|  | //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation  --*- C++ -*-===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements an analysis that determines, for a given memory | 
|  | // operation, what preceding memory operations it depends on.  It builds on | 
|  | // alias analysis information, and tries to provide a lazy, caching interface to | 
|  | // a common kind of alias information query. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #define DEBUG_TYPE "memdep" | 
|  | #include "llvm/Analysis/MemoryDependenceAnalysis.h" | 
|  | #include "llvm/Instructions.h" | 
|  | #include "llvm/IntrinsicInst.h" | 
|  | #include "llvm/Function.h" | 
|  | #include "llvm/Analysis/AliasAnalysis.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/Support/PredIteratorCache.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses"); | 
|  | STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses"); | 
|  | STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses"); | 
|  |  | 
|  | STATISTIC(NumCacheNonLocalPtr, | 
|  | "Number of fully cached non-local ptr responses"); | 
|  | STATISTIC(NumCacheDirtyNonLocalPtr, | 
|  | "Number of cached, but dirty, non-local ptr responses"); | 
|  | STATISTIC(NumUncacheNonLocalPtr, | 
|  | "Number of uncached non-local ptr responses"); | 
|  | STATISTIC(NumCacheCompleteNonLocalPtr, | 
|  | "Number of block queries that were completely cached"); | 
|  |  | 
|  | char MemoryDependenceAnalysis::ID = 0; | 
|  |  | 
|  | // Register this pass... | 
|  | static RegisterPass<MemoryDependenceAnalysis> X("memdep", | 
|  | "Memory Dependence Analysis", false, true); | 
|  |  | 
|  | MemoryDependenceAnalysis::MemoryDependenceAnalysis() | 
|  | : FunctionPass(&ID), PredCache(0) { | 
|  | } | 
|  | MemoryDependenceAnalysis::~MemoryDependenceAnalysis() { | 
|  | } | 
|  |  | 
|  | /// Clean up memory in between runs | 
|  | void MemoryDependenceAnalysis::releaseMemory() { | 
|  | LocalDeps.clear(); | 
|  | NonLocalDeps.clear(); | 
|  | NonLocalPointerDeps.clear(); | 
|  | ReverseLocalDeps.clear(); | 
|  | ReverseNonLocalDeps.clear(); | 
|  | ReverseNonLocalPtrDeps.clear(); | 
|  | PredCache->clear(); | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | /// getAnalysisUsage - Does not modify anything.  It uses Alias Analysis. | 
|  | /// | 
|  | void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { | 
|  | AU.setPreservesAll(); | 
|  | AU.addRequiredTransitive<AliasAnalysis>(); | 
|  | } | 
|  |  | 
|  | bool MemoryDependenceAnalysis::runOnFunction(Function &) { | 
|  | AA = &getAnalysis<AliasAnalysis>(); | 
|  | if (PredCache == 0) | 
|  | PredCache.reset(new PredIteratorCache()); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// RemoveFromReverseMap - This is a helper function that removes Val from | 
|  | /// 'Inst's set in ReverseMap.  If the set becomes empty, remove Inst's entry. | 
|  | template <typename KeyTy> | 
|  | static void RemoveFromReverseMap(DenseMap<Instruction*, | 
|  | SmallPtrSet<KeyTy, 4> > &ReverseMap, | 
|  | Instruction *Inst, KeyTy Val) { | 
|  | typename DenseMap<Instruction*, SmallPtrSet<KeyTy, 4> >::iterator | 
|  | InstIt = ReverseMap.find(Inst); | 
|  | assert(InstIt != ReverseMap.end() && "Reverse map out of sync?"); | 
|  | bool Found = InstIt->second.erase(Val); | 
|  | assert(Found && "Invalid reverse map!"); Found=Found; | 
|  | if (InstIt->second.empty()) | 
|  | ReverseMap.erase(InstIt); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// getCallSiteDependencyFrom - Private helper for finding the local | 
|  | /// dependencies of a call site. | 
|  | MemDepResult MemoryDependenceAnalysis:: | 
|  | getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall, | 
|  | BasicBlock::iterator ScanIt, BasicBlock *BB) { | 
|  | // Walk backwards through the block, looking for dependencies | 
|  | while (ScanIt != BB->begin()) { | 
|  | Instruction *Inst = --ScanIt; | 
|  |  | 
|  | // If this inst is a memory op, get the pointer it accessed | 
|  | Value *Pointer = 0; | 
|  | uint64_t PointerSize = 0; | 
|  | if (StoreInst *S = dyn_cast<StoreInst>(Inst)) { | 
|  | Pointer = S->getPointerOperand(); | 
|  | PointerSize = AA->getTypeStoreSize(S->getOperand(0)->getType()); | 
|  | } else if (VAArgInst *V = dyn_cast<VAArgInst>(Inst)) { | 
|  | Pointer = V->getOperand(0); | 
|  | PointerSize = AA->getTypeStoreSize(V->getType()); | 
|  | } else if (FreeInst *F = dyn_cast<FreeInst>(Inst)) { | 
|  | Pointer = F->getPointerOperand(); | 
|  |  | 
|  | // FreeInsts erase the entire structure | 
|  | PointerSize = ~0ULL; | 
|  | } else if (isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) { | 
|  | // Debug intrinsics don't cause dependences. | 
|  | if (isa<DbgInfoIntrinsic>(Inst)) continue; | 
|  | CallSite InstCS = CallSite::get(Inst); | 
|  | // If these two calls do not interfere, look past it. | 
|  | switch (AA->getModRefInfo(CS, InstCS)) { | 
|  | case AliasAnalysis::NoModRef: | 
|  | // If the two calls don't interact (e.g. InstCS is readnone) keep | 
|  | // scanning. | 
|  | continue; | 
|  | case AliasAnalysis::Ref: | 
|  | // If the two calls read the same memory locations and CS is a readonly | 
|  | // function, then we have two cases: 1) the calls may not interfere with | 
|  | // each other at all.  2) the calls may produce the same value.  In case | 
|  | // #1 we want to ignore the values, in case #2, we want to return Inst | 
|  | // as a Def dependence.  This allows us to CSE in cases like: | 
|  | //   X = strlen(P); | 
|  | //    memchr(...); | 
|  | //   Y = strlen(P);  // Y = X | 
|  | if (isReadOnlyCall) { | 
|  | if (CS.getCalledFunction() != 0 && | 
|  | CS.getCalledFunction() == InstCS.getCalledFunction()) | 
|  | return MemDepResult::getDef(Inst); | 
|  | // Ignore unrelated read/read call dependences. | 
|  | continue; | 
|  | } | 
|  | // FALL THROUGH | 
|  | default: | 
|  | return MemDepResult::getClobber(Inst); | 
|  | } | 
|  | } else { | 
|  | // Non-memory instruction. | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (AA->getModRefInfo(CS, Pointer, PointerSize) != AliasAnalysis::NoModRef) | 
|  | return MemDepResult::getClobber(Inst); | 
|  | } | 
|  |  | 
|  | // No dependence found.  If this is the entry block of the function, it is a | 
|  | // clobber, otherwise it is non-local. | 
|  | if (BB != &BB->getParent()->getEntryBlock()) | 
|  | return MemDepResult::getNonLocal(); | 
|  | return MemDepResult::getClobber(ScanIt); | 
|  | } | 
|  |  | 
|  | /// getPointerDependencyFrom - Return the instruction on which a memory | 
|  | /// location depends.  If isLoad is true, this routine ignore may-aliases with | 
|  | /// read-only operations. | 
|  | MemDepResult MemoryDependenceAnalysis:: | 
|  | getPointerDependencyFrom(Value *MemPtr, uint64_t MemSize, bool isLoad, | 
|  | BasicBlock::iterator ScanIt, BasicBlock *BB) { | 
|  |  | 
|  | // Walk backwards through the basic block, looking for dependencies. | 
|  | while (ScanIt != BB->begin()) { | 
|  | Instruction *Inst = --ScanIt; | 
|  |  | 
|  | // Debug intrinsics don't cause dependences. | 
|  | if (isa<DbgInfoIntrinsic>(Inst)) continue; | 
|  |  | 
|  | // Values depend on loads if the pointers are must aliased.  This means that | 
|  | // a load depends on another must aliased load from the same value. | 
|  | if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { | 
|  | Value *Pointer = LI->getPointerOperand(); | 
|  | uint64_t PointerSize = AA->getTypeStoreSize(LI->getType()); | 
|  |  | 
|  | // If we found a pointer, check if it could be the same as our pointer. | 
|  | AliasAnalysis::AliasResult R = | 
|  | AA->alias(Pointer, PointerSize, MemPtr, MemSize); | 
|  | if (R == AliasAnalysis::NoAlias) | 
|  | continue; | 
|  |  | 
|  | // May-alias loads don't depend on each other without a dependence. | 
|  | if (isLoad && R == AliasAnalysis::MayAlias) | 
|  | continue; | 
|  | // Stores depend on may and must aliased loads, loads depend on must-alias | 
|  | // loads. | 
|  | return MemDepResult::getDef(Inst); | 
|  | } | 
|  |  | 
|  | if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { | 
|  | // If alias analysis can tell that this store is guaranteed to not modify | 
|  | // the query pointer, ignore it.  Use getModRefInfo to handle cases where | 
|  | // the query pointer points to constant memory etc. | 
|  | if (AA->getModRefInfo(SI, MemPtr, MemSize) == AliasAnalysis::NoModRef) | 
|  | continue; | 
|  |  | 
|  | // Ok, this store might clobber the query pointer.  Check to see if it is | 
|  | // a must alias: in this case, we want to return this as a def. | 
|  | Value *Pointer = SI->getPointerOperand(); | 
|  | uint64_t PointerSize = AA->getTypeStoreSize(SI->getOperand(0)->getType()); | 
|  |  | 
|  | // If we found a pointer, check if it could be the same as our pointer. | 
|  | AliasAnalysis::AliasResult R = | 
|  | AA->alias(Pointer, PointerSize, MemPtr, MemSize); | 
|  |  | 
|  | if (R == AliasAnalysis::NoAlias) | 
|  | continue; | 
|  | if (R == AliasAnalysis::MayAlias) | 
|  | return MemDepResult::getClobber(Inst); | 
|  | return MemDepResult::getDef(Inst); | 
|  | } | 
|  |  | 
|  | // If this is an allocation, and if we know that the accessed pointer is to | 
|  | // the allocation, return Def.  This means that there is no dependence and | 
|  | // the access can be optimized based on that.  For example, a load could | 
|  | // turn into undef. | 
|  | if (AllocationInst *AI = dyn_cast<AllocationInst>(Inst)) { | 
|  | Value *AccessPtr = MemPtr->getUnderlyingObject(); | 
|  |  | 
|  | if (AccessPtr == AI || | 
|  | AA->alias(AI, 1, AccessPtr, 1) == AliasAnalysis::MustAlias) | 
|  | return MemDepResult::getDef(AI); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer. | 
|  | switch (AA->getModRefInfo(Inst, MemPtr, MemSize)) { | 
|  | case AliasAnalysis::NoModRef: | 
|  | // If the call has no effect on the queried pointer, just ignore it. | 
|  | continue; | 
|  | case AliasAnalysis::Ref: | 
|  | // If the call is known to never store to the pointer, and if this is a | 
|  | // load query, we can safely ignore it (scan past it). | 
|  | if (isLoad) | 
|  | continue; | 
|  | // FALL THROUGH. | 
|  | default: | 
|  | // Otherwise, there is a potential dependence.  Return a clobber. | 
|  | return MemDepResult::getClobber(Inst); | 
|  | } | 
|  | } | 
|  |  | 
|  | // No dependence found.  If this is the entry block of the function, it is a | 
|  | // clobber, otherwise it is non-local. | 
|  | if (BB != &BB->getParent()->getEntryBlock()) | 
|  | return MemDepResult::getNonLocal(); | 
|  | return MemDepResult::getClobber(ScanIt); | 
|  | } | 
|  |  | 
|  | /// getDependency - Return the instruction on which a memory operation | 
|  | /// depends. | 
|  | MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) { | 
|  | Instruction *ScanPos = QueryInst; | 
|  |  | 
|  | // Check for a cached result | 
|  | MemDepResult &LocalCache = LocalDeps[QueryInst]; | 
|  |  | 
|  | // If the cached entry is non-dirty, just return it.  Note that this depends | 
|  | // on MemDepResult's default constructing to 'dirty'. | 
|  | if (!LocalCache.isDirty()) | 
|  | return LocalCache; | 
|  |  | 
|  | // Otherwise, if we have a dirty entry, we know we can start the scan at that | 
|  | // instruction, which may save us some work. | 
|  | if (Instruction *Inst = LocalCache.getInst()) { | 
|  | ScanPos = Inst; | 
|  |  | 
|  | RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst); | 
|  | } | 
|  |  | 
|  | BasicBlock *QueryParent = QueryInst->getParent(); | 
|  |  | 
|  | Value *MemPtr = 0; | 
|  | uint64_t MemSize = 0; | 
|  |  | 
|  | // Do the scan. | 
|  | if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) { | 
|  | // No dependence found.  If this is the entry block of the function, it is a | 
|  | // clobber, otherwise it is non-local. | 
|  | if (QueryParent != &QueryParent->getParent()->getEntryBlock()) | 
|  | LocalCache = MemDepResult::getNonLocal(); | 
|  | else | 
|  | LocalCache = MemDepResult::getClobber(QueryInst); | 
|  | } else if (StoreInst *SI = dyn_cast<StoreInst>(QueryInst)) { | 
|  | // If this is a volatile store, don't mess around with it.  Just return the | 
|  | // previous instruction as a clobber. | 
|  | if (SI->isVolatile()) | 
|  | LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos)); | 
|  | else { | 
|  | MemPtr = SI->getPointerOperand(); | 
|  | MemSize = AA->getTypeStoreSize(SI->getOperand(0)->getType()); | 
|  | } | 
|  | } else if (LoadInst *LI = dyn_cast<LoadInst>(QueryInst)) { | 
|  | // If this is a volatile load, don't mess around with it.  Just return the | 
|  | // previous instruction as a clobber. | 
|  | if (LI->isVolatile()) | 
|  | LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos)); | 
|  | else { | 
|  | MemPtr = LI->getPointerOperand(); | 
|  | MemSize = AA->getTypeStoreSize(LI->getType()); | 
|  | } | 
|  | } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) { | 
|  | CallSite QueryCS = CallSite::get(QueryInst); | 
|  | bool isReadOnly = AA->onlyReadsMemory(QueryCS); | 
|  | LocalCache = getCallSiteDependencyFrom(QueryCS, isReadOnly, ScanPos, | 
|  | QueryParent); | 
|  | } else if (FreeInst *FI = dyn_cast<FreeInst>(QueryInst)) { | 
|  | MemPtr = FI->getPointerOperand(); | 
|  | // FreeInsts erase the entire structure, not just a field. | 
|  | MemSize = ~0UL; | 
|  | } else { | 
|  | // Non-memory instruction. | 
|  | LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos)); | 
|  | } | 
|  |  | 
|  | // If we need to do a pointer scan, make it happen. | 
|  | if (MemPtr) | 
|  | LocalCache = getPointerDependencyFrom(MemPtr, MemSize, | 
|  | isa<LoadInst>(QueryInst), | 
|  | ScanPos, QueryParent); | 
|  |  | 
|  | // Remember the result! | 
|  | if (Instruction *I = LocalCache.getInst()) | 
|  | ReverseLocalDeps[I].insert(QueryInst); | 
|  |  | 
|  | return LocalCache; | 
|  | } | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | /// AssertSorted - This method is used when -debug is specified to verify that | 
|  | /// cache arrays are properly kept sorted. | 
|  | static void AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo &Cache, | 
|  | int Count = -1) { | 
|  | if (Count == -1) Count = Cache.size(); | 
|  | if (Count == 0) return; | 
|  |  | 
|  | for (unsigned i = 1; i != unsigned(Count); ++i) | 
|  | assert(Cache[i-1] <= Cache[i] && "Cache isn't sorted!"); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /// getNonLocalCallDependency - Perform a full dependency query for the | 
|  | /// specified call, returning the set of blocks that the value is | 
|  | /// potentially live across.  The returned set of results will include a | 
|  | /// "NonLocal" result for all blocks where the value is live across. | 
|  | /// | 
|  | /// This method assumes the instruction returns a "NonLocal" dependency | 
|  | /// within its own block. | 
|  | /// | 
|  | /// This returns a reference to an internal data structure that may be | 
|  | /// invalidated on the next non-local query or when an instruction is | 
|  | /// removed.  Clients must copy this data if they want it around longer than | 
|  | /// that. | 
|  | const MemoryDependenceAnalysis::NonLocalDepInfo & | 
|  | MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) { | 
|  | assert(getDependency(QueryCS.getInstruction()).isNonLocal() && | 
|  | "getNonLocalCallDependency should only be used on calls with non-local deps!"); | 
|  | PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()]; | 
|  | NonLocalDepInfo &Cache = CacheP.first; | 
|  |  | 
|  | /// DirtyBlocks - This is the set of blocks that need to be recomputed.  In | 
|  | /// the cached case, this can happen due to instructions being deleted etc. In | 
|  | /// the uncached case, this starts out as the set of predecessors we care | 
|  | /// about. | 
|  | SmallVector<BasicBlock*, 32> DirtyBlocks; | 
|  |  | 
|  | if (!Cache.empty()) { | 
|  | // Okay, we have a cache entry.  If we know it is not dirty, just return it | 
|  | // with no computation. | 
|  | if (!CacheP.second) { | 
|  | NumCacheNonLocal++; | 
|  | return Cache; | 
|  | } | 
|  |  | 
|  | // If we already have a partially computed set of results, scan them to | 
|  | // determine what is dirty, seeding our initial DirtyBlocks worklist. | 
|  | for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end(); | 
|  | I != E; ++I) | 
|  | if (I->second.isDirty()) | 
|  | DirtyBlocks.push_back(I->first); | 
|  |  | 
|  | // Sort the cache so that we can do fast binary search lookups below. | 
|  | std::sort(Cache.begin(), Cache.end()); | 
|  |  | 
|  | ++NumCacheDirtyNonLocal; | 
|  | //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: " | 
|  | //     << Cache.size() << " cached: " << *QueryInst; | 
|  | } else { | 
|  | // Seed DirtyBlocks with each of the preds of QueryInst's block. | 
|  | BasicBlock *QueryBB = QueryCS.getInstruction()->getParent(); | 
|  | for (BasicBlock **PI = PredCache->GetPreds(QueryBB); *PI; ++PI) | 
|  | DirtyBlocks.push_back(*PI); | 
|  | NumUncacheNonLocal++; | 
|  | } | 
|  |  | 
|  | // isReadonlyCall - If this is a read-only call, we can be more aggressive. | 
|  | bool isReadonlyCall = AA->onlyReadsMemory(QueryCS); | 
|  |  | 
|  | SmallPtrSet<BasicBlock*, 64> Visited; | 
|  |  | 
|  | unsigned NumSortedEntries = Cache.size(); | 
|  | DEBUG(AssertSorted(Cache)); | 
|  |  | 
|  | // Iterate while we still have blocks to update. | 
|  | while (!DirtyBlocks.empty()) { | 
|  | BasicBlock *DirtyBB = DirtyBlocks.back(); | 
|  | DirtyBlocks.pop_back(); | 
|  |  | 
|  | // Already processed this block? | 
|  | if (!Visited.insert(DirtyBB)) | 
|  | continue; | 
|  |  | 
|  | // Do a binary search to see if we already have an entry for this block in | 
|  | // the cache set.  If so, find it. | 
|  | DEBUG(AssertSorted(Cache, NumSortedEntries)); | 
|  | NonLocalDepInfo::iterator Entry = | 
|  | std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries, | 
|  | std::make_pair(DirtyBB, MemDepResult())); | 
|  | if (Entry != Cache.begin() && prior(Entry)->first == DirtyBB) | 
|  | --Entry; | 
|  |  | 
|  | MemDepResult *ExistingResult = 0; | 
|  | if (Entry != Cache.begin()+NumSortedEntries && | 
|  | Entry->first == DirtyBB) { | 
|  | // If we already have an entry, and if it isn't already dirty, the block | 
|  | // is done. | 
|  | if (!Entry->second.isDirty()) | 
|  | continue; | 
|  |  | 
|  | // Otherwise, remember this slot so we can update the value. | 
|  | ExistingResult = &Entry->second; | 
|  | } | 
|  |  | 
|  | // If the dirty entry has a pointer, start scanning from it so we don't have | 
|  | // to rescan the entire block. | 
|  | BasicBlock::iterator ScanPos = DirtyBB->end(); | 
|  | if (ExistingResult) { | 
|  | if (Instruction *Inst = ExistingResult->getInst()) { | 
|  | ScanPos = Inst; | 
|  | // We're removing QueryInst's use of Inst. | 
|  | RemoveFromReverseMap(ReverseNonLocalDeps, Inst, | 
|  | QueryCS.getInstruction()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Find out if this block has a local dependency for QueryInst. | 
|  | MemDepResult Dep; | 
|  |  | 
|  | if (ScanPos != DirtyBB->begin()) { | 
|  | Dep = getCallSiteDependencyFrom(QueryCS, isReadonlyCall,ScanPos, DirtyBB); | 
|  | } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) { | 
|  | // No dependence found.  If this is the entry block of the function, it is | 
|  | // a clobber, otherwise it is non-local. | 
|  | Dep = MemDepResult::getNonLocal(); | 
|  | } else { | 
|  | Dep = MemDepResult::getClobber(ScanPos); | 
|  | } | 
|  |  | 
|  | // If we had a dirty entry for the block, update it.  Otherwise, just add | 
|  | // a new entry. | 
|  | if (ExistingResult) | 
|  | *ExistingResult = Dep; | 
|  | else | 
|  | Cache.push_back(std::make_pair(DirtyBB, Dep)); | 
|  |  | 
|  | // If the block has a dependency (i.e. it isn't completely transparent to | 
|  | // the value), remember the association! | 
|  | if (!Dep.isNonLocal()) { | 
|  | // Keep the ReverseNonLocalDeps map up to date so we can efficiently | 
|  | // update this when we remove instructions. | 
|  | if (Instruction *Inst = Dep.getInst()) | 
|  | ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction()); | 
|  | } else { | 
|  |  | 
|  | // If the block *is* completely transparent to the load, we need to check | 
|  | // the predecessors of this block.  Add them to our worklist. | 
|  | for (BasicBlock **PI = PredCache->GetPreds(DirtyBB); *PI; ++PI) | 
|  | DirtyBlocks.push_back(*PI); | 
|  | } | 
|  | } | 
|  |  | 
|  | return Cache; | 
|  | } | 
|  |  | 
|  | /// getNonLocalPointerDependency - Perform a full dependency query for an | 
|  | /// access to the specified (non-volatile) memory location, returning the | 
|  | /// set of instructions that either define or clobber the value. | 
|  | /// | 
|  | /// This method assumes the pointer has a "NonLocal" dependency within its | 
|  | /// own block. | 
|  | /// | 
|  | void MemoryDependenceAnalysis:: | 
|  | getNonLocalPointerDependency(Value *Pointer, bool isLoad, BasicBlock *FromBB, | 
|  | SmallVectorImpl<NonLocalDepEntry> &Result) { | 
|  | assert(isa<PointerType>(Pointer->getType()) && | 
|  | "Can't get pointer deps of a non-pointer!"); | 
|  | Result.clear(); | 
|  |  | 
|  | // We know that the pointer value is live into FromBB find the def/clobbers | 
|  | // from presecessors. | 
|  | const Type *EltTy = cast<PointerType>(Pointer->getType())->getElementType(); | 
|  | uint64_t PointeeSize = AA->getTypeStoreSize(EltTy); | 
|  |  | 
|  | // This is the set of blocks we've inspected, and the pointer we consider in | 
|  | // each block.  Because of critical edges, we currently bail out if querying | 
|  | // a block with multiple different pointers.  This can happen during PHI | 
|  | // translation. | 
|  | DenseMap<BasicBlock*, Value*> Visited; | 
|  | if (!getNonLocalPointerDepFromBB(Pointer, PointeeSize, isLoad, FromBB, | 
|  | Result, Visited, true)) | 
|  | return; | 
|  | Result.clear(); | 
|  | Result.push_back(std::make_pair(FromBB, | 
|  | MemDepResult::getClobber(FromBB->begin()))); | 
|  | } | 
|  |  | 
|  | /// GetNonLocalInfoForBlock - Compute the memdep value for BB with | 
|  | /// Pointer/PointeeSize using either cached information in Cache or by doing a | 
|  | /// lookup (which may use dirty cache info if available).  If we do a lookup, | 
|  | /// add the result to the cache. | 
|  | MemDepResult MemoryDependenceAnalysis:: | 
|  | GetNonLocalInfoForBlock(Value *Pointer, uint64_t PointeeSize, | 
|  | bool isLoad, BasicBlock *BB, | 
|  | NonLocalDepInfo *Cache, unsigned NumSortedEntries) { | 
|  |  | 
|  | // Do a binary search to see if we already have an entry for this block in | 
|  | // the cache set.  If so, find it. | 
|  | NonLocalDepInfo::iterator Entry = | 
|  | std::upper_bound(Cache->begin(), Cache->begin()+NumSortedEntries, | 
|  | std::make_pair(BB, MemDepResult())); | 
|  | if (Entry != Cache->begin() && prior(Entry)->first == BB) | 
|  | --Entry; | 
|  |  | 
|  | MemDepResult *ExistingResult = 0; | 
|  | if (Entry != Cache->begin()+NumSortedEntries && Entry->first == BB) | 
|  | ExistingResult = &Entry->second; | 
|  |  | 
|  | // If we have a cached entry, and it is non-dirty, use it as the value for | 
|  | // this dependency. | 
|  | if (ExistingResult && !ExistingResult->isDirty()) { | 
|  | ++NumCacheNonLocalPtr; | 
|  | return *ExistingResult; | 
|  | } | 
|  |  | 
|  | // Otherwise, we have to scan for the value.  If we have a dirty cache | 
|  | // entry, start scanning from its position, otherwise we scan from the end | 
|  | // of the block. | 
|  | BasicBlock::iterator ScanPos = BB->end(); | 
|  | if (ExistingResult && ExistingResult->getInst()) { | 
|  | assert(ExistingResult->getInst()->getParent() == BB && | 
|  | "Instruction invalidated?"); | 
|  | ++NumCacheDirtyNonLocalPtr; | 
|  | ScanPos = ExistingResult->getInst(); | 
|  |  | 
|  | // Eliminating the dirty entry from 'Cache', so update the reverse info. | 
|  | ValueIsLoadPair CacheKey(Pointer, isLoad); | 
|  | RemoveFromReverseMap(ReverseNonLocalPtrDeps, ScanPos, CacheKey); | 
|  | } else { | 
|  | ++NumUncacheNonLocalPtr; | 
|  | } | 
|  |  | 
|  | // Scan the block for the dependency. | 
|  | MemDepResult Dep = getPointerDependencyFrom(Pointer, PointeeSize, isLoad, | 
|  | ScanPos, BB); | 
|  |  | 
|  | // If we had a dirty entry for the block, update it.  Otherwise, just add | 
|  | // a new entry. | 
|  | if (ExistingResult) | 
|  | *ExistingResult = Dep; | 
|  | else | 
|  | Cache->push_back(std::make_pair(BB, Dep)); | 
|  |  | 
|  | // If the block has a dependency (i.e. it isn't completely transparent to | 
|  | // the value), remember the reverse association because we just added it | 
|  | // to Cache! | 
|  | if (Dep.isNonLocal()) | 
|  | return Dep; | 
|  |  | 
|  | // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently | 
|  | // update MemDep when we remove instructions. | 
|  | Instruction *Inst = Dep.getInst(); | 
|  | assert(Inst && "Didn't depend on anything?"); | 
|  | ValueIsLoadPair CacheKey(Pointer, isLoad); | 
|  | ReverseNonLocalPtrDeps[Inst].insert(CacheKey); | 
|  | return Dep; | 
|  | } | 
|  |  | 
|  | /// SortNonLocalDepInfoCache - Sort the a NonLocalDepInfo cache, given a certain | 
|  | /// number of elements in the array that are already properly ordered.  This is | 
|  | /// optimized for the case when only a few entries are added. | 
|  | static void | 
|  | SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache, | 
|  | unsigned NumSortedEntries) { | 
|  | switch (Cache.size() - NumSortedEntries) { | 
|  | case 0: | 
|  | // done, no new entries. | 
|  | break; | 
|  | case 2: { | 
|  | // Two new entries, insert the last one into place. | 
|  | MemoryDependenceAnalysis::NonLocalDepEntry Val = Cache.back(); | 
|  | Cache.pop_back(); | 
|  | MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry = | 
|  | std::upper_bound(Cache.begin(), Cache.end()-1, Val); | 
|  | Cache.insert(Entry, Val); | 
|  | // FALL THROUGH. | 
|  | } | 
|  | case 1: | 
|  | // One new entry, Just insert the new value at the appropriate position. | 
|  | if (Cache.size() != 1) { | 
|  | MemoryDependenceAnalysis::NonLocalDepEntry Val = Cache.back(); | 
|  | Cache.pop_back(); | 
|  | MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry = | 
|  | std::upper_bound(Cache.begin(), Cache.end(), Val); | 
|  | Cache.insert(Entry, Val); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | // Added many values, do a full scale sort. | 
|  | std::sort(Cache.begin(), Cache.end()); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /// getNonLocalPointerDepFromBB - Perform a dependency query based on | 
|  | /// pointer/pointeesize starting at the end of StartBB.  Add any clobber/def | 
|  | /// results to the results vector and keep track of which blocks are visited in | 
|  | /// 'Visited'. | 
|  | /// | 
|  | /// This has special behavior for the first block queries (when SkipFirstBlock | 
|  | /// is true).  In this special case, it ignores the contents of the specified | 
|  | /// block and starts returning dependence info for its predecessors. | 
|  | /// | 
|  | /// This function returns false on success, or true to indicate that it could | 
|  | /// not compute dependence information for some reason.  This should be treated | 
|  | /// as a clobber dependence on the first instruction in the predecessor block. | 
|  | bool MemoryDependenceAnalysis:: | 
|  | getNonLocalPointerDepFromBB(Value *Pointer, uint64_t PointeeSize, | 
|  | bool isLoad, BasicBlock *StartBB, | 
|  | SmallVectorImpl<NonLocalDepEntry> &Result, | 
|  | DenseMap<BasicBlock*, Value*> &Visited, | 
|  | bool SkipFirstBlock) { | 
|  |  | 
|  | // Look up the cached info for Pointer. | 
|  | ValueIsLoadPair CacheKey(Pointer, isLoad); | 
|  |  | 
|  | std::pair<BBSkipFirstBlockPair, NonLocalDepInfo> *CacheInfo = | 
|  | &NonLocalPointerDeps[CacheKey]; | 
|  | NonLocalDepInfo *Cache = &CacheInfo->second; | 
|  |  | 
|  | // If we have valid cached information for exactly the block we are | 
|  | // investigating, just return it with no recomputation. | 
|  | if (CacheInfo->first == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) { | 
|  | // We have a fully cached result for this query then we can just return the | 
|  | // cached results and populate the visited set.  However, we have to verify | 
|  | // that we don't already have conflicting results for these blocks.  Check | 
|  | // to ensure that if a block in the results set is in the visited set that | 
|  | // it was for the same pointer query. | 
|  | if (!Visited.empty()) { | 
|  | for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end(); | 
|  | I != E; ++I) { | 
|  | DenseMap<BasicBlock*, Value*>::iterator VI = Visited.find(I->first); | 
|  | if (VI == Visited.end() || VI->second == Pointer) continue; | 
|  |  | 
|  | // We have a pointer mismatch in a block.  Just return clobber, saying | 
|  | // that something was clobbered in this result.  We could also do a | 
|  | // non-fully cached query, but there is little point in doing this. | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end(); | 
|  | I != E; ++I) { | 
|  | Visited.insert(std::make_pair(I->first, Pointer)); | 
|  | if (!I->second.isNonLocal()) | 
|  | Result.push_back(*I); | 
|  | } | 
|  | ++NumCacheCompleteNonLocalPtr; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Otherwise, either this is a new block, a block with an invalid cache | 
|  | // pointer or one that we're about to invalidate by putting more info into it | 
|  | // than its valid cache info.  If empty, the result will be valid cache info, | 
|  | // otherwise it isn't. | 
|  | if (Cache->empty()) | 
|  | CacheInfo->first = BBSkipFirstBlockPair(StartBB, SkipFirstBlock); | 
|  | else | 
|  | CacheInfo->first = BBSkipFirstBlockPair(); | 
|  |  | 
|  | SmallVector<BasicBlock*, 32> Worklist; | 
|  | Worklist.push_back(StartBB); | 
|  |  | 
|  | // Keep track of the entries that we know are sorted.  Previously cached | 
|  | // entries will all be sorted.  The entries we add we only sort on demand (we | 
|  | // don't insert every element into its sorted position).  We know that we | 
|  | // won't get any reuse from currently inserted values, because we don't | 
|  | // revisit blocks after we insert info for them. | 
|  | unsigned NumSortedEntries = Cache->size(); | 
|  | DEBUG(AssertSorted(*Cache)); | 
|  |  | 
|  | while (!Worklist.empty()) { | 
|  | BasicBlock *BB = Worklist.pop_back_val(); | 
|  |  | 
|  | // Skip the first block if we have it. | 
|  | if (!SkipFirstBlock) { | 
|  | // Analyze the dependency of *Pointer in FromBB.  See if we already have | 
|  | // been here. | 
|  | assert(Visited.count(BB) && "Should check 'visited' before adding to WL"); | 
|  |  | 
|  | // Get the dependency info for Pointer in BB.  If we have cached | 
|  | // information, we will use it, otherwise we compute it. | 
|  | DEBUG(AssertSorted(*Cache, NumSortedEntries)); | 
|  | MemDepResult Dep = GetNonLocalInfoForBlock(Pointer, PointeeSize, isLoad, | 
|  | BB, Cache, NumSortedEntries); | 
|  |  | 
|  | // If we got a Def or Clobber, add this to the list of results. | 
|  | if (!Dep.isNonLocal()) { | 
|  | Result.push_back(NonLocalDepEntry(BB, Dep)); | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If 'Pointer' is an instruction defined in this block, then we need to do | 
|  | // phi translation to change it into a value live in the predecessor block. | 
|  | // If phi translation fails, then we can't continue dependence analysis. | 
|  | Instruction *PtrInst = dyn_cast<Instruction>(Pointer); | 
|  | bool NeedsPHITranslation = PtrInst && PtrInst->getParent() == BB; | 
|  |  | 
|  | // If no PHI translation is needed, just add all the predecessors of this | 
|  | // block to scan them as well. | 
|  | if (!NeedsPHITranslation) { | 
|  | SkipFirstBlock = false; | 
|  | for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) { | 
|  | // Verify that we haven't looked at this block yet. | 
|  | std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool> | 
|  | InsertRes = Visited.insert(std::make_pair(*PI, Pointer)); | 
|  | if (InsertRes.second) { | 
|  | // First time we've looked at *PI. | 
|  | Worklist.push_back(*PI); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If we have seen this block before, but it was with a different | 
|  | // pointer then we have a phi translation failure and we have to treat | 
|  | // this as a clobber. | 
|  | if (InsertRes.first->second != Pointer) | 
|  | goto PredTranslationFailure; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If we do need to do phi translation, then there are a bunch of different | 
|  | // cases, because we have to find a Value* live in the predecessor block. We | 
|  | // know that PtrInst is defined in this block at least. | 
|  |  | 
|  | // We may have added values to the cache list before this PHI translation. | 
|  | // If so, we haven't done anything to ensure that the cache remains sorted. | 
|  | // Sort it now (if needed) so that recursive invocations of | 
|  | // getNonLocalPointerDepFromBB and other routines that could reuse the cache | 
|  | // value will only see properly sorted cache arrays. | 
|  | if (Cache && NumSortedEntries != Cache->size()) { | 
|  | SortNonLocalDepInfoCache(*Cache, NumSortedEntries); | 
|  | NumSortedEntries = Cache->size(); | 
|  | } | 
|  |  | 
|  | // If this is directly a PHI node, just use the incoming values for each | 
|  | // pred as the phi translated version. | 
|  | if (PHINode *PtrPHI = dyn_cast<PHINode>(PtrInst)) { | 
|  | Cache = 0; | 
|  |  | 
|  | for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) { | 
|  | BasicBlock *Pred = *PI; | 
|  | Value *PredPtr = PtrPHI->getIncomingValueForBlock(Pred); | 
|  |  | 
|  | // Check to see if we have already visited this pred block with another | 
|  | // pointer.  If so, we can't do this lookup.  This failure can occur | 
|  | // with PHI translation when a critical edge exists and the PHI node in | 
|  | // the successor translates to a pointer value different than the | 
|  | // pointer the block was first analyzed with. | 
|  | std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool> | 
|  | InsertRes = Visited.insert(std::make_pair(Pred, PredPtr)); | 
|  |  | 
|  | if (!InsertRes.second) { | 
|  | // If the predecessor was visited with PredPtr, then we already did | 
|  | // the analysis and can ignore it. | 
|  | if (InsertRes.first->second == PredPtr) | 
|  | continue; | 
|  |  | 
|  | // Otherwise, the block was previously analyzed with a different | 
|  | // pointer.  We can't represent the result of this case, so we just | 
|  | // treat this as a phi translation failure. | 
|  | goto PredTranslationFailure; | 
|  | } | 
|  |  | 
|  | // FIXME: it is entirely possible that PHI translating will end up with | 
|  | // the same value.  Consider PHI translating something like: | 
|  | // X = phi [x, bb1], [y, bb2].  PHI translating for bb1 doesn't *need* | 
|  | // to recurse here, pedantically speaking. | 
|  |  | 
|  | // If we have a problem phi translating, fall through to the code below | 
|  | // to handle the failure condition. | 
|  | if (getNonLocalPointerDepFromBB(PredPtr, PointeeSize, isLoad, Pred, | 
|  | Result, Visited)) | 
|  | goto PredTranslationFailure; | 
|  | } | 
|  |  | 
|  | // Refresh the CacheInfo/Cache pointer so that it isn't invalidated. | 
|  | CacheInfo = &NonLocalPointerDeps[CacheKey]; | 
|  | Cache = &CacheInfo->second; | 
|  | NumSortedEntries = Cache->size(); | 
|  |  | 
|  | // Since we did phi translation, the "Cache" set won't contain all of the | 
|  | // results for the query.  This is ok (we can still use it to accelerate | 
|  | // specific block queries) but we can't do the fastpath "return all | 
|  | // results from the set"  Clear out the indicator for this. | 
|  | CacheInfo->first = BBSkipFirstBlockPair(); | 
|  | SkipFirstBlock = false; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // TODO: BITCAST, GEP. | 
|  |  | 
|  | //   cerr << "MEMDEP: Could not PHI translate: " << *Pointer; | 
|  | //   if (isa<BitCastInst>(PtrInst) || isa<GetElementPtrInst>(PtrInst)) | 
|  | //     cerr << "OP:\t\t\t\t" << *PtrInst->getOperand(0); | 
|  | PredTranslationFailure: | 
|  |  | 
|  | if (Cache == 0) { | 
|  | // Refresh the CacheInfo/Cache pointer if it got invalidated. | 
|  | CacheInfo = &NonLocalPointerDeps[CacheKey]; | 
|  | Cache = &CacheInfo->second; | 
|  | NumSortedEntries = Cache->size(); | 
|  | } | 
|  |  | 
|  | // Since we did phi translation, the "Cache" set won't contain all of the | 
|  | // results for the query.  This is ok (we can still use it to accelerate | 
|  | // specific block queries) but we can't do the fastpath "return all | 
|  | // results from the set"  Clear out the indicator for this. | 
|  | CacheInfo->first = BBSkipFirstBlockPair(); | 
|  |  | 
|  | // If *nothing* works, mark the pointer as being clobbered by the first | 
|  | // instruction in this block. | 
|  | // | 
|  | // If this is the magic first block, return this as a clobber of the whole | 
|  | // incoming value.  Since we can't phi translate to one of the predecessors, | 
|  | // we have to bail out. | 
|  | if (SkipFirstBlock) | 
|  | return true; | 
|  |  | 
|  | for (NonLocalDepInfo::reverse_iterator I = Cache->rbegin(); ; ++I) { | 
|  | assert(I != Cache->rend() && "Didn't find current block??"); | 
|  | if (I->first != BB) | 
|  | continue; | 
|  |  | 
|  | assert(I->second.isNonLocal() && | 
|  | "Should only be here with transparent block"); | 
|  | I->second = MemDepResult::getClobber(BB->begin()); | 
|  | ReverseNonLocalPtrDeps[BB->begin()].insert(CacheKey); | 
|  | Result.push_back(*I); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Okay, we're done now.  If we added new values to the cache, re-sort it. | 
|  | SortNonLocalDepInfoCache(*Cache, NumSortedEntries); | 
|  | DEBUG(AssertSorted(*Cache)); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// RemoveCachedNonLocalPointerDependencies - If P exists in | 
|  | /// CachedNonLocalPointerInfo, remove it. | 
|  | void MemoryDependenceAnalysis:: | 
|  | RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) { | 
|  | CachedNonLocalPointerInfo::iterator It = | 
|  | NonLocalPointerDeps.find(P); | 
|  | if (It == NonLocalPointerDeps.end()) return; | 
|  |  | 
|  | // Remove all of the entries in the BB->val map.  This involves removing | 
|  | // instructions from the reverse map. | 
|  | NonLocalDepInfo &PInfo = It->second.second; | 
|  |  | 
|  | for (unsigned i = 0, e = PInfo.size(); i != e; ++i) { | 
|  | Instruction *Target = PInfo[i].second.getInst(); | 
|  | if (Target == 0) continue;  // Ignore non-local dep results. | 
|  | assert(Target->getParent() == PInfo[i].first); | 
|  |  | 
|  | // Eliminating the dirty entry from 'Cache', so update the reverse info. | 
|  | RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P); | 
|  | } | 
|  |  | 
|  | // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo). | 
|  | NonLocalPointerDeps.erase(It); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// invalidateCachedPointerInfo - This method is used to invalidate cached | 
|  | /// information about the specified pointer, because it may be too | 
|  | /// conservative in memdep.  This is an optional call that can be used when | 
|  | /// the client detects an equivalence between the pointer and some other | 
|  | /// value and replaces the other value with ptr. This can make Ptr available | 
|  | /// in more places that cached info does not necessarily keep. | 
|  | void MemoryDependenceAnalysis::invalidateCachedPointerInfo(Value *Ptr) { | 
|  | // If Ptr isn't really a pointer, just ignore it. | 
|  | if (!isa<PointerType>(Ptr->getType())) return; | 
|  | // Flush store info for the pointer. | 
|  | RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false)); | 
|  | // Flush load info for the pointer. | 
|  | RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true)); | 
|  | } | 
|  |  | 
|  | /// removeInstruction - Remove an instruction from the dependence analysis, | 
|  | /// updating the dependence of instructions that previously depended on it. | 
|  | /// This method attempts to keep the cache coherent using the reverse map. | 
|  | void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) { | 
|  | // Walk through the Non-local dependencies, removing this one as the value | 
|  | // for any cached queries. | 
|  | NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst); | 
|  | if (NLDI != NonLocalDeps.end()) { | 
|  | NonLocalDepInfo &BlockMap = NLDI->second.first; | 
|  | for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end(); | 
|  | DI != DE; ++DI) | 
|  | if (Instruction *Inst = DI->second.getInst()) | 
|  | RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst); | 
|  | NonLocalDeps.erase(NLDI); | 
|  | } | 
|  |  | 
|  | // If we have a cached local dependence query for this instruction, remove it. | 
|  | // | 
|  | LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst); | 
|  | if (LocalDepEntry != LocalDeps.end()) { | 
|  | // Remove us from DepInst's reverse set now that the local dep info is gone. | 
|  | if (Instruction *Inst = LocalDepEntry->second.getInst()) | 
|  | RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst); | 
|  |  | 
|  | // Remove this local dependency info. | 
|  | LocalDeps.erase(LocalDepEntry); | 
|  | } | 
|  |  | 
|  | // If we have any cached pointer dependencies on this instruction, remove | 
|  | // them.  If the instruction has non-pointer type, then it can't be a pointer | 
|  | // base. | 
|  |  | 
|  | // Remove it from both the load info and the store info.  The instruction | 
|  | // can't be in either of these maps if it is non-pointer. | 
|  | if (isa<PointerType>(RemInst->getType())) { | 
|  | RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false)); | 
|  | RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true)); | 
|  | } | 
|  |  | 
|  | // Loop over all of the things that depend on the instruction we're removing. | 
|  | // | 
|  | SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd; | 
|  |  | 
|  | // If we find RemInst as a clobber or Def in any of the maps for other values, | 
|  | // we need to replace its entry with a dirty version of the instruction after | 
|  | // it.  If RemInst is a terminator, we use a null dirty value. | 
|  | // | 
|  | // Using a dirty version of the instruction after RemInst saves having to scan | 
|  | // the entire block to get to this point. | 
|  | MemDepResult NewDirtyVal; | 
|  | if (!RemInst->isTerminator()) | 
|  | NewDirtyVal = MemDepResult::getDirty(++BasicBlock::iterator(RemInst)); | 
|  |  | 
|  | ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst); | 
|  | if (ReverseDepIt != ReverseLocalDeps.end()) { | 
|  | SmallPtrSet<Instruction*, 4> &ReverseDeps = ReverseDepIt->second; | 
|  | // RemInst can't be the terminator if it has local stuff depending on it. | 
|  | assert(!ReverseDeps.empty() && !isa<TerminatorInst>(RemInst) && | 
|  | "Nothing can locally depend on a terminator"); | 
|  |  | 
|  | for (SmallPtrSet<Instruction*, 4>::iterator I = ReverseDeps.begin(), | 
|  | E = ReverseDeps.end(); I != E; ++I) { | 
|  | Instruction *InstDependingOnRemInst = *I; | 
|  | assert(InstDependingOnRemInst != RemInst && | 
|  | "Already removed our local dep info"); | 
|  |  | 
|  | LocalDeps[InstDependingOnRemInst] = NewDirtyVal; | 
|  |  | 
|  | // Make sure to remember that new things depend on NewDepInst. | 
|  | assert(NewDirtyVal.getInst() && "There is no way something else can have " | 
|  | "a local dep on this if it is a terminator!"); | 
|  | ReverseDepsToAdd.push_back(std::make_pair(NewDirtyVal.getInst(), | 
|  | InstDependingOnRemInst)); | 
|  | } | 
|  |  | 
|  | ReverseLocalDeps.erase(ReverseDepIt); | 
|  |  | 
|  | // Add new reverse deps after scanning the set, to avoid invalidating the | 
|  | // 'ReverseDeps' reference. | 
|  | while (!ReverseDepsToAdd.empty()) { | 
|  | ReverseLocalDeps[ReverseDepsToAdd.back().first] | 
|  | .insert(ReverseDepsToAdd.back().second); | 
|  | ReverseDepsToAdd.pop_back(); | 
|  | } | 
|  | } | 
|  |  | 
|  | ReverseDepIt = ReverseNonLocalDeps.find(RemInst); | 
|  | if (ReverseDepIt != ReverseNonLocalDeps.end()) { | 
|  | SmallPtrSet<Instruction*, 4> &Set = ReverseDepIt->second; | 
|  | for (SmallPtrSet<Instruction*, 4>::iterator I = Set.begin(), E = Set.end(); | 
|  | I != E; ++I) { | 
|  | assert(*I != RemInst && "Already removed NonLocalDep info for RemInst"); | 
|  |  | 
|  | PerInstNLInfo &INLD = NonLocalDeps[*I]; | 
|  | // The information is now dirty! | 
|  | INLD.second = true; | 
|  |  | 
|  | for (NonLocalDepInfo::iterator DI = INLD.first.begin(), | 
|  | DE = INLD.first.end(); DI != DE; ++DI) { | 
|  | if (DI->second.getInst() != RemInst) continue; | 
|  |  | 
|  | // Convert to a dirty entry for the subsequent instruction. | 
|  | DI->second = NewDirtyVal; | 
|  |  | 
|  | if (Instruction *NextI = NewDirtyVal.getInst()) | 
|  | ReverseDepsToAdd.push_back(std::make_pair(NextI, *I)); | 
|  | } | 
|  | } | 
|  |  | 
|  | ReverseNonLocalDeps.erase(ReverseDepIt); | 
|  |  | 
|  | // Add new reverse deps after scanning the set, to avoid invalidating 'Set' | 
|  | while (!ReverseDepsToAdd.empty()) { | 
|  | ReverseNonLocalDeps[ReverseDepsToAdd.back().first] | 
|  | .insert(ReverseDepsToAdd.back().second); | 
|  | ReverseDepsToAdd.pop_back(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the instruction is in ReverseNonLocalPtrDeps then it appears as a | 
|  | // value in the NonLocalPointerDeps info. | 
|  | ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt = | 
|  | ReverseNonLocalPtrDeps.find(RemInst); | 
|  | if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) { | 
|  | SmallPtrSet<ValueIsLoadPair, 4> &Set = ReversePtrDepIt->second; | 
|  | SmallVector<std::pair<Instruction*, ValueIsLoadPair>,8> ReversePtrDepsToAdd; | 
|  |  | 
|  | for (SmallPtrSet<ValueIsLoadPair, 4>::iterator I = Set.begin(), | 
|  | E = Set.end(); I != E; ++I) { | 
|  | ValueIsLoadPair P = *I; | 
|  | assert(P.getPointer() != RemInst && | 
|  | "Already removed NonLocalPointerDeps info for RemInst"); | 
|  |  | 
|  | NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].second; | 
|  |  | 
|  | // The cache is not valid for any specific block anymore. | 
|  | NonLocalPointerDeps[P].first = BBSkipFirstBlockPair(); | 
|  |  | 
|  | // Update any entries for RemInst to use the instruction after it. | 
|  | for (NonLocalDepInfo::iterator DI = NLPDI.begin(), DE = NLPDI.end(); | 
|  | DI != DE; ++DI) { | 
|  | if (DI->second.getInst() != RemInst) continue; | 
|  |  | 
|  | // Convert to a dirty entry for the subsequent instruction. | 
|  | DI->second = NewDirtyVal; | 
|  |  | 
|  | if (Instruction *NewDirtyInst = NewDirtyVal.getInst()) | 
|  | ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P)); | 
|  | } | 
|  |  | 
|  | // Re-sort the NonLocalDepInfo.  Changing the dirty entry to its | 
|  | // subsequent value may invalidate the sortedness. | 
|  | std::sort(NLPDI.begin(), NLPDI.end()); | 
|  | } | 
|  |  | 
|  | ReverseNonLocalPtrDeps.erase(ReversePtrDepIt); | 
|  |  | 
|  | while (!ReversePtrDepsToAdd.empty()) { | 
|  | ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first] | 
|  | .insert(ReversePtrDepsToAdd.back().second); | 
|  | ReversePtrDepsToAdd.pop_back(); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?"); | 
|  | AA->deleteValue(RemInst); | 
|  | DEBUG(verifyRemoved(RemInst)); | 
|  | } | 
|  | /// verifyRemoved - Verify that the specified instruction does not occur | 
|  | /// in our internal data structures. | 
|  | void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const { | 
|  | for (LocalDepMapType::const_iterator I = LocalDeps.begin(), | 
|  | E = LocalDeps.end(); I != E; ++I) { | 
|  | assert(I->first != D && "Inst occurs in data structures"); | 
|  | assert(I->second.getInst() != D && | 
|  | "Inst occurs in data structures"); | 
|  | } | 
|  |  | 
|  | for (CachedNonLocalPointerInfo::const_iterator I =NonLocalPointerDeps.begin(), | 
|  | E = NonLocalPointerDeps.end(); I != E; ++I) { | 
|  | assert(I->first.getPointer() != D && "Inst occurs in NLPD map key"); | 
|  | const NonLocalDepInfo &Val = I->second.second; | 
|  | for (NonLocalDepInfo::const_iterator II = Val.begin(), E = Val.end(); | 
|  | II != E; ++II) | 
|  | assert(II->second.getInst() != D && "Inst occurs as NLPD value"); | 
|  | } | 
|  |  | 
|  | for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(), | 
|  | E = NonLocalDeps.end(); I != E; ++I) { | 
|  | assert(I->first != D && "Inst occurs in data structures"); | 
|  | const PerInstNLInfo &INLD = I->second; | 
|  | for (NonLocalDepInfo::const_iterator II = INLD.first.begin(), | 
|  | EE = INLD.first.end(); II  != EE; ++II) | 
|  | assert(II->second.getInst() != D && "Inst occurs in data structures"); | 
|  | } | 
|  |  | 
|  | for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(), | 
|  | E = ReverseLocalDeps.end(); I != E; ++I) { | 
|  | assert(I->first != D && "Inst occurs in data structures"); | 
|  | for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(), | 
|  | EE = I->second.end(); II != EE; ++II) | 
|  | assert(*II != D && "Inst occurs in data structures"); | 
|  | } | 
|  |  | 
|  | for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(), | 
|  | E = ReverseNonLocalDeps.end(); | 
|  | I != E; ++I) { | 
|  | assert(I->first != D && "Inst occurs in data structures"); | 
|  | for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(), | 
|  | EE = I->second.end(); II != EE; ++II) | 
|  | assert(*II != D && "Inst occurs in data structures"); | 
|  | } | 
|  |  | 
|  | for (ReverseNonLocalPtrDepTy::const_iterator | 
|  | I = ReverseNonLocalPtrDeps.begin(), | 
|  | E = ReverseNonLocalPtrDeps.end(); I != E; ++I) { | 
|  | assert(I->first != D && "Inst occurs in rev NLPD map"); | 
|  |  | 
|  | for (SmallPtrSet<ValueIsLoadPair, 4>::const_iterator II = I->second.begin(), | 
|  | E = I->second.end(); II != E; ++II) | 
|  | assert(*II != ValueIsLoadPair(D, false) && | 
|  | *II != ValueIsLoadPair(D, true) && | 
|  | "Inst occurs in ReverseNonLocalPtrDeps map"); | 
|  | } | 
|  |  | 
|  | } |