|  | //===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file contains the X86 implementation of the TargetInstrInfo class. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "X86InstrInfo.h" | 
|  | #include "X86.h" | 
|  | #include "X86InstrBuilder.h" | 
|  | #include "X86InstrFoldTables.h" | 
|  | #include "X86MachineFunctionInfo.h" | 
|  | #include "X86Subtarget.h" | 
|  | #include "X86TargetMachine.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/Sequence.h" | 
|  | #include "llvm/CodeGen/LivePhysRegs.h" | 
|  | #include "llvm/CodeGen/LiveVariables.h" | 
|  | #include "llvm/CodeGen/MachineConstantPool.h" | 
|  | #include "llvm/CodeGen/MachineDominators.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineModuleInfo.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/StackMaps.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/MC/MCAsmInfo.h" | 
|  | #include "llvm/MC/MCExpr.h" | 
|  | #include "llvm/MC/MCInst.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Target/TargetOptions.h" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "x86-instr-info" | 
|  |  | 
|  | #define GET_INSTRINFO_CTOR_DTOR | 
|  | #include "X86GenInstrInfo.inc" | 
|  |  | 
|  | static cl::opt<bool> | 
|  | NoFusing("disable-spill-fusing", | 
|  | cl::desc("Disable fusing of spill code into instructions"), | 
|  | cl::Hidden); | 
|  | static cl::opt<bool> | 
|  | PrintFailedFusing("print-failed-fuse-candidates", | 
|  | cl::desc("Print instructions that the allocator wants to" | 
|  | " fuse, but the X86 backend currently can't"), | 
|  | cl::Hidden); | 
|  | static cl::opt<bool> | 
|  | ReMatPICStubLoad("remat-pic-stub-load", | 
|  | cl::desc("Re-materialize load from stub in PIC mode"), | 
|  | cl::init(false), cl::Hidden); | 
|  | static cl::opt<unsigned> | 
|  | PartialRegUpdateClearance("partial-reg-update-clearance", | 
|  | cl::desc("Clearance between two register writes " | 
|  | "for inserting XOR to avoid partial " | 
|  | "register update"), | 
|  | cl::init(64), cl::Hidden); | 
|  | static cl::opt<unsigned> | 
|  | UndefRegClearance("undef-reg-clearance", | 
|  | cl::desc("How many idle instructions we would like before " | 
|  | "certain undef register reads"), | 
|  | cl::init(128), cl::Hidden); | 
|  |  | 
|  |  | 
|  | // Pin the vtable to this file. | 
|  | void X86InstrInfo::anchor() {} | 
|  |  | 
|  | X86InstrInfo::X86InstrInfo(X86Subtarget &STI) | 
|  | : X86GenInstrInfo((STI.isTarget64BitLP64() ? X86::ADJCALLSTACKDOWN64 | 
|  | : X86::ADJCALLSTACKDOWN32), | 
|  | (STI.isTarget64BitLP64() ? X86::ADJCALLSTACKUP64 | 
|  | : X86::ADJCALLSTACKUP32), | 
|  | X86::CATCHRET, | 
|  | (STI.is64Bit() ? X86::RETQ : X86::RETL)), | 
|  | Subtarget(STI), RI(STI.getTargetTriple()) { | 
|  | } | 
|  |  | 
|  | bool | 
|  | X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI, | 
|  | unsigned &SrcReg, unsigned &DstReg, | 
|  | unsigned &SubIdx) const { | 
|  | switch (MI.getOpcode()) { | 
|  | default: break; | 
|  | case X86::MOVSX16rr8: | 
|  | case X86::MOVZX16rr8: | 
|  | case X86::MOVSX32rr8: | 
|  | case X86::MOVZX32rr8: | 
|  | case X86::MOVSX64rr8: | 
|  | if (!Subtarget.is64Bit()) | 
|  | // It's not always legal to reference the low 8-bit of the larger | 
|  | // register in 32-bit mode. | 
|  | return false; | 
|  | LLVM_FALLTHROUGH; | 
|  | case X86::MOVSX32rr16: | 
|  | case X86::MOVZX32rr16: | 
|  | case X86::MOVSX64rr16: | 
|  | case X86::MOVSX64rr32: { | 
|  | if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg()) | 
|  | // Be conservative. | 
|  | return false; | 
|  | SrcReg = MI.getOperand(1).getReg(); | 
|  | DstReg = MI.getOperand(0).getReg(); | 
|  | switch (MI.getOpcode()) { | 
|  | default: llvm_unreachable("Unreachable!"); | 
|  | case X86::MOVSX16rr8: | 
|  | case X86::MOVZX16rr8: | 
|  | case X86::MOVSX32rr8: | 
|  | case X86::MOVZX32rr8: | 
|  | case X86::MOVSX64rr8: | 
|  | SubIdx = X86::sub_8bit; | 
|  | break; | 
|  | case X86::MOVSX32rr16: | 
|  | case X86::MOVZX32rr16: | 
|  | case X86::MOVSX64rr16: | 
|  | SubIdx = X86::sub_16bit; | 
|  | break; | 
|  | case X86::MOVSX64rr32: | 
|  | SubIdx = X86::sub_32bit; | 
|  | break; | 
|  | } | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | int X86InstrInfo::getSPAdjust(const MachineInstr &MI) const { | 
|  | const MachineFunction *MF = MI.getParent()->getParent(); | 
|  | const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); | 
|  |  | 
|  | if (isFrameInstr(MI)) { | 
|  | unsigned StackAlign = TFI->getStackAlignment(); | 
|  | int SPAdj = alignTo(getFrameSize(MI), StackAlign); | 
|  | SPAdj -= getFrameAdjustment(MI); | 
|  | if (!isFrameSetup(MI)) | 
|  | SPAdj = -SPAdj; | 
|  | return SPAdj; | 
|  | } | 
|  |  | 
|  | // To know whether a call adjusts the stack, we need information | 
|  | // that is bound to the following ADJCALLSTACKUP pseudo. | 
|  | // Look for the next ADJCALLSTACKUP that follows the call. | 
|  | if (MI.isCall()) { | 
|  | const MachineBasicBlock *MBB = MI.getParent(); | 
|  | auto I = ++MachineBasicBlock::const_iterator(MI); | 
|  | for (auto E = MBB->end(); I != E; ++I) { | 
|  | if (I->getOpcode() == getCallFrameDestroyOpcode() || | 
|  | I->isCall()) | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If we could not find a frame destroy opcode, then it has already | 
|  | // been simplified, so we don't care. | 
|  | if (I->getOpcode() != getCallFrameDestroyOpcode()) | 
|  | return 0; | 
|  |  | 
|  | return -(I->getOperand(1).getImm()); | 
|  | } | 
|  |  | 
|  | // Currently handle only PUSHes we can reasonably expect to see | 
|  | // in call sequences | 
|  | switch (MI.getOpcode()) { | 
|  | default: | 
|  | return 0; | 
|  | case X86::PUSH32i8: | 
|  | case X86::PUSH32r: | 
|  | case X86::PUSH32rmm: | 
|  | case X86::PUSH32rmr: | 
|  | case X86::PUSHi32: | 
|  | return 4; | 
|  | case X86::PUSH64i8: | 
|  | case X86::PUSH64r: | 
|  | case X86::PUSH64rmm: | 
|  | case X86::PUSH64rmr: | 
|  | case X86::PUSH64i32: | 
|  | return 8; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Return true and the FrameIndex if the specified | 
|  | /// operand and follow operands form a reference to the stack frame. | 
|  | bool X86InstrInfo::isFrameOperand(const MachineInstr &MI, unsigned int Op, | 
|  | int &FrameIndex) const { | 
|  | if (MI.getOperand(Op + X86::AddrBaseReg).isFI() && | 
|  | MI.getOperand(Op + X86::AddrScaleAmt).isImm() && | 
|  | MI.getOperand(Op + X86::AddrIndexReg).isReg() && | 
|  | MI.getOperand(Op + X86::AddrDisp).isImm() && | 
|  | MI.getOperand(Op + X86::AddrScaleAmt).getImm() == 1 && | 
|  | MI.getOperand(Op + X86::AddrIndexReg).getReg() == 0 && | 
|  | MI.getOperand(Op + X86::AddrDisp).getImm() == 0) { | 
|  | FrameIndex = MI.getOperand(Op + X86::AddrBaseReg).getIndex(); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool isFrameLoadOpcode(int Opcode, unsigned &MemBytes) { | 
|  | switch (Opcode) { | 
|  | default: | 
|  | return false; | 
|  | case X86::MOV8rm: | 
|  | case X86::KMOVBkm: | 
|  | MemBytes = 1; | 
|  | return true; | 
|  | case X86::MOV16rm: | 
|  | case X86::KMOVWkm: | 
|  | MemBytes = 2; | 
|  | return true; | 
|  | case X86::MOV32rm: | 
|  | case X86::MOVSSrm: | 
|  | case X86::VMOVSSZrm: | 
|  | case X86::VMOVSSrm: | 
|  | case X86::KMOVDkm: | 
|  | MemBytes = 4; | 
|  | return true; | 
|  | case X86::MOV64rm: | 
|  | case X86::LD_Fp64m: | 
|  | case X86::MOVSDrm: | 
|  | case X86::VMOVSDrm: | 
|  | case X86::VMOVSDZrm: | 
|  | case X86::MMX_MOVD64rm: | 
|  | case X86::MMX_MOVQ64rm: | 
|  | case X86::KMOVQkm: | 
|  | MemBytes = 8; | 
|  | return true; | 
|  | case X86::MOVAPSrm: | 
|  | case X86::MOVUPSrm: | 
|  | case X86::MOVAPDrm: | 
|  | case X86::MOVUPDrm: | 
|  | case X86::MOVDQArm: | 
|  | case X86::MOVDQUrm: | 
|  | case X86::VMOVAPSrm: | 
|  | case X86::VMOVUPSrm: | 
|  | case X86::VMOVAPDrm: | 
|  | case X86::VMOVUPDrm: | 
|  | case X86::VMOVDQArm: | 
|  | case X86::VMOVDQUrm: | 
|  | case X86::VMOVAPSZ128rm: | 
|  | case X86::VMOVUPSZ128rm: | 
|  | case X86::VMOVAPSZ128rm_NOVLX: | 
|  | case X86::VMOVUPSZ128rm_NOVLX: | 
|  | case X86::VMOVAPDZ128rm: | 
|  | case X86::VMOVUPDZ128rm: | 
|  | case X86::VMOVDQU8Z128rm: | 
|  | case X86::VMOVDQU16Z128rm: | 
|  | case X86::VMOVDQA32Z128rm: | 
|  | case X86::VMOVDQU32Z128rm: | 
|  | case X86::VMOVDQA64Z128rm: | 
|  | case X86::VMOVDQU64Z128rm: | 
|  | MemBytes = 16; | 
|  | return true; | 
|  | case X86::VMOVAPSYrm: | 
|  | case X86::VMOVUPSYrm: | 
|  | case X86::VMOVAPDYrm: | 
|  | case X86::VMOVUPDYrm: | 
|  | case X86::VMOVDQAYrm: | 
|  | case X86::VMOVDQUYrm: | 
|  | case X86::VMOVAPSZ256rm: | 
|  | case X86::VMOVUPSZ256rm: | 
|  | case X86::VMOVAPSZ256rm_NOVLX: | 
|  | case X86::VMOVUPSZ256rm_NOVLX: | 
|  | case X86::VMOVAPDZ256rm: | 
|  | case X86::VMOVUPDZ256rm: | 
|  | case X86::VMOVDQU8Z256rm: | 
|  | case X86::VMOVDQU16Z256rm: | 
|  | case X86::VMOVDQA32Z256rm: | 
|  | case X86::VMOVDQU32Z256rm: | 
|  | case X86::VMOVDQA64Z256rm: | 
|  | case X86::VMOVDQU64Z256rm: | 
|  | MemBytes = 32; | 
|  | return true; | 
|  | case X86::VMOVAPSZrm: | 
|  | case X86::VMOVUPSZrm: | 
|  | case X86::VMOVAPDZrm: | 
|  | case X86::VMOVUPDZrm: | 
|  | case X86::VMOVDQU8Zrm: | 
|  | case X86::VMOVDQU16Zrm: | 
|  | case X86::VMOVDQA32Zrm: | 
|  | case X86::VMOVDQU32Zrm: | 
|  | case X86::VMOVDQA64Zrm: | 
|  | case X86::VMOVDQU64Zrm: | 
|  | MemBytes = 64; | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool isFrameStoreOpcode(int Opcode, unsigned &MemBytes) { | 
|  | switch (Opcode) { | 
|  | default: | 
|  | return false; | 
|  | case X86::MOV8mr: | 
|  | case X86::KMOVBmk: | 
|  | MemBytes = 1; | 
|  | return true; | 
|  | case X86::MOV16mr: | 
|  | case X86::KMOVWmk: | 
|  | MemBytes = 2; | 
|  | return true; | 
|  | case X86::MOV32mr: | 
|  | case X86::MOVSSmr: | 
|  | case X86::VMOVSSmr: | 
|  | case X86::VMOVSSZmr: | 
|  | case X86::KMOVDmk: | 
|  | MemBytes = 4; | 
|  | return true; | 
|  | case X86::MOV64mr: | 
|  | case X86::ST_FpP64m: | 
|  | case X86::MOVSDmr: | 
|  | case X86::VMOVSDmr: | 
|  | case X86::VMOVSDZmr: | 
|  | case X86::MMX_MOVD64mr: | 
|  | case X86::MMX_MOVQ64mr: | 
|  | case X86::MMX_MOVNTQmr: | 
|  | case X86::KMOVQmk: | 
|  | MemBytes = 8; | 
|  | return true; | 
|  | case X86::MOVAPSmr: | 
|  | case X86::MOVUPSmr: | 
|  | case X86::MOVAPDmr: | 
|  | case X86::MOVUPDmr: | 
|  | case X86::MOVDQAmr: | 
|  | case X86::MOVDQUmr: | 
|  | case X86::VMOVAPSmr: | 
|  | case X86::VMOVUPSmr: | 
|  | case X86::VMOVAPDmr: | 
|  | case X86::VMOVUPDmr: | 
|  | case X86::VMOVDQAmr: | 
|  | case X86::VMOVDQUmr: | 
|  | case X86::VMOVUPSZ128mr: | 
|  | case X86::VMOVAPSZ128mr: | 
|  | case X86::VMOVUPSZ128mr_NOVLX: | 
|  | case X86::VMOVAPSZ128mr_NOVLX: | 
|  | case X86::VMOVUPDZ128mr: | 
|  | case X86::VMOVAPDZ128mr: | 
|  | case X86::VMOVDQA32Z128mr: | 
|  | case X86::VMOVDQU32Z128mr: | 
|  | case X86::VMOVDQA64Z128mr: | 
|  | case X86::VMOVDQU64Z128mr: | 
|  | case X86::VMOVDQU8Z128mr: | 
|  | case X86::VMOVDQU16Z128mr: | 
|  | MemBytes = 16; | 
|  | return true; | 
|  | case X86::VMOVUPSYmr: | 
|  | case X86::VMOVAPSYmr: | 
|  | case X86::VMOVUPDYmr: | 
|  | case X86::VMOVAPDYmr: | 
|  | case X86::VMOVDQUYmr: | 
|  | case X86::VMOVDQAYmr: | 
|  | case X86::VMOVUPSZ256mr: | 
|  | case X86::VMOVAPSZ256mr: | 
|  | case X86::VMOVUPSZ256mr_NOVLX: | 
|  | case X86::VMOVAPSZ256mr_NOVLX: | 
|  | case X86::VMOVUPDZ256mr: | 
|  | case X86::VMOVAPDZ256mr: | 
|  | case X86::VMOVDQU8Z256mr: | 
|  | case X86::VMOVDQU16Z256mr: | 
|  | case X86::VMOVDQA32Z256mr: | 
|  | case X86::VMOVDQU32Z256mr: | 
|  | case X86::VMOVDQA64Z256mr: | 
|  | case X86::VMOVDQU64Z256mr: | 
|  | MemBytes = 32; | 
|  | return true; | 
|  | case X86::VMOVUPSZmr: | 
|  | case X86::VMOVAPSZmr: | 
|  | case X86::VMOVUPDZmr: | 
|  | case X86::VMOVAPDZmr: | 
|  | case X86::VMOVDQU8Zmr: | 
|  | case X86::VMOVDQU16Zmr: | 
|  | case X86::VMOVDQA32Zmr: | 
|  | case X86::VMOVDQU32Zmr: | 
|  | case X86::VMOVDQA64Zmr: | 
|  | case X86::VMOVDQU64Zmr: | 
|  | MemBytes = 64; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI, | 
|  | int &FrameIndex) const { | 
|  | unsigned Dummy; | 
|  | return X86InstrInfo::isLoadFromStackSlot(MI, FrameIndex, Dummy); | 
|  | } | 
|  |  | 
|  | unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI, | 
|  | int &FrameIndex, | 
|  | unsigned &MemBytes) const { | 
|  | if (isFrameLoadOpcode(MI.getOpcode(), MemBytes)) | 
|  | if (MI.getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex)) | 
|  | return MI.getOperand(0).getReg(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI, | 
|  | int &FrameIndex) const { | 
|  | unsigned Dummy; | 
|  | if (isFrameLoadOpcode(MI.getOpcode(), Dummy)) { | 
|  | unsigned Reg; | 
|  | if ((Reg = isLoadFromStackSlot(MI, FrameIndex))) | 
|  | return Reg; | 
|  | // Check for post-frame index elimination operations | 
|  | SmallVector<const MachineMemOperand *, 1> Accesses; | 
|  | if (hasLoadFromStackSlot(MI, Accesses)) { | 
|  | FrameIndex = | 
|  | cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue()) | 
|  | ->getFrameIndex(); | 
|  | return 1; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI, | 
|  | int &FrameIndex) const { | 
|  | unsigned Dummy; | 
|  | return X86InstrInfo::isStoreToStackSlot(MI, FrameIndex, Dummy); | 
|  | } | 
|  |  | 
|  | unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI, | 
|  | int &FrameIndex, | 
|  | unsigned &MemBytes) const { | 
|  | if (isFrameStoreOpcode(MI.getOpcode(), MemBytes)) | 
|  | if (MI.getOperand(X86::AddrNumOperands).getSubReg() == 0 && | 
|  | isFrameOperand(MI, 0, FrameIndex)) | 
|  | return MI.getOperand(X86::AddrNumOperands).getReg(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI, | 
|  | int &FrameIndex) const { | 
|  | unsigned Dummy; | 
|  | if (isFrameStoreOpcode(MI.getOpcode(), Dummy)) { | 
|  | unsigned Reg; | 
|  | if ((Reg = isStoreToStackSlot(MI, FrameIndex))) | 
|  | return Reg; | 
|  | // Check for post-frame index elimination operations | 
|  | SmallVector<const MachineMemOperand *, 1> Accesses; | 
|  | if (hasStoreToStackSlot(MI, Accesses)) { | 
|  | FrameIndex = | 
|  | cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue()) | 
|  | ->getFrameIndex(); | 
|  | return 1; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// Return true if register is PIC base; i.e.g defined by X86::MOVPC32r. | 
|  | static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) { | 
|  | // Don't waste compile time scanning use-def chains of physregs. | 
|  | if (!TargetRegisterInfo::isVirtualRegister(BaseReg)) | 
|  | return false; | 
|  | bool isPICBase = false; | 
|  | for (MachineRegisterInfo::def_instr_iterator I = MRI.def_instr_begin(BaseReg), | 
|  | E = MRI.def_instr_end(); I != E; ++I) { | 
|  | MachineInstr *DefMI = &*I; | 
|  | if (DefMI->getOpcode() != X86::MOVPC32r) | 
|  | return false; | 
|  | assert(!isPICBase && "More than one PIC base?"); | 
|  | isPICBase = true; | 
|  | } | 
|  | return isPICBase; | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI, | 
|  | AliasAnalysis *AA) const { | 
|  | switch (MI.getOpcode()) { | 
|  | default: break; | 
|  | case X86::MOV8rm: | 
|  | case X86::MOV8rm_NOREX: | 
|  | case X86::MOV16rm: | 
|  | case X86::MOV32rm: | 
|  | case X86::MOV64rm: | 
|  | case X86::LD_Fp64m: | 
|  | case X86::MOVSSrm: | 
|  | case X86::MOVSDrm: | 
|  | case X86::MOVAPSrm: | 
|  | case X86::MOVUPSrm: | 
|  | case X86::MOVAPDrm: | 
|  | case X86::MOVUPDrm: | 
|  | case X86::MOVDQArm: | 
|  | case X86::MOVDQUrm: | 
|  | case X86::VMOVSSrm: | 
|  | case X86::VMOVSDrm: | 
|  | case X86::VMOVAPSrm: | 
|  | case X86::VMOVUPSrm: | 
|  | case X86::VMOVAPDrm: | 
|  | case X86::VMOVUPDrm: | 
|  | case X86::VMOVDQArm: | 
|  | case X86::VMOVDQUrm: | 
|  | case X86::VMOVAPSYrm: | 
|  | case X86::VMOVUPSYrm: | 
|  | case X86::VMOVAPDYrm: | 
|  | case X86::VMOVUPDYrm: | 
|  | case X86::VMOVDQAYrm: | 
|  | case X86::VMOVDQUYrm: | 
|  | case X86::MMX_MOVD64rm: | 
|  | case X86::MMX_MOVQ64rm: | 
|  | // AVX-512 | 
|  | case X86::VMOVSSZrm: | 
|  | case X86::VMOVSDZrm: | 
|  | case X86::VMOVAPDZ128rm: | 
|  | case X86::VMOVAPDZ256rm: | 
|  | case X86::VMOVAPDZrm: | 
|  | case X86::VMOVAPSZ128rm: | 
|  | case X86::VMOVAPSZ256rm: | 
|  | case X86::VMOVAPSZ128rm_NOVLX: | 
|  | case X86::VMOVAPSZ256rm_NOVLX: | 
|  | case X86::VMOVAPSZrm: | 
|  | case X86::VMOVDQA32Z128rm: | 
|  | case X86::VMOVDQA32Z256rm: | 
|  | case X86::VMOVDQA32Zrm: | 
|  | case X86::VMOVDQA64Z128rm: | 
|  | case X86::VMOVDQA64Z256rm: | 
|  | case X86::VMOVDQA64Zrm: | 
|  | case X86::VMOVDQU16Z128rm: | 
|  | case X86::VMOVDQU16Z256rm: | 
|  | case X86::VMOVDQU16Zrm: | 
|  | case X86::VMOVDQU32Z128rm: | 
|  | case X86::VMOVDQU32Z256rm: | 
|  | case X86::VMOVDQU32Zrm: | 
|  | case X86::VMOVDQU64Z128rm: | 
|  | case X86::VMOVDQU64Z256rm: | 
|  | case X86::VMOVDQU64Zrm: | 
|  | case X86::VMOVDQU8Z128rm: | 
|  | case X86::VMOVDQU8Z256rm: | 
|  | case X86::VMOVDQU8Zrm: | 
|  | case X86::VMOVUPDZ128rm: | 
|  | case X86::VMOVUPDZ256rm: | 
|  | case X86::VMOVUPDZrm: | 
|  | case X86::VMOVUPSZ128rm: | 
|  | case X86::VMOVUPSZ256rm: | 
|  | case X86::VMOVUPSZ128rm_NOVLX: | 
|  | case X86::VMOVUPSZ256rm_NOVLX: | 
|  | case X86::VMOVUPSZrm: { | 
|  | // Loads from constant pools are trivially rematerializable. | 
|  | if (MI.getOperand(1 + X86::AddrBaseReg).isReg() && | 
|  | MI.getOperand(1 + X86::AddrScaleAmt).isImm() && | 
|  | MI.getOperand(1 + X86::AddrIndexReg).isReg() && | 
|  | MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 && | 
|  | MI.isDereferenceableInvariantLoad(AA)) { | 
|  | unsigned BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg(); | 
|  | if (BaseReg == 0 || BaseReg == X86::RIP) | 
|  | return true; | 
|  | // Allow re-materialization of PIC load. | 
|  | if (!ReMatPICStubLoad && MI.getOperand(1 + X86::AddrDisp).isGlobal()) | 
|  | return false; | 
|  | const MachineFunction &MF = *MI.getParent()->getParent(); | 
|  | const MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  | return regIsPICBase(BaseReg, MRI); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | case X86::LEA32r: | 
|  | case X86::LEA64r: { | 
|  | if (MI.getOperand(1 + X86::AddrScaleAmt).isImm() && | 
|  | MI.getOperand(1 + X86::AddrIndexReg).isReg() && | 
|  | MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 && | 
|  | !MI.getOperand(1 + X86::AddrDisp).isReg()) { | 
|  | // lea fi#, lea GV, etc. are all rematerializable. | 
|  | if (!MI.getOperand(1 + X86::AddrBaseReg).isReg()) | 
|  | return true; | 
|  | unsigned BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg(); | 
|  | if (BaseReg == 0) | 
|  | return true; | 
|  | // Allow re-materialization of lea PICBase + x. | 
|  | const MachineFunction &MF = *MI.getParent()->getParent(); | 
|  | const MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  | return regIsPICBase(BaseReg, MRI); | 
|  | } | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // All other instructions marked M_REMATERIALIZABLE are always trivially | 
|  | // rematerializable. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::isSafeToClobberEFLAGS(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator I) const { | 
|  | MachineBasicBlock::iterator E = MBB.end(); | 
|  |  | 
|  | // For compile time consideration, if we are not able to determine the | 
|  | // safety after visiting 4 instructions in each direction, we will assume | 
|  | // it's not safe. | 
|  | MachineBasicBlock::iterator Iter = I; | 
|  | for (unsigned i = 0; Iter != E && i < 4; ++i) { | 
|  | bool SeenDef = false; | 
|  | for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) { | 
|  | MachineOperand &MO = Iter->getOperand(j); | 
|  | if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS)) | 
|  | SeenDef = true; | 
|  | if (!MO.isReg()) | 
|  | continue; | 
|  | if (MO.getReg() == X86::EFLAGS) { | 
|  | if (MO.isUse()) | 
|  | return false; | 
|  | SeenDef = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (SeenDef) | 
|  | // This instruction defines EFLAGS, no need to look any further. | 
|  | return true; | 
|  | ++Iter; | 
|  | // Skip over debug instructions. | 
|  | while (Iter != E && Iter->isDebugInstr()) | 
|  | ++Iter; | 
|  | } | 
|  |  | 
|  | // It is safe to clobber EFLAGS at the end of a block of no successor has it | 
|  | // live in. | 
|  | if (Iter == E) { | 
|  | for (MachineBasicBlock *S : MBB.successors()) | 
|  | if (S->isLiveIn(X86::EFLAGS)) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock::iterator B = MBB.begin(); | 
|  | Iter = I; | 
|  | for (unsigned i = 0; i < 4; ++i) { | 
|  | // If we make it to the beginning of the block, it's safe to clobber | 
|  | // EFLAGS iff EFLAGS is not live-in. | 
|  | if (Iter == B) | 
|  | return !MBB.isLiveIn(X86::EFLAGS); | 
|  |  | 
|  | --Iter; | 
|  | // Skip over debug instructions. | 
|  | while (Iter != B && Iter->isDebugInstr()) | 
|  | --Iter; | 
|  |  | 
|  | bool SawKill = false; | 
|  | for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) { | 
|  | MachineOperand &MO = Iter->getOperand(j); | 
|  | // A register mask may clobber EFLAGS, but we should still look for a | 
|  | // live EFLAGS def. | 
|  | if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS)) | 
|  | SawKill = true; | 
|  | if (MO.isReg() && MO.getReg() == X86::EFLAGS) { | 
|  | if (MO.isDef()) return MO.isDead(); | 
|  | if (MO.isKill()) SawKill = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (SawKill) | 
|  | // This instruction kills EFLAGS and doesn't redefine it, so | 
|  | // there's no need to look further. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Conservative answer. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator I, | 
|  | unsigned DestReg, unsigned SubIdx, | 
|  | const MachineInstr &Orig, | 
|  | const TargetRegisterInfo &TRI) const { | 
|  | bool ClobbersEFLAGS = false; | 
|  | for (const MachineOperand &MO : Orig.operands()) { | 
|  | if (MO.isReg() && MO.isDef() && MO.getReg() == X86::EFLAGS) { | 
|  | ClobbersEFLAGS = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ClobbersEFLAGS && !isSafeToClobberEFLAGS(MBB, I)) { | 
|  | // The instruction clobbers EFLAGS. Re-materialize as MOV32ri to avoid side | 
|  | // effects. | 
|  | int Value; | 
|  | switch (Orig.getOpcode()) { | 
|  | case X86::MOV32r0:  Value = 0; break; | 
|  | case X86::MOV32r1:  Value = 1; break; | 
|  | case X86::MOV32r_1: Value = -1; break; | 
|  | default: | 
|  | llvm_unreachable("Unexpected instruction!"); | 
|  | } | 
|  |  | 
|  | const DebugLoc &DL = Orig.getDebugLoc(); | 
|  | BuildMI(MBB, I, DL, get(X86::MOV32ri)) | 
|  | .add(Orig.getOperand(0)) | 
|  | .addImm(Value); | 
|  | } else { | 
|  | MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig); | 
|  | MBB.insert(I, MI); | 
|  | } | 
|  |  | 
|  | MachineInstr &NewMI = *std::prev(I); | 
|  | NewMI.substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI); | 
|  | } | 
|  |  | 
|  | /// True if MI has a condition code def, e.g. EFLAGS, that is not marked dead. | 
|  | bool X86InstrInfo::hasLiveCondCodeDef(MachineInstr &MI) const { | 
|  | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &MO = MI.getOperand(i); | 
|  | if (MO.isReg() && MO.isDef() && | 
|  | MO.getReg() == X86::EFLAGS && !MO.isDead()) { | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Check whether the shift count for a machine operand is non-zero. | 
|  | inline static unsigned getTruncatedShiftCount(MachineInstr &MI, | 
|  | unsigned ShiftAmtOperandIdx) { | 
|  | // The shift count is six bits with the REX.W prefix and five bits without. | 
|  | unsigned ShiftCountMask = (MI.getDesc().TSFlags & X86II::REX_W) ? 63 : 31; | 
|  | unsigned Imm = MI.getOperand(ShiftAmtOperandIdx).getImm(); | 
|  | return Imm & ShiftCountMask; | 
|  | } | 
|  |  | 
|  | /// Check whether the given shift count is appropriate | 
|  | /// can be represented by a LEA instruction. | 
|  | inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt) { | 
|  | // Left shift instructions can be transformed into load-effective-address | 
|  | // instructions if we can encode them appropriately. | 
|  | // A LEA instruction utilizes a SIB byte to encode its scale factor. | 
|  | // The SIB.scale field is two bits wide which means that we can encode any | 
|  | // shift amount less than 4. | 
|  | return ShAmt < 4 && ShAmt > 0; | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::classifyLEAReg(MachineInstr &MI, const MachineOperand &Src, | 
|  | unsigned Opc, bool AllowSP, unsigned &NewSrc, | 
|  | bool &isKill, bool &isUndef, | 
|  | MachineOperand &ImplicitOp, | 
|  | LiveVariables *LV) const { | 
|  | MachineFunction &MF = *MI.getParent()->getParent(); | 
|  | const TargetRegisterClass *RC; | 
|  | if (AllowSP) { | 
|  | RC = Opc != X86::LEA32r ? &X86::GR64RegClass : &X86::GR32RegClass; | 
|  | } else { | 
|  | RC = Opc != X86::LEA32r ? | 
|  | &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass; | 
|  | } | 
|  | unsigned SrcReg = Src.getReg(); | 
|  |  | 
|  | // For both LEA64 and LEA32 the register already has essentially the right | 
|  | // type (32-bit or 64-bit) we may just need to forbid SP. | 
|  | if (Opc != X86::LEA64_32r) { | 
|  | NewSrc = SrcReg; | 
|  | isKill = Src.isKill(); | 
|  | isUndef = Src.isUndef(); | 
|  |  | 
|  | if (TargetRegisterInfo::isVirtualRegister(NewSrc) && | 
|  | !MF.getRegInfo().constrainRegClass(NewSrc, RC)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // This is for an LEA64_32r and incoming registers are 32-bit. One way or | 
|  | // another we need to add 64-bit registers to the final MI. | 
|  | if (TargetRegisterInfo::isPhysicalRegister(SrcReg)) { | 
|  | ImplicitOp = Src; | 
|  | ImplicitOp.setImplicit(); | 
|  |  | 
|  | NewSrc = getX86SubSuperRegister(Src.getReg(), 64); | 
|  | isKill = Src.isKill(); | 
|  | isUndef = Src.isUndef(); | 
|  | } else { | 
|  | // Virtual register of the wrong class, we have to create a temporary 64-bit | 
|  | // vreg to feed into the LEA. | 
|  | NewSrc = MF.getRegInfo().createVirtualRegister(RC); | 
|  | MachineInstr *Copy = | 
|  | BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(TargetOpcode::COPY)) | 
|  | .addReg(NewSrc, RegState::Define | RegState::Undef, X86::sub_32bit) | 
|  | .add(Src); | 
|  |  | 
|  | // Which is obviously going to be dead after we're done with it. | 
|  | isKill = true; | 
|  | isUndef = false; | 
|  |  | 
|  | if (LV) | 
|  | LV->replaceKillInstruction(SrcReg, MI, *Copy); | 
|  | } | 
|  |  | 
|  | // We've set all the parameters without issue. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Helper for convertToThreeAddress when 16-bit LEA is disabled, use 32-bit | 
|  | /// LEA to form 3-address code by promoting to a 32-bit superregister and then | 
|  | /// truncating back down to a 16-bit subregister. | 
|  | MachineInstr *X86InstrInfo::convertToThreeAddressWithLEA( | 
|  | unsigned MIOpc, MachineFunction::iterator &MFI, MachineInstr &MI, | 
|  | LiveVariables *LV) const { | 
|  | MachineBasicBlock::iterator MBBI = MI.getIterator(); | 
|  | unsigned Dest = MI.getOperand(0).getReg(); | 
|  | unsigned Src = MI.getOperand(1).getReg(); | 
|  | bool isDead = MI.getOperand(0).isDead(); | 
|  | bool isKill = MI.getOperand(1).isKill(); | 
|  |  | 
|  | MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo(); | 
|  | unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass); | 
|  | unsigned Opc, leaInReg; | 
|  | if (Subtarget.is64Bit()) { | 
|  | Opc = X86::LEA64_32r; | 
|  | leaInReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass); | 
|  | } else { | 
|  | Opc = X86::LEA32r; | 
|  | leaInReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass); | 
|  | } | 
|  |  | 
|  | // Build and insert into an implicit UNDEF value. This is OK because | 
|  | // well be shifting and then extracting the lower 16-bits. | 
|  | // This has the potential to cause partial register stall. e.g. | 
|  | //   movw    (%rbp,%rcx,2), %dx | 
|  | //   leal    -65(%rdx), %esi | 
|  | // But testing has shown this *does* help performance in 64-bit mode (at | 
|  | // least on modern x86 machines). | 
|  | BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg); | 
|  | MachineInstr *InsMI = | 
|  | BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY)) | 
|  | .addReg(leaInReg, RegState::Define, X86::sub_16bit) | 
|  | .addReg(Src, getKillRegState(isKill)); | 
|  |  | 
|  | MachineInstrBuilder MIB = | 
|  | BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(Opc), leaOutReg); | 
|  | switch (MIOpc) { | 
|  | default: llvm_unreachable("Unreachable!"); | 
|  | case X86::SHL16ri: { | 
|  | unsigned ShAmt = MI.getOperand(2).getImm(); | 
|  | MIB.addReg(0).addImm(1ULL << ShAmt) | 
|  | .addReg(leaInReg, RegState::Kill).addImm(0).addReg(0); | 
|  | break; | 
|  | } | 
|  | case X86::INC16r: | 
|  | addRegOffset(MIB, leaInReg, true, 1); | 
|  | break; | 
|  | case X86::DEC16r: | 
|  | addRegOffset(MIB, leaInReg, true, -1); | 
|  | break; | 
|  | case X86::ADD16ri: | 
|  | case X86::ADD16ri8: | 
|  | case X86::ADD16ri_DB: | 
|  | case X86::ADD16ri8_DB: | 
|  | addRegOffset(MIB, leaInReg, true, MI.getOperand(2).getImm()); | 
|  | break; | 
|  | case X86::ADD16rr: | 
|  | case X86::ADD16rr_DB: { | 
|  | unsigned Src2 = MI.getOperand(2).getReg(); | 
|  | bool isKill2 = MI.getOperand(2).isKill(); | 
|  | unsigned leaInReg2 = 0; | 
|  | MachineInstr *InsMI2 = nullptr; | 
|  | if (Src == Src2) { | 
|  | // ADD16rr killed %reg1028, %reg1028 | 
|  | // just a single insert_subreg. | 
|  | addRegReg(MIB, leaInReg, true, leaInReg, false); | 
|  | } else { | 
|  | if (Subtarget.is64Bit()) | 
|  | leaInReg2 = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass); | 
|  | else | 
|  | leaInReg2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass); | 
|  | // Build and insert into an implicit UNDEF value. This is OK because | 
|  | // well be shifting and then extracting the lower 16-bits. | 
|  | BuildMI(*MFI, &*MIB, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg2); | 
|  | InsMI2 = BuildMI(*MFI, &*MIB, MI.getDebugLoc(), get(TargetOpcode::COPY)) | 
|  | .addReg(leaInReg2, RegState::Define, X86::sub_16bit) | 
|  | .addReg(Src2, getKillRegState(isKill2)); | 
|  | addRegReg(MIB, leaInReg, true, leaInReg2, true); | 
|  | } | 
|  | if (LV && isKill2 && InsMI2) | 
|  | LV->replaceKillInstruction(Src2, MI, *InsMI2); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | MachineInstr *NewMI = MIB; | 
|  | MachineInstr *ExtMI = | 
|  | BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY)) | 
|  | .addReg(Dest, RegState::Define | getDeadRegState(isDead)) | 
|  | .addReg(leaOutReg, RegState::Kill, X86::sub_16bit); | 
|  |  | 
|  | if (LV) { | 
|  | // Update live variables | 
|  | LV->getVarInfo(leaInReg).Kills.push_back(NewMI); | 
|  | LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI); | 
|  | if (isKill) | 
|  | LV->replaceKillInstruction(Src, MI, *InsMI); | 
|  | if (isDead) | 
|  | LV->replaceKillInstruction(Dest, MI, *ExtMI); | 
|  | } | 
|  |  | 
|  | return ExtMI; | 
|  | } | 
|  |  | 
|  | /// This method must be implemented by targets that | 
|  | /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target | 
|  | /// may be able to convert a two-address instruction into a true | 
|  | /// three-address instruction on demand.  This allows the X86 target (for | 
|  | /// example) to convert ADD and SHL instructions into LEA instructions if they | 
|  | /// would require register copies due to two-addressness. | 
|  | /// | 
|  | /// This method returns a null pointer if the transformation cannot be | 
|  | /// performed, otherwise it returns the new instruction. | 
|  | /// | 
|  | MachineInstr * | 
|  | X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI, | 
|  | MachineInstr &MI, LiveVariables *LV) const { | 
|  | // The following opcodes also sets the condition code register(s). Only | 
|  | // convert them to equivalent lea if the condition code register def's | 
|  | // are dead! | 
|  | if (hasLiveCondCodeDef(MI)) | 
|  | return nullptr; | 
|  |  | 
|  | MachineFunction &MF = *MI.getParent()->getParent(); | 
|  | // All instructions input are two-addr instructions.  Get the known operands. | 
|  | const MachineOperand &Dest = MI.getOperand(0); | 
|  | const MachineOperand &Src = MI.getOperand(1); | 
|  |  | 
|  | MachineInstr *NewMI = nullptr; | 
|  | // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's.  When | 
|  | // we have better subtarget support, enable the 16-bit LEA generation here. | 
|  | // 16-bit LEA is also slow on Core2. | 
|  | bool DisableLEA16 = true; | 
|  | bool is64Bit = Subtarget.is64Bit(); | 
|  |  | 
|  | unsigned MIOpc = MI.getOpcode(); | 
|  | switch (MIOpc) { | 
|  | default: return nullptr; | 
|  | case X86::SHL64ri: { | 
|  | assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!"); | 
|  | unsigned ShAmt = getTruncatedShiftCount(MI, 2); | 
|  | if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr; | 
|  |  | 
|  | // LEA can't handle RSP. | 
|  | if (TargetRegisterInfo::isVirtualRegister(Src.getReg()) && | 
|  | !MF.getRegInfo().constrainRegClass(Src.getReg(), | 
|  | &X86::GR64_NOSPRegClass)) | 
|  | return nullptr; | 
|  |  | 
|  | NewMI = BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r)) | 
|  | .add(Dest) | 
|  | .addReg(0) | 
|  | .addImm(1ULL << ShAmt) | 
|  | .add(Src) | 
|  | .addImm(0) | 
|  | .addReg(0); | 
|  | break; | 
|  | } | 
|  | case X86::SHL32ri: { | 
|  | assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!"); | 
|  | unsigned ShAmt = getTruncatedShiftCount(MI, 2); | 
|  | if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr; | 
|  |  | 
|  | unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r; | 
|  |  | 
|  | // LEA can't handle ESP. | 
|  | bool isKill, isUndef; | 
|  | unsigned SrcReg; | 
|  | MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); | 
|  | if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false, | 
|  | SrcReg, isKill, isUndef, ImplicitOp, LV)) | 
|  | return nullptr; | 
|  |  | 
|  | MachineInstrBuilder MIB = | 
|  | BuildMI(MF, MI.getDebugLoc(), get(Opc)) | 
|  | .add(Dest) | 
|  | .addReg(0) | 
|  | .addImm(1ULL << ShAmt) | 
|  | .addReg(SrcReg, getKillRegState(isKill) | getUndefRegState(isUndef)) | 
|  | .addImm(0) | 
|  | .addReg(0); | 
|  | if (ImplicitOp.getReg() != 0) | 
|  | MIB.add(ImplicitOp); | 
|  | NewMI = MIB; | 
|  |  | 
|  | break; | 
|  | } | 
|  | case X86::SHL16ri: { | 
|  | assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!"); | 
|  | unsigned ShAmt = getTruncatedShiftCount(MI, 2); | 
|  | if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr; | 
|  |  | 
|  | if (DisableLEA16) | 
|  | return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV) | 
|  | : nullptr; | 
|  | NewMI = BuildMI(MF, MI.getDebugLoc(), get(X86::LEA16r)) | 
|  | .add(Dest) | 
|  | .addReg(0) | 
|  | .addImm(1ULL << ShAmt) | 
|  | .add(Src) | 
|  | .addImm(0) | 
|  | .addReg(0); | 
|  | break; | 
|  | } | 
|  | case X86::INC64r: | 
|  | case X86::INC32r: { | 
|  | assert(MI.getNumOperands() >= 2 && "Unknown inc instruction!"); | 
|  | unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r | 
|  | : (is64Bit ? X86::LEA64_32r : X86::LEA32r); | 
|  | bool isKill, isUndef; | 
|  | unsigned SrcReg; | 
|  | MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); | 
|  | if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false, | 
|  | SrcReg, isKill, isUndef, ImplicitOp, LV)) | 
|  | return nullptr; | 
|  |  | 
|  | MachineInstrBuilder MIB = | 
|  | BuildMI(MF, MI.getDebugLoc(), get(Opc)) | 
|  | .add(Dest) | 
|  | .addReg(SrcReg, | 
|  | getKillRegState(isKill) | getUndefRegState(isUndef)); | 
|  | if (ImplicitOp.getReg() != 0) | 
|  | MIB.add(ImplicitOp); | 
|  |  | 
|  | NewMI = addOffset(MIB, 1); | 
|  | break; | 
|  | } | 
|  | case X86::INC16r: | 
|  | if (DisableLEA16) | 
|  | return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV) | 
|  | : nullptr; | 
|  | assert(MI.getNumOperands() >= 2 && "Unknown inc instruction!"); | 
|  | NewMI = addOffset( | 
|  | BuildMI(MF, MI.getDebugLoc(), get(X86::LEA16r)).add(Dest).add(Src), 1); | 
|  | break; | 
|  | case X86::DEC64r: | 
|  | case X86::DEC32r: { | 
|  | assert(MI.getNumOperands() >= 2 && "Unknown dec instruction!"); | 
|  | unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r | 
|  | : (is64Bit ? X86::LEA64_32r : X86::LEA32r); | 
|  |  | 
|  | bool isKill, isUndef; | 
|  | unsigned SrcReg; | 
|  | MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); | 
|  | if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false, | 
|  | SrcReg, isKill, isUndef, ImplicitOp, LV)) | 
|  | return nullptr; | 
|  |  | 
|  | MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)) | 
|  | .add(Dest) | 
|  | .addReg(SrcReg, getUndefRegState(isUndef) | | 
|  | getKillRegState(isKill)); | 
|  | if (ImplicitOp.getReg() != 0) | 
|  | MIB.add(ImplicitOp); | 
|  |  | 
|  | NewMI = addOffset(MIB, -1); | 
|  |  | 
|  | break; | 
|  | } | 
|  | case X86::DEC16r: | 
|  | if (DisableLEA16) | 
|  | return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV) | 
|  | : nullptr; | 
|  | assert(MI.getNumOperands() >= 2 && "Unknown dec instruction!"); | 
|  | NewMI = addOffset( | 
|  | BuildMI(MF, MI.getDebugLoc(), get(X86::LEA16r)).add(Dest).add(Src), -1); | 
|  | break; | 
|  | case X86::ADD64rr: | 
|  | case X86::ADD64rr_DB: | 
|  | case X86::ADD32rr: | 
|  | case X86::ADD32rr_DB: { | 
|  | assert(MI.getNumOperands() >= 3 && "Unknown add instruction!"); | 
|  | unsigned Opc; | 
|  | if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB) | 
|  | Opc = X86::LEA64r; | 
|  | else | 
|  | Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r; | 
|  |  | 
|  | bool isKill, isUndef; | 
|  | unsigned SrcReg; | 
|  | MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); | 
|  | if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true, | 
|  | SrcReg, isKill, isUndef, ImplicitOp, LV)) | 
|  | return nullptr; | 
|  |  | 
|  | const MachineOperand &Src2 = MI.getOperand(2); | 
|  | bool isKill2, isUndef2; | 
|  | unsigned SrcReg2; | 
|  | MachineOperand ImplicitOp2 = MachineOperand::CreateReg(0, false); | 
|  | if (!classifyLEAReg(MI, Src2, Opc, /*AllowSP=*/ false, | 
|  | SrcReg2, isKill2, isUndef2, ImplicitOp2, LV)) | 
|  | return nullptr; | 
|  |  | 
|  | MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)).add(Dest); | 
|  | if (ImplicitOp.getReg() != 0) | 
|  | MIB.add(ImplicitOp); | 
|  | if (ImplicitOp2.getReg() != 0) | 
|  | MIB.add(ImplicitOp2); | 
|  |  | 
|  | NewMI = addRegReg(MIB, SrcReg, isKill, SrcReg2, isKill2); | 
|  |  | 
|  | // Preserve undefness of the operands. | 
|  | NewMI->getOperand(1).setIsUndef(isUndef); | 
|  | NewMI->getOperand(3).setIsUndef(isUndef2); | 
|  |  | 
|  | if (LV && Src2.isKill()) | 
|  | LV->replaceKillInstruction(SrcReg2, MI, *NewMI); | 
|  | break; | 
|  | } | 
|  | case X86::ADD16rr: | 
|  | case X86::ADD16rr_DB: { | 
|  | if (DisableLEA16) | 
|  | return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV) | 
|  | : nullptr; | 
|  | assert(MI.getNumOperands() >= 3 && "Unknown add instruction!"); | 
|  | unsigned Src2 = MI.getOperand(2).getReg(); | 
|  | bool isKill2 = MI.getOperand(2).isKill(); | 
|  | NewMI = addRegReg(BuildMI(MF, MI.getDebugLoc(), get(X86::LEA16r)).add(Dest), | 
|  | Src.getReg(), Src.isKill(), Src2, isKill2); | 
|  |  | 
|  | // Preserve undefness of the operands. | 
|  | bool isUndef = MI.getOperand(1).isUndef(); | 
|  | bool isUndef2 = MI.getOperand(2).isUndef(); | 
|  | NewMI->getOperand(1).setIsUndef(isUndef); | 
|  | NewMI->getOperand(3).setIsUndef(isUndef2); | 
|  |  | 
|  | if (LV && isKill2) | 
|  | LV->replaceKillInstruction(Src2, MI, *NewMI); | 
|  | break; | 
|  | } | 
|  | case X86::ADD64ri32: | 
|  | case X86::ADD64ri8: | 
|  | case X86::ADD64ri32_DB: | 
|  | case X86::ADD64ri8_DB: | 
|  | assert(MI.getNumOperands() >= 3 && "Unknown add instruction!"); | 
|  | NewMI = addOffset( | 
|  | BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r)).add(Dest).add(Src), | 
|  | MI.getOperand(2)); | 
|  | break; | 
|  | case X86::ADD32ri: | 
|  | case X86::ADD32ri8: | 
|  | case X86::ADD32ri_DB: | 
|  | case X86::ADD32ri8_DB: { | 
|  | assert(MI.getNumOperands() >= 3 && "Unknown add instruction!"); | 
|  | unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r; | 
|  |  | 
|  | bool isKill, isUndef; | 
|  | unsigned SrcReg; | 
|  | MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); | 
|  | if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true, | 
|  | SrcReg, isKill, isUndef, ImplicitOp, LV)) | 
|  | return nullptr; | 
|  |  | 
|  | MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)) | 
|  | .add(Dest) | 
|  | .addReg(SrcReg, getUndefRegState(isUndef) | | 
|  | getKillRegState(isKill)); | 
|  | if (ImplicitOp.getReg() != 0) | 
|  | MIB.add(ImplicitOp); | 
|  |  | 
|  | NewMI = addOffset(MIB, MI.getOperand(2)); | 
|  | break; | 
|  | } | 
|  | case X86::ADD16ri: | 
|  | case X86::ADD16ri8: | 
|  | case X86::ADD16ri_DB: | 
|  | case X86::ADD16ri8_DB: | 
|  | if (DisableLEA16) | 
|  | return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV) | 
|  | : nullptr; | 
|  | assert(MI.getNumOperands() >= 3 && "Unknown add instruction!"); | 
|  | NewMI = addOffset( | 
|  | BuildMI(MF, MI.getDebugLoc(), get(X86::LEA16r)).add(Dest).add(Src), | 
|  | MI.getOperand(2)); | 
|  | break; | 
|  |  | 
|  | case X86::VMOVDQU8Z128rmk: | 
|  | case X86::VMOVDQU8Z256rmk: | 
|  | case X86::VMOVDQU8Zrmk: | 
|  | case X86::VMOVDQU16Z128rmk: | 
|  | case X86::VMOVDQU16Z256rmk: | 
|  | case X86::VMOVDQU16Zrmk: | 
|  | case X86::VMOVDQU32Z128rmk: case X86::VMOVDQA32Z128rmk: | 
|  | case X86::VMOVDQU32Z256rmk: case X86::VMOVDQA32Z256rmk: | 
|  | case X86::VMOVDQU32Zrmk:    case X86::VMOVDQA32Zrmk: | 
|  | case X86::VMOVDQU64Z128rmk: case X86::VMOVDQA64Z128rmk: | 
|  | case X86::VMOVDQU64Z256rmk: case X86::VMOVDQA64Z256rmk: | 
|  | case X86::VMOVDQU64Zrmk:    case X86::VMOVDQA64Zrmk: | 
|  | case X86::VMOVUPDZ128rmk:   case X86::VMOVAPDZ128rmk: | 
|  | case X86::VMOVUPDZ256rmk:   case X86::VMOVAPDZ256rmk: | 
|  | case X86::VMOVUPDZrmk:      case X86::VMOVAPDZrmk: | 
|  | case X86::VMOVUPSZ128rmk:   case X86::VMOVAPSZ128rmk: | 
|  | case X86::VMOVUPSZ256rmk:   case X86::VMOVAPSZ256rmk: | 
|  | case X86::VMOVUPSZrmk:      case X86::VMOVAPSZrmk: { | 
|  | unsigned Opc; | 
|  | switch (MIOpc) { | 
|  | default: llvm_unreachable("Unreachable!"); | 
|  | case X86::VMOVDQU8Z128rmk:  Opc = X86::VPBLENDMBZ128rmk; break; | 
|  | case X86::VMOVDQU8Z256rmk:  Opc = X86::VPBLENDMBZ256rmk; break; | 
|  | case X86::VMOVDQU8Zrmk:     Opc = X86::VPBLENDMBZrmk;    break; | 
|  | case X86::VMOVDQU16Z128rmk: Opc = X86::VPBLENDMWZ128rmk; break; | 
|  | case X86::VMOVDQU16Z256rmk: Opc = X86::VPBLENDMWZ256rmk; break; | 
|  | case X86::VMOVDQU16Zrmk:    Opc = X86::VPBLENDMWZrmk;    break; | 
|  | case X86::VMOVDQU32Z128rmk: Opc = X86::VPBLENDMDZ128rmk; break; | 
|  | case X86::VMOVDQU32Z256rmk: Opc = X86::VPBLENDMDZ256rmk; break; | 
|  | case X86::VMOVDQU32Zrmk:    Opc = X86::VPBLENDMDZrmk;    break; | 
|  | case X86::VMOVDQU64Z128rmk: Opc = X86::VPBLENDMQZ128rmk; break; | 
|  | case X86::VMOVDQU64Z256rmk: Opc = X86::VPBLENDMQZ256rmk; break; | 
|  | case X86::VMOVDQU64Zrmk:    Opc = X86::VPBLENDMQZrmk;    break; | 
|  | case X86::VMOVUPDZ128rmk:   Opc = X86::VBLENDMPDZ128rmk; break; | 
|  | case X86::VMOVUPDZ256rmk:   Opc = X86::VBLENDMPDZ256rmk; break; | 
|  | case X86::VMOVUPDZrmk:      Opc = X86::VBLENDMPDZrmk;    break; | 
|  | case X86::VMOVUPSZ128rmk:   Opc = X86::VBLENDMPSZ128rmk; break; | 
|  | case X86::VMOVUPSZ256rmk:   Opc = X86::VBLENDMPSZ256rmk; break; | 
|  | case X86::VMOVUPSZrmk:      Opc = X86::VBLENDMPSZrmk;    break; | 
|  | case X86::VMOVDQA32Z128rmk: Opc = X86::VPBLENDMDZ128rmk; break; | 
|  | case X86::VMOVDQA32Z256rmk: Opc = X86::VPBLENDMDZ256rmk; break; | 
|  | case X86::VMOVDQA32Zrmk:    Opc = X86::VPBLENDMDZrmk;    break; | 
|  | case X86::VMOVDQA64Z128rmk: Opc = X86::VPBLENDMQZ128rmk; break; | 
|  | case X86::VMOVDQA64Z256rmk: Opc = X86::VPBLENDMQZ256rmk; break; | 
|  | case X86::VMOVDQA64Zrmk:    Opc = X86::VPBLENDMQZrmk;    break; | 
|  | case X86::VMOVAPDZ128rmk:   Opc = X86::VBLENDMPDZ128rmk; break; | 
|  | case X86::VMOVAPDZ256rmk:   Opc = X86::VBLENDMPDZ256rmk; break; | 
|  | case X86::VMOVAPDZrmk:      Opc = X86::VBLENDMPDZrmk;    break; | 
|  | case X86::VMOVAPSZ128rmk:   Opc = X86::VBLENDMPSZ128rmk; break; | 
|  | case X86::VMOVAPSZ256rmk:   Opc = X86::VBLENDMPSZ256rmk; break; | 
|  | case X86::VMOVAPSZrmk:      Opc = X86::VBLENDMPSZrmk;    break; | 
|  | } | 
|  |  | 
|  | NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc)) | 
|  | .add(Dest) | 
|  | .add(MI.getOperand(2)) | 
|  | .add(Src) | 
|  | .add(MI.getOperand(3)) | 
|  | .add(MI.getOperand(4)) | 
|  | .add(MI.getOperand(5)) | 
|  | .add(MI.getOperand(6)) | 
|  | .add(MI.getOperand(7)); | 
|  | break; | 
|  | } | 
|  | case X86::VMOVDQU8Z128rrk: | 
|  | case X86::VMOVDQU8Z256rrk: | 
|  | case X86::VMOVDQU8Zrrk: | 
|  | case X86::VMOVDQU16Z128rrk: | 
|  | case X86::VMOVDQU16Z256rrk: | 
|  | case X86::VMOVDQU16Zrrk: | 
|  | case X86::VMOVDQU32Z128rrk: case X86::VMOVDQA32Z128rrk: | 
|  | case X86::VMOVDQU32Z256rrk: case X86::VMOVDQA32Z256rrk: | 
|  | case X86::VMOVDQU32Zrrk:    case X86::VMOVDQA32Zrrk: | 
|  | case X86::VMOVDQU64Z128rrk: case X86::VMOVDQA64Z128rrk: | 
|  | case X86::VMOVDQU64Z256rrk: case X86::VMOVDQA64Z256rrk: | 
|  | case X86::VMOVDQU64Zrrk:    case X86::VMOVDQA64Zrrk: | 
|  | case X86::VMOVUPDZ128rrk:   case X86::VMOVAPDZ128rrk: | 
|  | case X86::VMOVUPDZ256rrk:   case X86::VMOVAPDZ256rrk: | 
|  | case X86::VMOVUPDZrrk:      case X86::VMOVAPDZrrk: | 
|  | case X86::VMOVUPSZ128rrk:   case X86::VMOVAPSZ128rrk: | 
|  | case X86::VMOVUPSZ256rrk:   case X86::VMOVAPSZ256rrk: | 
|  | case X86::VMOVUPSZrrk:      case X86::VMOVAPSZrrk: { | 
|  | unsigned Opc; | 
|  | switch (MIOpc) { | 
|  | default: llvm_unreachable("Unreachable!"); | 
|  | case X86::VMOVDQU8Z128rrk:  Opc = X86::VPBLENDMBZ128rrk; break; | 
|  | case X86::VMOVDQU8Z256rrk:  Opc = X86::VPBLENDMBZ256rrk; break; | 
|  | case X86::VMOVDQU8Zrrk:     Opc = X86::VPBLENDMBZrrk;    break; | 
|  | case X86::VMOVDQU16Z128rrk: Opc = X86::VPBLENDMWZ128rrk; break; | 
|  | case X86::VMOVDQU16Z256rrk: Opc = X86::VPBLENDMWZ256rrk; break; | 
|  | case X86::VMOVDQU16Zrrk:    Opc = X86::VPBLENDMWZrrk;    break; | 
|  | case X86::VMOVDQU32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break; | 
|  | case X86::VMOVDQU32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break; | 
|  | case X86::VMOVDQU32Zrrk:    Opc = X86::VPBLENDMDZrrk;    break; | 
|  | case X86::VMOVDQU64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break; | 
|  | case X86::VMOVDQU64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break; | 
|  | case X86::VMOVDQU64Zrrk:    Opc = X86::VPBLENDMQZrrk;    break; | 
|  | case X86::VMOVUPDZ128rrk:   Opc = X86::VBLENDMPDZ128rrk; break; | 
|  | case X86::VMOVUPDZ256rrk:   Opc = X86::VBLENDMPDZ256rrk; break; | 
|  | case X86::VMOVUPDZrrk:      Opc = X86::VBLENDMPDZrrk;    break; | 
|  | case X86::VMOVUPSZ128rrk:   Opc = X86::VBLENDMPSZ128rrk; break; | 
|  | case X86::VMOVUPSZ256rrk:   Opc = X86::VBLENDMPSZ256rrk; break; | 
|  | case X86::VMOVUPSZrrk:      Opc = X86::VBLENDMPSZrrk;    break; | 
|  | case X86::VMOVDQA32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break; | 
|  | case X86::VMOVDQA32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break; | 
|  | case X86::VMOVDQA32Zrrk:    Opc = X86::VPBLENDMDZrrk;    break; | 
|  | case X86::VMOVDQA64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break; | 
|  | case X86::VMOVDQA64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break; | 
|  | case X86::VMOVDQA64Zrrk:    Opc = X86::VPBLENDMQZrrk;    break; | 
|  | case X86::VMOVAPDZ128rrk:   Opc = X86::VBLENDMPDZ128rrk; break; | 
|  | case X86::VMOVAPDZ256rrk:   Opc = X86::VBLENDMPDZ256rrk; break; | 
|  | case X86::VMOVAPDZrrk:      Opc = X86::VBLENDMPDZrrk;    break; | 
|  | case X86::VMOVAPSZ128rrk:   Opc = X86::VBLENDMPSZ128rrk; break; | 
|  | case X86::VMOVAPSZ256rrk:   Opc = X86::VBLENDMPSZ256rrk; break; | 
|  | case X86::VMOVAPSZrrk:      Opc = X86::VBLENDMPSZrrk;    break; | 
|  | } | 
|  |  | 
|  | NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc)) | 
|  | .add(Dest) | 
|  | .add(MI.getOperand(2)) | 
|  | .add(Src) | 
|  | .add(MI.getOperand(3)); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!NewMI) return nullptr; | 
|  |  | 
|  | if (LV) {  // Update live variables | 
|  | if (Src.isKill()) | 
|  | LV->replaceKillInstruction(Src.getReg(), MI, *NewMI); | 
|  | if (Dest.isDead()) | 
|  | LV->replaceKillInstruction(Dest.getReg(), MI, *NewMI); | 
|  | } | 
|  |  | 
|  | MFI->insert(MI.getIterator(), NewMI); // Insert the new inst | 
|  | return NewMI; | 
|  | } | 
|  |  | 
|  | /// This determines which of three possible cases of a three source commute | 
|  | /// the source indexes correspond to taking into account any mask operands. | 
|  | /// All prevents commuting a passthru operand. Returns -1 if the commute isn't | 
|  | /// possible. | 
|  | /// Case 0 - Possible to commute the first and second operands. | 
|  | /// Case 1 - Possible to commute the first and third operands. | 
|  | /// Case 2 - Possible to commute the second and third operands. | 
|  | static unsigned getThreeSrcCommuteCase(uint64_t TSFlags, unsigned SrcOpIdx1, | 
|  | unsigned SrcOpIdx2) { | 
|  | // Put the lowest index to SrcOpIdx1 to simplify the checks below. | 
|  | if (SrcOpIdx1 > SrcOpIdx2) | 
|  | std::swap(SrcOpIdx1, SrcOpIdx2); | 
|  |  | 
|  | unsigned Op1 = 1, Op2 = 2, Op3 = 3; | 
|  | if (X86II::isKMasked(TSFlags)) { | 
|  | Op2++; | 
|  | Op3++; | 
|  | } | 
|  |  | 
|  | if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op2) | 
|  | return 0; | 
|  | if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op3) | 
|  | return 1; | 
|  | if (SrcOpIdx1 == Op2 && SrcOpIdx2 == Op3) | 
|  | return 2; | 
|  | llvm_unreachable("Unknown three src commute case."); | 
|  | } | 
|  |  | 
|  | unsigned X86InstrInfo::getFMA3OpcodeToCommuteOperands( | 
|  | const MachineInstr &MI, unsigned SrcOpIdx1, unsigned SrcOpIdx2, | 
|  | const X86InstrFMA3Group &FMA3Group) const { | 
|  |  | 
|  | unsigned Opc = MI.getOpcode(); | 
|  |  | 
|  | // TODO: Commuting the 1st operand of FMA*_Int requires some additional | 
|  | // analysis. The commute optimization is legal only if all users of FMA*_Int | 
|  | // use only the lowest element of the FMA*_Int instruction. Such analysis are | 
|  | // not implemented yet. So, just return 0 in that case. | 
|  | // When such analysis are available this place will be the right place for | 
|  | // calling it. | 
|  | assert(!(FMA3Group.isIntrinsic() && (SrcOpIdx1 == 1 || SrcOpIdx2 == 1)) && | 
|  | "Intrinsic instructions can't commute operand 1"); | 
|  |  | 
|  | // Determine which case this commute is or if it can't be done. | 
|  | unsigned Case = getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1, | 
|  | SrcOpIdx2); | 
|  | assert(Case < 3 && "Unexpected case number!"); | 
|  |  | 
|  | // Define the FMA forms mapping array that helps to map input FMA form | 
|  | // to output FMA form to preserve the operation semantics after | 
|  | // commuting the operands. | 
|  | const unsigned Form132Index = 0; | 
|  | const unsigned Form213Index = 1; | 
|  | const unsigned Form231Index = 2; | 
|  | static const unsigned FormMapping[][3] = { | 
|  | // 0: SrcOpIdx1 == 1 && SrcOpIdx2 == 2; | 
|  | // FMA132 A, C, b; ==> FMA231 C, A, b; | 
|  | // FMA213 B, A, c; ==> FMA213 A, B, c; | 
|  | // FMA231 C, A, b; ==> FMA132 A, C, b; | 
|  | { Form231Index, Form213Index, Form132Index }, | 
|  | // 1: SrcOpIdx1 == 1 && SrcOpIdx2 == 3; | 
|  | // FMA132 A, c, B; ==> FMA132 B, c, A; | 
|  | // FMA213 B, a, C; ==> FMA231 C, a, B; | 
|  | // FMA231 C, a, B; ==> FMA213 B, a, C; | 
|  | { Form132Index, Form231Index, Form213Index }, | 
|  | // 2: SrcOpIdx1 == 2 && SrcOpIdx2 == 3; | 
|  | // FMA132 a, C, B; ==> FMA213 a, B, C; | 
|  | // FMA213 b, A, C; ==> FMA132 b, C, A; | 
|  | // FMA231 c, A, B; ==> FMA231 c, B, A; | 
|  | { Form213Index, Form132Index, Form231Index } | 
|  | }; | 
|  |  | 
|  | unsigned FMAForms[3]; | 
|  | FMAForms[0] = FMA3Group.get132Opcode(); | 
|  | FMAForms[1] = FMA3Group.get213Opcode(); | 
|  | FMAForms[2] = FMA3Group.get231Opcode(); | 
|  | unsigned FormIndex; | 
|  | for (FormIndex = 0; FormIndex < 3; FormIndex++) | 
|  | if (Opc == FMAForms[FormIndex]) | 
|  | break; | 
|  |  | 
|  | // Everything is ready, just adjust the FMA opcode and return it. | 
|  | FormIndex = FormMapping[Case][FormIndex]; | 
|  | return FMAForms[FormIndex]; | 
|  | } | 
|  |  | 
|  | static void commuteVPTERNLOG(MachineInstr &MI, unsigned SrcOpIdx1, | 
|  | unsigned SrcOpIdx2) { | 
|  | // Determine which case this commute is or if it can't be done. | 
|  | unsigned Case = getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1, | 
|  | SrcOpIdx2); | 
|  | assert(Case < 3 && "Unexpected case value!"); | 
|  |  | 
|  | // For each case we need to swap two pairs of bits in the final immediate. | 
|  | static const uint8_t SwapMasks[3][4] = { | 
|  | { 0x04, 0x10, 0x08, 0x20 }, // Swap bits 2/4 and 3/5. | 
|  | { 0x02, 0x10, 0x08, 0x40 }, // Swap bits 1/4 and 3/6. | 
|  | { 0x02, 0x04, 0x20, 0x40 }, // Swap bits 1/2 and 5/6. | 
|  | }; | 
|  |  | 
|  | uint8_t Imm = MI.getOperand(MI.getNumOperands()-1).getImm(); | 
|  | // Clear out the bits we are swapping. | 
|  | uint8_t NewImm = Imm & ~(SwapMasks[Case][0] | SwapMasks[Case][1] | | 
|  | SwapMasks[Case][2] | SwapMasks[Case][3]); | 
|  | // If the immediate had a bit of the pair set, then set the opposite bit. | 
|  | if (Imm & SwapMasks[Case][0]) NewImm |= SwapMasks[Case][1]; | 
|  | if (Imm & SwapMasks[Case][1]) NewImm |= SwapMasks[Case][0]; | 
|  | if (Imm & SwapMasks[Case][2]) NewImm |= SwapMasks[Case][3]; | 
|  | if (Imm & SwapMasks[Case][3]) NewImm |= SwapMasks[Case][2]; | 
|  | MI.getOperand(MI.getNumOperands()-1).setImm(NewImm); | 
|  | } | 
|  |  | 
|  | // Returns true if this is a VPERMI2 or VPERMT2 instruction that can be | 
|  | // commuted. | 
|  | static bool isCommutableVPERMV3Instruction(unsigned Opcode) { | 
|  | #define VPERM_CASES(Suffix) \ | 
|  | case X86::VPERMI2##Suffix##128rr:    case X86::VPERMT2##Suffix##128rr:    \ | 
|  | case X86::VPERMI2##Suffix##256rr:    case X86::VPERMT2##Suffix##256rr:    \ | 
|  | case X86::VPERMI2##Suffix##rr:       case X86::VPERMT2##Suffix##rr:       \ | 
|  | case X86::VPERMI2##Suffix##128rm:    case X86::VPERMT2##Suffix##128rm:    \ | 
|  | case X86::VPERMI2##Suffix##256rm:    case X86::VPERMT2##Suffix##256rm:    \ | 
|  | case X86::VPERMI2##Suffix##rm:       case X86::VPERMT2##Suffix##rm:       \ | 
|  | case X86::VPERMI2##Suffix##128rrkz:  case X86::VPERMT2##Suffix##128rrkz:  \ | 
|  | case X86::VPERMI2##Suffix##256rrkz:  case X86::VPERMT2##Suffix##256rrkz:  \ | 
|  | case X86::VPERMI2##Suffix##rrkz:     case X86::VPERMT2##Suffix##rrkz:     \ | 
|  | case X86::VPERMI2##Suffix##128rmkz:  case X86::VPERMT2##Suffix##128rmkz:  \ | 
|  | case X86::VPERMI2##Suffix##256rmkz:  case X86::VPERMT2##Suffix##256rmkz:  \ | 
|  | case X86::VPERMI2##Suffix##rmkz:     case X86::VPERMT2##Suffix##rmkz: | 
|  |  | 
|  | #define VPERM_CASES_BROADCAST(Suffix) \ | 
|  | VPERM_CASES(Suffix) \ | 
|  | case X86::VPERMI2##Suffix##128rmb:   case X86::VPERMT2##Suffix##128rmb:   \ | 
|  | case X86::VPERMI2##Suffix##256rmb:   case X86::VPERMT2##Suffix##256rmb:   \ | 
|  | case X86::VPERMI2##Suffix##rmb:      case X86::VPERMT2##Suffix##rmb:      \ | 
|  | case X86::VPERMI2##Suffix##128rmbkz: case X86::VPERMT2##Suffix##128rmbkz: \ | 
|  | case X86::VPERMI2##Suffix##256rmbkz: case X86::VPERMT2##Suffix##256rmbkz: \ | 
|  | case X86::VPERMI2##Suffix##rmbkz:    case X86::VPERMT2##Suffix##rmbkz: | 
|  |  | 
|  | switch (Opcode) { | 
|  | default: return false; | 
|  | VPERM_CASES(B) | 
|  | VPERM_CASES_BROADCAST(D) | 
|  | VPERM_CASES_BROADCAST(PD) | 
|  | VPERM_CASES_BROADCAST(PS) | 
|  | VPERM_CASES_BROADCAST(Q) | 
|  | VPERM_CASES(W) | 
|  | return true; | 
|  | } | 
|  | #undef VPERM_CASES_BROADCAST | 
|  | #undef VPERM_CASES | 
|  | } | 
|  |  | 
|  | // Returns commuted opcode for VPERMI2 and VPERMT2 instructions by switching | 
|  | // from the I opcode to the T opcode and vice versa. | 
|  | static unsigned getCommutedVPERMV3Opcode(unsigned Opcode) { | 
|  | #define VPERM_CASES(Orig, New) \ | 
|  | case X86::Orig##128rr:    return X86::New##128rr;   \ | 
|  | case X86::Orig##128rrkz:  return X86::New##128rrkz; \ | 
|  | case X86::Orig##128rm:    return X86::New##128rm;   \ | 
|  | case X86::Orig##128rmkz:  return X86::New##128rmkz; \ | 
|  | case X86::Orig##256rr:    return X86::New##256rr;   \ | 
|  | case X86::Orig##256rrkz:  return X86::New##256rrkz; \ | 
|  | case X86::Orig##256rm:    return X86::New##256rm;   \ | 
|  | case X86::Orig##256rmkz:  return X86::New##256rmkz; \ | 
|  | case X86::Orig##rr:       return X86::New##rr;      \ | 
|  | case X86::Orig##rrkz:     return X86::New##rrkz;    \ | 
|  | case X86::Orig##rm:       return X86::New##rm;      \ | 
|  | case X86::Orig##rmkz:     return X86::New##rmkz; | 
|  |  | 
|  | #define VPERM_CASES_BROADCAST(Orig, New) \ | 
|  | VPERM_CASES(Orig, New) \ | 
|  | case X86::Orig##128rmb:   return X86::New##128rmb;   \ | 
|  | case X86::Orig##128rmbkz: return X86::New##128rmbkz; \ | 
|  | case X86::Orig##256rmb:   return X86::New##256rmb;   \ | 
|  | case X86::Orig##256rmbkz: return X86::New##256rmbkz; \ | 
|  | case X86::Orig##rmb:      return X86::New##rmb;      \ | 
|  | case X86::Orig##rmbkz:    return X86::New##rmbkz; | 
|  |  | 
|  | switch (Opcode) { | 
|  | VPERM_CASES(VPERMI2B, VPERMT2B) | 
|  | VPERM_CASES_BROADCAST(VPERMI2D,  VPERMT2D) | 
|  | VPERM_CASES_BROADCAST(VPERMI2PD, VPERMT2PD) | 
|  | VPERM_CASES_BROADCAST(VPERMI2PS, VPERMT2PS) | 
|  | VPERM_CASES_BROADCAST(VPERMI2Q,  VPERMT2Q) | 
|  | VPERM_CASES(VPERMI2W, VPERMT2W) | 
|  | VPERM_CASES(VPERMT2B, VPERMI2B) | 
|  | VPERM_CASES_BROADCAST(VPERMT2D,  VPERMI2D) | 
|  | VPERM_CASES_BROADCAST(VPERMT2PD, VPERMI2PD) | 
|  | VPERM_CASES_BROADCAST(VPERMT2PS, VPERMI2PS) | 
|  | VPERM_CASES_BROADCAST(VPERMT2Q,  VPERMI2Q) | 
|  | VPERM_CASES(VPERMT2W, VPERMI2W) | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Unreachable!"); | 
|  | #undef VPERM_CASES_BROADCAST | 
|  | #undef VPERM_CASES | 
|  | } | 
|  |  | 
|  | MachineInstr *X86InstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, | 
|  | unsigned OpIdx1, | 
|  | unsigned OpIdx2) const { | 
|  | auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & { | 
|  | if (NewMI) | 
|  | return *MI.getParent()->getParent()->CloneMachineInstr(&MI); | 
|  | return MI; | 
|  | }; | 
|  |  | 
|  | switch (MI.getOpcode()) { | 
|  | case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I) | 
|  | case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I) | 
|  | case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I) | 
|  | case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I) | 
|  | case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I) | 
|  | case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I) | 
|  | unsigned Opc; | 
|  | unsigned Size; | 
|  | switch (MI.getOpcode()) { | 
|  | default: llvm_unreachable("Unreachable!"); | 
|  | case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break; | 
|  | case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break; | 
|  | case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break; | 
|  | case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break; | 
|  | case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break; | 
|  | case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break; | 
|  | } | 
|  | unsigned Amt = MI.getOperand(3).getImm(); | 
|  | auto &WorkingMI = cloneIfNew(MI); | 
|  | WorkingMI.setDesc(get(Opc)); | 
|  | WorkingMI.getOperand(3).setImm(Size - Amt); | 
|  | return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, | 
|  | OpIdx1, OpIdx2); | 
|  | } | 
|  | case X86::PFSUBrr: | 
|  | case X86::PFSUBRrr: { | 
|  | // PFSUB  x, y: x = x - y | 
|  | // PFSUBR x, y: x = y - x | 
|  | unsigned Opc = | 
|  | (X86::PFSUBRrr == MI.getOpcode() ? X86::PFSUBrr : X86::PFSUBRrr); | 
|  | auto &WorkingMI = cloneIfNew(MI); | 
|  | WorkingMI.setDesc(get(Opc)); | 
|  | return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, | 
|  | OpIdx1, OpIdx2); | 
|  | } | 
|  | case X86::BLENDPDrri: | 
|  | case X86::BLENDPSrri: | 
|  | case X86::VBLENDPDrri: | 
|  | case X86::VBLENDPSrri: | 
|  | // If we're optimizing for size, try to use MOVSD/MOVSS. | 
|  | if (MI.getParent()->getParent()->getFunction().optForSize()) { | 
|  | unsigned Mask, Opc; | 
|  | switch (MI.getOpcode()) { | 
|  | default: llvm_unreachable("Unreachable!"); | 
|  | case X86::BLENDPDrri:  Opc = X86::MOVSDrr;  Mask = 0x03; break; | 
|  | case X86::BLENDPSrri:  Opc = X86::MOVSSrr;  Mask = 0x0F; break; | 
|  | case X86::VBLENDPDrri: Opc = X86::VMOVSDrr; Mask = 0x03; break; | 
|  | case X86::VBLENDPSrri: Opc = X86::VMOVSSrr; Mask = 0x0F; break; | 
|  | } | 
|  | if ((MI.getOperand(3).getImm() ^ Mask) == 1) { | 
|  | auto &WorkingMI = cloneIfNew(MI); | 
|  | WorkingMI.setDesc(get(Opc)); | 
|  | WorkingMI.RemoveOperand(3); | 
|  | return TargetInstrInfo::commuteInstructionImpl(WorkingMI, | 
|  | /*NewMI=*/false, | 
|  | OpIdx1, OpIdx2); | 
|  | } | 
|  | } | 
|  | LLVM_FALLTHROUGH; | 
|  | case X86::PBLENDWrri: | 
|  | case X86::VBLENDPDYrri: | 
|  | case X86::VBLENDPSYrri: | 
|  | case X86::VPBLENDDrri: | 
|  | case X86::VPBLENDWrri: | 
|  | case X86::VPBLENDDYrri: | 
|  | case X86::VPBLENDWYrri:{ | 
|  | unsigned Mask; | 
|  | switch (MI.getOpcode()) { | 
|  | default: llvm_unreachable("Unreachable!"); | 
|  | case X86::BLENDPDrri:    Mask = 0x03; break; | 
|  | case X86::BLENDPSrri:    Mask = 0x0F; break; | 
|  | case X86::PBLENDWrri:    Mask = 0xFF; break; | 
|  | case X86::VBLENDPDrri:   Mask = 0x03; break; | 
|  | case X86::VBLENDPSrri:   Mask = 0x0F; break; | 
|  | case X86::VBLENDPDYrri:  Mask = 0x0F; break; | 
|  | case X86::VBLENDPSYrri:  Mask = 0xFF; break; | 
|  | case X86::VPBLENDDrri:   Mask = 0x0F; break; | 
|  | case X86::VPBLENDWrri:   Mask = 0xFF; break; | 
|  | case X86::VPBLENDDYrri:  Mask = 0xFF; break; | 
|  | case X86::VPBLENDWYrri:  Mask = 0xFF; break; | 
|  | } | 
|  | // Only the least significant bits of Imm are used. | 
|  | unsigned Imm = MI.getOperand(3).getImm() & Mask; | 
|  | auto &WorkingMI = cloneIfNew(MI); | 
|  | WorkingMI.getOperand(3).setImm(Mask ^ Imm); | 
|  | return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, | 
|  | OpIdx1, OpIdx2); | 
|  | } | 
|  | case X86::MOVSDrr: | 
|  | case X86::MOVSSrr: | 
|  | case X86::VMOVSDrr: | 
|  | case X86::VMOVSSrr:{ | 
|  | // On SSE41 or later we can commute a MOVSS/MOVSD to a BLENDPS/BLENDPD. | 
|  | assert(Subtarget.hasSSE41() && "Commuting MOVSD/MOVSS requires SSE41!"); | 
|  |  | 
|  | unsigned Mask, Opc; | 
|  | switch (MI.getOpcode()) { | 
|  | default: llvm_unreachable("Unreachable!"); | 
|  | case X86::MOVSDrr:  Opc = X86::BLENDPDrri;  Mask = 0x02; break; | 
|  | case X86::MOVSSrr:  Opc = X86::BLENDPSrri;  Mask = 0x0E; break; | 
|  | case X86::VMOVSDrr: Opc = X86::VBLENDPDrri; Mask = 0x02; break; | 
|  | case X86::VMOVSSrr: Opc = X86::VBLENDPSrri; Mask = 0x0E; break; | 
|  | } | 
|  |  | 
|  | auto &WorkingMI = cloneIfNew(MI); | 
|  | WorkingMI.setDesc(get(Opc)); | 
|  | WorkingMI.addOperand(MachineOperand::CreateImm(Mask)); | 
|  | return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, | 
|  | OpIdx1, OpIdx2); | 
|  | } | 
|  | case X86::PCLMULQDQrr: | 
|  | case X86::VPCLMULQDQrr: | 
|  | case X86::VPCLMULQDQYrr: | 
|  | case X86::VPCLMULQDQZrr: | 
|  | case X86::VPCLMULQDQZ128rr: | 
|  | case X86::VPCLMULQDQZ256rr: { | 
|  | // SRC1 64bits = Imm[0] ? SRC1[127:64] : SRC1[63:0] | 
|  | // SRC2 64bits = Imm[4] ? SRC2[127:64] : SRC2[63:0] | 
|  | unsigned Imm = MI.getOperand(3).getImm(); | 
|  | unsigned Src1Hi = Imm & 0x01; | 
|  | unsigned Src2Hi = Imm & 0x10; | 
|  | auto &WorkingMI = cloneIfNew(MI); | 
|  | WorkingMI.getOperand(3).setImm((Src1Hi << 4) | (Src2Hi >> 4)); | 
|  | return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, | 
|  | OpIdx1, OpIdx2); | 
|  | } | 
|  | case X86::VPCMPBZ128rri:  case X86::VPCMPUBZ128rri: | 
|  | case X86::VPCMPBZ256rri:  case X86::VPCMPUBZ256rri: | 
|  | case X86::VPCMPBZrri:     case X86::VPCMPUBZrri: | 
|  | case X86::VPCMPDZ128rri:  case X86::VPCMPUDZ128rri: | 
|  | case X86::VPCMPDZ256rri:  case X86::VPCMPUDZ256rri: | 
|  | case X86::VPCMPDZrri:     case X86::VPCMPUDZrri: | 
|  | case X86::VPCMPQZ128rri:  case X86::VPCMPUQZ128rri: | 
|  | case X86::VPCMPQZ256rri:  case X86::VPCMPUQZ256rri: | 
|  | case X86::VPCMPQZrri:     case X86::VPCMPUQZrri: | 
|  | case X86::VPCMPWZ128rri:  case X86::VPCMPUWZ128rri: | 
|  | case X86::VPCMPWZ256rri:  case X86::VPCMPUWZ256rri: | 
|  | case X86::VPCMPWZrri:     case X86::VPCMPUWZrri: | 
|  | case X86::VPCMPBZ128rrik: case X86::VPCMPUBZ128rrik: | 
|  | case X86::VPCMPBZ256rrik: case X86::VPCMPUBZ256rrik: | 
|  | case X86::VPCMPBZrrik:    case X86::VPCMPUBZrrik: | 
|  | case X86::VPCMPDZ128rrik: case X86::VPCMPUDZ128rrik: | 
|  | case X86::VPCMPDZ256rrik: case X86::VPCMPUDZ256rrik: | 
|  | case X86::VPCMPDZrrik:    case X86::VPCMPUDZrrik: | 
|  | case X86::VPCMPQZ128rrik: case X86::VPCMPUQZ128rrik: | 
|  | case X86::VPCMPQZ256rrik: case X86::VPCMPUQZ256rrik: | 
|  | case X86::VPCMPQZrrik:    case X86::VPCMPUQZrrik: | 
|  | case X86::VPCMPWZ128rrik: case X86::VPCMPUWZ128rrik: | 
|  | case X86::VPCMPWZ256rrik: case X86::VPCMPUWZ256rrik: | 
|  | case X86::VPCMPWZrrik:    case X86::VPCMPUWZrrik: { | 
|  | // Flip comparison mode immediate (if necessary). | 
|  | unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm() & 0x7; | 
|  | Imm = X86::getSwappedVPCMPImm(Imm); | 
|  | auto &WorkingMI = cloneIfNew(MI); | 
|  | WorkingMI.getOperand(MI.getNumOperands() - 1).setImm(Imm); | 
|  | return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, | 
|  | OpIdx1, OpIdx2); | 
|  | } | 
|  | case X86::VPCOMBri: case X86::VPCOMUBri: | 
|  | case X86::VPCOMDri: case X86::VPCOMUDri: | 
|  | case X86::VPCOMQri: case X86::VPCOMUQri: | 
|  | case X86::VPCOMWri: case X86::VPCOMUWri: { | 
|  | // Flip comparison mode immediate (if necessary). | 
|  | unsigned Imm = MI.getOperand(3).getImm() & 0x7; | 
|  | Imm = X86::getSwappedVPCOMImm(Imm); | 
|  | auto &WorkingMI = cloneIfNew(MI); | 
|  | WorkingMI.getOperand(3).setImm(Imm); | 
|  | return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, | 
|  | OpIdx1, OpIdx2); | 
|  | } | 
|  | case X86::VPERM2F128rr: | 
|  | case X86::VPERM2I128rr: { | 
|  | // Flip permute source immediate. | 
|  | // Imm & 0x02: lo = if set, select Op1.lo/hi else Op0.lo/hi. | 
|  | // Imm & 0x20: hi = if set, select Op1.lo/hi else Op0.lo/hi. | 
|  | unsigned Imm = MI.getOperand(3).getImm() & 0xFF; | 
|  | auto &WorkingMI = cloneIfNew(MI); | 
|  | WorkingMI.getOperand(3).setImm(Imm ^ 0x22); | 
|  | return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, | 
|  | OpIdx1, OpIdx2); | 
|  | } | 
|  | case X86::MOVHLPSrr: | 
|  | case X86::UNPCKHPDrr: | 
|  | case X86::VMOVHLPSrr: | 
|  | case X86::VUNPCKHPDrr: | 
|  | case X86::VMOVHLPSZrr: | 
|  | case X86::VUNPCKHPDZ128rr: { | 
|  | assert(Subtarget.hasSSE2() && "Commuting MOVHLP/UNPCKHPD requires SSE2!"); | 
|  |  | 
|  | unsigned Opc = MI.getOpcode(); | 
|  | switch (Opc) { | 
|  | default: llvm_unreachable("Unreachable!"); | 
|  | case X86::MOVHLPSrr:       Opc = X86::UNPCKHPDrr;      break; | 
|  | case X86::UNPCKHPDrr:      Opc = X86::MOVHLPSrr;       break; | 
|  | case X86::VMOVHLPSrr:      Opc = X86::VUNPCKHPDrr;     break; | 
|  | case X86::VUNPCKHPDrr:     Opc = X86::VMOVHLPSrr;      break; | 
|  | case X86::VMOVHLPSZrr:     Opc = X86::VUNPCKHPDZ128rr; break; | 
|  | case X86::VUNPCKHPDZ128rr: Opc = X86::VMOVHLPSZrr;     break; | 
|  | } | 
|  | auto &WorkingMI = cloneIfNew(MI); | 
|  | WorkingMI.setDesc(get(Opc)); | 
|  | return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, | 
|  | OpIdx1, OpIdx2); | 
|  | } | 
|  | case X86::CMOVB16rr:  case X86::CMOVB32rr:  case X86::CMOVB64rr: | 
|  | case X86::CMOVAE16rr: case X86::CMOVAE32rr: case X86::CMOVAE64rr: | 
|  | case X86::CMOVE16rr:  case X86::CMOVE32rr:  case X86::CMOVE64rr: | 
|  | case X86::CMOVNE16rr: case X86::CMOVNE32rr: case X86::CMOVNE64rr: | 
|  | case X86::CMOVBE16rr: case X86::CMOVBE32rr: case X86::CMOVBE64rr: | 
|  | case X86::CMOVA16rr:  case X86::CMOVA32rr:  case X86::CMOVA64rr: | 
|  | case X86::CMOVL16rr:  case X86::CMOVL32rr:  case X86::CMOVL64rr: | 
|  | case X86::CMOVGE16rr: case X86::CMOVGE32rr: case X86::CMOVGE64rr: | 
|  | case X86::CMOVLE16rr: case X86::CMOVLE32rr: case X86::CMOVLE64rr: | 
|  | case X86::CMOVG16rr:  case X86::CMOVG32rr:  case X86::CMOVG64rr: | 
|  | case X86::CMOVS16rr:  case X86::CMOVS32rr:  case X86::CMOVS64rr: | 
|  | case X86::CMOVNS16rr: case X86::CMOVNS32rr: case X86::CMOVNS64rr: | 
|  | case X86::CMOVP16rr:  case X86::CMOVP32rr:  case X86::CMOVP64rr: | 
|  | case X86::CMOVNP16rr: case X86::CMOVNP32rr: case X86::CMOVNP64rr: | 
|  | case X86::CMOVO16rr:  case X86::CMOVO32rr:  case X86::CMOVO64rr: | 
|  | case X86::CMOVNO16rr: case X86::CMOVNO32rr: case X86::CMOVNO64rr: { | 
|  | unsigned Opc; | 
|  | switch (MI.getOpcode()) { | 
|  | default: llvm_unreachable("Unreachable!"); | 
|  | case X86::CMOVB16rr:  Opc = X86::CMOVAE16rr; break; | 
|  | case X86::CMOVB32rr:  Opc = X86::CMOVAE32rr; break; | 
|  | case X86::CMOVB64rr:  Opc = X86::CMOVAE64rr; break; | 
|  | case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break; | 
|  | case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break; | 
|  | case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break; | 
|  | case X86::CMOVE16rr:  Opc = X86::CMOVNE16rr; break; | 
|  | case X86::CMOVE32rr:  Opc = X86::CMOVNE32rr; break; | 
|  | case X86::CMOVE64rr:  Opc = X86::CMOVNE64rr; break; | 
|  | case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break; | 
|  | case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break; | 
|  | case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break; | 
|  | case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break; | 
|  | case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break; | 
|  | case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break; | 
|  | case X86::CMOVA16rr:  Opc = X86::CMOVBE16rr; break; | 
|  | case X86::CMOVA32rr:  Opc = X86::CMOVBE32rr; break; | 
|  | case X86::CMOVA64rr:  Opc = X86::CMOVBE64rr; break; | 
|  | case X86::CMOVL16rr:  Opc = X86::CMOVGE16rr; break; | 
|  | case X86::CMOVL32rr:  Opc = X86::CMOVGE32rr; break; | 
|  | case X86::CMOVL64rr:  Opc = X86::CMOVGE64rr; break; | 
|  | case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break; | 
|  | case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break; | 
|  | case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break; | 
|  | case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break; | 
|  | case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break; | 
|  | case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break; | 
|  | case X86::CMOVG16rr:  Opc = X86::CMOVLE16rr; break; | 
|  | case X86::CMOVG32rr:  Opc = X86::CMOVLE32rr; break; | 
|  | case X86::CMOVG64rr:  Opc = X86::CMOVLE64rr; break; | 
|  | case X86::CMOVS16rr:  Opc = X86::CMOVNS16rr; break; | 
|  | case X86::CMOVS32rr:  Opc = X86::CMOVNS32rr; break; | 
|  | case X86::CMOVS64rr:  Opc = X86::CMOVNS64rr; break; | 
|  | case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break; | 
|  | case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break; | 
|  | case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break; | 
|  | case X86::CMOVP16rr:  Opc = X86::CMOVNP16rr; break; | 
|  | case X86::CMOVP32rr:  Opc = X86::CMOVNP32rr; break; | 
|  | case X86::CMOVP64rr:  Opc = X86::CMOVNP64rr; break; | 
|  | case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break; | 
|  | case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break; | 
|  | case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break; | 
|  | case X86::CMOVO16rr:  Opc = X86::CMOVNO16rr; break; | 
|  | case X86::CMOVO32rr:  Opc = X86::CMOVNO32rr; break; | 
|  | case X86::CMOVO64rr:  Opc = X86::CMOVNO64rr; break; | 
|  | case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break; | 
|  | case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break; | 
|  | case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break; | 
|  | } | 
|  | auto &WorkingMI = cloneIfNew(MI); | 
|  | WorkingMI.setDesc(get(Opc)); | 
|  | return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, | 
|  | OpIdx1, OpIdx2); | 
|  | } | 
|  | case X86::VPTERNLOGDZrri:      case X86::VPTERNLOGDZrmi: | 
|  | case X86::VPTERNLOGDZ128rri:   case X86::VPTERNLOGDZ128rmi: | 
|  | case X86::VPTERNLOGDZ256rri:   case X86::VPTERNLOGDZ256rmi: | 
|  | case X86::VPTERNLOGQZrri:      case X86::VPTERNLOGQZrmi: | 
|  | case X86::VPTERNLOGQZ128rri:   case X86::VPTERNLOGQZ128rmi: | 
|  | case X86::VPTERNLOGQZ256rri:   case X86::VPTERNLOGQZ256rmi: | 
|  | case X86::VPTERNLOGDZrrik: | 
|  | case X86::VPTERNLOGDZ128rrik: | 
|  | case X86::VPTERNLOGDZ256rrik: | 
|  | case X86::VPTERNLOGQZrrik: | 
|  | case X86::VPTERNLOGQZ128rrik: | 
|  | case X86::VPTERNLOGQZ256rrik: | 
|  | case X86::VPTERNLOGDZrrikz:    case X86::VPTERNLOGDZrmikz: | 
|  | case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz: | 
|  | case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz: | 
|  | case X86::VPTERNLOGQZrrikz:    case X86::VPTERNLOGQZrmikz: | 
|  | case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz: | 
|  | case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz: | 
|  | case X86::VPTERNLOGDZ128rmbi: | 
|  | case X86::VPTERNLOGDZ256rmbi: | 
|  | case X86::VPTERNLOGDZrmbi: | 
|  | case X86::VPTERNLOGQZ128rmbi: | 
|  | case X86::VPTERNLOGQZ256rmbi: | 
|  | case X86::VPTERNLOGQZrmbi: | 
|  | case X86::VPTERNLOGDZ128rmbikz: | 
|  | case X86::VPTERNLOGDZ256rmbikz: | 
|  | case X86::VPTERNLOGDZrmbikz: | 
|  | case X86::VPTERNLOGQZ128rmbikz: | 
|  | case X86::VPTERNLOGQZ256rmbikz: | 
|  | case X86::VPTERNLOGQZrmbikz: { | 
|  | auto &WorkingMI = cloneIfNew(MI); | 
|  | commuteVPTERNLOG(WorkingMI, OpIdx1, OpIdx2); | 
|  | return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, | 
|  | OpIdx1, OpIdx2); | 
|  | } | 
|  | default: { | 
|  | if (isCommutableVPERMV3Instruction(MI.getOpcode())) { | 
|  | unsigned Opc = getCommutedVPERMV3Opcode(MI.getOpcode()); | 
|  | auto &WorkingMI = cloneIfNew(MI); | 
|  | WorkingMI.setDesc(get(Opc)); | 
|  | return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, | 
|  | OpIdx1, OpIdx2); | 
|  | } | 
|  |  | 
|  | const X86InstrFMA3Group *FMA3Group = getFMA3Group(MI.getOpcode(), | 
|  | MI.getDesc().TSFlags); | 
|  | if (FMA3Group) { | 
|  | unsigned Opc = | 
|  | getFMA3OpcodeToCommuteOperands(MI, OpIdx1, OpIdx2, *FMA3Group); | 
|  | auto &WorkingMI = cloneIfNew(MI); | 
|  | WorkingMI.setDesc(get(Opc)); | 
|  | return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, | 
|  | OpIdx1, OpIdx2); | 
|  | } | 
|  |  | 
|  | return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool | 
|  | X86InstrInfo::findThreeSrcCommutedOpIndices(const MachineInstr &MI, | 
|  | unsigned &SrcOpIdx1, | 
|  | unsigned &SrcOpIdx2, | 
|  | bool IsIntrinsic) const { | 
|  | uint64_t TSFlags = MI.getDesc().TSFlags; | 
|  |  | 
|  | unsigned FirstCommutableVecOp = 1; | 
|  | unsigned LastCommutableVecOp = 3; | 
|  | unsigned KMaskOp = -1U; | 
|  | if (X86II::isKMasked(TSFlags)) { | 
|  | // For k-zero-masked operations it is Ok to commute the first vector | 
|  | // operand. | 
|  | // For regular k-masked operations a conservative choice is done as the | 
|  | // elements of the first vector operand, for which the corresponding bit | 
|  | // in the k-mask operand is set to 0, are copied to the result of the | 
|  | // instruction. | 
|  | // TODO/FIXME: The commute still may be legal if it is known that the | 
|  | // k-mask operand is set to either all ones or all zeroes. | 
|  | // It is also Ok to commute the 1st operand if all users of MI use only | 
|  | // the elements enabled by the k-mask operand. For example, | 
|  | //   v4 = VFMADD213PSZrk v1, k, v2, v3; // v1[i] = k[i] ? v2[i]*v1[i]+v3[i] | 
|  | //                                                     : v1[i]; | 
|  | //   VMOVAPSZmrk <mem_addr>, k, v4; // this is the ONLY user of v4 -> | 
|  | //                                  // Ok, to commute v1 in FMADD213PSZrk. | 
|  |  | 
|  | // The k-mask operand has index = 2 for masked and zero-masked operations. | 
|  | KMaskOp = 2; | 
|  |  | 
|  | // The operand with index = 1 is used as a source for those elements for | 
|  | // which the corresponding bit in the k-mask is set to 0. | 
|  | if (X86II::isKMergeMasked(TSFlags)) | 
|  | FirstCommutableVecOp = 3; | 
|  |  | 
|  | LastCommutableVecOp++; | 
|  | } else if (IsIntrinsic) { | 
|  | // Commuting the first operand of an intrinsic instruction isn't possible | 
|  | // unless we can prove that only the lowest element of the result is used. | 
|  | FirstCommutableVecOp = 2; | 
|  | } | 
|  |  | 
|  | if (isMem(MI, LastCommutableVecOp)) | 
|  | LastCommutableVecOp--; | 
|  |  | 
|  | // Only the first RegOpsNum operands are commutable. | 
|  | // Also, the value 'CommuteAnyOperandIndex' is valid here as it means | 
|  | // that the operand is not specified/fixed. | 
|  | if (SrcOpIdx1 != CommuteAnyOperandIndex && | 
|  | (SrcOpIdx1 < FirstCommutableVecOp || SrcOpIdx1 > LastCommutableVecOp || | 
|  | SrcOpIdx1 == KMaskOp)) | 
|  | return false; | 
|  | if (SrcOpIdx2 != CommuteAnyOperandIndex && | 
|  | (SrcOpIdx2 < FirstCommutableVecOp || SrcOpIdx2 > LastCommutableVecOp || | 
|  | SrcOpIdx2 == KMaskOp)) | 
|  | return false; | 
|  |  | 
|  | // Look for two different register operands assumed to be commutable | 
|  | // regardless of the FMA opcode. The FMA opcode is adjusted later. | 
|  | if (SrcOpIdx1 == CommuteAnyOperandIndex || | 
|  | SrcOpIdx2 == CommuteAnyOperandIndex) { | 
|  | unsigned CommutableOpIdx1 = SrcOpIdx1; | 
|  | unsigned CommutableOpIdx2 = SrcOpIdx2; | 
|  |  | 
|  | // At least one of operands to be commuted is not specified and | 
|  | // this method is free to choose appropriate commutable operands. | 
|  | if (SrcOpIdx1 == SrcOpIdx2) | 
|  | // Both of operands are not fixed. By default set one of commutable | 
|  | // operands to the last register operand of the instruction. | 
|  | CommutableOpIdx2 = LastCommutableVecOp; | 
|  | else if (SrcOpIdx2 == CommuteAnyOperandIndex) | 
|  | // Only one of operands is not fixed. | 
|  | CommutableOpIdx2 = SrcOpIdx1; | 
|  |  | 
|  | // CommutableOpIdx2 is well defined now. Let's choose another commutable | 
|  | // operand and assign its index to CommutableOpIdx1. | 
|  | unsigned Op2Reg = MI.getOperand(CommutableOpIdx2).getReg(); | 
|  | for (CommutableOpIdx1 = LastCommutableVecOp; | 
|  | CommutableOpIdx1 >= FirstCommutableVecOp; CommutableOpIdx1--) { | 
|  | // Just ignore and skip the k-mask operand. | 
|  | if (CommutableOpIdx1 == KMaskOp) | 
|  | continue; | 
|  |  | 
|  | // The commuted operands must have different registers. | 
|  | // Otherwise, the commute transformation does not change anything and | 
|  | // is useless then. | 
|  | if (Op2Reg != MI.getOperand(CommutableOpIdx1).getReg()) | 
|  | break; | 
|  | } | 
|  |  | 
|  | // No appropriate commutable operands were found. | 
|  | if (CommutableOpIdx1 < FirstCommutableVecOp) | 
|  | return false; | 
|  |  | 
|  | // Assign the found pair of commutable indices to SrcOpIdx1 and SrcOpidx2 | 
|  | // to return those values. | 
|  | if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, | 
|  | CommutableOpIdx1, CommutableOpIdx2)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1, | 
|  | unsigned &SrcOpIdx2) const { | 
|  | const MCInstrDesc &Desc = MI.getDesc(); | 
|  | if (!Desc.isCommutable()) | 
|  | return false; | 
|  |  | 
|  | switch (MI.getOpcode()) { | 
|  | case X86::CMPSDrr: | 
|  | case X86::CMPSSrr: | 
|  | case X86::CMPPDrri: | 
|  | case X86::CMPPSrri: | 
|  | case X86::VCMPSDrr: | 
|  | case X86::VCMPSSrr: | 
|  | case X86::VCMPPDrri: | 
|  | case X86::VCMPPSrri: | 
|  | case X86::VCMPPDYrri: | 
|  | case X86::VCMPPSYrri: | 
|  | case X86::VCMPSDZrr: | 
|  | case X86::VCMPSSZrr: | 
|  | case X86::VCMPPDZrri: | 
|  | case X86::VCMPPSZrri: | 
|  | case X86::VCMPPDZ128rri: | 
|  | case X86::VCMPPSZ128rri: | 
|  | case X86::VCMPPDZ256rri: | 
|  | case X86::VCMPPSZ256rri: { | 
|  | // Float comparison can be safely commuted for | 
|  | // Ordered/Unordered/Equal/NotEqual tests | 
|  | unsigned Imm = MI.getOperand(3).getImm() & 0x7; | 
|  | switch (Imm) { | 
|  | case 0x00: // EQUAL | 
|  | case 0x03: // UNORDERED | 
|  | case 0x04: // NOT EQUAL | 
|  | case 0x07: // ORDERED | 
|  | // The indices of the commutable operands are 1 and 2. | 
|  | // Assign them to the returned operand indices here. | 
|  | return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 1, 2); | 
|  | } | 
|  | return false; | 
|  | } | 
|  | case X86::MOVSDrr: | 
|  | case X86::MOVSSrr: | 
|  | case X86::VMOVSDrr: | 
|  | case X86::VMOVSSrr: | 
|  | if (Subtarget.hasSSE41()) | 
|  | return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); | 
|  | return false; | 
|  | case X86::MOVHLPSrr: | 
|  | case X86::UNPCKHPDrr: | 
|  | case X86::VMOVHLPSrr: | 
|  | case X86::VUNPCKHPDrr: | 
|  | case X86::VMOVHLPSZrr: | 
|  | case X86::VUNPCKHPDZ128rr: | 
|  | if (Subtarget.hasSSE2()) | 
|  | return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); | 
|  | return false; | 
|  | case X86::VPTERNLOGDZrri:      case X86::VPTERNLOGDZrmi: | 
|  | case X86::VPTERNLOGDZ128rri:   case X86::VPTERNLOGDZ128rmi: | 
|  | case X86::VPTERNLOGDZ256rri:   case X86::VPTERNLOGDZ256rmi: | 
|  | case X86::VPTERNLOGQZrri:      case X86::VPTERNLOGQZrmi: | 
|  | case X86::VPTERNLOGQZ128rri:   case X86::VPTERNLOGQZ128rmi: | 
|  | case X86::VPTERNLOGQZ256rri:   case X86::VPTERNLOGQZ256rmi: | 
|  | case X86::VPTERNLOGDZrrik: | 
|  | case X86::VPTERNLOGDZ128rrik: | 
|  | case X86::VPTERNLOGDZ256rrik: | 
|  | case X86::VPTERNLOGQZrrik: | 
|  | case X86::VPTERNLOGQZ128rrik: | 
|  | case X86::VPTERNLOGQZ256rrik: | 
|  | case X86::VPTERNLOGDZrrikz:    case X86::VPTERNLOGDZrmikz: | 
|  | case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz: | 
|  | case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz: | 
|  | case X86::VPTERNLOGQZrrikz:    case X86::VPTERNLOGQZrmikz: | 
|  | case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz: | 
|  | case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz: | 
|  | case X86::VPTERNLOGDZ128rmbi: | 
|  | case X86::VPTERNLOGDZ256rmbi: | 
|  | case X86::VPTERNLOGDZrmbi: | 
|  | case X86::VPTERNLOGQZ128rmbi: | 
|  | case X86::VPTERNLOGQZ256rmbi: | 
|  | case X86::VPTERNLOGQZrmbi: | 
|  | case X86::VPTERNLOGDZ128rmbikz: | 
|  | case X86::VPTERNLOGDZ256rmbikz: | 
|  | case X86::VPTERNLOGDZrmbikz: | 
|  | case X86::VPTERNLOGQZ128rmbikz: | 
|  | case X86::VPTERNLOGQZ256rmbikz: | 
|  | case X86::VPTERNLOGQZrmbikz: | 
|  | return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); | 
|  | case X86::VPMADD52HUQZ128r: | 
|  | case X86::VPMADD52HUQZ128rk: | 
|  | case X86::VPMADD52HUQZ128rkz: | 
|  | case X86::VPMADD52HUQZ256r: | 
|  | case X86::VPMADD52HUQZ256rk: | 
|  | case X86::VPMADD52HUQZ256rkz: | 
|  | case X86::VPMADD52HUQZr: | 
|  | case X86::VPMADD52HUQZrk: | 
|  | case X86::VPMADD52HUQZrkz: | 
|  | case X86::VPMADD52LUQZ128r: | 
|  | case X86::VPMADD52LUQZ128rk: | 
|  | case X86::VPMADD52LUQZ128rkz: | 
|  | case X86::VPMADD52LUQZ256r: | 
|  | case X86::VPMADD52LUQZ256rk: | 
|  | case X86::VPMADD52LUQZ256rkz: | 
|  | case X86::VPMADD52LUQZr: | 
|  | case X86::VPMADD52LUQZrk: | 
|  | case X86::VPMADD52LUQZrkz: { | 
|  | unsigned CommutableOpIdx1 = 2; | 
|  | unsigned CommutableOpIdx2 = 3; | 
|  | if (X86II::isKMasked(Desc.TSFlags)) { | 
|  | // Skip the mask register. | 
|  | ++CommutableOpIdx1; | 
|  | ++CommutableOpIdx2; | 
|  | } | 
|  | if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, | 
|  | CommutableOpIdx1, CommutableOpIdx2)) | 
|  | return false; | 
|  | if (!MI.getOperand(SrcOpIdx1).isReg() || | 
|  | !MI.getOperand(SrcOpIdx2).isReg()) | 
|  | // No idea. | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | default: | 
|  | const X86InstrFMA3Group *FMA3Group = getFMA3Group(MI.getOpcode(), | 
|  | MI.getDesc().TSFlags); | 
|  | if (FMA3Group) | 
|  | return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2, | 
|  | FMA3Group->isIntrinsic()); | 
|  |  | 
|  | // Handled masked instructions since we need to skip over the mask input | 
|  | // and the preserved input. | 
|  | if (X86II::isKMasked(Desc.TSFlags)) { | 
|  | // First assume that the first input is the mask operand and skip past it. | 
|  | unsigned CommutableOpIdx1 = Desc.getNumDefs() + 1; | 
|  | unsigned CommutableOpIdx2 = Desc.getNumDefs() + 2; | 
|  | // Check if the first input is tied. If there isn't one then we only | 
|  | // need to skip the mask operand which we did above. | 
|  | if ((MI.getDesc().getOperandConstraint(Desc.getNumDefs(), | 
|  | MCOI::TIED_TO) != -1)) { | 
|  | // If this is zero masking instruction with a tied operand, we need to | 
|  | // move the first index back to the first input since this must | 
|  | // be a 3 input instruction and we want the first two non-mask inputs. | 
|  | // Otherwise this is a 2 input instruction with a preserved input and | 
|  | // mask, so we need to move the indices to skip one more input. | 
|  | if (X86II::isKMergeMasked(Desc.TSFlags)) { | 
|  | ++CommutableOpIdx1; | 
|  | ++CommutableOpIdx2; | 
|  | } else { | 
|  | --CommutableOpIdx1; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, | 
|  | CommutableOpIdx1, CommutableOpIdx2)) | 
|  | return false; | 
|  |  | 
|  | if (!MI.getOperand(SrcOpIdx1).isReg() || | 
|  | !MI.getOperand(SrcOpIdx2).isReg()) | 
|  | // No idea. | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | X86::CondCode X86::getCondFromBranchOpc(unsigned BrOpc) { | 
|  | switch (BrOpc) { | 
|  | default: return X86::COND_INVALID; | 
|  | case X86::JE_1:  return X86::COND_E; | 
|  | case X86::JNE_1: return X86::COND_NE; | 
|  | case X86::JL_1:  return X86::COND_L; | 
|  | case X86::JLE_1: return X86::COND_LE; | 
|  | case X86::JG_1:  return X86::COND_G; | 
|  | case X86::JGE_1: return X86::COND_GE; | 
|  | case X86::JB_1:  return X86::COND_B; | 
|  | case X86::JBE_1: return X86::COND_BE; | 
|  | case X86::JA_1:  return X86::COND_A; | 
|  | case X86::JAE_1: return X86::COND_AE; | 
|  | case X86::JS_1:  return X86::COND_S; | 
|  | case X86::JNS_1: return X86::COND_NS; | 
|  | case X86::JP_1:  return X86::COND_P; | 
|  | case X86::JNP_1: return X86::COND_NP; | 
|  | case X86::JO_1:  return X86::COND_O; | 
|  | case X86::JNO_1: return X86::COND_NO; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Return condition code of a SET opcode. | 
|  | X86::CondCode X86::getCondFromSETOpc(unsigned Opc) { | 
|  | switch (Opc) { | 
|  | default: return X86::COND_INVALID; | 
|  | case X86::SETAr:  case X86::SETAm:  return X86::COND_A; | 
|  | case X86::SETAEr: case X86::SETAEm: return X86::COND_AE; | 
|  | case X86::SETBr:  case X86::SETBm:  return X86::COND_B; | 
|  | case X86::SETBEr: case X86::SETBEm: return X86::COND_BE; | 
|  | case X86::SETEr:  case X86::SETEm:  return X86::COND_E; | 
|  | case X86::SETGr:  case X86::SETGm:  return X86::COND_G; | 
|  | case X86::SETGEr: case X86::SETGEm: return X86::COND_GE; | 
|  | case X86::SETLr:  case X86::SETLm:  return X86::COND_L; | 
|  | case X86::SETLEr: case X86::SETLEm: return X86::COND_LE; | 
|  | case X86::SETNEr: case X86::SETNEm: return X86::COND_NE; | 
|  | case X86::SETNOr: case X86::SETNOm: return X86::COND_NO; | 
|  | case X86::SETNPr: case X86::SETNPm: return X86::COND_NP; | 
|  | case X86::SETNSr: case X86::SETNSm: return X86::COND_NS; | 
|  | case X86::SETOr:  case X86::SETOm:  return X86::COND_O; | 
|  | case X86::SETPr:  case X86::SETPm:  return X86::COND_P; | 
|  | case X86::SETSr:  case X86::SETSm:  return X86::COND_S; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Return condition code of a CMov opcode. | 
|  | X86::CondCode X86::getCondFromCMovOpc(unsigned Opc) { | 
|  | switch (Opc) { | 
|  | default: return X86::COND_INVALID; | 
|  | case X86::CMOVA16rm:  case X86::CMOVA16rr:  case X86::CMOVA32rm: | 
|  | case X86::CMOVA32rr:  case X86::CMOVA64rm:  case X86::CMOVA64rr: | 
|  | return X86::COND_A; | 
|  | case X86::CMOVAE16rm: case X86::CMOVAE16rr: case X86::CMOVAE32rm: | 
|  | case X86::CMOVAE32rr: case X86::CMOVAE64rm: case X86::CMOVAE64rr: | 
|  | return X86::COND_AE; | 
|  | case X86::CMOVB16rm:  case X86::CMOVB16rr:  case X86::CMOVB32rm: | 
|  | case X86::CMOVB32rr:  case X86::CMOVB64rm:  case X86::CMOVB64rr: | 
|  | return X86::COND_B; | 
|  | case X86::CMOVBE16rm: case X86::CMOVBE16rr: case X86::CMOVBE32rm: | 
|  | case X86::CMOVBE32rr: case X86::CMOVBE64rm: case X86::CMOVBE64rr: | 
|  | return X86::COND_BE; | 
|  | case X86::CMOVE16rm:  case X86::CMOVE16rr:  case X86::CMOVE32rm: | 
|  | case X86::CMOVE32rr:  case X86::CMOVE64rm:  case X86::CMOVE64rr: | 
|  | return X86::COND_E; | 
|  | case X86::CMOVG16rm:  case X86::CMOVG16rr:  case X86::CMOVG32rm: | 
|  | case X86::CMOVG32rr:  case X86::CMOVG64rm:  case X86::CMOVG64rr: | 
|  | return X86::COND_G; | 
|  | case X86::CMOVGE16rm: case X86::CMOVGE16rr: case X86::CMOVGE32rm: | 
|  | case X86::CMOVGE32rr: case X86::CMOVGE64rm: case X86::CMOVGE64rr: | 
|  | return X86::COND_GE; | 
|  | case X86::CMOVL16rm:  case X86::CMOVL16rr:  case X86::CMOVL32rm: | 
|  | case X86::CMOVL32rr:  case X86::CMOVL64rm:  case X86::CMOVL64rr: | 
|  | return X86::COND_L; | 
|  | case X86::CMOVLE16rm: case X86::CMOVLE16rr: case X86::CMOVLE32rm: | 
|  | case X86::CMOVLE32rr: case X86::CMOVLE64rm: case X86::CMOVLE64rr: | 
|  | return X86::COND_LE; | 
|  | case X86::CMOVNE16rm: case X86::CMOVNE16rr: case X86::CMOVNE32rm: | 
|  | case X86::CMOVNE32rr: case X86::CMOVNE64rm: case X86::CMOVNE64rr: | 
|  | return X86::COND_NE; | 
|  | case X86::CMOVNO16rm: case X86::CMOVNO16rr: case X86::CMOVNO32rm: | 
|  | case X86::CMOVNO32rr: case X86::CMOVNO64rm: case X86::CMOVNO64rr: | 
|  | return X86::COND_NO; | 
|  | case X86::CMOVNP16rm: case X86::CMOVNP16rr: case X86::CMOVNP32rm: | 
|  | case X86::CMOVNP32rr: case X86::CMOVNP64rm: case X86::CMOVNP64rr: | 
|  | return X86::COND_NP; | 
|  | case X86::CMOVNS16rm: case X86::CMOVNS16rr: case X86::CMOVNS32rm: | 
|  | case X86::CMOVNS32rr: case X86::CMOVNS64rm: case X86::CMOVNS64rr: | 
|  | return X86::COND_NS; | 
|  | case X86::CMOVO16rm:  case X86::CMOVO16rr:  case X86::CMOVO32rm: | 
|  | case X86::CMOVO32rr:  case X86::CMOVO64rm:  case X86::CMOVO64rr: | 
|  | return X86::COND_O; | 
|  | case X86::CMOVP16rm:  case X86::CMOVP16rr:  case X86::CMOVP32rm: | 
|  | case X86::CMOVP32rr:  case X86::CMOVP64rm:  case X86::CMOVP64rr: | 
|  | return X86::COND_P; | 
|  | case X86::CMOVS16rm:  case X86::CMOVS16rr:  case X86::CMOVS32rm: | 
|  | case X86::CMOVS32rr:  case X86::CMOVS64rm:  case X86::CMOVS64rr: | 
|  | return X86::COND_S; | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned X86::GetCondBranchFromCond(X86::CondCode CC) { | 
|  | switch (CC) { | 
|  | default: llvm_unreachable("Illegal condition code!"); | 
|  | case X86::COND_E:  return X86::JE_1; | 
|  | case X86::COND_NE: return X86::JNE_1; | 
|  | case X86::COND_L:  return X86::JL_1; | 
|  | case X86::COND_LE: return X86::JLE_1; | 
|  | case X86::COND_G:  return X86::JG_1; | 
|  | case X86::COND_GE: return X86::JGE_1; | 
|  | case X86::COND_B:  return X86::JB_1; | 
|  | case X86::COND_BE: return X86::JBE_1; | 
|  | case X86::COND_A:  return X86::JA_1; | 
|  | case X86::COND_AE: return X86::JAE_1; | 
|  | case X86::COND_S:  return X86::JS_1; | 
|  | case X86::COND_NS: return X86::JNS_1; | 
|  | case X86::COND_P:  return X86::JP_1; | 
|  | case X86::COND_NP: return X86::JNP_1; | 
|  | case X86::COND_O:  return X86::JO_1; | 
|  | case X86::COND_NO: return X86::JNO_1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Return the inverse of the specified condition, | 
|  | /// e.g. turning COND_E to COND_NE. | 
|  | X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) { | 
|  | switch (CC) { | 
|  | default: llvm_unreachable("Illegal condition code!"); | 
|  | case X86::COND_E:  return X86::COND_NE; | 
|  | case X86::COND_NE: return X86::COND_E; | 
|  | case X86::COND_L:  return X86::COND_GE; | 
|  | case X86::COND_LE: return X86::COND_G; | 
|  | case X86::COND_G:  return X86::COND_LE; | 
|  | case X86::COND_GE: return X86::COND_L; | 
|  | case X86::COND_B:  return X86::COND_AE; | 
|  | case X86::COND_BE: return X86::COND_A; | 
|  | case X86::COND_A:  return X86::COND_BE; | 
|  | case X86::COND_AE: return X86::COND_B; | 
|  | case X86::COND_S:  return X86::COND_NS; | 
|  | case X86::COND_NS: return X86::COND_S; | 
|  | case X86::COND_P:  return X86::COND_NP; | 
|  | case X86::COND_NP: return X86::COND_P; | 
|  | case X86::COND_O:  return X86::COND_NO; | 
|  | case X86::COND_NO: return X86::COND_O; | 
|  | case X86::COND_NE_OR_P:  return X86::COND_E_AND_NP; | 
|  | case X86::COND_E_AND_NP: return X86::COND_NE_OR_P; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Assuming the flags are set by MI(a,b), return the condition code if we | 
|  | /// modify the instructions such that flags are set by MI(b,a). | 
|  | static X86::CondCode getSwappedCondition(X86::CondCode CC) { | 
|  | switch (CC) { | 
|  | default: return X86::COND_INVALID; | 
|  | case X86::COND_E:  return X86::COND_E; | 
|  | case X86::COND_NE: return X86::COND_NE; | 
|  | case X86::COND_L:  return X86::COND_G; | 
|  | case X86::COND_LE: return X86::COND_GE; | 
|  | case X86::COND_G:  return X86::COND_L; | 
|  | case X86::COND_GE: return X86::COND_LE; | 
|  | case X86::COND_B:  return X86::COND_A; | 
|  | case X86::COND_BE: return X86::COND_AE; | 
|  | case X86::COND_A:  return X86::COND_B; | 
|  | case X86::COND_AE: return X86::COND_BE; | 
|  | } | 
|  | } | 
|  |  | 
|  | std::pair<X86::CondCode, bool> | 
|  | X86::getX86ConditionCode(CmpInst::Predicate Predicate) { | 
|  | X86::CondCode CC = X86::COND_INVALID; | 
|  | bool NeedSwap = false; | 
|  | switch (Predicate) { | 
|  | default: break; | 
|  | // Floating-point Predicates | 
|  | case CmpInst::FCMP_UEQ: CC = X86::COND_E;       break; | 
|  | case CmpInst::FCMP_OLT: NeedSwap = true;        LLVM_FALLTHROUGH; | 
|  | case CmpInst::FCMP_OGT: CC = X86::COND_A;       break; | 
|  | case CmpInst::FCMP_OLE: NeedSwap = true;        LLVM_FALLTHROUGH; | 
|  | case CmpInst::FCMP_OGE: CC = X86::COND_AE;      break; | 
|  | case CmpInst::FCMP_UGT: NeedSwap = true;        LLVM_FALLTHROUGH; | 
|  | case CmpInst::FCMP_ULT: CC = X86::COND_B;       break; | 
|  | case CmpInst::FCMP_UGE: NeedSwap = true;        LLVM_FALLTHROUGH; | 
|  | case CmpInst::FCMP_ULE: CC = X86::COND_BE;      break; | 
|  | case CmpInst::FCMP_ONE: CC = X86::COND_NE;      break; | 
|  | case CmpInst::FCMP_UNO: CC = X86::COND_P;       break; | 
|  | case CmpInst::FCMP_ORD: CC = X86::COND_NP;      break; | 
|  | case CmpInst::FCMP_OEQ:                         LLVM_FALLTHROUGH; | 
|  | case CmpInst::FCMP_UNE: CC = X86::COND_INVALID; break; | 
|  |  | 
|  | // Integer Predicates | 
|  | case CmpInst::ICMP_EQ:  CC = X86::COND_E;       break; | 
|  | case CmpInst::ICMP_NE:  CC = X86::COND_NE;      break; | 
|  | case CmpInst::ICMP_UGT: CC = X86::COND_A;       break; | 
|  | case CmpInst::ICMP_UGE: CC = X86::COND_AE;      break; | 
|  | case CmpInst::ICMP_ULT: CC = X86::COND_B;       break; | 
|  | case CmpInst::ICMP_ULE: CC = X86::COND_BE;      break; | 
|  | case CmpInst::ICMP_SGT: CC = X86::COND_G;       break; | 
|  | case CmpInst::ICMP_SGE: CC = X86::COND_GE;      break; | 
|  | case CmpInst::ICMP_SLT: CC = X86::COND_L;       break; | 
|  | case CmpInst::ICMP_SLE: CC = X86::COND_LE;      break; | 
|  | } | 
|  |  | 
|  | return std::make_pair(CC, NeedSwap); | 
|  | } | 
|  |  | 
|  | /// Return a set opcode for the given condition and | 
|  | /// whether it has memory operand. | 
|  | unsigned X86::getSETFromCond(CondCode CC, bool HasMemoryOperand) { | 
|  | static const uint16_t Opc[16][2] = { | 
|  | { X86::SETAr,  X86::SETAm  }, | 
|  | { X86::SETAEr, X86::SETAEm }, | 
|  | { X86::SETBr,  X86::SETBm  }, | 
|  | { X86::SETBEr, X86::SETBEm }, | 
|  | { X86::SETEr,  X86::SETEm  }, | 
|  | { X86::SETGr,  X86::SETGm  }, | 
|  | { X86::SETGEr, X86::SETGEm }, | 
|  | { X86::SETLr,  X86::SETLm  }, | 
|  | { X86::SETLEr, X86::SETLEm }, | 
|  | { X86::SETNEr, X86::SETNEm }, | 
|  | { X86::SETNOr, X86::SETNOm }, | 
|  | { X86::SETNPr, X86::SETNPm }, | 
|  | { X86::SETNSr, X86::SETNSm }, | 
|  | { X86::SETOr,  X86::SETOm  }, | 
|  | { X86::SETPr,  X86::SETPm  }, | 
|  | { X86::SETSr,  X86::SETSm  } | 
|  | }; | 
|  |  | 
|  | assert(CC <= LAST_VALID_COND && "Can only handle standard cond codes"); | 
|  | return Opc[CC][HasMemoryOperand ? 1 : 0]; | 
|  | } | 
|  |  | 
|  | /// Return a cmov opcode for the given condition, | 
|  | /// register size in bytes, and operand type. | 
|  | unsigned X86::getCMovFromCond(CondCode CC, unsigned RegBytes, | 
|  | bool HasMemoryOperand) { | 
|  | static const uint16_t Opc[32][3] = { | 
|  | { X86::CMOVA16rr,  X86::CMOVA32rr,  X86::CMOVA64rr  }, | 
|  | { X86::CMOVAE16rr, X86::CMOVAE32rr, X86::CMOVAE64rr }, | 
|  | { X86::CMOVB16rr,  X86::CMOVB32rr,  X86::CMOVB64rr  }, | 
|  | { X86::CMOVBE16rr, X86::CMOVBE32rr, X86::CMOVBE64rr }, | 
|  | { X86::CMOVE16rr,  X86::CMOVE32rr,  X86::CMOVE64rr  }, | 
|  | { X86::CMOVG16rr,  X86::CMOVG32rr,  X86::CMOVG64rr  }, | 
|  | { X86::CMOVGE16rr, X86::CMOVGE32rr, X86::CMOVGE64rr }, | 
|  | { X86::CMOVL16rr,  X86::CMOVL32rr,  X86::CMOVL64rr  }, | 
|  | { X86::CMOVLE16rr, X86::CMOVLE32rr, X86::CMOVLE64rr }, | 
|  | { X86::CMOVNE16rr, X86::CMOVNE32rr, X86::CMOVNE64rr }, | 
|  | { X86::CMOVNO16rr, X86::CMOVNO32rr, X86::CMOVNO64rr }, | 
|  | { X86::CMOVNP16rr, X86::CMOVNP32rr, X86::CMOVNP64rr }, | 
|  | { X86::CMOVNS16rr, X86::CMOVNS32rr, X86::CMOVNS64rr }, | 
|  | { X86::CMOVO16rr,  X86::CMOVO32rr,  X86::CMOVO64rr  }, | 
|  | { X86::CMOVP16rr,  X86::CMOVP32rr,  X86::CMOVP64rr  }, | 
|  | { X86::CMOVS16rr,  X86::CMOVS32rr,  X86::CMOVS64rr  }, | 
|  | { X86::CMOVA16rm,  X86::CMOVA32rm,  X86::CMOVA64rm  }, | 
|  | { X86::CMOVAE16rm, X86::CMOVAE32rm, X86::CMOVAE64rm }, | 
|  | { X86::CMOVB16rm,  X86::CMOVB32rm,  X86::CMOVB64rm  }, | 
|  | { X86::CMOVBE16rm, X86::CMOVBE32rm, X86::CMOVBE64rm }, | 
|  | { X86::CMOVE16rm,  X86::CMOVE32rm,  X86::CMOVE64rm  }, | 
|  | { X86::CMOVG16rm,  X86::CMOVG32rm,  X86::CMOVG64rm  }, | 
|  | { X86::CMOVGE16rm, X86::CMOVGE32rm, X86::CMOVGE64rm }, | 
|  | { X86::CMOVL16rm,  X86::CMOVL32rm,  X86::CMOVL64rm  }, | 
|  | { X86::CMOVLE16rm, X86::CMOVLE32rm, X86::CMOVLE64rm }, | 
|  | { X86::CMOVNE16rm, X86::CMOVNE32rm, X86::CMOVNE64rm }, | 
|  | { X86::CMOVNO16rm, X86::CMOVNO32rm, X86::CMOVNO64rm }, | 
|  | { X86::CMOVNP16rm, X86::CMOVNP32rm, X86::CMOVNP64rm }, | 
|  | { X86::CMOVNS16rm, X86::CMOVNS32rm, X86::CMOVNS64rm }, | 
|  | { X86::CMOVO16rm,  X86::CMOVO32rm,  X86::CMOVO64rm  }, | 
|  | { X86::CMOVP16rm,  X86::CMOVP32rm,  X86::CMOVP64rm  }, | 
|  | { X86::CMOVS16rm,  X86::CMOVS32rm,  X86::CMOVS64rm  } | 
|  | }; | 
|  |  | 
|  | assert(CC < 16 && "Can only handle standard cond codes"); | 
|  | unsigned Idx = HasMemoryOperand ? 16+CC : CC; | 
|  | switch(RegBytes) { | 
|  | default: llvm_unreachable("Illegal register size!"); | 
|  | case 2: return Opc[Idx][0]; | 
|  | case 4: return Opc[Idx][1]; | 
|  | case 8: return Opc[Idx][2]; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Get the VPCMP immediate for the given condition. | 
|  | unsigned X86::getVPCMPImmForCond(ISD::CondCode CC) { | 
|  | switch (CC) { | 
|  | default: llvm_unreachable("Unexpected SETCC condition"); | 
|  | case ISD::SETNE:  return 4; | 
|  | case ISD::SETEQ:  return 0; | 
|  | case ISD::SETULT: | 
|  | case ISD::SETLT: return 1; | 
|  | case ISD::SETUGT: | 
|  | case ISD::SETGT: return 6; | 
|  | case ISD::SETUGE: | 
|  | case ISD::SETGE: return 5; | 
|  | case ISD::SETULE: | 
|  | case ISD::SETLE: return 2; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Get the VPCMP immediate if the opcodes are swapped. | 
|  | unsigned X86::getSwappedVPCMPImm(unsigned Imm) { | 
|  | switch (Imm) { | 
|  | default: llvm_unreachable("Unreachable!"); | 
|  | case 0x01: Imm = 0x06; break; // LT  -> NLE | 
|  | case 0x02: Imm = 0x05; break; // LE  -> NLT | 
|  | case 0x05: Imm = 0x02; break; // NLT -> LE | 
|  | case 0x06: Imm = 0x01; break; // NLE -> LT | 
|  | case 0x00: // EQ | 
|  | case 0x03: // FALSE | 
|  | case 0x04: // NE | 
|  | case 0x07: // TRUE | 
|  | break; | 
|  | } | 
|  |  | 
|  | return Imm; | 
|  | } | 
|  |  | 
|  | /// Get the VPCOM immediate if the opcodes are swapped. | 
|  | unsigned X86::getSwappedVPCOMImm(unsigned Imm) { | 
|  | switch (Imm) { | 
|  | default: llvm_unreachable("Unreachable!"); | 
|  | case 0x00: Imm = 0x02; break; // LT -> GT | 
|  | case 0x01: Imm = 0x03; break; // LE -> GE | 
|  | case 0x02: Imm = 0x00; break; // GT -> LT | 
|  | case 0x03: Imm = 0x01; break; // GE -> LE | 
|  | case 0x04: // EQ | 
|  | case 0x05: // NE | 
|  | case 0x06: // FALSE | 
|  | case 0x07: // TRUE | 
|  | break; | 
|  | } | 
|  |  | 
|  | return Imm; | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const { | 
|  | if (!MI.isTerminator()) return false; | 
|  |  | 
|  | // Conditional branch is a special case. | 
|  | if (MI.isBranch() && !MI.isBarrier()) | 
|  | return true; | 
|  | if (!MI.isPredicable()) | 
|  | return true; | 
|  | return !isPredicated(MI); | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::isUnconditionalTailCall(const MachineInstr &MI) const { | 
|  | switch (MI.getOpcode()) { | 
|  | case X86::TCRETURNdi: | 
|  | case X86::TCRETURNri: | 
|  | case X86::TCRETURNmi: | 
|  | case X86::TCRETURNdi64: | 
|  | case X86::TCRETURNri64: | 
|  | case X86::TCRETURNmi64: | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::canMakeTailCallConditional( | 
|  | SmallVectorImpl<MachineOperand> &BranchCond, | 
|  | const MachineInstr &TailCall) const { | 
|  | if (TailCall.getOpcode() != X86::TCRETURNdi && | 
|  | TailCall.getOpcode() != X86::TCRETURNdi64) { | 
|  | // Only direct calls can be done with a conditional branch. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | const MachineFunction *MF = TailCall.getParent()->getParent(); | 
|  | if (Subtarget.isTargetWin64() && MF->hasWinCFI()) { | 
|  | // Conditional tail calls confuse the Win64 unwinder. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | assert(BranchCond.size() == 1); | 
|  | if (BranchCond[0].getImm() > X86::LAST_VALID_COND) { | 
|  | // Can't make a conditional tail call with this condition. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | const X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>(); | 
|  | if (X86FI->getTCReturnAddrDelta() != 0 || | 
|  | TailCall.getOperand(1).getImm() != 0) { | 
|  | // A conditional tail call cannot do any stack adjustment. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void X86InstrInfo::replaceBranchWithTailCall( | 
|  | MachineBasicBlock &MBB, SmallVectorImpl<MachineOperand> &BranchCond, | 
|  | const MachineInstr &TailCall) const { | 
|  | assert(canMakeTailCallConditional(BranchCond, TailCall)); | 
|  |  | 
|  | MachineBasicBlock::iterator I = MBB.end(); | 
|  | while (I != MBB.begin()) { | 
|  | --I; | 
|  | if (I->isDebugInstr()) | 
|  | continue; | 
|  | if (!I->isBranch()) | 
|  | assert(0 && "Can't find the branch to replace!"); | 
|  |  | 
|  | X86::CondCode CC = X86::getCondFromBranchOpc(I->getOpcode()); | 
|  | assert(BranchCond.size() == 1); | 
|  | if (CC != BranchCond[0].getImm()) | 
|  | continue; | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | unsigned Opc = TailCall.getOpcode() == X86::TCRETURNdi ? X86::TCRETURNdicc | 
|  | : X86::TCRETURNdi64cc; | 
|  |  | 
|  | auto MIB = BuildMI(MBB, I, MBB.findDebugLoc(I), get(Opc)); | 
|  | MIB->addOperand(TailCall.getOperand(0)); // Destination. | 
|  | MIB.addImm(0); // Stack offset (not used). | 
|  | MIB->addOperand(BranchCond[0]); // Condition. | 
|  | MIB.copyImplicitOps(TailCall); // Regmask and (imp-used) parameters. | 
|  |  | 
|  | // Add implicit uses and defs of all live regs potentially clobbered by the | 
|  | // call. This way they still appear live across the call. | 
|  | LivePhysRegs LiveRegs(getRegisterInfo()); | 
|  | LiveRegs.addLiveOuts(MBB); | 
|  | SmallVector<std::pair<unsigned, const MachineOperand *>, 8> Clobbers; | 
|  | LiveRegs.stepForward(*MIB, Clobbers); | 
|  | for (const auto &C : Clobbers) { | 
|  | MIB.addReg(C.first, RegState::Implicit); | 
|  | MIB.addReg(C.first, RegState::Implicit | RegState::Define); | 
|  | } | 
|  |  | 
|  | I->eraseFromParent(); | 
|  | } | 
|  |  | 
|  | // Given a MBB and its TBB, find the FBB which was a fallthrough MBB (it may | 
|  | // not be a fallthrough MBB now due to layout changes). Return nullptr if the | 
|  | // fallthrough MBB cannot be identified. | 
|  | static MachineBasicBlock *getFallThroughMBB(MachineBasicBlock *MBB, | 
|  | MachineBasicBlock *TBB) { | 
|  | // Look for non-EHPad successors other than TBB. If we find exactly one, it | 
|  | // is the fallthrough MBB. If we find zero, then TBB is both the target MBB | 
|  | // and fallthrough MBB. If we find more than one, we cannot identify the | 
|  | // fallthrough MBB and should return nullptr. | 
|  | MachineBasicBlock *FallthroughBB = nullptr; | 
|  | for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI) { | 
|  | if ((*SI)->isEHPad() || (*SI == TBB && FallthroughBB)) | 
|  | continue; | 
|  | // Return a nullptr if we found more than one fallthrough successor. | 
|  | if (FallthroughBB && FallthroughBB != TBB) | 
|  | return nullptr; | 
|  | FallthroughBB = *SI; | 
|  | } | 
|  | return FallthroughBB; | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::AnalyzeBranchImpl( | 
|  | MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, | 
|  | SmallVectorImpl<MachineOperand> &Cond, | 
|  | SmallVectorImpl<MachineInstr *> &CondBranches, bool AllowModify) const { | 
|  |  | 
|  | // Start from the bottom of the block and work up, examining the | 
|  | // terminator instructions. | 
|  | MachineBasicBlock::iterator I = MBB.end(); | 
|  | MachineBasicBlock::iterator UnCondBrIter = MBB.end(); | 
|  | while (I != MBB.begin()) { | 
|  | --I; | 
|  | if (I->isDebugInstr()) | 
|  | continue; | 
|  |  | 
|  | // Working from the bottom, when we see a non-terminator instruction, we're | 
|  | // done. | 
|  | if (!isUnpredicatedTerminator(*I)) | 
|  | break; | 
|  |  | 
|  | // A terminator that isn't a branch can't easily be handled by this | 
|  | // analysis. | 
|  | if (!I->isBranch()) | 
|  | return true; | 
|  |  | 
|  | // Handle unconditional branches. | 
|  | if (I->getOpcode() == X86::JMP_1) { | 
|  | UnCondBrIter = I; | 
|  |  | 
|  | if (!AllowModify) { | 
|  | TBB = I->getOperand(0).getMBB(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If the block has any instructions after a JMP, delete them. | 
|  | while (std::next(I) != MBB.end()) | 
|  | std::next(I)->eraseFromParent(); | 
|  |  | 
|  | Cond.clear(); | 
|  | FBB = nullptr; | 
|  |  | 
|  | // Delete the JMP if it's equivalent to a fall-through. | 
|  | if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { | 
|  | TBB = nullptr; | 
|  | I->eraseFromParent(); | 
|  | I = MBB.end(); | 
|  | UnCondBrIter = MBB.end(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // TBB is used to indicate the unconditional destination. | 
|  | TBB = I->getOperand(0).getMBB(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Handle conditional branches. | 
|  | X86::CondCode BranchCode = X86::getCondFromBranchOpc(I->getOpcode()); | 
|  | if (BranchCode == X86::COND_INVALID) | 
|  | return true;  // Can't handle indirect branch. | 
|  |  | 
|  | // Working from the bottom, handle the first conditional branch. | 
|  | if (Cond.empty()) { | 
|  | MachineBasicBlock *TargetBB = I->getOperand(0).getMBB(); | 
|  | if (AllowModify && UnCondBrIter != MBB.end() && | 
|  | MBB.isLayoutSuccessor(TargetBB)) { | 
|  | // If we can modify the code and it ends in something like: | 
|  | // | 
|  | //     jCC L1 | 
|  | //     jmp L2 | 
|  | //   L1: | 
|  | //     ... | 
|  | //   L2: | 
|  | // | 
|  | // Then we can change this to: | 
|  | // | 
|  | //     jnCC L2 | 
|  | //   L1: | 
|  | //     ... | 
|  | //   L2: | 
|  | // | 
|  | // Which is a bit more efficient. | 
|  | // We conditionally jump to the fall-through block. | 
|  | BranchCode = GetOppositeBranchCondition(BranchCode); | 
|  | unsigned JNCC = GetCondBranchFromCond(BranchCode); | 
|  | MachineBasicBlock::iterator OldInst = I; | 
|  |  | 
|  | BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(JNCC)) | 
|  | .addMBB(UnCondBrIter->getOperand(0).getMBB()); | 
|  | BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_1)) | 
|  | .addMBB(TargetBB); | 
|  |  | 
|  | OldInst->eraseFromParent(); | 
|  | UnCondBrIter->eraseFromParent(); | 
|  |  | 
|  | // Restart the analysis. | 
|  | UnCondBrIter = MBB.end(); | 
|  | I = MBB.end(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | FBB = TBB; | 
|  | TBB = I->getOperand(0).getMBB(); | 
|  | Cond.push_back(MachineOperand::CreateImm(BranchCode)); | 
|  | CondBranches.push_back(&*I); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Handle subsequent conditional branches. Only handle the case where all | 
|  | // conditional branches branch to the same destination and their condition | 
|  | // opcodes fit one of the special multi-branch idioms. | 
|  | assert(Cond.size() == 1); | 
|  | assert(TBB); | 
|  |  | 
|  | // If the conditions are the same, we can leave them alone. | 
|  | X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm(); | 
|  | auto NewTBB = I->getOperand(0).getMBB(); | 
|  | if (OldBranchCode == BranchCode && TBB == NewTBB) | 
|  | continue; | 
|  |  | 
|  | // If they differ, see if they fit one of the known patterns. Theoretically, | 
|  | // we could handle more patterns here, but we shouldn't expect to see them | 
|  | // if instruction selection has done a reasonable job. | 
|  | if (TBB == NewTBB && | 
|  | ((OldBranchCode == X86::COND_P && BranchCode == X86::COND_NE) || | 
|  | (OldBranchCode == X86::COND_NE && BranchCode == X86::COND_P))) { | 
|  | BranchCode = X86::COND_NE_OR_P; | 
|  | } else if ((OldBranchCode == X86::COND_NP && BranchCode == X86::COND_NE) || | 
|  | (OldBranchCode == X86::COND_E && BranchCode == X86::COND_P)) { | 
|  | if (NewTBB != (FBB ? FBB : getFallThroughMBB(&MBB, TBB))) | 
|  | return true; | 
|  |  | 
|  | // X86::COND_E_AND_NP usually has two different branch destinations. | 
|  | // | 
|  | // JP B1 | 
|  | // JE B2 | 
|  | // JMP B1 | 
|  | // B1: | 
|  | // B2: | 
|  | // | 
|  | // Here this condition branches to B2 only if NP && E. It has another | 
|  | // equivalent form: | 
|  | // | 
|  | // JNE B1 | 
|  | // JNP B2 | 
|  | // JMP B1 | 
|  | // B1: | 
|  | // B2: | 
|  | // | 
|  | // Similarly it branches to B2 only if E && NP. That is why this condition | 
|  | // is named with COND_E_AND_NP. | 
|  | BranchCode = X86::COND_E_AND_NP; | 
|  | } else | 
|  | return true; | 
|  |  | 
|  | // Update the MachineOperand. | 
|  | Cond[0].setImm(BranchCode); | 
|  | CondBranches.push_back(&*I); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::analyzeBranch(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock *&TBB, | 
|  | MachineBasicBlock *&FBB, | 
|  | SmallVectorImpl<MachineOperand> &Cond, | 
|  | bool AllowModify) const { | 
|  | SmallVector<MachineInstr *, 4> CondBranches; | 
|  | return AnalyzeBranchImpl(MBB, TBB, FBB, Cond, CondBranches, AllowModify); | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::analyzeBranchPredicate(MachineBasicBlock &MBB, | 
|  | MachineBranchPredicate &MBP, | 
|  | bool AllowModify) const { | 
|  | using namespace std::placeholders; | 
|  |  | 
|  | SmallVector<MachineOperand, 4> Cond; | 
|  | SmallVector<MachineInstr *, 4> CondBranches; | 
|  | if (AnalyzeBranchImpl(MBB, MBP.TrueDest, MBP.FalseDest, Cond, CondBranches, | 
|  | AllowModify)) | 
|  | return true; | 
|  |  | 
|  | if (Cond.size() != 1) | 
|  | return true; | 
|  |  | 
|  | assert(MBP.TrueDest && "expected!"); | 
|  |  | 
|  | if (!MBP.FalseDest) | 
|  | MBP.FalseDest = MBB.getNextNode(); | 
|  |  | 
|  | const TargetRegisterInfo *TRI = &getRegisterInfo(); | 
|  |  | 
|  | MachineInstr *ConditionDef = nullptr; | 
|  | bool SingleUseCondition = true; | 
|  |  | 
|  | for (auto I = std::next(MBB.rbegin()), E = MBB.rend(); I != E; ++I) { | 
|  | if (I->modifiesRegister(X86::EFLAGS, TRI)) { | 
|  | ConditionDef = &*I; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (I->readsRegister(X86::EFLAGS, TRI)) | 
|  | SingleUseCondition = false; | 
|  | } | 
|  |  | 
|  | if (!ConditionDef) | 
|  | return true; | 
|  |  | 
|  | if (SingleUseCondition) { | 
|  | for (auto *Succ : MBB.successors()) | 
|  | if (Succ->isLiveIn(X86::EFLAGS)) | 
|  | SingleUseCondition = false; | 
|  | } | 
|  |  | 
|  | MBP.ConditionDef = ConditionDef; | 
|  | MBP.SingleUseCondition = SingleUseCondition; | 
|  |  | 
|  | // Currently we only recognize the simple pattern: | 
|  | // | 
|  | //   test %reg, %reg | 
|  | //   je %label | 
|  | // | 
|  | const unsigned TestOpcode = | 
|  | Subtarget.is64Bit() ? X86::TEST64rr : X86::TEST32rr; | 
|  |  | 
|  | if (ConditionDef->getOpcode() == TestOpcode && | 
|  | ConditionDef->getNumOperands() == 3 && | 
|  | ConditionDef->getOperand(0).isIdenticalTo(ConditionDef->getOperand(1)) && | 
|  | (Cond[0].getImm() == X86::COND_NE || Cond[0].getImm() == X86::COND_E)) { | 
|  | MBP.LHS = ConditionDef->getOperand(0); | 
|  | MBP.RHS = MachineOperand::CreateImm(0); | 
|  | MBP.Predicate = Cond[0].getImm() == X86::COND_NE | 
|  | ? MachineBranchPredicate::PRED_NE | 
|  | : MachineBranchPredicate::PRED_EQ; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | unsigned X86InstrInfo::removeBranch(MachineBasicBlock &MBB, | 
|  | int *BytesRemoved) const { | 
|  | assert(!BytesRemoved && "code size not handled"); | 
|  |  | 
|  | MachineBasicBlock::iterator I = MBB.end(); | 
|  | unsigned Count = 0; | 
|  |  | 
|  | while (I != MBB.begin()) { | 
|  | --I; | 
|  | if (I->isDebugInstr()) | 
|  | continue; | 
|  | if (I->getOpcode() != X86::JMP_1 && | 
|  | X86::getCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID) | 
|  | break; | 
|  | // Remove the branch. | 
|  | I->eraseFromParent(); | 
|  | I = MBB.end(); | 
|  | ++Count; | 
|  | } | 
|  |  | 
|  | return Count; | 
|  | } | 
|  |  | 
|  | unsigned X86InstrInfo::insertBranch(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock *TBB, | 
|  | MachineBasicBlock *FBB, | 
|  | ArrayRef<MachineOperand> Cond, | 
|  | const DebugLoc &DL, | 
|  | int *BytesAdded) const { | 
|  | // Shouldn't be a fall through. | 
|  | assert(TBB && "insertBranch must not be told to insert a fallthrough"); | 
|  | assert((Cond.size() == 1 || Cond.size() == 0) && | 
|  | "X86 branch conditions have one component!"); | 
|  | assert(!BytesAdded && "code size not handled"); | 
|  |  | 
|  | if (Cond.empty()) { | 
|  | // Unconditional branch? | 
|  | assert(!FBB && "Unconditional branch with multiple successors!"); | 
|  | BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(TBB); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // If FBB is null, it is implied to be a fall-through block. | 
|  | bool FallThru = FBB == nullptr; | 
|  |  | 
|  | // Conditional branch. | 
|  | unsigned Count = 0; | 
|  | X86::CondCode CC = (X86::CondCode)Cond[0].getImm(); | 
|  | switch (CC) { | 
|  | case X86::COND_NE_OR_P: | 
|  | // Synthesize NE_OR_P with two branches. | 
|  | BuildMI(&MBB, DL, get(X86::JNE_1)).addMBB(TBB); | 
|  | ++Count; | 
|  | BuildMI(&MBB, DL, get(X86::JP_1)).addMBB(TBB); | 
|  | ++Count; | 
|  | break; | 
|  | case X86::COND_E_AND_NP: | 
|  | // Use the next block of MBB as FBB if it is null. | 
|  | if (FBB == nullptr) { | 
|  | FBB = getFallThroughMBB(&MBB, TBB); | 
|  | assert(FBB && "MBB cannot be the last block in function when the false " | 
|  | "body is a fall-through."); | 
|  | } | 
|  | // Synthesize COND_E_AND_NP with two branches. | 
|  | BuildMI(&MBB, DL, get(X86::JNE_1)).addMBB(FBB); | 
|  | ++Count; | 
|  | BuildMI(&MBB, DL, get(X86::JNP_1)).addMBB(TBB); | 
|  | ++Count; | 
|  | break; | 
|  | default: { | 
|  | unsigned Opc = GetCondBranchFromCond(CC); | 
|  | BuildMI(&MBB, DL, get(Opc)).addMBB(TBB); | 
|  | ++Count; | 
|  | } | 
|  | } | 
|  | if (!FallThru) { | 
|  | // Two-way Conditional branch. Insert the second branch. | 
|  | BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(FBB); | 
|  | ++Count; | 
|  | } | 
|  | return Count; | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo:: | 
|  | canInsertSelect(const MachineBasicBlock &MBB, | 
|  | ArrayRef<MachineOperand> Cond, | 
|  | unsigned TrueReg, unsigned FalseReg, | 
|  | int &CondCycles, int &TrueCycles, int &FalseCycles) const { | 
|  | // Not all subtargets have cmov instructions. | 
|  | if (!Subtarget.hasCMov()) | 
|  | return false; | 
|  | if (Cond.size() != 1) | 
|  | return false; | 
|  | // We cannot do the composite conditions, at least not in SSA form. | 
|  | if ((X86::CondCode)Cond[0].getImm() > X86::COND_S) | 
|  | return false; | 
|  |  | 
|  | // Check register classes. | 
|  | const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); | 
|  | const TargetRegisterClass *RC = | 
|  | RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); | 
|  | if (!RC) | 
|  | return false; | 
|  |  | 
|  | // We have cmov instructions for 16, 32, and 64 bit general purpose registers. | 
|  | if (X86::GR16RegClass.hasSubClassEq(RC) || | 
|  | X86::GR32RegClass.hasSubClassEq(RC) || | 
|  | X86::GR64RegClass.hasSubClassEq(RC)) { | 
|  | // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy | 
|  | // Bridge. Probably Ivy Bridge as well. | 
|  | CondCycles = 2; | 
|  | TrueCycles = 2; | 
|  | FalseCycles = 2; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Can't do vectors. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void X86InstrInfo::insertSelect(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator I, | 
|  | const DebugLoc &DL, unsigned DstReg, | 
|  | ArrayRef<MachineOperand> Cond, unsigned TrueReg, | 
|  | unsigned FalseReg) const { | 
|  | MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); | 
|  | const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); | 
|  | const TargetRegisterClass &RC = *MRI.getRegClass(DstReg); | 
|  | assert(Cond.size() == 1 && "Invalid Cond array"); | 
|  | unsigned Opc = getCMovFromCond((X86::CondCode)Cond[0].getImm(), | 
|  | TRI.getRegSizeInBits(RC) / 8, | 
|  | false /*HasMemoryOperand*/); | 
|  | BuildMI(MBB, I, DL, get(Opc), DstReg).addReg(FalseReg).addReg(TrueReg); | 
|  | } | 
|  |  | 
|  | /// Test if the given register is a physical h register. | 
|  | static bool isHReg(unsigned Reg) { | 
|  | return X86::GR8_ABCD_HRegClass.contains(Reg); | 
|  | } | 
|  |  | 
|  | // Try and copy between VR128/VR64 and GR64 registers. | 
|  | static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg, | 
|  | const X86Subtarget &Subtarget) { | 
|  | bool HasAVX = Subtarget.hasAVX(); | 
|  | bool HasAVX512 = Subtarget.hasAVX512(); | 
|  |  | 
|  | // SrcReg(MaskReg) -> DestReg(GR64) | 
|  | // SrcReg(MaskReg) -> DestReg(GR32) | 
|  |  | 
|  | // All KMASK RegClasses hold the same k registers, can be tested against anyone. | 
|  | if (X86::VK16RegClass.contains(SrcReg)) { | 
|  | if (X86::GR64RegClass.contains(DestReg)) { | 
|  | assert(Subtarget.hasBWI()); | 
|  | return X86::KMOVQrk; | 
|  | } | 
|  | if (X86::GR32RegClass.contains(DestReg)) | 
|  | return Subtarget.hasBWI() ? X86::KMOVDrk : X86::KMOVWrk; | 
|  | } | 
|  |  | 
|  | // SrcReg(GR64) -> DestReg(MaskReg) | 
|  | // SrcReg(GR32) -> DestReg(MaskReg) | 
|  |  | 
|  | // All KMASK RegClasses hold the same k registers, can be tested against anyone. | 
|  | if (X86::VK16RegClass.contains(DestReg)) { | 
|  | if (X86::GR64RegClass.contains(SrcReg)) { | 
|  | assert(Subtarget.hasBWI()); | 
|  | return X86::KMOVQkr; | 
|  | } | 
|  | if (X86::GR32RegClass.contains(SrcReg)) | 
|  | return Subtarget.hasBWI() ? X86::KMOVDkr : X86::KMOVWkr; | 
|  | } | 
|  |  | 
|  |  | 
|  | // SrcReg(VR128) -> DestReg(GR64) | 
|  | // SrcReg(VR64)  -> DestReg(GR64) | 
|  | // SrcReg(GR64)  -> DestReg(VR128) | 
|  | // SrcReg(GR64)  -> DestReg(VR64) | 
|  |  | 
|  | if (X86::GR64RegClass.contains(DestReg)) { | 
|  | if (X86::VR128XRegClass.contains(SrcReg)) | 
|  | // Copy from a VR128 register to a GR64 register. | 
|  | return HasAVX512 ? X86::VMOVPQIto64Zrr : | 
|  | HasAVX    ? X86::VMOVPQIto64rr  : | 
|  | X86::MOVPQIto64rr; | 
|  | if (X86::VR64RegClass.contains(SrcReg)) | 
|  | // Copy from a VR64 register to a GR64 register. | 
|  | return X86::MMX_MOVD64from64rr; | 
|  | } else if (X86::GR64RegClass.contains(SrcReg)) { | 
|  | // Copy from a GR64 register to a VR128 register. | 
|  | if (X86::VR128XRegClass.contains(DestReg)) | 
|  | return HasAVX512 ? X86::VMOV64toPQIZrr : | 
|  | HasAVX    ? X86::VMOV64toPQIrr  : | 
|  | X86::MOV64toPQIrr; | 
|  | // Copy from a GR64 register to a VR64 register. | 
|  | if (X86::VR64RegClass.contains(DestReg)) | 
|  | return X86::MMX_MOVD64to64rr; | 
|  | } | 
|  |  | 
|  | // SrcReg(FR32) -> DestReg(GR32) | 
|  | // SrcReg(GR32) -> DestReg(FR32) | 
|  |  | 
|  | if (X86::GR32RegClass.contains(DestReg) && | 
|  | X86::FR32XRegClass.contains(SrcReg)) | 
|  | // Copy from a FR32 register to a GR32 register. | 
|  | return HasAVX512 ? X86::VMOVSS2DIZrr : | 
|  | HasAVX    ? X86::VMOVSS2DIrr  : | 
|  | X86::MOVSS2DIrr; | 
|  |  | 
|  | if (X86::FR32XRegClass.contains(DestReg) && | 
|  | X86::GR32RegClass.contains(SrcReg)) | 
|  | // Copy from a GR32 register to a FR32 register. | 
|  | return HasAVX512 ? X86::VMOVDI2SSZrr : | 
|  | HasAVX    ? X86::VMOVDI2SSrr  : | 
|  | X86::MOVDI2SSrr; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator MI, | 
|  | const DebugLoc &DL, unsigned DestReg, | 
|  | unsigned SrcReg, bool KillSrc) const { | 
|  | // First deal with the normal symmetric copies. | 
|  | bool HasAVX = Subtarget.hasAVX(); | 
|  | bool HasVLX = Subtarget.hasVLX(); | 
|  | unsigned Opc = 0; | 
|  | if (X86::GR64RegClass.contains(DestReg, SrcReg)) | 
|  | Opc = X86::MOV64rr; | 
|  | else if (X86::GR32RegClass.contains(DestReg, SrcReg)) | 
|  | Opc = X86::MOV32rr; | 
|  | else if (X86::GR16RegClass.contains(DestReg, SrcReg)) | 
|  | Opc = X86::MOV16rr; | 
|  | else if (X86::GR8RegClass.contains(DestReg, SrcReg)) { | 
|  | // Copying to or from a physical H register on x86-64 requires a NOREX | 
|  | // move.  Otherwise use a normal move. | 
|  | if ((isHReg(DestReg) || isHReg(SrcReg)) && | 
|  | Subtarget.is64Bit()) { | 
|  | Opc = X86::MOV8rr_NOREX; | 
|  | // Both operands must be encodable without an REX prefix. | 
|  | assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) && | 
|  | "8-bit H register can not be copied outside GR8_NOREX"); | 
|  | } else | 
|  | Opc = X86::MOV8rr; | 
|  | } | 
|  | else if (X86::VR64RegClass.contains(DestReg, SrcReg)) | 
|  | Opc = X86::MMX_MOVQ64rr; | 
|  | else if (X86::VR128XRegClass.contains(DestReg, SrcReg)) { | 
|  | if (HasVLX) | 
|  | Opc = X86::VMOVAPSZ128rr; | 
|  | else if (X86::VR128RegClass.contains(DestReg, SrcReg)) | 
|  | Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr; | 
|  | else { | 
|  | // If this an extended register and we don't have VLX we need to use a | 
|  | // 512-bit move. | 
|  | Opc = X86::VMOVAPSZrr; | 
|  | const TargetRegisterInfo *TRI = &getRegisterInfo(); | 
|  | DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_xmm, | 
|  | &X86::VR512RegClass); | 
|  | SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm, | 
|  | &X86::VR512RegClass); | 
|  | } | 
|  | } else if (X86::VR256XRegClass.contains(DestReg, SrcReg)) { | 
|  | if (HasVLX) | 
|  | Opc = X86::VMOVAPSZ256rr; | 
|  | else if (X86::VR256RegClass.contains(DestReg, SrcReg)) | 
|  | Opc = X86::VMOVAPSYrr; | 
|  | else { | 
|  | // If this an extended register and we don't have VLX we need to use a | 
|  | // 512-bit move. | 
|  | Opc = X86::VMOVAPSZrr; | 
|  | const TargetRegisterInfo *TRI = &getRegisterInfo(); | 
|  | DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_ymm, | 
|  | &X86::VR512RegClass); | 
|  | SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm, | 
|  | &X86::VR512RegClass); | 
|  | } | 
|  | } else if (X86::VR512RegClass.contains(DestReg, SrcReg)) | 
|  | Opc = X86::VMOVAPSZrr; | 
|  | // All KMASK RegClasses hold the same k registers, can be tested against anyone. | 
|  | else if (X86::VK16RegClass.contains(DestReg, SrcReg)) | 
|  | Opc = Subtarget.hasBWI() ? X86::KMOVQkk : X86::KMOVWkk; | 
|  | if (!Opc) | 
|  | Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, Subtarget); | 
|  |  | 
|  | if (Opc) { | 
|  | BuildMI(MBB, MI, DL, get(Opc), DestReg) | 
|  | .addReg(SrcReg, getKillRegState(KillSrc)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (SrcReg == X86::EFLAGS || DestReg == X86::EFLAGS) { | 
|  | // FIXME: We use a fatal error here because historically LLVM has tried | 
|  | // lower some of these physreg copies and we want to ensure we get | 
|  | // reasonable bug reports if someone encounters a case no other testing | 
|  | // found. This path should be removed after the LLVM 7 release. | 
|  | report_fatal_error("Unable to copy EFLAGS physical register!"); | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg) << " to " | 
|  | << RI.getName(DestReg) << '\n'); | 
|  | report_fatal_error("Cannot emit physreg copy instruction"); | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::isCopyInstrImpl(const MachineInstr &MI, | 
|  | const MachineOperand *&Src, | 
|  | const MachineOperand *&Dest) const { | 
|  | if (MI.isMoveReg()) { | 
|  | Dest = &MI.getOperand(0); | 
|  | Src = &MI.getOperand(1); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static unsigned getLoadStoreRegOpcode(unsigned Reg, | 
|  | const TargetRegisterClass *RC, | 
|  | bool isStackAligned, | 
|  | const X86Subtarget &STI, | 
|  | bool load) { | 
|  | bool HasAVX = STI.hasAVX(); | 
|  | bool HasAVX512 = STI.hasAVX512(); | 
|  | bool HasVLX = STI.hasVLX(); | 
|  |  | 
|  | switch (STI.getRegisterInfo()->getSpillSize(*RC)) { | 
|  | default: | 
|  | llvm_unreachable("Unknown spill size"); | 
|  | case 1: | 
|  | assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass"); | 
|  | if (STI.is64Bit()) | 
|  | // Copying to or from a physical H register on x86-64 requires a NOREX | 
|  | // move.  Otherwise use a normal move. | 
|  | if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC)) | 
|  | return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX; | 
|  | return load ? X86::MOV8rm : X86::MOV8mr; | 
|  | case 2: | 
|  | if (X86::VK16RegClass.hasSubClassEq(RC)) | 
|  | return load ? X86::KMOVWkm : X86::KMOVWmk; | 
|  | assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass"); | 
|  | return load ? X86::MOV16rm : X86::MOV16mr; | 
|  | case 4: | 
|  | if (X86::GR32RegClass.hasSubClassEq(RC)) | 
|  | return load ? X86::MOV32rm : X86::MOV32mr; | 
|  | if (X86::FR32XRegClass.hasSubClassEq(RC)) | 
|  | return load ? | 
|  | (HasAVX512 ? X86::VMOVSSZrm : HasAVX ? X86::VMOVSSrm : X86::MOVSSrm) : | 
|  | (HasAVX512 ? X86::VMOVSSZmr : HasAVX ? X86::VMOVSSmr : X86::MOVSSmr); | 
|  | if (X86::RFP32RegClass.hasSubClassEq(RC)) | 
|  | return load ? X86::LD_Fp32m : X86::ST_Fp32m; | 
|  | if (X86::VK32RegClass.hasSubClassEq(RC)) { | 
|  | assert(STI.hasBWI() && "KMOVD requires BWI"); | 
|  | return load ? X86::KMOVDkm : X86::KMOVDmk; | 
|  | } | 
|  | llvm_unreachable("Unknown 4-byte regclass"); | 
|  | case 8: | 
|  | if (X86::GR64RegClass.hasSubClassEq(RC)) | 
|  | return load ? X86::MOV64rm : X86::MOV64mr; | 
|  | if (X86::FR64XRegClass.hasSubClassEq(RC)) | 
|  | return load ? | 
|  | (HasAVX512 ? X86::VMOVSDZrm : HasAVX ? X86::VMOVSDrm : X86::MOVSDrm) : | 
|  | (HasAVX512 ? X86::VMOVSDZmr : HasAVX ? X86::VMOVSDmr : X86::MOVSDmr); | 
|  | if (X86::VR64RegClass.hasSubClassEq(RC)) | 
|  | return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr; | 
|  | if (X86::RFP64RegClass.hasSubClassEq(RC)) | 
|  | return load ? X86::LD_Fp64m : X86::ST_Fp64m; | 
|  | if (X86::VK64RegClass.hasSubClassEq(RC)) { | 
|  | assert(STI.hasBWI() && "KMOVQ requires BWI"); | 
|  | return load ? X86::KMOVQkm : X86::KMOVQmk; | 
|  | } | 
|  | llvm_unreachable("Unknown 8-byte regclass"); | 
|  | case 10: | 
|  | assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass"); | 
|  | return load ? X86::LD_Fp80m : X86::ST_FpP80m; | 
|  | case 16: { | 
|  | if (X86::VR128XRegClass.hasSubClassEq(RC)) { | 
|  | // If stack is realigned we can use aligned stores. | 
|  | if (isStackAligned) | 
|  | return load ? | 
|  | (HasVLX    ? X86::VMOVAPSZ128rm : | 
|  | HasAVX512 ? X86::VMOVAPSZ128rm_NOVLX : | 
|  | HasAVX    ? X86::VMOVAPSrm : | 
|  | X86::MOVAPSrm): | 
|  | (HasVLX    ? X86::VMOVAPSZ128mr : | 
|  | HasAVX512 ? X86::VMOVAPSZ128mr_NOVLX : | 
|  | HasAVX    ? X86::VMOVAPSmr : | 
|  | X86::MOVAPSmr); | 
|  | else | 
|  | return load ? | 
|  | (HasVLX    ? X86::VMOVUPSZ128rm : | 
|  | HasAVX512 ? X86::VMOVUPSZ128rm_NOVLX : | 
|  | HasAVX    ? X86::VMOVUPSrm : | 
|  | X86::MOVUPSrm): | 
|  | (HasVLX    ? X86::VMOVUPSZ128mr : | 
|  | HasAVX512 ? X86::VMOVUPSZ128mr_NOVLX : | 
|  | HasAVX    ? X86::VMOVUPSmr : | 
|  | X86::MOVUPSmr); | 
|  | } | 
|  | if (X86::BNDRRegClass.hasSubClassEq(RC)) { | 
|  | if (STI.is64Bit()) | 
|  | return load ? X86::BNDMOV64rm : X86::BNDMOV64mr; | 
|  | else | 
|  | return load ? X86::BNDMOV32rm : X86::BNDMOV32mr; | 
|  | } | 
|  | llvm_unreachable("Unknown 16-byte regclass"); | 
|  | } | 
|  | case 32: | 
|  | assert(X86::VR256XRegClass.hasSubClassEq(RC) && "Unknown 32-byte regclass"); | 
|  | // If stack is realigned we can use aligned stores. | 
|  | if (isStackAligned) | 
|  | return load ? | 
|  | (HasVLX    ? X86::VMOVAPSZ256rm : | 
|  | HasAVX512 ? X86::VMOVAPSZ256rm_NOVLX : | 
|  | X86::VMOVAPSYrm) : | 
|  | (HasVLX    ? X86::VMOVAPSZ256mr : | 
|  | HasAVX512 ? X86::VMOVAPSZ256mr_NOVLX : | 
|  | X86::VMOVAPSYmr); | 
|  | else | 
|  | return load ? | 
|  | (HasVLX    ? X86::VMOVUPSZ256rm : | 
|  | HasAVX512 ? X86::VMOVUPSZ256rm_NOVLX : | 
|  | X86::VMOVUPSYrm) : | 
|  | (HasVLX    ? X86::VMOVUPSZ256mr : | 
|  | HasAVX512 ? X86::VMOVUPSZ256mr_NOVLX : | 
|  | X86::VMOVUPSYmr); | 
|  | case 64: | 
|  | assert(X86::VR512RegClass.hasSubClassEq(RC) && "Unknown 64-byte regclass"); | 
|  | assert(STI.hasAVX512() && "Using 512-bit register requires AVX512"); | 
|  | if (isStackAligned) | 
|  | return load ? X86::VMOVAPSZrm : X86::VMOVAPSZmr; | 
|  | else | 
|  | return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::getMemOpBaseRegImmOfs(MachineInstr &MemOp, unsigned &BaseReg, | 
|  | int64_t &Offset, | 
|  | const TargetRegisterInfo *TRI) const { | 
|  | const MCInstrDesc &Desc = MemOp.getDesc(); | 
|  | int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags); | 
|  | if (MemRefBegin < 0) | 
|  | return false; | 
|  |  | 
|  | MemRefBegin += X86II::getOperandBias(Desc); | 
|  |  | 
|  | MachineOperand &BaseMO = MemOp.getOperand(MemRefBegin + X86::AddrBaseReg); | 
|  | if (!BaseMO.isReg()) // Can be an MO_FrameIndex | 
|  | return false; | 
|  |  | 
|  | BaseReg = BaseMO.getReg(); | 
|  | if (MemOp.getOperand(MemRefBegin + X86::AddrScaleAmt).getImm() != 1) | 
|  | return false; | 
|  |  | 
|  | if (MemOp.getOperand(MemRefBegin + X86::AddrIndexReg).getReg() != | 
|  | X86::NoRegister) | 
|  | return false; | 
|  |  | 
|  | const MachineOperand &DispMO = MemOp.getOperand(MemRefBegin + X86::AddrDisp); | 
|  |  | 
|  | // Displacement can be symbolic | 
|  | if (!DispMO.isImm()) | 
|  | return false; | 
|  |  | 
|  | Offset = DispMO.getImm(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static unsigned getStoreRegOpcode(unsigned SrcReg, | 
|  | const TargetRegisterClass *RC, | 
|  | bool isStackAligned, | 
|  | const X86Subtarget &STI) { | 
|  | return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, STI, false); | 
|  | } | 
|  |  | 
|  |  | 
|  | static unsigned getLoadRegOpcode(unsigned DestReg, | 
|  | const TargetRegisterClass *RC, | 
|  | bool isStackAligned, | 
|  | const X86Subtarget &STI) { | 
|  | return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, STI, true); | 
|  | } | 
|  |  | 
|  | void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator MI, | 
|  | unsigned SrcReg, bool isKill, int FrameIdx, | 
|  | const TargetRegisterClass *RC, | 
|  | const TargetRegisterInfo *TRI) const { | 
|  | const MachineFunction &MF = *MBB.getParent(); | 
|  | assert(MF.getFrameInfo().getObjectSize(FrameIdx) >= TRI->getSpillSize(*RC) && | 
|  | "Stack slot too small for store"); | 
|  | unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16); | 
|  | bool isAligned = | 
|  | (Subtarget.getFrameLowering()->getStackAlignment() >= Alignment) || | 
|  | RI.canRealignStack(MF); | 
|  | unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget); | 
|  | DebugLoc DL = MBB.findDebugLoc(MI); | 
|  | addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx) | 
|  | .addReg(SrcReg, getKillRegState(isKill)); | 
|  | } | 
|  |  | 
|  | void X86InstrInfo::storeRegToAddr( | 
|  | MachineFunction &MF, unsigned SrcReg, bool isKill, | 
|  | SmallVectorImpl<MachineOperand> &Addr, const TargetRegisterClass *RC, | 
|  | ArrayRef<MachineMemOperand *> MMOs, | 
|  | SmallVectorImpl<MachineInstr *> &NewMIs) const { | 
|  | const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); | 
|  | unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16); | 
|  | bool isAligned = !MMOs.empty() && MMOs.front()->getAlignment() >= Alignment; | 
|  | unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget); | 
|  | DebugLoc DL; | 
|  | MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc)); | 
|  | for (unsigned i = 0, e = Addr.size(); i != e; ++i) | 
|  | MIB.add(Addr[i]); | 
|  | MIB.addReg(SrcReg, getKillRegState(isKill)); | 
|  | MIB.setMemRefs(MMOs); | 
|  | NewMIs.push_back(MIB); | 
|  | } | 
|  |  | 
|  |  | 
|  | void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator MI, | 
|  | unsigned DestReg, int FrameIdx, | 
|  | const TargetRegisterClass *RC, | 
|  | const TargetRegisterInfo *TRI) const { | 
|  | const MachineFunction &MF = *MBB.getParent(); | 
|  | unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16); | 
|  | bool isAligned = | 
|  | (Subtarget.getFrameLowering()->getStackAlignment() >= Alignment) || | 
|  | RI.canRealignStack(MF); | 
|  | unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget); | 
|  | DebugLoc DL = MBB.findDebugLoc(MI); | 
|  | addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx); | 
|  | } | 
|  |  | 
|  | void X86InstrInfo::loadRegFromAddr( | 
|  | MachineFunction &MF, unsigned DestReg, | 
|  | SmallVectorImpl<MachineOperand> &Addr, const TargetRegisterClass *RC, | 
|  | ArrayRef<MachineMemOperand *> MMOs, | 
|  | SmallVectorImpl<MachineInstr *> &NewMIs) const { | 
|  | const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); | 
|  | unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16); | 
|  | bool isAligned = !MMOs.empty() && MMOs.front()->getAlignment() >= Alignment; | 
|  | unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget); | 
|  | DebugLoc DL; | 
|  | MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg); | 
|  | for (unsigned i = 0, e = Addr.size(); i != e; ++i) | 
|  | MIB.add(Addr[i]); | 
|  | MIB.setMemRefs(MMOs); | 
|  | NewMIs.push_back(MIB); | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg, | 
|  | unsigned &SrcReg2, int &CmpMask, | 
|  | int &CmpValue) const { | 
|  | switch (MI.getOpcode()) { | 
|  | default: break; | 
|  | case X86::CMP64ri32: | 
|  | case X86::CMP64ri8: | 
|  | case X86::CMP32ri: | 
|  | case X86::CMP32ri8: | 
|  | case X86::CMP16ri: | 
|  | case X86::CMP16ri8: | 
|  | case X86::CMP8ri: | 
|  | SrcReg = MI.getOperand(0).getReg(); | 
|  | SrcReg2 = 0; | 
|  | if (MI.getOperand(1).isImm()) { | 
|  | CmpMask = ~0; | 
|  | CmpValue = MI.getOperand(1).getImm(); | 
|  | } else { | 
|  | CmpMask = CmpValue = 0; | 
|  | } | 
|  | return true; | 
|  | // A SUB can be used to perform comparison. | 
|  | case X86::SUB64rm: | 
|  | case X86::SUB32rm: | 
|  | case X86::SUB16rm: | 
|  | case X86::SUB8rm: | 
|  | SrcReg = MI.getOperand(1).getReg(); | 
|  | SrcReg2 = 0; | 
|  | CmpMask = 0; | 
|  | CmpValue = 0; | 
|  | return true; | 
|  | case X86::SUB64rr: | 
|  | case X86::SUB32rr: | 
|  | case X86::SUB16rr: | 
|  | case X86::SUB8rr: | 
|  | SrcReg = MI.getOperand(1).getReg(); | 
|  | SrcReg2 = MI.getOperand(2).getReg(); | 
|  | CmpMask = 0; | 
|  | CmpValue = 0; | 
|  | return true; | 
|  | case X86::SUB64ri32: | 
|  | case X86::SUB64ri8: | 
|  | case X86::SUB32ri: | 
|  | case X86::SUB32ri8: | 
|  | case X86::SUB16ri: | 
|  | case X86::SUB16ri8: | 
|  | case X86::SUB8ri: | 
|  | SrcReg = MI.getOperand(1).getReg(); | 
|  | SrcReg2 = 0; | 
|  | if (MI.getOperand(2).isImm()) { | 
|  | CmpMask = ~0; | 
|  | CmpValue = MI.getOperand(2).getImm(); | 
|  | } else { | 
|  | CmpMask = CmpValue = 0; | 
|  | } | 
|  | return true; | 
|  | case X86::CMP64rr: | 
|  | case X86::CMP32rr: | 
|  | case X86::CMP16rr: | 
|  | case X86::CMP8rr: | 
|  | SrcReg = MI.getOperand(0).getReg(); | 
|  | SrcReg2 = MI.getOperand(1).getReg(); | 
|  | CmpMask = 0; | 
|  | CmpValue = 0; | 
|  | return true; | 
|  | case X86::TEST8rr: | 
|  | case X86::TEST16rr: | 
|  | case X86::TEST32rr: | 
|  | case X86::TEST64rr: | 
|  | SrcReg = MI.getOperand(0).getReg(); | 
|  | if (MI.getOperand(1).getReg() != SrcReg) | 
|  | return false; | 
|  | // Compare against zero. | 
|  | SrcReg2 = 0; | 
|  | CmpMask = ~0; | 
|  | CmpValue = 0; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Check whether the first instruction, whose only | 
|  | /// purpose is to update flags, can be made redundant. | 
|  | /// CMPrr can be made redundant by SUBrr if the operands are the same. | 
|  | /// This function can be extended later on. | 
|  | /// SrcReg, SrcRegs: register operands for FlagI. | 
|  | /// ImmValue: immediate for FlagI if it takes an immediate. | 
|  | inline static bool isRedundantFlagInstr(MachineInstr &FlagI, unsigned SrcReg, | 
|  | unsigned SrcReg2, int ImmMask, | 
|  | int ImmValue, MachineInstr &OI) { | 
|  | if (((FlagI.getOpcode() == X86::CMP64rr && OI.getOpcode() == X86::SUB64rr) || | 
|  | (FlagI.getOpcode() == X86::CMP32rr && OI.getOpcode() == X86::SUB32rr) || | 
|  | (FlagI.getOpcode() == X86::CMP16rr && OI.getOpcode() == X86::SUB16rr) || | 
|  | (FlagI.getOpcode() == X86::CMP8rr && OI.getOpcode() == X86::SUB8rr)) && | 
|  | ((OI.getOperand(1).getReg() == SrcReg && | 
|  | OI.getOperand(2).getReg() == SrcReg2) || | 
|  | (OI.getOperand(1).getReg() == SrcReg2 && | 
|  | OI.getOperand(2).getReg() == SrcReg))) | 
|  | return true; | 
|  |  | 
|  | if (ImmMask != 0 && | 
|  | ((FlagI.getOpcode() == X86::CMP64ri32 && | 
|  | OI.getOpcode() == X86::SUB64ri32) || | 
|  | (FlagI.getOpcode() == X86::CMP64ri8 && | 
|  | OI.getOpcode() == X86::SUB64ri8) || | 
|  | (FlagI.getOpcode() == X86::CMP32ri && OI.getOpcode() == X86::SUB32ri) || | 
|  | (FlagI.getOpcode() == X86::CMP32ri8 && | 
|  | OI.getOpcode() == X86::SUB32ri8) || | 
|  | (FlagI.getOpcode() == X86::CMP16ri && OI.getOpcode() == X86::SUB16ri) || | 
|  | (FlagI.getOpcode() == X86::CMP16ri8 && | 
|  | OI.getOpcode() == X86::SUB16ri8) || | 
|  | (FlagI.getOpcode() == X86::CMP8ri && OI.getOpcode() == X86::SUB8ri)) && | 
|  | OI.getOperand(1).getReg() == SrcReg && | 
|  | OI.getOperand(2).getImm() == ImmValue) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Check whether the definition can be converted | 
|  | /// to remove a comparison against zero. | 
|  | inline static bool isDefConvertible(MachineInstr &MI) { | 
|  | switch (MI.getOpcode()) { | 
|  | default: return false; | 
|  |  | 
|  | // The shift instructions only modify ZF if their shift count is non-zero. | 
|  | // N.B.: The processor truncates the shift count depending on the encoding. | 
|  | case X86::SAR8ri:    case X86::SAR16ri:  case X86::SAR32ri:case X86::SAR64ri: | 
|  | case X86::SHR8ri:    case X86::SHR16ri:  case X86::SHR32ri:case X86::SHR64ri: | 
|  | return getTruncatedShiftCount(MI, 2) != 0; | 
|  |  | 
|  | // Some left shift instructions can be turned into LEA instructions but only | 
|  | // if their flags aren't used. Avoid transforming such instructions. | 
|  | case X86::SHL8ri:    case X86::SHL16ri:  case X86::SHL32ri:case X86::SHL64ri:{ | 
|  | unsigned ShAmt = getTruncatedShiftCount(MI, 2); | 
|  | if (isTruncatedShiftCountForLEA(ShAmt)) return false; | 
|  | return ShAmt != 0; | 
|  | } | 
|  |  | 
|  | case X86::SHRD16rri8:case X86::SHRD32rri8:case X86::SHRD64rri8: | 
|  | case X86::SHLD16rri8:case X86::SHLD32rri8:case X86::SHLD64rri8: | 
|  | return getTruncatedShiftCount(MI, 3) != 0; | 
|  |  | 
|  | case X86::SUB64ri32: case X86::SUB64ri8: case X86::SUB32ri: | 
|  | case X86::SUB32ri8:  case X86::SUB16ri:  case X86::SUB16ri8: | 
|  | case X86::SUB8ri:    case X86::SUB64rr:  case X86::SUB32rr: | 
|  | case X86::SUB16rr:   case X86::SUB8rr:   case X86::SUB64rm: | 
|  | case X86::SUB32rm:   case X86::SUB16rm:  case X86::SUB8rm: | 
|  | case X86::DEC64r:    case X86::DEC32r:   case X86::DEC16r: case X86::DEC8r: | 
|  | case X86::ADD64ri32: case X86::ADD64ri8: case X86::ADD32ri: | 
|  | case X86::ADD32ri8:  case X86::ADD16ri:  case X86::ADD16ri8: | 
|  | case X86::ADD8ri:    case X86::ADD64rr:  case X86::ADD32rr: | 
|  | case X86::ADD16rr:   case X86::ADD8rr:   case X86::ADD64rm: | 
|  | case X86::ADD32rm:   case X86::ADD16rm:  case X86::ADD8rm: | 
|  | case X86::INC64r:    case X86::INC32r:   case X86::INC16r: case X86::INC8r: | 
|  | case X86::AND64ri32: case X86::AND64ri8: case X86::AND32ri: | 
|  | case X86::AND32ri8:  case X86::AND16ri:  case X86::AND16ri8: | 
|  | case X86::AND8ri:    case X86::AND64rr:  case X86::AND32rr: | 
|  | case X86::AND16rr:   case X86::AND8rr:   case X86::AND64rm: | 
|  | case X86::AND32rm:   case X86::AND16rm:  case X86::AND8rm: | 
|  | case X86::XOR64ri32: case X86::XOR64ri8: case X86::XOR32ri: | 
|  | case X86::XOR32ri8:  case X86::XOR16ri:  case X86::XOR16ri8: | 
|  | case X86::XOR8ri:    case X86::XOR64rr:  case X86::XOR32rr: | 
|  | case X86::XOR16rr:   case X86::XOR8rr:   case X86::XOR64rm: | 
|  | case X86::XOR32rm:   case X86::XOR16rm:  case X86::XOR8rm: | 
|  | case X86::OR64ri32:  case X86::OR64ri8:  case X86::OR32ri: | 
|  | case X86::OR32ri8:   case X86::OR16ri:   case X86::OR16ri8: | 
|  | case X86::OR8ri:     case X86::OR64rr:   case X86::OR32rr: | 
|  | case X86::OR16rr:    case X86::OR8rr:    case X86::OR64rm: | 
|  | case X86::OR32rm:    case X86::OR16rm:   case X86::OR8rm: | 
|  | case X86::ADC64ri32: case X86::ADC64ri8: case X86::ADC32ri: | 
|  | case X86::ADC32ri8:  case X86::ADC16ri:  case X86::ADC16ri8: | 
|  | case X86::ADC8ri:    case X86::ADC64rr:  case X86::ADC32rr: | 
|  | case X86::ADC16rr:   case X86::ADC8rr:   case X86::ADC64rm: | 
|  | case X86::ADC32rm:   case X86::ADC16rm:  case X86::ADC8rm: | 
|  | case X86::SBB64ri32: case X86::SBB64ri8: case X86::SBB32ri: | 
|  | case X86::SBB32ri8:  case X86::SBB16ri:  case X86::SBB16ri8: | 
|  | case X86::SBB8ri:    case X86::SBB64rr:  case X86::SBB32rr: | 
|  | case X86::SBB16rr:   case X86::SBB8rr:   case X86::SBB64rm: | 
|  | case X86::SBB32rm:   case X86::SBB16rm:  case X86::SBB8rm: | 
|  | case X86::NEG8r:     case X86::NEG16r:   case X86::NEG32r: case X86::NEG64r: | 
|  | case X86::SAR8r1:    case X86::SAR16r1:  case X86::SAR32r1:case X86::SAR64r1: | 
|  | case X86::SHR8r1:    case X86::SHR16r1:  case X86::SHR32r1:case X86::SHR64r1: | 
|  | case X86::SHL8r1:    case X86::SHL16r1:  case X86::SHL32r1:case X86::SHL64r1: | 
|  | case X86::ANDN32rr:  case X86::ANDN32rm: | 
|  | case X86::ANDN64rr:  case X86::ANDN64rm: | 
|  | case X86::BEXTR32rr: case X86::BEXTR64rr: | 
|  | case X86::BEXTR32rm: case X86::BEXTR64rm: | 
|  | case X86::BLSI32rr:  case X86::BLSI32rm: | 
|  | case X86::BLSI64rr:  case X86::BLSI64rm: | 
|  | case X86::BLSMSK32rr:case X86::BLSMSK32rm: | 
|  | case X86::BLSMSK64rr:case X86::BLSMSK64rm: | 
|  | case X86::BLSR32rr:  case X86::BLSR32rm: | 
|  | case X86::BLSR64rr:  case X86::BLSR64rm: | 
|  | case X86::BZHI32rr:  case X86::BZHI32rm: | 
|  | case X86::BZHI64rr:  case X86::BZHI64rm: | 
|  | case X86::LZCNT16rr: case X86::LZCNT16rm: | 
|  | case X86::LZCNT32rr: case X86::LZCNT32rm: | 
|  | case X86::LZCNT64rr: case X86::LZCNT64rm: | 
|  | case X86::POPCNT16rr:case X86::POPCNT16rm: | 
|  | case X86::POPCNT32rr:case X86::POPCNT32rm: | 
|  | case X86::POPCNT64rr:case X86::POPCNT64rm: | 
|  | case X86::TZCNT16rr: case X86::TZCNT16rm: | 
|  | case X86::TZCNT32rr: case X86::TZCNT32rm: | 
|  | case X86::TZCNT64rr: case X86::TZCNT64rm: | 
|  | case X86::BEXTRI32ri:  case X86::BEXTRI32mi: | 
|  | case X86::BEXTRI64ri:  case X86::BEXTRI64mi: | 
|  | case X86::BLCFILL32rr: case X86::BLCFILL32rm: | 
|  | case X86::BLCFILL64rr: case X86::BLCFILL64rm: | 
|  | case X86::BLCI32rr:    case X86::BLCI32rm: | 
|  | case X86::BLCI64rr:    case X86::BLCI64rm: | 
|  | case X86::BLCIC32rr:   case X86::BLCIC32rm: | 
|  | case X86::BLCIC64rr:   case X86::BLCIC64rm: | 
|  | case X86::BLCMSK32rr:  case X86::BLCMSK32rm: | 
|  | case X86::BLCMSK64rr:  case X86::BLCMSK64rm: | 
|  | case X86::BLCS32rr:    case X86::BLCS32rm: | 
|  | case X86::BLCS64rr:    case X86::BLCS64rm: | 
|  | case X86::BLSFILL32rr: case X86::BLSFILL32rm: | 
|  | case X86::BLSFILL64rr: case X86::BLSFILL64rm: | 
|  | case X86::BLSIC32rr:   case X86::BLSIC32rm: | 
|  | case X86::BLSIC64rr:   case X86::BLSIC64rm: | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Check whether the use can be converted to remove a comparison against zero. | 
|  | static X86::CondCode isUseDefConvertible(MachineInstr &MI) { | 
|  | switch (MI.getOpcode()) { | 
|  | default: return X86::COND_INVALID; | 
|  | case X86::LZCNT16rr: case X86::LZCNT16rm: | 
|  | case X86::LZCNT32rr: case X86::LZCNT32rm: | 
|  | case X86::LZCNT64rr: case X86::LZCNT64rm: | 
|  | return X86::COND_B; | 
|  | case X86::POPCNT16rr:case X86::POPCNT16rm: | 
|  | case X86::POPCNT32rr:case X86::POPCNT32rm: | 
|  | case X86::POPCNT64rr:case X86::POPCNT64rm: | 
|  | return X86::COND_E; | 
|  | case X86::TZCNT16rr: case X86::TZCNT16rm: | 
|  | case X86::TZCNT32rr: case X86::TZCNT32rm: | 
|  | case X86::TZCNT64rr: case X86::TZCNT64rm: | 
|  | return X86::COND_B; | 
|  | case X86::BSF16rr: | 
|  | case X86::BSF16rm: | 
|  | case X86::BSF32rr: | 
|  | case X86::BSF32rm: | 
|  | case X86::BSF64rr: | 
|  | case X86::BSF64rm: | 
|  | return X86::COND_E; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Check if there exists an earlier instruction that | 
|  | /// operates on the same source operands and sets flags in the same way as | 
|  | /// Compare; remove Compare if possible. | 
|  | bool X86InstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg, | 
|  | unsigned SrcReg2, int CmpMask, | 
|  | int CmpValue, | 
|  | const MachineRegisterInfo *MRI) const { | 
|  | // Check whether we can replace SUB with CMP. | 
|  | unsigned NewOpcode = 0; | 
|  | switch (CmpInstr.getOpcode()) { | 
|  | default: break; | 
|  | case X86::SUB64ri32: | 
|  | case X86::SUB64ri8: | 
|  | case X86::SUB32ri: | 
|  | case X86::SUB32ri8: | 
|  | case X86::SUB16ri: | 
|  | case X86::SUB16ri8: | 
|  | case X86::SUB8ri: | 
|  | case X86::SUB64rm: | 
|  | case X86::SUB32rm: | 
|  | case X86::SUB16rm: | 
|  | case X86::SUB8rm: | 
|  | case X86::SUB64rr: | 
|  | case X86::SUB32rr: | 
|  | case X86::SUB16rr: | 
|  | case X86::SUB8rr: { | 
|  | if (!MRI->use_nodbg_empty(CmpInstr.getOperand(0).getReg())) | 
|  | return false; | 
|  | // There is no use of the destination register, we can replace SUB with CMP. | 
|  | switch (CmpInstr.getOpcode()) { | 
|  | default: llvm_unreachable("Unreachable!"); | 
|  | case X86::SUB64rm:   NewOpcode = X86::CMP64rm;   break; | 
|  | case X86::SUB32rm:   NewOpcode = X86::CMP32rm;   break; | 
|  | case X86::SUB16rm:   NewOpcode = X86::CMP16rm;   break; | 
|  | case X86::SUB8rm:    NewOpcode = X86::CMP8rm;    break; | 
|  | case X86::SUB64rr:   NewOpcode = X86::CMP64rr;   break; | 
|  | case X86::SUB32rr:   NewOpcode = X86::CMP32rr;   break; | 
|  | case X86::SUB16rr:   NewOpcode = X86::CMP16rr;   break; | 
|  | case X86::SUB8rr:    NewOpcode = X86::CMP8rr;    break; | 
|  | case X86::SUB64ri32: NewOpcode = X86::CMP64ri32; break; | 
|  | case X86::SUB64ri8:  NewOpcode = X86::CMP64ri8;  break; | 
|  | case X86::SUB32ri:   NewOpcode = X86::CMP32ri;   break; | 
|  | case X86::SUB32ri8:  NewOpcode = X86::CMP32ri8;  break; | 
|  | case X86::SUB16ri:   NewOpcode = X86::CMP16ri;   break; | 
|  | case X86::SUB16ri8:  NewOpcode = X86::CMP16ri8;  break; | 
|  | case X86::SUB8ri:    NewOpcode = X86::CMP8ri;    break; | 
|  | } | 
|  | CmpInstr.setDesc(get(NewOpcode)); | 
|  | CmpInstr.RemoveOperand(0); | 
|  | // Fall through to optimize Cmp if Cmp is CMPrr or CMPri. | 
|  | if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm || | 
|  | NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Get the unique definition of SrcReg. | 
|  | MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); | 
|  | if (!MI) return false; | 
|  |  | 
|  | // CmpInstr is the first instruction of the BB. | 
|  | MachineBasicBlock::iterator I = CmpInstr, Def = MI; | 
|  |  | 
|  | // If we are comparing against zero, check whether we can use MI to update | 
|  | // EFLAGS. If MI is not in the same BB as CmpInstr, do not optimize. | 
|  | bool IsCmpZero = (CmpMask != 0 && CmpValue == 0); | 
|  | if (IsCmpZero && MI->getParent() != CmpInstr.getParent()) | 
|  | return false; | 
|  |  | 
|  | // If we have a use of the source register between the def and our compare | 
|  | // instruction we can eliminate the compare iff the use sets EFLAGS in the | 
|  | // right way. | 
|  | bool ShouldUpdateCC = false; | 
|  | X86::CondCode NewCC = X86::COND_INVALID; | 
|  | if (IsCmpZero && !isDefConvertible(*MI)) { | 
|  | // Scan forward from the use until we hit the use we're looking for or the | 
|  | // compare instruction. | 
|  | for (MachineBasicBlock::iterator J = MI;; ++J) { | 
|  | // Do we have a convertible instruction? | 
|  | NewCC = isUseDefConvertible(*J); | 
|  | if (NewCC != X86::COND_INVALID && J->getOperand(1).isReg() && | 
|  | J->getOperand(1).getReg() == SrcReg) { | 
|  | assert(J->definesRegister(X86::EFLAGS) && "Must be an EFLAGS def!"); | 
|  | ShouldUpdateCC = true; // Update CC later on. | 
|  | // This is not a def of SrcReg, but still a def of EFLAGS. Keep going | 
|  | // with the new def. | 
|  | Def = J; | 
|  | MI = &*Def; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (J == I) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // We are searching for an earlier instruction that can make CmpInstr | 
|  | // redundant and that instruction will be saved in Sub. | 
|  | MachineInstr *Sub = nullptr; | 
|  | const TargetRegisterInfo *TRI = &getRegisterInfo(); | 
|  |  | 
|  | // We iterate backward, starting from the instruction before CmpInstr and | 
|  | // stop when reaching the definition of a source register or done with the BB. | 
|  | // RI points to the instruction before CmpInstr. | 
|  | // If the definition is in this basic block, RE points to the definition; | 
|  | // otherwise, RE is the rend of the basic block. | 
|  | MachineBasicBlock::reverse_iterator | 
|  | RI = ++I.getReverse(), | 
|  | RE = CmpInstr.getParent() == MI->getParent() | 
|  | ? Def.getReverse() /* points to MI */ | 
|  | : CmpInstr.getParent()->rend(); | 
|  | MachineInstr *Movr0Inst = nullptr; | 
|  | for (; RI != RE; ++RI) { | 
|  | MachineInstr &Instr = *RI; | 
|  | // Check whether CmpInstr can be made redundant by the current instruction. | 
|  | if (!IsCmpZero && isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpMask, | 
|  | CmpValue, Instr)) { | 
|  | Sub = &Instr; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (Instr.modifiesRegister(X86::EFLAGS, TRI) || | 
|  | Instr.readsRegister(X86::EFLAGS, TRI)) { | 
|  | // This instruction modifies or uses EFLAGS. | 
|  |  | 
|  | // MOV32r0 etc. are implemented with xor which clobbers condition code. | 
|  | // They are safe to move up, if the definition to EFLAGS is dead and | 
|  | // earlier instructions do not read or write EFLAGS. | 
|  | if (!Movr0Inst && Instr.getOpcode() == X86::MOV32r0 && | 
|  | Instr.registerDefIsDead(X86::EFLAGS, TRI)) { | 
|  | Movr0Inst = &Instr; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // We can't remove CmpInstr. | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Return false if no candidates exist. | 
|  | if (!IsCmpZero && !Sub) | 
|  | return false; | 
|  |  | 
|  | bool IsSwapped = (SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && | 
|  | Sub->getOperand(2).getReg() == SrcReg); | 
|  |  | 
|  | // Scan forward from the instruction after CmpInstr for uses of EFLAGS. | 
|  | // It is safe to remove CmpInstr if EFLAGS is redefined or killed. | 
|  | // If we are done with the basic block, we need to check whether EFLAGS is | 
|  | // live-out. | 
|  | bool IsSafe = false; | 
|  | SmallVector<std::pair<MachineInstr*, unsigned /*NewOpc*/>, 4> OpsToUpdate; | 
|  | MachineBasicBlock::iterator E = CmpInstr.getParent()->end(); | 
|  | for (++I; I != E; ++I) { | 
|  | const MachineInstr &Instr = *I; | 
|  | bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI); | 
|  | bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI); | 
|  | // We should check the usage if this instruction uses and updates EFLAGS. | 
|  | if (!UseEFLAGS && ModifyEFLAGS) { | 
|  | // It is safe to remove CmpInstr if EFLAGS is updated again. | 
|  | IsSafe = true; | 
|  | break; | 
|  | } | 
|  | if (!UseEFLAGS && !ModifyEFLAGS) | 
|  | continue; | 
|  |  | 
|  | // EFLAGS is used by this instruction. | 
|  | X86::CondCode OldCC = X86::COND_INVALID; | 
|  | bool OpcIsSET = false; | 
|  | if (IsCmpZero || IsSwapped) { | 
|  | // We decode the condition code from opcode. | 
|  | if (Instr.isBranch()) | 
|  | OldCC = X86::getCondFromBranchOpc(Instr.getOpcode()); | 
|  | else { | 
|  | OldCC = X86::getCondFromSETOpc(Instr.getOpcode()); | 
|  | if (OldCC != X86::COND_INVALID) | 
|  | OpcIsSET = true; | 
|  | else | 
|  | OldCC = X86::getCondFromCMovOpc(Instr.getOpcode()); | 
|  | } | 
|  | if (OldCC == X86::COND_INVALID) return false; | 
|  | } | 
|  | X86::CondCode ReplacementCC = X86::COND_INVALID; | 
|  | if (IsCmpZero) { | 
|  | switch (OldCC) { | 
|  | default: break; | 
|  | case X86::COND_A: case X86::COND_AE: | 
|  | case X86::COND_B: case X86::COND_BE: | 
|  | case X86::COND_G: case X86::COND_GE: | 
|  | case X86::COND_L: case X86::COND_LE: | 
|  | case X86::COND_O: case X86::COND_NO: | 
|  | // CF and OF are used, we can't perform this optimization. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If we're updating the condition code check if we have to reverse the | 
|  | // condition. | 
|  | if (ShouldUpdateCC) | 
|  | switch (OldCC) { | 
|  | default: | 
|  | return false; | 
|  | case X86::COND_E: | 
|  | ReplacementCC = NewCC; | 
|  | break; | 
|  | case X86::COND_NE: | 
|  | ReplacementCC = GetOppositeBranchCondition(NewCC); | 
|  | break; | 
|  | } | 
|  | } else if (IsSwapped) { | 
|  | // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs | 
|  | // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. | 
|  | // We swap the condition code and synthesize the new opcode. | 
|  | ReplacementCC = getSwappedCondition(OldCC); | 
|  | if (ReplacementCC == X86::COND_INVALID) return false; | 
|  | } | 
|  |  | 
|  | if ((ShouldUpdateCC || IsSwapped) && ReplacementCC != OldCC) { | 
|  | // Synthesize the new opcode. | 
|  | bool HasMemoryOperand = Instr.hasOneMemOperand(); | 
|  | unsigned NewOpc; | 
|  | if (Instr.isBranch()) | 
|  | NewOpc = GetCondBranchFromCond(ReplacementCC); | 
|  | else if(OpcIsSET) | 
|  | NewOpc = getSETFromCond(ReplacementCC, HasMemoryOperand); | 
|  | else { | 
|  | unsigned DstReg = Instr.getOperand(0).getReg(); | 
|  | const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg); | 
|  | NewOpc = getCMovFromCond(ReplacementCC, TRI->getRegSizeInBits(*DstRC)/8, | 
|  | HasMemoryOperand); | 
|  | } | 
|  |  | 
|  | // Push the MachineInstr to OpsToUpdate. | 
|  | // If it is safe to remove CmpInstr, the condition code of these | 
|  | // instructions will be modified. | 
|  | OpsToUpdate.push_back(std::make_pair(&*I, NewOpc)); | 
|  | } | 
|  | if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS, TRI)) { | 
|  | // It is safe to remove CmpInstr if EFLAGS is updated again or killed. | 
|  | IsSafe = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If EFLAGS is not killed nor re-defined, we should check whether it is | 
|  | // live-out. If it is live-out, do not optimize. | 
|  | if ((IsCmpZero || IsSwapped) && !IsSafe) { | 
|  | MachineBasicBlock *MBB = CmpInstr.getParent(); | 
|  | for (MachineBasicBlock *Successor : MBB->successors()) | 
|  | if (Successor->isLiveIn(X86::EFLAGS)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // The instruction to be updated is either Sub or MI. | 
|  | Sub = IsCmpZero ? MI : Sub; | 
|  | // Move Movr0Inst to the appropriate place before Sub. | 
|  | if (Movr0Inst) { | 
|  | // Look backwards until we find a def that doesn't use the current EFLAGS. | 
|  | Def = Sub; | 
|  | MachineBasicBlock::reverse_iterator InsertI = Def.getReverse(), | 
|  | InsertE = Sub->getParent()->rend(); | 
|  | for (; InsertI != InsertE; ++InsertI) { | 
|  | MachineInstr *Instr = &*InsertI; | 
|  | if (!Instr->readsRegister(X86::EFLAGS, TRI) && | 
|  | Instr->modifiesRegister(X86::EFLAGS, TRI)) { | 
|  | Sub->getParent()->remove(Movr0Inst); | 
|  | Instr->getParent()->insert(MachineBasicBlock::iterator(Instr), | 
|  | Movr0Inst); | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (InsertI == InsertE) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Make sure Sub instruction defines EFLAGS and mark the def live. | 
|  | unsigned i = 0, e = Sub->getNumOperands(); | 
|  | for (; i != e; ++i) { | 
|  | MachineOperand &MO = Sub->getOperand(i); | 
|  | if (MO.isReg() && MO.isDef() && MO.getReg() == X86::EFLAGS) { | 
|  | MO.setIsDead(false); | 
|  | break; | 
|  | } | 
|  | } | 
|  | assert(i != e && "Unable to locate a def EFLAGS operand"); | 
|  |  | 
|  | CmpInstr.eraseFromParent(); | 
|  |  | 
|  | // Modify the condition code of instructions in OpsToUpdate. | 
|  | for (auto &Op : OpsToUpdate) | 
|  | Op.first->setDesc(get(Op.second)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Try to remove the load by folding it to a register | 
|  | /// operand at the use. We fold the load instructions if load defines a virtual | 
|  | /// register, the virtual register is used once in the same BB, and the | 
|  | /// instructions in-between do not load or store, and have no side effects. | 
|  | MachineInstr *X86InstrInfo::optimizeLoadInstr(MachineInstr &MI, | 
|  | const MachineRegisterInfo *MRI, | 
|  | unsigned &FoldAsLoadDefReg, | 
|  | MachineInstr *&DefMI) const { | 
|  | // Check whether we can move DefMI here. | 
|  | DefMI = MRI->getVRegDef(FoldAsLoadDefReg); | 
|  | assert(DefMI); | 
|  | bool SawStore = false; | 
|  | if (!DefMI->isSafeToMove(nullptr, SawStore)) | 
|  | return nullptr; | 
|  |  | 
|  | // Collect information about virtual register operands of MI. | 
|  | SmallVector<unsigned, 1> SrcOperandIds; | 
|  | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &MO = MI.getOperand(i); | 
|  | if (!MO.isReg()) | 
|  | continue; | 
|  | unsigned Reg = MO.getReg(); | 
|  | if (Reg != FoldAsLoadDefReg) | 
|  | continue; | 
|  | // Do not fold if we have a subreg use or a def. | 
|  | if (MO.getSubReg() || MO.isDef()) | 
|  | return nullptr; | 
|  | SrcOperandIds.push_back(i); | 
|  | } | 
|  | if (SrcOperandIds.empty()) | 
|  | return nullptr; | 
|  |  | 
|  | // Check whether we can fold the def into SrcOperandId. | 
|  | if (MachineInstr *FoldMI = foldMemoryOperand(MI, SrcOperandIds, *DefMI)) { | 
|  | FoldAsLoadDefReg = 0; | 
|  | return FoldMI; | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Expand a single-def pseudo instruction to a two-addr | 
|  | /// instruction with two undef reads of the register being defined. | 
|  | /// This is used for mapping: | 
|  | ///   %xmm4 = V_SET0 | 
|  | /// to: | 
|  | ///   %xmm4 = PXORrr undef %xmm4, undef %xmm4 | 
|  | /// | 
|  | static bool Expand2AddrUndef(MachineInstrBuilder &MIB, | 
|  | const MCInstrDesc &Desc) { | 
|  | assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction."); | 
|  | unsigned Reg = MIB->getOperand(0).getReg(); | 
|  | MIB->setDesc(Desc); | 
|  |  | 
|  | // MachineInstr::addOperand() will insert explicit operands before any | 
|  | // implicit operands. | 
|  | MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef); | 
|  | // But we don't trust that. | 
|  | assert(MIB->getOperand(1).getReg() == Reg && | 
|  | MIB->getOperand(2).getReg() == Reg && "Misplaced operand"); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Expand a single-def pseudo instruction to a two-addr | 
|  | /// instruction with two %k0 reads. | 
|  | /// This is used for mapping: | 
|  | ///   %k4 = K_SET1 | 
|  | /// to: | 
|  | ///   %k4 = KXNORrr %k0, %k0 | 
|  | static bool Expand2AddrKreg(MachineInstrBuilder &MIB, | 
|  | const MCInstrDesc &Desc, unsigned Reg) { | 
|  | assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction."); | 
|  | MIB->setDesc(Desc); | 
|  | MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool expandMOV32r1(MachineInstrBuilder &MIB, const TargetInstrInfo &TII, | 
|  | bool MinusOne) { | 
|  | MachineBasicBlock &MBB = *MIB->getParent(); | 
|  | DebugLoc DL = MIB->getDebugLoc(); | 
|  | unsigned Reg = MIB->getOperand(0).getReg(); | 
|  |  | 
|  | // Insert the XOR. | 
|  | BuildMI(MBB, MIB.getInstr(), DL, TII.get(X86::XOR32rr), Reg) | 
|  | .addReg(Reg, RegState::Undef) | 
|  | .addReg(Reg, RegState::Undef); | 
|  |  | 
|  | // Turn the pseudo into an INC or DEC. | 
|  | MIB->setDesc(TII.get(MinusOne ? X86::DEC32r : X86::INC32r)); | 
|  | MIB.addReg(Reg); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool ExpandMOVImmSExti8(MachineInstrBuilder &MIB, | 
|  | const TargetInstrInfo &TII, | 
|  | const X86Subtarget &Subtarget) { | 
|  | MachineBasicBlock &MBB = *MIB->getParent(); | 
|  | DebugLoc DL = MIB->getDebugLoc(); | 
|  | int64_t Imm = MIB->getOperand(1).getImm(); | 
|  | assert(Imm != 0 && "Using push/pop for 0 is not efficient."); | 
|  | MachineBasicBlock::iterator I = MIB.getInstr(); | 
|  |  | 
|  | int StackAdjustment; | 
|  |  | 
|  | if (Subtarget.is64Bit()) { | 
|  | assert(MIB->getOpcode() == X86::MOV64ImmSExti8 || | 
|  | MIB->getOpcode() == X86::MOV32ImmSExti8); | 
|  |  | 
|  | // Can't use push/pop lowering if the function might write to the red zone. | 
|  | X86MachineFunctionInfo *X86FI = | 
|  | MBB.getParent()->getInfo<X86MachineFunctionInfo>(); | 
|  | if (X86FI->getUsesRedZone()) { | 
|  | MIB->setDesc(TII.get(MIB->getOpcode() == | 
|  | X86::MOV32ImmSExti8 ? X86::MOV32ri : X86::MOV64ri)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // 64-bit mode doesn't have 32-bit push/pop, so use 64-bit operations and | 
|  | // widen the register if necessary. | 
|  | StackAdjustment = 8; | 
|  | BuildMI(MBB, I, DL, TII.get(X86::PUSH64i8)).addImm(Imm); | 
|  | MIB->setDesc(TII.get(X86::POP64r)); | 
|  | MIB->getOperand(0) | 
|  | .setReg(getX86SubSuperRegister(MIB->getOperand(0).getReg(), 64)); | 
|  | } else { | 
|  | assert(MIB->getOpcode() == X86::MOV32ImmSExti8); | 
|  | StackAdjustment = 4; | 
|  | BuildMI(MBB, I, DL, TII.get(X86::PUSH32i8)).addImm(Imm); | 
|  | MIB->setDesc(TII.get(X86::POP32r)); | 
|  | } | 
|  |  | 
|  | // Build CFI if necessary. | 
|  | MachineFunction &MF = *MBB.getParent(); | 
|  | const X86FrameLowering *TFL = Subtarget.getFrameLowering(); | 
|  | bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); | 
|  | bool NeedsDwarfCFI = | 
|  | !IsWin64Prologue && | 
|  | (MF.getMMI().hasDebugInfo() || MF.getFunction().needsUnwindTableEntry()); | 
|  | bool EmitCFI = !TFL->hasFP(MF) && NeedsDwarfCFI; | 
|  | if (EmitCFI) { | 
|  | TFL->BuildCFI(MBB, I, DL, | 
|  | MCCFIInstruction::createAdjustCfaOffset(nullptr, StackAdjustment)); | 
|  | TFL->BuildCFI(MBB, std::next(I), DL, | 
|  | MCCFIInstruction::createAdjustCfaOffset(nullptr, -StackAdjustment)); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // LoadStackGuard has so far only been implemented for 64-bit MachO. Different | 
|  | // code sequence is needed for other targets. | 
|  | static void expandLoadStackGuard(MachineInstrBuilder &MIB, | 
|  | const TargetInstrInfo &TII) { | 
|  | MachineBasicBlock &MBB = *MIB->getParent(); | 
|  | DebugLoc DL = MIB->getDebugLoc(); | 
|  | unsigned Reg = MIB->getOperand(0).getReg(); | 
|  | const GlobalValue *GV = | 
|  | cast<GlobalValue>((*MIB->memoperands_begin())->getValue()); | 
|  | auto Flags = MachineMemOperand::MOLoad | | 
|  | MachineMemOperand::MODereferenceable | | 
|  | MachineMemOperand::MOInvariant; | 
|  | MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand( | 
|  | MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 8, 8); | 
|  | MachineBasicBlock::iterator I = MIB.getInstr(); | 
|  |  | 
|  | BuildMI(MBB, I, DL, TII.get(X86::MOV64rm), Reg).addReg(X86::RIP).addImm(1) | 
|  | .addReg(0).addGlobalAddress(GV, 0, X86II::MO_GOTPCREL).addReg(0) | 
|  | .addMemOperand(MMO); | 
|  | MIB->setDebugLoc(DL); | 
|  | MIB->setDesc(TII.get(X86::MOV64rm)); | 
|  | MIB.addReg(Reg, RegState::Kill).addImm(1).addReg(0).addImm(0).addReg(0); | 
|  | } | 
|  |  | 
|  | static bool expandXorFP(MachineInstrBuilder &MIB, const TargetInstrInfo &TII) { | 
|  | MachineBasicBlock &MBB = *MIB->getParent(); | 
|  | MachineFunction &MF = *MBB.getParent(); | 
|  | const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>(); | 
|  | const X86RegisterInfo *TRI = Subtarget.getRegisterInfo(); | 
|  | unsigned XorOp = | 
|  | MIB->getOpcode() == X86::XOR64_FP ? X86::XOR64rr : X86::XOR32rr; | 
|  | MIB->setDesc(TII.get(XorOp)); | 
|  | MIB.addReg(TRI->getFrameRegister(MF), RegState::Undef); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // This is used to handle spills for 128/256-bit registers when we have AVX512, | 
|  | // but not VLX. If it uses an extended register we need to use an instruction | 
|  | // that loads the lower 128/256-bit, but is available with only AVX512F. | 
|  | static bool expandNOVLXLoad(MachineInstrBuilder &MIB, | 
|  | const TargetRegisterInfo *TRI, | 
|  | const MCInstrDesc &LoadDesc, | 
|  | const MCInstrDesc &BroadcastDesc, | 
|  | unsigned SubIdx) { | 
|  | unsigned DestReg = MIB->getOperand(0).getReg(); | 
|  | // Check if DestReg is XMM16-31 or YMM16-31. | 
|  | if (TRI->getEncodingValue(DestReg) < 16) { | 
|  | // We can use a normal VEX encoded load. | 
|  | MIB->setDesc(LoadDesc); | 
|  | } else { | 
|  | // Use a 128/256-bit VBROADCAST instruction. | 
|  | MIB->setDesc(BroadcastDesc); | 
|  | // Change the destination to a 512-bit register. | 
|  | DestReg = TRI->getMatchingSuperReg(DestReg, SubIdx, &X86::VR512RegClass); | 
|  | MIB->getOperand(0).setReg(DestReg); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // This is used to handle spills for 128/256-bit registers when we have AVX512, | 
|  | // but not VLX. If it uses an extended register we need to use an instruction | 
|  | // that stores the lower 128/256-bit, but is available with only AVX512F. | 
|  | static bool expandNOVLXStore(MachineInstrBuilder &MIB, | 
|  | const TargetRegisterInfo *TRI, | 
|  | const MCInstrDesc &StoreDesc, | 
|  | const MCInstrDesc &ExtractDesc, | 
|  | unsigned SubIdx) { | 
|  | unsigned SrcReg = MIB->getOperand(X86::AddrNumOperands).getReg(); | 
|  | // Check if DestReg is XMM16-31 or YMM16-31. | 
|  | if (TRI->getEncodingValue(SrcReg) < 16) { | 
|  | // We can use a normal VEX encoded store. | 
|  | MIB->setDesc(StoreDesc); | 
|  | } else { | 
|  | // Use a VEXTRACTF instruction. | 
|  | MIB->setDesc(ExtractDesc); | 
|  | // Change the destination to a 512-bit register. | 
|  | SrcReg = TRI->getMatchingSuperReg(SrcReg, SubIdx, &X86::VR512RegClass); | 
|  | MIB->getOperand(X86::AddrNumOperands).setReg(SrcReg); | 
|  | MIB.addImm(0x0); // Append immediate to extract from the lower bits. | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  | bool X86InstrInfo::expandPostRAPseudo(MachineInstr &MI) const { | 
|  | bool HasAVX = Subtarget.hasAVX(); | 
|  | MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI); | 
|  | switch (MI.getOpcode()) { | 
|  | case X86::MOV32r0: | 
|  | return Expand2AddrUndef(MIB, get(X86::XOR32rr)); | 
|  | case X86::MOV32r1: | 
|  | return expandMOV32r1(MIB, *this, /*MinusOne=*/ false); | 
|  | case X86::MOV32r_1: | 
|  | return expandMOV32r1(MIB, *this, /*MinusOne=*/ true); | 
|  | case X86::MOV32ImmSExti8: | 
|  | case X86::MOV64ImmSExti8: | 
|  | return ExpandMOVImmSExti8(MIB, *this, Subtarget); | 
|  | case X86::SETB_C8r: | 
|  | return Expand2AddrUndef(MIB, get(X86::SBB8rr)); | 
|  | case X86::SETB_C16r: | 
|  | return Expand2AddrUndef(MIB, get(X86::SBB16rr)); | 
|  | case X86::SETB_C32r: | 
|  | return Expand2AddrUndef(MIB, get(X86::SBB32rr)); | 
|  | case X86::SETB_C64r: | 
|  | return Expand2AddrUndef(MIB, get(X86::SBB64rr)); | 
|  | case X86::MMX_SET0: | 
|  | return Expand2AddrUndef(MIB, get(X86::MMX_PXORirr)); | 
|  | case X86::V_SET0: | 
|  | case X86::FsFLD0SS: | 
|  | case X86::FsFLD0SD: | 
|  | return Expand2AddrUndef(MIB, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr)); | 
|  | case X86::AVX_SET0: { | 
|  | assert(HasAVX && "AVX not supported"); | 
|  | const TargetRegisterInfo *TRI = &getRegisterInfo(); | 
|  | unsigned SrcReg = MIB->getOperand(0).getReg(); | 
|  | unsigned XReg = TRI->getSubReg(SrcReg, X86::sub_xmm); | 
|  | MIB->getOperand(0).setReg(XReg); | 
|  | Expand2AddrUndef(MIB, get(X86::VXORPSrr)); | 
|  | MIB.addReg(SrcReg, RegState::ImplicitDefine); | 
|  | return true; | 
|  | } | 
|  | case X86::AVX512_128_SET0: | 
|  | case X86::AVX512_FsFLD0SS: | 
|  | case X86::AVX512_FsFLD0SD: { | 
|  | bool HasVLX = Subtarget.hasVLX(); | 
|  | unsigned SrcReg = MIB->getOperand(0).getReg(); | 
|  | const TargetRegisterInfo *TRI = &getRegisterInfo(); | 
|  | if (HasVLX || TRI->getEncodingValue(SrcReg) < 16) | 
|  | return Expand2AddrUndef(MIB, | 
|  | get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr)); | 
|  | // Extended register without VLX. Use a larger XOR. | 
|  | SrcReg = | 
|  | TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm, &X86::VR512RegClass); | 
|  | MIB->getOperand(0).setReg(SrcReg); | 
|  | return Expand2AddrUndef(MIB, get(X86::VPXORDZrr)); | 
|  | } | 
|  | case X86::AVX512_256_SET0: | 
|  | case X86::AVX512_512_SET0: { | 
|  | bool HasVLX = Subtarget.hasVLX(); | 
|  | unsigned SrcReg = MIB->getOperand(0).getReg(); | 
|  | const TargetRegisterInfo *TRI = &getRegisterInfo(); | 
|  | if (HasVLX || TRI->getEncodingValue(SrcReg) < 16) { | 
|  | unsigned XReg = TRI->getSubReg(SrcReg, X86::sub_xmm); | 
|  | MIB->getOperand(0).setReg(XReg); | 
|  | Expand2AddrUndef(MIB, | 
|  | get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr)); | 
|  | MIB.addReg(SrcReg, RegState::ImplicitDefine); | 
|  | return true; | 
|  | } | 
|  | return Expand2AddrUndef(MIB, get(X86::VPXORDZrr)); | 
|  | } | 
|  | case X86::V_SETALLONES: | 
|  | return Expand2AddrUndef(MIB, get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr)); | 
|  | case X86::AVX2_SETALLONES: | 
|  | return Expand2AddrUndef(MIB, get(X86::VPCMPEQDYrr)); | 
|  | case X86::AVX1_SETALLONES: { | 
|  | unsigned Reg = MIB->getOperand(0).getReg(); | 
|  | // VCMPPSYrri with an immediate 0xf should produce VCMPTRUEPS. | 
|  | MIB->setDesc(get(X86::VCMPPSYrri)); | 
|  | MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xf); | 
|  | return true; | 
|  | } | 
|  | case X86::AVX512_512_SETALLONES: { | 
|  | unsigned Reg = MIB->getOperand(0).getReg(); | 
|  | MIB->setDesc(get(X86::VPTERNLOGDZrri)); | 
|  | // VPTERNLOGD needs 3 register inputs and an immediate. | 
|  | // 0xff will return 1s for any input. | 
|  | MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef) | 
|  | .addReg(Reg, RegState::Undef).addImm(0xff); | 
|  | return true; | 
|  | } | 
|  | case X86::AVX512_512_SEXT_MASK_32: | 
|  | case X86::AVX512_512_SEXT_MASK_64: { | 
|  | unsigned Reg = MIB->getOperand(0).getReg(); | 
|  | unsigned MaskReg = MIB->getOperand(1).getReg(); | 
|  | unsigned MaskState = getRegState(MIB->getOperand(1)); | 
|  | unsigned Opc = (MI.getOpcode() == X86::AVX512_512_SEXT_MASK_64) ? | 
|  | X86::VPTERNLOGQZrrikz : X86::VPTERNLOGDZrrikz; | 
|  | MI.RemoveOperand(1); | 
|  | MIB->setDesc(get(Opc)); | 
|  | // VPTERNLOG needs 3 register inputs and an immediate. | 
|  | // 0xff will return 1s for any input. | 
|  | MIB.addReg(Reg, RegState::Undef).addReg(MaskReg, MaskState) | 
|  | .addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xff); | 
|  | return true; | 
|  | } | 
|  | case X86::VMOVAPSZ128rm_NOVLX: | 
|  | return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSrm), | 
|  | get(X86::VBROADCASTF32X4rm), X86::sub_xmm); | 
|  | case X86::VMOVUPSZ128rm_NOVLX: | 
|  | return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSrm), | 
|  | get(X86::VBROADCASTF32X4rm), X86::sub_xmm); | 
|  | case X86::VMOVAPSZ256rm_NOVLX: | 
|  | return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSYrm), | 
|  | get(X86::VBROADCASTF64X4rm), X86::sub_ymm); | 
|  | case X86::VMOVUPSZ256rm_NOVLX: | 
|  | return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSYrm), | 
|  | get(X86::VBROADCASTF64X4rm), X86::sub_ymm); | 
|  | case X86::VMOVAPSZ128mr_NOVLX: | 
|  | return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSmr), | 
|  | get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm); | 
|  | case X86::VMOVUPSZ128mr_NOVLX: | 
|  | return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSmr), | 
|  | get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm); | 
|  | case X86::VMOVAPSZ256mr_NOVLX: | 
|  | return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSYmr), | 
|  | get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm); | 
|  | case X86::VMOVUPSZ256mr_NOVLX: | 
|  | return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSYmr), | 
|  | get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm); | 
|  | case X86::MOV32ri64: { | 
|  | unsigned Reg = MIB->getOperand(0).getReg(); | 
|  | unsigned Reg32 = RI.getSubReg(Reg, X86::sub_32bit); | 
|  | MI.setDesc(get(X86::MOV32ri)); | 
|  | MIB->getOperand(0).setReg(Reg32); | 
|  | MIB.addReg(Reg, RegState::ImplicitDefine); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // KNL does not recognize dependency-breaking idioms for mask registers, | 
|  | // so kxnor %k1, %k1, %k2 has a RAW dependence on %k1. | 
|  | // Using %k0 as the undef input register is a performance heuristic based | 
|  | // on the assumption that %k0 is used less frequently than the other mask | 
|  | // registers, since it is not usable as a write mask. | 
|  | // FIXME: A more advanced approach would be to choose the best input mask | 
|  | // register based on context. | 
|  | case X86::KSET0W: return Expand2AddrKreg(MIB, get(X86::KXORWrr), X86::K0); | 
|  | case X86::KSET0D: return Expand2AddrKreg(MIB, get(X86::KXORDrr), X86::K0); | 
|  | case X86::KSET0Q: return Expand2AddrKreg(MIB, get(X86::KXORQrr), X86::K0); | 
|  | case X86::KSET1W: return Expand2AddrKreg(MIB, get(X86::KXNORWrr), X86::K0); | 
|  | case X86::KSET1D: return Expand2AddrKreg(MIB, get(X86::KXNORDrr), X86::K0); | 
|  | case X86::KSET1Q: return Expand2AddrKreg(MIB, get(X86::KXNORQrr), X86::K0); | 
|  | case TargetOpcode::LOAD_STACK_GUARD: | 
|  | expandLoadStackGuard(MIB, *this); | 
|  | return true; | 
|  | case X86::XOR64_FP: | 
|  | case X86::XOR32_FP: | 
|  | return expandXorFP(MIB, *this); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Return true for all instructions that only update | 
|  | /// the first 32 or 64-bits of the destination register and leave the rest | 
|  | /// unmodified. This can be used to avoid folding loads if the instructions | 
|  | /// only update part of the destination register, and the non-updated part is | 
|  | /// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these | 
|  | /// instructions breaks the partial register dependency and it can improve | 
|  | /// performance. e.g.: | 
|  | /// | 
|  | ///   movss (%rdi), %xmm0 | 
|  | ///   cvtss2sd %xmm0, %xmm0 | 
|  | /// | 
|  | /// Instead of | 
|  | ///   cvtss2sd (%rdi), %xmm0 | 
|  | /// | 
|  | /// FIXME: This should be turned into a TSFlags. | 
|  | /// | 
|  | static bool hasPartialRegUpdate(unsigned Opcode, | 
|  | const X86Subtarget &Subtarget) { | 
|  | switch (Opcode) { | 
|  | case X86::CVTSI2SSrr: | 
|  | case X86::CVTSI2SSrm: | 
|  | case X86::CVTSI642SSrr: | 
|  | case X86::CVTSI642SSrm: | 
|  | case X86::CVTSI2SDrr: | 
|  | case X86::CVTSI2SDrm: | 
|  | case X86::CVTSI642SDrr: | 
|  | case X86::CVTSI642SDrm: | 
|  | case X86::CVTSD2SSrr: | 
|  | case X86::CVTSD2SSrm: | 
|  | case X86::CVTSS2SDrr: | 
|  | case X86::CVTSS2SDrm: | 
|  | case X86::MOVHPDrm: | 
|  | case X86::MOVHPSrm: | 
|  | case X86::MOVLPDrm: | 
|  | case X86::MOVLPSrm: | 
|  | case X86::RCPSSr: | 
|  | case X86::RCPSSm: | 
|  | case X86::RCPSSr_Int: | 
|  | case X86::RCPSSm_Int: | 
|  | case X86::ROUNDSDr: | 
|  | case X86::ROUNDSDm: | 
|  | case X86::ROUNDSSr: | 
|  | case X86::ROUNDSSm: | 
|  | case X86::RSQRTSSr: | 
|  | case X86::RSQRTSSm: | 
|  | case X86::RSQRTSSr_Int: | 
|  | case X86::RSQRTSSm_Int: | 
|  | case X86::SQRTSSr: | 
|  | case X86::SQRTSSm: | 
|  | case X86::SQRTSSr_Int: | 
|  | case X86::SQRTSSm_Int: | 
|  | case X86::SQRTSDr: | 
|  | case X86::SQRTSDm: | 
|  | case X86::SQRTSDr_Int: | 
|  | case X86::SQRTSDm_Int: | 
|  | return true; | 
|  | // GPR | 
|  | case X86::POPCNT32rm: | 
|  | case X86::POPCNT32rr: | 
|  | case X86::POPCNT64rm: | 
|  | case X86::POPCNT64rr: | 
|  | return Subtarget.hasPOPCNTFalseDeps(); | 
|  | case X86::LZCNT32rm: | 
|  | case X86::LZCNT32rr: | 
|  | case X86::LZCNT64rm: | 
|  | case X86::LZCNT64rr: | 
|  | case X86::TZCNT32rm: | 
|  | case X86::TZCNT32rr: | 
|  | case X86::TZCNT64rm: | 
|  | case X86::TZCNT64rr: | 
|  | return Subtarget.hasLZCNTFalseDeps(); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Inform the BreakFalseDeps pass how many idle | 
|  | /// instructions we would like before a partial register update. | 
|  | unsigned X86InstrInfo::getPartialRegUpdateClearance( | 
|  | const MachineInstr &MI, unsigned OpNum, | 
|  | const TargetRegisterInfo *TRI) const { | 
|  | if (OpNum != 0 || !hasPartialRegUpdate(MI.getOpcode(), Subtarget)) | 
|  | return 0; | 
|  |  | 
|  | // If MI is marked as reading Reg, the partial register update is wanted. | 
|  | const MachineOperand &MO = MI.getOperand(0); | 
|  | unsigned Reg = MO.getReg(); | 
|  | if (TargetRegisterInfo::isVirtualRegister(Reg)) { | 
|  | if (MO.readsReg() || MI.readsVirtualRegister(Reg)) | 
|  | return 0; | 
|  | } else { | 
|  | if (MI.readsRegister(Reg, TRI)) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // If any instructions in the clearance range are reading Reg, insert a | 
|  | // dependency breaking instruction, which is inexpensive and is likely to | 
|  | // be hidden in other instruction's cycles. | 
|  | return PartialRegUpdateClearance; | 
|  | } | 
|  |  | 
|  | // Return true for any instruction the copies the high bits of the first source | 
|  | // operand into the unused high bits of the destination operand. | 
|  | static bool hasUndefRegUpdate(unsigned Opcode) { | 
|  | switch (Opcode) { | 
|  | case X86::VCVTSI2SSrr: | 
|  | case X86::VCVTSI2SSrm: | 
|  | case X86::VCVTSI2SSrr_Int: | 
|  | case X86::VCVTSI2SSrm_Int: | 
|  | case X86::VCVTSI642SSrr: | 
|  | case X86::VCVTSI642SSrm: | 
|  | case X86::VCVTSI642SSrr_Int: | 
|  | case X86::VCVTSI642SSrm_Int: | 
|  | case X86::VCVTSI2SDrr: | 
|  | case X86::VCVTSI2SDrm: | 
|  | case X86::VCVTSI2SDrr_Int: | 
|  | case X86::VCVTSI2SDrm_Int: | 
|  | case X86::VCVTSI642SDrr: | 
|  | case X86::VCVTSI642SDrm: | 
|  | case X86::VCVTSI642SDrr_Int: | 
|  | case X86::VCVTSI642SDrm_Int: | 
|  | case X86::VCVTSD2SSrr: | 
|  | case X86::VCVTSD2SSrm: | 
|  | case X86::VCVTSD2SSrr_Int: | 
|  | case X86::VCVTSD2SSrm_Int: | 
|  | case X86::VCVTSS2SDrr: | 
|  | case X86::VCVTSS2SDrm: | 
|  | case X86::VCVTSS2SDrr_Int: | 
|  | case X86::VCVTSS2SDrm_Int: | 
|  | case X86::VRCPSSr: | 
|  | case X86::VRCPSSr_Int: | 
|  | case X86::VRCPSSm: | 
|  | case X86::VRCPSSm_Int: | 
|  | case X86::VROUNDSDr: | 
|  | case X86::VROUNDSDm: | 
|  | case X86::VROUNDSDr_Int: | 
|  | case X86::VROUNDSDm_Int: | 
|  | case X86::VROUNDSSr: | 
|  | case X86::VROUNDSSm: | 
|  | case X86::VROUNDSSr_Int: | 
|  | case X86::VROUNDSSm_Int: | 
|  | case X86::VRSQRTSSr: | 
|  | case X86::VRSQRTSSr_Int: | 
|  | case X86::VRSQRTSSm: | 
|  | case X86::VRSQRTSSm_Int: | 
|  | case X86::VSQRTSSr: | 
|  | case X86::VSQRTSSr_Int: | 
|  | case X86::VSQRTSSm: | 
|  | case X86::VSQRTSSm_Int: | 
|  | case X86::VSQRTSDr: | 
|  | case X86::VSQRTSDr_Int: | 
|  | case X86::VSQRTSDm: | 
|  | case X86::VSQRTSDm_Int: | 
|  | // AVX-512 | 
|  | case X86::VCVTSI2SSZrr: | 
|  | case X86::VCVTSI2SSZrm: | 
|  | case X86::VCVTSI2SSZrr_Int: | 
|  | case X86::VCVTSI2SSZrrb_Int: | 
|  | case X86::VCVTSI2SSZrm_Int: | 
|  | case X86::VCVTSI642SSZrr: | 
|  | case X86::VCVTSI642SSZrm: | 
|  | case X86::VCVTSI642SSZrr_Int: | 
|  | case X86::VCVTSI642SSZrrb_Int: | 
|  | case X86::VCVTSI642SSZrm_Int: | 
|  | case X86::VCVTSI2SDZrr: | 
|  | case X86::VCVTSI2SDZrm: | 
|  | case X86::VCVTSI2SDZrr_Int: | 
|  | case X86::VCVTSI2SDZrrb_Int: | 
|  | case X86::VCVTSI2SDZrm_Int: | 
|  | case X86::VCVTSI642SDZrr: | 
|  | case X86::VCVTSI642SDZrm: | 
|  | case X86::VCVTSI642SDZrr_Int: | 
|  | case X86::VCVTSI642SDZrrb_Int: | 
|  | case X86::VCVTSI642SDZrm_Int: | 
|  | case X86::VCVTUSI2SSZrr: | 
|  | case X86::VCVTUSI2SSZrm: | 
|  | case X86::VCVTUSI2SSZrr_Int: | 
|  | case X86::VCVTUSI2SSZrrb_Int: | 
|  | case X86::VCVTUSI2SSZrm_Int: | 
|  | case X86::VCVTUSI642SSZrr: | 
|  | case X86::VCVTUSI642SSZrm: | 
|  | case X86::VCVTUSI642SSZrr_Int: | 
|  | case X86::VCVTUSI642SSZrrb_Int: | 
|  | case X86::VCVTUSI642SSZrm_Int: | 
|  | case X86::VCVTUSI2SDZrr: | 
|  | case X86::VCVTUSI2SDZrm: | 
|  | case X86::VCVTUSI2SDZrr_Int: | 
|  | case X86::VCVTUSI2SDZrm_Int: | 
|  | case X86::VCVTUSI642SDZrr: | 
|  | case X86::VCVTUSI642SDZrm: | 
|  | case X86::VCVTUSI642SDZrr_Int: | 
|  | case X86::VCVTUSI642SDZrrb_Int: | 
|  | case X86::VCVTUSI642SDZrm_Int: | 
|  | case X86::VCVTSD2SSZrr: | 
|  | case X86::VCVTSD2SSZrr_Int: | 
|  | case X86::VCVTSD2SSZrrb_Int: | 
|  | case X86::VCVTSD2SSZrm: | 
|  | case X86::VCVTSD2SSZrm_Int: | 
|  | case X86::VCVTSS2SDZrr: | 
|  | case X86::VCVTSS2SDZrr_Int: | 
|  | case X86::VCVTSS2SDZrrb_Int: | 
|  | case X86::VCVTSS2SDZrm: | 
|  | case X86::VCVTSS2SDZrm_Int: | 
|  | case X86::VGETEXPSDZr: | 
|  | case X86::VGETEXPSDZrb: | 
|  | case X86::VGETEXPSDZm: | 
|  | case X86::VGETEXPSSZr: | 
|  | case X86::VGETEXPSSZrb: | 
|  | case X86::VGETEXPSSZm: | 
|  | case X86::VGETMANTSDZrri: | 
|  | case X86::VGETMANTSDZrrib: | 
|  | case X86::VGETMANTSDZrmi: | 
|  | case X86::VGETMANTSSZrri: | 
|  | case X86::VGETMANTSSZrrib: | 
|  | case X86::VGETMANTSSZrmi: | 
|  | case X86::VRNDSCALESDZr: | 
|  | case X86::VRNDSCALESDZr_Int: | 
|  | case X86::VRNDSCALESDZrb_Int: | 
|  | case X86::VRNDSCALESDZm: | 
|  | case X86::VRNDSCALESDZm_Int: | 
|  | case X86::VRNDSCALESSZr: | 
|  | case X86::VRNDSCALESSZr_Int: | 
|  | case X86::VRNDSCALESSZrb_Int: | 
|  | case X86::VRNDSCALESSZm: | 
|  | case X86::VRNDSCALESSZm_Int: | 
|  | case X86::VRCP14SDZrr: | 
|  | case X86::VRCP14SDZrm: | 
|  | case X86::VRCP14SSZrr: | 
|  | case X86::VRCP14SSZrm: | 
|  | case X86::VRCP28SDZr: | 
|  | case X86::VRCP28SDZrb: | 
|  | case X86::VRCP28SDZm: | 
|  | case X86::VRCP28SSZr: | 
|  | case X86::VRCP28SSZrb: | 
|  | case X86::VRCP28SSZm: | 
|  | case X86::VREDUCESSZrmi: | 
|  | case X86::VREDUCESSZrri: | 
|  | case X86::VREDUCESSZrrib: | 
|  | case X86::VRSQRT14SDZrr: | 
|  | case X86::VRSQRT14SDZrm: | 
|  | case X86::VRSQRT14SSZrr: | 
|  | case X86::VRSQRT14SSZrm: | 
|  | case X86::VRSQRT28SDZr: | 
|  | case X86::VRSQRT28SDZrb: | 
|  | case X86::VRSQRT28SDZm: | 
|  | case X86::VRSQRT28SSZr: | 
|  | case X86::VRSQRT28SSZrb: | 
|  | case X86::VRSQRT28SSZm: | 
|  | case X86::VSQRTSSZr: | 
|  | case X86::VSQRTSSZr_Int: | 
|  | case X86::VSQRTSSZrb_Int: | 
|  | case X86::VSQRTSSZm: | 
|  | case X86::VSQRTSSZm_Int: | 
|  | case X86::VSQRTSDZr: | 
|  | case X86::VSQRTSDZr_Int: | 
|  | case X86::VSQRTSDZrb_Int: | 
|  | case X86::VSQRTSDZm: | 
|  | case X86::VSQRTSDZm_Int: | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Inform the BreakFalseDeps pass how many idle instructions we would like | 
|  | /// before certain undef register reads. | 
|  | /// | 
|  | /// This catches the VCVTSI2SD family of instructions: | 
|  | /// | 
|  | /// vcvtsi2sdq %rax, undef %xmm0, %xmm14 | 
|  | /// | 
|  | /// We should to be careful *not* to catch VXOR idioms which are presumably | 
|  | /// handled specially in the pipeline: | 
|  | /// | 
|  | /// vxorps undef %xmm1, undef %xmm1, %xmm1 | 
|  | /// | 
|  | /// Like getPartialRegUpdateClearance, this makes a strong assumption that the | 
|  | /// high bits that are passed-through are not live. | 
|  | unsigned | 
|  | X86InstrInfo::getUndefRegClearance(const MachineInstr &MI, unsigned &OpNum, | 
|  | const TargetRegisterInfo *TRI) const { | 
|  | if (!hasUndefRegUpdate(MI.getOpcode())) | 
|  | return 0; | 
|  |  | 
|  | // Set the OpNum parameter to the first source operand. | 
|  | OpNum = 1; | 
|  |  | 
|  | const MachineOperand &MO = MI.getOperand(OpNum); | 
|  | if (MO.isUndef() && TargetRegisterInfo::isPhysicalRegister(MO.getReg())) { | 
|  | return UndefRegClearance; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void X86InstrInfo::breakPartialRegDependency( | 
|  | MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const { | 
|  | unsigned Reg = MI.getOperand(OpNum).getReg(); | 
|  | // If MI kills this register, the false dependence is already broken. | 
|  | if (MI.killsRegister(Reg, TRI)) | 
|  | return; | 
|  |  | 
|  | if (X86::VR128RegClass.contains(Reg)) { | 
|  | // These instructions are all floating point domain, so xorps is the best | 
|  | // choice. | 
|  | unsigned Opc = Subtarget.hasAVX() ? X86::VXORPSrr : X86::XORPSrr; | 
|  | BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(Opc), Reg) | 
|  | .addReg(Reg, RegState::Undef) | 
|  | .addReg(Reg, RegState::Undef); | 
|  | MI.addRegisterKilled(Reg, TRI, true); | 
|  | } else if (X86::VR256RegClass.contains(Reg)) { | 
|  | // Use vxorps to clear the full ymm register. | 
|  | // It wants to read and write the xmm sub-register. | 
|  | unsigned XReg = TRI->getSubReg(Reg, X86::sub_xmm); | 
|  | BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VXORPSrr), XReg) | 
|  | .addReg(XReg, RegState::Undef) | 
|  | .addReg(XReg, RegState::Undef) | 
|  | .addReg(Reg, RegState::ImplicitDefine); | 
|  | MI.addRegisterKilled(Reg, TRI, true); | 
|  | } else if (X86::GR64RegClass.contains(Reg)) { | 
|  | // Using XOR32rr because it has shorter encoding and zeros up the upper bits | 
|  | // as well. | 
|  | unsigned XReg = TRI->getSubReg(Reg, X86::sub_32bit); | 
|  | BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), XReg) | 
|  | .addReg(XReg, RegState::Undef) | 
|  | .addReg(XReg, RegState::Undef) | 
|  | .addReg(Reg, RegState::ImplicitDefine); | 
|  | MI.addRegisterKilled(Reg, TRI, true); | 
|  | } else if (X86::GR32RegClass.contains(Reg)) { | 
|  | BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), Reg) | 
|  | .addReg(Reg, RegState::Undef) | 
|  | .addReg(Reg, RegState::Undef); | 
|  | MI.addRegisterKilled(Reg, TRI, true); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void addOperands(MachineInstrBuilder &MIB, ArrayRef<MachineOperand> MOs, | 
|  | int PtrOffset = 0) { | 
|  | unsigned NumAddrOps = MOs.size(); | 
|  |  | 
|  | if (NumAddrOps < 4) { | 
|  | // FrameIndex only - add an immediate offset (whether its zero or not). | 
|  | for (unsigned i = 0; i != NumAddrOps; ++i) | 
|  | MIB.add(MOs[i]); | 
|  | addOffset(MIB, PtrOffset); | 
|  | } else { | 
|  | // General Memory Addressing - we need to add any offset to an existing | 
|  | // offset. | 
|  | assert(MOs.size() == 5 && "Unexpected memory operand list length"); | 
|  | for (unsigned i = 0; i != NumAddrOps; ++i) { | 
|  | const MachineOperand &MO = MOs[i]; | 
|  | if (i == 3 && PtrOffset != 0) { | 
|  | MIB.addDisp(MO, PtrOffset); | 
|  | } else { | 
|  | MIB.add(MO); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void updateOperandRegConstraints(MachineFunction &MF, | 
|  | MachineInstr &NewMI, | 
|  | const TargetInstrInfo &TII) { | 
|  | MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  | const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); | 
|  |  | 
|  | for (int Idx : llvm::seq<int>(0, NewMI.getNumOperands())) { | 
|  | MachineOperand &MO = NewMI.getOperand(Idx); | 
|  | // We only need to update constraints on virtual register operands. | 
|  | if (!MO.isReg()) | 
|  | continue; | 
|  | unsigned Reg = MO.getReg(); | 
|  | if (!TRI.isVirtualRegister(Reg)) | 
|  | continue; | 
|  |  | 
|  | auto *NewRC = MRI.constrainRegClass( | 
|  | Reg, TII.getRegClass(NewMI.getDesc(), Idx, &TRI, MF)); | 
|  | if (!NewRC) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "WARNING: Unable to update register constraint for operand " | 
|  | << Idx << " of instruction:\n"; | 
|  | NewMI.dump(); dbgs() << "\n"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode, | 
|  | ArrayRef<MachineOperand> MOs, | 
|  | MachineBasicBlock::iterator InsertPt, | 
|  | MachineInstr &MI, | 
|  | const TargetInstrInfo &TII) { | 
|  | // Create the base instruction with the memory operand as the first part. | 
|  | // Omit the implicit operands, something BuildMI can't do. | 
|  | MachineInstr *NewMI = | 
|  | MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true); | 
|  | MachineInstrBuilder MIB(MF, NewMI); | 
|  | addOperands(MIB, MOs); | 
|  |  | 
|  | // Loop over the rest of the ri operands, converting them over. | 
|  | unsigned NumOps = MI.getDesc().getNumOperands() - 2; | 
|  | for (unsigned i = 0; i != NumOps; ++i) { | 
|  | MachineOperand &MO = MI.getOperand(i + 2); | 
|  | MIB.add(MO); | 
|  | } | 
|  | for (unsigned i = NumOps + 2, e = MI.getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &MO = MI.getOperand(i); | 
|  | MIB.add(MO); | 
|  | } | 
|  |  | 
|  | updateOperandRegConstraints(MF, *NewMI, TII); | 
|  |  | 
|  | MachineBasicBlock *MBB = InsertPt->getParent(); | 
|  | MBB->insert(InsertPt, NewMI); | 
|  |  | 
|  | return MIB; | 
|  | } | 
|  |  | 
|  | static MachineInstr *FuseInst(MachineFunction &MF, unsigned Opcode, | 
|  | unsigned OpNo, ArrayRef<MachineOperand> MOs, | 
|  | MachineBasicBlock::iterator InsertPt, | 
|  | MachineInstr &MI, const TargetInstrInfo &TII, | 
|  | int PtrOffset = 0) { | 
|  | // Omit the implicit operands, something BuildMI can't do. | 
|  | MachineInstr *NewMI = | 
|  | MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true); | 
|  | MachineInstrBuilder MIB(MF, NewMI); | 
|  |  | 
|  | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &MO = MI.getOperand(i); | 
|  | if (i == OpNo) { | 
|  | assert(MO.isReg() && "Expected to fold into reg operand!"); | 
|  | addOperands(MIB, MOs, PtrOffset); | 
|  | } else { | 
|  | MIB.add(MO); | 
|  | } | 
|  | } | 
|  |  | 
|  | updateOperandRegConstraints(MF, *NewMI, TII); | 
|  |  | 
|  | MachineBasicBlock *MBB = InsertPt->getParent(); | 
|  | MBB->insert(InsertPt, NewMI); | 
|  |  | 
|  | return MIB; | 
|  | } | 
|  |  | 
|  | static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode, | 
|  | ArrayRef<MachineOperand> MOs, | 
|  | MachineBasicBlock::iterator InsertPt, | 
|  | MachineInstr &MI) { | 
|  | MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt, | 
|  | MI.getDebugLoc(), TII.get(Opcode)); | 
|  | addOperands(MIB, MOs); | 
|  | return MIB.addImm(0); | 
|  | } | 
|  |  | 
|  | MachineInstr *X86InstrInfo::foldMemoryOperandCustom( | 
|  | MachineFunction &MF, MachineInstr &MI, unsigned OpNum, | 
|  | ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt, | 
|  | unsigned Size, unsigned Align) const { | 
|  | switch (MI.getOpcode()) { | 
|  | case X86::INSERTPSrr: | 
|  | case X86::VINSERTPSrr: | 
|  | case X86::VINSERTPSZrr: | 
|  | // Attempt to convert the load of inserted vector into a fold load | 
|  | // of a single float. | 
|  | if (OpNum == 2) { | 
|  | unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm(); | 
|  | unsigned ZMask = Imm & 15; | 
|  | unsigned DstIdx = (Imm >> 4) & 3; | 
|  | unsigned SrcIdx = (Imm >> 6) & 3; | 
|  |  | 
|  | const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); | 
|  | const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF); | 
|  | unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8; | 
|  | if (Size <= RCSize && 4 <= Align) { | 
|  | int PtrOffset = SrcIdx * 4; | 
|  | unsigned NewImm = (DstIdx << 4) | ZMask; | 
|  | unsigned NewOpCode = | 
|  | (MI.getOpcode() == X86::VINSERTPSZrr) ? X86::VINSERTPSZrm : | 
|  | (MI.getOpcode() == X86::VINSERTPSrr)  ? X86::VINSERTPSrm  : | 
|  | X86::INSERTPSrm; | 
|  | MachineInstr *NewMI = | 
|  | FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, PtrOffset); | 
|  | NewMI->getOperand(NewMI->getNumOperands() - 1).setImm(NewImm); | 
|  | return NewMI; | 
|  | } | 
|  | } | 
|  | break; | 
|  | case X86::MOVHLPSrr: | 
|  | case X86::VMOVHLPSrr: | 
|  | case X86::VMOVHLPSZrr: | 
|  | // Move the upper 64-bits of the second operand to the lower 64-bits. | 
|  | // To fold the load, adjust the pointer to the upper and use (V)MOVLPS. | 
|  | // TODO: In most cases AVX doesn't have a 8-byte alignment requirement. | 
|  | if (OpNum == 2) { | 
|  | const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); | 
|  | const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF); | 
|  | unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8; | 
|  | if (Size <= RCSize && 8 <= Align) { | 
|  | unsigned NewOpCode = | 
|  | (MI.getOpcode() == X86::VMOVHLPSZrr) ? X86::VMOVLPSZ128rm : | 
|  | (MI.getOpcode() == X86::VMOVHLPSrr)  ? X86::VMOVLPSrm     : | 
|  | X86::MOVLPSrm; | 
|  | MachineInstr *NewMI = | 
|  | FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, 8); | 
|  | return NewMI; | 
|  | } | 
|  | } | 
|  | break; | 
|  | }; | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | static bool shouldPreventUndefRegUpdateMemFold(MachineFunction &MF, MachineInstr &MI) { | 
|  | if (MF.getFunction().optForSize() || !hasUndefRegUpdate(MI.getOpcode()) || | 
|  | !MI.getOperand(1).isReg()) | 
|  | return false; | 
|  |  | 
|  | // The are two cases we need to handle depending on where in the pipeline | 
|  | // the folding attempt is being made. | 
|  | // -Register has the undef flag set. | 
|  | // -Register is produced by the IMPLICIT_DEF instruction. | 
|  |  | 
|  | if (MI.getOperand(1).isUndef()) | 
|  | return true; | 
|  |  | 
|  | MachineRegisterInfo &RegInfo = MF.getRegInfo(); | 
|  | MachineInstr *VRegDef = RegInfo.getUniqueVRegDef(MI.getOperand(1).getReg()); | 
|  | return VRegDef && VRegDef->isImplicitDef(); | 
|  | } | 
|  |  | 
|  |  | 
|  | MachineInstr *X86InstrInfo::foldMemoryOperandImpl( | 
|  | MachineFunction &MF, MachineInstr &MI, unsigned OpNum, | 
|  | ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt, | 
|  | unsigned Size, unsigned Align, bool AllowCommute) const { | 
|  | bool isSlowTwoMemOps = Subtarget.slowTwoMemOps(); | 
|  | bool isTwoAddrFold = false; | 
|  |  | 
|  | // For CPUs that favor the register form of a call or push, | 
|  | // do not fold loads into calls or pushes, unless optimizing for size | 
|  | // aggressively. | 
|  | if (isSlowTwoMemOps && !MF.getFunction().optForMinSize() && | 
|  | (MI.getOpcode() == X86::CALL32r || MI.getOpcode() == X86::CALL64r || | 
|  | MI.getOpcode() == X86::PUSH16r || MI.getOpcode() == X86::PUSH32r || | 
|  | MI.getOpcode() == X86::PUSH64r)) | 
|  | return nullptr; | 
|  |  | 
|  | // Avoid partial and undef register update stalls unless optimizing for size. | 
|  | if (!MF.getFunction().optForSize() && | 
|  | (hasPartialRegUpdate(MI.getOpcode(), Subtarget) || | 
|  | shouldPreventUndefRegUpdateMemFold(MF, MI))) | 
|  | return nullptr; | 
|  |  | 
|  | unsigned NumOps = MI.getDesc().getNumOperands(); | 
|  | bool isTwoAddr = | 
|  | NumOps > 1 && MI.getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1; | 
|  |  | 
|  | // FIXME: AsmPrinter doesn't know how to handle | 
|  | // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding. | 
|  | if (MI.getOpcode() == X86::ADD32ri && | 
|  | MI.getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS) | 
|  | return nullptr; | 
|  |  | 
|  | // GOTTPOFF relocation loads can only be folded into add instructions. | 
|  | // FIXME: Need to exclude other relocations that only support specific | 
|  | // instructions. | 
|  | if (MOs.size() == X86::AddrNumOperands && | 
|  | MOs[X86::AddrDisp].getTargetFlags() == X86II::MO_GOTTPOFF && | 
|  | MI.getOpcode() != X86::ADD64rr) | 
|  | return nullptr; | 
|  |  | 
|  | MachineInstr *NewMI = nullptr; | 
|  |  | 
|  | // Attempt to fold any custom cases we have. | 
|  | if (MachineInstr *CustomMI = | 
|  | foldMemoryOperandCustom(MF, MI, OpNum, MOs, InsertPt, Size, Align)) | 
|  | return CustomMI; | 
|  |  | 
|  | const X86MemoryFoldTableEntry *I = nullptr; | 
|  |  | 
|  | // Folding a memory location into the two-address part of a two-address | 
|  | // instruction is different than folding it other places.  It requires | 
|  | // replacing the *two* registers with the memory location. | 
|  | if (isTwoAddr && NumOps >= 2 && OpNum < 2 && MI.getOperand(0).isReg() && | 
|  | MI.getOperand(1).isReg() && | 
|  | MI.getOperand(0).getReg() == MI.getOperand(1).getReg()) { | 
|  | I = lookupTwoAddrFoldTable(MI.getOpcode()); | 
|  | isTwoAddrFold = true; | 
|  | } else { | 
|  | if (OpNum == 0) { | 
|  | if (MI.getOpcode() == X86::MOV32r0) { | 
|  | NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, InsertPt, MI); | 
|  | if (NewMI) | 
|  | return NewMI; | 
|  | } | 
|  | } | 
|  |  | 
|  | I = lookupFoldTable(MI.getOpcode(), OpNum); | 
|  | } | 
|  |  | 
|  | if (I != nullptr) { | 
|  | unsigned Opcode = I->DstOp; | 
|  | unsigned MinAlign = (I->Flags & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT; | 
|  | if (Align < MinAlign) | 
|  | return nullptr; | 
|  | bool NarrowToMOV32rm = false; | 
|  | if (Size) { | 
|  | const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); | 
|  | const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, | 
|  | &RI, MF); | 
|  | unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8; | 
|  | if (Size < RCSize) { | 
|  | // Check if it's safe to fold the load. If the size of the object is | 
|  | // narrower than the load width, then it's not. | 
|  | if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4) | 
|  | return nullptr; | 
|  | // If this is a 64-bit load, but the spill slot is 32, then we can do | 
|  | // a 32-bit load which is implicitly zero-extended. This likely is | 
|  | // due to live interval analysis remat'ing a load from stack slot. | 
|  | if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg()) | 
|  | return nullptr; | 
|  | Opcode = X86::MOV32rm; | 
|  | NarrowToMOV32rm = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (isTwoAddrFold) | 
|  | NewMI = FuseTwoAddrInst(MF, Opcode, MOs, InsertPt, MI, *this); | 
|  | else | 
|  | NewMI = FuseInst(MF, Opcode, OpNum, MOs, InsertPt, MI, *this); | 
|  |  | 
|  | if (NarrowToMOV32rm) { | 
|  | // If this is the special case where we use a MOV32rm to load a 32-bit | 
|  | // value and zero-extend the top bits. Change the destination register | 
|  | // to a 32-bit one. | 
|  | unsigned DstReg = NewMI->getOperand(0).getReg(); | 
|  | if (TargetRegisterInfo::isPhysicalRegister(DstReg)) | 
|  | NewMI->getOperand(0).setReg(RI.getSubReg(DstReg, X86::sub_32bit)); | 
|  | else | 
|  | NewMI->getOperand(0).setSubReg(X86::sub_32bit); | 
|  | } | 
|  | return NewMI; | 
|  | } | 
|  |  | 
|  | // If the instruction and target operand are commutable, commute the | 
|  | // instruction and try again. | 
|  | if (AllowCommute) { | 
|  | unsigned CommuteOpIdx1 = OpNum, CommuteOpIdx2 = CommuteAnyOperandIndex; | 
|  | if (findCommutedOpIndices(MI, CommuteOpIdx1, CommuteOpIdx2)) { | 
|  | bool HasDef = MI.getDesc().getNumDefs(); | 
|  | unsigned Reg0 = HasDef ? MI.getOperand(0).getReg() : 0; | 
|  | unsigned Reg1 = MI.getOperand(CommuteOpIdx1).getReg(); | 
|  | unsigned Reg2 = MI.getOperand(CommuteOpIdx2).getReg(); | 
|  | bool Tied1 = | 
|  | 0 == MI.getDesc().getOperandConstraint(CommuteOpIdx1, MCOI::TIED_TO); | 
|  | bool Tied2 = | 
|  | 0 == MI.getDesc().getOperandConstraint(CommuteOpIdx2, MCOI::TIED_TO); | 
|  |  | 
|  | // If either of the commutable operands are tied to the destination | 
|  | // then we can not commute + fold. | 
|  | if ((HasDef && Reg0 == Reg1 && Tied1) || | 
|  | (HasDef && Reg0 == Reg2 && Tied2)) | 
|  | return nullptr; | 
|  |  | 
|  | MachineInstr *CommutedMI = | 
|  | commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2); | 
|  | if (!CommutedMI) { | 
|  | // Unable to commute. | 
|  | return nullptr; | 
|  | } | 
|  | if (CommutedMI != &MI) { | 
|  | // New instruction. We can't fold from this. | 
|  | CommutedMI->eraseFromParent(); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Attempt to fold with the commuted version of the instruction. | 
|  | NewMI = foldMemoryOperandImpl(MF, MI, CommuteOpIdx2, MOs, InsertPt, | 
|  | Size, Align, /*AllowCommute=*/false); | 
|  | if (NewMI) | 
|  | return NewMI; | 
|  |  | 
|  | // Folding failed again - undo the commute before returning. | 
|  | MachineInstr *UncommutedMI = | 
|  | commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2); | 
|  | if (!UncommutedMI) { | 
|  | // Unable to commute. | 
|  | return nullptr; | 
|  | } | 
|  | if (UncommutedMI != &MI) { | 
|  | // New instruction. It doesn't need to be kept. | 
|  | UncommutedMI->eraseFromParent(); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Return here to prevent duplicate fuse failure report. | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | // No fusion | 
|  | if (PrintFailedFusing && !MI.isCopy()) | 
|  | dbgs() << "We failed to fuse operand " << OpNum << " in " << MI; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | MachineInstr * | 
|  | X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI, | 
|  | ArrayRef<unsigned> Ops, | 
|  | MachineBasicBlock::iterator InsertPt, | 
|  | int FrameIndex, LiveIntervals *LIS) const { | 
|  | // Check switch flag | 
|  | if (NoFusing) | 
|  | return nullptr; | 
|  |  | 
|  | // Avoid partial and undef register update stalls unless optimizing for size. | 
|  | if (!MF.getFunction().optForSize() && | 
|  | (hasPartialRegUpdate(MI.getOpcode(), Subtarget) || | 
|  | shouldPreventUndefRegUpdateMemFold(MF, MI))) | 
|  | return nullptr; | 
|  |  | 
|  | // Don't fold subreg spills, or reloads that use a high subreg. | 
|  | for (auto Op : Ops) { | 
|  | MachineOperand &MO = MI.getOperand(Op); | 
|  | auto SubReg = MO.getSubReg(); | 
|  | if (SubReg && (MO.isDef() || SubReg == X86::sub_8bit_hi)) | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | const MachineFrameInfo &MFI = MF.getFrameInfo(); | 
|  | unsigned Size = MFI.getObjectSize(FrameIndex); | 
|  | unsigned Alignment = MFI.getObjectAlignment(FrameIndex); | 
|  | // If the function stack isn't realigned we don't want to fold instructions | 
|  | // that need increased alignment. | 
|  | if (!RI.needsStackRealignment(MF)) | 
|  | Alignment = | 
|  | std::min(Alignment, Subtarget.getFrameLowering()->getStackAlignment()); | 
|  | if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { | 
|  | unsigned NewOpc = 0; | 
|  | unsigned RCSize = 0; | 
|  | switch (MI.getOpcode()) { | 
|  | default: return nullptr; | 
|  | case X86::TEST8rr:  NewOpc = X86::CMP8ri; RCSize = 1; break; | 
|  | case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break; | 
|  | case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break; | 
|  | case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break; | 
|  | } | 
|  | // Check if it's safe to fold the load. If the size of the object is | 
|  | // narrower than the load width, then it's not. | 
|  | if (Size < RCSize) | 
|  | return nullptr; | 
|  | // Change to CMPXXri r, 0 first. | 
|  | MI.setDesc(get(NewOpc)); | 
|  | MI.getOperand(1).ChangeToImmediate(0); | 
|  | } else if (Ops.size() != 1) | 
|  | return nullptr; | 
|  |  | 
|  | return foldMemoryOperandImpl(MF, MI, Ops[0], | 
|  | MachineOperand::CreateFI(FrameIndex), InsertPt, | 
|  | Size, Alignment, /*AllowCommute=*/true); | 
|  | } | 
|  |  | 
|  | /// Check if \p LoadMI is a partial register load that we can't fold into \p MI | 
|  | /// because the latter uses contents that wouldn't be defined in the folded | 
|  | /// version.  For instance, this transformation isn't legal: | 
|  | ///   movss (%rdi), %xmm0 | 
|  | ///   addps %xmm0, %xmm0 | 
|  | /// -> | 
|  | ///   addps (%rdi), %xmm0 | 
|  | /// | 
|  | /// But this one is: | 
|  | ///   movss (%rdi), %xmm0 | 
|  | ///   addss %xmm0, %xmm0 | 
|  | /// -> | 
|  | ///   addss (%rdi), %xmm0 | 
|  | /// | 
|  | static bool isNonFoldablePartialRegisterLoad(const MachineInstr &LoadMI, | 
|  | const MachineInstr &UserMI, | 
|  | const MachineFunction &MF) { | 
|  | unsigned Opc = LoadMI.getOpcode(); | 
|  | unsigned UserOpc = UserMI.getOpcode(); | 
|  | const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); | 
|  | const TargetRegisterClass *RC = | 
|  | MF.getRegInfo().getRegClass(LoadMI.getOperand(0).getReg()); | 
|  | unsigned RegSize = TRI.getRegSizeInBits(*RC); | 
|  |  | 
|  | if ((Opc == X86::MOVSSrm || Opc == X86::VMOVSSrm || Opc == X86::VMOVSSZrm) && | 
|  | RegSize > 32) { | 
|  | // These instructions only load 32 bits, we can't fold them if the | 
|  | // destination register is wider than 32 bits (4 bytes), and its user | 
|  | // instruction isn't scalar (SS). | 
|  | switch (UserOpc) { | 
|  | case X86::ADDSSrr_Int: case X86::VADDSSrr_Int: case X86::VADDSSZrr_Int: | 
|  | case X86::CMPSSrr_Int: case X86::VCMPSSrr_Int: case X86::VCMPSSZrr_Int: | 
|  | case X86::DIVSSrr_Int: case X86::VDIVSSrr_Int: case X86::VDIVSSZrr_Int: | 
|  | case X86::MAXSSrr_Int: case X86::VMAXSSrr_Int: case X86::VMAXSSZrr_Int: | 
|  | case X86::MINSSrr_Int: case X86::VMINSSrr_Int: case X86::VMINSSZrr_Int: | 
|  | case X86::MULSSrr_Int: case X86::VMULSSrr_Int: case X86::VMULSSZrr_Int: | 
|  | case X86::SUBSSrr_Int: case X86::VSUBSSrr_Int: case X86::VSUBSSZrr_Int: | 
|  | case X86::VADDSSZrr_Intk: case X86::VADDSSZrr_Intkz: | 
|  | case X86::VDIVSSZrr_Intk: case X86::VDIVSSZrr_Intkz: | 
|  | case X86::VMAXSSZrr_Intk: case X86::VMAXSSZrr_Intkz: | 
|  | case X86::VMINSSZrr_Intk: case X86::VMINSSZrr_Intkz: | 
|  | case X86::VMULSSZrr_Intk: case X86::VMULSSZrr_Intkz: | 
|  | case X86::VSUBSSZrr_Intk: case X86::VSUBSSZrr_Intkz: | 
|  | case X86::VFMADDSS4rr_Int:   case X86::VFNMADDSS4rr_Int: | 
|  | case X86::VFMSUBSS4rr_Int:   case X86::VFNMSUBSS4rr_Int: | 
|  | case X86::VFMADD132SSr_Int:  case X86::VFNMADD132SSr_Int: | 
|  | case X86::VFMADD213SSr_Int:  case X86::VFNMADD213SSr_Int: | 
|  | case X86::VFMADD231SSr_Int:  case X86::VFNMADD231SSr_Int: | 
|  | case X86::VFMSUB132SSr_Int:  case X86::VFNMSUB132SSr_Int: | 
|  | case X86::VFMSUB213SSr_Int:  case X86::VFNMSUB213SSr_Int: | 
|  | case X86::VFMSUB231SSr_Int:  case X86::VFNMSUB231SSr_Int: | 
|  | case X86::VFMADD132SSZr_Int: case X86::VFNMADD132SSZr_Int: | 
|  | case X86::VFMADD213SSZr_Int: case X86::VFNMADD213SSZr_Int: | 
|  | case X86::VFMADD231SSZr_Int: case X86::VFNMADD231SSZr_Int: | 
|  | case X86::VFMSUB132SSZr_Int: case X86::VFNMSUB132SSZr_Int: | 
|  | case X86::VFMSUB213SSZr_Int: case X86::VFNMSUB213SSZr_Int: | 
|  | case X86::VFMSUB231SSZr_Int: case X86::VFNMSUB231SSZr_Int: | 
|  | case X86::VFMADD132SSZr_Intk: case X86::VFNMADD132SSZr_Intk: | 
|  | case X86::VFMADD213SSZr_Intk: case X86::VFNMADD213SSZr_Intk: | 
|  | case X86::VFMADD231SSZr_Intk: case X86::VFNMADD231SSZr_Intk: | 
|  | case X86::VFMSUB132SSZr_Intk: case X86::VFNMSUB132SSZr_Intk: | 
|  | case X86::VFMSUB213SSZr_Intk: case X86::VFNMSUB213SSZr_Intk: | 
|  | case X86::VFMSUB231SSZr_Intk: case X86::VFNMSUB231SSZr_Intk: | 
|  | case X86::VFMADD132SSZr_Intkz: case X86::VFNMADD132SSZr_Intkz: | 
|  | case X86::VFMADD213SSZr_Intkz: case X86::VFNMADD213SSZr_Intkz: | 
|  | case X86::VFMADD231SSZr_Intkz: case X86::VFNMADD231SSZr_Intkz: | 
|  | case X86::VFMSUB132SSZr_Intkz: case X86::VFNMSUB132SSZr_Intkz: | 
|  | case X86::VFMSUB213SSZr_Intkz: case X86::VFNMSUB213SSZr_Intkz: | 
|  | case X86::VFMSUB231SSZr_Intkz: case X86::VFNMSUB231SSZr_Intkz: | 
|  | return false; | 
|  | default: | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if ((Opc == X86::MOVSDrm || Opc == X86::VMOVSDrm || Opc == X86::VMOVSDZrm) && | 
|  | RegSize > 64) { | 
|  | // These instructions only load 64 bits, we can't fold them if the | 
|  | // destination register is wider than 64 bits (8 bytes), and its user | 
|  | // instruction isn't scalar (SD). | 
|  | switch (UserOpc) { | 
|  | case X86::ADDSDrr_Int: case X86::VADDSDrr_Int: case X86::VADDSDZrr_Int: | 
|  | case X86::CMPSDrr_Int: case X86::VCMPSDrr_Int: case X86::VCMPSDZrr_Int: | 
|  | case X86::DIVSDrr_Int: case X86::VDIVSDrr_Int: case X86::VDIVSDZrr_Int: | 
|  | case X86::MAXSDrr_Int: case X86::VMAXSDrr_Int: case X86::VMAXSDZrr_Int: | 
|  | case X86::MINSDrr_Int: case X86::VMINSDrr_Int: case X86::VMINSDZrr_Int: | 
|  | case X86::MULSDrr_Int: case X86::VMULSDrr_Int: case X86::VMULSDZrr_Int: | 
|  | case X86::SUBSDrr_Int: case X86::VSUBSDrr_Int: case X86::VSUBSDZrr_Int: | 
|  | case X86::VADDSDZrr_Intk: case X86::VADDSDZrr_Intkz: | 
|  | case X86::VDIVSDZrr_Intk: case X86::VDIVSDZrr_Intkz: | 
|  | case X86::VMAXSDZrr_Intk: case X86::VMAXSDZrr_Intkz: | 
|  | case X86::VMINSDZrr_Intk: case X86::VMINSDZrr_Intkz: | 
|  | case X86::VMULSDZrr_Intk: case X86::VMULSDZrr_Intkz: | 
|  | case X86::VSUBSDZrr_Intk: case X86::VSUBSDZrr_Intkz: | 
|  | case X86::VFMADDSD4rr_Int:   case X86::VFNMADDSD4rr_Int: | 
|  | case X86::VFMSUBSD4rr_Int:   case X86::VFNMSUBSD4rr_Int: | 
|  | case X86::VFMADD132SDr_Int:  case X86::VFNMADD132SDr_Int: | 
|  | case X86::VFMADD213SDr_Int:  case X86::VFNMADD213SDr_Int: | 
|  | case X86::VFMADD231SDr_Int:  case X86::VFNMADD231SDr_Int: | 
|  | case X86::VFMSUB132SDr_Int:  case X86::VFNMSUB132SDr_Int: | 
|  | case X86::VFMSUB213SDr_Int:  case X86::VFNMSUB213SDr_Int: | 
|  | case X86::VFMSUB231SDr_Int:  case X86::VFNMSUB231SDr_Int: | 
|  | case X86::VFMADD132SDZr_Int: case X86::VFNMADD132SDZr_Int: | 
|  | case X86::VFMADD213SDZr_Int: case X86::VFNMADD213SDZr_Int: | 
|  | case X86::VFMADD231SDZr_Int: case X86::VFNMADD231SDZr_Int: | 
|  | case X86::VFMSUB132SDZr_Int: case X86::VFNMSUB132SDZr_Int: | 
|  | case X86::VFMSUB213SDZr_Int: case X86::VFNMSUB213SDZr_Int: | 
|  | case X86::VFMSUB231SDZr_Int: case X86::VFNMSUB231SDZr_Int: | 
|  | case X86::VFMADD132SDZr_Intk: case X86::VFNMADD132SDZr_Intk: | 
|  | case X86::VFMADD213SDZr_Intk: case X86::VFNMADD213SDZr_Intk: | 
|  | case X86::VFMADD231SDZr_Intk: case X86::VFNMADD231SDZr_Intk: | 
|  | case X86::VFMSUB132SDZr_Intk: case X86::VFNMSUB132SDZr_Intk: | 
|  | case X86::VFMSUB213SDZr_Intk: case X86::VFNMSUB213SDZr_Intk: | 
|  | case X86::VFMSUB231SDZr_Intk: case X86::VFNMSUB231SDZr_Intk: | 
|  | case X86::VFMADD132SDZr_Intkz: case X86::VFNMADD132SDZr_Intkz: | 
|  | case X86::VFMADD213SDZr_Intkz: case X86::VFNMADD213SDZr_Intkz: | 
|  | case X86::VFMADD231SDZr_Intkz: case X86::VFNMADD231SDZr_Intkz: | 
|  | case X86::VFMSUB132SDZr_Intkz: case X86::VFNMSUB132SDZr_Intkz: | 
|  | case X86::VFMSUB213SDZr_Intkz: case X86::VFNMSUB213SDZr_Intkz: | 
|  | case X86::VFMSUB231SDZr_Intkz: case X86::VFNMSUB231SDZr_Intkz: | 
|  | return false; | 
|  | default: | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | MachineInstr *X86InstrInfo::foldMemoryOperandImpl( | 
|  | MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops, | 
|  | MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI, | 
|  | LiveIntervals *LIS) const { | 
|  |  | 
|  | // TODO: Support the case where LoadMI loads a wide register, but MI | 
|  | // only uses a subreg. | 
|  | for (auto Op : Ops) { | 
|  | if (MI.getOperand(Op).getSubReg()) | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // If loading from a FrameIndex, fold directly from the FrameIndex. | 
|  | unsigned NumOps = LoadMI.getDesc().getNumOperands(); | 
|  | int FrameIndex; | 
|  | if (isLoadFromStackSlot(LoadMI, FrameIndex)) { | 
|  | if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF)) | 
|  | return nullptr; | 
|  | return foldMemoryOperandImpl(MF, MI, Ops, InsertPt, FrameIndex, LIS); | 
|  | } | 
|  |  | 
|  | // Check switch flag | 
|  | if (NoFusing) return nullptr; | 
|  |  | 
|  | // Avoid partial and undef register update stalls unless optimizing for size. | 
|  | if (!MF.getFunction().optForSize() && | 
|  | (hasPartialRegUpdate(MI.getOpcode(), Subtarget) || | 
|  | shouldPreventUndefRegUpdateMemFold(MF, MI))) | 
|  | return nullptr; | 
|  |  | 
|  | // Determine the alignment of the load. | 
|  | unsigned Alignment = 0; | 
|  | if (LoadMI.hasOneMemOperand()) | 
|  | Alignment = (*LoadMI.memoperands_begin())->getAlignment(); | 
|  | else | 
|  | switch (LoadMI.getOpcode()) { | 
|  | case X86::AVX512_512_SET0: | 
|  | case X86::AVX512_512_SETALLONES: | 
|  | Alignment = 64; | 
|  | break; | 
|  | case X86::AVX2_SETALLONES: | 
|  | case X86::AVX1_SETALLONES: | 
|  | case X86::AVX_SET0: | 
|  | case X86::AVX512_256_SET0: | 
|  | Alignment = 32; | 
|  | break; | 
|  | case X86::V_SET0: | 
|  | case X86::V_SETALLONES: | 
|  | case X86::AVX512_128_SET0: | 
|  | Alignment = 16; | 
|  | break; | 
|  | case X86::MMX_SET0: | 
|  | case X86::FsFLD0SD: | 
|  | case X86::AVX512_FsFLD0SD: | 
|  | Alignment = 8; | 
|  | break; | 
|  | case X86::FsFLD0SS: | 
|  | case X86::AVX512_FsFLD0SS: | 
|  | Alignment = 4; | 
|  | break; | 
|  | default: | 
|  | return nullptr; | 
|  | } | 
|  | if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { | 
|  | unsigned NewOpc = 0; | 
|  | switch (MI.getOpcode()) { | 
|  | default: return nullptr; | 
|  | case X86::TEST8rr:  NewOpc = X86::CMP8ri; break; | 
|  | case X86::TEST16rr: NewOpc = X86::CMP16ri8; break; | 
|  | case X86::TEST32rr: NewOpc = X86::CMP32ri8; break; | 
|  | case X86::TEST64rr: NewOpc = X86::CMP64ri8; break; | 
|  | } | 
|  | // Change to CMPXXri r, 0 first. | 
|  | MI.setDesc(get(NewOpc)); | 
|  | MI.getOperand(1).ChangeToImmediate(0); | 
|  | } else if (Ops.size() != 1) | 
|  | return nullptr; | 
|  |  | 
|  | // Make sure the subregisters match. | 
|  | // Otherwise we risk changing the size of the load. | 
|  | if (LoadMI.getOperand(0).getSubReg() != MI.getOperand(Ops[0]).getSubReg()) | 
|  | return nullptr; | 
|  |  | 
|  | SmallVector<MachineOperand,X86::AddrNumOperands> MOs; | 
|  | switch (LoadMI.getOpcode()) { | 
|  | case X86::MMX_SET0: | 
|  | case X86::V_SET0: | 
|  | case X86::V_SETALLONES: | 
|  | case X86::AVX2_SETALLONES: | 
|  | case X86::AVX1_SETALLONES: | 
|  | case X86::AVX_SET0: | 
|  | case X86::AVX512_128_SET0: | 
|  | case X86::AVX512_256_SET0: | 
|  | case X86::AVX512_512_SET0: | 
|  | case X86::AVX512_512_SETALLONES: | 
|  | case X86::FsFLD0SD: | 
|  | case X86::AVX512_FsFLD0SD: | 
|  | case X86::FsFLD0SS: | 
|  | case X86::AVX512_FsFLD0SS: { | 
|  | // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure. | 
|  | // Create a constant-pool entry and operands to load from it. | 
|  |  | 
|  | // Medium and large mode can't fold loads this way. | 
|  | if (MF.getTarget().getCodeModel() != CodeModel::Small && | 
|  | MF.getTarget().getCodeModel() != CodeModel::Kernel) | 
|  | return nullptr; | 
|  |  | 
|  | // x86-32 PIC requires a PIC base register for constant pools. | 
|  | unsigned PICBase = 0; | 
|  | if (MF.getTarget().isPositionIndependent()) { | 
|  | if (Subtarget.is64Bit()) | 
|  | PICBase = X86::RIP; | 
|  | else | 
|  | // FIXME: PICBase = getGlobalBaseReg(&MF); | 
|  | // This doesn't work for several reasons. | 
|  | // 1. GlobalBaseReg may have been spilled. | 
|  | // 2. It may not be live at MI. | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Create a constant-pool entry. | 
|  | MachineConstantPool &MCP = *MF.getConstantPool(); | 
|  | Type *Ty; | 
|  | unsigned Opc = LoadMI.getOpcode(); | 
|  | if (Opc == X86::FsFLD0SS || Opc == X86::AVX512_FsFLD0SS) | 
|  | Ty = Type::getFloatTy(MF.getFunction().getContext()); | 
|  | else if (Opc == X86::FsFLD0SD || Opc == X86::AVX512_FsFLD0SD) | 
|  | Ty = Type::getDoubleTy(MF.getFunction().getContext()); | 
|  | else if (Opc == X86::AVX512_512_SET0 || Opc == X86::AVX512_512_SETALLONES) | 
|  | Ty = VectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),16); | 
|  | else if (Opc == X86::AVX2_SETALLONES || Opc == X86::AVX_SET0 || | 
|  | Opc == X86::AVX512_256_SET0 || Opc == X86::AVX1_SETALLONES) | 
|  | Ty = VectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), 8); | 
|  | else if (Opc == X86::MMX_SET0) | 
|  | Ty = VectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), 2); | 
|  | else | 
|  | Ty = VectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), 4); | 
|  |  | 
|  | bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX2_SETALLONES || | 
|  | Opc == X86::AVX512_512_SETALLONES || | 
|  | Opc == X86::AVX1_SETALLONES); | 
|  | const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) : | 
|  | Constant::getNullValue(Ty); | 
|  | unsigned CPI = MCP.getConstantPoolIndex(C, Alignment); | 
|  |  | 
|  | // Create operands to load from the constant pool entry. | 
|  | MOs.push_back(MachineOperand::CreateReg(PICBase, false)); | 
|  | MOs.push_back(MachineOperand::CreateImm(1)); | 
|  | MOs.push_back(MachineOperand::CreateReg(0, false)); | 
|  | MOs.push_back(MachineOperand::CreateCPI(CPI, 0)); | 
|  | MOs.push_back(MachineOperand::CreateReg(0, false)); | 
|  | break; | 
|  | } | 
|  | default: { | 
|  | if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF)) | 
|  | return nullptr; | 
|  |  | 
|  | // Folding a normal load. Just copy the load's address operands. | 
|  | MOs.append(LoadMI.operands_begin() + NumOps - X86::AddrNumOperands, | 
|  | LoadMI.operands_begin() + NumOps); | 
|  | break; | 
|  | } | 
|  | } | 
|  | return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, InsertPt, | 
|  | /*Size=*/0, Alignment, /*AllowCommute=*/true); | 
|  | } | 
|  |  | 
|  | static SmallVector<MachineMemOperand *, 2> | 
|  | extractLoadMMOs(ArrayRef<MachineMemOperand *> MMOs, MachineFunction &MF) { | 
|  | SmallVector<MachineMemOperand *, 2> LoadMMOs; | 
|  |  | 
|  | for (MachineMemOperand *MMO : MMOs) { | 
|  | if (!MMO->isLoad()) | 
|  | continue; | 
|  |  | 
|  | if (!MMO->isStore()) { | 
|  | // Reuse the MMO. | 
|  | LoadMMOs.push_back(MMO); | 
|  | } else { | 
|  | // Clone the MMO and unset the store flag. | 
|  | LoadMMOs.push_back(MF.getMachineMemOperand( | 
|  | MMO->getPointerInfo(), MMO->getFlags() & ~MachineMemOperand::MOStore, | 
|  | MMO->getSize(), MMO->getBaseAlignment(), MMO->getAAInfo(), nullptr, | 
|  | MMO->getSyncScopeID(), MMO->getOrdering(), | 
|  | MMO->getFailureOrdering())); | 
|  | } | 
|  | } | 
|  |  | 
|  | return LoadMMOs; | 
|  | } | 
|  |  | 
|  | static SmallVector<MachineMemOperand *, 2> | 
|  | extractStoreMMOs(ArrayRef<MachineMemOperand *> MMOs, MachineFunction &MF) { | 
|  | SmallVector<MachineMemOperand *, 2> StoreMMOs; | 
|  |  | 
|  | for (MachineMemOperand *MMO : MMOs) { | 
|  | if (!MMO->isStore()) | 
|  | continue; | 
|  |  | 
|  | if (!MMO->isLoad()) { | 
|  | // Reuse the MMO. | 
|  | StoreMMOs.push_back(MMO); | 
|  | } else { | 
|  | // Clone the MMO and unset the load flag. | 
|  | StoreMMOs.push_back(MF.getMachineMemOperand( | 
|  | MMO->getPointerInfo(), MMO->getFlags() & ~MachineMemOperand::MOLoad, | 
|  | MMO->getSize(), MMO->getBaseAlignment(), MMO->getAAInfo(), nullptr, | 
|  | MMO->getSyncScopeID(), MMO->getOrdering(), | 
|  | MMO->getFailureOrdering())); | 
|  | } | 
|  | } | 
|  |  | 
|  | return StoreMMOs; | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::unfoldMemoryOperand( | 
|  | MachineFunction &MF, MachineInstr &MI, unsigned Reg, bool UnfoldLoad, | 
|  | bool UnfoldStore, SmallVectorImpl<MachineInstr *> &NewMIs) const { | 
|  | const X86MemoryFoldTableEntry *I = lookupUnfoldTable(MI.getOpcode()); | 
|  | if (I == nullptr) | 
|  | return false; | 
|  | unsigned Opc = I->DstOp; | 
|  | unsigned Index = I->Flags & TB_INDEX_MASK; | 
|  | bool FoldedLoad = I->Flags & TB_FOLDED_LOAD; | 
|  | bool FoldedStore = I->Flags & TB_FOLDED_STORE; | 
|  | if (UnfoldLoad && !FoldedLoad) | 
|  | return false; | 
|  | UnfoldLoad &= FoldedLoad; | 
|  | if (UnfoldStore && !FoldedStore) | 
|  | return false; | 
|  | UnfoldStore &= FoldedStore; | 
|  |  | 
|  | const MCInstrDesc &MCID = get(Opc); | 
|  | const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF); | 
|  | // TODO: Check if 32-byte or greater accesses are slow too? | 
|  | if (!MI.hasOneMemOperand() && RC == &X86::VR128RegClass && | 
|  | Subtarget.isUnalignedMem16Slow()) | 
|  | // Without memoperands, loadRegFromAddr and storeRegToStackSlot will | 
|  | // conservatively assume the address is unaligned. That's bad for | 
|  | // performance. | 
|  | return false; | 
|  | SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps; | 
|  | SmallVector<MachineOperand,2> BeforeOps; | 
|  | SmallVector<MachineOperand,2> AfterOps; | 
|  | SmallVector<MachineOperand,4> ImpOps; | 
|  | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &Op = MI.getOperand(i); | 
|  | if (i >= Index && i < Index + X86::AddrNumOperands) | 
|  | AddrOps.push_back(Op); | 
|  | else if (Op.isReg() && Op.isImplicit()) | 
|  | ImpOps.push_back(Op); | 
|  | else if (i < Index) | 
|  | BeforeOps.push_back(Op); | 
|  | else if (i > Index) | 
|  | AfterOps.push_back(Op); | 
|  | } | 
|  |  | 
|  | // Emit the load instruction. | 
|  | if (UnfoldLoad) { | 
|  | auto MMOs = extractLoadMMOs(MI.memoperands(), MF); | 
|  | loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs, NewMIs); | 
|  | if (UnfoldStore) { | 
|  | // Address operands cannot be marked isKill. | 
|  | for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) { | 
|  | MachineOperand &MO = NewMIs[0]->getOperand(i); | 
|  | if (MO.isReg()) | 
|  | MO.setIsKill(false); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Emit the data processing instruction. | 
|  | MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI.getDebugLoc(), true); | 
|  | MachineInstrBuilder MIB(MF, DataMI); | 
|  |  | 
|  | if (FoldedStore) | 
|  | MIB.addReg(Reg, RegState::Define); | 
|  | for (MachineOperand &BeforeOp : BeforeOps) | 
|  | MIB.add(BeforeOp); | 
|  | if (FoldedLoad) | 
|  | MIB.addReg(Reg); | 
|  | for (MachineOperand &AfterOp : AfterOps) | 
|  | MIB.add(AfterOp); | 
|  | for (MachineOperand &ImpOp : ImpOps) { | 
|  | MIB.addReg(ImpOp.getReg(), | 
|  | getDefRegState(ImpOp.isDef()) | | 
|  | RegState::Implicit | | 
|  | getKillRegState(ImpOp.isKill()) | | 
|  | getDeadRegState(ImpOp.isDead()) | | 
|  | getUndefRegState(ImpOp.isUndef())); | 
|  | } | 
|  | // Change CMP32ri r, 0 back to TEST32rr r, r, etc. | 
|  | switch (DataMI->getOpcode()) { | 
|  | default: break; | 
|  | case X86::CMP64ri32: | 
|  | case X86::CMP64ri8: | 
|  | case X86::CMP32ri: | 
|  | case X86::CMP32ri8: | 
|  | case X86::CMP16ri: | 
|  | case X86::CMP16ri8: | 
|  | case X86::CMP8ri: { | 
|  | MachineOperand &MO0 = DataMI->getOperand(0); | 
|  | MachineOperand &MO1 = DataMI->getOperand(1); | 
|  | if (MO1.getImm() == 0) { | 
|  | unsigned NewOpc; | 
|  | switch (DataMI->getOpcode()) { | 
|  | default: llvm_unreachable("Unreachable!"); | 
|  | case X86::CMP64ri8: | 
|  | case X86::CMP64ri32: NewOpc = X86::TEST64rr; break; | 
|  | case X86::CMP32ri8: | 
|  | case X86::CMP32ri:   NewOpc = X86::TEST32rr; break; | 
|  | case X86::CMP16ri8: | 
|  | case X86::CMP16ri:   NewOpc = X86::TEST16rr; break; | 
|  | case X86::CMP8ri:    NewOpc = X86::TEST8rr; break; | 
|  | } | 
|  | DataMI->setDesc(get(NewOpc)); | 
|  | MO1.ChangeToRegister(MO0.getReg(), false); | 
|  | } | 
|  | } | 
|  | } | 
|  | NewMIs.push_back(DataMI); | 
|  |  | 
|  | // Emit the store instruction. | 
|  | if (UnfoldStore) { | 
|  | const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI, MF); | 
|  | auto MMOs = extractStoreMMOs(MI.memoperands(), MF); | 
|  | storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs, NewMIs); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool | 
|  | X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N, | 
|  | SmallVectorImpl<SDNode*> &NewNodes) const { | 
|  | if (!N->isMachineOpcode()) | 
|  | return false; | 
|  |  | 
|  | const X86MemoryFoldTableEntry *I = lookupUnfoldTable(N->getMachineOpcode()); | 
|  | if (I == nullptr) | 
|  | return false; | 
|  | unsigned Opc = I->DstOp; | 
|  | unsigned Index = I->Flags & TB_INDEX_MASK; | 
|  | bool FoldedLoad = I->Flags & TB_FOLDED_LOAD; | 
|  | bool FoldedStore = I->Flags & TB_FOLDED_STORE; | 
|  | const MCInstrDesc &MCID = get(Opc); | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); | 
|  | const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF); | 
|  | unsigned NumDefs = MCID.NumDefs; | 
|  | std::vector<SDValue> AddrOps; | 
|  | std::vector<SDValue> BeforeOps; | 
|  | std::vector<SDValue> AfterOps; | 
|  | SDLoc dl(N); | 
|  | unsigned NumOps = N->getNumOperands(); | 
|  | for (unsigned i = 0; i != NumOps-1; ++i) { | 
|  | SDValue Op = N->getOperand(i); | 
|  | if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands) | 
|  | AddrOps.push_back(Op); | 
|  | else if (i < Index-NumDefs) | 
|  | BeforeOps.push_back(Op); | 
|  | else if (i > Index-NumDefs) | 
|  | AfterOps.push_back(Op); | 
|  | } | 
|  | SDValue Chain = N->getOperand(NumOps-1); | 
|  | AddrOps.push_back(Chain); | 
|  |  | 
|  | // Emit the load instruction. | 
|  | SDNode *Load = nullptr; | 
|  | if (FoldedLoad) { | 
|  | EVT VT = *TRI.legalclasstypes_begin(*RC); | 
|  | auto MMOs = extractLoadMMOs(cast<MachineSDNode>(N)->memoperands(), MF); | 
|  | if (MMOs.empty() && RC == &X86::VR128RegClass && | 
|  | Subtarget.isUnalignedMem16Slow()) | 
|  | // Do not introduce a slow unaligned load. | 
|  | return false; | 
|  | // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte | 
|  | // memory access is slow above. | 
|  | unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16); | 
|  | bool isAligned = !MMOs.empty() && MMOs.front()->getAlignment() >= Alignment; | 
|  | Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, Subtarget), dl, | 
|  | VT, MVT::Other, AddrOps); | 
|  | NewNodes.push_back(Load); | 
|  |  | 
|  | // Preserve memory reference information. | 
|  | DAG.setNodeMemRefs(cast<MachineSDNode>(Load), MMOs); | 
|  | } | 
|  |  | 
|  | // Emit the data processing instruction. | 
|  | std::vector<EVT> VTs; | 
|  | const TargetRegisterClass *DstRC = nullptr; | 
|  | if (MCID.getNumDefs() > 0) { | 
|  | DstRC = getRegClass(MCID, 0, &RI, MF); | 
|  | VTs.push_back(*TRI.legalclasstypes_begin(*DstRC)); | 
|  | } | 
|  | for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) { | 
|  | EVT VT = N->getValueType(i); | 
|  | if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs()) | 
|  | VTs.push_back(VT); | 
|  | } | 
|  | if (Load) | 
|  | BeforeOps.push_back(SDValue(Load, 0)); | 
|  | BeforeOps.insert(BeforeOps.end(), AfterOps.begin(), AfterOps.end()); | 
|  | // Change CMP32ri r, 0 back to TEST32rr r, r, etc. | 
|  | switch (Opc) { | 
|  | default: break; | 
|  | case X86::CMP64ri32: | 
|  | case X86::CMP64ri8: | 
|  | case X86::CMP32ri: | 
|  | case X86::CMP32ri8: | 
|  | case X86::CMP16ri: | 
|  | case X86::CMP16ri8: | 
|  | case X86::CMP8ri: | 
|  | if (isNullConstant(BeforeOps[1])) { | 
|  | switch (Opc) { | 
|  | default: llvm_unreachable("Unreachable!"); | 
|  | case X86::CMP64ri8: | 
|  | case X86::CMP64ri32: Opc = X86::TEST64rr; break; | 
|  | case X86::CMP32ri8: | 
|  | case X86::CMP32ri:   Opc = X86::TEST32rr; break; | 
|  | case X86::CMP16ri8: | 
|  | case X86::CMP16ri:   Opc = X86::TEST16rr; break; | 
|  | case X86::CMP8ri:    Opc = X86::TEST8rr; break; | 
|  | } | 
|  | BeforeOps[1] = BeforeOps[0]; | 
|  | } | 
|  | } | 
|  | SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, BeforeOps); | 
|  | NewNodes.push_back(NewNode); | 
|  |  | 
|  | // Emit the store instruction. | 
|  | if (FoldedStore) { | 
|  | AddrOps.pop_back(); | 
|  | AddrOps.push_back(SDValue(NewNode, 0)); | 
|  | AddrOps.push_back(Chain); | 
|  | auto MMOs = extractStoreMMOs(cast<MachineSDNode>(N)->memoperands(), MF); | 
|  | if (MMOs.empty() && RC == &X86::VR128RegClass && | 
|  | Subtarget.isUnalignedMem16Slow()) | 
|  | // Do not introduce a slow unaligned store. | 
|  | return false; | 
|  | // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte | 
|  | // memory access is slow above. | 
|  | unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16); | 
|  | bool isAligned = !MMOs.empty() && MMOs.front()->getAlignment() >= Alignment; | 
|  | SDNode *Store = | 
|  | DAG.getMachineNode(getStoreRegOpcode(0, DstRC, isAligned, Subtarget), | 
|  | dl, MVT::Other, AddrOps); | 
|  | NewNodes.push_back(Store); | 
|  |  | 
|  | // Preserve memory reference information. | 
|  | DAG.setNodeMemRefs(cast<MachineSDNode>(Store), MMOs); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc, | 
|  | bool UnfoldLoad, bool UnfoldStore, | 
|  | unsigned *LoadRegIndex) const { | 
|  | const X86MemoryFoldTableEntry *I = lookupUnfoldTable(Opc); | 
|  | if (I == nullptr) | 
|  | return 0; | 
|  | bool FoldedLoad = I->Flags & TB_FOLDED_LOAD; | 
|  | bool FoldedStore = I->Flags & TB_FOLDED_STORE; | 
|  | if (UnfoldLoad && !FoldedLoad) | 
|  | return 0; | 
|  | if (UnfoldStore && !FoldedStore) | 
|  | return 0; | 
|  | if (LoadRegIndex) | 
|  | *LoadRegIndex = I->Flags & TB_INDEX_MASK; | 
|  | return I->DstOp; | 
|  | } | 
|  |  | 
|  | bool | 
|  | X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, | 
|  | int64_t &Offset1, int64_t &Offset2) const { | 
|  | if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode()) | 
|  | return false; | 
|  | unsigned Opc1 = Load1->getMachineOpcode(); | 
|  | unsigned Opc2 = Load2->getMachineOpcode(); | 
|  | switch (Opc1) { | 
|  | default: return false; | 
|  | case X86::MOV8rm: | 
|  | case X86::MOV16rm: | 
|  | case X86::MOV32rm: | 
|  | case X86::MOV64rm: | 
|  | case X86::LD_Fp32m: | 
|  | case X86::LD_Fp64m: | 
|  | case X86::LD_Fp80m: | 
|  | case X86::MOVSSrm: | 
|  | case X86::MOVSDrm: | 
|  | case X86::MMX_MOVD64rm: | 
|  | case X86::MMX_MOVQ64rm: | 
|  | case X86::MOVAPSrm: | 
|  | case X86::MOVUPSrm: | 
|  | case X86::MOVAPDrm: | 
|  | case X86::MOVUPDrm: | 
|  | case X86::MOVDQArm: | 
|  | case X86::MOVDQUrm: | 
|  | // AVX load instructions | 
|  | case X86::VMOVSSrm: | 
|  | case X86::VMOVSDrm: | 
|  | case X86::VMOVAPSrm: | 
|  | case X86::VMOVUPSrm: | 
|  | case X86::VMOVAPDrm: | 
|  | case X86::VMOVUPDrm: | 
|  | case X86::VMOVDQArm: | 
|  | case X86::VMOVDQUrm: | 
|  | case X86::VMOVAPSYrm: | 
|  | case X86::VMOVUPSYrm: | 
|  | case X86::VMOVAPDYrm: | 
|  | case X86::VMOVUPDYrm: | 
|  | case X86::VMOVDQAYrm: | 
|  | case X86::VMOVDQUYrm: | 
|  | // AVX512 load instructions | 
|  | case X86::VMOVSSZrm: | 
|  | case X86::VMOVSDZrm: | 
|  | case X86::VMOVAPSZ128rm: | 
|  | case X86::VMOVUPSZ128rm: | 
|  | case X86::VMOVAPSZ128rm_NOVLX: | 
|  | case X86::VMOVUPSZ128rm_NOVLX: | 
|  | case X86::VMOVAPDZ128rm: | 
|  | case X86::VMOVUPDZ128rm: | 
|  | case X86::VMOVDQU8Z128rm: | 
|  | case X86::VMOVDQU16Z128rm: | 
|  | case X86::VMOVDQA32Z128rm: | 
|  | case X86::VMOVDQU32Z128rm: | 
|  | case X86::VMOVDQA64Z128rm: | 
|  | case X86::VMOVDQU64Z128rm: | 
|  | case X86::VMOVAPSZ256rm: | 
|  | case X86::VMOVUPSZ256rm: | 
|  | case X86::VMOVAPSZ256rm_NOVLX: | 
|  | case X86::VMOVUPSZ256rm_NOVLX: | 
|  | case X86::VMOVAPDZ256rm: | 
|  | case X86::VMOVUPDZ256rm: | 
|  | case X86::VMOVDQU8Z256rm: | 
|  | case X86::VMOVDQU16Z256rm: | 
|  | case X86::VMOVDQA32Z256rm: | 
|  | case X86::VMOVDQU32Z256rm: | 
|  | case X86::VMOVDQA64Z256rm: | 
|  | case X86::VMOVDQU64Z256rm: | 
|  | case X86::VMOVAPSZrm: | 
|  | case X86::VMOVUPSZrm: | 
|  | case X86::VMOVAPDZrm: | 
|  | case X86::VMOVUPDZrm: | 
|  | case X86::VMOVDQU8Zrm: | 
|  | case X86::VMOVDQU16Zrm: | 
|  | case X86::VMOVDQA32Zrm: | 
|  | case X86::VMOVDQU32Zrm: | 
|  | case X86::VMOVDQA64Zrm: | 
|  | case X86::VMOVDQU64Zrm: | 
|  | case X86::KMOVBkm: | 
|  | case X86::KMOVWkm: | 
|  | case X86::KMOVDkm: | 
|  | case X86::KMOVQkm: | 
|  | break; | 
|  | } | 
|  | switch (Opc2) { | 
|  | default: return false; | 
|  | case X86::MOV8rm: | 
|  | case X86::MOV16rm: | 
|  | case X86::MOV32rm: | 
|  | case X86::MOV64rm: | 
|  | case X86::LD_Fp32m: | 
|  | case X86::LD_Fp64m: | 
|  | case X86::LD_Fp80m: | 
|  | case X86::MOVSSrm: | 
|  | case X86::MOVSDrm: | 
|  | case X86::MMX_MOVD64rm: | 
|  | case X86::MMX_MOVQ64rm: | 
|  | case X86::MOVAPSrm: | 
|  | case X86::MOVUPSrm: | 
|  | case X86::MOVAPDrm: | 
|  | case X86::MOVUPDrm: | 
|  | case X86::MOVDQArm: | 
|  | case X86::MOVDQUrm: | 
|  | // AVX load instructions | 
|  | case X86::VMOVSSrm: | 
|  | case X86::VMOVSDrm: | 
|  | case X86::VMOVAPSrm: | 
|  | case X86::VMOVUPSrm: | 
|  | case X86::VMOVAPDrm: | 
|  | case X86::VMOVUPDrm: | 
|  | case X86::VMOVDQArm: | 
|  | case X86::VMOVDQUrm: | 
|  | case X86::VMOVAPSYrm: | 
|  | case X86::VMOVUPSYrm: | 
|  | case X86::VMOVAPDYrm: | 
|  | case X86::VMOVUPDYrm: | 
|  | case X86::VMOVDQAYrm: | 
|  | case X86::VMOVDQUYrm: | 
|  | // AVX512 load instructions | 
|  | case X86::VMOVSSZrm: | 
|  | case X86::VMOVSDZrm: | 
|  | case X86::VMOVAPSZ128rm: | 
|  | case X86::VMOVUPSZ128rm: | 
|  | case X86::VMOVAPSZ128rm_NOVLX: | 
|  | case X86::VMOVUPSZ128rm_NOVLX: | 
|  | case X86::VMOVAPDZ128rm: | 
|  | case X86::VMOVUPDZ128rm: | 
|  | case X86::VMOVDQU8Z128rm: | 
|  | case X86::VMOVDQU16Z128rm: | 
|  | case X86::VMOVDQA32Z128rm: | 
|  | case X86::VMOVDQU32Z128rm: | 
|  | case X86::VMOVDQA64Z128rm: | 
|  | case X86::VMOVDQU64Z128rm: | 
|  | case X86::VMOVAPSZ256rm: | 
|  | case X86::VMOVUPSZ256rm: | 
|  | case X86::VMOVAPSZ256rm_NOVLX: | 
|  | case X86::VMOVUPSZ256rm_NOVLX: | 
|  | case X86::VMOVAPDZ256rm: | 
|  | case X86::VMOVUPDZ256rm: | 
|  | case X86::VMOVDQU8Z256rm: | 
|  | case X86::VMOVDQU16Z256rm: | 
|  | case X86::VMOVDQA32Z256rm: | 
|  | case X86::VMOVDQU32Z256rm: | 
|  | case X86::VMOVDQA64Z256rm: | 
|  | case X86::VMOVDQU64Z256rm: | 
|  | case X86::VMOVAPSZrm: | 
|  | case X86::VMOVUPSZrm: | 
|  | case X86::VMOVAPDZrm: | 
|  | case X86::VMOVUPDZrm: | 
|  | case X86::VMOVDQU8Zrm: | 
|  | case X86::VMOVDQU16Zrm: | 
|  | case X86::VMOVDQA32Zrm: | 
|  | case X86::VMOVDQU32Zrm: | 
|  | case X86::VMOVDQA64Zrm: | 
|  | case X86::VMOVDQU64Zrm: | 
|  | case X86::KMOVBkm: | 
|  | case X86::KMOVWkm: | 
|  | case X86::KMOVDkm: | 
|  | case X86::KMOVQkm: | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Lambda to check if both the loads have the same value for an operand index. | 
|  | auto HasSameOp = [&](int I) { | 
|  | return Load1->getOperand(I) == Load2->getOperand(I); | 
|  | }; | 
|  |  | 
|  | // All operands except the displacement should match. | 
|  | if (!HasSameOp(X86::AddrBaseReg) || !HasSameOp(X86::AddrScaleAmt) || | 
|  | !HasSameOp(X86::AddrIndexReg) || !HasSameOp(X86::AddrSegmentReg)) | 
|  | return false; | 
|  |  | 
|  | // Chain Operand must be the same. | 
|  | if (!HasSameOp(5)) | 
|  | return false; | 
|  |  | 
|  | // Now let's examine if the displacements are constants. | 
|  | auto Disp1 = dyn_cast<ConstantSDNode>(Load1->getOperand(X86::AddrDisp)); | 
|  | auto Disp2 = dyn_cast<ConstantSDNode>(Load2->getOperand(X86::AddrDisp)); | 
|  | if (!Disp1 || !Disp2) | 
|  | return false; | 
|  |  | 
|  | Offset1 = Disp1->getSExtValue(); | 
|  | Offset2 = Disp2->getSExtValue(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, | 
|  | int64_t Offset1, int64_t Offset2, | 
|  | unsigned NumLoads) const { | 
|  | assert(Offset2 > Offset1); | 
|  | if ((Offset2 - Offset1) / 8 > 64) | 
|  | return false; | 
|  |  | 
|  | unsigned Opc1 = Load1->getMachineOpcode(); | 
|  | unsigned Opc2 = Load2->getMachineOpcode(); | 
|  | if (Opc1 != Opc2) | 
|  | return false;  // FIXME: overly conservative? | 
|  |  | 
|  | switch (Opc1) { | 
|  | default: break; | 
|  | case X86::LD_Fp32m: | 
|  | case X86::LD_Fp64m: | 
|  | case X86::LD_Fp80m: | 
|  | case X86::MMX_MOVD64rm: | 
|  | case X86::MMX_MOVQ64rm: | 
|  | return false; | 
|  | } | 
|  |  | 
|  | EVT VT = Load1->getValueType(0); | 
|  | switch (VT.getSimpleVT().SimpleTy) { | 
|  | default: | 
|  | // XMM registers. In 64-bit mode we can be a bit more aggressive since we | 
|  | // have 16 of them to play with. | 
|  | if (Subtarget.is64Bit()) { | 
|  | if (NumLoads >= 3) | 
|  | return false; | 
|  | } else if (NumLoads) { | 
|  | return false; | 
|  | } | 
|  | break; | 
|  | case MVT::i8: | 
|  | case MVT::i16: | 
|  | case MVT::i32: | 
|  | case MVT::i64: | 
|  | case MVT::f32: | 
|  | case MVT::f64: | 
|  | if (NumLoads) | 
|  | return false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo:: | 
|  | reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { | 
|  | assert(Cond.size() == 1 && "Invalid X86 branch condition!"); | 
|  | X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm()); | 
|  | Cond[0].setImm(GetOppositeBranchCondition(CC)); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo:: | 
|  | isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const { | 
|  | // FIXME: Return false for x87 stack register classes for now. We can't | 
|  | // allow any loads of these registers before FpGet_ST0_80. | 
|  | return !(RC == &X86::CCRRegClass || RC == &X86::DFCCRRegClass || | 
|  | RC == &X86::RFP32RegClass || RC == &X86::RFP64RegClass || | 
|  | RC == &X86::RFP80RegClass); | 
|  | } | 
|  |  | 
|  | /// Return a virtual register initialized with the | 
|  | /// the global base register value. Output instructions required to | 
|  | /// initialize the register in the function entry block, if necessary. | 
|  | /// | 
|  | /// TODO: Eliminate this and move the code to X86MachineFunctionInfo. | 
|  | /// | 
|  | unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const { | 
|  | assert((!Subtarget.is64Bit() || | 
|  | MF->getTarget().getCodeModel() == CodeModel::Medium || | 
|  | MF->getTarget().getCodeModel() == CodeModel::Large) && | 
|  | "X86-64 PIC uses RIP relative addressing"); | 
|  |  | 
|  | X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>(); | 
|  | unsigned GlobalBaseReg = X86FI->getGlobalBaseReg(); | 
|  | if (GlobalBaseReg != 0) | 
|  | return GlobalBaseReg; | 
|  |  | 
|  | // Create the register. The code to initialize it is inserted | 
|  | // later, by the CGBR pass (below). | 
|  | MachineRegisterInfo &RegInfo = MF->getRegInfo(); | 
|  | GlobalBaseReg = RegInfo.createVirtualRegister( | 
|  | Subtarget.is64Bit() ? &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass); | 
|  | X86FI->setGlobalBaseReg(GlobalBaseReg); | 
|  | return GlobalBaseReg; | 
|  | } | 
|  |  | 
|  | // These are the replaceable SSE instructions. Some of these have Int variants | 
|  | // that we don't include here. We don't want to replace instructions selected | 
|  | // by intrinsics. | 
|  | static const uint16_t ReplaceableInstrs[][3] = { | 
|  | //PackedSingle     PackedDouble    PackedInt | 
|  | { X86::MOVAPSmr,   X86::MOVAPDmr,  X86::MOVDQAmr  }, | 
|  | { X86::MOVAPSrm,   X86::MOVAPDrm,  X86::MOVDQArm  }, | 
|  | { X86::MOVAPSrr,   X86::MOVAPDrr,  X86::MOVDQArr  }, | 
|  | { X86::MOVUPSmr,   X86::MOVUPDmr,  X86::MOVDQUmr  }, | 
|  | { X86::MOVUPSrm,   X86::MOVUPDrm,  X86::MOVDQUrm  }, | 
|  | { X86::MOVLPSmr,   X86::MOVLPDmr,  X86::MOVPQI2QImr }, | 
|  | { X86::MOVSDmr,    X86::MOVSDmr,   X86::MOVPQI2QImr }, | 
|  | { X86::MOVSSmr,    X86::MOVSSmr,   X86::MOVPDI2DImr }, | 
|  | { X86::MOVSDrm,    X86::MOVSDrm,   X86::MOVQI2PQIrm }, | 
|  | { X86::MOVSSrm,    X86::MOVSSrm,   X86::MOVDI2PDIrm }, | 
|  | { X86::MOVNTPSmr,  X86::MOVNTPDmr, X86::MOVNTDQmr }, | 
|  | { X86::ANDNPSrm,   X86::ANDNPDrm,  X86::PANDNrm   }, | 
|  | { X86::ANDNPSrr,   X86::ANDNPDrr,  X86::PANDNrr   }, | 
|  | { X86::ANDPSrm,    X86::ANDPDrm,   X86::PANDrm    }, | 
|  | { X86::ANDPSrr,    X86::ANDPDrr,   X86::PANDrr    }, | 
|  | { X86::ORPSrm,     X86::ORPDrm,    X86::PORrm     }, | 
|  | { X86::ORPSrr,     X86::ORPDrr,    X86::PORrr     }, | 
|  | { X86::XORPSrm,    X86::XORPDrm,   X86::PXORrm    }, | 
|  | { X86::XORPSrr,    X86::XORPDrr,   X86::PXORrr    }, | 
|  | { X86::UNPCKLPDrm, X86::UNPCKLPDrm, X86::PUNPCKLQDQrm }, | 
|  | { X86::MOVLHPSrr,  X86::UNPCKLPDrr, X86::PUNPCKLQDQrr }, | 
|  | { X86::UNPCKHPDrm, X86::UNPCKHPDrm, X86::PUNPCKHQDQrm }, | 
|  | { X86::UNPCKHPDrr, X86::UNPCKHPDrr, X86::PUNPCKHQDQrr }, | 
|  | { X86::UNPCKLPSrm, X86::UNPCKLPSrm, X86::PUNPCKLDQrm }, | 
|  | { X86::UNPCKLPSrr, X86::UNPCKLPSrr, X86::PUNPCKLDQrr }, | 
|  | { X86::UNPCKHPSrm, X86::UNPCKHPSrm, X86::PUNPCKHDQrm }, | 
|  | { X86::UNPCKHPSrr, X86::UNPCKHPSrr, X86::PUNPCKHDQrr }, | 
|  | { X86::EXTRACTPSmr, X86::EXTRACTPSmr, X86::PEXTRDmr }, | 
|  | { X86::EXTRACTPSrr, X86::EXTRACTPSrr, X86::PEXTRDrr }, | 
|  | // AVX 128-bit support | 
|  | { X86::VMOVAPSmr,  X86::VMOVAPDmr,  X86::VMOVDQAmr  }, | 
|  | { X86::VMOVAPSrm,  X86::VMOVAPDrm,  X86::VMOVDQArm  }, | 
|  | { X86::VMOVAPSrr,  X86::VMOVAPDrr,  X86::VMOVDQArr  }, | 
|  | { X86::VMOVUPSmr,  X86::VMOVUPDmr,  X86::VMOVDQUmr  }, | 
|  | { X86::VMOVUPSrm,  X86::VMOVUPDrm,  X86::VMOVDQUrm  }, | 
|  | { X86::VMOVLPSmr,  X86::VMOVLPDmr,  X86::VMOVPQI2QImr }, | 
|  | { X86::VMOVSDmr,   X86::VMOVSDmr,   X86::VMOVPQI2QImr }, | 
|  | { X86::VMOVSSmr,   X86::VMOVSSmr,   X86::VMOVPDI2DImr }, | 
|  | { X86::VMOVSDrm,   X86::VMOVSDrm,   X86::VMOVQI2PQIrm }, | 
|  | { X86::VMOVSSrm,   X86::VMOVSSrm,   X86::VMOVDI2PDIrm }, | 
|  | { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr }, | 
|  | { X86::VANDNPSrm,  X86::VANDNPDrm,  X86::VPANDNrm   }, | 
|  | { X86::VANDNPSrr,  X86::VANDNPDrr,  X86::VPANDNrr   }, | 
|  | { X86::VANDPSrm,   X86::VANDPDrm,   X86::VPANDrm    }, | 
|  | { X86::VANDPSrr,   X86::VANDPDrr,   X86::VPANDrr    }, | 
|  | { X86::VORPSrm,    X86::VORPDrm,    X86::VPORrm     }, | 
|  | { X86::VORPSrr,    X86::VORPDrr,    X86::VPORrr     }, | 
|  | { X86::VXORPSrm,   X86::VXORPDrm,   X86::VPXORrm    }, | 
|  | { X86::VXORPSrr,   X86::VXORPDrr,   X86::VPXORrr    }, | 
|  | { X86::VUNPCKLPDrm, X86::VUNPCKLPDrm, X86::VPUNPCKLQDQrm }, | 
|  | { X86::VMOVLHPSrr,  X86::VUNPCKLPDrr, X86::VPUNPCKLQDQrr }, | 
|  | { X86::VUNPCKHPDrm, X86::VUNPCKHPDrm, X86::VPUNPCKHQDQrm }, | 
|  | { X86::VUNPCKHPDrr, X86::VUNPCKHPDrr, X86::VPUNPCKHQDQrr }, | 
|  | { X86::VUNPCKLPSrm, X86::VUNPCKLPSrm, X86::VPUNPCKLDQrm }, | 
|  | { X86::VUNPCKLPSrr, X86::VUNPCKLPSrr, X86::VPUNPCKLDQrr }, | 
|  | { X86::VUNPCKHPSrm, X86::VUNPCKHPSrm, X86::VPUNPCKHDQrm }, | 
|  | { X86::VUNPCKHPSrr, X86::VUNPCKHPSrr, X86::VPUNPCKHDQrr }, | 
|  | { X86::VEXTRACTPSmr, X86::VEXTRACTPSmr, X86::VPEXTRDmr }, | 
|  | { X86::VEXTRACTPSrr, X86::VEXTRACTPSrr, X86::VPEXTRDrr }, | 
|  | // AVX 256-bit support | 
|  | { X86::VMOVAPSYmr,   X86::VMOVAPDYmr,   X86::VMOVDQAYmr  }, | 
|  | { X86::VMOVAPSYrm,   X86::VMOVAPDYrm,   X86::VMOVDQAYrm  }, | 
|  | { X86::VMOVAPSYrr,   X86::VMOVAPDYrr,   X86::VMOVDQAYrr  }, | 
|  | { X86::VMOVUPSYmr,   X86::VMOVUPDYmr,   X86::VMOVDQUYmr  }, | 
|  | { X86::VMOVUPSYrm,   X86::VMOVUPDYrm,   X86::VMOVDQUYrm  }, | 
|  | { X86::VMOVNTPSYmr,  X86::VMOVNTPDYmr,  X86::VMOVNTDQYmr }, | 
|  | { X86::VPERMPSYrm,   X86::VPERMPSYrm,   X86::VPERMDYrm }, | 
|  | { X86::VPERMPSYrr,   X86::VPERMPSYrr,   X86::VPERMDYrr }, | 
|  | { X86::VPERMPDYmi,   X86::VPERMPDYmi,   X86::VPERMQYmi }, | 
|  | { X86::VPERMPDYri,   X86::VPERMPDYri,   X86::VPERMQYri }, | 
|  | // AVX512 support | 
|  | { X86::VMOVLPSZ128mr,  X86::VMOVLPDZ128mr,  X86::VMOVPQI2QIZmr  }, | 
|  | { X86::VMOVNTPSZ128mr, X86::VMOVNTPDZ128mr, X86::VMOVNTDQZ128mr }, | 
|  | { X86::VMOVNTPSZ256mr, X86::VMOVNTPDZ256mr, X86::VMOVNTDQZ256mr }, | 
|  | { X86::VMOVNTPSZmr,    X86::VMOVNTPDZmr,    X86::VMOVNTDQZmr    }, | 
|  | { X86::VMOVSDZmr,      X86::VMOVSDZmr,      X86::VMOVPQI2QIZmr  }, | 
|  | { X86::VMOVSSZmr,      X86::VMOVSSZmr,      X86::VMOVPDI2DIZmr  }, | 
|  | { X86::VMOVSDZrm,      X86::VMOVSDZrm,      X86::VMOVQI2PQIZrm  }, | 
|  | { X86::VMOVSSZrm,      X86::VMOVSSZrm,      X86::VMOVDI2PDIZrm  }, | 
|  | { X86::VBROADCASTSSZ128r, X86::VBROADCASTSSZ128r, X86::VPBROADCASTDZ128r }, | 
|  | { X86::VBROADCASTSSZ128m, X86::VBROADCASTSSZ128m, X86::VPBROADCASTDZ128m }, | 
|  | { X86::VBROADCASTSSZ256r, X86::VBROADCASTSSZ256r, X86::VPBROADCASTDZ256r }, | 
|  | { X86::VBROADCASTSSZ256m, X86::VBROADCASTSSZ256m, X86::VPBROADCASTDZ256m }, | 
|  | { X86::VBROADCASTSSZr,    X86::VBROADCASTSSZr,    X86::VPBROADCASTDZr }, | 
|  | { X86::VBROADCASTSSZm,    X86::VBROADCASTSSZm,    X86::VPBROADCASTDZm }, | 
|  | { X86::VBROADCASTSDZ256r, X86::VBROADCASTSDZ256r, X86::VPBROADCASTQZ256r }, | 
|  | { X86::VBROADCASTSDZ256m, X86::VBROADCASTSDZ256m, X86::VPBROADCASTQZ256m }, | 
|  | { X86::VBROADCASTSDZr,    X86::VBROADCASTSDZr,    X86::VPBROADCASTQZr }, | 
|  | { X86::VBROADCASTSDZm,    X86::VBROADCASTSDZm,    X86::VPBROADCASTQZm }, | 
|  | { X86::VINSERTF32x4Zrr,   X86::VINSERTF32x4Zrr,   X86::VINSERTI32x4Zrr }, | 
|  | { X86::VINSERTF32x4Zrm,   X86::VINSERTF32x4Zrm,   X86::VINSERTI32x4Zrm }, | 
|  | { X86::VINSERTF32x8Zrr,   X86::VINSERTF32x8Zrr,   X86::VINSERTI32x8Zrr }, | 
|  | { X86::VINSERTF32x8Zrm,   X86::VINSERTF32x8Zrm,   X86::VINSERTI32x8Zrm }, | 
|  | { X86::VINSERTF64x2Zrr,   X86::VINSERTF64x2Zrr,   X86::VINSERTI64x2Zrr }, | 
|  | { X86::VINSERTF64x2Zrm,   X86::VINSERTF64x2Zrm,   X86::VINSERTI64x2Zrm }, | 
|  | { X86::VINSERTF64x4Zrr,   X86::VINSERTF64x4Zrr,   X86::VINSERTI64x4Zrr }, | 
|  | { X86::VINSERTF64x4Zrm,   X86::VINSERTF64x4Zrm,   X86::VINSERTI64x4Zrm }, | 
|  | { X86::VINSERTF32x4Z256rr,X86::VINSERTF32x4Z256rr,X86::VINSERTI32x4Z256rr }, | 
|  | { X86::VINSERTF32x4Z256rm,X86::VINSERTF32x4Z256rm,X86::VINSERTI32x4Z256rm }, | 
|  | { X86::VINSERTF64x2Z256rr,X86::VINSERTF64x2Z256rr,X86::VINSERTI64x2Z256rr }, | 
|  | { X86::VINSERTF64x2Z256rm,X86::VINSERTF64x2Z256rm,X86::VINSERTI64x2Z256rm }, | 
|  | { X86::VEXTRACTF32x4Zrr,   X86::VEXTRACTF32x4Zrr,   X86::VEXTRACTI32x4Zrr }, | 
|  | { X86::VEXTRACTF32x4Zmr,   X86::VEXTRACTF32x4Zmr,   X86::VEXTRACTI32x4Zmr }, | 
|  | { X86::VEXTRACTF32x8Zrr,   X86::VEXTRACTF32x8Zrr,   X86::VEXTRACTI32x8Zrr }, | 
|  | { X86::VEXTRACTF32x8Zmr,   X86::VEXTRACTF32x8Zmr,   X86::VEXTRACTI32x8Zmr }, | 
|  | { X86::VEXTRACTF64x2Zrr,   X86::VEXTRACTF64x2Zrr,   X86::VEXTRACTI64x2Zrr }, | 
|  | { X86::VEXTRACTF64x2Zmr,   X86::VEXTRACTF64x2Zmr,   X86::VEXTRACTI64x2Zmr }, | 
|  | { X86::VEXTRACTF64x4Zrr,   X86::VEXTRACTF64x4Zrr,   X86::VEXTRACTI64x4Zrr }, | 
|  | { X86::VEXTRACTF64x4Zmr,   X86::VEXTRACTF64x4Zmr,   X86::VEXTRACTI64x4Zmr }, | 
|  | { X86::VEXTRACTF32x4Z256rr,X86::VEXTRACTF32x4Z256rr,X86::VEXTRACTI32x4Z256rr }, | 
|  | { X86::VEXTRACTF32x4Z256mr,X86::VEXTRACTF32x4Z256mr,X86::VEXTRACTI32x4Z256mr }, | 
|  | { X86::VEXTRACTF64x2Z256rr,X86::VEXTRACTF64x2Z256rr,X86::VEXTRACTI64x2Z256rr }, | 
|  | { X86::VEXTRACTF64x2Z256mr,X86::VEXTRACTF64x2Z256mr,X86::VEXTRACTI64x2Z256mr }, | 
|  | { X86::VPERMILPSmi,        X86::VPERMILPSmi,        X86::VPSHUFDmi }, | 
|  | { X86::VPERMILPSri,        X86::VPERMILPSri,        X86::VPSHUFDri }, | 
|  | { X86::VPERMILPSZ128mi,    X86::VPERMILPSZ128mi,    X86::VPSHUFDZ128mi }, | 
|  | { X86::VPERMILPSZ128ri,    X86::VPERMILPSZ128ri,    X86::VPSHUFDZ128ri }, | 
|  | { X86::VPERMILPSZ256mi,    X86::VPERMILPSZ256mi,    X86::VPSHUFDZ256mi }, | 
|  | { X86::VPERMILPSZ256ri,    X86::VPERMILPSZ256ri,    X86::VPSHUFDZ256ri }, | 
|  | { X86::VPERMILPSZmi,       X86::VPERMILPSZmi,       X86::VPSHUFDZmi }, | 
|  | { X86::VPERMILPSZri,       X86::VPERMILPSZri,       X86::VPSHUFDZri }, | 
|  | { X86::VPERMPSZ256rm,      X86::VPERMPSZ256rm,      X86::VPERMDZ256rm }, | 
|  | { X86::VPERMPSZ256rr,      X86::VPERMPSZ256rr,      X86::VPERMDZ256rr }, | 
|  | { X86::VPERMPDZ256mi,      X86::VPERMPDZ256mi,      X86::VPERMQZ256mi }, | 
|  | { X86::VPERMPDZ256ri,      X86::VPERMPDZ256ri,      X86::VPERMQZ256ri }, | 
|  | { X86::VPERMPDZ256rm,      X86::VPERMPDZ256rm,      X86::VPERMQZ256rm }, | 
|  | { X86::VPERMPDZ256rr,      X86::VPERMPDZ256rr,      X86::VPERMQZ256rr }, | 
|  | { X86::VPERMPSZrm,         X86::VPERMPSZrm,         X86::VPERMDZrm }, | 
|  | { X86::VPERMPSZrr,         X86::VPERMPSZrr,         X86::VPERMDZrr }, | 
|  | { X86::VPERMPDZmi,         X86::VPERMPDZmi,         X86::VPERMQZmi }, | 
|  | { X86::VPERMPDZri,         X86::VPERMPDZri,         X86::VPERMQZri }, | 
|  | { X86::VPERMPDZrm,         X86::VPERMPDZrm,         X86::VPERMQZrm }, | 
|  | { X86::VPERMPDZrr,         X86::VPERMPDZrr,         X86::VPERMQZrr }, | 
|  | { X86::VUNPCKLPDZ256rm,    X86::VUNPCKLPDZ256rm,    X86::VPUNPCKLQDQZ256rm }, | 
|  | { X86::VUNPCKLPDZ256rr,    X86::VUNPCKLPDZ256rr,    X86::VPUNPCKLQDQZ256rr }, | 
|  | { X86::VUNPCKHPDZ256rm,    X86::VUNPCKHPDZ256rm,    X86::VPUNPCKHQDQZ256rm }, | 
|  | { X86::VUNPCKHPDZ256rr,    X86::VUNPCKHPDZ256rr,    X86::VPUNPCKHQDQZ256rr }, | 
|  | { X86::VUNPCKLPSZ256rm,    X86::VUNPCKLPSZ256rm,    X86::VPUNPCKLDQZ256rm }, | 
|  | { X86::VUNPCKLPSZ256rr,    X86::VUNPCKLPSZ256rr,    X86::VPUNPCKLDQZ256rr }, | 
|  | { X86::VUNPCKHPSZ256rm,    X86::VUNPCKHPSZ256rm,    X86::VPUNPCKHDQZ256rm }, | 
|  | { X86::VUNPCKHPSZ256rr,    X86::VUNPCKHPSZ256rr,    X86::VPUNPCKHDQZ256rr }, | 
|  | { X86::VUNPCKLPDZ128rm,    X86::VUNPCKLPDZ128rm,    X86::VPUNPCKLQDQZ128rm }, | 
|  | { X86::VMOVLHPSZrr,        X86::VUNPCKLPDZ128rr,    X86::VPUNPCKLQDQZ128rr }, | 
|  | { X86::VUNPCKHPDZ128rm,    X86::VUNPCKHPDZ128rm,    X86::VPUNPCKHQDQZ128rm }, | 
|  | { X86::VUNPCKHPDZ128rr,    X86::VUNPCKHPDZ128rr,    X86::VPUNPCKHQDQZ128rr }, | 
|  | { X86::VUNPCKLPSZ128rm,    X86::VUNPCKLPSZ128rm,    X86::VPUNPCKLDQZ128rm }, | 
|  | { X86::VUNPCKLPSZ128rr,    X86::VUNPCKLPSZ128rr,    X86::VPUNPCKLDQZ128rr }, | 
|  | { X86::VUNPCKHPSZ128rm,    X86::VUNPCKHPSZ128rm,    X86::VPUNPCKHDQZ128rm }, | 
|  | { X86::VUNPCKHPSZ128rr,    X86::VUNPCKHPSZ128rr,    X86::VPUNPCKHDQZ128rr }, | 
|  | { X86::VUNPCKLPDZrm,       X86::VUNPCKLPDZrm,       X86::VPUNPCKLQDQZrm }, | 
|  | { X86::VUNPCKLPDZrr,       X86::VUNPCKLPDZrr,       X86::VPUNPCKLQDQZrr }, | 
|  | { X86::VUNPCKHPDZrm,       X86::VUNPCKHPDZrm,       X86::VPUNPCKHQDQZrm }, | 
|  | { X86::VUNPCKHPDZrr,       X86::VUNPCKHPDZrr,       X86::VPUNPCKHQDQZrr }, | 
|  | { X86::VUNPCKLPSZrm,       X86::VUNPCKLPSZrm,       X86::VPUNPCKLDQZrm }, | 
|  | { X86::VUNPCKLPSZrr,       X86::VUNPCKLPSZrr,       X86::VPUNPCKLDQZrr }, | 
|  | { X86::VUNPCKHPSZrm,       X86::VUNPCKHPSZrm,       X86::VPUNPCKHDQZrm }, | 
|  | { X86::VUNPCKHPSZrr,       X86::VUNPCKHPSZrr,       X86::VPUNPCKHDQZrr }, | 
|  | { X86::VEXTRACTPSZmr,      X86::VEXTRACTPSZmr,      X86::VPEXTRDZmr }, | 
|  | { X86::VEXTRACTPSZrr,      X86::VEXTRACTPSZrr,      X86::VPEXTRDZrr }, | 
|  | }; | 
|  |  | 
|  | static const uint16_t ReplaceableInstrsAVX2[][3] = { | 
|  | //PackedSingle       PackedDouble       PackedInt | 
|  | { X86::VANDNPSYrm,   X86::VANDNPDYrm,   X86::VPANDNYrm   }, | 
|  | { X86::VANDNPSYrr,   X86::VANDNPDYrr,   X86::VPANDNYrr   }, | 
|  | { X86::VANDPSYrm,    X86::VANDPDYrm,    X86::VPANDYrm    }, | 
|  | { X86::VANDPSYrr,    X86::VANDPDYrr,    X86::VPANDYrr    }, | 
|  | { X86::VORPSYrm,     X86::VORPDYrm,     X86::VPORYrm     }, | 
|  | { X86::VORPSYrr,     X86::VORPDYrr,     X86::VPORYrr     }, | 
|  | { X86::VXORPSYrm,    X86::VXORPDYrm,    X86::VPXORYrm    }, | 
|  | { X86::VXORPSYrr,    X86::VXORPDYrr,    X86::VPXORYrr    }, | 
|  | { X86::VPERM2F128rm,   X86::VPERM2F128rm,   X86::VPERM2I128rm }, | 
|  | { X86::VPERM2F128rr,   X86::VPERM2F128rr,   X86::VPERM2I128rr }, | 
|  | { X86::VBROADCASTSSrm, X86::VBROADCASTSSrm, X86::VPBROADCASTDrm}, | 
|  | { X86::VBROADCASTSSrr, X86::VBROADCASTSSrr, X86::VPBROADCASTDrr}, | 
|  | { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrr, X86::VPBROADCASTDYrr}, | 
|  | { X86::VBROADCASTSSYrm, X86::VBROADCASTSSYrm, X86::VPBROADCASTDYrm}, | 
|  | { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrr, X86::VPBROADCASTQYrr}, | 
|  | { X86::VBROADCASTSDYrm, X86::VBROADCASTSDYrm, X86::VPBROADCASTQYrm}, | 
|  | { X86::VBROADCASTF128,  X86::VBROADCASTF128,  X86::VBROADCASTI128 }, | 
|  | { X86::VBLENDPSYrri,    X86::VBLENDPSYrri,    X86::VPBLENDDYrri }, | 
|  | { X86::VBLENDPSYrmi,    X86::VBLENDPSYrmi,    X86::VPBLENDDYrmi }, | 
|  | { X86::VPERMILPSYmi,    X86::VPERMILPSYmi,    X86::VPSHUFDYmi }, | 
|  | { X86::VPERMILPSYri,    X86::VPERMILPSYri,    X86::VPSHUFDYri }, | 
|  | { X86::VUNPCKLPDYrm,    X86::VUNPCKLPDYrm,    X86::VPUNPCKLQDQYrm }, | 
|  | { X86::VUNPCKLPDYrr,    X86::VUNPCKLPDYrr,    X86::VPUNPCKLQDQYrr }, | 
|  | { X86::VUNPCKHPDYrm,    X86::VUNPCKHPDYrm,    X86::VPUNPCKHQDQYrm }, | 
|  | { X86::VUNPCKHPDYrr,    X86::VUNPCKHPDYrr,    X86::VPUNPCKHQDQYrr }, | 
|  | { X86::VUNPCKLPSYrm,    X86::VUNPCKLPSYrm,    X86::VPUNPCKLDQYrm }, | 
|  | { X86::VUNPCKLPSYrr,    X86::VUNPCKLPSYrr,    X86::VPUNPCKLDQYrr }, | 
|  | { X86::VUNPCKHPSYrm,    X86::VUNPCKHPSYrm,    X86::VPUNPCKHDQYrm }, | 
|  | { X86::VUNPCKHPSYrr,    X86::VUNPCKHPSYrr,    X86::VPUNPCKHDQYrr }, | 
|  | }; | 
|  |  | 
|  | static const uint16_t ReplaceableInstrsAVX2InsertExtract[][3] = { | 
|  | //PackedSingle       PackedDouble       PackedInt | 
|  | { X86::VEXTRACTF128mr, X86::VEXTRACTF128mr, X86::VEXTRACTI128mr }, | 
|  | { X86::VEXTRACTF128rr, X86::VEXTRACTF128rr, X86::VEXTRACTI128rr }, | 
|  | { X86::VINSERTF128rm,  X86::VINSERTF128rm,  X86::VINSERTI128rm }, | 
|  | { X86::VINSERTF128rr,  X86::VINSERTF128rr,  X86::VINSERTI128rr }, | 
|  | }; | 
|  |  | 
|  | static const uint16_t ReplaceableInstrsAVX512[][4] = { | 
|  | // Two integer columns for 64-bit and 32-bit elements. | 
|  | //PackedSingle        PackedDouble        PackedInt             PackedInt | 
|  | { X86::VMOVAPSZ128mr, X86::VMOVAPDZ128mr, X86::VMOVDQA64Z128mr, X86::VMOVDQA32Z128mr  }, | 
|  | { X86::VMOVAPSZ128rm, X86::VMOVAPDZ128rm, X86::VMOVDQA64Z128rm, X86::VMOVDQA32Z128rm  }, | 
|  | { X86::VMOVAPSZ128rr, X86::VMOVAPDZ128rr, X86::VMOVDQA64Z128rr, X86::VMOVDQA32Z128rr  }, | 
|  | { X86::VMOVUPSZ128mr, X86::VMOVUPDZ128mr, X86::VMOVDQU64Z128mr, X86::VMOVDQU32Z128mr  }, | 
|  | { X86::VMOVUPSZ128rm, X86::VMOVUPDZ128rm, X86::VMOVDQU64Z128rm, X86::VMOVDQU32Z128rm  }, | 
|  | { X86::VMOVAPSZ256mr, X86::VMOVAPDZ256mr, X86::VMOVDQA64Z256mr, X86::VMOVDQA32Z256mr  }, | 
|  | { X86::VMOVAPSZ256rm, X86::VMOVAPDZ256rm, X86::VMOVDQA64Z256rm, X86::VMOVDQA32Z256rm  }, | 
|  | { X86::VMOVAPSZ256rr, X86::VMOVAPDZ256rr, X86::VMOVDQA64Z256rr, X86::VMOVDQA32Z256rr  }, | 
|  | { X86::VMOVUPSZ256mr, X86::VMOVUPDZ256mr, X86::VMOVDQU64Z256mr, X86::VMOVDQU32Z256mr  }, | 
|  | { X86::VMOVUPSZ256rm, X86::VMOVUPDZ256rm, X86::VMOVDQU64Z256rm, X86::VMOVDQU32Z256rm  }, | 
|  | { X86::VMOVAPSZmr,    X86::VMOVAPDZmr,    X86::VMOVDQA64Zmr,    X86::VMOVDQA32Zmr     }, | 
|  | { X86::VMOVAPSZrm,    X86::VMOVAPDZrm,    X86::VMOVDQA64Zrm,    X86::VMOVDQA32Zrm     }, | 
|  | { X86::VMOVAPSZrr,    X86::VMOVAPDZrr,    X86::VMOVDQA64Zrr,    X86::VMOVDQA32Zrr     }, | 
|  | { X86::VMOVUPSZmr,    X86::VMOVUPDZmr,    X86::VMOVDQU64Zmr,    X86::VMOVDQU32Zmr     }, | 
|  | { X86::VMOVUPSZrm,    X86::VMOVUPDZrm,    X86::VMOVDQU64Zrm,    X86::VMOVDQU32Zrm     }, | 
|  | }; | 
|  |  | 
|  | static const uint16_t ReplaceableInstrsAVX512DQ[][4] = { | 
|  | // Two integer columns for 64-bit and 32-bit elements. | 
|  | //PackedSingle        PackedDouble        PackedInt           PackedInt | 
|  | { X86::VANDNPSZ128rm, X86::VANDNPDZ128rm, X86::VPANDNQZ128rm, X86::VPANDNDZ128rm }, | 
|  | { X86::VANDNPSZ128rr, X86::VANDNPDZ128rr, X86::VPANDNQZ128rr, X86::VPANDNDZ128rr }, | 
|  | { X86::VANDPSZ128rm,  X86::VANDPDZ128rm,  X86::VPANDQZ128rm,  X86::VPANDDZ128rm  }, | 
|  | { X86::VANDPSZ128rr,  X86::VANDPDZ128rr,  X86::VPANDQZ128rr,  X86::VPANDDZ128rr  }, | 
|  | { X86::VORPSZ128rm,   X86::VORPDZ128rm,   X86::VPORQZ128rm,   X86::VPORDZ128rm   }, | 
|  | { X86::VORPSZ128rr,   X86::VORPDZ128rr,   X86::VPORQZ128rr,   X86::VPORDZ128rr   }, | 
|  | { X86::VXORPSZ128rm,  X86::VXORPDZ128rm,  X86::VPXORQZ128rm,  X86::VPXORDZ128rm  }, | 
|  | { X86::VXORPSZ128rr,  X86::VXORPDZ128rr,  X86::VPXORQZ128rr,  X86::VPXORDZ128rr  }, | 
|  | { X86::VANDNPSZ256rm, X86::VANDNPDZ256rm, X86::VPANDNQZ256rm, X86::VPANDNDZ256rm }, | 
|  | { X86::VANDNPSZ256rr, X86::VANDNPDZ256rr, X86::VPANDNQZ256rr, X86::VPANDNDZ256rr }, | 
|  | { X86::VANDPSZ256rm,  X86::VANDPDZ256rm,  X86::VPANDQZ256rm,  X86::VPANDDZ256rm  }, | 
|  | { X86::VANDPSZ256rr,  X86::VANDPDZ256rr,  X86::VPANDQZ256rr,  X86::VPANDDZ256rr  }, | 
|  | { X86::VORPSZ256rm,   X86::VORPDZ256rm,   X86::VPORQZ256rm,   X86::VPORDZ256rm   }, | 
|  | { X86::VORPSZ256rr,   X86::VORPDZ256rr,   X86::VPORQZ256rr,   X86::VPORDZ256rr   }, | 
|  | { X86::VXORPSZ256rm,  X86::VXORPDZ256rm,  X86::VPXORQZ256rm,  X86::VPXORDZ256rm  }, | 
|  | { X86::VXORPSZ256rr,  X86::VXORPDZ256rr,  X86::VPXORQZ256rr,  X86::VPXORDZ256rr  }, | 
|  | { X86::VANDNPSZrm,    X86::VANDNPDZrm,    X86::VPANDNQZrm,    X86::VPANDNDZrm    }, | 
|  | { X86::VANDNPSZrr,    X86::VANDNPDZrr,    X86::VPANDNQZrr,    X86::VPANDNDZrr    }, | 
|  | { X86::VANDPSZrm,     X86::VANDPDZrm,     X86::VPANDQZrm,     X86::VPANDDZrm     }, | 
|  | { X86::VANDPSZrr,     X86::VANDPDZrr,     X86::VPANDQZrr,     X86::VPANDDZrr     }, | 
|  | { X86::VORPSZrm,      X86::VORPDZrm,      X86::VPORQZrm,      X86::VPORDZrm      }, | 
|  | { X86::VORPSZrr,      X86::VORPDZrr,      X86::VPORQZrr,      X86::VPORDZrr      }, | 
|  | { X86::VXORPSZrm,     X86::VXORPDZrm,     X86::VPXORQZrm,     X86::VPXORDZrm     }, | 
|  | { X86::VXORPSZrr,     X86::VXORPDZrr,     X86::VPXORQZrr,     X86::VPXORDZrr     }, | 
|  | }; | 
|  |  | 
|  | static const uint16_t ReplaceableInstrsAVX512DQMasked[][4] = { | 
|  | // Two integer columns for 64-bit and 32-bit elements. | 
|  | //PackedSingle          PackedDouble | 
|  | //PackedInt             PackedInt | 
|  | { X86::VANDNPSZ128rmk,  X86::VANDNPDZ128rmk, | 
|  | X86::VPANDNQZ128rmk,  X86::VPANDNDZ128rmk  }, | 
|  | { X86::VANDNPSZ128rmkz, X86::VANDNPDZ128rmkz, | 
|  | X86::VPANDNQZ128rmkz, X86::VPANDNDZ128rmkz }, | 
|  | { X86::VANDNPSZ128rrk,  X86::VANDNPDZ128rrk, | 
|  | X86::VPANDNQZ128rrk,  X86::VPANDNDZ128rrk  }, | 
|  | { X86::VANDNPSZ128rrkz, X86::VANDNPDZ128rrkz, | 
|  | X86::VPANDNQZ128rrkz, X86::VPANDNDZ128rrkz }, | 
|  | { X86::VANDPSZ128rmk,   X86::VANDPDZ128rmk, | 
|  | X86::VPANDQZ128rmk,   X86::VPANDDZ128rmk   }, | 
|  | { X86::VANDPSZ128rmkz,  X86::VANDPDZ128rmkz, | 
|  | X86::VPANDQZ128rmkz,  X86::VPANDDZ128rmkz  }, | 
|  | { X86::VANDPSZ128rrk,   X86::VANDPDZ128rrk, | 
|  | X86::VPANDQZ128rrk,   X86::VPANDDZ128rrk   }, | 
|  | { X86::VANDPSZ128rrkz,  X86::VANDPDZ128rrkz, | 
|  | X86::VPANDQZ128rrkz,  X86::VPANDDZ128rrkz  }, | 
|  | { X86::VORPSZ128rmk,    X86::VORPDZ128rmk, | 
|  | X86::VPORQZ128rmk,    X86::VPORDZ128rmk    }, | 
|  | { X86::VORPSZ128rmkz,   X86::VORPDZ128rmkz, | 
|  | X86::VPORQZ128rmkz,   X86::VPORDZ128rmkz   }, | 
|  | { X86::VORPSZ128rrk,    X86::VORPDZ128rrk, | 
|  | X86::VPORQZ128rrk,    X86::VPORDZ128rrk    }, | 
|  | { X86::VORPSZ128rrkz,   X86::VORPDZ128rrkz, | 
|  | X86::VPORQZ128rrkz,   X86::VPORDZ128rrkz   }, | 
|  | { X86::VXORPSZ128rmk,   X86::VXORPDZ128rmk, | 
|  | X86::VPXORQZ128rmk,   X86::VPXORDZ128rmk   }, | 
|  | { X86::VXORPSZ128rmkz,  X86::VXORPDZ128rmkz, | 
|  | X86::VPXORQZ128rmkz,  X86::VPXORDZ128rmkz  }, | 
|  | { X86::VXORPSZ128rrk,   X86::VXORPDZ128rrk, | 
|  | X86::VPXORQZ128rrk,   X86::VPXORDZ128rrk   }, | 
|  | { X86::VXORPSZ128rrkz,  X86::VXORPDZ128rrkz, | 
|  | X86::VPXORQZ128rrkz,  X86::VPXORDZ128rrkz  }, | 
|  | { X86::VANDNPSZ256rmk,  X86::VANDNPDZ256rmk, | 
|  | X86::VPANDNQZ256rmk,  X86::VPANDNDZ256rmk  }, | 
|  | { X86::VANDNPSZ256rmkz, X86::VANDNPDZ256rmkz, | 
|  | X86::VPANDNQZ256rmkz, X86::VPANDNDZ256rmkz }, | 
|  | { X86::VANDNPSZ256rrk,  X86::VANDNPDZ256rrk, | 
|  | X86::VPANDNQZ256rrk,  X86::VPANDNDZ256rrk  }, | 
|  | { X86::VANDNPSZ256rrkz, X86::VANDNPDZ256rrkz, | 
|  | X86::VPANDNQZ256rrkz, X86::VPANDNDZ256rrkz }, | 
|  | { X86::VANDPSZ256rmk,   X86::VANDPDZ256rmk, | 
|  | X86::VPANDQZ256rmk,   X86::VPANDDZ256rmk   }, | 
|  | { X86::VANDPSZ256rmkz,  X86::VANDPDZ256rmkz, | 
|  | X86::VPANDQZ256rmkz,  X86::VPANDDZ256rmkz  }, | 
|  | { X86::VANDPSZ256rrk,   X86::VANDPDZ256rrk, | 
|  | X86::VPANDQZ256rrk,   X86::VPANDDZ256rrk   }, | 
|  | { X86::VANDPSZ256rrkz,  X86::VANDPDZ256rrkz, | 
|  | X86::VPANDQZ256rrkz,  X86::VPANDDZ256rrkz  }, | 
|  | { X86::VORPSZ256rmk,    X86::VORPDZ256rmk, | 
|  | X86::VPORQZ256rmk,    X86::VPORDZ256rmk    }, | 
|  | { X86::VORPSZ256rmkz,   X86::VORPDZ256rmkz, | 
|  | X86::VPORQZ256rmkz,   X86::VPORDZ256rmkz   }, | 
|  | { X86::VORPSZ256rrk,    X86::VORPDZ256rrk, | 
|  | X86::VPORQZ256rrk,    X86::VPORDZ256rrk    }, | 
|  | { X86::VORPSZ256rrkz,   X86::VORPDZ256rrkz, | 
|  | X86::VPORQZ256rrkz,   X86::VPORDZ256rrkz   }, | 
|  | { X86::VXORPSZ256rmk,   X86::VXORPDZ256rmk, | 
|  | X86::VPXORQZ256rmk,   X86::VPXORDZ256rmk   }, | 
|  | { X86::VXORPSZ256rmkz,  X86::VXORPDZ256rmkz, | 
|  | X86::VPXORQZ256rmkz,  X86::VPXORDZ256rmkz  }, | 
|  | { X86::VXORPSZ256rrk,   X86::VXORPDZ256rrk, | 
|  | X86::VPXORQZ256rrk,   X86::VPXORDZ256rrk   }, | 
|  | { X86::VXORPSZ256rrkz,  X86::VXORPDZ256rrkz, | 
|  | X86::VPXORQZ256rrkz,  X86::VPXORDZ256rrkz  }, | 
|  | { X86::VANDNPSZrmk,     X86::VANDNPDZrmk, | 
|  | X86::VPANDNQZrmk,     X86::VPANDNDZrmk     }, | 
|  | { X86::VANDNPSZrmkz,    X86::VANDNPDZrmkz, | 
|  | X86::VPANDNQZrmkz,    X86::VPANDNDZrmkz    }, | 
|  | { X86::VANDNPSZrrk,     X86::VANDNPDZrrk, | 
|  | X86::VPANDNQZrrk,     X86::VPANDNDZrrk     }, | 
|  | { X86::VANDNPSZrrkz,    X86::VANDNPDZrrkz, | 
|  | X86::VPANDNQZrrkz,    X86::VPANDNDZrrkz    }, | 
|  | { X86::VANDPSZrmk,      X86::VANDPDZrmk, | 
|  | X86::VPANDQZrmk,      X86::VPANDDZrmk      }, | 
|  | { X86::VANDPSZrmkz,     X86::VANDPDZrmkz, | 
|  | X86::VPANDQZrmkz,     X86::VPANDDZrmkz     }, | 
|  | { X86::VANDPSZrrk,      X86::VANDPDZrrk, | 
|  | X86::VPANDQZrrk,      X86::VPANDDZrrk      }, | 
|  | { X86::VANDPSZrrkz,     X86::VANDPDZrrkz, | 
|  | X86::VPANDQZrrkz,     X86::VPANDDZrrkz     }, | 
|  | { X86::VORPSZrmk,       X86::VORPDZrmk, | 
|  | X86::VPORQZrmk,       X86::VPORDZrmk       }, | 
|  | { X86::VORPSZrmkz,      X86::VORPDZrmkz, | 
|  | X86::VPORQZrmkz,      X86::VPORDZrmkz      }, | 
|  | { X86::VORPSZrrk,       X86::VORPDZrrk, | 
|  | X86::VPORQZrrk,       X86::VPORDZrrk       }, | 
|  | { X86::VORPSZrrkz,      X86::VORPDZrrkz, | 
|  | X86::VPORQZrrkz,      X86::VPORDZrrkz      }, | 
|  | { X86::VXORPSZrmk,      X86::VXORPDZrmk, | 
|  | X86::VPXORQZrmk,      X86::VPXORDZrmk      }, | 
|  | { X86::VXORPSZrmkz,     X86::VXORPDZrmkz, | 
|  | X86::VPXORQZrmkz,     X86::VPXORDZrmkz     }, | 
|  | { X86::VXORPSZrrk,      X86::VXORPDZrrk, | 
|  | X86::VPXORQZrrk,      X86::VPXORDZrrk      }, | 
|  | { X86::VXORPSZrrkz,     X86::VXORPDZrrkz, | 
|  | X86::VPXORQZrrkz,     X86::VPXORDZrrkz     }, | 
|  | // Broadcast loads can be handled the same as masked operations to avoid | 
|  | // changing element size. | 
|  | { X86::VANDNPSZ128rmb,  X86::VANDNPDZ128rmb, | 
|  | X86::VPANDNQZ128rmb,  X86::VPANDNDZ128rmb  }, | 
|  | { X86::VANDPSZ128rmb,   X86::VANDPDZ128rmb, | 
|  | X86::VPANDQZ128rmb,   X86::VPANDDZ128rmb   }, | 
|  | { X86::VORPSZ128rmb,    X86::VORPDZ128rmb, | 
|  | X86::VPORQZ128rmb,    X86::VPORDZ128rmb    }, | 
|  | { X86::VXORPSZ128rmb,   X86::VXORPDZ128rmb, | 
|  | X86::VPXORQZ128rmb,   X86::VPXORDZ128rmb   }, | 
|  | { X86::VANDNPSZ256rmb,  X86::VANDNPDZ256rmb, | 
|  | X86::VPANDNQZ256rmb,  X86::VPANDNDZ256rmb  }, | 
|  | { X86::VANDPSZ256rmb,   X86::VANDPDZ256rmb, | 
|  | X86::VPANDQZ256rmb,   X86::VPANDDZ256rmb   }, | 
|  | { X86::VORPSZ256rmb,    X86::VORPDZ256rmb, | 
|  | X86::VPORQZ256rmb,    X86::VPORDZ256rmb    }, | 
|  | { X86::VXORPSZ256rmb,   X86::VXORPDZ256rmb, | 
|  | X86::VPXORQZ256rmb,   X86::VPXORDZ256rmb   }, | 
|  | { X86::VANDNPSZrmb,     X86::VANDNPDZrmb, | 
|  | X86::VPANDNQZrmb,     X86::VPANDNDZrmb     }, | 
|  | { X86::VANDPSZrmb,      X86::VANDPDZrmb, | 
|  | X86::VPANDQZrmb,      X86::VPANDDZrmb      }, | 
|  | { X86::VANDPSZrmb,      X86::VANDPDZrmb, | 
|  | X86::VPANDQZrmb,      X86::VPANDDZrmb      }, | 
|  | { X86::VORPSZrmb,       X86::VORPDZrmb, | 
|  | X86::VPORQZrmb,       X86::VPORDZrmb       }, | 
|  | { X86::VXORPSZrmb,      X86::VXORPDZrmb, | 
|  | X86::VPXORQZrmb,      X86::VPXORDZrmb      }, | 
|  | { X86::VANDNPSZ128rmbk, X86::VANDNPDZ128rmbk, | 
|  | X86::VPANDNQZ128rmbk, X86::VPANDNDZ128rmbk }, | 
|  | { X86::VANDPSZ128rmbk,  X86::VANDPDZ128rmbk, | 
|  | X86::VPANDQZ128rmbk,  X86::VPANDDZ128rmbk  }, | 
|  | { X86::VORPSZ128rmbk,   X86::VORPDZ128rmbk, | 
|  | X86::VPORQZ128rmbk,   X86::VPORDZ128rmbk   }, | 
|  | { X86::VXORPSZ128rmbk,  X86::VXORPDZ128rmbk, | 
|  | X86::VPXORQZ128rmbk,  X86::VPXORDZ128rmbk  }, | 
|  | { X86::VANDNPSZ256rmbk, X86::VANDNPDZ256rmbk, | 
|  | X86::VPANDNQZ256rmbk, X86::VPANDNDZ256rmbk }, | 
|  | { X86::VANDPSZ256rmbk,  X86::VANDPDZ256rmbk, | 
|  | X86::VPANDQZ256rmbk,  X86::VPANDDZ256rmbk  }, | 
|  | { X86::VORPSZ256rmbk,   X86::VORPDZ256rmbk, | 
|  | X86::VPORQZ256rmbk,   X86::VPORDZ256rmbk   }, | 
|  | { X86::VXORPSZ256rmbk,  X86::VXORPDZ256rmbk, | 
|  | X86::VPXORQZ256rmbk,  X86::VPXORDZ256rmbk  }, | 
|  | { X86::VANDNPSZrmbk,    X86::VANDNPDZrmbk, | 
|  | X86::VPANDNQZrmbk,    X86::VPANDNDZrmbk    }, | 
|  | { X86::VANDPSZrmbk,     X86::VANDPDZrmbk, | 
|  | X86::VPANDQZrmbk,     X86::VPANDDZrmbk     }, | 
|  | { X86::VANDPSZrmbk,     X86::VANDPDZrmbk, | 
|  | X86::VPANDQZrmbk,     X86::VPANDDZrmbk     }, | 
|  | { X86::VORPSZrmbk,      X86::VORPDZrmbk, | 
|  | X86::VPORQZrmbk,      X86::VPORDZrmbk      }, | 
|  | { X86::VXORPSZrmbk,     X86::VXORPDZrmbk, | 
|  | X86::VPXORQZrmbk,     X86::VPXORDZrmbk     }, | 
|  | { X86::VANDNPSZ128rmbkz,X86::VANDNPDZ128rmbkz, | 
|  | X86::VPANDNQZ128rmbkz,X86::VPANDNDZ128rmbkz}, | 
|  | { X86::VANDPSZ128rmbkz, X86::VANDPDZ128rmbkz, | 
|  | X86::VPANDQZ128rmbkz, X86::VPANDDZ128rmbkz }, | 
|  | { X86::VORPSZ128rmbkz,  X86::VORPDZ128rmbkz, | 
|  | X86::VPORQZ128rmbkz,  X86::VPORDZ128rmbkz  }, | 
|  | { X86::VXORPSZ128rmbkz, X86::VXORPDZ128rmbkz, | 
|  | X86::VPXORQZ128rmbkz, X86::VPXORDZ128rmbkz }, | 
|  | { X86::VANDNPSZ256rmbkz,X86::VANDNPDZ256rmbkz, | 
|  | X86::VPANDNQZ256rmbkz,X86::VPANDNDZ256rmbkz}, | 
|  | { X86::VANDPSZ256rmbkz, X86::VANDPDZ256rmbkz, | 
|  | X86::VPANDQZ256rmbkz, X86::VPANDDZ256rmbkz }, | 
|  | { X86::VORPSZ256rmbkz,  X86::VORPDZ256rmbkz, | 
|  | X86::VPORQZ256rmbkz,  X86::VPORDZ256rmbkz  }, | 
|  | { X86::VXORPSZ256rmbkz, X86::VXORPDZ256rmbkz, | 
|  | X86::VPXORQZ256rmbkz, X86::VPXORDZ256rmbkz }, | 
|  | { X86::VANDNPSZrmbkz,   X86::VANDNPDZrmbkz, | 
|  | X86::VPANDNQZrmbkz,   X86::VPANDNDZrmbkz   }, | 
|  | { X86::VANDPSZrmbkz,    X86::VANDPDZrmbkz, | 
|  | X86::VPANDQZrmbkz,    X86::VPANDDZrmbkz    }, | 
|  | { X86::VANDPSZrmbkz,    X86::VANDPDZrmbkz, | 
|  | X86::VPANDQZrmbkz,    X86::VPANDDZrmbkz    }, | 
|  | { X86::VORPSZrmbkz,     X86::VORPDZrmbkz, | 
|  | X86::VPORQZrmbkz,     X86::VPORDZrmbkz     }, | 
|  | { X86::VXORPSZrmbkz,    X86::VXORPDZrmbkz, | 
|  | X86::VPXORQZrmbkz,    X86::VPXORDZrmbkz    }, | 
|  | }; | 
|  |  | 
|  | // NOTE: These should only be used by the custom domain methods. | 
|  | static const uint16_t ReplaceableCustomInstrs[][3] = { | 
|  | //PackedSingle             PackedDouble             PackedInt | 
|  | { X86::BLENDPSrmi,         X86::BLENDPDrmi,         X86::PBLENDWrmi   }, | 
|  | { X86::BLENDPSrri,         X86::BLENDPDrri,         X86::PBLENDWrri   }, | 
|  | { X86::VBLENDPSrmi,        X86::VBLENDPDrmi,        X86::VPBLENDWrmi  }, | 
|  | { X86::VBLENDPSrri,        X86::VBLENDPDrri,        X86::VPBLENDWrri  }, | 
|  | { X86::VBLENDPSYrmi,       X86::VBLENDPDYrmi,       X86::VPBLENDWYrmi }, | 
|  | { X86::VBLENDPSYrri,       X86::VBLENDPDYrri,       X86::VPBLENDWYrri }, | 
|  | }; | 
|  | static const uint16_t ReplaceableCustomAVX2Instrs[][3] = { | 
|  | //PackedSingle             PackedDouble             PackedInt | 
|  | { X86::VBLENDPSrmi,        X86::VBLENDPDrmi,        X86::VPBLENDDrmi  }, | 
|  | { X86::VBLENDPSrri,        X86::VBLENDPDrri,        X86::VPBLENDDrri  }, | 
|  | { X86::VBLENDPSYrmi,       X86::VBLENDPDYrmi,       X86::VPBLENDDYrmi }, | 
|  | { X86::VBLENDPSYrri,       X86::VBLENDPDYrri,       X86::VPBLENDDYrri }, | 
|  | }; | 
|  |  | 
|  | // Special table for changing EVEX logic instructions to VEX. | 
|  | // TODO: Should we run EVEX->VEX earlier? | 
|  | static const uint16_t ReplaceableCustomAVX512LogicInstrs[][4] = { | 
|  | // Two integer columns for 64-bit and 32-bit elements. | 
|  | //PackedSingle     PackedDouble     PackedInt           PackedInt | 
|  | { X86::VANDNPSrm,  X86::VANDNPDrm,  X86::VPANDNQZ128rm, X86::VPANDNDZ128rm }, | 
|  | { X86::VANDNPSrr,  X86::VANDNPDrr,  X86::VPANDNQZ128rr, X86::VPANDNDZ128rr }, | 
|  | { X86::VANDPSrm,   X86::VANDPDrm,   X86::VPANDQZ128rm,  X86::VPANDDZ128rm  }, | 
|  | { X86::VANDPSrr,   X86::VANDPDrr,   X86::VPANDQZ128rr,  X86::VPANDDZ128rr  }, | 
|  | { X86::VORPSrm,    X86::VORPDrm,    X86::VPORQZ128rm,   X86::VPORDZ128rm   }, | 
|  | { X86::VORPSrr,    X86::VORPDrr,    X86::VPORQZ128rr,   X86::VPORDZ128rr   }, | 
|  | { X86::VXORPSrm,   X86::VXORPDrm,   X86::VPXORQZ128rm,  X86::VPXORDZ128rm  }, | 
|  | { X86::VXORPSrr,   X86::VXORPDrr,   X86::VPXORQZ128rr,  X86::VPXORDZ128rr  }, | 
|  | { X86::VANDNPSYrm, X86::VANDNPDYrm, X86::VPANDNQZ256rm, X86::VPANDNDZ256rm }, | 
|  | { X86::VANDNPSYrr, X86::VANDNPDYrr, X86::VPANDNQZ256rr, X86::VPANDNDZ256rr }, | 
|  | { X86::VANDPSYrm,  X86::VANDPDYrm,  X86::VPANDQZ256rm,  X86::VPANDDZ256rm  }, | 
|  | { X86::VANDPSYrr,  X86::VANDPDYrr,  X86::VPANDQZ256rr,  X86::VPANDDZ256rr  }, | 
|  | { X86::VORPSYrm,   X86::VORPDYrm,   X86::VPORQZ256rm,   X86::VPORDZ256rm   }, | 
|  | { X86::VORPSYrr,   X86::VORPDYrr,   X86::VPORQZ256rr,   X86::VPORDZ256rr   }, | 
|  | { X86::VXORPSYrm,  X86::VXORPDYrm,  X86::VPXORQZ256rm,  X86::VPXORDZ256rm  }, | 
|  | { X86::VXORPSYrr,  X86::VXORPDYrr,  X86::VPXORQZ256rr,  X86::VPXORDZ256rr  }, | 
|  | }; | 
|  |  | 
|  | // FIXME: Some shuffle and unpack instructions have equivalents in different | 
|  | // domains, but they require a bit more work than just switching opcodes. | 
|  |  | 
|  | static const uint16_t *lookup(unsigned opcode, unsigned domain, | 
|  | ArrayRef<uint16_t[3]> Table) { | 
|  | for (const uint16_t (&Row)[3] : Table) | 
|  | if (Row[domain-1] == opcode) | 
|  | return Row; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | static const uint16_t *lookupAVX512(unsigned opcode, unsigned domain, | 
|  | ArrayRef<uint16_t[4]> Table) { | 
|  | // If this is the integer domain make sure to check both integer columns. | 
|  | for (const uint16_t (&Row)[4] : Table) | 
|  | if (Row[domain-1] == opcode || (domain == 3 && Row[3] == opcode)) | 
|  | return Row; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Helper to attempt to widen/narrow blend masks. | 
|  | static bool AdjustBlendMask(unsigned OldMask, unsigned OldWidth, | 
|  | unsigned NewWidth, unsigned *pNewMask = nullptr) { | 
|  | assert(((OldWidth % NewWidth) == 0 || (NewWidth % OldWidth) == 0) && | 
|  | "Illegal blend mask scale"); | 
|  | unsigned NewMask = 0; | 
|  |  | 
|  | if ((OldWidth % NewWidth) == 0) { | 
|  | unsigned Scale = OldWidth / NewWidth; | 
|  | unsigned SubMask = (1u << Scale) - 1; | 
|  | for (unsigned i = 0; i != NewWidth; ++i) { | 
|  | unsigned Sub = (OldMask >> (i * Scale)) & SubMask; | 
|  | if (Sub == SubMask) | 
|  | NewMask |= (1u << i); | 
|  | else if (Sub != 0x0) | 
|  | return false; | 
|  | } | 
|  | } else { | 
|  | unsigned Scale = NewWidth / OldWidth; | 
|  | unsigned SubMask = (1u << Scale) - 1; | 
|  | for (unsigned i = 0; i != OldWidth; ++i) { | 
|  | if (OldMask & (1 << i)) { | 
|  | NewMask |= (SubMask << (i * Scale)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (pNewMask) | 
|  | *pNewMask = NewMask; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | uint16_t X86InstrInfo::getExecutionDomainCustom(const MachineInstr &MI) const { | 
|  | unsigned Opcode = MI.getOpcode(); | 
|  | unsigned NumOperands = MI.getDesc().getNumOperands(); | 
|  |  | 
|  | auto GetBlendDomains = [&](unsigned ImmWidth, bool Is256) { | 
|  | uint16_t validDomains = 0; | 
|  | if (MI.getOperand(NumOperands - 1).isImm()) { | 
|  | unsigned Imm = MI.getOperand(NumOperands - 1).getImm(); | 
|  | if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4)) | 
|  | validDomains |= 0x2; // PackedSingle | 
|  | if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2)) | 
|  | validDomains |= 0x4; // PackedDouble | 
|  | if (!Is256 || Subtarget.hasAVX2()) | 
|  | validDomains |= 0x8; // PackedInt | 
|  | } | 
|  | return validDomains; | 
|  | }; | 
|  |  | 
|  | switch (Opcode) { | 
|  | case X86::BLENDPDrmi: | 
|  | case X86::BLENDPDrri: | 
|  | case X86::VBLENDPDrmi: | 
|  | case X86::VBLENDPDrri: | 
|  | return GetBlendDomains(2, false); | 
|  | case X86::VBLENDPDYrmi: | 
|  | case X86::VBLENDPDYrri: | 
|  | return GetBlendDomains(4, true); | 
|  | case X86::BLENDPSrmi: | 
|  | case X86::BLENDPSrri: | 
|  | case X86::VBLENDPSrmi: | 
|  | case X86::VBLENDPSrri: | 
|  | case X86::VPBLENDDrmi: | 
|  | case X86::VPBLENDDrri: | 
|  | return GetBlendDomains(4, false); | 
|  | case X86::VBLENDPSYrmi: | 
|  | case X86::VBLENDPSYrri: | 
|  | case X86::VPBLENDDYrmi: | 
|  | case X86::VPBLENDDYrri: | 
|  | return GetBlendDomains(8, true); | 
|  | case X86::PBLENDWrmi: | 
|  | case X86::PBLENDWrri: | 
|  | case X86::VPBLENDWrmi: | 
|  | case X86::VPBLENDWrri: | 
|  | // Treat VPBLENDWY as a 128-bit vector as it repeats the lo/hi masks. | 
|  | case X86::VPBLENDWYrmi: | 
|  | case X86::VPBLENDWYrri: | 
|  | return GetBlendDomains(8, false); | 
|  | case X86::VPANDDZ128rr:  case X86::VPANDDZ128rm: | 
|  | case X86::VPANDDZ256rr:  case X86::VPANDDZ256rm: | 
|  | case X86::VPANDQZ128rr:  case X86::VPANDQZ128rm: | 
|  | case X86::VPANDQZ256rr:  case X86::VPANDQZ256rm: | 
|  | case X86::VPANDNDZ128rr: case X86::VPANDNDZ128rm: | 
|  | case X86::VPANDNDZ256rr: case X86::VPANDNDZ256rm: | 
|  | case X86::VPANDNQZ128rr: case X86::VPANDNQZ128rm: | 
|  | case X86::VPANDNQZ256rr: case X86::VPANDNQZ256rm: | 
|  | case X86::VPORDZ128rr:   case X86::VPORDZ128rm: | 
|  | case X86::VPORDZ256rr:   case X86::VPORDZ256rm: | 
|  | case X86::VPORQZ128rr:   case X86::VPORQZ128rm: | 
|  | case X86::VPORQZ256rr:   case X86::VPORQZ256rm: | 
|  | case X86::VPXORDZ128rr:  case X86::VPXORDZ128rm: | 
|  | case X86::VPXORDZ256rr:  case X86::VPXORDZ256rm: | 
|  | case X86::VPXORQZ128rr:  case X86::VPXORQZ128rm: | 
|  | case X86::VPXORQZ256rr:  case X86::VPXORQZ256rm: | 
|  | // If we don't have DQI see if we can still switch from an EVEX integer | 
|  | // instruction to a VEX floating point instruction. | 
|  | if (Subtarget.hasDQI()) | 
|  | return 0; | 
|  |  | 
|  | if (RI.getEncodingValue(MI.getOperand(0).getReg()) >= 16) | 
|  | return 0; | 
|  | if (RI.getEncodingValue(MI.getOperand(1).getReg()) >= 16) | 
|  | return 0; | 
|  | // Register forms will have 3 operands. Memory form will have more. | 
|  | if (NumOperands == 3 && | 
|  | RI.getEncodingValue(MI.getOperand(2).getReg()) >= 16) | 
|  | return 0; | 
|  |  | 
|  | // All domains are valid. | 
|  | return 0xe; | 
|  | case X86::MOVHLPSrr: | 
|  | // We can swap domains when both inputs are the same register. | 
|  | // FIXME: This doesn't catch all the cases we would like. If the input | 
|  | // register isn't KILLed by the instruction, the two address instruction | 
|  | // pass puts a COPY on one input. The other input uses the original | 
|  | // register. This prevents the same physical register from being used by | 
|  | // both inputs. | 
|  | if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg() && | 
|  | MI.getOperand(0).getSubReg() == 0 && | 
|  | MI.getOperand(1).getSubReg() == 0 && | 
|  | MI.getOperand(2).getSubReg() == 0) | 
|  | return 0x6; | 
|  | return 0; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::setExecutionDomainCustom(MachineInstr &MI, | 
|  | unsigned Domain) const { | 
|  | assert(Domain > 0 && Domain < 4 && "Invalid execution domain"); | 
|  | uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3; | 
|  | assert(dom && "Not an SSE instruction"); | 
|  |  | 
|  | unsigned Opcode = MI.getOpcode(); | 
|  | unsigned NumOperands = MI.getDesc().getNumOperands(); | 
|  |  | 
|  | auto SetBlendDomain = [&](unsigned ImmWidth, bool Is256) { | 
|  | if (MI.getOperand(NumOperands - 1).isImm()) { | 
|  | unsigned Imm = MI.getOperand(NumOperands - 1).getImm() & 255; | 
|  | Imm = (ImmWidth == 16 ? ((Imm << 8) | Imm) : Imm); | 
|  | unsigned NewImm = Imm; | 
|  |  | 
|  | const uint16_t *table = lookup(Opcode, dom, ReplaceableCustomInstrs); | 
|  | if (!table) | 
|  | table = lookup(Opcode, dom, ReplaceableCustomAVX2Instrs); | 
|  |  | 
|  | if (Domain == 1) { // PackedSingle | 
|  | AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm); | 
|  | } else if (Domain == 2) { // PackedDouble | 
|  | AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2, &NewImm); | 
|  | } else if (Domain == 3) { // PackedInt | 
|  | if (Subtarget.hasAVX2()) { | 
|  | // If we are already VPBLENDW use that, else use VPBLENDD. | 
|  | if ((ImmWidth / (Is256 ? 2 : 1)) != 8) { | 
|  | table = lookup(Opcode, dom, ReplaceableCustomAVX2Instrs); | 
|  | AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm); | 
|  | } | 
|  | } else { | 
|  | assert(!Is256 && "128-bit vector expected"); | 
|  | AdjustBlendMask(Imm, ImmWidth, 8, &NewImm); | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(table && table[Domain - 1] && "Unknown domain op"); | 
|  | MI.setDesc(get(table[Domain - 1])); | 
|  | MI.getOperand(NumOperands - 1).setImm(NewImm & 255); | 
|  | } | 
|  | return true; | 
|  | }; | 
|  |  | 
|  | switch (Opcode) { | 
|  | case X86::BLENDPDrmi: | 
|  | case X86::BLENDPDrri: | 
|  | case X86::VBLENDPDrmi: | 
|  | case X86::VBLENDPDrri: | 
|  | return SetBlendDomain(2, false); | 
|  | case X86::VBLENDPDYrmi: | 
|  | case X86::VBLENDPDYrri: | 
|  | return SetBlendDomain(4, true); | 
|  | case X86::BLENDPSrmi: | 
|  | case X86::BLENDPSrri: | 
|  | case X86::VBLENDPSrmi: | 
|  | case X86::VBLENDPSrri: | 
|  | case X86::VPBLENDDrmi: | 
|  | case X86::VPBLENDDrri: | 
|  | return SetBlendDomain(4, false); | 
|  | case X86::VBLENDPSYrmi: | 
|  | case X86::VBLENDPSYrri: | 
|  | case X86::VPBLENDDYrmi: | 
|  | case X86::VPBLENDDYrri: | 
|  | return SetBlendDomain(8, true); | 
|  | case X86::PBLENDWrmi: | 
|  | case X86::PBLENDWrri: | 
|  | case X86::VPBLENDWrmi: | 
|  | case X86::VPBLENDWrri: | 
|  | return SetBlendDomain(8, false); | 
|  | case X86::VPBLENDWYrmi: | 
|  | case X86::VPBLENDWYrri: | 
|  | return SetBlendDomain(16, true); | 
|  | case X86::VPANDDZ128rr:  case X86::VPANDDZ128rm: | 
|  | case X86::VPANDDZ256rr:  case X86::VPANDDZ256rm: | 
|  | case X86::VPANDQZ128rr:  case X86::VPANDQZ128rm: | 
|  | case X86::VPANDQZ256rr:  case X86::VPANDQZ256rm: | 
|  | case X86::VPANDNDZ128rr: case X86::VPANDNDZ128rm: | 
|  | case X86::VPANDNDZ256rr: case X86::VPANDNDZ256rm: | 
|  | case X86::VPANDNQZ128rr: case X86::VPANDNQZ128rm: | 
|  | case X86::VPANDNQZ256rr: case X86::VPANDNQZ256rm: | 
|  | case X86::VPORDZ128rr:   case X86::VPORDZ128rm: | 
|  | case X86::VPORDZ256rr:   case X86::VPORDZ256rm: | 
|  | case X86::VPORQZ128rr:   case X86::VPORQZ128rm: | 
|  | case X86::VPORQZ256rr:   case X86::VPORQZ256rm: | 
|  | case X86::VPXORDZ128rr:  case X86::VPXORDZ128rm: | 
|  | case X86::VPXORDZ256rr:  case X86::VPXORDZ256rm: | 
|  | case X86::VPXORQZ128rr:  case X86::VPXORQZ128rm: | 
|  | case X86::VPXORQZ256rr:  case X86::VPXORQZ256rm: { | 
|  | // Without DQI, convert EVEX instructions to VEX instructions. | 
|  | if (Subtarget.hasDQI()) | 
|  | return false; | 
|  |  | 
|  | const uint16_t *table = lookupAVX512(MI.getOpcode(), dom, | 
|  | ReplaceableCustomAVX512LogicInstrs); | 
|  | assert(table && "Instruction not found in table?"); | 
|  | // Don't change integer Q instructions to D instructions and | 
|  | // use D intructions if we started with a PS instruction. | 
|  | if (Domain == 3 && (dom == 1 || table[3] == MI.getOpcode())) | 
|  | Domain = 4; | 
|  | MI.setDesc(get(table[Domain - 1])); | 
|  | return true; | 
|  | } | 
|  | case X86::UNPCKHPDrr: | 
|  | case X86::MOVHLPSrr: | 
|  | // We just need to commute the instruction which will switch the domains. | 
|  | if (Domain != dom && Domain != 3 && | 
|  | MI.getOperand(1).getReg() == MI.getOperand(2).getReg() && | 
|  | MI.getOperand(0).getSubReg() == 0 && | 
|  | MI.getOperand(1).getSubReg() == 0 && | 
|  | MI.getOperand(2).getSubReg() == 0) { | 
|  | commuteInstruction(MI, false); | 
|  | return true; | 
|  | } | 
|  | // We must always return true for MOVHLPSrr. | 
|  | if (Opcode == X86::MOVHLPSrr) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | std::pair<uint16_t, uint16_t> | 
|  | X86InstrInfo::getExecutionDomain(const MachineInstr &MI) const { | 
|  | uint16_t domain = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3; | 
|  | unsigned opcode = MI.getOpcode(); | 
|  | uint16_t validDomains = 0; | 
|  | if (domain) { | 
|  | // Attempt to match for custom instructions. | 
|  | validDomains = getExecutionDomainCustom(MI); | 
|  | if (validDomains) | 
|  | return std::make_pair(domain, validDomains); | 
|  |  | 
|  | if (lookup(opcode, domain, ReplaceableInstrs)) { | 
|  | validDomains = 0xe; | 
|  | } else if (lookup(opcode, domain, ReplaceableInstrsAVX2)) { | 
|  | validDomains = Subtarget.hasAVX2() ? 0xe : 0x6; | 
|  | } else if (lookup(opcode, domain, ReplaceableInstrsAVX2InsertExtract)) { | 
|  | // Insert/extract instructions should only effect domain if AVX2 | 
|  | // is enabled. | 
|  | if (!Subtarget.hasAVX2()) | 
|  | return std::make_pair(0, 0); | 
|  | validDomains = 0xe; | 
|  | } else if (lookupAVX512(opcode, domain, ReplaceableInstrsAVX512)) { | 
|  | validDomains = 0xe; | 
|  | } else if (Subtarget.hasDQI() && lookupAVX512(opcode, domain, | 
|  | ReplaceableInstrsAVX512DQ)) { | 
|  | validDomains = 0xe; | 
|  | } else if (Subtarget.hasDQI()) { | 
|  | if (const uint16_t *table = lookupAVX512(opcode, domain, | 
|  | ReplaceableInstrsAVX512DQMasked)) { | 
|  | if (domain == 1 || (domain == 3 && table[3] == opcode)) | 
|  | validDomains = 0xa; | 
|  | else | 
|  | validDomains = 0xc; | 
|  | } | 
|  | } | 
|  | } | 
|  | return std::make_pair(domain, validDomains); | 
|  | } | 
|  |  | 
|  | void X86InstrInfo::setExecutionDomain(MachineInstr &MI, unsigned Domain) const { | 
|  | assert(Domain>0 && Domain<4 && "Invalid execution domain"); | 
|  | uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3; | 
|  | assert(dom && "Not an SSE instruction"); | 
|  |  | 
|  | // Attempt to match for custom instructions. | 
|  | if (setExecutionDomainCustom(MI, Domain)) | 
|  | return; | 
|  |  | 
|  | const uint16_t *table = lookup(MI.getOpcode(), dom, ReplaceableInstrs); | 
|  | if (!table) { // try the other table | 
|  | assert((Subtarget.hasAVX2() || Domain < 3) && | 
|  | "256-bit vector operations only available in AVX2"); | 
|  | table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2); | 
|  | } | 
|  | if (!table) { // try the other table | 
|  | assert(Subtarget.hasAVX2() && | 
|  | "256-bit insert/extract only available in AVX2"); | 
|  | table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2InsertExtract); | 
|  | } | 
|  | if (!table) { // try the AVX512 table | 
|  | assert(Subtarget.hasAVX512() && "Requires AVX-512"); | 
|  | table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512); | 
|  | // Don't change integer Q instructions to D instructions. | 
|  | if (table && Domain == 3 && table[3] == MI.getOpcode()) | 
|  | Domain = 4; | 
|  | } | 
|  | if (!table) { // try the AVX512DQ table | 
|  | assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ"); | 
|  | table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQ); | 
|  | // Don't change integer Q instructions to D instructions and | 
|  | // use D intructions if we started with a PS instruction. | 
|  | if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode())) | 
|  | Domain = 4; | 
|  | } | 
|  | if (!table) { // try the AVX512DQMasked table | 
|  | assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ"); | 
|  | table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQMasked); | 
|  | if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode())) | 
|  | Domain = 4; | 
|  | } | 
|  | assert(table && "Cannot change domain"); | 
|  | MI.setDesc(get(table[Domain - 1])); | 
|  | } | 
|  |  | 
|  | /// Return the noop instruction to use for a noop. | 
|  | void X86InstrInfo::getNoop(MCInst &NopInst) const { | 
|  | NopInst.setOpcode(X86::NOOP); | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::isHighLatencyDef(int opc) const { | 
|  | switch (opc) { | 
|  | default: return false; | 
|  | case X86::DIVPDrm: | 
|  | case X86::DIVPDrr: | 
|  | case X86::DIVPSrm: | 
|  | case X86::DIVPSrr: | 
|  | case X86::DIVSDrm: | 
|  | case X86::DIVSDrm_Int: | 
|  | case X86::DIVSDrr: | 
|  | case X86::DIVSDrr_Int: | 
|  | case X86::DIVSSrm: | 
|  | case X86::DIVSSrm_Int: | 
|  | case X86::DIVSSrr: | 
|  | case X86::DIVSSrr_Int: | 
|  | case X86::SQRTPDm: | 
|  | case X86::SQRTPDr: | 
|  | case X86::SQRTPSm: | 
|  | case X86::SQRTPSr: | 
|  | case X86::SQRTSDm: | 
|  | case X86::SQRTSDm_Int: | 
|  | case X86::SQRTSDr: | 
|  | case X86::SQRTSDr_Int: | 
|  | case X86::SQRTSSm: | 
|  | case X86::SQRTSSm_Int: | 
|  | case X86::SQRTSSr: | 
|  | case X86::SQRTSSr_Int: | 
|  | // AVX instructions with high latency | 
|  | case X86::VDIVPDrm: | 
|  | case X86::VDIVPDrr: | 
|  | case X86::VDIVPDYrm: | 
|  | case X86::VDIVPDYrr: | 
|  | case X86::VDIVPSrm: | 
|  | case X86::VDIVPSrr: | 
|  | case X86::VDIVPSYrm: | 
|  | case X86::VDIVPSYrr: | 
|  | case X86::VDIVSDrm: | 
|  | case X86::VDIVSDrm_Int: | 
|  | case X86::VDIVSDrr: | 
|  | case X86::VDIVSDrr_Int: | 
|  | case X86::VDIVSSrm: | 
|  | case X86::VDIVSSrm_Int: | 
|  | case X86::VDIVSSrr: | 
|  | case X86::VDIVSSrr_Int: | 
|  | case X86::VSQRTPDm: | 
|  | case X86::VSQRTPDr: | 
|  | case X86::VSQRTPDYm: | 
|  | case X86::VSQRTPDYr: | 
|  | case X86::VSQRTPSm: | 
|  | case X86::VSQRTPSr: | 
|  | case X86::VSQRTPSYm: | 
|  | case X86::VSQRTPSYr: | 
|  | case X86::VSQRTSDm: | 
|  | case X86::VSQRTSDm_Int: | 
|  | case X86::VSQRTSDr: | 
|  | case X86::VSQRTSDr_Int: | 
|  | case X86::VSQRTSSm: | 
|  | case X86::VSQRTSSm_Int: | 
|  | case X86::VSQRTSSr: | 
|  | case X86::VSQRTSSr_Int: | 
|  | // AVX512 instructions with high latency | 
|  | case X86::VDIVPDZ128rm: | 
|  | case X86::VDIVPDZ128rmb: | 
|  | case X86::VDIVPDZ128rmbk: | 
|  | case X86::VDIVPDZ128rmbkz: | 
|  | case X86::VDIVPDZ128rmk: | 
|  | case X86::VDIVPDZ128rmkz: | 
|  | case X86::VDIVPDZ128rr: | 
|  | case X86::VDIVPDZ128rrk: | 
|  | case X86::VDIVPDZ128rrkz: | 
|  | case X86::VDIVPDZ256rm: | 
|  | case X86::VDIVPDZ256rmb: | 
|  | case X86::VDIVPDZ256rmbk: | 
|  | case X86::VDIVPDZ256rmbkz: | 
|  | case X86::VDIVPDZ256rmk: | 
|  | case X86::VDIVPDZ256rmkz: | 
|  | case X86::VDIVPDZ256rr: | 
|  | case X86::VDIVPDZ256rrk: | 
|  | case X86::VDIVPDZ256rrkz: | 
|  | case X86::VDIVPDZrrb: | 
|  | case X86::VDIVPDZrrbk: | 
|  | case X86::VDIVPDZrrbkz: | 
|  | case X86::VDIVPDZrm: | 
|  | case X86::VDIVPDZrmb: | 
|  | case X86::VDIVPDZrmbk: | 
|  | case X86::VDIVPDZrmbkz: | 
|  | case X86::VDIVPDZrmk: | 
|  | case X86::VDIVPDZrmkz: | 
|  | case X86::VDIVPDZrr: | 
|  | case X86::VDIVPDZrrk: | 
|  | case X86::VDIVPDZrrkz: | 
|  | case X86::VDIVPSZ128rm: | 
|  | case X86::VDIVPSZ128rmb: | 
|  | case X86::VDIVPSZ128rmbk: | 
|  | case X86::VDIVPSZ128rmbkz: | 
|  | case X86::VDIVPSZ128rmk: | 
|  | case X86::VDIVPSZ128rmkz: | 
|  | case X86::VDIVPSZ128rr: | 
|  | case X86::VDIVPSZ128rrk: | 
|  | case X86::VDIVPSZ128rrkz: | 
|  | case X86::VDIVPSZ256rm: | 
|  | case X86::VDIVPSZ256rmb: | 
|  | case X86::VDIVPSZ256rmbk: | 
|  | case X86::VDIVPSZ256rmbkz: | 
|  | case X86::VDIVPSZ256rmk: | 
|  | case X86::VDIVPSZ256rmkz: | 
|  | case X86::VDIVPSZ256rr: | 
|  | case X86::VDIVPSZ256rrk: | 
|  | case X86::VDIVPSZ256rrkz: | 
|  | case X86::VDIVPSZrrb: | 
|  | case X86::VDIVPSZrrbk: | 
|  | case X86::VDIVPSZrrbkz: | 
|  | case X86::VDIVPSZrm: | 
|  | case X86::VDIVPSZrmb: | 
|  | case X86::VDIVPSZrmbk: | 
|  | case X86::VDIVPSZrmbkz: | 
|  | case X86::VDIVPSZrmk: | 
|  | case X86::VDIVPSZrmkz: | 
|  | case X86::VDIVPSZrr: | 
|  | case X86::VDIVPSZrrk: | 
|  | case X86::VDIVPSZrrkz: | 
|  | case X86::VDIVSDZrm: | 
|  | case X86::VDIVSDZrr: | 
|  | case X86::VDIVSDZrm_Int: | 
|  | case X86::VDIVSDZrm_Intk: | 
|  | case X86::VDIVSDZrm_Intkz: | 
|  | case X86::VDIVSDZrr_Int: | 
|  | case X86::VDIVSDZrr_Intk: | 
|  | case X86::VDIVSDZrr_Intkz: | 
|  | case X86::VDIVSDZrrb_Int: | 
|  | case X86::VDIVSDZrrb_Intk: | 
|  | case X86::VDIVSDZrrb_Intkz: | 
|  | case X86::VDIVSSZrm: | 
|  | case X86::VDIVSSZrr: | 
|  | case X86::VDIVSSZrm_Int: | 
|  | case X86::VDIVSSZrm_Intk: | 
|  | case X86::VDIVSSZrm_Intkz: | 
|  | case X86::VDIVSSZrr_Int: | 
|  | case X86::VDIVSSZrr_Intk: | 
|  | case X86::VDIVSSZrr_Intkz: | 
|  | case X86::VDIVSSZrrb_Int: | 
|  | case X86::VDIVSSZrrb_Intk: | 
|  | case X86::VDIVSSZrrb_Intkz: | 
|  | case X86::VSQRTPDZ128m: | 
|  | case X86::VSQRTPDZ128mb: | 
|  | case X86::VSQRTPDZ128mbk: | 
|  | case X86::VSQRTPDZ128mbkz: | 
|  | case X86::VSQRTPDZ128mk: | 
|  | case X86::VSQRTPDZ128mkz: | 
|  | case X86::VSQRTPDZ128r: | 
|  | case X86::VSQRTPDZ128rk: | 
|  | case X86::VSQRTPDZ128rkz: | 
|  | case X86::VSQRTPDZ256m: | 
|  | case X86::VSQRTPDZ256mb: | 
|  | case X86::VSQRTPDZ256mbk: | 
|  | case X86::VSQRTPDZ256mbkz: | 
|  | case X86::VSQRTPDZ256mk: | 
|  | case X86::VSQRTPDZ256mkz: | 
|  | case X86::VSQRTPDZ256r: | 
|  | case X86::VSQRTPDZ256rk: | 
|  | case X86::VSQRTPDZ256rkz: | 
|  | case X86::VSQRTPDZm: | 
|  | case X86::VSQRTPDZmb: | 
|  | case X86::VSQRTPDZmbk: | 
|  | case X86::VSQRTPDZmbkz: | 
|  | case X86::VSQRTPDZmk: | 
|  | case X86::VSQRTPDZmkz: | 
|  | case X86::VSQRTPDZr: | 
|  | case X86::VSQRTPDZrb: | 
|  | case X86::VSQRTPDZrbk: | 
|  | case X86::VSQRTPDZrbkz: | 
|  | case X86::VSQRTPDZrk: | 
|  | case X86::VSQRTPDZrkz: | 
|  | case X86::VSQRTPSZ128m: | 
|  | case X86::VSQRTPSZ128mb: | 
|  | case X86::VSQRTPSZ128mbk: | 
|  | case X86::VSQRTPSZ128mbkz: | 
|  | case X86::VSQRTPSZ128mk: | 
|  | case X86::VSQRTPSZ128mkz: | 
|  | case X86::VSQRTPSZ128r: | 
|  | case X86::VSQRTPSZ128rk: | 
|  | case X86::VSQRTPSZ128rkz: | 
|  | case X86::VSQRTPSZ256m: | 
|  | case X86::VSQRTPSZ256mb: | 
|  | case X86::VSQRTPSZ256mbk: | 
|  | case X86::VSQRTPSZ256mbkz: | 
|  | case X86::VSQRTPSZ256mk: | 
|  | case X86::VSQRTPSZ256mkz: | 
|  | case X86::VSQRTPSZ256r: | 
|  | case X86::VSQRTPSZ256rk: | 
|  | case X86::VSQRTPSZ256rkz: | 
|  | case X86::VSQRTPSZm: | 
|  | case X86::VSQRTPSZmb: | 
|  | case X86::VSQRTPSZmbk: | 
|  | case X86::VSQRTPSZmbkz: | 
|  | case X86::VSQRTPSZmk: | 
|  | case X86::VSQRTPSZmkz: | 
|  | case X86::VSQRTPSZr: | 
|  | case X86::VSQRTPSZrb: | 
|  | case X86::VSQRTPSZrbk: | 
|  | case X86::VSQRTPSZrbkz: | 
|  | case X86::VSQRTPSZrk: | 
|  | case X86::VSQRTPSZrkz: | 
|  | case X86::VSQRTSDZm: | 
|  | case X86::VSQRTSDZm_Int: | 
|  | case X86::VSQRTSDZm_Intk: | 
|  | case X86::VSQRTSDZm_Intkz: | 
|  | case X86::VSQRTSDZr: | 
|  | case X86::VSQRTSDZr_Int: | 
|  | case X86::VSQRTSDZr_Intk: | 
|  | case X86::VSQRTSDZr_Intkz: | 
|  | case X86::VSQRTSDZrb_Int: | 
|  | case X86::VSQRTSDZrb_Intk: | 
|  | case X86::VSQRTSDZrb_Intkz: | 
|  | case X86::VSQRTSSZm: | 
|  | case X86::VSQRTSSZm_Int: | 
|  | case X86::VSQRTSSZm_Intk: | 
|  | case X86::VSQRTSSZm_Intkz: | 
|  | case X86::VSQRTSSZr: | 
|  | case X86::VSQRTSSZr_Int: | 
|  | case X86::VSQRTSSZr_Intk: | 
|  | case X86::VSQRTSSZr_Intkz: | 
|  | case X86::VSQRTSSZrb_Int: | 
|  | case X86::VSQRTSSZrb_Intk: | 
|  | case X86::VSQRTSSZrb_Intkz: | 
|  |  | 
|  | case X86::VGATHERDPDYrm: | 
|  | case X86::VGATHERDPDZ128rm: | 
|  | case X86::VGATHERDPDZ256rm: | 
|  | case X86::VGATHERDPDZrm: | 
|  | case X86::VGATHERDPDrm: | 
|  | case X86::VGATHERDPSYrm: | 
|  | case X86::VGATHERDPSZ128rm: | 
|  | case X86::VGATHERDPSZ256rm: | 
|  | case X86::VGATHERDPSZrm: | 
|  | case X86::VGATHERDPSrm: | 
|  | case X86::VGATHERPF0DPDm: | 
|  | case X86::VGATHERPF0DPSm: | 
|  | case X86::VGATHERPF0QPDm: | 
|  | case X86::VGATHERPF0QPSm: | 
|  | case X86::VGATHERPF1DPDm: | 
|  | case X86::VGATHERPF1DPSm: | 
|  | case X86::VGATHERPF1QPDm: | 
|  | case X86::VGATHERPF1QPSm: | 
|  | case X86::VGATHERQPDYrm: | 
|  | case X86::VGATHERQPDZ128rm: | 
|  | case X86::VGATHERQPDZ256rm: | 
|  | case X86::VGATHERQPDZrm: | 
|  | case X86::VGATHERQPDrm: | 
|  | case X86::VGATHERQPSYrm: | 
|  | case X86::VGATHERQPSZ128rm: | 
|  | case X86::VGATHERQPSZ256rm: | 
|  | case X86::VGATHERQPSZrm: | 
|  | case X86::VGATHERQPSrm: | 
|  | case X86::VPGATHERDDYrm: | 
|  | case X86::VPGATHERDDZ128rm: | 
|  | case X86::VPGATHERDDZ256rm: | 
|  | case X86::VPGATHERDDZrm: | 
|  | case X86::VPGATHERDDrm: | 
|  | case X86::VPGATHERDQYrm: | 
|  | case X86::VPGATHERDQZ128rm: | 
|  | case X86::VPGATHERDQZ256rm: | 
|  | case X86::VPGATHERDQZrm: | 
|  | case X86::VPGATHERDQrm: | 
|  | case X86::VPGATHERQDYrm: | 
|  | case X86::VPGATHERQDZ128rm: | 
|  | case X86::VPGATHERQDZ256rm: | 
|  | case X86::VPGATHERQDZrm: | 
|  | case X86::VPGATHERQDrm: | 
|  | case X86::VPGATHERQQYrm: | 
|  | case X86::VPGATHERQQZ128rm: | 
|  | case X86::VPGATHERQQZ256rm: | 
|  | case X86::VPGATHERQQZrm: | 
|  | case X86::VPGATHERQQrm: | 
|  | case X86::VSCATTERDPDZ128mr: | 
|  | case X86::VSCATTERDPDZ256mr: | 
|  | case X86::VSCATTERDPDZmr: | 
|  | case X86::VSCATTERDPSZ128mr: | 
|  | case X86::VSCATTERDPSZ256mr: | 
|  | case X86::VSCATTERDPSZmr: | 
|  | case X86::VSCATTERPF0DPDm: | 
|  | case X86::VSCATTERPF0DPSm: | 
|  | case X86::VSCATTERPF0QPDm: | 
|  | case X86::VSCATTERPF0QPSm: | 
|  | case X86::VSCATTERPF1DPDm: | 
|  | case X86::VSCATTERPF1DPSm: | 
|  | case X86::VSCATTERPF1QPDm: | 
|  | case X86::VSCATTERPF1QPSm: | 
|  | case X86::VSCATTERQPDZ128mr: | 
|  | case X86::VSCATTERQPDZ256mr: | 
|  | case X86::VSCATTERQPDZmr: | 
|  | case X86::VSCATTERQPSZ128mr: | 
|  | case X86::VSCATTERQPSZ256mr: | 
|  | case X86::VSCATTERQPSZmr: | 
|  | case X86::VPSCATTERDDZ128mr: | 
|  | case X86::VPSCATTERDDZ256mr: | 
|  | case X86::VPSCATTERDDZmr: | 
|  | case X86::VPSCATTERDQZ128mr: | 
|  | case X86::VPSCATTERDQZ256mr: | 
|  | case X86::VPSCATTERDQZmr: | 
|  | case X86::VPSCATTERQDZ128mr: | 
|  | case X86::VPSCATTERQDZ256mr: | 
|  | case X86::VPSCATTERQDZmr: | 
|  | case X86::VPSCATTERQQZ128mr: | 
|  | case X86::VPSCATTERQQZ256mr: | 
|  | case X86::VPSCATTERQQZmr: | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel, | 
|  | const MachineRegisterInfo *MRI, | 
|  | const MachineInstr &DefMI, | 
|  | unsigned DefIdx, | 
|  | const MachineInstr &UseMI, | 
|  | unsigned UseIdx) const { | 
|  | return isHighLatencyDef(DefMI.getOpcode()); | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::hasReassociableOperands(const MachineInstr &Inst, | 
|  | const MachineBasicBlock *MBB) const { | 
|  | assert((Inst.getNumOperands() == 3 || Inst.getNumOperands() == 4) && | 
|  | "Reassociation needs binary operators"); | 
|  |  | 
|  | // Integer binary math/logic instructions have a third source operand: | 
|  | // the EFLAGS register. That operand must be both defined here and never | 
|  | // used; ie, it must be dead. If the EFLAGS operand is live, then we can | 
|  | // not change anything because rearranging the operands could affect other | 
|  | // instructions that depend on the exact status flags (zero, sign, etc.) | 
|  | // that are set by using these particular operands with this operation. | 
|  | if (Inst.getNumOperands() == 4) { | 
|  | assert(Inst.getOperand(3).isReg() && | 
|  | Inst.getOperand(3).getReg() == X86::EFLAGS && | 
|  | "Unexpected operand in reassociable instruction"); | 
|  | if (!Inst.getOperand(3).isDead()) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return TargetInstrInfo::hasReassociableOperands(Inst, MBB); | 
|  | } | 
|  |  | 
|  | // TODO: There are many more machine instruction opcodes to match: | 
|  | //       1. Other data types (integer, vectors) | 
|  | //       2. Other math / logic operations (xor, or) | 
|  | //       3. Other forms of the same operation (intrinsics and other variants) | 
|  | bool X86InstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const { | 
|  | switch (Inst.getOpcode()) { | 
|  | case X86::AND8rr: | 
|  | case X86::AND16rr: | 
|  | case X86::AND32rr: | 
|  | case X86::AND64rr: | 
|  | case X86::OR8rr: | 
|  | case X86::OR16rr: | 
|  | case X86::OR32rr: | 
|  | case X86::OR64rr: | 
|  | case X86::XOR8rr: | 
|  | case X86::XOR16rr: | 
|  | case X86::XOR32rr: | 
|  | case X86::XOR64rr: | 
|  | case X86::IMUL16rr: | 
|  | case X86::IMUL32rr: | 
|  | case X86::IMUL64rr: | 
|  | case X86::PANDrr: | 
|  | case X86::PORrr: | 
|  | case X86::PXORrr: | 
|  | case X86::ANDPDrr: | 
|  | case X86::ANDPSrr: | 
|  | case X86::ORPDrr: | 
|  | case X86::ORPSrr: | 
|  | case X86::XORPDrr: | 
|  | case X86::XORPSrr: | 
|  | case X86::PADDBrr: | 
|  | case X86::PADDWrr: | 
|  | case X86::PADDDrr: | 
|  | case X86::PADDQrr: | 
|  | case X86::VPANDrr: | 
|  | case X86::VPANDYrr: | 
|  | case X86::VPANDDZ128rr: | 
|  | case X86::VPANDDZ256rr: | 
|  | case X86::VPANDDZrr: | 
|  | case X86::VPANDQZ128rr: | 
|  | case X86::VPANDQZ256rr: | 
|  | case X86::VPANDQZrr: | 
|  | case X86::VPORrr: | 
|  | case X86::VPORYrr: | 
|  | case X86::VPORDZ128rr: | 
|  | case X86::VPORDZ256rr: | 
|  | case X86::VPORDZrr: | 
|  | case X86::VPORQZ128rr: | 
|  | case X86::VPORQZ256rr: | 
|  | case X86::VPORQZrr: | 
|  | case X86::VPXORrr: | 
|  | case X86::VPXORYrr: | 
|  | case X86::VPXORDZ128rr: | 
|  | case X86::VPXORDZ256rr: | 
|  | case X86::VPXORDZrr: | 
|  | case X86::VPXORQZ128rr: | 
|  | case X86::VPXORQZ256rr: | 
|  | case X86::VPXORQZrr: | 
|  | case X86::VANDPDrr: | 
|  | case X86::VANDPSrr: | 
|  | case X86::VANDPDYrr: | 
|  | case X86::VANDPSYrr: | 
|  | case X86::VANDPDZ128rr: | 
|  | case X86::VANDPSZ128rr: | 
|  | case X86::VANDPDZ256rr: | 
|  | case X86::VANDPSZ256rr: | 
|  | case X86::VANDPDZrr: | 
|  | case X86::VANDPSZrr: | 
|  | case X86::VORPDrr: | 
|  | case X86::VORPSrr: | 
|  | case X86::VORPDYrr: | 
|  | case X86::VORPSYrr: | 
|  | case X86::VORPDZ128rr: | 
|  | case X86::VORPSZ128rr: | 
|  | case X86::VORPDZ256rr: | 
|  | case X86::VORPSZ256rr: | 
|  | case X86::VORPDZrr: | 
|  | case X86::VORPSZrr: | 
|  | case X86::VXORPDrr: | 
|  | case X86::VXORPSrr: | 
|  | case X86::VXORPDYrr: | 
|  | case X86::VXORPSYrr: | 
|  | case X86::VXORPDZ128rr: | 
|  | case X86::VXORPSZ128rr: | 
|  | case X86::VXORPDZ256rr: | 
|  | case X86::VXORPSZ256rr: | 
|  | case X86::VXORPDZrr: | 
|  | case X86::VXORPSZrr: | 
|  | case X86::KADDBrr: | 
|  | case X86::KADDWrr: | 
|  | case X86::KADDDrr: | 
|  | case X86::KADDQrr: | 
|  | case X86::KANDBrr: | 
|  | case X86::KANDWrr: | 
|  | case X86::KANDDrr: | 
|  | case X86::KANDQrr: | 
|  | case X86::KORBrr: | 
|  | case X86::KORWrr: | 
|  | case X86::KORDrr: | 
|  | case X86::KORQrr: | 
|  | case X86::KXORBrr: | 
|  | case X86::KXORWrr: | 
|  | case X86::KXORDrr: | 
|  | case X86::KXORQrr: | 
|  | case X86::VPADDBrr: | 
|  | case X86::VPADDWrr: | 
|  | case X86::VPADDDrr: | 
|  | case X86::VPADDQrr: | 
|  | case X86::VPADDBYrr: | 
|  | case X86::VPADDWYrr: | 
|  | case X86::VPADDDYrr: | 
|  | case X86::VPADDQYrr: | 
|  | case X86::VPADDBZ128rr: | 
|  | case X86::VPADDWZ128rr: | 
|  | case X86::VPADDDZ128rr: | 
|  | case X86::VPADDQZ128rr: | 
|  | case X86::VPADDBZ256rr: | 
|  | case X86::VPADDWZ256rr: | 
|  | case X86::VPADDDZ256rr: | 
|  | case X86::VPADDQZ256rr: | 
|  | case X86::VPADDBZrr: | 
|  | case X86::VPADDWZrr: | 
|  | case X86::VPADDDZrr: | 
|  | case X86::VPADDQZrr: | 
|  | case X86::VPMULLWrr: | 
|  | case X86::VPMULLWYrr: | 
|  | case X86::VPMULLWZ128rr: | 
|  | case X86::VPMULLWZ256rr: | 
|  | case X86::VPMULLWZrr: | 
|  | case X86::VPMULLDrr: | 
|  | case X86::VPMULLDYrr: | 
|  | case X86::VPMULLDZ128rr: | 
|  | case X86::VPMULLDZ256rr: | 
|  | case X86::VPMULLDZrr: | 
|  | case X86::VPMULLQZ128rr: | 
|  | case X86::VPMULLQZ256rr: | 
|  | case X86::VPMULLQZrr: | 
|  | // Normal min/max instructions are not commutative because of NaN and signed | 
|  | // zero semantics, but these are. Thus, there's no need to check for global | 
|  | // relaxed math; the instructions themselves have the properties we need. | 
|  | case X86::MAXCPDrr: | 
|  | case X86::MAXCPSrr: | 
|  | case X86::MAXCSDrr: | 
|  | case X86::MAXCSSrr: | 
|  | case X86::MINCPDrr: | 
|  | case X86::MINCPSrr: | 
|  | case X86::MINCSDrr: | 
|  | case X86::MINCSSrr: | 
|  | case X86::VMAXCPDrr: | 
|  | case X86::VMAXCPSrr: | 
|  | case X86::VMAXCPDYrr: | 
|  | case X86::VMAXCPSYrr: | 
|  | case X86::VMAXCPDZ128rr: | 
|  | case X86::VMAXCPSZ128rr: | 
|  | case X86::VMAXCPDZ256rr: | 
|  | case X86::VMAXCPSZ256rr: | 
|  | case X86::VMAXCPDZrr: | 
|  | case X86::VMAXCPSZrr: | 
|  | case X86::VMAXCSDrr: | 
|  | case X86::VMAXCSSrr: | 
|  | case X86::VMAXCSDZrr: | 
|  | case X86::VMAXCSSZrr: | 
|  | case X86::VMINCPDrr: | 
|  | case X86::VMINCPSrr: | 
|  | case X86::VMINCPDYrr: | 
|  | case X86::VMINCPSYrr: | 
|  | case X86::VMINCPDZ128rr: | 
|  | case X86::VMINCPSZ128rr: | 
|  | case X86::VMINCPDZ256rr: | 
|  | case X86::VMINCPSZ256rr: | 
|  | case X86::VMINCPDZrr: | 
|  | case X86::VMINCPSZrr: | 
|  | case X86::VMINCSDrr: | 
|  | case X86::VMINCSSrr: | 
|  | case X86::VMINCSDZrr: | 
|  | case X86::VMINCSSZrr: | 
|  | return true; | 
|  | case X86::ADDPDrr: | 
|  | case X86::ADDPSrr: | 
|  | case X86::ADDSDrr: | 
|  | case X86::ADDSSrr: | 
|  | case X86::MULPDrr: | 
|  | case X86::MULPSrr: | 
|  | case X86::MULSDrr: | 
|  | case X86::MULSSrr: | 
|  | case X86::VADDPDrr: | 
|  | case X86::VADDPSrr: | 
|  | case X86::VADDPDYrr: | 
|  | case X86::VADDPSYrr: | 
|  | case X86::VADDPDZ128rr: | 
|  | case X86::VADDPSZ128rr: | 
|  | case X86::VADDPDZ256rr: | 
|  | case X86::VADDPSZ256rr: | 
|  | case X86::VADDPDZrr: | 
|  | case X86::VADDPSZrr: | 
|  | case X86::VADDSDrr: | 
|  | case X86::VADDSSrr: | 
|  | case X86::VADDSDZrr: | 
|  | case X86::VADDSSZrr: | 
|  | case X86::VMULPDrr: | 
|  | case X86::VMULPSrr: | 
|  | case X86::VMULPDYrr: | 
|  | case X86::VMULPSYrr: | 
|  | case X86::VMULPDZ128rr: | 
|  | case X86::VMULPSZ128rr: | 
|  | case X86::VMULPDZ256rr: | 
|  | case X86::VMULPSZ256rr: | 
|  | case X86::VMULPDZrr: | 
|  | case X86::VMULPSZrr: | 
|  | case X86::VMULSDrr: | 
|  | case X86::VMULSSrr: | 
|  | case X86::VMULSDZrr: | 
|  | case X86::VMULSSZrr: | 
|  | return Inst.getParent()->getParent()->getTarget().Options.UnsafeFPMath; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// This is an architecture-specific helper function of reassociateOps. | 
|  | /// Set special operand attributes for new instructions after reassociation. | 
|  | void X86InstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1, | 
|  | MachineInstr &OldMI2, | 
|  | MachineInstr &NewMI1, | 
|  | MachineInstr &NewMI2) const { | 
|  | // Integer instructions define an implicit EFLAGS source register operand as | 
|  | // the third source (fourth total) operand. | 
|  | if (OldMI1.getNumOperands() != 4 || OldMI2.getNumOperands() != 4) | 
|  | return; | 
|  |  | 
|  | assert(NewMI1.getNumOperands() == 4 && NewMI2.getNumOperands() == 4 && | 
|  | "Unexpected instruction type for reassociation"); | 
|  |  | 
|  | MachineOperand &OldOp1 = OldMI1.getOperand(3); | 
|  | MachineOperand &OldOp2 = OldMI2.getOperand(3); | 
|  | MachineOperand &NewOp1 = NewMI1.getOperand(3); | 
|  | MachineOperand &NewOp2 = NewMI2.getOperand(3); | 
|  |  | 
|  | assert(OldOp1.isReg() && OldOp1.getReg() == X86::EFLAGS && OldOp1.isDead() && | 
|  | "Must have dead EFLAGS operand in reassociable instruction"); | 
|  | assert(OldOp2.isReg() && OldOp2.getReg() == X86::EFLAGS && OldOp2.isDead() && | 
|  | "Must have dead EFLAGS operand in reassociable instruction"); | 
|  |  | 
|  | (void)OldOp1; | 
|  | (void)OldOp2; | 
|  |  | 
|  | assert(NewOp1.isReg() && NewOp1.getReg() == X86::EFLAGS && | 
|  | "Unexpected operand in reassociable instruction"); | 
|  | assert(NewOp2.isReg() && NewOp2.getReg() == X86::EFLAGS && | 
|  | "Unexpected operand in reassociable instruction"); | 
|  |  | 
|  | // Mark the new EFLAGS operands as dead to be helpful to subsequent iterations | 
|  | // of this pass or other passes. The EFLAGS operands must be dead in these new | 
|  | // instructions because the EFLAGS operands in the original instructions must | 
|  | // be dead in order for reassociation to occur. | 
|  | NewOp1.setIsDead(); | 
|  | NewOp2.setIsDead(); | 
|  | } | 
|  |  | 
|  | std::pair<unsigned, unsigned> | 
|  | X86InstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { | 
|  | return std::make_pair(TF, 0u); | 
|  | } | 
|  |  | 
|  | ArrayRef<std::pair<unsigned, const char *>> | 
|  | X86InstrInfo::getSerializableDirectMachineOperandTargetFlags() const { | 
|  | using namespace X86II; | 
|  | static const std::pair<unsigned, const char *> TargetFlags[] = { | 
|  | {MO_GOT_ABSOLUTE_ADDRESS, "x86-got-absolute-address"}, | 
|  | {MO_PIC_BASE_OFFSET, "x86-pic-base-offset"}, | 
|  | {MO_GOT, "x86-got"}, | 
|  | {MO_GOTOFF, "x86-gotoff"}, | 
|  | {MO_GOTPCREL, "x86-gotpcrel"}, | 
|  | {MO_PLT, "x86-plt"}, | 
|  | {MO_TLSGD, "x86-tlsgd"}, | 
|  | {MO_TLSLD, "x86-tlsld"}, | 
|  | {MO_TLSLDM, "x86-tlsldm"}, | 
|  | {MO_GOTTPOFF, "x86-gottpoff"}, | 
|  | {MO_INDNTPOFF, "x86-indntpoff"}, | 
|  | {MO_TPOFF, "x86-tpoff"}, | 
|  | {MO_DTPOFF, "x86-dtpoff"}, | 
|  | {MO_NTPOFF, "x86-ntpoff"}, | 
|  | {MO_GOTNTPOFF, "x86-gotntpoff"}, | 
|  | {MO_DLLIMPORT, "x86-dllimport"}, | 
|  | {MO_DARWIN_NONLAZY, "x86-darwin-nonlazy"}, | 
|  | {MO_DARWIN_NONLAZY_PIC_BASE, "x86-darwin-nonlazy-pic-base"}, | 
|  | {MO_TLVP, "x86-tlvp"}, | 
|  | {MO_TLVP_PIC_BASE, "x86-tlvp-pic-base"}, | 
|  | {MO_SECREL, "x86-secrel"}, | 
|  | {MO_COFFSTUB, "x86-coffstub"}}; | 
|  | return makeArrayRef(TargetFlags); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | /// Create Global Base Reg pass. This initializes the PIC | 
|  | /// global base register for x86-32. | 
|  | struct CGBR : public MachineFunctionPass { | 
|  | static char ID; | 
|  | CGBR() : MachineFunctionPass(ID) {} | 
|  |  | 
|  | bool runOnMachineFunction(MachineFunction &MF) override { | 
|  | const X86TargetMachine *TM = | 
|  | static_cast<const X86TargetMachine *>(&MF.getTarget()); | 
|  | const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); | 
|  |  | 
|  | // Don't do anything in the 64-bit small and kernel code models. They use | 
|  | // RIP-relative addressing for everything. | 
|  | if (STI.is64Bit() && (TM->getCodeModel() == CodeModel::Small || | 
|  | TM->getCodeModel() == CodeModel::Kernel)) | 
|  | return false; | 
|  |  | 
|  | // Only emit a global base reg in PIC mode. | 
|  | if (!TM->isPositionIndependent()) | 
|  | return false; | 
|  |  | 
|  | X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); | 
|  | unsigned GlobalBaseReg = X86FI->getGlobalBaseReg(); | 
|  |  | 
|  | // If we didn't need a GlobalBaseReg, don't insert code. | 
|  | if (GlobalBaseReg == 0) | 
|  | return false; | 
|  |  | 
|  | // Insert the set of GlobalBaseReg into the first MBB of the function | 
|  | MachineBasicBlock &FirstMBB = MF.front(); | 
|  | MachineBasicBlock::iterator MBBI = FirstMBB.begin(); | 
|  | DebugLoc DL = FirstMBB.findDebugLoc(MBBI); | 
|  | MachineRegisterInfo &RegInfo = MF.getRegInfo(); | 
|  | const X86InstrInfo *TII = STI.getInstrInfo(); | 
|  |  | 
|  | unsigned PC; | 
|  | if (STI.isPICStyleGOT()) | 
|  | PC = RegInfo.createVirtualRegister(&X86::GR32RegClass); | 
|  | else | 
|  | PC = GlobalBaseReg; | 
|  |  | 
|  | if (STI.is64Bit()) { | 
|  | if (TM->getCodeModel() == CodeModel::Medium) { | 
|  | // In the medium code model, use a RIP-relative LEA to materialize the | 
|  | // GOT. | 
|  | BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PC) | 
|  | .addReg(X86::RIP) | 
|  | .addImm(0) | 
|  | .addReg(0) | 
|  | .addExternalSymbol("_GLOBAL_OFFSET_TABLE_") | 
|  | .addReg(0); | 
|  | } else if (TM->getCodeModel() == CodeModel::Large) { | 
|  | // Loading the GOT in the large code model requires math with labels, | 
|  | // so we use a pseudo instruction and expand it during MC emission. | 
|  | unsigned Scratch = RegInfo.createVirtualRegister(&X86::GR64RegClass); | 
|  | BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVGOT64r), PC) | 
|  | .addReg(Scratch, RegState::Undef | RegState::Define) | 
|  | .addExternalSymbol("_GLOBAL_OFFSET_TABLE_"); | 
|  | } else { | 
|  | llvm_unreachable("unexpected code model"); | 
|  | } | 
|  | } else { | 
|  | // Operand of MovePCtoStack is completely ignored by asm printer. It's | 
|  | // only used in JIT code emission as displacement to pc. | 
|  | BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0); | 
|  |  | 
|  | // If we're using vanilla 'GOT' PIC style, we should use relative | 
|  | // addressing not to pc, but to _GLOBAL_OFFSET_TABLE_ external. | 
|  | if (STI.isPICStyleGOT()) { | 
|  | // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], | 
|  | // %some_register | 
|  | BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg) | 
|  | .addReg(PC) | 
|  | .addExternalSymbol("_GLOBAL_OFFSET_TABLE_", | 
|  | X86II::MO_GOT_ABSOLUTE_ADDRESS); | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | StringRef getPassName() const override { | 
|  | return "X86 PIC Global Base Reg Initialization"; | 
|  | } | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.setPreservesCFG(); | 
|  | MachineFunctionPass::getAnalysisUsage(AU); | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | char CGBR::ID = 0; | 
|  | FunctionPass* | 
|  | llvm::createX86GlobalBaseRegPass() { return new CGBR(); } | 
|  |  | 
|  | namespace { | 
|  | struct LDTLSCleanup : public MachineFunctionPass { | 
|  | static char ID; | 
|  | LDTLSCleanup() : MachineFunctionPass(ID) {} | 
|  |  | 
|  | bool runOnMachineFunction(MachineFunction &MF) override { | 
|  | if (skipFunction(MF.getFunction())) | 
|  | return false; | 
|  |  | 
|  | X86MachineFunctionInfo *MFI = MF.getInfo<X86MachineFunctionInfo>(); | 
|  | if (MFI->getNumLocalDynamicTLSAccesses() < 2) { | 
|  | // No point folding accesses if there isn't at least two. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>(); | 
|  | return VisitNode(DT->getRootNode(), 0); | 
|  | } | 
|  |  | 
|  | // Visit the dominator subtree rooted at Node in pre-order. | 
|  | // If TLSBaseAddrReg is non-null, then use that to replace any | 
|  | // TLS_base_addr instructions. Otherwise, create the register | 
|  | // when the first such instruction is seen, and then use it | 
|  | // as we encounter more instructions. | 
|  | bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) { | 
|  | MachineBasicBlock *BB = Node->getBlock(); | 
|  | bool Changed = false; | 
|  |  | 
|  | // Traverse the current block. | 
|  | for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; | 
|  | ++I) { | 
|  | switch (I->getOpcode()) { | 
|  | case X86::TLS_base_addr32: | 
|  | case X86::TLS_base_addr64: | 
|  | if (TLSBaseAddrReg) | 
|  | I = ReplaceTLSBaseAddrCall(*I, TLSBaseAddrReg); | 
|  | else | 
|  | I = SetRegister(*I, &TLSBaseAddrReg); | 
|  | Changed = true; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Visit the children of this block in the dominator tree. | 
|  | for (MachineDomTreeNode::iterator I = Node->begin(), E = Node->end(); | 
|  | I != E; ++I) { | 
|  | Changed |= VisitNode(*I, TLSBaseAddrReg); | 
|  | } | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | // Replace the TLS_base_addr instruction I with a copy from | 
|  | // TLSBaseAddrReg, returning the new instruction. | 
|  | MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr &I, | 
|  | unsigned TLSBaseAddrReg) { | 
|  | MachineFunction *MF = I.getParent()->getParent(); | 
|  | const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>(); | 
|  | const bool is64Bit = STI.is64Bit(); | 
|  | const X86InstrInfo *TII = STI.getInstrInfo(); | 
|  |  | 
|  | // Insert a Copy from TLSBaseAddrReg to RAX/EAX. | 
|  | MachineInstr *Copy = | 
|  | BuildMI(*I.getParent(), I, I.getDebugLoc(), | 
|  | TII->get(TargetOpcode::COPY), is64Bit ? X86::RAX : X86::EAX) | 
|  | .addReg(TLSBaseAddrReg); | 
|  |  | 
|  | // Erase the TLS_base_addr instruction. | 
|  | I.eraseFromParent(); | 
|  |  | 
|  | return Copy; | 
|  | } | 
|  |  | 
|  | // Create a virtual register in *TLSBaseAddrReg, and populate it by | 
|  | // inserting a copy instruction after I. Returns the new instruction. | 
|  | MachineInstr *SetRegister(MachineInstr &I, unsigned *TLSBaseAddrReg) { | 
|  | MachineFunction *MF = I.getParent()->getParent(); | 
|  | const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>(); | 
|  | const bool is64Bit = STI.is64Bit(); | 
|  | const X86InstrInfo *TII = STI.getInstrInfo(); | 
|  |  | 
|  | // Create a virtual register for the TLS base address. | 
|  | MachineRegisterInfo &RegInfo = MF->getRegInfo(); | 
|  | *TLSBaseAddrReg = RegInfo.createVirtualRegister(is64Bit | 
|  | ? &X86::GR64RegClass | 
|  | : &X86::GR32RegClass); | 
|  |  | 
|  | // Insert a copy from RAX/EAX to TLSBaseAddrReg. | 
|  | MachineInstr *Next = I.getNextNode(); | 
|  | MachineInstr *Copy = | 
|  | BuildMI(*I.getParent(), Next, I.getDebugLoc(), | 
|  | TII->get(TargetOpcode::COPY), *TLSBaseAddrReg) | 
|  | .addReg(is64Bit ? X86::RAX : X86::EAX); | 
|  |  | 
|  | return Copy; | 
|  | } | 
|  |  | 
|  | StringRef getPassName() const override { | 
|  | return "Local Dynamic TLS Access Clean-up"; | 
|  | } | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.setPreservesCFG(); | 
|  | AU.addRequired<MachineDominatorTree>(); | 
|  | MachineFunctionPass::getAnalysisUsage(AU); | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | char LDTLSCleanup::ID = 0; | 
|  | FunctionPass* | 
|  | llvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); } | 
|  |  | 
|  | /// Constants defining how certain sequences should be outlined. | 
|  | /// | 
|  | /// \p MachineOutlinerDefault implies that the function is called with a call | 
|  | /// instruction, and a return must be emitted for the outlined function frame. | 
|  | /// | 
|  | /// That is, | 
|  | /// | 
|  | /// I1                                 OUTLINED_FUNCTION: | 
|  | /// I2 --> call OUTLINED_FUNCTION       I1 | 
|  | /// I3                                  I2 | 
|  | ///                                     I3 | 
|  | ///                                     ret | 
|  | /// | 
|  | /// * Call construction overhead: 1 (call instruction) | 
|  | /// * Frame construction overhead: 1 (return instruction) | 
|  | /// | 
|  | /// \p MachineOutlinerTailCall implies that the function is being tail called. | 
|  | /// A jump is emitted instead of a call, and the return is already present in | 
|  | /// the outlined sequence. That is, | 
|  | /// | 
|  | /// I1                                 OUTLINED_FUNCTION: | 
|  | /// I2 --> jmp OUTLINED_FUNCTION       I1 | 
|  | /// ret                                I2 | 
|  | ///                                    ret | 
|  | /// | 
|  | /// * Call construction overhead: 1 (jump instruction) | 
|  | /// * Frame construction overhead: 0 (don't need to return) | 
|  | /// | 
|  | enum MachineOutlinerClass { | 
|  | MachineOutlinerDefault, | 
|  | MachineOutlinerTailCall | 
|  | }; | 
|  |  | 
|  | outliner::OutlinedFunction X86InstrInfo::getOutliningCandidateInfo( | 
|  | std::vector<outliner::Candidate> &RepeatedSequenceLocs) const { | 
|  | unsigned SequenceSize = | 
|  | std::accumulate(RepeatedSequenceLocs[0].front(), | 
|  | std::next(RepeatedSequenceLocs[0].back()), 0, | 
|  | [](unsigned Sum, const MachineInstr &MI) { | 
|  | // FIXME: x86 doesn't implement getInstSizeInBytes, so | 
|  | // we can't tell the cost.  Just assume each instruction | 
|  | // is one byte. | 
|  | if (MI.isDebugInstr() || MI.isKill()) | 
|  | return Sum; | 
|  | return Sum + 1; | 
|  | }); | 
|  |  | 
|  | // FIXME: Use real size in bytes for call and ret instructions. | 
|  | if (RepeatedSequenceLocs[0].back()->isTerminator()) { | 
|  | for (outliner::Candidate &C : RepeatedSequenceLocs) | 
|  | C.setCallInfo(MachineOutlinerTailCall, 1); | 
|  |  | 
|  | return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize, | 
|  | 0, // Number of bytes to emit frame. | 
|  | MachineOutlinerTailCall // Type of frame. | 
|  | ); | 
|  | } | 
|  |  | 
|  | for (outliner::Candidate &C : RepeatedSequenceLocs) | 
|  | C.setCallInfo(MachineOutlinerDefault, 1); | 
|  |  | 
|  | return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize, 1, | 
|  | MachineOutlinerDefault); | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::isFunctionSafeToOutlineFrom(MachineFunction &MF, | 
|  | bool OutlineFromLinkOnceODRs) const { | 
|  | const Function &F = MF.getFunction(); | 
|  |  | 
|  | // Does the function use a red zone? If it does, then we can't risk messing | 
|  | // with the stack. | 
|  | if (!F.hasFnAttribute(Attribute::NoRedZone)) { | 
|  | // It could have a red zone. If it does, then we don't want to touch it. | 
|  | const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); | 
|  | if (!X86FI || X86FI->getUsesRedZone()) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If we *don't* want to outline from things that could potentially be deduped | 
|  | // then return false. | 
|  | if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage()) | 
|  | return false; | 
|  |  | 
|  | // This function is viable for outlining, so return true. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | outliner::InstrType | 
|  | X86InstrInfo::getOutliningType(MachineBasicBlock::iterator &MIT,  unsigned Flags) const { | 
|  | MachineInstr &MI = *MIT; | 
|  | // Don't allow debug values to impact outlining type. | 
|  | if (MI.isDebugInstr() || MI.isIndirectDebugValue()) | 
|  | return outliner::InstrType::Invisible; | 
|  |  | 
|  | // At this point, KILL instructions don't really tell us much so we can go | 
|  | // ahead and skip over them. | 
|  | if (MI.isKill()) | 
|  | return outliner::InstrType::Invisible; | 
|  |  | 
|  | // Is this a tail call? If yes, we can outline as a tail call. | 
|  | if (isTailCall(MI)) | 
|  | return outliner::InstrType::Legal; | 
|  |  | 
|  | // Is this the terminator of a basic block? | 
|  | if (MI.isTerminator() || MI.isReturn()) { | 
|  |  | 
|  | // Does its parent have any successors in its MachineFunction? | 
|  | if (MI.getParent()->succ_empty()) | 
|  | return outliner::InstrType::Legal; | 
|  |  | 
|  | // It does, so we can't tail call it. | 
|  | return outliner::InstrType::Illegal; | 
|  | } | 
|  |  | 
|  | // Don't outline anything that modifies or reads from the stack pointer. | 
|  | // | 
|  | // FIXME: There are instructions which are being manually built without | 
|  | // explicit uses/defs so we also have to check the MCInstrDesc. We should be | 
|  | // able to remove the extra checks once those are fixed up. For example, | 
|  | // sometimes we might get something like %rax = POP64r 1. This won't be | 
|  | // caught by modifiesRegister or readsRegister even though the instruction | 
|  | // really ought to be formed so that modifiesRegister/readsRegister would | 
|  | // catch it. | 
|  | if (MI.modifiesRegister(X86::RSP, &RI) || MI.readsRegister(X86::RSP, &RI) || | 
|  | MI.getDesc().hasImplicitUseOfPhysReg(X86::RSP) || | 
|  | MI.getDesc().hasImplicitDefOfPhysReg(X86::RSP)) | 
|  | return outliner::InstrType::Illegal; | 
|  |  | 
|  | // Outlined calls change the instruction pointer, so don't read from it. | 
|  | if (MI.readsRegister(X86::RIP, &RI) || | 
|  | MI.getDesc().hasImplicitUseOfPhysReg(X86::RIP) || | 
|  | MI.getDesc().hasImplicitDefOfPhysReg(X86::RIP)) | 
|  | return outliner::InstrType::Illegal; | 
|  |  | 
|  | // Positions can't safely be outlined. | 
|  | if (MI.isPosition()) | 
|  | return outliner::InstrType::Illegal; | 
|  |  | 
|  | // Make sure none of the operands of this instruction do anything tricky. | 
|  | for (const MachineOperand &MOP : MI.operands()) | 
|  | if (MOP.isCPI() || MOP.isJTI() || MOP.isCFIIndex() || MOP.isFI() || | 
|  | MOP.isTargetIndex()) | 
|  | return outliner::InstrType::Illegal; | 
|  |  | 
|  | return outliner::InstrType::Legal; | 
|  | } | 
|  |  | 
|  | void X86InstrInfo::buildOutlinedFrame(MachineBasicBlock &MBB, | 
|  | MachineFunction &MF, | 
|  | const outliner::OutlinedFunction &OF) | 
|  | const { | 
|  | // If we're a tail call, we already have a return, so don't do anything. | 
|  | if (OF.FrameConstructionID == MachineOutlinerTailCall) | 
|  | return; | 
|  |  | 
|  | // We're a normal call, so our sequence doesn't have a return instruction. | 
|  | // Add it in. | 
|  | MachineInstr *retq = BuildMI(MF, DebugLoc(), get(X86::RETQ)); | 
|  | MBB.insert(MBB.end(), retq); | 
|  | } | 
|  |  | 
|  | MachineBasicBlock::iterator | 
|  | X86InstrInfo::insertOutlinedCall(Module &M, MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator &It, | 
|  | MachineFunction &MF, | 
|  | const outliner::Candidate &C) const { | 
|  | // Is it a tail call? | 
|  | if (C.CallConstructionID == MachineOutlinerTailCall) { | 
|  | // Yes, just insert a JMP. | 
|  | It = MBB.insert(It, | 
|  | BuildMI(MF, DebugLoc(), get(X86::TAILJMPd64)) | 
|  | .addGlobalAddress(M.getNamedValue(MF.getName()))); | 
|  | } else { | 
|  | // No, insert a call. | 
|  | It = MBB.insert(It, | 
|  | BuildMI(MF, DebugLoc(), get(X86::CALL64pcrel32)) | 
|  | .addGlobalAddress(M.getNamedValue(MF.getName()))); | 
|  | } | 
|  |  | 
|  | return It; | 
|  | } |