|  | //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the PPCISelLowering class. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "PPCISelLowering.h" | 
|  | #include "PPCMachineFunctionInfo.h" | 
|  | #include "PPCPredicates.h" | 
|  | #include "PPCTargetMachine.h" | 
|  | #include "PPCPerfectShuffle.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/VectorExtras.h" | 
|  | #include "llvm/Analysis/ScalarEvolutionExpressions.h" | 
|  | #include "llvm/CodeGen/CallingConvLower.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/PseudoSourceValue.h" | 
|  | #include "llvm/CodeGen/SelectionDAG.h" | 
|  | #include "llvm/Constants.h" | 
|  | #include "llvm/Function.h" | 
|  | #include "llvm/Intrinsics.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Target/TargetOptions.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc", | 
|  | cl::desc("enable preincrement load/store generation on PPC (experimental)"), | 
|  | cl::Hidden); | 
|  |  | 
|  | PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM) | 
|  | : TargetLowering(TM), PPCSubTarget(*TM.getSubtargetImpl()) { | 
|  |  | 
|  | setPow2DivIsCheap(); | 
|  |  | 
|  | // Use _setjmp/_longjmp instead of setjmp/longjmp. | 
|  | setUseUnderscoreSetJmp(true); | 
|  | setUseUnderscoreLongJmp(true); | 
|  |  | 
|  | // Set up the register classes. | 
|  | addRegisterClass(MVT::i32, PPC::GPRCRegisterClass); | 
|  | addRegisterClass(MVT::f32, PPC::F4RCRegisterClass); | 
|  | addRegisterClass(MVT::f64, PPC::F8RCRegisterClass); | 
|  |  | 
|  | // PowerPC has an i16 but no i8 (or i1) SEXTLOAD | 
|  | setLoadXAction(ISD::SEXTLOAD, MVT::i1, Promote); | 
|  | setLoadXAction(ISD::SEXTLOAD, MVT::i8, Expand); | 
|  |  | 
|  | setTruncStoreAction(MVT::f64, MVT::f32, Expand); | 
|  |  | 
|  | // PowerPC has pre-inc load and store's. | 
|  | setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); | 
|  | setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); | 
|  | setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); | 
|  | setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); | 
|  | setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); | 
|  | setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); | 
|  | setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); | 
|  | setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); | 
|  | setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); | 
|  | setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); | 
|  |  | 
|  | // Shortening conversions involving ppcf128 get expanded (2 regs -> 1 reg) | 
|  | setConvertAction(MVT::ppcf128, MVT::f64, Expand); | 
|  | setConvertAction(MVT::ppcf128, MVT::f32, Expand); | 
|  | // This is used in the ppcf128->int sequence.  Note it has different semantics | 
|  | // from FP_ROUND:  that rounds to nearest, this rounds to zero. | 
|  | setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom); | 
|  |  | 
|  | // PowerPC has no intrinsics for these particular operations | 
|  | setOperationAction(ISD::MEMMOVE, MVT::Other, Expand); | 
|  | setOperationAction(ISD::MEMSET, MVT::Other, Expand); | 
|  | setOperationAction(ISD::MEMCPY, MVT::Other, Expand); | 
|  | setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand); | 
|  |  | 
|  | // PowerPC has no SREM/UREM instructions | 
|  | setOperationAction(ISD::SREM, MVT::i32, Expand); | 
|  | setOperationAction(ISD::UREM, MVT::i32, Expand); | 
|  | setOperationAction(ISD::SREM, MVT::i64, Expand); | 
|  | setOperationAction(ISD::UREM, MVT::i64, Expand); | 
|  |  | 
|  | // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. | 
|  | setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); | 
|  | setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); | 
|  | setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); | 
|  | setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); | 
|  | setOperationAction(ISD::UDIVREM, MVT::i32, Expand); | 
|  | setOperationAction(ISD::SDIVREM, MVT::i32, Expand); | 
|  | setOperationAction(ISD::UDIVREM, MVT::i64, Expand); | 
|  | setOperationAction(ISD::SDIVREM, MVT::i64, Expand); | 
|  |  | 
|  | // We don't support sin/cos/sqrt/fmod/pow | 
|  | setOperationAction(ISD::FSIN , MVT::f64, Expand); | 
|  | setOperationAction(ISD::FCOS , MVT::f64, Expand); | 
|  | setOperationAction(ISD::FREM , MVT::f64, Expand); | 
|  | setOperationAction(ISD::FPOW , MVT::f64, Expand); | 
|  | setOperationAction(ISD::FSIN , MVT::f32, Expand); | 
|  | setOperationAction(ISD::FCOS , MVT::f32, Expand); | 
|  | setOperationAction(ISD::FREM , MVT::f32, Expand); | 
|  | setOperationAction(ISD::FPOW , MVT::f32, Expand); | 
|  |  | 
|  | setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); | 
|  |  | 
|  | // If we're enabling GP optimizations, use hardware square root | 
|  | if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) { | 
|  | setOperationAction(ISD::FSQRT, MVT::f64, Expand); | 
|  | setOperationAction(ISD::FSQRT, MVT::f32, Expand); | 
|  | } | 
|  |  | 
|  | setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); | 
|  | setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); | 
|  |  | 
|  | // PowerPC does not have BSWAP, CTPOP or CTTZ | 
|  | setOperationAction(ISD::BSWAP, MVT::i32  , Expand); | 
|  | setOperationAction(ISD::CTPOP, MVT::i32  , Expand); | 
|  | setOperationAction(ISD::CTTZ , MVT::i32  , Expand); | 
|  | setOperationAction(ISD::BSWAP, MVT::i64  , Expand); | 
|  | setOperationAction(ISD::CTPOP, MVT::i64  , Expand); | 
|  | setOperationAction(ISD::CTTZ , MVT::i64  , Expand); | 
|  |  | 
|  | // PowerPC does not have ROTR | 
|  | setOperationAction(ISD::ROTR, MVT::i32   , Expand); | 
|  |  | 
|  | // PowerPC does not have Select | 
|  | setOperationAction(ISD::SELECT, MVT::i32, Expand); | 
|  | setOperationAction(ISD::SELECT, MVT::i64, Expand); | 
|  | setOperationAction(ISD::SELECT, MVT::f32, Expand); | 
|  | setOperationAction(ISD::SELECT, MVT::f64, Expand); | 
|  |  | 
|  | // PowerPC wants to turn select_cc of FP into fsel when possible. | 
|  | setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); | 
|  | setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); | 
|  |  | 
|  | // PowerPC wants to optimize integer setcc a bit | 
|  | setOperationAction(ISD::SETCC, MVT::i32, Custom); | 
|  |  | 
|  | // PowerPC does not have BRCOND which requires SetCC | 
|  | setOperationAction(ISD::BRCOND, MVT::Other, Expand); | 
|  |  | 
|  | setOperationAction(ISD::BR_JT,  MVT::Other, Expand); | 
|  |  | 
|  | // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. | 
|  | setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); | 
|  |  | 
|  | // PowerPC does not have [U|S]INT_TO_FP | 
|  | setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); | 
|  | setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); | 
|  |  | 
|  | setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand); | 
|  | setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand); | 
|  | setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand); | 
|  | setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand); | 
|  |  | 
|  | // We cannot sextinreg(i1).  Expand to shifts. | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); | 
|  |  | 
|  | // Support label based line numbers. | 
|  | setOperationAction(ISD::LOCATION, MVT::Other, Expand); | 
|  | setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand); | 
|  |  | 
|  | setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand); | 
|  | setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand); | 
|  | setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand); | 
|  | setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand); | 
|  |  | 
|  |  | 
|  | // We want to legalize GlobalAddress and ConstantPool nodes into the | 
|  | // appropriate instructions to materialize the address. | 
|  | setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); | 
|  | setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); | 
|  | setOperationAction(ISD::ConstantPool,  MVT::i32, Custom); | 
|  | setOperationAction(ISD::JumpTable,     MVT::i32, Custom); | 
|  | setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); | 
|  | setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); | 
|  | setOperationAction(ISD::ConstantPool,  MVT::i64, Custom); | 
|  | setOperationAction(ISD::JumpTable,     MVT::i64, Custom); | 
|  |  | 
|  | // RET must be custom lowered, to meet ABI requirements | 
|  | setOperationAction(ISD::RET               , MVT::Other, Custom); | 
|  |  | 
|  | // VASTART needs to be custom lowered to use the VarArgsFrameIndex | 
|  | setOperationAction(ISD::VASTART           , MVT::Other, Custom); | 
|  |  | 
|  | // VAARG is custom lowered with ELF 32 ABI | 
|  | if (TM.getSubtarget<PPCSubtarget>().isELF32_ABI()) | 
|  | setOperationAction(ISD::VAARG, MVT::Other, Custom); | 
|  | else | 
|  | setOperationAction(ISD::VAARG, MVT::Other, Expand); | 
|  |  | 
|  | // Use the default implementation. | 
|  | setOperationAction(ISD::VACOPY            , MVT::Other, Expand); | 
|  | setOperationAction(ISD::VAEND             , MVT::Other, Expand); | 
|  | setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand); | 
|  | setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom); | 
|  | setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom); | 
|  | setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom); | 
|  |  | 
|  | // We want to custom lower some of our intrinsics. | 
|  | setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); | 
|  |  | 
|  | if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) { | 
|  | // They also have instructions for converting between i64 and fp. | 
|  | setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); | 
|  | setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); | 
|  | setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); | 
|  | setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); | 
|  | setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); | 
|  |  | 
|  | // FIXME: disable this lowered code.  This generates 64-bit register values, | 
|  | // and we don't model the fact that the top part is clobbered by calls.  We | 
|  | // need to flag these together so that the value isn't live across a call. | 
|  | //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); | 
|  |  | 
|  | // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT | 
|  | setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote); | 
|  | } else { | 
|  | // PowerPC does not have FP_TO_UINT on 32-bit implementations. | 
|  | setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); | 
|  | } | 
|  |  | 
|  | if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) { | 
|  | // 64-bit PowerPC implementations can support i64 types directly | 
|  | addRegisterClass(MVT::i64, PPC::G8RCRegisterClass); | 
|  | // BUILD_PAIR can't be handled natively, and should be expanded to shl/or | 
|  | setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); | 
|  | // 64-bit PowerPC wants to expand i128 shifts itself. | 
|  | setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); | 
|  | setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); | 
|  | setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); | 
|  | } else { | 
|  | // 32-bit PowerPC wants to expand i64 shifts itself. | 
|  | setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); | 
|  | setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); | 
|  | setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); | 
|  | } | 
|  |  | 
|  | if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) { | 
|  | // First set operation action for all vector types to expand. Then we | 
|  | // will selectively turn on ones that can be effectively codegen'd. | 
|  | for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE; | 
|  | VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) { | 
|  | // add/sub are legal for all supported vector VT's. | 
|  | setOperationAction(ISD::ADD , (MVT::ValueType)VT, Legal); | 
|  | setOperationAction(ISD::SUB , (MVT::ValueType)VT, Legal); | 
|  |  | 
|  | // We promote all shuffles to v16i8. | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Promote); | 
|  | AddPromotedToType (ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, MVT::v16i8); | 
|  |  | 
|  | // We promote all non-typed operations to v4i32. | 
|  | setOperationAction(ISD::AND   , (MVT::ValueType)VT, Promote); | 
|  | AddPromotedToType (ISD::AND   , (MVT::ValueType)VT, MVT::v4i32); | 
|  | setOperationAction(ISD::OR    , (MVT::ValueType)VT, Promote); | 
|  | AddPromotedToType (ISD::OR    , (MVT::ValueType)VT, MVT::v4i32); | 
|  | setOperationAction(ISD::XOR   , (MVT::ValueType)VT, Promote); | 
|  | AddPromotedToType (ISD::XOR   , (MVT::ValueType)VT, MVT::v4i32); | 
|  | setOperationAction(ISD::LOAD  , (MVT::ValueType)VT, Promote); | 
|  | AddPromotedToType (ISD::LOAD  , (MVT::ValueType)VT, MVT::v4i32); | 
|  | setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote); | 
|  | AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v4i32); | 
|  | setOperationAction(ISD::STORE, (MVT::ValueType)VT, Promote); | 
|  | AddPromotedToType (ISD::STORE, (MVT::ValueType)VT, MVT::v4i32); | 
|  |  | 
|  | // No other operations are legal. | 
|  | setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand); | 
|  | setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand); | 
|  | setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand); | 
|  | setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand); | 
|  | setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand); | 
|  | setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand); | 
|  | setOperationAction(ISD::FNEG, (MVT::ValueType)VT, Expand); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand); | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand); | 
|  | setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Expand); | 
|  | setOperationAction(ISD::UMUL_LOHI, (MVT::ValueType)VT, Expand); | 
|  | setOperationAction(ISD::SMUL_LOHI, (MVT::ValueType)VT, Expand); | 
|  | setOperationAction(ISD::UDIVREM, (MVT::ValueType)VT, Expand); | 
|  | setOperationAction(ISD::SDIVREM, (MVT::ValueType)VT, Expand); | 
|  | setOperationAction(ISD::SCALAR_TO_VECTOR, (MVT::ValueType)VT, Expand); | 
|  | setOperationAction(ISD::FPOW, (MVT::ValueType)VT, Expand); | 
|  | setOperationAction(ISD::CTPOP, (MVT::ValueType)VT, Expand); | 
|  | setOperationAction(ISD::CTLZ, (MVT::ValueType)VT, Expand); | 
|  | setOperationAction(ISD::CTTZ, (MVT::ValueType)VT, Expand); | 
|  | } | 
|  |  | 
|  | // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle | 
|  | // with merges, splats, etc. | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); | 
|  |  | 
|  | setOperationAction(ISD::AND   , MVT::v4i32, Legal); | 
|  | setOperationAction(ISD::OR    , MVT::v4i32, Legal); | 
|  | setOperationAction(ISD::XOR   , MVT::v4i32, Legal); | 
|  | setOperationAction(ISD::LOAD  , MVT::v4i32, Legal); | 
|  | setOperationAction(ISD::SELECT, MVT::v4i32, Expand); | 
|  | setOperationAction(ISD::STORE , MVT::v4i32, Legal); | 
|  |  | 
|  | addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass); | 
|  | addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass); | 
|  | addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass); | 
|  | addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass); | 
|  |  | 
|  | setOperationAction(ISD::MUL, MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::MUL, MVT::v4i32, Custom); | 
|  | setOperationAction(ISD::MUL, MVT::v8i16, Custom); | 
|  | setOperationAction(ISD::MUL, MVT::v16i8, Custom); | 
|  |  | 
|  | setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); | 
|  | setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); | 
|  |  | 
|  | setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); | 
|  | setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); | 
|  | setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); | 
|  | setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); | 
|  | } | 
|  |  | 
|  | setShiftAmountType(MVT::i32); | 
|  | setSetCCResultContents(ZeroOrOneSetCCResult); | 
|  |  | 
|  | if (TM.getSubtarget<PPCSubtarget>().isPPC64()) { | 
|  | setStackPointerRegisterToSaveRestore(PPC::X1); | 
|  | setExceptionPointerRegister(PPC::X3); | 
|  | setExceptionSelectorRegister(PPC::X4); | 
|  | } else { | 
|  | setStackPointerRegisterToSaveRestore(PPC::R1); | 
|  | setExceptionPointerRegister(PPC::R3); | 
|  | setExceptionSelectorRegister(PPC::R4); | 
|  | } | 
|  |  | 
|  | // We have target-specific dag combine patterns for the following nodes: | 
|  | setTargetDAGCombine(ISD::SINT_TO_FP); | 
|  | setTargetDAGCombine(ISD::STORE); | 
|  | setTargetDAGCombine(ISD::BR_CC); | 
|  | setTargetDAGCombine(ISD::BSWAP); | 
|  |  | 
|  | // Darwin long double math library functions have $LDBL128 appended. | 
|  | if (TM.getSubtarget<PPCSubtarget>().isDarwin()) { | 
|  | setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128"); | 
|  | setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128"); | 
|  | setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128"); | 
|  | setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128"); | 
|  | setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128"); | 
|  | } | 
|  |  | 
|  | computeRegisterProperties(); | 
|  | } | 
|  |  | 
|  | /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate | 
|  | /// function arguments in the caller parameter area. | 
|  | unsigned PPCTargetLowering::getByValTypeAlignment(const Type *Ty) const { | 
|  | TargetMachine &TM = getTargetMachine(); | 
|  | // Darwin passes everything on 4 byte boundary. | 
|  | if (TM.getSubtarget<PPCSubtarget>().isDarwin()) | 
|  | return 4; | 
|  | // FIXME Elf TBD | 
|  | return 4; | 
|  | } | 
|  |  | 
|  | const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { | 
|  | switch (Opcode) { | 
|  | default: return 0; | 
|  | case PPCISD::FSEL:          return "PPCISD::FSEL"; | 
|  | case PPCISD::FCFID:         return "PPCISD::FCFID"; | 
|  | case PPCISD::FCTIDZ:        return "PPCISD::FCTIDZ"; | 
|  | case PPCISD::FCTIWZ:        return "PPCISD::FCTIWZ"; | 
|  | case PPCISD::STFIWX:        return "PPCISD::STFIWX"; | 
|  | case PPCISD::VMADDFP:       return "PPCISD::VMADDFP"; | 
|  | case PPCISD::VNMSUBFP:      return "PPCISD::VNMSUBFP"; | 
|  | case PPCISD::VPERM:         return "PPCISD::VPERM"; | 
|  | case PPCISD::Hi:            return "PPCISD::Hi"; | 
|  | case PPCISD::Lo:            return "PPCISD::Lo"; | 
|  | case PPCISD::DYNALLOC:      return "PPCISD::DYNALLOC"; | 
|  | case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; | 
|  | case PPCISD::SRL:           return "PPCISD::SRL"; | 
|  | case PPCISD::SRA:           return "PPCISD::SRA"; | 
|  | case PPCISD::SHL:           return "PPCISD::SHL"; | 
|  | case PPCISD::EXTSW_32:      return "PPCISD::EXTSW_32"; | 
|  | case PPCISD::STD_32:        return "PPCISD::STD_32"; | 
|  | case PPCISD::CALL_ELF:      return "PPCISD::CALL_ELF"; | 
|  | case PPCISD::CALL_Macho:    return "PPCISD::CALL_Macho"; | 
|  | case PPCISD::MTCTR:         return "PPCISD::MTCTR"; | 
|  | case PPCISD::BCTRL_Macho:   return "PPCISD::BCTRL_Macho"; | 
|  | case PPCISD::BCTRL_ELF:     return "PPCISD::BCTRL_ELF"; | 
|  | case PPCISD::RET_FLAG:      return "PPCISD::RET_FLAG"; | 
|  | case PPCISD::MFCR:          return "PPCISD::MFCR"; | 
|  | case PPCISD::VCMP:          return "PPCISD::VCMP"; | 
|  | case PPCISD::VCMPo:         return "PPCISD::VCMPo"; | 
|  | case PPCISD::LBRX:          return "PPCISD::LBRX"; | 
|  | case PPCISD::STBRX:         return "PPCISD::STBRX"; | 
|  | case PPCISD::COND_BRANCH:   return "PPCISD::COND_BRANCH"; | 
|  | case PPCISD::MFFS:          return "PPCISD::MFFS"; | 
|  | case PPCISD::MTFSB0:        return "PPCISD::MTFSB0"; | 
|  | case PPCISD::MTFSB1:        return "PPCISD::MTFSB1"; | 
|  | case PPCISD::FADDRTZ:       return "PPCISD::FADDRTZ"; | 
|  | case PPCISD::MTFSF:         return "PPCISD::MTFSF"; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | MVT::ValueType | 
|  | PPCTargetLowering::getSetCCResultType(const SDOperand &) const { | 
|  | return MVT::i32; | 
|  | } | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Node matching predicates, for use by the tblgen matching code. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// isFloatingPointZero - Return true if this is 0.0 or -0.0. | 
|  | static bool isFloatingPointZero(SDOperand Op) { | 
|  | if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) | 
|  | return CFP->getValueAPF().isZero(); | 
|  | else if (ISD::isEXTLoad(Op.Val) || ISD::isNON_EXTLoad(Op.Val)) { | 
|  | // Maybe this has already been legalized into the constant pool? | 
|  | if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) | 
|  | if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) | 
|  | return CFP->getValueAPF().isZero(); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return | 
|  | /// true if Op is undef or if it matches the specified value. | 
|  | static bool isConstantOrUndef(SDOperand Op, unsigned Val) { | 
|  | return Op.getOpcode() == ISD::UNDEF || | 
|  | cast<ConstantSDNode>(Op)->getValue() == Val; | 
|  | } | 
|  |  | 
|  | /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a | 
|  | /// VPKUHUM instruction. | 
|  | bool PPC::isVPKUHUMShuffleMask(SDNode *N, bool isUnary) { | 
|  | if (!isUnary) { | 
|  | for (unsigned i = 0; i != 16; ++i) | 
|  | if (!isConstantOrUndef(N->getOperand(i),  i*2+1)) | 
|  | return false; | 
|  | } else { | 
|  | for (unsigned i = 0; i != 8; ++i) | 
|  | if (!isConstantOrUndef(N->getOperand(i),  i*2+1) || | 
|  | !isConstantOrUndef(N->getOperand(i+8),  i*2+1)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a | 
|  | /// VPKUWUM instruction. | 
|  | bool PPC::isVPKUWUMShuffleMask(SDNode *N, bool isUnary) { | 
|  | if (!isUnary) { | 
|  | for (unsigned i = 0; i != 16; i += 2) | 
|  | if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) || | 
|  | !isConstantOrUndef(N->getOperand(i+1),  i*2+3)) | 
|  | return false; | 
|  | } else { | 
|  | for (unsigned i = 0; i != 8; i += 2) | 
|  | if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) || | 
|  | !isConstantOrUndef(N->getOperand(i+1),  i*2+3) || | 
|  | !isConstantOrUndef(N->getOperand(i+8),  i*2+2) || | 
|  | !isConstantOrUndef(N->getOperand(i+9),  i*2+3)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isVMerge - Common function, used to match vmrg* shuffles. | 
|  | /// | 
|  | static bool isVMerge(SDNode *N, unsigned UnitSize, | 
|  | unsigned LHSStart, unsigned RHSStart) { | 
|  | assert(N->getOpcode() == ISD::BUILD_VECTOR && | 
|  | N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!"); | 
|  | assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && | 
|  | "Unsupported merge size!"); | 
|  |  | 
|  | for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units | 
|  | for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit | 
|  | if (!isConstantOrUndef(N->getOperand(i*UnitSize*2+j), | 
|  | LHSStart+j+i*UnitSize) || | 
|  | !isConstantOrUndef(N->getOperand(i*UnitSize*2+UnitSize+j), | 
|  | RHSStart+j+i*UnitSize)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for | 
|  | /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes). | 
|  | bool PPC::isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) { | 
|  | if (!isUnary) | 
|  | return isVMerge(N, UnitSize, 8, 24); | 
|  | return isVMerge(N, UnitSize, 8, 8); | 
|  | } | 
|  |  | 
|  | /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for | 
|  | /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes). | 
|  | bool PPC::isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) { | 
|  | if (!isUnary) | 
|  | return isVMerge(N, UnitSize, 0, 16); | 
|  | return isVMerge(N, UnitSize, 0, 0); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift | 
|  | /// amount, otherwise return -1. | 
|  | int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) { | 
|  | assert(N->getOpcode() == ISD::BUILD_VECTOR && | 
|  | N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!"); | 
|  | // Find the first non-undef value in the shuffle mask. | 
|  | unsigned i; | 
|  | for (i = 0; i != 16 && N->getOperand(i).getOpcode() == ISD::UNDEF; ++i) | 
|  | /*search*/; | 
|  |  | 
|  | if (i == 16) return -1;  // all undef. | 
|  |  | 
|  | // Otherwise, check to see if the rest of the elements are consequtively | 
|  | // numbered from this value. | 
|  | unsigned ShiftAmt = cast<ConstantSDNode>(N->getOperand(i))->getValue(); | 
|  | if (ShiftAmt < i) return -1; | 
|  | ShiftAmt -= i; | 
|  |  | 
|  | if (!isUnary) { | 
|  | // Check the rest of the elements to see if they are consequtive. | 
|  | for (++i; i != 16; ++i) | 
|  | if (!isConstantOrUndef(N->getOperand(i), ShiftAmt+i)) | 
|  | return -1; | 
|  | } else { | 
|  | // Check the rest of the elements to see if they are consequtive. | 
|  | for (++i; i != 16; ++i) | 
|  | if (!isConstantOrUndef(N->getOperand(i), (ShiftAmt+i) & 15)) | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | return ShiftAmt; | 
|  | } | 
|  |  | 
|  | /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand | 
|  | /// specifies a splat of a single element that is suitable for input to | 
|  | /// VSPLTB/VSPLTH/VSPLTW. | 
|  | bool PPC::isSplatShuffleMask(SDNode *N, unsigned EltSize) { | 
|  | assert(N->getOpcode() == ISD::BUILD_VECTOR && | 
|  | N->getNumOperands() == 16 && | 
|  | (EltSize == 1 || EltSize == 2 || EltSize == 4)); | 
|  |  | 
|  | // This is a splat operation if each element of the permute is the same, and | 
|  | // if the value doesn't reference the second vector. | 
|  | unsigned ElementBase = 0; | 
|  | SDOperand Elt = N->getOperand(0); | 
|  | if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt)) | 
|  | ElementBase = EltV->getValue(); | 
|  | else | 
|  | return false;   // FIXME: Handle UNDEF elements too! | 
|  |  | 
|  | if (cast<ConstantSDNode>(Elt)->getValue() >= 16) | 
|  | return false; | 
|  |  | 
|  | // Check that they are consequtive. | 
|  | for (unsigned i = 1; i != EltSize; ++i) { | 
|  | if (!isa<ConstantSDNode>(N->getOperand(i)) || | 
|  | cast<ConstantSDNode>(N->getOperand(i))->getValue() != i+ElementBase) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!"); | 
|  | for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { | 
|  | if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; | 
|  | assert(isa<ConstantSDNode>(N->getOperand(i)) && | 
|  | "Invalid VECTOR_SHUFFLE mask!"); | 
|  | for (unsigned j = 0; j != EltSize; ++j) | 
|  | if (N->getOperand(i+j) != N->getOperand(j)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isAllNegativeZeroVector - Returns true if all elements of build_vector | 
|  | /// are -0.0. | 
|  | bool PPC::isAllNegativeZeroVector(SDNode *N) { | 
|  | assert(N->getOpcode() == ISD::BUILD_VECTOR); | 
|  | if (PPC::isSplatShuffleMask(N, N->getNumOperands())) | 
|  | if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N)) | 
|  | return CFP->getValueAPF().isNegZero(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the | 
|  | /// specified isSplatShuffleMask VECTOR_SHUFFLE mask. | 
|  | unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) { | 
|  | assert(isSplatShuffleMask(N, EltSize)); | 
|  | return cast<ConstantSDNode>(N->getOperand(0))->getValue() / EltSize; | 
|  | } | 
|  |  | 
|  | /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed | 
|  | /// by using a vspltis[bhw] instruction of the specified element size, return | 
|  | /// the constant being splatted.  The ByteSize field indicates the number of | 
|  | /// bytes of each element [124] -> [bhw]. | 
|  | SDOperand PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { | 
|  | SDOperand OpVal(0, 0); | 
|  |  | 
|  | // If ByteSize of the splat is bigger than the element size of the | 
|  | // build_vector, then we have a case where we are checking for a splat where | 
|  | // multiple elements of the buildvector are folded together into a single | 
|  | // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). | 
|  | unsigned EltSize = 16/N->getNumOperands(); | 
|  | if (EltSize < ByteSize) { | 
|  | unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval. | 
|  | SDOperand UniquedVals[4]; | 
|  | assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); | 
|  |  | 
|  | // See if all of the elements in the buildvector agree across. | 
|  | for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { | 
|  | if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; | 
|  | // If the element isn't a constant, bail fully out. | 
|  | if (!isa<ConstantSDNode>(N->getOperand(i))) return SDOperand(); | 
|  |  | 
|  |  | 
|  | if (UniquedVals[i&(Multiple-1)].Val == 0) | 
|  | UniquedVals[i&(Multiple-1)] = N->getOperand(i); | 
|  | else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) | 
|  | return SDOperand();  // no match. | 
|  | } | 
|  |  | 
|  | // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains | 
|  | // either constant or undef values that are identical for each chunk.  See | 
|  | // if these chunks can form into a larger vspltis*. | 
|  |  | 
|  | // Check to see if all of the leading entries are either 0 or -1.  If | 
|  | // neither, then this won't fit into the immediate field. | 
|  | bool LeadingZero = true; | 
|  | bool LeadingOnes = true; | 
|  | for (unsigned i = 0; i != Multiple-1; ++i) { | 
|  | if (UniquedVals[i].Val == 0) continue;  // Must have been undefs. | 
|  |  | 
|  | LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue(); | 
|  | LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue(); | 
|  | } | 
|  | // Finally, check the least significant entry. | 
|  | if (LeadingZero) { | 
|  | if (UniquedVals[Multiple-1].Val == 0) | 
|  | return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef | 
|  | int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getValue(); | 
|  | if (Val < 16) | 
|  | return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4) | 
|  | } | 
|  | if (LeadingOnes) { | 
|  | if (UniquedVals[Multiple-1].Val == 0) | 
|  | return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef | 
|  | int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSignExtended(); | 
|  | if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2) | 
|  | return DAG.getTargetConstant(Val, MVT::i32); | 
|  | } | 
|  |  | 
|  | return SDOperand(); | 
|  | } | 
|  |  | 
|  | // Check to see if this buildvec has a single non-undef value in its elements. | 
|  | for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { | 
|  | if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; | 
|  | if (OpVal.Val == 0) | 
|  | OpVal = N->getOperand(i); | 
|  | else if (OpVal != N->getOperand(i)) | 
|  | return SDOperand(); | 
|  | } | 
|  |  | 
|  | if (OpVal.Val == 0) return SDOperand();  // All UNDEF: use implicit def. | 
|  |  | 
|  | unsigned ValSizeInBytes = 0; | 
|  | uint64_t Value = 0; | 
|  | if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { | 
|  | Value = CN->getValue(); | 
|  | ValSizeInBytes = MVT::getSizeInBits(CN->getValueType(0))/8; | 
|  | } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { | 
|  | assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); | 
|  | Value = FloatToBits(CN->getValueAPF().convertToFloat()); | 
|  | ValSizeInBytes = 4; | 
|  | } | 
|  |  | 
|  | // If the splat value is larger than the element value, then we can never do | 
|  | // this splat.  The only case that we could fit the replicated bits into our | 
|  | // immediate field for would be zero, and we prefer to use vxor for it. | 
|  | if (ValSizeInBytes < ByteSize) return SDOperand(); | 
|  |  | 
|  | // If the element value is larger than the splat value, cut it in half and | 
|  | // check to see if the two halves are equal.  Continue doing this until we | 
|  | // get to ByteSize.  This allows us to handle 0x01010101 as 0x01. | 
|  | while (ValSizeInBytes > ByteSize) { | 
|  | ValSizeInBytes >>= 1; | 
|  |  | 
|  | // If the top half equals the bottom half, we're still ok. | 
|  | if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) != | 
|  | (Value                        & ((1 << (8*ValSizeInBytes))-1))) | 
|  | return SDOperand(); | 
|  | } | 
|  |  | 
|  | // Properly sign extend the value. | 
|  | int ShAmt = (4-ByteSize)*8; | 
|  | int MaskVal = ((int)Value << ShAmt) >> ShAmt; | 
|  |  | 
|  | // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. | 
|  | if (MaskVal == 0) return SDOperand(); | 
|  |  | 
|  | // Finally, if this value fits in a 5 bit sext field, return it | 
|  | if (((MaskVal << (32-5)) >> (32-5)) == MaskVal) | 
|  | return DAG.getTargetConstant(MaskVal, MVT::i32); | 
|  | return SDOperand(); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  Addressing Mode Selection | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// isIntS16Immediate - This method tests to see if the node is either a 32-bit | 
|  | /// or 64-bit immediate, and if the value can be accurately represented as a | 
|  | /// sign extension from a 16-bit value.  If so, this returns true and the | 
|  | /// immediate. | 
|  | static bool isIntS16Immediate(SDNode *N, short &Imm) { | 
|  | if (N->getOpcode() != ISD::Constant) | 
|  | return false; | 
|  |  | 
|  | Imm = (short)cast<ConstantSDNode>(N)->getValue(); | 
|  | if (N->getValueType(0) == MVT::i32) | 
|  | return Imm == (int32_t)cast<ConstantSDNode>(N)->getValue(); | 
|  | else | 
|  | return Imm == (int64_t)cast<ConstantSDNode>(N)->getValue(); | 
|  | } | 
|  | static bool isIntS16Immediate(SDOperand Op, short &Imm) { | 
|  | return isIntS16Immediate(Op.Val, Imm); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// SelectAddressRegReg - Given the specified addressed, check to see if it | 
|  | /// can be represented as an indexed [r+r] operation.  Returns false if it | 
|  | /// can be more efficiently represented with [r+imm]. | 
|  | bool PPCTargetLowering::SelectAddressRegReg(SDOperand N, SDOperand &Base, | 
|  | SDOperand &Index, | 
|  | SelectionDAG &DAG) { | 
|  | short imm = 0; | 
|  | if (N.getOpcode() == ISD::ADD) { | 
|  | if (isIntS16Immediate(N.getOperand(1), imm)) | 
|  | return false;    // r+i | 
|  | if (N.getOperand(1).getOpcode() == PPCISD::Lo) | 
|  | return false;    // r+i | 
|  |  | 
|  | Base = N.getOperand(0); | 
|  | Index = N.getOperand(1); | 
|  | return true; | 
|  | } else if (N.getOpcode() == ISD::OR) { | 
|  | if (isIntS16Immediate(N.getOperand(1), imm)) | 
|  | return false;    // r+i can fold it if we can. | 
|  |  | 
|  | // If this is an or of disjoint bitfields, we can codegen this as an add | 
|  | // (for better address arithmetic) if the LHS and RHS of the OR are provably | 
|  | // disjoint. | 
|  | APInt LHSKnownZero, LHSKnownOne; | 
|  | APInt RHSKnownZero, RHSKnownOne; | 
|  | DAG.ComputeMaskedBits(N.getOperand(0), | 
|  | APInt::getAllOnesValue(N.getOperand(0) | 
|  | .getValueSizeInBits()), | 
|  | LHSKnownZero, LHSKnownOne); | 
|  |  | 
|  | if (LHSKnownZero.getBoolValue()) { | 
|  | DAG.ComputeMaskedBits(N.getOperand(1), | 
|  | APInt::getAllOnesValue(N.getOperand(1) | 
|  | .getValueSizeInBits()), | 
|  | RHSKnownZero, RHSKnownOne); | 
|  | // If all of the bits are known zero on the LHS or RHS, the add won't | 
|  | // carry. | 
|  | if (~(LHSKnownZero | RHSKnownZero) == 0) { | 
|  | Base = N.getOperand(0); | 
|  | Index = N.getOperand(1); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Returns true if the address N can be represented by a base register plus | 
|  | /// a signed 16-bit displacement [r+imm], and if it is not better | 
|  | /// represented as reg+reg. | 
|  | bool PPCTargetLowering::SelectAddressRegImm(SDOperand N, SDOperand &Disp, | 
|  | SDOperand &Base, SelectionDAG &DAG){ | 
|  | // If this can be more profitably realized as r+r, fail. | 
|  | if (SelectAddressRegReg(N, Disp, Base, DAG)) | 
|  | return false; | 
|  |  | 
|  | if (N.getOpcode() == ISD::ADD) { | 
|  | short imm = 0; | 
|  | if (isIntS16Immediate(N.getOperand(1), imm)) { | 
|  | Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32); | 
|  | if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { | 
|  | Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); | 
|  | } else { | 
|  | Base = N.getOperand(0); | 
|  | } | 
|  | return true; // [r+i] | 
|  | } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { | 
|  | // Match LOAD (ADD (X, Lo(G))). | 
|  | assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue() | 
|  | && "Cannot handle constant offsets yet!"); | 
|  | Disp = N.getOperand(1).getOperand(0);  // The global address. | 
|  | assert(Disp.getOpcode() == ISD::TargetGlobalAddress || | 
|  | Disp.getOpcode() == ISD::TargetConstantPool || | 
|  | Disp.getOpcode() == ISD::TargetJumpTable); | 
|  | Base = N.getOperand(0); | 
|  | return true;  // [&g+r] | 
|  | } | 
|  | } else if (N.getOpcode() == ISD::OR) { | 
|  | short imm = 0; | 
|  | if (isIntS16Immediate(N.getOperand(1), imm)) { | 
|  | // If this is an or of disjoint bitfields, we can codegen this as an add | 
|  | // (for better address arithmetic) if the LHS and RHS of the OR are | 
|  | // provably disjoint. | 
|  | APInt LHSKnownZero, LHSKnownOne; | 
|  | DAG.ComputeMaskedBits(N.getOperand(0), | 
|  | APInt::getAllOnesValue(32), | 
|  | LHSKnownZero, LHSKnownOne); | 
|  | if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { | 
|  | // If all of the bits are known zero on the LHS or RHS, the add won't | 
|  | // carry. | 
|  | Base = N.getOperand(0); | 
|  | Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { | 
|  | // Loading from a constant address. | 
|  |  | 
|  | // If this address fits entirely in a 16-bit sext immediate field, codegen | 
|  | // this as "d, 0" | 
|  | short Imm; | 
|  | if (isIntS16Immediate(CN, Imm)) { | 
|  | Disp = DAG.getTargetConstant(Imm, CN->getValueType(0)); | 
|  | Base = DAG.getRegister(PPC::R0, CN->getValueType(0)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Handle 32-bit sext immediates with LIS + addr mode. | 
|  | if (CN->getValueType(0) == MVT::i32 || | 
|  | (int64_t)CN->getValue() == (int)CN->getValue()) { | 
|  | int Addr = (int)CN->getValue(); | 
|  |  | 
|  | // Otherwise, break this down into an LIS + disp. | 
|  | Disp = DAG.getTargetConstant((short)Addr, MVT::i32); | 
|  |  | 
|  | Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32); | 
|  | unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; | 
|  | Base = SDOperand(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | Disp = DAG.getTargetConstant(0, getPointerTy()); | 
|  | if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) | 
|  | Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); | 
|  | else | 
|  | Base = N; | 
|  | return true;      // [r+0] | 
|  | } | 
|  |  | 
|  | /// SelectAddressRegRegOnly - Given the specified addressed, force it to be | 
|  | /// represented as an indexed [r+r] operation. | 
|  | bool PPCTargetLowering::SelectAddressRegRegOnly(SDOperand N, SDOperand &Base, | 
|  | SDOperand &Index, | 
|  | SelectionDAG &DAG) { | 
|  | // Check to see if we can easily represent this as an [r+r] address.  This | 
|  | // will fail if it thinks that the address is more profitably represented as | 
|  | // reg+imm, e.g. where imm = 0. | 
|  | if (SelectAddressRegReg(N, Base, Index, DAG)) | 
|  | return true; | 
|  |  | 
|  | // If the operand is an addition, always emit this as [r+r], since this is | 
|  | // better (for code size, and execution, as the memop does the add for free) | 
|  | // than emitting an explicit add. | 
|  | if (N.getOpcode() == ISD::ADD) { | 
|  | Base = N.getOperand(0); | 
|  | Index = N.getOperand(1); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Otherwise, do it the hard way, using R0 as the base register. | 
|  | Base = DAG.getRegister(PPC::R0, N.getValueType()); | 
|  | Index = N; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// SelectAddressRegImmShift - Returns true if the address N can be | 
|  | /// represented by a base register plus a signed 14-bit displacement | 
|  | /// [r+imm*4].  Suitable for use by STD and friends. | 
|  | bool PPCTargetLowering::SelectAddressRegImmShift(SDOperand N, SDOperand &Disp, | 
|  | SDOperand &Base, | 
|  | SelectionDAG &DAG) { | 
|  | // If this can be more profitably realized as r+r, fail. | 
|  | if (SelectAddressRegReg(N, Disp, Base, DAG)) | 
|  | return false; | 
|  |  | 
|  | if (N.getOpcode() == ISD::ADD) { | 
|  | short imm = 0; | 
|  | if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) { | 
|  | Disp =  DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32); | 
|  | if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { | 
|  | Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); | 
|  | } else { | 
|  | Base = N.getOperand(0); | 
|  | } | 
|  | return true; // [r+i] | 
|  | } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { | 
|  | // Match LOAD (ADD (X, Lo(G))). | 
|  | assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue() | 
|  | && "Cannot handle constant offsets yet!"); | 
|  | Disp = N.getOperand(1).getOperand(0);  // The global address. | 
|  | assert(Disp.getOpcode() == ISD::TargetGlobalAddress || | 
|  | Disp.getOpcode() == ISD::TargetConstantPool || | 
|  | Disp.getOpcode() == ISD::TargetJumpTable); | 
|  | Base = N.getOperand(0); | 
|  | return true;  // [&g+r] | 
|  | } | 
|  | } else if (N.getOpcode() == ISD::OR) { | 
|  | short imm = 0; | 
|  | if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) { | 
|  | // If this is an or of disjoint bitfields, we can codegen this as an add | 
|  | // (for better address arithmetic) if the LHS and RHS of the OR are | 
|  | // provably disjoint. | 
|  | APInt LHSKnownZero, LHSKnownOne; | 
|  | DAG.ComputeMaskedBits(N.getOperand(0), | 
|  | APInt::getAllOnesValue(32), | 
|  | LHSKnownZero, LHSKnownOne); | 
|  | if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { | 
|  | // If all of the bits are known zero on the LHS or RHS, the add won't | 
|  | // carry. | 
|  | Base = N.getOperand(0); | 
|  | Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { | 
|  | // Loading from a constant address.  Verify low two bits are clear. | 
|  | if ((CN->getValue() & 3) == 0) { | 
|  | // If this address fits entirely in a 14-bit sext immediate field, codegen | 
|  | // this as "d, 0" | 
|  | short Imm; | 
|  | if (isIntS16Immediate(CN, Imm)) { | 
|  | Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy()); | 
|  | Base = DAG.getRegister(PPC::R0, CN->getValueType(0)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Fold the low-part of 32-bit absolute addresses into addr mode. | 
|  | if (CN->getValueType(0) == MVT::i32 || | 
|  | (int64_t)CN->getValue() == (int)CN->getValue()) { | 
|  | int Addr = (int)CN->getValue(); | 
|  |  | 
|  | // Otherwise, break this down into an LIS + disp. | 
|  | Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32); | 
|  |  | 
|  | Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32); | 
|  | unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; | 
|  | Base = SDOperand(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | Disp = DAG.getTargetConstant(0, getPointerTy()); | 
|  | if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) | 
|  | Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); | 
|  | else | 
|  | Base = N; | 
|  | return true;      // [r+0] | 
|  | } | 
|  |  | 
|  |  | 
|  | /// getPreIndexedAddressParts - returns true by value, base pointer and | 
|  | /// offset pointer and addressing mode by reference if the node's address | 
|  | /// can be legally represented as pre-indexed load / store address. | 
|  | bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDOperand &Base, | 
|  | SDOperand &Offset, | 
|  | ISD::MemIndexedMode &AM, | 
|  | SelectionDAG &DAG) { | 
|  | // Disabled by default for now. | 
|  | if (!EnablePPCPreinc) return false; | 
|  |  | 
|  | SDOperand Ptr; | 
|  | MVT::ValueType VT; | 
|  | if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { | 
|  | Ptr = LD->getBasePtr(); | 
|  | VT = LD->getMemoryVT(); | 
|  |  | 
|  | } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { | 
|  | ST = ST; | 
|  | Ptr = ST->getBasePtr(); | 
|  | VT  = ST->getMemoryVT(); | 
|  | } else | 
|  | return false; | 
|  |  | 
|  | // PowerPC doesn't have preinc load/store instructions for vectors. | 
|  | if (MVT::isVector(VT)) | 
|  | return false; | 
|  |  | 
|  | // TODO: Check reg+reg first. | 
|  |  | 
|  | // LDU/STU use reg+imm*4, others use reg+imm. | 
|  | if (VT != MVT::i64) { | 
|  | // reg + imm | 
|  | if (!SelectAddressRegImm(Ptr, Offset, Base, DAG)) | 
|  | return false; | 
|  | } else { | 
|  | // reg + imm * 4. | 
|  | if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { | 
|  | // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of | 
|  | // sext i32 to i64 when addr mode is r+i. | 
|  | if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && | 
|  | LD->getExtensionType() == ISD::SEXTLOAD && | 
|  | isa<ConstantSDNode>(Offset)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | AM = ISD::PRE_INC; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  LowerOperation implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | SDOperand PPCTargetLowering::LowerConstantPool(SDOperand Op, | 
|  | SelectionDAG &DAG) { | 
|  | MVT::ValueType PtrVT = Op.getValueType(); | 
|  | ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); | 
|  | Constant *C = CP->getConstVal(); | 
|  | SDOperand CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment()); | 
|  | SDOperand Zero = DAG.getConstant(0, PtrVT); | 
|  |  | 
|  | const TargetMachine &TM = DAG.getTarget(); | 
|  |  | 
|  | SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, CPI, Zero); | 
|  | SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, CPI, Zero); | 
|  |  | 
|  | // If this is a non-darwin platform, we don't support non-static relo models | 
|  | // yet. | 
|  | if (TM.getRelocationModel() == Reloc::Static || | 
|  | !TM.getSubtarget<PPCSubtarget>().isDarwin()) { | 
|  | // Generate non-pic code that has direct accesses to the constant pool. | 
|  | // The address of the global is just (hi(&g)+lo(&g)). | 
|  | return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo); | 
|  | } | 
|  |  | 
|  | if (TM.getRelocationModel() == Reloc::PIC_) { | 
|  | // With PIC, the first instruction is actually "GR+hi(&G)". | 
|  | Hi = DAG.getNode(ISD::ADD, PtrVT, | 
|  | DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi); | 
|  | } | 
|  |  | 
|  | Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo); | 
|  | return Lo; | 
|  | } | 
|  |  | 
|  | SDOperand PPCTargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) { | 
|  | MVT::ValueType PtrVT = Op.getValueType(); | 
|  | JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); | 
|  | SDOperand JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); | 
|  | SDOperand Zero = DAG.getConstant(0, PtrVT); | 
|  |  | 
|  | const TargetMachine &TM = DAG.getTarget(); | 
|  |  | 
|  | SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, JTI, Zero); | 
|  | SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, JTI, Zero); | 
|  |  | 
|  | // If this is a non-darwin platform, we don't support non-static relo models | 
|  | // yet. | 
|  | if (TM.getRelocationModel() == Reloc::Static || | 
|  | !TM.getSubtarget<PPCSubtarget>().isDarwin()) { | 
|  | // Generate non-pic code that has direct accesses to the constant pool. | 
|  | // The address of the global is just (hi(&g)+lo(&g)). | 
|  | return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo); | 
|  | } | 
|  |  | 
|  | if (TM.getRelocationModel() == Reloc::PIC_) { | 
|  | // With PIC, the first instruction is actually "GR+hi(&G)". | 
|  | Hi = DAG.getNode(ISD::ADD, PtrVT, | 
|  | DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi); | 
|  | } | 
|  |  | 
|  | Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo); | 
|  | return Lo; | 
|  | } | 
|  |  | 
|  | SDOperand PPCTargetLowering::LowerGlobalTLSAddress(SDOperand Op, | 
|  | SelectionDAG &DAG) { | 
|  | assert(0 && "TLS not implemented for PPC."); | 
|  | } | 
|  |  | 
|  | SDOperand PPCTargetLowering::LowerGlobalAddress(SDOperand Op, | 
|  | SelectionDAG &DAG) { | 
|  | MVT::ValueType PtrVT = Op.getValueType(); | 
|  | GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); | 
|  | GlobalValue *GV = GSDN->getGlobal(); | 
|  | SDOperand GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset()); | 
|  | // If it's a debug information descriptor, don't mess with it. | 
|  | if (DAG.isVerifiedDebugInfoDesc(Op)) | 
|  | return GA; | 
|  | SDOperand Zero = DAG.getConstant(0, PtrVT); | 
|  |  | 
|  | const TargetMachine &TM = DAG.getTarget(); | 
|  |  | 
|  | SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, GA, Zero); | 
|  | SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, GA, Zero); | 
|  |  | 
|  | // If this is a non-darwin platform, we don't support non-static relo models | 
|  | // yet. | 
|  | if (TM.getRelocationModel() == Reloc::Static || | 
|  | !TM.getSubtarget<PPCSubtarget>().isDarwin()) { | 
|  | // Generate non-pic code that has direct accesses to globals. | 
|  | // The address of the global is just (hi(&g)+lo(&g)). | 
|  | return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo); | 
|  | } | 
|  |  | 
|  | if (TM.getRelocationModel() == Reloc::PIC_) { | 
|  | // With PIC, the first instruction is actually "GR+hi(&G)". | 
|  | Hi = DAG.getNode(ISD::ADD, PtrVT, | 
|  | DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi); | 
|  | } | 
|  |  | 
|  | Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo); | 
|  |  | 
|  | if (!TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV)) | 
|  | return Lo; | 
|  |  | 
|  | // If the global is weak or external, we have to go through the lazy | 
|  | // resolution stub. | 
|  | return DAG.getLoad(PtrVT, DAG.getEntryNode(), Lo, NULL, 0); | 
|  | } | 
|  |  | 
|  | SDOperand PPCTargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG) { | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); | 
|  |  | 
|  | // If we're comparing for equality to zero, expose the fact that this is | 
|  | // implented as a ctlz/srl pair on ppc, so that the dag combiner can | 
|  | // fold the new nodes. | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { | 
|  | if (C->isNullValue() && CC == ISD::SETEQ) { | 
|  | MVT::ValueType VT = Op.getOperand(0).getValueType(); | 
|  | SDOperand Zext = Op.getOperand(0); | 
|  | if (VT < MVT::i32) { | 
|  | VT = MVT::i32; | 
|  | Zext = DAG.getNode(ISD::ZERO_EXTEND, VT, Op.getOperand(0)); | 
|  | } | 
|  | unsigned Log2b = Log2_32(MVT::getSizeInBits(VT)); | 
|  | SDOperand Clz = DAG.getNode(ISD::CTLZ, VT, Zext); | 
|  | SDOperand Scc = DAG.getNode(ISD::SRL, VT, Clz, | 
|  | DAG.getConstant(Log2b, MVT::i32)); | 
|  | return DAG.getNode(ISD::TRUNCATE, MVT::i32, Scc); | 
|  | } | 
|  | // Leave comparisons against 0 and -1 alone for now, since they're usually | 
|  | // optimized.  FIXME: revisit this when we can custom lower all setcc | 
|  | // optimizations. | 
|  | if (C->isAllOnesValue() || C->isNullValue()) | 
|  | return SDOperand(); | 
|  | } | 
|  |  | 
|  | // If we have an integer seteq/setne, turn it into a compare against zero | 
|  | // by xor'ing the rhs with the lhs, which is faster than setting a | 
|  | // condition register, reading it back out, and masking the correct bit.  The | 
|  | // normal approach here uses sub to do this instead of xor.  Using xor exposes | 
|  | // the result to other bit-twiddling opportunities. | 
|  | MVT::ValueType LHSVT = Op.getOperand(0).getValueType(); | 
|  | if (MVT::isInteger(LHSVT) && (CC == ISD::SETEQ || CC == ISD::SETNE)) { | 
|  | MVT::ValueType VT = Op.getValueType(); | 
|  | SDOperand Sub = DAG.getNode(ISD::XOR, LHSVT, Op.getOperand(0), | 
|  | Op.getOperand(1)); | 
|  | return DAG.getSetCC(VT, Sub, DAG.getConstant(0, LHSVT), CC); | 
|  | } | 
|  | return SDOperand(); | 
|  | } | 
|  |  | 
|  | SDOperand PPCTargetLowering::LowerVAARG(SDOperand Op, SelectionDAG &DAG, | 
|  | int VarArgsFrameIndex, | 
|  | int VarArgsStackOffset, | 
|  | unsigned VarArgsNumGPR, | 
|  | unsigned VarArgsNumFPR, | 
|  | const PPCSubtarget &Subtarget) { | 
|  |  | 
|  | assert(0 && "VAARG in ELF32 ABI not implemented yet!"); | 
|  | } | 
|  |  | 
|  | SDOperand PPCTargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG, | 
|  | int VarArgsFrameIndex, | 
|  | int VarArgsStackOffset, | 
|  | unsigned VarArgsNumGPR, | 
|  | unsigned VarArgsNumFPR, | 
|  | const PPCSubtarget &Subtarget) { | 
|  |  | 
|  | if (Subtarget.isMachoABI()) { | 
|  | // vastart just stores the address of the VarArgsFrameIndex slot into the | 
|  | // memory location argument. | 
|  | MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); | 
|  | SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT); | 
|  | const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); | 
|  | return DAG.getStore(Op.getOperand(0), FR, Op.getOperand(1), SV, 0); | 
|  | } | 
|  |  | 
|  | // For ELF 32 ABI we follow the layout of the va_list struct. | 
|  | // We suppose the given va_list is already allocated. | 
|  | // | 
|  | // typedef struct { | 
|  | //  char gpr;     /* index into the array of 8 GPRs | 
|  | //                 * stored in the register save area | 
|  | //                 * gpr=0 corresponds to r3, | 
|  | //                 * gpr=1 to r4, etc. | 
|  | //                 */ | 
|  | //  char fpr;     /* index into the array of 8 FPRs | 
|  | //                 * stored in the register save area | 
|  | //                 * fpr=0 corresponds to f1, | 
|  | //                 * fpr=1 to f2, etc. | 
|  | //                 */ | 
|  | //  char *overflow_arg_area; | 
|  | //                /* location on stack that holds | 
|  | //                 * the next overflow argument | 
|  | //                 */ | 
|  | //  char *reg_save_area; | 
|  | //               /* where r3:r10 and f1:f8 (if saved) | 
|  | //                * are stored | 
|  | //                */ | 
|  | // } va_list[1]; | 
|  |  | 
|  |  | 
|  | SDOperand ArgGPR = DAG.getConstant(VarArgsNumGPR, MVT::i8); | 
|  | SDOperand ArgFPR = DAG.getConstant(VarArgsNumFPR, MVT::i8); | 
|  |  | 
|  |  | 
|  | MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); | 
|  |  | 
|  | SDOperand StackOffsetFI = DAG.getFrameIndex(VarArgsStackOffset, PtrVT); | 
|  | SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT); | 
|  |  | 
|  | uint64_t FrameOffset = MVT::getSizeInBits(PtrVT)/8; | 
|  | SDOperand ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT); | 
|  |  | 
|  | uint64_t StackOffset = MVT::getSizeInBits(PtrVT)/8 - 1; | 
|  | SDOperand ConstStackOffset = DAG.getConstant(StackOffset, PtrVT); | 
|  |  | 
|  | uint64_t FPROffset = 1; | 
|  | SDOperand ConstFPROffset = DAG.getConstant(FPROffset, PtrVT); | 
|  |  | 
|  | const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); | 
|  |  | 
|  | // Store first byte : number of int regs | 
|  | SDOperand firstStore = DAG.getStore(Op.getOperand(0), ArgGPR, | 
|  | Op.getOperand(1), SV, 0); | 
|  | uint64_t nextOffset = FPROffset; | 
|  | SDOperand nextPtr = DAG.getNode(ISD::ADD, PtrVT, Op.getOperand(1), | 
|  | ConstFPROffset); | 
|  |  | 
|  | // Store second byte : number of float regs | 
|  | SDOperand secondStore = | 
|  | DAG.getStore(firstStore, ArgFPR, nextPtr, SV, nextOffset); | 
|  | nextOffset += StackOffset; | 
|  | nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstStackOffset); | 
|  |  | 
|  | // Store second word : arguments given on stack | 
|  | SDOperand thirdStore = | 
|  | DAG.getStore(secondStore, StackOffsetFI, nextPtr, SV, nextOffset); | 
|  | nextOffset += FrameOffset; | 
|  | nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstFrameOffset); | 
|  |  | 
|  | // Store third word : arguments given in registers | 
|  | return DAG.getStore(thirdStore, FR, nextPtr, SV, nextOffset); | 
|  |  | 
|  | } | 
|  |  | 
|  | #include "PPCGenCallingConv.inc" | 
|  |  | 
|  | /// GetFPR - Get the set of FP registers that should be allocated for arguments, | 
|  | /// depending on which subtarget is selected. | 
|  | static const unsigned *GetFPR(const PPCSubtarget &Subtarget) { | 
|  | if (Subtarget.isMachoABI()) { | 
|  | static const unsigned FPR[] = { | 
|  | PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, | 
|  | PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13 | 
|  | }; | 
|  | return FPR; | 
|  | } | 
|  |  | 
|  |  | 
|  | static const unsigned FPR[] = { | 
|  | PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, | 
|  | PPC::F8 | 
|  | }; | 
|  | return FPR; | 
|  | } | 
|  |  | 
|  | SDOperand | 
|  | PPCTargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op, | 
|  | SelectionDAG &DAG, | 
|  | int &VarArgsFrameIndex, | 
|  | int &VarArgsStackOffset, | 
|  | unsigned &VarArgsNumGPR, | 
|  | unsigned &VarArgsNumFPR, | 
|  | const PPCSubtarget &Subtarget) { | 
|  | // TODO: add description of PPC stack frame format, or at least some docs. | 
|  | // | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | MachineFrameInfo *MFI = MF.getFrameInfo(); | 
|  | MachineRegisterInfo &RegInfo = MF.getRegInfo(); | 
|  | SmallVector<SDOperand, 8> ArgValues; | 
|  | SDOperand Root = Op.getOperand(0); | 
|  | bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0; | 
|  |  | 
|  | MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); | 
|  | bool isPPC64 = PtrVT == MVT::i64; | 
|  | bool isMachoABI = Subtarget.isMachoABI(); | 
|  | bool isELF32_ABI = Subtarget.isELF32_ABI(); | 
|  | unsigned PtrByteSize = isPPC64 ? 8 : 4; | 
|  |  | 
|  | unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI); | 
|  |  | 
|  | static const unsigned GPR_32[] = {           // 32-bit registers. | 
|  | PPC::R3, PPC::R4, PPC::R5, PPC::R6, | 
|  | PPC::R7, PPC::R8, PPC::R9, PPC::R10, | 
|  | }; | 
|  | static const unsigned GPR_64[] = {           // 64-bit registers. | 
|  | PPC::X3, PPC::X4, PPC::X5, PPC::X6, | 
|  | PPC::X7, PPC::X8, PPC::X9, PPC::X10, | 
|  | }; | 
|  |  | 
|  | static const unsigned *FPR = GetFPR(Subtarget); | 
|  |  | 
|  | static const unsigned VR[] = { | 
|  | PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, | 
|  | PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 | 
|  | }; | 
|  |  | 
|  | const unsigned Num_GPR_Regs = array_lengthof(GPR_32); | 
|  | const unsigned Num_FPR_Regs = isMachoABI ? 13 : 8; | 
|  | const unsigned Num_VR_Regs  = array_lengthof( VR); | 
|  |  | 
|  | unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; | 
|  |  | 
|  | const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32; | 
|  |  | 
|  | // In 32-bit non-varargs functions, the stack space for vectors is after the | 
|  | // stack space for non-vectors.  We do not use this space unless we have | 
|  | // too many vectors to fit in registers, something that only occurs in | 
|  | // constructed examples:), but we have to walk the arglist to figure | 
|  | // that out...for the pathological case, compute VecArgOffset as the | 
|  | // start of the vector parameter area.  Computing VecArgOffset is the | 
|  | // entire point of the following loop. | 
|  | // Altivec is not mentioned in the ppc32 Elf Supplement, so I'm not trying | 
|  | // to handle Elf here. | 
|  | unsigned VecArgOffset = ArgOffset; | 
|  | if (!isVarArg && !isPPC64) { | 
|  | for (unsigned ArgNo = 0, e = Op.Val->getNumValues()-1; ArgNo != e; | 
|  | ++ArgNo) { | 
|  | MVT::ValueType ObjectVT = Op.getValue(ArgNo).getValueType(); | 
|  | unsigned ObjSize = MVT::getSizeInBits(ObjectVT)/8; | 
|  | ISD::ArgFlagsTy Flags = | 
|  | cast<ARG_FLAGSSDNode>(Op.getOperand(ArgNo+3))->getArgFlags(); | 
|  |  | 
|  | if (Flags.isByVal()) { | 
|  | // ObjSize is the true size, ArgSize rounded up to multiple of regs. | 
|  | ObjSize = Flags.getByValSize(); | 
|  | unsigned ArgSize = | 
|  | ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; | 
|  | VecArgOffset += ArgSize; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | switch(ObjectVT) { | 
|  | default: assert(0 && "Unhandled argument type!"); | 
|  | case MVT::i32: | 
|  | case MVT::f32: | 
|  | VecArgOffset += isPPC64 ? 8 : 4; | 
|  | break; | 
|  | case MVT::i64:  // PPC64 | 
|  | case MVT::f64: | 
|  | VecArgOffset += 8; | 
|  | break; | 
|  | case MVT::v4f32: | 
|  | case MVT::v4i32: | 
|  | case MVT::v8i16: | 
|  | case MVT::v16i8: | 
|  | // Nothing to do, we're only looking at Nonvector args here. | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | // We've found where the vector parameter area in memory is.  Skip the | 
|  | // first 12 parameters; these don't use that memory. | 
|  | VecArgOffset = ((VecArgOffset+15)/16)*16; | 
|  | VecArgOffset += 12*16; | 
|  |  | 
|  | // Add DAG nodes to load the arguments or copy them out of registers.  On | 
|  | // entry to a function on PPC, the arguments start after the linkage area, | 
|  | // although the first ones are often in registers. | 
|  | // | 
|  | // In the ELF 32 ABI, GPRs and stack are double word align: an argument | 
|  | // represented with two words (long long or double) must be copied to an | 
|  | // even GPR_idx value or to an even ArgOffset value.  TODO: implement this. | 
|  |  | 
|  | SmallVector<SDOperand, 8> MemOps; | 
|  |  | 
|  | for (unsigned ArgNo = 0, e = Op.Val->getNumValues()-1; ArgNo != e; ++ArgNo) { | 
|  | SDOperand ArgVal; | 
|  | bool needsLoad = false; | 
|  | MVT::ValueType ObjectVT = Op.getValue(ArgNo).getValueType(); | 
|  | unsigned ObjSize = MVT::getSizeInBits(ObjectVT)/8; | 
|  | unsigned ArgSize = ObjSize; | 
|  | ISD::ArgFlagsTy Flags = | 
|  | cast<ARG_FLAGSSDNode>(Op.getOperand(ArgNo+3))->getArgFlags(); | 
|  | // See if next argument requires stack alignment in ELF | 
|  | bool Expand = false; // TODO: implement this. | 
|  |  | 
|  | unsigned CurArgOffset = ArgOffset; | 
|  |  | 
|  | // FIXME alignment for ELF may not be right | 
|  | // FIXME the codegen can be much improved in some cases. | 
|  | // We do not have to keep everything in memory. | 
|  | if (Flags.isByVal()) { | 
|  | // ObjSize is the true size, ArgSize rounded up to multiple of registers. | 
|  | ObjSize = Flags.getByValSize(); | 
|  | ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; | 
|  | // Double word align in ELF | 
|  | if (Expand && isELF32_ABI) GPR_idx += (GPR_idx % 2); | 
|  | // Objects of size 1 and 2 are right justified, everything else is | 
|  | // left justified.  This means the memory address is adjusted forwards. | 
|  | if (ObjSize==1 || ObjSize==2) { | 
|  | CurArgOffset = CurArgOffset + (4 - ObjSize); | 
|  | } | 
|  | // The value of the object is its address. | 
|  | int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset); | 
|  | SDOperand FIN = DAG.getFrameIndex(FI, PtrVT); | 
|  | ArgValues.push_back(FIN); | 
|  | if (ObjSize==1 || ObjSize==2) { | 
|  | if (GPR_idx != Num_GPR_Regs) { | 
|  | unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); | 
|  | RegInfo.addLiveIn(GPR[GPR_idx], VReg); | 
|  | SDOperand Val = DAG.getCopyFromReg(Root, VReg, PtrVT); | 
|  | SDOperand Store = DAG.getTruncStore(Val.getValue(1), Val, FIN, | 
|  | NULL, 0, ObjSize==1 ? MVT::i8 : MVT::i16 ); | 
|  | MemOps.push_back(Store); | 
|  | ++GPR_idx; | 
|  | if (isMachoABI) ArgOffset += PtrByteSize; | 
|  | } else { | 
|  | ArgOffset += PtrByteSize; | 
|  | } | 
|  | continue; | 
|  | } | 
|  | for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { | 
|  | // Store whatever pieces of the object are in registers | 
|  | // to memory.  ArgVal will be address of the beginning of | 
|  | // the object. | 
|  | if (GPR_idx != Num_GPR_Regs) { | 
|  | unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); | 
|  | RegInfo.addLiveIn(GPR[GPR_idx], VReg); | 
|  | int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset); | 
|  | SDOperand FIN = DAG.getFrameIndex(FI, PtrVT); | 
|  | SDOperand Val = DAG.getCopyFromReg(Root, VReg, PtrVT); | 
|  | SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0); | 
|  | MemOps.push_back(Store); | 
|  | ++GPR_idx; | 
|  | if (isMachoABI) ArgOffset += PtrByteSize; | 
|  | } else { | 
|  | ArgOffset += ArgSize - (ArgOffset-CurArgOffset); | 
|  | break; | 
|  | } | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | switch (ObjectVT) { | 
|  | default: assert(0 && "Unhandled argument type!"); | 
|  | case MVT::i32: | 
|  | if (!isPPC64) { | 
|  | // Double word align in ELF | 
|  | if (Expand && isELF32_ABI) GPR_idx += (GPR_idx % 2); | 
|  |  | 
|  | if (GPR_idx != Num_GPR_Regs) { | 
|  | unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); | 
|  | RegInfo.addLiveIn(GPR[GPR_idx], VReg); | 
|  | ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i32); | 
|  | ++GPR_idx; | 
|  | } else { | 
|  | needsLoad = true; | 
|  | ArgSize = PtrByteSize; | 
|  | } | 
|  | // Stack align in ELF | 
|  | if (needsLoad && Expand && isELF32_ABI) | 
|  | ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize; | 
|  | // All int arguments reserve stack space in Macho ABI. | 
|  | if (isMachoABI || needsLoad) ArgOffset += PtrByteSize; | 
|  | break; | 
|  | } | 
|  | // FALLTHROUGH | 
|  | case MVT::i64:  // PPC64 | 
|  | if (GPR_idx != Num_GPR_Regs) { | 
|  | unsigned VReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); | 
|  | RegInfo.addLiveIn(GPR[GPR_idx], VReg); | 
|  | ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i64); | 
|  |  | 
|  | if (ObjectVT == MVT::i32) { | 
|  | // PPC64 passes i8, i16, and i32 values in i64 registers. Promote | 
|  | // value to MVT::i64 and then truncate to the correct register size. | 
|  | if (Flags.isSExt()) | 
|  | ArgVal = DAG.getNode(ISD::AssertSext, MVT::i64, ArgVal, | 
|  | DAG.getValueType(ObjectVT)); | 
|  | else if (Flags.isZExt()) | 
|  | ArgVal = DAG.getNode(ISD::AssertZext, MVT::i64, ArgVal, | 
|  | DAG.getValueType(ObjectVT)); | 
|  |  | 
|  | ArgVal = DAG.getNode(ISD::TRUNCATE, MVT::i32, ArgVal); | 
|  | } | 
|  |  | 
|  | ++GPR_idx; | 
|  | } else { | 
|  | needsLoad = true; | 
|  | } | 
|  | // All int arguments reserve stack space in Macho ABI. | 
|  | if (isMachoABI || needsLoad) ArgOffset += 8; | 
|  | break; | 
|  |  | 
|  | case MVT::f32: | 
|  | case MVT::f64: | 
|  | // Every 4 bytes of argument space consumes one of the GPRs available for | 
|  | // argument passing. | 
|  | if (GPR_idx != Num_GPR_Regs && isMachoABI) { | 
|  | ++GPR_idx; | 
|  | if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) | 
|  | ++GPR_idx; | 
|  | } | 
|  | if (FPR_idx != Num_FPR_Regs) { | 
|  | unsigned VReg; | 
|  | if (ObjectVT == MVT::f32) | 
|  | VReg = RegInfo.createVirtualRegister(&PPC::F4RCRegClass); | 
|  | else | 
|  | VReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); | 
|  | RegInfo.addLiveIn(FPR[FPR_idx], VReg); | 
|  | ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT); | 
|  | ++FPR_idx; | 
|  | } else { | 
|  | needsLoad = true; | 
|  | } | 
|  |  | 
|  | // Stack align in ELF | 
|  | if (needsLoad && Expand && isELF32_ABI) | 
|  | ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize; | 
|  | // All FP arguments reserve stack space in Macho ABI. | 
|  | if (isMachoABI || needsLoad) ArgOffset += isPPC64 ? 8 : ObjSize; | 
|  | break; | 
|  | case MVT::v4f32: | 
|  | case MVT::v4i32: | 
|  | case MVT::v8i16: | 
|  | case MVT::v16i8: | 
|  | // Note that vector arguments in registers don't reserve stack space, | 
|  | // except in varargs functions. | 
|  | if (VR_idx != Num_VR_Regs) { | 
|  | unsigned VReg = RegInfo.createVirtualRegister(&PPC::VRRCRegClass); | 
|  | RegInfo.addLiveIn(VR[VR_idx], VReg); | 
|  | ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT); | 
|  | if (isVarArg) { | 
|  | while ((ArgOffset % 16) != 0) { | 
|  | ArgOffset += PtrByteSize; | 
|  | if (GPR_idx != Num_GPR_Regs) | 
|  | GPR_idx++; | 
|  | } | 
|  | ArgOffset += 16; | 
|  | GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); | 
|  | } | 
|  | ++VR_idx; | 
|  | } else { | 
|  | if (!isVarArg && !isPPC64) { | 
|  | // Vectors go after all the nonvectors. | 
|  | CurArgOffset = VecArgOffset; | 
|  | VecArgOffset += 16; | 
|  | } else { | 
|  | // Vectors are aligned. | 
|  | ArgOffset = ((ArgOffset+15)/16)*16; | 
|  | CurArgOffset = ArgOffset; | 
|  | ArgOffset += 16; | 
|  | } | 
|  | needsLoad = true; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | // We need to load the argument to a virtual register if we determined above | 
|  | // that we ran out of physical registers of the appropriate type. | 
|  | if (needsLoad) { | 
|  | int FI = MFI->CreateFixedObject(ObjSize, | 
|  | CurArgOffset + (ArgSize - ObjSize)); | 
|  | SDOperand FIN = DAG.getFrameIndex(FI, PtrVT); | 
|  | ArgVal = DAG.getLoad(ObjectVT, Root, FIN, NULL, 0); | 
|  | } | 
|  |  | 
|  | ArgValues.push_back(ArgVal); | 
|  | } | 
|  |  | 
|  | // If the function takes variable number of arguments, make a frame index for | 
|  | // the start of the first vararg value... for expansion of llvm.va_start. | 
|  | if (isVarArg) { | 
|  |  | 
|  | int depth; | 
|  | if (isELF32_ABI) { | 
|  | VarArgsNumGPR = GPR_idx; | 
|  | VarArgsNumFPR = FPR_idx; | 
|  |  | 
|  | // Make room for Num_GPR_Regs, Num_FPR_Regs and for a possible frame | 
|  | // pointer. | 
|  | depth = -(Num_GPR_Regs * MVT::getSizeInBits(PtrVT)/8 + | 
|  | Num_FPR_Regs * MVT::getSizeInBits(MVT::f64)/8 + | 
|  | MVT::getSizeInBits(PtrVT)/8); | 
|  |  | 
|  | VarArgsStackOffset = MFI->CreateFixedObject(MVT::getSizeInBits(PtrVT)/8, | 
|  | ArgOffset); | 
|  |  | 
|  | } | 
|  | else | 
|  | depth = ArgOffset; | 
|  |  | 
|  | VarArgsFrameIndex = MFI->CreateFixedObject(MVT::getSizeInBits(PtrVT)/8, | 
|  | depth); | 
|  | SDOperand FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT); | 
|  |  | 
|  | // In ELF 32 ABI, the fixed integer arguments of a variadic function are | 
|  | // stored to the VarArgsFrameIndex on the stack. | 
|  | if (isELF32_ABI) { | 
|  | for (GPR_idx = 0; GPR_idx != VarArgsNumGPR; ++GPR_idx) { | 
|  | SDOperand Val = DAG.getRegister(GPR[GPR_idx], PtrVT); | 
|  | SDOperand Store = DAG.getStore(Root, Val, FIN, NULL, 0); | 
|  | MemOps.push_back(Store); | 
|  | // Increment the address by four for the next argument to store | 
|  | SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8, PtrVT); | 
|  | FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this function is vararg, store any remaining integer argument regs | 
|  | // to their spots on the stack so that they may be loaded by deferencing the | 
|  | // result of va_next. | 
|  | for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { | 
|  | unsigned VReg; | 
|  | if (isPPC64) | 
|  | VReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); | 
|  | else | 
|  | VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); | 
|  |  | 
|  | RegInfo.addLiveIn(GPR[GPR_idx], VReg); | 
|  | SDOperand Val = DAG.getCopyFromReg(Root, VReg, PtrVT); | 
|  | SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0); | 
|  | MemOps.push_back(Store); | 
|  | // Increment the address by four for the next argument to store | 
|  | SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8, PtrVT); | 
|  | FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff); | 
|  | } | 
|  |  | 
|  | // In ELF 32 ABI, the double arguments are stored to the VarArgsFrameIndex | 
|  | // on the stack. | 
|  | if (isELF32_ABI) { | 
|  | for (FPR_idx = 0; FPR_idx != VarArgsNumFPR; ++FPR_idx) { | 
|  | SDOperand Val = DAG.getRegister(FPR[FPR_idx], MVT::f64); | 
|  | SDOperand Store = DAG.getStore(Root, Val, FIN, NULL, 0); | 
|  | MemOps.push_back(Store); | 
|  | // Increment the address by eight for the next argument to store | 
|  | SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(MVT::f64)/8, | 
|  | PtrVT); | 
|  | FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff); | 
|  | } | 
|  |  | 
|  | for (; FPR_idx != Num_FPR_Regs; ++FPR_idx) { | 
|  | unsigned VReg; | 
|  | VReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); | 
|  |  | 
|  | RegInfo.addLiveIn(FPR[FPR_idx], VReg); | 
|  | SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::f64); | 
|  | SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0); | 
|  | MemOps.push_back(Store); | 
|  | // Increment the address by eight for the next argument to store | 
|  | SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(MVT::f64)/8, | 
|  | PtrVT); | 
|  | FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!MemOps.empty()) | 
|  | Root = DAG.getNode(ISD::TokenFactor, MVT::Other,&MemOps[0],MemOps.size()); | 
|  |  | 
|  | ArgValues.push_back(Root); | 
|  |  | 
|  | // Return the new list of results. | 
|  | std::vector<MVT::ValueType> RetVT(Op.Val->value_begin(), | 
|  | Op.Val->value_end()); | 
|  | return DAG.getNode(ISD::MERGE_VALUES, RetVT, &ArgValues[0], ArgValues.size()); | 
|  | } | 
|  |  | 
|  | /// isCallCompatibleAddress - Return the immediate to use if the specified | 
|  | /// 32-bit value is representable in the immediate field of a BxA instruction. | 
|  | static SDNode *isBLACompatibleAddress(SDOperand Op, SelectionDAG &DAG) { | 
|  | ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); | 
|  | if (!C) return 0; | 
|  |  | 
|  | int Addr = C->getValue(); | 
|  | if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero. | 
|  | (Addr << 6 >> 6) != Addr) | 
|  | return 0;  // Top 6 bits have to be sext of immediate. | 
|  |  | 
|  | return DAG.getConstant((int)C->getValue() >> 2, | 
|  | DAG.getTargetLoweringInfo().getPointerTy()).Val; | 
|  | } | 
|  |  | 
|  | /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified | 
|  | /// by "Src" to address "Dst" of size "Size".  Alignment information is | 
|  | /// specified by the specific parameter attribute. The copy will be passed as | 
|  | /// a byval function parameter. | 
|  | /// Sometimes what we are copying is the end of a larger object, the part that | 
|  | /// does not fit in registers. | 
|  | static SDOperand | 
|  | CreateCopyOfByValArgument(SDOperand Src, SDOperand Dst, SDOperand Chain, | 
|  | ISD::ArgFlagsTy Flags, SelectionDAG &DAG, | 
|  | unsigned Size) { | 
|  | SDOperand AlignNode    = DAG.getConstant(Flags.getByValAlign(), MVT::i32); | 
|  | SDOperand SizeNode     = DAG.getConstant(Size, MVT::i32); | 
|  | SDOperand AlwaysInline = DAG.getConstant(0, MVT::i32); | 
|  | return DAG.getMemcpy(Chain, Dst, Src, SizeNode, AlignNode, AlwaysInline); | 
|  | } | 
|  |  | 
|  | SDOperand PPCTargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG, | 
|  | const PPCSubtarget &Subtarget, | 
|  | TargetMachine &TM) { | 
|  | SDOperand Chain  = Op.getOperand(0); | 
|  | bool isVarArg    = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0; | 
|  | SDOperand Callee = Op.getOperand(4); | 
|  | unsigned NumOps  = (Op.getNumOperands() - 5) / 2; | 
|  |  | 
|  | bool isMachoABI = Subtarget.isMachoABI(); | 
|  | bool isELF32_ABI  = Subtarget.isELF32_ABI(); | 
|  |  | 
|  | MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); | 
|  | bool isPPC64 = PtrVT == MVT::i64; | 
|  | unsigned PtrByteSize = isPPC64 ? 8 : 4; | 
|  |  | 
|  | // args_to_use will accumulate outgoing args for the PPCISD::CALL case in | 
|  | // SelectExpr to use to put the arguments in the appropriate registers. | 
|  | std::vector<SDOperand> args_to_use; | 
|  |  | 
|  | // Count how many bytes are to be pushed on the stack, including the linkage | 
|  | // area, and parameter passing area.  We start with 24/48 bytes, which is | 
|  | // prereserved space for [SP][CR][LR][3 x unused]. | 
|  | unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI); | 
|  |  | 
|  | // Add up all the space actually used. | 
|  | // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually | 
|  | // they all go in registers, but we must reserve stack space for them for | 
|  | // possible use by the caller.  In varargs or 64-bit calls, parameters are | 
|  | // assigned stack space in order, with padding so Altivec parameters are | 
|  | // 16-byte aligned. | 
|  | unsigned nAltivecParamsAtEnd = 0; | 
|  | for (unsigned i = 0; i != NumOps; ++i) { | 
|  | SDOperand Arg = Op.getOperand(5+2*i); | 
|  | MVT::ValueType ArgVT = Arg.getValueType(); | 
|  | if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 || | 
|  | ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) { | 
|  | if (!isVarArg && !isPPC64) { | 
|  | // Non-varargs Altivec parameters go after all the non-Altivec parameters; | 
|  | // do those last so we know how much padding we need. | 
|  | nAltivecParamsAtEnd++; | 
|  | continue; | 
|  | } else { | 
|  | // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. | 
|  | NumBytes = ((NumBytes+15)/16)*16; | 
|  | } | 
|  | } | 
|  | ISD::ArgFlagsTy Flags = | 
|  | cast<ARG_FLAGSSDNode>(Op.getOperand(5+2*i+1))->getArgFlags(); | 
|  | unsigned ArgSize =MVT::getSizeInBits(Op.getOperand(5+2*i).getValueType())/8; | 
|  | if (Flags.isByVal()) | 
|  | ArgSize = Flags.getByValSize(); | 
|  | ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; | 
|  | NumBytes += ArgSize; | 
|  | } | 
|  | // Allow for Altivec parameters at the end, if needed. | 
|  | if (nAltivecParamsAtEnd) { | 
|  | NumBytes = ((NumBytes+15)/16)*16; | 
|  | NumBytes += 16*nAltivecParamsAtEnd; | 
|  | } | 
|  |  | 
|  | // The prolog code of the callee may store up to 8 GPR argument registers to | 
|  | // the stack, allowing va_start to index over them in memory if its varargs. | 
|  | // Because we cannot tell if this is needed on the caller side, we have to | 
|  | // conservatively assume that it is needed.  As such, make sure we have at | 
|  | // least enough stack space for the caller to store the 8 GPRs. | 
|  | NumBytes = std::max(NumBytes, | 
|  | PPCFrameInfo::getMinCallFrameSize(isPPC64, isMachoABI)); | 
|  |  | 
|  | // Adjust the stack pointer for the new arguments... | 
|  | // These operations are automatically eliminated by the prolog/epilog pass | 
|  | Chain = DAG.getCALLSEQ_START(Chain, | 
|  | DAG.getConstant(NumBytes, PtrVT)); | 
|  | SDOperand CallSeqStart = Chain; | 
|  |  | 
|  | // Set up a copy of the stack pointer for use loading and storing any | 
|  | // arguments that may not fit in the registers available for argument | 
|  | // passing. | 
|  | SDOperand StackPtr; | 
|  | if (isPPC64) | 
|  | StackPtr = DAG.getRegister(PPC::X1, MVT::i64); | 
|  | else | 
|  | StackPtr = DAG.getRegister(PPC::R1, MVT::i32); | 
|  |  | 
|  | // Figure out which arguments are going to go in registers, and which in | 
|  | // memory.  Also, if this is a vararg function, floating point operations | 
|  | // must be stored to our stack, and loaded into integer regs as well, if | 
|  | // any integer regs are available for argument passing. | 
|  | unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI); | 
|  | unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; | 
|  |  | 
|  | static const unsigned GPR_32[] = {           // 32-bit registers. | 
|  | PPC::R3, PPC::R4, PPC::R5, PPC::R6, | 
|  | PPC::R7, PPC::R8, PPC::R9, PPC::R10, | 
|  | }; | 
|  | static const unsigned GPR_64[] = {           // 64-bit registers. | 
|  | PPC::X3, PPC::X4, PPC::X5, PPC::X6, | 
|  | PPC::X7, PPC::X8, PPC::X9, PPC::X10, | 
|  | }; | 
|  | static const unsigned *FPR = GetFPR(Subtarget); | 
|  |  | 
|  | static const unsigned VR[] = { | 
|  | PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, | 
|  | PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 | 
|  | }; | 
|  | const unsigned NumGPRs = array_lengthof(GPR_32); | 
|  | const unsigned NumFPRs = isMachoABI ? 13 : 8; | 
|  | const unsigned NumVRs  = array_lengthof( VR); | 
|  |  | 
|  | const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32; | 
|  |  | 
|  | std::vector<std::pair<unsigned, SDOperand> > RegsToPass; | 
|  | SmallVector<SDOperand, 8> MemOpChains; | 
|  | for (unsigned i = 0; i != NumOps; ++i) { | 
|  | bool inMem = false; | 
|  | SDOperand Arg = Op.getOperand(5+2*i); | 
|  | ISD::ArgFlagsTy Flags = | 
|  | cast<ARG_FLAGSSDNode>(Op.getOperand(5+2*i+1))->getArgFlags(); | 
|  | // See if next argument requires stack alignment in ELF | 
|  | bool Expand = false; // TODO: implement this. | 
|  |  | 
|  | // PtrOff will be used to store the current argument to the stack if a | 
|  | // register cannot be found for it. | 
|  | SDOperand PtrOff; | 
|  |  | 
|  | // Stack align in ELF 32 | 
|  | if (isELF32_ABI && Expand) | 
|  | PtrOff = DAG.getConstant(ArgOffset + ((ArgOffset/4) % 2) * PtrByteSize, | 
|  | StackPtr.getValueType()); | 
|  | else | 
|  | PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType()); | 
|  |  | 
|  | PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr, PtrOff); | 
|  |  | 
|  | // On PPC64, promote integers to 64-bit values. | 
|  | if (isPPC64 && Arg.getValueType() == MVT::i32) { | 
|  | // FIXME: Should this use ANY_EXTEND if neither sext nor zext? | 
|  | unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; | 
|  | Arg = DAG.getNode(ExtOp, MVT::i64, Arg); | 
|  | } | 
|  |  | 
|  | // FIXME Elf untested, what are alignment rules? | 
|  | // FIXME memcpy is used way more than necessary.  Correctness first. | 
|  | if (Flags.isByVal()) { | 
|  | unsigned Size = Flags.getByValSize(); | 
|  | if (isELF32_ABI && Expand) GPR_idx += (GPR_idx % 2); | 
|  | if (Size==1 || Size==2) { | 
|  | // Very small objects are passed right-justified. | 
|  | // Everything else is passed left-justified. | 
|  | MVT::ValueType VT = (Size==1) ? MVT::i8 : MVT::i16; | 
|  | if (GPR_idx != NumGPRs) { | 
|  | SDOperand Load = DAG.getExtLoad(ISD::EXTLOAD, PtrVT, Chain, Arg, | 
|  | NULL, 0, VT); | 
|  | MemOpChains.push_back(Load.getValue(1)); | 
|  | RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); | 
|  | if (isMachoABI) | 
|  | ArgOffset += PtrByteSize; | 
|  | } else { | 
|  | SDOperand Const = DAG.getConstant(4 - Size, PtrOff.getValueType()); | 
|  | SDOperand AddPtr = DAG.getNode(ISD::ADD, PtrVT, PtrOff, Const); | 
|  | SDOperand MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr, | 
|  | CallSeqStart.Val->getOperand(0), | 
|  | Flags, DAG, Size); | 
|  | // This must go outside the CALLSEQ_START..END. | 
|  | SDOperand NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, | 
|  | CallSeqStart.Val->getOperand(1)); | 
|  | DAG.ReplaceAllUsesWith(CallSeqStart.Val, NewCallSeqStart.Val); | 
|  | Chain = CallSeqStart = NewCallSeqStart; | 
|  | ArgOffset += PtrByteSize; | 
|  | } | 
|  | continue; | 
|  | } | 
|  | // Copy entire object into memory.  There are cases where gcc-generated | 
|  | // code assumes it is there, even if it could be put entirely into | 
|  | // registers.  (This is not what the doc says.) | 
|  | SDOperand MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, | 
|  | CallSeqStart.Val->getOperand(0), | 
|  | Flags, DAG, Size); | 
|  | // This must go outside the CALLSEQ_START..END. | 
|  | SDOperand NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, | 
|  | CallSeqStart.Val->getOperand(1)); | 
|  | DAG.ReplaceAllUsesWith(CallSeqStart.Val, NewCallSeqStart.Val); | 
|  | Chain = CallSeqStart = NewCallSeqStart; | 
|  | // And copy the pieces of it that fit into registers. | 
|  | for (unsigned j=0; j<Size; j+=PtrByteSize) { | 
|  | SDOperand Const = DAG.getConstant(j, PtrOff.getValueType()); | 
|  | SDOperand AddArg = DAG.getNode(ISD::ADD, PtrVT, Arg, Const); | 
|  | if (GPR_idx != NumGPRs) { | 
|  | SDOperand Load = DAG.getLoad(PtrVT, Chain, AddArg, NULL, 0); | 
|  | MemOpChains.push_back(Load.getValue(1)); | 
|  | RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); | 
|  | if (isMachoABI) | 
|  | ArgOffset += PtrByteSize; | 
|  | } else { | 
|  | ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; | 
|  | break; | 
|  | } | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | switch (Arg.getValueType()) { | 
|  | default: assert(0 && "Unexpected ValueType for argument!"); | 
|  | case MVT::i32: | 
|  | case MVT::i64: | 
|  | // Double word align in ELF | 
|  | if (isELF32_ABI && Expand) GPR_idx += (GPR_idx % 2); | 
|  | if (GPR_idx != NumGPRs) { | 
|  | RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); | 
|  | } else { | 
|  | MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0)); | 
|  | inMem = true; | 
|  | } | 
|  | if (inMem || isMachoABI) { | 
|  | // Stack align in ELF | 
|  | if (isELF32_ABI && Expand) | 
|  | ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize; | 
|  |  | 
|  | ArgOffset += PtrByteSize; | 
|  | } | 
|  | break; | 
|  | case MVT::f32: | 
|  | case MVT::f64: | 
|  | if (FPR_idx != NumFPRs) { | 
|  | RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); | 
|  |  | 
|  | if (isVarArg) { | 
|  | SDOperand Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0); | 
|  | MemOpChains.push_back(Store); | 
|  |  | 
|  | // Float varargs are always shadowed in available integer registers | 
|  | if (GPR_idx != NumGPRs) { | 
|  | SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0); | 
|  | MemOpChains.push_back(Load.getValue(1)); | 
|  | if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], | 
|  | Load)); | 
|  | } | 
|  | if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ | 
|  | SDOperand ConstFour = DAG.getConstant(4, PtrOff.getValueType()); | 
|  | PtrOff = DAG.getNode(ISD::ADD, PtrVT, PtrOff, ConstFour); | 
|  | SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0); | 
|  | MemOpChains.push_back(Load.getValue(1)); | 
|  | if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], | 
|  | Load)); | 
|  | } | 
|  | } else { | 
|  | // If we have any FPRs remaining, we may also have GPRs remaining. | 
|  | // Args passed in FPRs consume either 1 (f32) or 2 (f64) available | 
|  | // GPRs. | 
|  | if (isMachoABI) { | 
|  | if (GPR_idx != NumGPRs) | 
|  | ++GPR_idx; | 
|  | if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && | 
|  | !isPPC64)  // PPC64 has 64-bit GPR's obviously :) | 
|  | ++GPR_idx; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0)); | 
|  | inMem = true; | 
|  | } | 
|  | if (inMem || isMachoABI) { | 
|  | // Stack align in ELF | 
|  | if (isELF32_ABI && Expand) | 
|  | ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize; | 
|  | if (isPPC64) | 
|  | ArgOffset += 8; | 
|  | else | 
|  | ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; | 
|  | } | 
|  | break; | 
|  | case MVT::v4f32: | 
|  | case MVT::v4i32: | 
|  | case MVT::v8i16: | 
|  | case MVT::v16i8: | 
|  | if (isVarArg) { | 
|  | // These go aligned on the stack, or in the corresponding R registers | 
|  | // when within range.  The Darwin PPC ABI doc claims they also go in | 
|  | // V registers; in fact gcc does this only for arguments that are | 
|  | // prototyped, not for those that match the ...  We do it for all | 
|  | // arguments, seems to work. | 
|  | while (ArgOffset % 16 !=0) { | 
|  | ArgOffset += PtrByteSize; | 
|  | if (GPR_idx != NumGPRs) | 
|  | GPR_idx++; | 
|  | } | 
|  | // We could elide this store in the case where the object fits | 
|  | // entirely in R registers.  Maybe later. | 
|  | PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr, | 
|  | DAG.getConstant(ArgOffset, PtrVT)); | 
|  | SDOperand Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0); | 
|  | MemOpChains.push_back(Store); | 
|  | if (VR_idx != NumVRs) { | 
|  | SDOperand Load = DAG.getLoad(MVT::v4f32, Store, PtrOff, NULL, 0); | 
|  | MemOpChains.push_back(Load.getValue(1)); | 
|  | RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); | 
|  | } | 
|  | ArgOffset += 16; | 
|  | for (unsigned i=0; i<16; i+=PtrByteSize) { | 
|  | if (GPR_idx == NumGPRs) | 
|  | break; | 
|  | SDOperand Ix = DAG.getNode(ISD::ADD, PtrVT, PtrOff, | 
|  | DAG.getConstant(i, PtrVT)); | 
|  | SDOperand Load = DAG.getLoad(PtrVT, Store, Ix, NULL, 0); | 
|  | MemOpChains.push_back(Load.getValue(1)); | 
|  | RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); | 
|  | } | 
|  | break; | 
|  | } | 
|  | // Non-varargs Altivec params generally go in registers, but have | 
|  | // stack space allocated at the end. | 
|  | if (VR_idx != NumVRs) { | 
|  | // Doesn't have GPR space allocated. | 
|  | RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); | 
|  | } else if (nAltivecParamsAtEnd==0) { | 
|  | // We are emitting Altivec params in order. | 
|  | PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr, | 
|  | DAG.getConstant(ArgOffset, PtrVT)); | 
|  | SDOperand Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0); | 
|  | MemOpChains.push_back(Store); | 
|  | ArgOffset += 16; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | // If all Altivec parameters fit in registers, as they usually do, | 
|  | // they get stack space following the non-Altivec parameters.  We | 
|  | // don't track this here because nobody below needs it. | 
|  | // If there are more Altivec parameters than fit in registers emit | 
|  | // the stores here. | 
|  | if (!isVarArg && nAltivecParamsAtEnd > NumVRs) { | 
|  | unsigned j = 0; | 
|  | // Offset is aligned; skip 1st 12 params which go in V registers. | 
|  | ArgOffset = ((ArgOffset+15)/16)*16; | 
|  | ArgOffset += 12*16; | 
|  | for (unsigned i = 0; i != NumOps; ++i) { | 
|  | SDOperand Arg = Op.getOperand(5+2*i); | 
|  | MVT::ValueType ArgType = Arg.getValueType(); | 
|  | if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || | 
|  | ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { | 
|  | if (++j > NumVRs) { | 
|  | SDOperand PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr, | 
|  | DAG.getConstant(ArgOffset, PtrVT)); | 
|  | SDOperand Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0); | 
|  | MemOpChains.push_back(Store); | 
|  | ArgOffset += 16; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!MemOpChains.empty()) | 
|  | Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, | 
|  | &MemOpChains[0], MemOpChains.size()); | 
|  |  | 
|  | // Build a sequence of copy-to-reg nodes chained together with token chain | 
|  | // and flag operands which copy the outgoing args into the appropriate regs. | 
|  | SDOperand InFlag; | 
|  | for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { | 
|  | Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second, | 
|  | InFlag); | 
|  | InFlag = Chain.getValue(1); | 
|  | } | 
|  |  | 
|  | // With the ELF 32 ABI, set CR6 to true if this is a vararg call. | 
|  | if (isVarArg && isELF32_ABI) { | 
|  | SDOperand SetCR(DAG.getTargetNode(PPC::CRSET, MVT::i32), 0); | 
|  | Chain = DAG.getCopyToReg(Chain, PPC::CR1EQ, SetCR, InFlag); | 
|  | InFlag = Chain.getValue(1); | 
|  | } | 
|  |  | 
|  | std::vector<MVT::ValueType> NodeTys; | 
|  | NodeTys.push_back(MVT::Other);   // Returns a chain | 
|  | NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use. | 
|  |  | 
|  | SmallVector<SDOperand, 8> Ops; | 
|  | unsigned CallOpc = isMachoABI? PPCISD::CALL_Macho : PPCISD::CALL_ELF; | 
|  |  | 
|  | // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every | 
|  | // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol | 
|  | // node so that legalize doesn't hack it. | 
|  | if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) | 
|  | Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType()); | 
|  | else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) | 
|  | Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType()); | 
|  | else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) | 
|  | // If this is an absolute destination address, use the munged value. | 
|  | Callee = SDOperand(Dest, 0); | 
|  | else { | 
|  | // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair | 
|  | // to do the call, we can't use PPCISD::CALL. | 
|  | SDOperand MTCTROps[] = {Chain, Callee, InFlag}; | 
|  | Chain = DAG.getNode(PPCISD::MTCTR, NodeTys, MTCTROps, 2+(InFlag.Val!=0)); | 
|  | InFlag = Chain.getValue(1); | 
|  |  | 
|  | // Copy the callee address into R12/X12 on darwin. | 
|  | if (isMachoABI) { | 
|  | unsigned Reg = Callee.getValueType() == MVT::i32 ? PPC::R12 : PPC::X12; | 
|  | Chain = DAG.getCopyToReg(Chain, Reg, Callee, InFlag); | 
|  | InFlag = Chain.getValue(1); | 
|  | } | 
|  |  | 
|  | NodeTys.clear(); | 
|  | NodeTys.push_back(MVT::Other); | 
|  | NodeTys.push_back(MVT::Flag); | 
|  | Ops.push_back(Chain); | 
|  | CallOpc = isMachoABI ? PPCISD::BCTRL_Macho : PPCISD::BCTRL_ELF; | 
|  | Callee.Val = 0; | 
|  | } | 
|  |  | 
|  | // If this is a direct call, pass the chain and the callee. | 
|  | if (Callee.Val) { | 
|  | Ops.push_back(Chain); | 
|  | Ops.push_back(Callee); | 
|  | } | 
|  |  | 
|  | // Add argument registers to the end of the list so that they are known live | 
|  | // into the call. | 
|  | for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) | 
|  | Ops.push_back(DAG.getRegister(RegsToPass[i].first, | 
|  | RegsToPass[i].second.getValueType())); | 
|  |  | 
|  | if (InFlag.Val) | 
|  | Ops.push_back(InFlag); | 
|  | Chain = DAG.getNode(CallOpc, NodeTys, &Ops[0], Ops.size()); | 
|  | InFlag = Chain.getValue(1); | 
|  |  | 
|  | Chain = DAG.getCALLSEQ_END(Chain, | 
|  | DAG.getConstant(NumBytes, PtrVT), | 
|  | DAG.getConstant(0, PtrVT), | 
|  | InFlag); | 
|  | if (Op.Val->getValueType(0) != MVT::Other) | 
|  | InFlag = Chain.getValue(1); | 
|  |  | 
|  | SmallVector<SDOperand, 16> ResultVals; | 
|  | SmallVector<CCValAssign, 16> RVLocs; | 
|  | unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv(); | 
|  | CCState CCInfo(CC, isVarArg, TM, RVLocs); | 
|  | CCInfo.AnalyzeCallResult(Op.Val, RetCC_PPC); | 
|  |  | 
|  | // Copy all of the result registers out of their specified physreg. | 
|  | for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { | 
|  | CCValAssign &VA = RVLocs[i]; | 
|  | MVT::ValueType VT = VA.getValVT(); | 
|  | assert(VA.isRegLoc() && "Can only return in registers!"); | 
|  | Chain = DAG.getCopyFromReg(Chain, VA.getLocReg(), VT, InFlag).getValue(1); | 
|  | ResultVals.push_back(Chain.getValue(0)); | 
|  | InFlag = Chain.getValue(2); | 
|  | } | 
|  |  | 
|  | // If the function returns void, just return the chain. | 
|  | if (RVLocs.empty()) | 
|  | return Chain; | 
|  |  | 
|  | // Otherwise, merge everything together with a MERGE_VALUES node. | 
|  | ResultVals.push_back(Chain); | 
|  | SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(), | 
|  | &ResultVals[0], ResultVals.size()); | 
|  | return Res.getValue(Op.ResNo); | 
|  | } | 
|  |  | 
|  | SDOperand PPCTargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG, | 
|  | TargetMachine &TM) { | 
|  | SmallVector<CCValAssign, 16> RVLocs; | 
|  | unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv(); | 
|  | bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); | 
|  | CCState CCInfo(CC, isVarArg, TM, RVLocs); | 
|  | CCInfo.AnalyzeReturn(Op.Val, RetCC_PPC); | 
|  |  | 
|  | // If this is the first return lowered for this function, add the regs to the | 
|  | // liveout set for the function. | 
|  | if (DAG.getMachineFunction().getRegInfo().liveout_empty()) { | 
|  | for (unsigned i = 0; i != RVLocs.size(); ++i) | 
|  | DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg()); | 
|  | } | 
|  |  | 
|  | SDOperand Chain = Op.getOperand(0); | 
|  | SDOperand Flag; | 
|  |  | 
|  | // Copy the result values into the output registers. | 
|  | for (unsigned i = 0; i != RVLocs.size(); ++i) { | 
|  | CCValAssign &VA = RVLocs[i]; | 
|  | assert(VA.isRegLoc() && "Can only return in registers!"); | 
|  | Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1), Flag); | 
|  | Flag = Chain.getValue(1); | 
|  | } | 
|  |  | 
|  | if (Flag.Val) | 
|  | return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain, Flag); | 
|  | else | 
|  | return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain); | 
|  | } | 
|  |  | 
|  | SDOperand PPCTargetLowering::LowerSTACKRESTORE(SDOperand Op, SelectionDAG &DAG, | 
|  | const PPCSubtarget &Subtarget) { | 
|  | // When we pop the dynamic allocation we need to restore the SP link. | 
|  |  | 
|  | // Get the corect type for pointers. | 
|  | MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); | 
|  |  | 
|  | // Construct the stack pointer operand. | 
|  | bool IsPPC64 = Subtarget.isPPC64(); | 
|  | unsigned SP = IsPPC64 ? PPC::X1 : PPC::R1; | 
|  | SDOperand StackPtr = DAG.getRegister(SP, PtrVT); | 
|  |  | 
|  | // Get the operands for the STACKRESTORE. | 
|  | SDOperand Chain = Op.getOperand(0); | 
|  | SDOperand SaveSP = Op.getOperand(1); | 
|  |  | 
|  | // Load the old link SP. | 
|  | SDOperand LoadLinkSP = DAG.getLoad(PtrVT, Chain, StackPtr, NULL, 0); | 
|  |  | 
|  | // Restore the stack pointer. | 
|  | Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), SP, SaveSP); | 
|  |  | 
|  | // Store the old link SP. | 
|  | return DAG.getStore(Chain, LoadLinkSP, StackPtr, NULL, 0); | 
|  | } | 
|  |  | 
|  | SDOperand PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDOperand Op, | 
|  | SelectionDAG &DAG, | 
|  | const PPCSubtarget &Subtarget) { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | bool IsPPC64 = Subtarget.isPPC64(); | 
|  | bool isMachoABI = Subtarget.isMachoABI(); | 
|  |  | 
|  | // Get current frame pointer save index.  The users of this index will be | 
|  | // primarily DYNALLOC instructions. | 
|  | PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); | 
|  | int FPSI = FI->getFramePointerSaveIndex(); | 
|  |  | 
|  | // If the frame pointer save index hasn't been defined yet. | 
|  | if (!FPSI) { | 
|  | // Find out what the fix offset of the frame pointer save area. | 
|  | int FPOffset = PPCFrameInfo::getFramePointerSaveOffset(IsPPC64, isMachoABI); | 
|  |  | 
|  | // Allocate the frame index for frame pointer save area. | 
|  | FPSI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, FPOffset); | 
|  | // Save the result. | 
|  | FI->setFramePointerSaveIndex(FPSI); | 
|  | } | 
|  |  | 
|  | // Get the inputs. | 
|  | SDOperand Chain = Op.getOperand(0); | 
|  | SDOperand Size  = Op.getOperand(1); | 
|  |  | 
|  | // Get the corect type for pointers. | 
|  | MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); | 
|  | // Negate the size. | 
|  | SDOperand NegSize = DAG.getNode(ISD::SUB, PtrVT, | 
|  | DAG.getConstant(0, PtrVT), Size); | 
|  | // Construct a node for the frame pointer save index. | 
|  | SDOperand FPSIdx = DAG.getFrameIndex(FPSI, PtrVT); | 
|  | // Build a DYNALLOC node. | 
|  | SDOperand Ops[3] = { Chain, NegSize, FPSIdx }; | 
|  | SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); | 
|  | return DAG.getNode(PPCISD::DYNALLOC, VTs, Ops, 3); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when | 
|  | /// possible. | 
|  | SDOperand PPCTargetLowering::LowerSELECT_CC(SDOperand Op, SelectionDAG &DAG) { | 
|  | // Not FP? Not a fsel. | 
|  | if (!MVT::isFloatingPoint(Op.getOperand(0).getValueType()) || | 
|  | !MVT::isFloatingPoint(Op.getOperand(2).getValueType())) | 
|  | return SDOperand(); | 
|  |  | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); | 
|  |  | 
|  | // Cannot handle SETEQ/SETNE. | 
|  | if (CC == ISD::SETEQ || CC == ISD::SETNE) return SDOperand(); | 
|  |  | 
|  | MVT::ValueType ResVT = Op.getValueType(); | 
|  | MVT::ValueType CmpVT = Op.getOperand(0).getValueType(); | 
|  | SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1); | 
|  | SDOperand TV  = Op.getOperand(2), FV  = Op.getOperand(3); | 
|  |  | 
|  | // If the RHS of the comparison is a 0.0, we don't need to do the | 
|  | // subtraction at all. | 
|  | if (isFloatingPointZero(RHS)) | 
|  | switch (CC) { | 
|  | default: break;       // SETUO etc aren't handled by fsel. | 
|  | case ISD::SETULT: | 
|  | case ISD::SETOLT: | 
|  | case ISD::SETLT: | 
|  | std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt | 
|  | case ISD::SETUGE: | 
|  | case ISD::SETOGE: | 
|  | case ISD::SETGE: | 
|  | if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits | 
|  | LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS); | 
|  | return DAG.getNode(PPCISD::FSEL, ResVT, LHS, TV, FV); | 
|  | case ISD::SETUGT: | 
|  | case ISD::SETOGT: | 
|  | case ISD::SETGT: | 
|  | std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt | 
|  | case ISD::SETULE: | 
|  | case ISD::SETOLE: | 
|  | case ISD::SETLE: | 
|  | if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits | 
|  | LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS); | 
|  | return DAG.getNode(PPCISD::FSEL, ResVT, | 
|  | DAG.getNode(ISD::FNEG, MVT::f64, LHS), TV, FV); | 
|  | } | 
|  |  | 
|  | SDOperand Cmp; | 
|  | switch (CC) { | 
|  | default: break;       // SETUO etc aren't handled by fsel. | 
|  | case ISD::SETULT: | 
|  | case ISD::SETOLT: | 
|  | case ISD::SETLT: | 
|  | Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS); | 
|  | if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits | 
|  | Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp); | 
|  | return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV); | 
|  | case ISD::SETUGE: | 
|  | case ISD::SETOGE: | 
|  | case ISD::SETGE: | 
|  | Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS); | 
|  | if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits | 
|  | Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp); | 
|  | return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV); | 
|  | case ISD::SETUGT: | 
|  | case ISD::SETOGT: | 
|  | case ISD::SETGT: | 
|  | Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS); | 
|  | if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits | 
|  | Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp); | 
|  | return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV); | 
|  | case ISD::SETULE: | 
|  | case ISD::SETOLE: | 
|  | case ISD::SETLE: | 
|  | Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS); | 
|  | if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits | 
|  | Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp); | 
|  | return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV); | 
|  | } | 
|  | return SDOperand(); | 
|  | } | 
|  |  | 
|  | // FIXME: Split this code up when LegalizeDAGTypes lands. | 
|  | SDOperand PPCTargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) { | 
|  | assert(MVT::isFloatingPoint(Op.getOperand(0).getValueType())); | 
|  | SDOperand Src = Op.getOperand(0); | 
|  | if (Src.getValueType() == MVT::f32) | 
|  | Src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Src); | 
|  |  | 
|  | SDOperand Tmp; | 
|  | switch (Op.getValueType()) { | 
|  | default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!"); | 
|  | case MVT::i32: | 
|  | Tmp = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Src); | 
|  | break; | 
|  | case MVT::i64: | 
|  | Tmp = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Src); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Convert the FP value to an int value through memory. | 
|  | SDOperand FIPtr = DAG.CreateStackTemporary(MVT::f64); | 
|  |  | 
|  | // Emit a store to the stack slot. | 
|  | SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Tmp, FIPtr, NULL, 0); | 
|  |  | 
|  | // Result is a load from the stack slot.  If loading 4 bytes, make sure to | 
|  | // add in a bias. | 
|  | if (Op.getValueType() == MVT::i32) | 
|  | FIPtr = DAG.getNode(ISD::ADD, FIPtr.getValueType(), FIPtr, | 
|  | DAG.getConstant(4, FIPtr.getValueType())); | 
|  | return DAG.getLoad(Op.getValueType(), Chain, FIPtr, NULL, 0); | 
|  | } | 
|  |  | 
|  | SDOperand PPCTargetLowering::LowerFP_ROUND_INREG(SDOperand Op, | 
|  | SelectionDAG &DAG) { | 
|  | assert(Op.getValueType() == MVT::ppcf128); | 
|  | SDNode *Node = Op.Val; | 
|  | assert(Node->getOperand(0).getValueType() == MVT::ppcf128); | 
|  | assert(Node->getOperand(0).Val->getOpcode() == ISD::BUILD_PAIR); | 
|  | SDOperand Lo = Node->getOperand(0).Val->getOperand(0); | 
|  | SDOperand Hi = Node->getOperand(0).Val->getOperand(1); | 
|  |  | 
|  | // This sequence changes FPSCR to do round-to-zero, adds the two halves | 
|  | // of the long double, and puts FPSCR back the way it was.  We do not | 
|  | // actually model FPSCR. | 
|  | std::vector<MVT::ValueType> NodeTys; | 
|  | SDOperand Ops[4], Result, MFFSreg, InFlag, FPreg; | 
|  |  | 
|  | NodeTys.push_back(MVT::f64);   // Return register | 
|  | NodeTys.push_back(MVT::Flag);    // Returns a flag for later insns | 
|  | Result = DAG.getNode(PPCISD::MFFS, NodeTys, &InFlag, 0); | 
|  | MFFSreg = Result.getValue(0); | 
|  | InFlag = Result.getValue(1); | 
|  |  | 
|  | NodeTys.clear(); | 
|  | NodeTys.push_back(MVT::Flag);   // Returns a flag | 
|  | Ops[0] = DAG.getConstant(31, MVT::i32); | 
|  | Ops[1] = InFlag; | 
|  | Result = DAG.getNode(PPCISD::MTFSB1, NodeTys, Ops, 2); | 
|  | InFlag = Result.getValue(0); | 
|  |  | 
|  | NodeTys.clear(); | 
|  | NodeTys.push_back(MVT::Flag);   // Returns a flag | 
|  | Ops[0] = DAG.getConstant(30, MVT::i32); | 
|  | Ops[1] = InFlag; | 
|  | Result = DAG.getNode(PPCISD::MTFSB0, NodeTys, Ops, 2); | 
|  | InFlag = Result.getValue(0); | 
|  |  | 
|  | NodeTys.clear(); | 
|  | NodeTys.push_back(MVT::f64);    // result of add | 
|  | NodeTys.push_back(MVT::Flag);   // Returns a flag | 
|  | Ops[0] = Lo; | 
|  | Ops[1] = Hi; | 
|  | Ops[2] = InFlag; | 
|  | Result = DAG.getNode(PPCISD::FADDRTZ, NodeTys, Ops, 3); | 
|  | FPreg = Result.getValue(0); | 
|  | InFlag = Result.getValue(1); | 
|  |  | 
|  | NodeTys.clear(); | 
|  | NodeTys.push_back(MVT::f64); | 
|  | Ops[0] = DAG.getConstant(1, MVT::i32); | 
|  | Ops[1] = MFFSreg; | 
|  | Ops[2] = FPreg; | 
|  | Ops[3] = InFlag; | 
|  | Result = DAG.getNode(PPCISD::MTFSF, NodeTys, Ops, 4); | 
|  | FPreg = Result.getValue(0); | 
|  |  | 
|  | // We know the low half is about to be thrown away, so just use something | 
|  | // convenient. | 
|  | return DAG.getNode(ISD::BUILD_PAIR, Lo.getValueType(), FPreg, FPreg); | 
|  | } | 
|  |  | 
|  | SDOperand PPCTargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) { | 
|  | // Don't handle ppc_fp128 here; let it be lowered to a libcall. | 
|  | if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) | 
|  | return SDOperand(); | 
|  |  | 
|  | if (Op.getOperand(0).getValueType() == MVT::i64) { | 
|  | SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, Op.getOperand(0)); | 
|  | SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Bits); | 
|  | if (Op.getValueType() == MVT::f32) | 
|  | FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP, DAG.getIntPtrConstant(0)); | 
|  | return FP; | 
|  | } | 
|  |  | 
|  | assert(Op.getOperand(0).getValueType() == MVT::i32 && | 
|  | "Unhandled SINT_TO_FP type in custom expander!"); | 
|  | // Since we only generate this in 64-bit mode, we can take advantage of | 
|  | // 64-bit registers.  In particular, sign extend the input value into the | 
|  | // 64-bit register with extsw, store the WHOLE 64-bit value into the stack | 
|  | // then lfd it and fcfid it. | 
|  | MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); | 
|  | int FrameIdx = FrameInfo->CreateStackObject(8, 8); | 
|  | MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); | 
|  | SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); | 
|  |  | 
|  | SDOperand Ext64 = DAG.getNode(PPCISD::EXTSW_32, MVT::i32, | 
|  | Op.getOperand(0)); | 
|  |  | 
|  | // STD the extended value into the stack slot. | 
|  | MemOperand MO(PseudoSourceValue::getFixedStack(), | 
|  | MemOperand::MOStore, FrameIdx, 8, 8); | 
|  | SDOperand Store = DAG.getNode(PPCISD::STD_32, MVT::Other, | 
|  | DAG.getEntryNode(), Ext64, FIdx, | 
|  | DAG.getMemOperand(MO)); | 
|  | // Load the value as a double. | 
|  | SDOperand Ld = DAG.getLoad(MVT::f64, Store, FIdx, NULL, 0); | 
|  |  | 
|  | // FCFID it and return it. | 
|  | SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Ld); | 
|  | if (Op.getValueType() == MVT::f32) | 
|  | FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP, DAG.getIntPtrConstant(0)); | 
|  | return FP; | 
|  | } | 
|  |  | 
|  | SDOperand PPCTargetLowering::LowerFLT_ROUNDS_(SDOperand Op, SelectionDAG &DAG) { | 
|  | /* | 
|  | The rounding mode is in bits 30:31 of FPSR, and has the following | 
|  | settings: | 
|  | 00 Round to nearest | 
|  | 01 Round to 0 | 
|  | 10 Round to +inf | 
|  | 11 Round to -inf | 
|  |  | 
|  | FLT_ROUNDS, on the other hand, expects the following: | 
|  | -1 Undefined | 
|  | 0 Round to 0 | 
|  | 1 Round to nearest | 
|  | 2 Round to +inf | 
|  | 3 Round to -inf | 
|  |  | 
|  | To perform the conversion, we do: | 
|  | ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) | 
|  | */ | 
|  |  | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | MVT::ValueType VT = Op.getValueType(); | 
|  | MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); | 
|  | std::vector<MVT::ValueType> NodeTys; | 
|  | SDOperand MFFSreg, InFlag; | 
|  |  | 
|  | // Save FP Control Word to register | 
|  | NodeTys.push_back(MVT::f64);    // return register | 
|  | NodeTys.push_back(MVT::Flag);   // unused in this context | 
|  | SDOperand Chain = DAG.getNode(PPCISD::MFFS, NodeTys, &InFlag, 0); | 
|  |  | 
|  | // Save FP register to stack slot | 
|  | int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8); | 
|  | SDOperand StackSlot = DAG.getFrameIndex(SSFI, PtrVT); | 
|  | SDOperand Store = DAG.getStore(DAG.getEntryNode(), Chain, | 
|  | StackSlot, NULL, 0); | 
|  |  | 
|  | // Load FP Control Word from low 32 bits of stack slot. | 
|  | SDOperand Four = DAG.getConstant(4, PtrVT); | 
|  | SDOperand Addr = DAG.getNode(ISD::ADD, PtrVT, StackSlot, Four); | 
|  | SDOperand CWD = DAG.getLoad(MVT::i32, Store, Addr, NULL, 0); | 
|  |  | 
|  | // Transform as necessary | 
|  | SDOperand CWD1 = | 
|  | DAG.getNode(ISD::AND, MVT::i32, | 
|  | CWD, DAG.getConstant(3, MVT::i32)); | 
|  | SDOperand CWD2 = | 
|  | DAG.getNode(ISD::SRL, MVT::i32, | 
|  | DAG.getNode(ISD::AND, MVT::i32, | 
|  | DAG.getNode(ISD::XOR, MVT::i32, | 
|  | CWD, DAG.getConstant(3, MVT::i32)), | 
|  | DAG.getConstant(3, MVT::i32)), | 
|  | DAG.getConstant(1, MVT::i8)); | 
|  |  | 
|  | SDOperand RetVal = | 
|  | DAG.getNode(ISD::XOR, MVT::i32, CWD1, CWD2); | 
|  |  | 
|  | return DAG.getNode((MVT::getSizeInBits(VT) < 16 ? | 
|  | ISD::TRUNCATE : ISD::ZERO_EXTEND), VT, RetVal); | 
|  | } | 
|  |  | 
|  | SDOperand PPCTargetLowering::LowerSHL_PARTS(SDOperand Op, SelectionDAG &DAG) { | 
|  | MVT::ValueType VT = Op.getValueType(); | 
|  | unsigned BitWidth = MVT::getSizeInBits(VT); | 
|  | assert(Op.getNumOperands() == 3 && | 
|  | VT == Op.getOperand(1).getValueType() && | 
|  | "Unexpected SHL!"); | 
|  |  | 
|  | // Expand into a bunch of logical ops.  Note that these ops | 
|  | // depend on the PPC behavior for oversized shift amounts. | 
|  | SDOperand Lo = Op.getOperand(0); | 
|  | SDOperand Hi = Op.getOperand(1); | 
|  | SDOperand Amt = Op.getOperand(2); | 
|  | MVT::ValueType AmtVT = Amt.getValueType(); | 
|  |  | 
|  | SDOperand Tmp1 = DAG.getNode(ISD::SUB, AmtVT, | 
|  | DAG.getConstant(BitWidth, AmtVT), Amt); | 
|  | SDOperand Tmp2 = DAG.getNode(PPCISD::SHL, VT, Hi, Amt); | 
|  | SDOperand Tmp3 = DAG.getNode(PPCISD::SRL, VT, Lo, Tmp1); | 
|  | SDOperand Tmp4 = DAG.getNode(ISD::OR , VT, Tmp2, Tmp3); | 
|  | SDOperand Tmp5 = DAG.getNode(ISD::ADD, AmtVT, Amt, | 
|  | DAG.getConstant(-BitWidth, AmtVT)); | 
|  | SDOperand Tmp6 = DAG.getNode(PPCISD::SHL, VT, Lo, Tmp5); | 
|  | SDOperand OutHi = DAG.getNode(ISD::OR, VT, Tmp4, Tmp6); | 
|  | SDOperand OutLo = DAG.getNode(PPCISD::SHL, VT, Lo, Amt); | 
|  | SDOperand OutOps[] = { OutLo, OutHi }; | 
|  | return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, VT), | 
|  | OutOps, 2); | 
|  | } | 
|  |  | 
|  | SDOperand PPCTargetLowering::LowerSRL_PARTS(SDOperand Op, SelectionDAG &DAG) { | 
|  | MVT::ValueType VT = Op.getValueType(); | 
|  | unsigned BitWidth = MVT::getSizeInBits(VT); | 
|  | assert(Op.getNumOperands() == 3 && | 
|  | VT == Op.getOperand(1).getValueType() && | 
|  | "Unexpected SRL!"); | 
|  |  | 
|  | // Expand into a bunch of logical ops.  Note that these ops | 
|  | // depend on the PPC behavior for oversized shift amounts. | 
|  | SDOperand Lo = Op.getOperand(0); | 
|  | SDOperand Hi = Op.getOperand(1); | 
|  | SDOperand Amt = Op.getOperand(2); | 
|  | MVT::ValueType AmtVT = Amt.getValueType(); | 
|  |  | 
|  | SDOperand Tmp1 = DAG.getNode(ISD::SUB, AmtVT, | 
|  | DAG.getConstant(BitWidth, AmtVT), Amt); | 
|  | SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, VT, Lo, Amt); | 
|  | SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, VT, Hi, Tmp1); | 
|  | SDOperand Tmp4 = DAG.getNode(ISD::OR , VT, Tmp2, Tmp3); | 
|  | SDOperand Tmp5 = DAG.getNode(ISD::ADD, AmtVT, Amt, | 
|  | DAG.getConstant(-BitWidth, AmtVT)); | 
|  | SDOperand Tmp6 = DAG.getNode(PPCISD::SRL, VT, Hi, Tmp5); | 
|  | SDOperand OutLo = DAG.getNode(ISD::OR, VT, Tmp4, Tmp6); | 
|  | SDOperand OutHi = DAG.getNode(PPCISD::SRL, VT, Hi, Amt); | 
|  | SDOperand OutOps[] = { OutLo, OutHi }; | 
|  | return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, VT), | 
|  | OutOps, 2); | 
|  | } | 
|  |  | 
|  | SDOperand PPCTargetLowering::LowerSRA_PARTS(SDOperand Op, SelectionDAG &DAG) { | 
|  | MVT::ValueType VT = Op.getValueType(); | 
|  | unsigned BitWidth = MVT::getSizeInBits(VT); | 
|  | assert(Op.getNumOperands() == 3 && | 
|  | VT == Op.getOperand(1).getValueType() && | 
|  | "Unexpected SRA!"); | 
|  |  | 
|  | // Expand into a bunch of logical ops, followed by a select_cc. | 
|  | SDOperand Lo = Op.getOperand(0); | 
|  | SDOperand Hi = Op.getOperand(1); | 
|  | SDOperand Amt = Op.getOperand(2); | 
|  | MVT::ValueType AmtVT = Amt.getValueType(); | 
|  |  | 
|  | SDOperand Tmp1 = DAG.getNode(ISD::SUB, AmtVT, | 
|  | DAG.getConstant(BitWidth, AmtVT), Amt); | 
|  | SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, VT, Lo, Amt); | 
|  | SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, VT, Hi, Tmp1); | 
|  | SDOperand Tmp4 = DAG.getNode(ISD::OR , VT, Tmp2, Tmp3); | 
|  | SDOperand Tmp5 = DAG.getNode(ISD::ADD, AmtVT, Amt, | 
|  | DAG.getConstant(-BitWidth, AmtVT)); | 
|  | SDOperand Tmp6 = DAG.getNode(PPCISD::SRA, VT, Hi, Tmp5); | 
|  | SDOperand OutHi = DAG.getNode(PPCISD::SRA, VT, Hi, Amt); | 
|  | SDOperand OutLo = DAG.getSelectCC(Tmp5, DAG.getConstant(0, AmtVT), | 
|  | Tmp4, Tmp6, ISD::SETLE); | 
|  | SDOperand OutOps[] = { OutLo, OutHi }; | 
|  | return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, VT), | 
|  | OutOps, 2); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Vector related lowering. | 
|  | // | 
|  |  | 
|  | // If this is a vector of constants or undefs, get the bits.  A bit in | 
|  | // UndefBits is set if the corresponding element of the vector is an | 
|  | // ISD::UNDEF value.  For undefs, the corresponding VectorBits values are | 
|  | // zero.   Return true if this is not an array of constants, false if it is. | 
|  | // | 
|  | static bool GetConstantBuildVectorBits(SDNode *BV, uint64_t VectorBits[2], | 
|  | uint64_t UndefBits[2]) { | 
|  | // Start with zero'd results. | 
|  | VectorBits[0] = VectorBits[1] = UndefBits[0] = UndefBits[1] = 0; | 
|  |  | 
|  | unsigned EltBitSize = MVT::getSizeInBits(BV->getOperand(0).getValueType()); | 
|  | for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { | 
|  | SDOperand OpVal = BV->getOperand(i); | 
|  |  | 
|  | unsigned PartNo = i >= e/2;     // In the upper 128 bits? | 
|  | unsigned SlotNo = e/2 - (i & (e/2-1))-1;  // Which subpiece of the uint64_t. | 
|  |  | 
|  | uint64_t EltBits = 0; | 
|  | if (OpVal.getOpcode() == ISD::UNDEF) { | 
|  | uint64_t EltUndefBits = ~0U >> (32-EltBitSize); | 
|  | UndefBits[PartNo] |= EltUndefBits << (SlotNo*EltBitSize); | 
|  | continue; | 
|  | } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { | 
|  | EltBits = CN->getValue() & (~0U >> (32-EltBitSize)); | 
|  | } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { | 
|  | assert(CN->getValueType(0) == MVT::f32 && | 
|  | "Only one legal FP vector type!"); | 
|  | EltBits = FloatToBits(CN->getValueAPF().convertToFloat()); | 
|  | } else { | 
|  | // Nonconstant element. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | VectorBits[PartNo] |= EltBits << (SlotNo*EltBitSize); | 
|  | } | 
|  |  | 
|  | //printf("%llx %llx  %llx %llx\n", | 
|  | //       VectorBits[0], VectorBits[1], UndefBits[0], UndefBits[1]); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If this is a splat (repetition) of a value across the whole vector, return | 
|  | // the smallest size that splats it.  For example, "0x01010101010101..." is a | 
|  | // splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and | 
|  | // SplatSize = 1 byte. | 
|  | static bool isConstantSplat(const uint64_t Bits128[2], | 
|  | const uint64_t Undef128[2], | 
|  | unsigned &SplatBits, unsigned &SplatUndef, | 
|  | unsigned &SplatSize) { | 
|  |  | 
|  | // Don't let undefs prevent splats from matching.  See if the top 64-bits are | 
|  | // the same as the lower 64-bits, ignoring undefs. | 
|  | if ((Bits128[0] & ~Undef128[1]) != (Bits128[1] & ~Undef128[0])) | 
|  | return false;  // Can't be a splat if two pieces don't match. | 
|  |  | 
|  | uint64_t Bits64  = Bits128[0] | Bits128[1]; | 
|  | uint64_t Undef64 = Undef128[0] & Undef128[1]; | 
|  |  | 
|  | // Check that the top 32-bits are the same as the lower 32-bits, ignoring | 
|  | // undefs. | 
|  | if ((Bits64 & (~Undef64 >> 32)) != ((Bits64 >> 32) & ~Undef64)) | 
|  | return false;  // Can't be a splat if two pieces don't match. | 
|  |  | 
|  | uint32_t Bits32  = uint32_t(Bits64) | uint32_t(Bits64 >> 32); | 
|  | uint32_t Undef32 = uint32_t(Undef64) & uint32_t(Undef64 >> 32); | 
|  |  | 
|  | // If the top 16-bits are different than the lower 16-bits, ignoring | 
|  | // undefs, we have an i32 splat. | 
|  | if ((Bits32 & (~Undef32 >> 16)) != ((Bits32 >> 16) & ~Undef32)) { | 
|  | SplatBits = Bits32; | 
|  | SplatUndef = Undef32; | 
|  | SplatSize = 4; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | uint16_t Bits16  = uint16_t(Bits32)  | uint16_t(Bits32 >> 16); | 
|  | uint16_t Undef16 = uint16_t(Undef32) & uint16_t(Undef32 >> 16); | 
|  |  | 
|  | // If the top 8-bits are different than the lower 8-bits, ignoring | 
|  | // undefs, we have an i16 splat. | 
|  | if ((Bits16 & (uint16_t(~Undef16) >> 8)) != ((Bits16 >> 8) & ~Undef16)) { | 
|  | SplatBits = Bits16; | 
|  | SplatUndef = Undef16; | 
|  | SplatSize = 2; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Otherwise, we have an 8-bit splat. | 
|  | SplatBits  = uint8_t(Bits16)  | uint8_t(Bits16 >> 8); | 
|  | SplatUndef = uint8_t(Undef16) & uint8_t(Undef16 >> 8); | 
|  | SplatSize = 1; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// BuildSplatI - Build a canonical splati of Val with an element size of | 
|  | /// SplatSize.  Cast the result to VT. | 
|  | static SDOperand BuildSplatI(int Val, unsigned SplatSize, MVT::ValueType VT, | 
|  | SelectionDAG &DAG) { | 
|  | assert(Val >= -16 && Val <= 15 && "vsplti is out of range!"); | 
|  |  | 
|  | static const MVT::ValueType VTys[] = { // canonical VT to use for each size. | 
|  | MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 | 
|  | }; | 
|  |  | 
|  | MVT::ValueType ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; | 
|  |  | 
|  | // Force vspltis[hw] -1 to vspltisb -1 to canonicalize. | 
|  | if (Val == -1) | 
|  | SplatSize = 1; | 
|  |  | 
|  | MVT::ValueType CanonicalVT = VTys[SplatSize-1]; | 
|  |  | 
|  | // Build a canonical splat for this value. | 
|  | SDOperand Elt = DAG.getConstant(Val, MVT::getVectorElementType(CanonicalVT)); | 
|  | SmallVector<SDOperand, 8> Ops; | 
|  | Ops.assign(MVT::getVectorNumElements(CanonicalVT), Elt); | 
|  | SDOperand Res = DAG.getNode(ISD::BUILD_VECTOR, CanonicalVT, | 
|  | &Ops[0], Ops.size()); | 
|  | return DAG.getNode(ISD::BIT_CONVERT, ReqVT, Res); | 
|  | } | 
|  |  | 
|  | /// BuildIntrinsicOp - Return a binary operator intrinsic node with the | 
|  | /// specified intrinsic ID. | 
|  | static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand LHS, SDOperand RHS, | 
|  | SelectionDAG &DAG, | 
|  | MVT::ValueType DestVT = MVT::Other) { | 
|  | if (DestVT == MVT::Other) DestVT = LHS.getValueType(); | 
|  | return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT, | 
|  | DAG.getConstant(IID, MVT::i32), LHS, RHS); | 
|  | } | 
|  |  | 
|  | /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the | 
|  | /// specified intrinsic ID. | 
|  | static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand Op0, SDOperand Op1, | 
|  | SDOperand Op2, SelectionDAG &DAG, | 
|  | MVT::ValueType DestVT = MVT::Other) { | 
|  | if (DestVT == MVT::Other) DestVT = Op0.getValueType(); | 
|  | return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT, | 
|  | DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified | 
|  | /// amount.  The result has the specified value type. | 
|  | static SDOperand BuildVSLDOI(SDOperand LHS, SDOperand RHS, unsigned Amt, | 
|  | MVT::ValueType VT, SelectionDAG &DAG) { | 
|  | // Force LHS/RHS to be the right type. | 
|  | LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, LHS); | 
|  | RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, RHS); | 
|  |  | 
|  | SDOperand Ops[16]; | 
|  | for (unsigned i = 0; i != 16; ++i) | 
|  | Ops[i] = DAG.getConstant(i+Amt, MVT::i32); | 
|  | SDOperand T = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, LHS, RHS, | 
|  | DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops,16)); | 
|  | return DAG.getNode(ISD::BIT_CONVERT, VT, T); | 
|  | } | 
|  |  | 
|  | // If this is a case we can't handle, return null and let the default | 
|  | // expansion code take care of it.  If we CAN select this case, and if it | 
|  | // selects to a single instruction, return Op.  Otherwise, if we can codegen | 
|  | // this case more efficiently than a constant pool load, lower it to the | 
|  | // sequence of ops that should be used. | 
|  | SDOperand PPCTargetLowering::LowerBUILD_VECTOR(SDOperand Op, | 
|  | SelectionDAG &DAG) { | 
|  | // If this is a vector of constants or undefs, get the bits.  A bit in | 
|  | // UndefBits is set if the corresponding element of the vector is an | 
|  | // ISD::UNDEF value.  For undefs, the corresponding VectorBits values are | 
|  | // zero. | 
|  | uint64_t VectorBits[2]; | 
|  | uint64_t UndefBits[2]; | 
|  | if (GetConstantBuildVectorBits(Op.Val, VectorBits, UndefBits)) | 
|  | return SDOperand();   // Not a constant vector. | 
|  |  | 
|  | // If this is a splat (repetition) of a value across the whole vector, return | 
|  | // the smallest size that splats it.  For example, "0x01010101010101..." is a | 
|  | // splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and | 
|  | // SplatSize = 1 byte. | 
|  | unsigned SplatBits, SplatUndef, SplatSize; | 
|  | if (isConstantSplat(VectorBits, UndefBits, SplatBits, SplatUndef, SplatSize)){ | 
|  | bool HasAnyUndefs = (UndefBits[0] | UndefBits[1]) != 0; | 
|  |  | 
|  | // First, handle single instruction cases. | 
|  |  | 
|  | // All zeros? | 
|  | if (SplatBits == 0) { | 
|  | // Canonicalize all zero vectors to be v4i32. | 
|  | if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { | 
|  | SDOperand Z = DAG.getConstant(0, MVT::i32); | 
|  | Z = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Z, Z, Z, Z); | 
|  | Op = DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Z); | 
|  | } | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. | 
|  | int32_t SextVal= int32_t(SplatBits << (32-8*SplatSize)) >> (32-8*SplatSize); | 
|  | if (SextVal >= -16 && SextVal <= 15) | 
|  | return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG); | 
|  |  | 
|  |  | 
|  | // Two instruction sequences. | 
|  |  | 
|  | // If this value is in the range [-32,30] and is even, use: | 
|  | //    tmp = VSPLTI[bhw], result = add tmp, tmp | 
|  | if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) { | 
|  | Op = BuildSplatI(SextVal >> 1, SplatSize, Op.getValueType(), DAG); | 
|  | return DAG.getNode(ISD::ADD, Op.getValueType(), Op, Op); | 
|  | } | 
|  |  | 
|  | // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is | 
|  | // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important | 
|  | // for fneg/fabs. | 
|  | if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { | 
|  | // Make -1 and vspltisw -1: | 
|  | SDOperand OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG); | 
|  |  | 
|  | // Make the VSLW intrinsic, computing 0x8000_0000. | 
|  | SDOperand Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, | 
|  | OnesV, DAG); | 
|  |  | 
|  | // xor by OnesV to invert it. | 
|  | Res = DAG.getNode(ISD::XOR, MVT::v4i32, Res, OnesV); | 
|  | return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res); | 
|  | } | 
|  |  | 
|  | // Check to see if this is a wide variety of vsplti*, binop self cases. | 
|  | unsigned SplatBitSize = SplatSize*8; | 
|  | static const signed char SplatCsts[] = { | 
|  | -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, | 
|  | -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 | 
|  | }; | 
|  |  | 
|  | for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { | 
|  | // Indirect through the SplatCsts array so that we favor 'vsplti -1' for | 
|  | // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1' | 
|  | int i = SplatCsts[idx]; | 
|  |  | 
|  | // Figure out what shift amount will be used by altivec if shifted by i in | 
|  | // this splat size. | 
|  | unsigned TypeShiftAmt = i & (SplatBitSize-1); | 
|  |  | 
|  | // vsplti + shl self. | 
|  | if (SextVal == (i << (int)TypeShiftAmt)) { | 
|  | SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG); | 
|  | static const unsigned IIDs[] = { // Intrinsic to use for each size. | 
|  | Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, | 
|  | Intrinsic::ppc_altivec_vslw | 
|  | }; | 
|  | Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG); | 
|  | return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res); | 
|  | } | 
|  |  | 
|  | // vsplti + srl self. | 
|  | if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { | 
|  | SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG); | 
|  | static const unsigned IIDs[] = { // Intrinsic to use for each size. | 
|  | Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, | 
|  | Intrinsic::ppc_altivec_vsrw | 
|  | }; | 
|  | Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG); | 
|  | return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res); | 
|  | } | 
|  |  | 
|  | // vsplti + sra self. | 
|  | if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { | 
|  | SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG); | 
|  | static const unsigned IIDs[] = { // Intrinsic to use for each size. | 
|  | Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, | 
|  | Intrinsic::ppc_altivec_vsraw | 
|  | }; | 
|  | Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG); | 
|  | return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res); | 
|  | } | 
|  |  | 
|  | // vsplti + rol self. | 
|  | if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | | 
|  | ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { | 
|  | SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG); | 
|  | static const unsigned IIDs[] = { // Intrinsic to use for each size. | 
|  | Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, | 
|  | Intrinsic::ppc_altivec_vrlw | 
|  | }; | 
|  | Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG); | 
|  | return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res); | 
|  | } | 
|  |  | 
|  | // t = vsplti c, result = vsldoi t, t, 1 | 
|  | if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) { | 
|  | SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG); | 
|  | return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG); | 
|  | } | 
|  | // t = vsplti c, result = vsldoi t, t, 2 | 
|  | if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) { | 
|  | SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG); | 
|  | return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG); | 
|  | } | 
|  | // t = vsplti c, result = vsldoi t, t, 3 | 
|  | if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) { | 
|  | SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG); | 
|  | return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Three instruction sequences. | 
|  |  | 
|  | // Odd, in range [17,31]:  (vsplti C)-(vsplti -16). | 
|  | if (SextVal >= 0 && SextVal <= 31) { | 
|  | SDOperand LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG); | 
|  | SDOperand RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG); | 
|  | LHS = DAG.getNode(ISD::SUB, LHS.getValueType(), LHS, RHS); | 
|  | return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS); | 
|  | } | 
|  | // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16). | 
|  | if (SextVal >= -31 && SextVal <= 0) { | 
|  | SDOperand LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG); | 
|  | SDOperand RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG); | 
|  | LHS = DAG.getNode(ISD::ADD, LHS.getValueType(), LHS, RHS); | 
|  | return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDOperand(); | 
|  | } | 
|  |  | 
|  | /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit | 
|  | /// the specified operations to build the shuffle. | 
|  | static SDOperand GeneratePerfectShuffle(unsigned PFEntry, SDOperand LHS, | 
|  | SDOperand RHS, SelectionDAG &DAG) { | 
|  | unsigned OpNum = (PFEntry >> 26) & 0x0F; | 
|  | unsigned LHSID  = (PFEntry >> 13) & ((1 << 13)-1); | 
|  | unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1); | 
|  |  | 
|  | enum { | 
|  | OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> | 
|  | OP_VMRGHW, | 
|  | OP_VMRGLW, | 
|  | OP_VSPLTISW0, | 
|  | OP_VSPLTISW1, | 
|  | OP_VSPLTISW2, | 
|  | OP_VSPLTISW3, | 
|  | OP_VSLDOI4, | 
|  | OP_VSLDOI8, | 
|  | OP_VSLDOI12 | 
|  | }; | 
|  |  | 
|  | if (OpNum == OP_COPY) { | 
|  | if (LHSID == (1*9+2)*9+3) return LHS; | 
|  | assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); | 
|  | return RHS; | 
|  | } | 
|  |  | 
|  | SDOperand OpLHS, OpRHS; | 
|  | OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG); | 
|  | OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG); | 
|  |  | 
|  | unsigned ShufIdxs[16]; | 
|  | switch (OpNum) { | 
|  | default: assert(0 && "Unknown i32 permute!"); | 
|  | case OP_VMRGHW: | 
|  | ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3; | 
|  | ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; | 
|  | ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7; | 
|  | ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; | 
|  | break; | 
|  | case OP_VMRGLW: | 
|  | ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; | 
|  | ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; | 
|  | ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; | 
|  | ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; | 
|  | break; | 
|  | case OP_VSPLTISW0: | 
|  | for (unsigned i = 0; i != 16; ++i) | 
|  | ShufIdxs[i] = (i&3)+0; | 
|  | break; | 
|  | case OP_VSPLTISW1: | 
|  | for (unsigned i = 0; i != 16; ++i) | 
|  | ShufIdxs[i] = (i&3)+4; | 
|  | break; | 
|  | case OP_VSPLTISW2: | 
|  | for (unsigned i = 0; i != 16; ++i) | 
|  | ShufIdxs[i] = (i&3)+8; | 
|  | break; | 
|  | case OP_VSPLTISW3: | 
|  | for (unsigned i = 0; i != 16; ++i) | 
|  | ShufIdxs[i] = (i&3)+12; | 
|  | break; | 
|  | case OP_VSLDOI4: | 
|  | return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG); | 
|  | case OP_VSLDOI8: | 
|  | return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG); | 
|  | case OP_VSLDOI12: | 
|  | return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG); | 
|  | } | 
|  | SDOperand Ops[16]; | 
|  | for (unsigned i = 0; i != 16; ++i) | 
|  | Ops[i] = DAG.getConstant(ShufIdxs[i], MVT::i32); | 
|  |  | 
|  | return DAG.getNode(ISD::VECTOR_SHUFFLE, OpLHS.getValueType(), OpLHS, OpRHS, | 
|  | DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16)); | 
|  | } | 
|  |  | 
|  | /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this | 
|  | /// is a shuffle we can handle in a single instruction, return it.  Otherwise, | 
|  | /// return the code it can be lowered into.  Worst case, it can always be | 
|  | /// lowered into a vperm. | 
|  | SDOperand PPCTargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op, | 
|  | SelectionDAG &DAG) { | 
|  | SDOperand V1 = Op.getOperand(0); | 
|  | SDOperand V2 = Op.getOperand(1); | 
|  | SDOperand PermMask = Op.getOperand(2); | 
|  |  | 
|  | // Cases that are handled by instructions that take permute immediates | 
|  | // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be | 
|  | // selected by the instruction selector. | 
|  | if (V2.getOpcode() == ISD::UNDEF) { | 
|  | if (PPC::isSplatShuffleMask(PermMask.Val, 1) || | 
|  | PPC::isSplatShuffleMask(PermMask.Val, 2) || | 
|  | PPC::isSplatShuffleMask(PermMask.Val, 4) || | 
|  | PPC::isVPKUWUMShuffleMask(PermMask.Val, true) || | 
|  | PPC::isVPKUHUMShuffleMask(PermMask.Val, true) || | 
|  | PPC::isVSLDOIShuffleMask(PermMask.Val, true) != -1 || | 
|  | PPC::isVMRGLShuffleMask(PermMask.Val, 1, true) || | 
|  | PPC::isVMRGLShuffleMask(PermMask.Val, 2, true) || | 
|  | PPC::isVMRGLShuffleMask(PermMask.Val, 4, true) || | 
|  | PPC::isVMRGHShuffleMask(PermMask.Val, 1, true) || | 
|  | PPC::isVMRGHShuffleMask(PermMask.Val, 2, true) || | 
|  | PPC::isVMRGHShuffleMask(PermMask.Val, 4, true)) { | 
|  | return Op; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Altivec has a variety of "shuffle immediates" that take two vector inputs | 
|  | // and produce a fixed permutation.  If any of these match, do not lower to | 
|  | // VPERM. | 
|  | if (PPC::isVPKUWUMShuffleMask(PermMask.Val, false) || | 
|  | PPC::isVPKUHUMShuffleMask(PermMask.Val, false) || | 
|  | PPC::isVSLDOIShuffleMask(PermMask.Val, false) != -1 || | 
|  | PPC::isVMRGLShuffleMask(PermMask.Val, 1, false) || | 
|  | PPC::isVMRGLShuffleMask(PermMask.Val, 2, false) || | 
|  | PPC::isVMRGLShuffleMask(PermMask.Val, 4, false) || | 
|  | PPC::isVMRGHShuffleMask(PermMask.Val, 1, false) || | 
|  | PPC::isVMRGHShuffleMask(PermMask.Val, 2, false) || | 
|  | PPC::isVMRGHShuffleMask(PermMask.Val, 4, false)) | 
|  | return Op; | 
|  |  | 
|  | // Check to see if this is a shuffle of 4-byte values.  If so, we can use our | 
|  | // perfect shuffle table to emit an optimal matching sequence. | 
|  | unsigned PFIndexes[4]; | 
|  | bool isFourElementShuffle = true; | 
|  | for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number | 
|  | unsigned EltNo = 8;   // Start out undef. | 
|  | for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte. | 
|  | if (PermMask.getOperand(i*4+j).getOpcode() == ISD::UNDEF) | 
|  | continue;   // Undef, ignore it. | 
|  |  | 
|  | unsigned ByteSource = | 
|  | cast<ConstantSDNode>(PermMask.getOperand(i*4+j))->getValue(); | 
|  | if ((ByteSource & 3) != j) { | 
|  | isFourElementShuffle = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (EltNo == 8) { | 
|  | EltNo = ByteSource/4; | 
|  | } else if (EltNo != ByteSource/4) { | 
|  | isFourElementShuffle = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | PFIndexes[i] = EltNo; | 
|  | } | 
|  |  | 
|  | // If this shuffle can be expressed as a shuffle of 4-byte elements, use the | 
|  | // perfect shuffle vector to determine if it is cost effective to do this as | 
|  | // discrete instructions, or whether we should use a vperm. | 
|  | if (isFourElementShuffle) { | 
|  | // Compute the index in the perfect shuffle table. | 
|  | unsigned PFTableIndex = | 
|  | PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; | 
|  |  | 
|  | unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; | 
|  | unsigned Cost  = (PFEntry >> 30); | 
|  |  | 
|  | // Determining when to avoid vperm is tricky.  Many things affect the cost | 
|  | // of vperm, particularly how many times the perm mask needs to be computed. | 
|  | // For example, if the perm mask can be hoisted out of a loop or is already | 
|  | // used (perhaps because there are multiple permutes with the same shuffle | 
|  | // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of | 
|  | // the loop requires an extra register. | 
|  | // | 
|  | // As a compromise, we only emit discrete instructions if the shuffle can be | 
|  | // generated in 3 or fewer operations.  When we have loop information | 
|  | // available, if this block is within a loop, we should avoid using vperm | 
|  | // for 3-operation perms and use a constant pool load instead. | 
|  | if (Cost < 3) | 
|  | return GeneratePerfectShuffle(PFEntry, V1, V2, DAG); | 
|  | } | 
|  |  | 
|  | // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant | 
|  | // vector that will get spilled to the constant pool. | 
|  | if (V2.getOpcode() == ISD::UNDEF) V2 = V1; | 
|  |  | 
|  | // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except | 
|  | // that it is in input element units, not in bytes.  Convert now. | 
|  | MVT::ValueType EltVT = MVT::getVectorElementType(V1.getValueType()); | 
|  | unsigned BytesPerElement = MVT::getSizeInBits(EltVT)/8; | 
|  |  | 
|  | SmallVector<SDOperand, 16> ResultMask; | 
|  | for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) { | 
|  | unsigned SrcElt; | 
|  | if (PermMask.getOperand(i).getOpcode() == ISD::UNDEF) | 
|  | SrcElt = 0; | 
|  | else | 
|  | SrcElt = cast<ConstantSDNode>(PermMask.getOperand(i))->getValue(); | 
|  |  | 
|  | for (unsigned j = 0; j != BytesPerElement; ++j) | 
|  | ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j, | 
|  | MVT::i8)); | 
|  | } | 
|  |  | 
|  | SDOperand VPermMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, | 
|  | &ResultMask[0], ResultMask.size()); | 
|  | return DAG.getNode(PPCISD::VPERM, V1.getValueType(), V1, V2, VPermMask); | 
|  | } | 
|  |  | 
|  | /// getAltivecCompareInfo - Given an intrinsic, return false if it is not an | 
|  | /// altivec comparison.  If it is, return true and fill in Opc/isDot with | 
|  | /// information about the intrinsic. | 
|  | static bool getAltivecCompareInfo(SDOperand Intrin, int &CompareOpc, | 
|  | bool &isDot) { | 
|  | unsigned IntrinsicID = cast<ConstantSDNode>(Intrin.getOperand(0))->getValue(); | 
|  | CompareOpc = -1; | 
|  | isDot = false; | 
|  | switch (IntrinsicID) { | 
|  | default: return false; | 
|  | // Comparison predicates. | 
|  | case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break; | 
|  | case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break; | 
|  | case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break; | 
|  | case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break; | 
|  | case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break; | 
|  | case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break; | 
|  | case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break; | 
|  | case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break; | 
|  | case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break; | 
|  | case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break; | 
|  | case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break; | 
|  | case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break; | 
|  | case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break; | 
|  |  | 
|  | // Normal Comparisons. | 
|  | case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break; | 
|  | case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break; | 
|  | case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break; | 
|  | case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break; | 
|  | case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break; | 
|  | case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break; | 
|  | case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break; | 
|  | case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break; | 
|  | case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break; | 
|  | case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break; | 
|  | case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break; | 
|  | case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break; | 
|  | case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom | 
|  | /// lower, do it, otherwise return null. | 
|  | SDOperand PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op, | 
|  | SelectionDAG &DAG) { | 
|  | // If this is a lowered altivec predicate compare, CompareOpc is set to the | 
|  | // opcode number of the comparison. | 
|  | int CompareOpc; | 
|  | bool isDot; | 
|  | if (!getAltivecCompareInfo(Op, CompareOpc, isDot)) | 
|  | return SDOperand();    // Don't custom lower most intrinsics. | 
|  |  | 
|  | // If this is a non-dot comparison, make the VCMP node and we are done. | 
|  | if (!isDot) { | 
|  | SDOperand Tmp = DAG.getNode(PPCISD::VCMP, Op.getOperand(2).getValueType(), | 
|  | Op.getOperand(1), Op.getOperand(2), | 
|  | DAG.getConstant(CompareOpc, MVT::i32)); | 
|  | return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Tmp); | 
|  | } | 
|  |  | 
|  | // Create the PPCISD altivec 'dot' comparison node. | 
|  | SDOperand Ops[] = { | 
|  | Op.getOperand(2),  // LHS | 
|  | Op.getOperand(3),  // RHS | 
|  | DAG.getConstant(CompareOpc, MVT::i32) | 
|  | }; | 
|  | std::vector<MVT::ValueType> VTs; | 
|  | VTs.push_back(Op.getOperand(2).getValueType()); | 
|  | VTs.push_back(MVT::Flag); | 
|  | SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3); | 
|  |  | 
|  | // Now that we have the comparison, emit a copy from the CR to a GPR. | 
|  | // This is flagged to the above dot comparison. | 
|  | SDOperand Flags = DAG.getNode(PPCISD::MFCR, MVT::i32, | 
|  | DAG.getRegister(PPC::CR6, MVT::i32), | 
|  | CompNode.getValue(1)); | 
|  |  | 
|  | // Unpack the result based on how the target uses it. | 
|  | unsigned BitNo;   // Bit # of CR6. | 
|  | bool InvertBit;   // Invert result? | 
|  | switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) { | 
|  | default:  // Can't happen, don't crash on invalid number though. | 
|  | case 0:   // Return the value of the EQ bit of CR6. | 
|  | BitNo = 0; InvertBit = false; | 
|  | break; | 
|  | case 1:   // Return the inverted value of the EQ bit of CR6. | 
|  | BitNo = 0; InvertBit = true; | 
|  | break; | 
|  | case 2:   // Return the value of the LT bit of CR6. | 
|  | BitNo = 2; InvertBit = false; | 
|  | break; | 
|  | case 3:   // Return the inverted value of the LT bit of CR6. | 
|  | BitNo = 2; InvertBit = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Shift the bit into the low position. | 
|  | Flags = DAG.getNode(ISD::SRL, MVT::i32, Flags, | 
|  | DAG.getConstant(8-(3-BitNo), MVT::i32)); | 
|  | // Isolate the bit. | 
|  | Flags = DAG.getNode(ISD::AND, MVT::i32, Flags, | 
|  | DAG.getConstant(1, MVT::i32)); | 
|  |  | 
|  | // If we are supposed to, toggle the bit. | 
|  | if (InvertBit) | 
|  | Flags = DAG.getNode(ISD::XOR, MVT::i32, Flags, | 
|  | DAG.getConstant(1, MVT::i32)); | 
|  | return Flags; | 
|  | } | 
|  |  | 
|  | SDOperand PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op, | 
|  | SelectionDAG &DAG) { | 
|  | // Create a stack slot that is 16-byte aligned. | 
|  | MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); | 
|  | int FrameIdx = FrameInfo->CreateStackObject(16, 16); | 
|  | MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); | 
|  | SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); | 
|  |  | 
|  | // Store the input value into Value#0 of the stack slot. | 
|  | SDOperand Store = DAG.getStore(DAG.getEntryNode(), | 
|  | Op.getOperand(0), FIdx, NULL, 0); | 
|  | // Load it out. | 
|  | return DAG.getLoad(Op.getValueType(), Store, FIdx, NULL, 0); | 
|  | } | 
|  |  | 
|  | SDOperand PPCTargetLowering::LowerMUL(SDOperand Op, SelectionDAG &DAG) { | 
|  | if (Op.getValueType() == MVT::v4i32) { | 
|  | SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1); | 
|  |  | 
|  | SDOperand Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG); | 
|  | SDOperand Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG); // +16 as shift amt. | 
|  |  | 
|  | SDOperand RHSSwap =   // = vrlw RHS, 16 | 
|  | BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG); | 
|  |  | 
|  | // Shrinkify inputs to v8i16. | 
|  | LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, LHS); | 
|  | RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHS); | 
|  | RHSSwap = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHSSwap); | 
|  |  | 
|  | // Low parts multiplied together, generating 32-bit results (we ignore the | 
|  | // top parts). | 
|  | SDOperand LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, | 
|  | LHS, RHS, DAG, MVT::v4i32); | 
|  |  | 
|  | SDOperand HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, | 
|  | LHS, RHSSwap, Zero, DAG, MVT::v4i32); | 
|  | // Shift the high parts up 16 bits. | 
|  | HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, Neg16, DAG); | 
|  | return DAG.getNode(ISD::ADD, MVT::v4i32, LoProd, HiProd); | 
|  | } else if (Op.getValueType() == MVT::v8i16) { | 
|  | SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1); | 
|  |  | 
|  | SDOperand Zero = BuildSplatI(0, 1, MVT::v8i16, DAG); | 
|  |  | 
|  | return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm, | 
|  | LHS, RHS, Zero, DAG); | 
|  | } else if (Op.getValueType() == MVT::v16i8) { | 
|  | SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1); | 
|  |  | 
|  | // Multiply the even 8-bit parts, producing 16-bit sums. | 
|  | SDOperand EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, | 
|  | LHS, RHS, DAG, MVT::v8i16); | 
|  | EvenParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, EvenParts); | 
|  |  | 
|  | // Multiply the odd 8-bit parts, producing 16-bit sums. | 
|  | SDOperand OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, | 
|  | LHS, RHS, DAG, MVT::v8i16); | 
|  | OddParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, OddParts); | 
|  |  | 
|  | // Merge the results together. | 
|  | SDOperand Ops[16]; | 
|  | for (unsigned i = 0; i != 8; ++i) { | 
|  | Ops[i*2  ] = DAG.getConstant(2*i+1, MVT::i8); | 
|  | Ops[i*2+1] = DAG.getConstant(2*i+1+16, MVT::i8); | 
|  | } | 
|  | return DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, EvenParts, OddParts, | 
|  | DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16)); | 
|  | } else { | 
|  | assert(0 && "Unknown mul to lower!"); | 
|  | abort(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// LowerOperation - Provide custom lowering hooks for some operations. | 
|  | /// | 
|  | SDOperand PPCTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) { | 
|  | switch (Op.getOpcode()) { | 
|  | default: assert(0 && "Wasn't expecting to be able to lower this!"); | 
|  | case ISD::ConstantPool:       return LowerConstantPool(Op, DAG); | 
|  | case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG); | 
|  | case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG); | 
|  | case ISD::JumpTable:          return LowerJumpTable(Op, DAG); | 
|  | case ISD::SETCC:              return LowerSETCC(Op, DAG); | 
|  | case ISD::VASTART: | 
|  | return LowerVASTART(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset, | 
|  | VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget); | 
|  |  | 
|  | case ISD::VAARG: | 
|  | return LowerVAARG(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset, | 
|  | VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget); | 
|  |  | 
|  | case ISD::FORMAL_ARGUMENTS: | 
|  | return LowerFORMAL_ARGUMENTS(Op, DAG, VarArgsFrameIndex, | 
|  | VarArgsStackOffset, VarArgsNumGPR, | 
|  | VarArgsNumFPR, PPCSubTarget); | 
|  |  | 
|  | case ISD::CALL:               return LowerCALL(Op, DAG, PPCSubTarget, | 
|  | getTargetMachine()); | 
|  | case ISD::RET:                return LowerRET(Op, DAG, getTargetMachine()); | 
|  | case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget); | 
|  | case ISD::DYNAMIC_STACKALLOC: | 
|  | return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget); | 
|  |  | 
|  | case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG); | 
|  | case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG); | 
|  | case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG); | 
|  | case ISD::FP_ROUND_INREG:     return LowerFP_ROUND_INREG(Op, DAG); | 
|  | case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG); | 
|  |  | 
|  | // Lower 64-bit shifts. | 
|  | case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG); | 
|  | case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG); | 
|  | case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG); | 
|  |  | 
|  | // Vector-related lowering. | 
|  | case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG); | 
|  | case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG); | 
|  | case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); | 
|  | case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG); | 
|  | case ISD::MUL:                return LowerMUL(Op, DAG); | 
|  |  | 
|  | // Frame & Return address. | 
|  | case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG); | 
|  | case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG); | 
|  | } | 
|  | return SDOperand(); | 
|  | } | 
|  |  | 
|  | SDNode *PPCTargetLowering::ExpandOperationResult(SDNode *N, SelectionDAG &DAG) { | 
|  | switch (N->getOpcode()) { | 
|  | default: assert(0 && "Wasn't expecting to be able to lower this!"); | 
|  | case ISD::FP_TO_SINT: return LowerFP_TO_SINT(SDOperand(N, 0), DAG).Val; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  Other Lowering Code | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | MachineBasicBlock * | 
|  | PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, | 
|  | MachineBasicBlock *BB) { | 
|  | const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); | 
|  | assert((MI->getOpcode() == PPC::SELECT_CC_I4 || | 
|  | MI->getOpcode() == PPC::SELECT_CC_I8 || | 
|  | MI->getOpcode() == PPC::SELECT_CC_F4 || | 
|  | MI->getOpcode() == PPC::SELECT_CC_F8 || | 
|  | MI->getOpcode() == PPC::SELECT_CC_VRRC) && | 
|  | "Unexpected instr type to insert"); | 
|  |  | 
|  | // To "insert" a SELECT_CC instruction, we actually have to insert the diamond | 
|  | // control-flow pattern.  The incoming instruction knows the destination vreg | 
|  | // to set, the condition code register to branch on, the true/false values to | 
|  | // select between, and a branch opcode to use. | 
|  | const BasicBlock *LLVM_BB = BB->getBasicBlock(); | 
|  | ilist<MachineBasicBlock>::iterator It = BB; | 
|  | ++It; | 
|  |  | 
|  | //  thisMBB: | 
|  | //  ... | 
|  | //   TrueVal = ... | 
|  | //   cmpTY ccX, r1, r2 | 
|  | //   bCC copy1MBB | 
|  | //   fallthrough --> copy0MBB | 
|  | MachineBasicBlock *thisMBB = BB; | 
|  | MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB); | 
|  | MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB); | 
|  | unsigned SelectPred = MI->getOperand(4).getImm(); | 
|  | BuildMI(BB, TII->get(PPC::BCC)) | 
|  | .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB); | 
|  | MachineFunction *F = BB->getParent(); | 
|  | F->getBasicBlockList().insert(It, copy0MBB); | 
|  | F->getBasicBlockList().insert(It, sinkMBB); | 
|  | // Update machine-CFG edges by first adding all successors of the current | 
|  | // block to the new block which will contain the Phi node for the select. | 
|  | for(MachineBasicBlock::succ_iterator i = BB->succ_begin(), | 
|  | e = BB->succ_end(); i != e; ++i) | 
|  | sinkMBB->addSuccessor(*i); | 
|  | // Next, remove all successors of the current block, and add the true | 
|  | // and fallthrough blocks as its successors. | 
|  | while(!BB->succ_empty()) | 
|  | BB->removeSuccessor(BB->succ_begin()); | 
|  | BB->addSuccessor(copy0MBB); | 
|  | BB->addSuccessor(sinkMBB); | 
|  |  | 
|  | //  copy0MBB: | 
|  | //   %FalseValue = ... | 
|  | //   # fallthrough to sinkMBB | 
|  | BB = copy0MBB; | 
|  |  | 
|  | // Update machine-CFG edges | 
|  | BB->addSuccessor(sinkMBB); | 
|  |  | 
|  | //  sinkMBB: | 
|  | //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] | 
|  | //  ... | 
|  | BB = sinkMBB; | 
|  | BuildMI(BB, TII->get(PPC::PHI), MI->getOperand(0).getReg()) | 
|  | .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB) | 
|  | .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); | 
|  |  | 
|  | delete MI;   // The pseudo instruction is gone now. | 
|  | return BB; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Target Optimization Hooks | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | SDOperand PPCTargetLowering::PerformDAGCombine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | TargetMachine &TM = getTargetMachine(); | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | switch (N->getOpcode()) { | 
|  | default: break; | 
|  | case PPCISD::SHL: | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { | 
|  | if (C->getValue() == 0)   // 0 << V -> 0. | 
|  | return N->getOperand(0); | 
|  | } | 
|  | break; | 
|  | case PPCISD::SRL: | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { | 
|  | if (C->getValue() == 0)   // 0 >>u V -> 0. | 
|  | return N->getOperand(0); | 
|  | } | 
|  | break; | 
|  | case PPCISD::SRA: | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { | 
|  | if (C->getValue() == 0 ||   //  0 >>s V -> 0. | 
|  | C->isAllOnesValue())    // -1 >>s V -> -1. | 
|  | return N->getOperand(0); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case ISD::SINT_TO_FP: | 
|  | if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) { | 
|  | if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) { | 
|  | // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores. | 
|  | // We allow the src/dst to be either f32/f64, but the intermediate | 
|  | // type must be i64. | 
|  | if (N->getOperand(0).getValueType() == MVT::i64 && | 
|  | N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) { | 
|  | SDOperand Val = N->getOperand(0).getOperand(0); | 
|  | if (Val.getValueType() == MVT::f32) { | 
|  | Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val); | 
|  | DCI.AddToWorklist(Val.Val); | 
|  | } | 
|  |  | 
|  | Val = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Val); | 
|  | DCI.AddToWorklist(Val.Val); | 
|  | Val = DAG.getNode(PPCISD::FCFID, MVT::f64, Val); | 
|  | DCI.AddToWorklist(Val.Val); | 
|  | if (N->getValueType(0) == MVT::f32) { | 
|  | Val = DAG.getNode(ISD::FP_ROUND, MVT::f32, Val, | 
|  | DAG.getIntPtrConstant(0)); | 
|  | DCI.AddToWorklist(Val.Val); | 
|  | } | 
|  | return Val; | 
|  | } else if (N->getOperand(0).getValueType() == MVT::i32) { | 
|  | // If the intermediate type is i32, we can avoid the load/store here | 
|  | // too. | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  | case ISD::STORE: | 
|  | // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)). | 
|  | if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() && | 
|  | !cast<StoreSDNode>(N)->isTruncatingStore() && | 
|  | N->getOperand(1).getOpcode() == ISD::FP_TO_SINT && | 
|  | N->getOperand(1).getValueType() == MVT::i32 && | 
|  | N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) { | 
|  | SDOperand Val = N->getOperand(1).getOperand(0); | 
|  | if (Val.getValueType() == MVT::f32) { | 
|  | Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val); | 
|  | DCI.AddToWorklist(Val.Val); | 
|  | } | 
|  | Val = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Val); | 
|  | DCI.AddToWorklist(Val.Val); | 
|  |  | 
|  | Val = DAG.getNode(PPCISD::STFIWX, MVT::Other, N->getOperand(0), Val, | 
|  | N->getOperand(2), N->getOperand(3)); | 
|  | DCI.AddToWorklist(Val.Val); | 
|  | return Val; | 
|  | } | 
|  |  | 
|  | // Turn STORE (BSWAP) -> sthbrx/stwbrx. | 
|  | if (N->getOperand(1).getOpcode() == ISD::BSWAP && | 
|  | N->getOperand(1).Val->hasOneUse() && | 
|  | (N->getOperand(1).getValueType() == MVT::i32 || | 
|  | N->getOperand(1).getValueType() == MVT::i16)) { | 
|  | SDOperand BSwapOp = N->getOperand(1).getOperand(0); | 
|  | // Do an any-extend to 32-bits if this is a half-word input. | 
|  | if (BSwapOp.getValueType() == MVT::i16) | 
|  | BSwapOp = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, BSwapOp); | 
|  |  | 
|  | return DAG.getNode(PPCISD::STBRX, MVT::Other, N->getOperand(0), BSwapOp, | 
|  | N->getOperand(2), N->getOperand(3), | 
|  | DAG.getValueType(N->getOperand(1).getValueType())); | 
|  | } | 
|  | break; | 
|  | case ISD::BSWAP: | 
|  | // Turn BSWAP (LOAD) -> lhbrx/lwbrx. | 
|  | if (ISD::isNON_EXTLoad(N->getOperand(0).Val) && | 
|  | N->getOperand(0).hasOneUse() && | 
|  | (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) { | 
|  | SDOperand Load = N->getOperand(0); | 
|  | LoadSDNode *LD = cast<LoadSDNode>(Load); | 
|  | // Create the byte-swapping load. | 
|  | std::vector<MVT::ValueType> VTs; | 
|  | VTs.push_back(MVT::i32); | 
|  | VTs.push_back(MVT::Other); | 
|  | SDOperand MO = DAG.getMemOperand(LD->getMemOperand()); | 
|  | SDOperand Ops[] = { | 
|  | LD->getChain(),    // Chain | 
|  | LD->getBasePtr(),  // Ptr | 
|  | MO,                // MemOperand | 
|  | DAG.getValueType(N->getValueType(0)) // VT | 
|  | }; | 
|  | SDOperand BSLoad = DAG.getNode(PPCISD::LBRX, VTs, Ops, 4); | 
|  |  | 
|  | // If this is an i16 load, insert the truncate. | 
|  | SDOperand ResVal = BSLoad; | 
|  | if (N->getValueType(0) == MVT::i16) | 
|  | ResVal = DAG.getNode(ISD::TRUNCATE, MVT::i16, BSLoad); | 
|  |  | 
|  | // First, combine the bswap away.  This makes the value produced by the | 
|  | // load dead. | 
|  | DCI.CombineTo(N, ResVal); | 
|  |  | 
|  | // Next, combine the load away, we give it a bogus result value but a real | 
|  | // chain result.  The result value is dead because the bswap is dead. | 
|  | DCI.CombineTo(Load.Val, ResVal, BSLoad.getValue(1)); | 
|  |  | 
|  | // Return N so it doesn't get rechecked! | 
|  | return SDOperand(N, 0); | 
|  | } | 
|  |  | 
|  | break; | 
|  | case PPCISD::VCMP: { | 
|  | // If a VCMPo node already exists with exactly the same operands as this | 
|  | // node, use its result instead of this node (VCMPo computes both a CR6 and | 
|  | // a normal output). | 
|  | // | 
|  | if (!N->getOperand(0).hasOneUse() && | 
|  | !N->getOperand(1).hasOneUse() && | 
|  | !N->getOperand(2).hasOneUse()) { | 
|  |  | 
|  | // Scan all of the users of the LHS, looking for VCMPo's that match. | 
|  | SDNode *VCMPoNode = 0; | 
|  |  | 
|  | SDNode *LHSN = N->getOperand(0).Val; | 
|  | for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); | 
|  | UI != E; ++UI) | 
|  | if ((*UI)->getOpcode() == PPCISD::VCMPo && | 
|  | (*UI)->getOperand(1) == N->getOperand(1) && | 
|  | (*UI)->getOperand(2) == N->getOperand(2) && | 
|  | (*UI)->getOperand(0) == N->getOperand(0)) { | 
|  | VCMPoNode = *UI; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If there is no VCMPo node, or if the flag value has a single use, don't | 
|  | // transform this. | 
|  | if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1)) | 
|  | break; | 
|  |  | 
|  | // Look at the (necessarily single) use of the flag value.  If it has a | 
|  | // chain, this transformation is more complex.  Note that multiple things | 
|  | // could use the value result, which we should ignore. | 
|  | SDNode *FlagUser = 0; | 
|  | for (SDNode::use_iterator UI = VCMPoNode->use_begin(); | 
|  | FlagUser == 0; ++UI) { | 
|  | assert(UI != VCMPoNode->use_end() && "Didn't find user!"); | 
|  | SDNode *User = *UI; | 
|  | for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { | 
|  | if (User->getOperand(i) == SDOperand(VCMPoNode, 1)) { | 
|  | FlagUser = User; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the user is a MFCR instruction, we know this is safe.  Otherwise we | 
|  | // give up for right now. | 
|  | if (FlagUser->getOpcode() == PPCISD::MFCR) | 
|  | return SDOperand(VCMPoNode, 0); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ISD::BR_CC: { | 
|  | // If this is a branch on an altivec predicate comparison, lower this so | 
|  | // that we don't have to do a MFCR: instead, branch directly on CR6.  This | 
|  | // lowering is done pre-legalize, because the legalizer lowers the predicate | 
|  | // compare down to code that is difficult to reassemble. | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); | 
|  | SDOperand LHS = N->getOperand(2), RHS = N->getOperand(3); | 
|  | int CompareOpc; | 
|  | bool isDot; | 
|  |  | 
|  | if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && | 
|  | isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && | 
|  | getAltivecCompareInfo(LHS, CompareOpc, isDot)) { | 
|  | assert(isDot && "Can't compare against a vector result!"); | 
|  |  | 
|  | // If this is a comparison against something other than 0/1, then we know | 
|  | // that the condition is never/always true. | 
|  | unsigned Val = cast<ConstantSDNode>(RHS)->getValue(); | 
|  | if (Val != 0 && Val != 1) { | 
|  | if (CC == ISD::SETEQ)      // Cond never true, remove branch. | 
|  | return N->getOperand(0); | 
|  | // Always !=, turn it into an unconditional branch. | 
|  | return DAG.getNode(ISD::BR, MVT::Other, | 
|  | N->getOperand(0), N->getOperand(4)); | 
|  | } | 
|  |  | 
|  | bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); | 
|  |  | 
|  | // Create the PPCISD altivec 'dot' comparison node. | 
|  | std::vector<MVT::ValueType> VTs; | 
|  | SDOperand Ops[] = { | 
|  | LHS.getOperand(2),  // LHS of compare | 
|  | LHS.getOperand(3),  // RHS of compare | 
|  | DAG.getConstant(CompareOpc, MVT::i32) | 
|  | }; | 
|  | VTs.push_back(LHS.getOperand(2).getValueType()); | 
|  | VTs.push_back(MVT::Flag); | 
|  | SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3); | 
|  |  | 
|  | // Unpack the result based on how the target uses it. | 
|  | PPC::Predicate CompOpc; | 
|  | switch (cast<ConstantSDNode>(LHS.getOperand(1))->getValue()) { | 
|  | default:  // Can't happen, don't crash on invalid number though. | 
|  | case 0:   // Branch on the value of the EQ bit of CR6. | 
|  | CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; | 
|  | break; | 
|  | case 1:   // Branch on the inverted value of the EQ bit of CR6. | 
|  | CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; | 
|  | break; | 
|  | case 2:   // Branch on the value of the LT bit of CR6. | 
|  | CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; | 
|  | break; | 
|  | case 3:   // Branch on the inverted value of the LT bit of CR6. | 
|  | CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return DAG.getNode(PPCISD::COND_BRANCH, MVT::Other, N->getOperand(0), | 
|  | DAG.getConstant(CompOpc, MVT::i32), | 
|  | DAG.getRegister(PPC::CR6, MVT::i32), | 
|  | N->getOperand(4), CompNode.getValue(1)); | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDOperand(); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Inline Assembly Support | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op, | 
|  | const APInt &Mask, | 
|  | APInt &KnownZero, | 
|  | APInt &KnownOne, | 
|  | const SelectionDAG &DAG, | 
|  | unsigned Depth) const { | 
|  | KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0); | 
|  | switch (Op.getOpcode()) { | 
|  | default: break; | 
|  | case PPCISD::LBRX: { | 
|  | // lhbrx is known to have the top bits cleared out. | 
|  | if (cast<VTSDNode>(Op.getOperand(3))->getVT() == MVT::i16) | 
|  | KnownZero = 0xFFFF0000; | 
|  | break; | 
|  | } | 
|  | case ISD::INTRINSIC_WO_CHAIN: { | 
|  | switch (cast<ConstantSDNode>(Op.getOperand(0))->getValue()) { | 
|  | default: break; | 
|  | case Intrinsic::ppc_altivec_vcmpbfp_p: | 
|  | case Intrinsic::ppc_altivec_vcmpeqfp_p: | 
|  | case Intrinsic::ppc_altivec_vcmpequb_p: | 
|  | case Intrinsic::ppc_altivec_vcmpequh_p: | 
|  | case Intrinsic::ppc_altivec_vcmpequw_p: | 
|  | case Intrinsic::ppc_altivec_vcmpgefp_p: | 
|  | case Intrinsic::ppc_altivec_vcmpgtfp_p: | 
|  | case Intrinsic::ppc_altivec_vcmpgtsb_p: | 
|  | case Intrinsic::ppc_altivec_vcmpgtsh_p: | 
|  | case Intrinsic::ppc_altivec_vcmpgtsw_p: | 
|  | case Intrinsic::ppc_altivec_vcmpgtub_p: | 
|  | case Intrinsic::ppc_altivec_vcmpgtuh_p: | 
|  | case Intrinsic::ppc_altivec_vcmpgtuw_p: | 
|  | KnownZero = ~1U;  // All bits but the low one are known to be zero. | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /// getConstraintType - Given a constraint, return the type of | 
|  | /// constraint it is for this target. | 
|  | PPCTargetLowering::ConstraintType | 
|  | PPCTargetLowering::getConstraintType(const std::string &Constraint) const { | 
|  | if (Constraint.size() == 1) { | 
|  | switch (Constraint[0]) { | 
|  | default: break; | 
|  | case 'b': | 
|  | case 'r': | 
|  | case 'f': | 
|  | case 'v': | 
|  | case 'y': | 
|  | return C_RegisterClass; | 
|  | } | 
|  | } | 
|  | return TargetLowering::getConstraintType(Constraint); | 
|  | } | 
|  |  | 
|  | std::pair<unsigned, const TargetRegisterClass*> | 
|  | PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint, | 
|  | MVT::ValueType VT) const { | 
|  | if (Constraint.size() == 1) { | 
|  | // GCC RS6000 Constraint Letters | 
|  | switch (Constraint[0]) { | 
|  | case 'b':   // R1-R31 | 
|  | case 'r':   // R0-R31 | 
|  | if (VT == MVT::i64 && PPCSubTarget.isPPC64()) | 
|  | return std::make_pair(0U, PPC::G8RCRegisterClass); | 
|  | return std::make_pair(0U, PPC::GPRCRegisterClass); | 
|  | case 'f': | 
|  | if (VT == MVT::f32) | 
|  | return std::make_pair(0U, PPC::F4RCRegisterClass); | 
|  | else if (VT == MVT::f64) | 
|  | return std::make_pair(0U, PPC::F8RCRegisterClass); | 
|  | break; | 
|  | case 'v': | 
|  | return std::make_pair(0U, PPC::VRRCRegisterClass); | 
|  | case 'y':   // crrc | 
|  | return std::make_pair(0U, PPC::CRRCRegisterClass); | 
|  | } | 
|  | } | 
|  |  | 
|  | return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops | 
|  | /// vector.  If it is invalid, don't add anything to Ops. | 
|  | void PPCTargetLowering::LowerAsmOperandForConstraint(SDOperand Op, char Letter, | 
|  | std::vector<SDOperand>&Ops, | 
|  | SelectionDAG &DAG) { | 
|  | SDOperand Result(0,0); | 
|  | switch (Letter) { | 
|  | default: break; | 
|  | case 'I': | 
|  | case 'J': | 
|  | case 'K': | 
|  | case 'L': | 
|  | case 'M': | 
|  | case 'N': | 
|  | case 'O': | 
|  | case 'P': { | 
|  | ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); | 
|  | if (!CST) return; // Must be an immediate to match. | 
|  | unsigned Value = CST->getValue(); | 
|  | switch (Letter) { | 
|  | default: assert(0 && "Unknown constraint letter!"); | 
|  | case 'I':  // "I" is a signed 16-bit constant. | 
|  | if ((short)Value == (int)Value) | 
|  | Result = DAG.getTargetConstant(Value, Op.getValueType()); | 
|  | break; | 
|  | case 'J':  // "J" is a constant with only the high-order 16 bits nonzero. | 
|  | case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits. | 
|  | if ((short)Value == 0) | 
|  | Result = DAG.getTargetConstant(Value, Op.getValueType()); | 
|  | break; | 
|  | case 'K':  // "K" is a constant with only the low-order 16 bits nonzero. | 
|  | if ((Value >> 16) == 0) | 
|  | Result = DAG.getTargetConstant(Value, Op.getValueType()); | 
|  | break; | 
|  | case 'M':  // "M" is a constant that is greater than 31. | 
|  | if (Value > 31) | 
|  | Result = DAG.getTargetConstant(Value, Op.getValueType()); | 
|  | break; | 
|  | case 'N':  // "N" is a positive constant that is an exact power of two. | 
|  | if ((int)Value > 0 && isPowerOf2_32(Value)) | 
|  | Result = DAG.getTargetConstant(Value, Op.getValueType()); | 
|  | break; | 
|  | case 'O':  // "O" is the constant zero. | 
|  | if (Value == 0) | 
|  | Result = DAG.getTargetConstant(Value, Op.getValueType()); | 
|  | break; | 
|  | case 'P':  // "P" is a constant whose negation is a signed 16-bit constant. | 
|  | if ((short)-Value == (int)-Value) | 
|  | Result = DAG.getTargetConstant(Value, Op.getValueType()); | 
|  | break; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Result.Val) { | 
|  | Ops.push_back(Result); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Handle standard constraint letters. | 
|  | TargetLowering::LowerAsmOperandForConstraint(Op, Letter, Ops, DAG); | 
|  | } | 
|  |  | 
|  | // isLegalAddressingMode - Return true if the addressing mode represented | 
|  | // by AM is legal for this target, for a load/store of the specified type. | 
|  | bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM, | 
|  | const Type *Ty) const { | 
|  | // FIXME: PPC does not allow r+i addressing modes for vectors! | 
|  |  | 
|  | // PPC allows a sign-extended 16-bit immediate field. | 
|  | if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) | 
|  | return false; | 
|  |  | 
|  | // No global is ever allowed as a base. | 
|  | if (AM.BaseGV) | 
|  | return false; | 
|  |  | 
|  | // PPC only support r+r, | 
|  | switch (AM.Scale) { | 
|  | case 0:  // "r+i" or just "i", depending on HasBaseReg. | 
|  | break; | 
|  | case 1: | 
|  | if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed. | 
|  | return false; | 
|  | // Otherwise we have r+r or r+i. | 
|  | break; | 
|  | case 2: | 
|  | if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed. | 
|  | return false; | 
|  | // Allow 2*r as r+r. | 
|  | break; | 
|  | default: | 
|  | // No other scales are supported. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isLegalAddressImmediate - Return true if the integer value can be used | 
|  | /// as the offset of the target addressing mode for load / store of the | 
|  | /// given type. | 
|  | bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{ | 
|  | // PPC allows a sign-extended 16-bit immediate field. | 
|  | return (V > -(1 << 16) && V < (1 << 16)-1); | 
|  | } | 
|  |  | 
|  | bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | SDOperand PPCTargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) { | 
|  | // Depths > 0 not supported yet! | 
|  | if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0) | 
|  | return SDOperand(); | 
|  |  | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); | 
|  | int RAIdx = FuncInfo->getReturnAddrSaveIndex(); | 
|  | if (RAIdx == 0) { | 
|  | bool isPPC64 = PPCSubTarget.isPPC64(); | 
|  | int Offset = | 
|  | PPCFrameInfo::getReturnSaveOffset(isPPC64, PPCSubTarget.isMachoABI()); | 
|  |  | 
|  | // Set up a frame object for the return address. | 
|  | RAIdx = MF.getFrameInfo()->CreateFixedObject(isPPC64 ? 8 : 4, Offset); | 
|  |  | 
|  | // Remember it for next time. | 
|  | FuncInfo->setReturnAddrSaveIndex(RAIdx); | 
|  |  | 
|  | // Make sure the function really does not optimize away the store of the RA | 
|  | // to the stack. | 
|  | FuncInfo->setLRStoreRequired(); | 
|  | } | 
|  |  | 
|  | // Just load the return address off the stack. | 
|  | SDOperand RetAddrFI =  DAG.getFrameIndex(RAIdx, getPointerTy()); | 
|  | return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0); | 
|  | } | 
|  |  | 
|  | SDOperand PPCTargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) { | 
|  | // Depths > 0 not supported yet! | 
|  | if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0) | 
|  | return SDOperand(); | 
|  |  | 
|  | MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); | 
|  | bool isPPC64 = PtrVT == MVT::i64; | 
|  |  | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | MachineFrameInfo *MFI = MF.getFrameInfo(); | 
|  | bool is31 = (NoFramePointerElim || MFI->hasVarSizedObjects()) | 
|  | && MFI->getStackSize(); | 
|  |  | 
|  | if (isPPC64) | 
|  | return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::X31 : PPC::X1, | 
|  | MVT::i64); | 
|  | else | 
|  | return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::R31 : PPC::R1, | 
|  | MVT::i32); | 
|  | } |