHROUGH; | 
|  | case CallingConv::AMDGPU_CS: return R_00B848_COMPUTE_PGM_RSRC1; | 
|  | case CallingConv::AMDGPU_LS: return R_00B528_SPI_SHADER_PGM_RSRC1_LS; | 
|  | case CallingConv::AMDGPU_HS: return R_00B428_SPI_SHADER_PGM_RSRC1_HS; | 
|  | case CallingConv::AMDGPU_ES: return R_00B328_SPI_SHADER_PGM_RSRC1_ES; | 
|  | case CallingConv::AMDGPU_GS: return R_00B228_SPI_SHADER_PGM_RSRC1_GS; | 
|  | case CallingConv::AMDGPU_VS: return R_00B128_SPI_SHADER_PGM_RSRC1_VS; | 
|  | case CallingConv::AMDGPU_PS: return R_00B028_SPI_SHADER_PGM_RSRC1_PS; | 
|  | } | 
|  | } | 
|  |  | 
|  | void AMDGPUAsmPrinter::EmitProgramInfoSI(const MachineFunction &MF, | 
|  | const SIProgramInfo &CurrentProgramInfo) { | 
|  | const GCNSubtarget &STM = MF.getSubtarget<GCNSubtarget>(); | 
|  | const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); | 
|  | unsigned RsrcReg = getRsrcReg(MF.getFunction().getCallingConv()); | 
|  |  | 
|  | if (AMDGPU::isCompute(MF.getFunction().getCallingConv())) { | 
|  | OutStreamer->EmitIntValue(R_00B848_COMPUTE_PGM_RSRC1, 4); | 
|  |  | 
|  | OutStreamer->EmitIntValue(CurrentProgramInfo.ComputePGMRSrc1, 4); | 
|  |  | 
|  | OutStreamer->EmitIntValue(R_00B84C_COMPUTE_PGM_RSRC2, 4); | 
|  | OutStreamer->EmitIntValue(CurrentProgramInfo.ComputePGMRSrc2, 4); | 
|  |  | 
|  | OutStreamer->EmitIntValue(R_00B860_COMPUTE_TMPRING_SIZE, 4); | 
|  | OutStreamer->EmitIntValue(S_00B860_WAVESIZE(CurrentProgramInfo.ScratchBlocks), 4); | 
|  |  | 
|  | // TODO: Should probably note flat usage somewhere. SC emits a "FlatPtr32 = | 
|  | // 0" comment but I don't see a corresponding field in the register spec. | 
|  | } else { | 
|  | OutStreamer->EmitIntValue(RsrcReg, 4); | 
|  | OutStreamer->EmitIntValue(S_00B028_VGPRS(CurrentProgramInfo.VGPRBlocks) | | 
|  | S_00B028_SGPRS(CurrentProgramInfo.SGPRBlocks), 4); | 
|  | if (STM.isVGPRSpillingEnabled(MF.getFunction())) { | 
|  | OutStreamer->EmitIntValue(R_0286E8_SPI_TMPRING_SIZE, 4); | 
|  | OutStreamer->EmitIntValue(S_0286E8_WAVESIZE(CurrentProgramInfo.ScratchBlocks), 4); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (MF.getFunction().getCallingConv() == CallingConv::AMDGPU_PS) { | 
|  | OutStreamer->EmitIntValue(R_00B02C_SPI_SHADER_PGM_RSRC2_PS, 4); | 
|  | OutStreamer->EmitIntValue(S_00B02C_EXTRA_LDS_SIZE(CurrentProgramInfo.LDSBlocks), 4); | 
|  | OutStreamer->EmitIntValue(R_0286CC_SPI_PS_INPUT_ENA, 4); | 
|  | OutStreamer->EmitIntValue(MFI->getPSInputEnable(), 4); | 
|  | OutStreamer->EmitIntValue(R_0286D0_SPI_PS_INPUT_ADDR, 4); | 
|  | OutStreamer->EmitIntValue(MFI->getPSInputAddr(), 4); | 
|  | } | 
|  |  | 
|  | OutStreamer->EmitIntValue(R_SPILLED_SGPRS, 4); | 
|  | OutStreamer->EmitIntValue(MFI->getNumSpilledSGPRs(), 4); | 
|  | OutStreamer->EmitIntValue(R_SPILLED_VGPRS, 4); | 
|  | OutStreamer->EmitIntValue(MFI->getNumSpilledVGPRs(), 4); | 
|  | } | 
|  |  | 
|  | // This is the equivalent of EmitProgramInfoSI above, but for when the OS type | 
|  | // is AMDPAL.  It stores each compute/SPI register setting and other PAL | 
|  | // metadata items into the PALMetadataMap, combining with any provided by the | 
|  | // frontend as LLVM metadata. Once all functions are written, PALMetadataMap is | 
|  | // then written as a single block in the .note section. | 
|  | void AMDGPUAsmPrinter::EmitPALMetadata(const MachineFunction &MF, | 
|  | const SIProgramInfo &CurrentProgramInfo) { | 
|  | const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); | 
|  | // Given the calling convention, calculate the register number for rsrc1. In | 
|  | // principle the register number could change in future hardware, but we know | 
|  | // it is the same for gfx6-9 (except that LS and ES don't exist on gfx9), so | 
|  | // we can use the same fixed value that .AMDGPU.config has for Mesa. Note | 
|  | // that we use a register number rather than a byte offset, so we need to | 
|  | // divide by 4. | 
|  | unsigned Rsrc1Reg = getRsrcReg(MF.getFunction().getCallingConv()) / 4; | 
|  | unsigned Rsrc2Reg = Rsrc1Reg + 1; | 
|  | // Also calculate the PAL metadata key for *S_SCRATCH_SIZE. It can be used | 
|  | // with a constant offset to access any non-register shader-specific PAL | 
|  | // metadata key. | 
|  | unsigned ScratchSizeKey = PALMD::Key::CS_SCRATCH_SIZE; | 
|  | switch (MF.getFunction().getCallingConv()) { | 
|  | case CallingConv::AMDGPU_PS: | 
|  | ScratchSizeKey = PALMD::Key::PS_SCRATCH_SIZE; | 
|  | break; | 
|  | case CallingConv::AMDGPU_VS: | 
|  | ScratchSizeKey = PALMD::Key::VS_SCRATCH_SIZE; | 
|  | break; | 
|  | case CallingConv::AMDGPU_GS: | 
|  | ScratchSizeKey = PALMD::Key::GS_SCRATCH_SIZE; | 
|  | break; | 
|  | case CallingConv::AMDGPU_ES: | 
|  | ScratchSizeKey = PALMD::Key::ES_SCRATCH_SIZE; | 
|  | break; | 
|  | case CallingConv::AMDGPU_HS: | 
|  | ScratchSizeKey = PALMD::Key::HS_SCRATCH_SIZE; | 
|  | break; | 
|  | case CallingConv::AMDGPU_LS: | 
|  | ScratchSizeKey = PALMD::Key::LS_SCRATCH_SIZE; | 
|  | break; | 
|  | } | 
|  | unsigned NumUsedVgprsKey = ScratchSizeKey + | 
|  | PALMD::Key::VS_NUM_USED_VGPRS - PALMD::Key::VS_SCRATCH_SIZE; | 
|  | unsigned NumUsedSgprsKey = ScratchSizeKey + | 
|  | PALMD::Key::VS_NUM_USED_SGPRS - PALMD::Key::VS_SCRATCH_SIZE; | 
|  | PALMetadataMap[NumUsedVgprsKey] = CurrentProgramInfo.NumVGPRsForWavesPerEU; | 
|  | PALMetadataMap[NumUsedSgprsKey] = CurrentProgramInfo.NumSGPRsForWavesPerEU; | 
|  | if (AMDGPU::isCompute(MF.getFunction().getCallingConv())) { | 
|  | PALMetadataMap[Rsrc1Reg] |= CurrentProgramInfo.ComputePGMRSrc1; | 
|  | PALMetadataMap[Rsrc2Reg] |= CurrentProgramInfo.ComputePGMRSrc2; | 
|  | // ScratchSize is in bytes, 16 aligned. | 
|  | PALMetadataMap[ScratchSizeKey] |= | 
|  | alignTo(CurrentProgramInfo.ScratchSize, 16); | 
|  | } else { | 
|  | PALMetadataMap[Rsrc1Reg] |= S_00B028_VGPRS(CurrentProgramInfo.VGPRBlocks) | | 
|  | S_00B028_SGPRS(CurrentProgramInfo.SGPRBlocks); | 
|  | if (CurrentProgramInfo.ScratchBlocks > 0) | 
|  | PALMetadataMap[Rsrc2Reg] |= S_00B84C_SCRATCH_EN(1); | 
|  | // ScratchSize is in bytes, 16 aligned. | 
|  | PALMetadataMap[ScratchSizeKey] |= | 
|  | alignTo(CurrentProgramInfo.ScratchSize, 16); | 
|  | } | 
|  | if (MF.getFunction().getCallingConv() == CallingConv::AMDGPU_PS) { | 
|  | PALMetadataMap[Rsrc2Reg] |= | 
|  | S_00B02C_EXTRA_LDS_SIZE(CurrentProgramInfo.LDSBlocks); | 
|  | PALMetadataMap[R_0286CC_SPI_PS_INPUT_ENA / 4] |= MFI->getPSInputEnable(); | 
|  | PALMetadataMap[R_0286D0_SPI_PS_INPUT_ADDR / 4] |= MFI->getPSInputAddr(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // This is supposed to be log2(Size) | 
|  | static amd_element_byte_size_t getElementByteSizeValue(unsigned Size) { | 
|  | switch (Size) { | 
|  | case 4: | 
|  | return AMD_ELEMENT_4_BYTES; | 
|  | case 8: | 
|  | return AMD_ELEMENT_8_BYTES; | 
|  | case 16: | 
|  | return AMD_ELEMENT_16_BYTES; | 
|  | default: | 
|  | llvm_unreachable("invalid private_element_size"); | 
|  | } | 
|  | } | 
|  |  | 
|  | void AMDGPUAsmPrinter::getAmdKernelCode(amd_kernel_code_t &Out, | 
|  | const SIProgramInfo &CurrentProgramInfo, | 
|  | const MachineFunction &MF) const { | 
|  | const Function &F = MF.getFunction(); | 
|  | assert(F.getCallingConv() == CallingConv::AMDGPU_KERNEL || | 
|  | F.getCallingConv() == CallingConv::SPIR_KERNEL); | 
|  |  | 
|  | const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); | 
|  | const GCNSubtarget &STM = MF.getSubtarget<GCNSubtarget>(); | 
|  |  | 
|  | AMDGPU::initDefaultAMDKernelCodeT(Out, getSTI()); | 
|  |  | 
|  | Out.compute_pgm_resource_registers = | 
|  | CurrentProgramInfo.ComputePGMRSrc1 | | 
|  | (CurrentProgramInfo.ComputePGMRSrc2 << 32); | 
|  | Out.code_properties = AMD_CODE_PROPERTY_IS_PTR64; | 
|  |  | 
|  | if (CurrentProgramInfo.DynamicCallStack) | 
|  | Out.code_properties |= AMD_CODE_PROPERTY_IS_DYNAMIC_CALLSTACK; | 
|  |  | 
|  | AMD_HSA_BITS_SET(Out.code_properties, | 
|  | AMD_CODE_PROPERTY_PRIVATE_ELEMENT_SIZE, | 
|  | getElementByteSizeValue(STM.getMaxPrivateElementSize())); | 
|  |  | 
|  | if (MFI->hasPrivateSegmentBuffer()) { | 
|  | Out.code_properties |= | 
|  | AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER; | 
|  | } | 
|  |  | 
|  | if (MFI->hasDispatchPtr()) | 
|  | Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR; | 
|  |  | 
|  | if (MFI->hasQueuePtr()) | 
|  | Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR; | 
|  |  | 
|  | if (MFI->hasKernargSegmentPtr()) | 
|  | Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR; | 
|  |  | 
|  | if (MFI->hasDispatchID()) | 
|  | Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID; | 
|  |  | 
|  | if (MFI->hasFlatScratchInit()) | 
|  | Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT; | 
|  |  | 
|  | if (MFI->hasDispatchPtr()) | 
|  | Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR; | 
|  |  | 
|  | if (STM.debuggerSupported()) | 
|  | Out.code_properties |= AMD_CODE_PROPERTY_IS_DEBUG_SUPPORTED; | 
|  |  | 
|  | if (STM.isXNACKEnabled()) | 
|  | Out.code_properties |= AMD_CODE_PROPERTY_IS_XNACK_SUPPORTED; | 
|  |  | 
|  | unsigned MaxKernArgAlign; | 
|  | Out.kernarg_segment_byte_size = STM.getKernArgSegmentSize(F, MaxKernArgAlign); | 
|  | Out.wavefront_sgpr_count = CurrentProgramInfo.NumSGPR; | 
|  | Out.workitem_vgpr_count = CurrentProgramInfo.NumVGPR; | 
|  | Out.workitem_private_segment_byte_size = CurrentProgramInfo.ScratchSize; | 
|  | Out.workgroup_group_segment_byte_size = CurrentProgramInfo.LDSSize; | 
|  |  | 
|  | // These alignment values are specified in powers of two, so alignment = | 
|  | // 2^n.  The minimum alignment is 2^4 = 16. | 
|  | Out.kernarg_segment_alignment = std::max((size_t)4, | 
|  | countTrailingZeros(MaxKernArgAlign)); | 
|  |  | 
|  | if (STM.debuggerEmitPrologue()) { | 
|  | Out.debug_wavefront_private_segment_offset_sgpr = | 
|  | CurrentProgramInfo.DebuggerWavefrontPrivateSegmentOffsetSGPR; | 
|  | Out.debug_private_segment_buffer_sgpr = | 
|  | CurrentProgramInfo.DebuggerPrivateSegmentBufferSGPR; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool AMDGPUAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, | 
|  | unsigned AsmVariant, | 
|  | const char *ExtraCode, raw_ostream &O) { | 
|  | // First try the generic code, which knows about modifiers like 'c' and 'n'. | 
|  | if (!AsmPrinter::PrintAsmOperand(MI, OpNo, AsmVariant, ExtraCode, O)) | 
|  | return false; | 
|  |  | 
|  | if (ExtraCode && ExtraCode[0]) { | 
|  | if (ExtraCode[1] != 0) | 
|  | return true; // Unknown modifier. | 
|  |  | 
|  | switch (ExtraCode[0]) { | 
|  | case 'r': | 
|  | break; | 
|  | default: | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // TODO: Should be able to support other operand types like globals. | 
|  | const MachineOperand &MO = MI->getOperand(OpNo); | 
|  | if (MO.isReg()) { | 
|  | AMDGPUInstPrinter::printRegOperand(MO.getReg(), O, | 
|  | *MF->getSubtarget().getRegisterInfo()); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } |