|  | //===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | /// \file | 
|  | /// \brief Custom DAG lowering for SI | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #ifdef _MSC_VER | 
|  | // Provide M_PI. | 
|  | #define _USE_MATH_DEFINES | 
|  | #endif | 
|  |  | 
|  | #include "SIISelLowering.h" | 
|  | #include "AMDGPU.h" | 
|  | #include "AMDGPUIntrinsicInfo.h" | 
|  | #include "AMDGPUSubtarget.h" | 
|  | #include "AMDGPUTargetMachine.h" | 
|  | #include "SIDefines.h" | 
|  | #include "SIInstrInfo.h" | 
|  | #include "SIMachineFunctionInfo.h" | 
|  | #include "SIRegisterInfo.h" | 
|  | #include "Utils/AMDGPUBaseInfo.h" | 
|  | #include "llvm/ADT/APFloat.h" | 
|  | #include "llvm/ADT/APInt.h" | 
|  | #include "llvm/ADT/ArrayRef.h" | 
|  | #include "llvm/ADT/BitVector.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/ADT/StringRef.h" | 
|  | #include "llvm/ADT/StringSwitch.h" | 
|  | #include "llvm/ADT/Twine.h" | 
|  | #include "llvm/CodeGen/Analysis.h" | 
|  | #include "llvm/CodeGen/CallingConvLower.h" | 
|  | #include "llvm/CodeGen/DAGCombine.h" | 
|  | #include "llvm/CodeGen/ISDOpcodes.h" | 
|  | #include "llvm/CodeGen/MachineBasicBlock.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineInstr.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineMemOperand.h" | 
|  | #include "llvm/CodeGen/MachineModuleInfo.h" | 
|  | #include "llvm/CodeGen/MachineOperand.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/MachineValueType.h" | 
|  | #include "llvm/CodeGen/SelectionDAG.h" | 
|  | #include "llvm/CodeGen/SelectionDAGNodes.h" | 
|  | #include "llvm/CodeGen/TargetCallingConv.h" | 
|  | #include "llvm/CodeGen/TargetRegisterInfo.h" | 
|  | #include "llvm/CodeGen/ValueTypes.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DebugLoc.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/DiagnosticInfo.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/GlobalValue.h" | 
|  | #include "llvm/IR/InstrTypes.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/CodeGen.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/KnownBits.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Target/TargetOptions.h" | 
|  | #include <cassert> | 
|  | #include <cmath> | 
|  | #include <cstdint> | 
|  | #include <iterator> | 
|  | #include <tuple> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "si-lower" | 
|  |  | 
|  | STATISTIC(NumTailCalls, "Number of tail calls"); | 
|  |  | 
|  | static cl::opt<bool> EnableVGPRIndexMode( | 
|  | "amdgpu-vgpr-index-mode", | 
|  | cl::desc("Use GPR indexing mode instead of movrel for vector indexing"), | 
|  | cl::init(false)); | 
|  |  | 
|  | static cl::opt<unsigned> AssumeFrameIndexHighZeroBits( | 
|  | "amdgpu-frame-index-zero-bits", | 
|  | cl::desc("High bits of frame index assumed to be zero"), | 
|  | cl::init(5), | 
|  | cl::ReallyHidden); | 
|  |  | 
|  | static unsigned findFirstFreeSGPR(CCState &CCInfo) { | 
|  | unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs(); | 
|  | for (unsigned Reg = 0; Reg < NumSGPRs; ++Reg) { | 
|  | if (!CCInfo.isAllocated(AMDGPU::SGPR0 + Reg)) { | 
|  | return AMDGPU::SGPR0 + Reg; | 
|  | } | 
|  | } | 
|  | llvm_unreachable("Cannot allocate sgpr"); | 
|  | } | 
|  |  | 
|  | SITargetLowering::SITargetLowering(const TargetMachine &TM, | 
|  | const SISubtarget &STI) | 
|  | : AMDGPUTargetLowering(TM, STI) { | 
|  | addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass); | 
|  | addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass); | 
|  |  | 
|  | addRegisterClass(MVT::i32, &AMDGPU::SReg_32_XM0RegClass); | 
|  | addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass); | 
|  |  | 
|  | addRegisterClass(MVT::f64, &AMDGPU::VReg_64RegClass); | 
|  | addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass); | 
|  | addRegisterClass(MVT::v2f32, &AMDGPU::VReg_64RegClass); | 
|  |  | 
|  | addRegisterClass(MVT::v2i64, &AMDGPU::SReg_128RegClass); | 
|  | addRegisterClass(MVT::v2f64, &AMDGPU::SReg_128RegClass); | 
|  |  | 
|  | addRegisterClass(MVT::v4i32, &AMDGPU::SReg_128RegClass); | 
|  | addRegisterClass(MVT::v4f32, &AMDGPU::VReg_128RegClass); | 
|  |  | 
|  | addRegisterClass(MVT::v8i32, &AMDGPU::SReg_256RegClass); | 
|  | addRegisterClass(MVT::v8f32, &AMDGPU::VReg_256RegClass); | 
|  |  | 
|  | addRegisterClass(MVT::v16i32, &AMDGPU::SReg_512RegClass); | 
|  | addRegisterClass(MVT::v16f32, &AMDGPU::VReg_512RegClass); | 
|  |  | 
|  | if (Subtarget->has16BitInsts()) { | 
|  | addRegisterClass(MVT::i16, &AMDGPU::SReg_32_XM0RegClass); | 
|  | addRegisterClass(MVT::f16, &AMDGPU::SReg_32_XM0RegClass); | 
|  | } | 
|  |  | 
|  | if (Subtarget->hasVOP3PInsts()) { | 
|  | addRegisterClass(MVT::v2i16, &AMDGPU::SReg_32_XM0RegClass); | 
|  | addRegisterClass(MVT::v2f16, &AMDGPU::SReg_32_XM0RegClass); | 
|  | } | 
|  |  | 
|  | computeRegisterProperties(STI.getRegisterInfo()); | 
|  |  | 
|  | // We need to custom lower vector stores from local memory | 
|  | setOperationAction(ISD::LOAD, MVT::v2i32, Custom); | 
|  | setOperationAction(ISD::LOAD, MVT::v4i32, Custom); | 
|  | setOperationAction(ISD::LOAD, MVT::v8i32, Custom); | 
|  | setOperationAction(ISD::LOAD, MVT::v16i32, Custom); | 
|  | setOperationAction(ISD::LOAD, MVT::i1, Custom); | 
|  |  | 
|  | setOperationAction(ISD::STORE, MVT::v2i32, Custom); | 
|  | setOperationAction(ISD::STORE, MVT::v4i32, Custom); | 
|  | setOperationAction(ISD::STORE, MVT::v8i32, Custom); | 
|  | setOperationAction(ISD::STORE, MVT::v16i32, Custom); | 
|  | setOperationAction(ISD::STORE, MVT::i1, Custom); | 
|  |  | 
|  | setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand); | 
|  | setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand); | 
|  | setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand); | 
|  | setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand); | 
|  | setTruncStoreAction(MVT::v32i32, MVT::v32i16, Expand); | 
|  | setTruncStoreAction(MVT::v2i32, MVT::v2i8, Expand); | 
|  | setTruncStoreAction(MVT::v4i32, MVT::v4i8, Expand); | 
|  | setTruncStoreAction(MVT::v8i32, MVT::v8i8, Expand); | 
|  | setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand); | 
|  | setTruncStoreAction(MVT::v32i32, MVT::v32i8, Expand); | 
|  |  | 
|  | setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); | 
|  | setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); | 
|  | setOperationAction(ISD::ConstantPool, MVT::v2i64, Expand); | 
|  |  | 
|  | setOperationAction(ISD::SELECT, MVT::i1, Promote); | 
|  | setOperationAction(ISD::SELECT, MVT::i64, Custom); | 
|  | setOperationAction(ISD::SELECT, MVT::f64, Promote); | 
|  | AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64); | 
|  |  | 
|  | setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); | 
|  | setOperationAction(ISD::SELECT_CC, MVT::i32, Expand); | 
|  | setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); | 
|  | setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); | 
|  | setOperationAction(ISD::SELECT_CC, MVT::i1, Expand); | 
|  |  | 
|  | setOperationAction(ISD::SETCC, MVT::i1, Promote); | 
|  | setOperationAction(ISD::SETCC, MVT::v2i1, Expand); | 
|  | setOperationAction(ISD::SETCC, MVT::v4i1, Expand); | 
|  | AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32); | 
|  |  | 
|  | setOperationAction(ISD::TRUNCATE, MVT::v2i32, Expand); | 
|  | setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand); | 
|  |  | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom); | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom); | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom); | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom); | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom); | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom); | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom); | 
|  |  | 
|  | setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); | 
|  | setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom); | 
|  | setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom); | 
|  | setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2i16, Custom); | 
|  | setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2f16, Custom); | 
|  |  | 
|  | setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v2f16, Custom); | 
|  | setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v4f16, Custom); | 
|  | setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); | 
|  |  | 
|  | setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); | 
|  | setOperationAction(ISD::INTRINSIC_VOID, MVT::v2i16, Custom); | 
|  | setOperationAction(ISD::INTRINSIC_VOID, MVT::v2f16, Custom); | 
|  | setOperationAction(ISD::INTRINSIC_VOID, MVT::v4f16, Custom); | 
|  |  | 
|  | setOperationAction(ISD::BRCOND, MVT::Other, Custom); | 
|  | setOperationAction(ISD::BR_CC, MVT::i1, Expand); | 
|  | setOperationAction(ISD::BR_CC, MVT::i32, Expand); | 
|  | setOperationAction(ISD::BR_CC, MVT::i64, Expand); | 
|  | setOperationAction(ISD::BR_CC, MVT::f32, Expand); | 
|  | setOperationAction(ISD::BR_CC, MVT::f64, Expand); | 
|  |  | 
|  | setOperationAction(ISD::UADDO, MVT::i32, Legal); | 
|  | setOperationAction(ISD::USUBO, MVT::i32, Legal); | 
|  |  | 
|  | setOperationAction(ISD::ADDCARRY, MVT::i32, Legal); | 
|  | setOperationAction(ISD::SUBCARRY, MVT::i32, Legal); | 
|  |  | 
|  | #if 0 | 
|  | setOperationAction(ISD::ADDCARRY, MVT::i64, Legal); | 
|  | setOperationAction(ISD::SUBCARRY, MVT::i64, Legal); | 
|  | #endif | 
|  |  | 
|  | //setOperationAction(ISD::ADDC, MVT::i64, Expand); | 
|  | //setOperationAction(ISD::SUBC, MVT::i64, Expand); | 
|  |  | 
|  | // We only support LOAD/STORE and vector manipulation ops for vectors | 
|  | // with > 4 elements. | 
|  | for (MVT VT : {MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32, | 
|  | MVT::v2i64, MVT::v2f64}) { | 
|  | for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) { | 
|  | switch (Op) { | 
|  | case ISD::LOAD: | 
|  | case ISD::STORE: | 
|  | case ISD::BUILD_VECTOR: | 
|  | case ISD::BITCAST: | 
|  | case ISD::EXTRACT_VECTOR_ELT: | 
|  | case ISD::INSERT_VECTOR_ELT: | 
|  | case ISD::INSERT_SUBVECTOR: | 
|  | case ISD::EXTRACT_SUBVECTOR: | 
|  | case ISD::SCALAR_TO_VECTOR: | 
|  | break; | 
|  | case ISD::CONCAT_VECTORS: | 
|  | setOperationAction(Op, VT, Custom); | 
|  | break; | 
|  | default: | 
|  | setOperationAction(Op, VT, Expand); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // TODO: For dynamic 64-bit vector inserts/extracts, should emit a pseudo that | 
|  | // is expanded to avoid having two separate loops in case the index is a VGPR. | 
|  |  | 
|  | // Most operations are naturally 32-bit vector operations. We only support | 
|  | // load and store of i64 vectors, so promote v2i64 vector operations to v4i32. | 
|  | for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) { | 
|  | setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); | 
|  | AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32); | 
|  |  | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); | 
|  | AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32); | 
|  |  | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); | 
|  | AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32); | 
|  |  | 
|  | setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); | 
|  | AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32); | 
|  | } | 
|  |  | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand); | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand); | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand); | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand); | 
|  |  | 
|  | // Avoid stack access for these. | 
|  | // TODO: Generalize to more vector types. | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i16, Custom); | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f16, Custom); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom); | 
|  |  | 
|  | // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling, | 
|  | // and output demarshalling | 
|  | setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); | 
|  | setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom); | 
|  |  | 
|  | // We can't return success/failure, only the old value, | 
|  | // let LLVM add the comparison | 
|  | setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Expand); | 
|  | setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Expand); | 
|  |  | 
|  | if (getSubtarget()->hasFlatAddressSpace()) { | 
|  | setOperationAction(ISD::ADDRSPACECAST, MVT::i32, Custom); | 
|  | setOperationAction(ISD::ADDRSPACECAST, MVT::i64, Custom); | 
|  | } | 
|  |  | 
|  | setOperationAction(ISD::BSWAP, MVT::i32, Legal); | 
|  | setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); | 
|  |  | 
|  | // On SI this is s_memtime and s_memrealtime on VI. | 
|  | setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal); | 
|  | setOperationAction(ISD::TRAP, MVT::Other, Custom); | 
|  | setOperationAction(ISD::DEBUGTRAP, MVT::Other, Custom); | 
|  |  | 
|  | setOperationAction(ISD::FMINNUM, MVT::f64, Legal); | 
|  | setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); | 
|  |  | 
|  | if (Subtarget->getGeneration() >= SISubtarget::SEA_ISLANDS) { | 
|  | setOperationAction(ISD::FTRUNC, MVT::f64, Legal); | 
|  | setOperationAction(ISD::FCEIL, MVT::f64, Legal); | 
|  | setOperationAction(ISD::FRINT, MVT::f64, Legal); | 
|  | } | 
|  |  | 
|  | setOperationAction(ISD::FFLOOR, MVT::f64, Legal); | 
|  |  | 
|  | setOperationAction(ISD::FSIN, MVT::f32, Custom); | 
|  | setOperationAction(ISD::FCOS, MVT::f32, Custom); | 
|  | setOperationAction(ISD::FDIV, MVT::f32, Custom); | 
|  | setOperationAction(ISD::FDIV, MVT::f64, Custom); | 
|  |  | 
|  | if (Subtarget->has16BitInsts()) { | 
|  | setOperationAction(ISD::Constant, MVT::i16, Legal); | 
|  |  | 
|  | setOperationAction(ISD::SMIN, MVT::i16, Legal); | 
|  | setOperationAction(ISD::SMAX, MVT::i16, Legal); | 
|  |  | 
|  | setOperationAction(ISD::UMIN, MVT::i16, Legal); | 
|  | setOperationAction(ISD::UMAX, MVT::i16, Legal); | 
|  |  | 
|  | setOperationAction(ISD::SIGN_EXTEND, MVT::i16, Promote); | 
|  | AddPromotedToType(ISD::SIGN_EXTEND, MVT::i16, MVT::i32); | 
|  |  | 
|  | setOperationAction(ISD::ROTR, MVT::i16, Promote); | 
|  | setOperationAction(ISD::ROTL, MVT::i16, Promote); | 
|  |  | 
|  | setOperationAction(ISD::SDIV, MVT::i16, Promote); | 
|  | setOperationAction(ISD::UDIV, MVT::i16, Promote); | 
|  | setOperationAction(ISD::SREM, MVT::i16, Promote); | 
|  | setOperationAction(ISD::UREM, MVT::i16, Promote); | 
|  |  | 
|  | setOperationAction(ISD::BSWAP, MVT::i16, Promote); | 
|  | setOperationAction(ISD::BITREVERSE, MVT::i16, Promote); | 
|  |  | 
|  | setOperationAction(ISD::CTTZ, MVT::i16, Promote); | 
|  | setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16, Promote); | 
|  | setOperationAction(ISD::CTLZ, MVT::i16, Promote); | 
|  | setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16, Promote); | 
|  | setOperationAction(ISD::CTPOP, MVT::i16, Promote); | 
|  |  | 
|  | setOperationAction(ISD::SELECT_CC, MVT::i16, Expand); | 
|  |  | 
|  | setOperationAction(ISD::BR_CC, MVT::i16, Expand); | 
|  |  | 
|  | setOperationAction(ISD::LOAD, MVT::i16, Custom); | 
|  |  | 
|  | setTruncStoreAction(MVT::i64, MVT::i16, Expand); | 
|  |  | 
|  | setOperationAction(ISD::FP16_TO_FP, MVT::i16, Promote); | 
|  | AddPromotedToType(ISD::FP16_TO_FP, MVT::i16, MVT::i32); | 
|  | setOperationAction(ISD::FP_TO_FP16, MVT::i16, Promote); | 
|  | AddPromotedToType(ISD::FP_TO_FP16, MVT::i16, MVT::i32); | 
|  |  | 
|  | setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote); | 
|  | setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote); | 
|  | setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote); | 
|  | setOperationAction(ISD::UINT_TO_FP, MVT::i16, Promote); | 
|  |  | 
|  | // F16 - Constant Actions. | 
|  | setOperationAction(ISD::ConstantFP, MVT::f16, Legal); | 
|  |  | 
|  | // F16 - Load/Store Actions. | 
|  | setOperationAction(ISD::LOAD, MVT::f16, Promote); | 
|  | AddPromotedToType(ISD::LOAD, MVT::f16, MVT::i16); | 
|  | setOperationAction(ISD::STORE, MVT::f16, Promote); | 
|  | AddPromotedToType(ISD::STORE, MVT::f16, MVT::i16); | 
|  |  | 
|  | // F16 - VOP1 Actions. | 
|  | setOperationAction(ISD::FP_ROUND, MVT::f16, Custom); | 
|  | setOperationAction(ISD::FCOS, MVT::f16, Promote); | 
|  | setOperationAction(ISD::FSIN, MVT::f16, Promote); | 
|  | setOperationAction(ISD::FP_TO_SINT, MVT::f16, Promote); | 
|  | setOperationAction(ISD::FP_TO_UINT, MVT::f16, Promote); | 
|  | setOperationAction(ISD::SINT_TO_FP, MVT::f16, Promote); | 
|  | setOperationAction(ISD::UINT_TO_FP, MVT::f16, Promote); | 
|  | setOperationAction(ISD::FROUND, MVT::f16, Custom); | 
|  |  | 
|  | // F16 - VOP2 Actions. | 
|  | setOperationAction(ISD::BR_CC, MVT::f16, Expand); | 
|  | setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); | 
|  | setOperationAction(ISD::FMAXNUM, MVT::f16, Legal); | 
|  | setOperationAction(ISD::FMINNUM, MVT::f16, Legal); | 
|  | setOperationAction(ISD::FDIV, MVT::f16, Custom); | 
|  |  | 
|  | // F16 - VOP3 Actions. | 
|  | setOperationAction(ISD::FMA, MVT::f16, Legal); | 
|  | if (!Subtarget->hasFP16Denormals()) | 
|  | setOperationAction(ISD::FMAD, MVT::f16, Legal); | 
|  | } | 
|  |  | 
|  | if (Subtarget->hasVOP3PInsts()) { | 
|  | for (MVT VT : {MVT::v2i16, MVT::v2f16}) { | 
|  | for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) { | 
|  | switch (Op) { | 
|  | case ISD::LOAD: | 
|  | case ISD::STORE: | 
|  | case ISD::BUILD_VECTOR: | 
|  | case ISD::BITCAST: | 
|  | case ISD::EXTRACT_VECTOR_ELT: | 
|  | case ISD::INSERT_VECTOR_ELT: | 
|  | case ISD::INSERT_SUBVECTOR: | 
|  | case ISD::EXTRACT_SUBVECTOR: | 
|  | case ISD::SCALAR_TO_VECTOR: | 
|  | break; | 
|  | case ISD::CONCAT_VECTORS: | 
|  | setOperationAction(Op, VT, Custom); | 
|  | break; | 
|  | default: | 
|  | setOperationAction(Op, VT, Expand); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // XXX - Do these do anything? Vector constants turn into build_vector. | 
|  | setOperationAction(ISD::Constant, MVT::v2i16, Legal); | 
|  | setOperationAction(ISD::ConstantFP, MVT::v2f16, Legal); | 
|  |  | 
|  | setOperationAction(ISD::STORE, MVT::v2i16, Promote); | 
|  | AddPromotedToType(ISD::STORE, MVT::v2i16, MVT::i32); | 
|  | setOperationAction(ISD::STORE, MVT::v2f16, Promote); | 
|  | AddPromotedToType(ISD::STORE, MVT::v2f16, MVT::i32); | 
|  |  | 
|  | setOperationAction(ISD::LOAD, MVT::v2i16, Promote); | 
|  | AddPromotedToType(ISD::LOAD, MVT::v2i16, MVT::i32); | 
|  | setOperationAction(ISD::LOAD, MVT::v2f16, Promote); | 
|  | AddPromotedToType(ISD::LOAD, MVT::v2f16, MVT::i32); | 
|  |  | 
|  | setOperationAction(ISD::AND, MVT::v2i16, Promote); | 
|  | AddPromotedToType(ISD::AND, MVT::v2i16, MVT::i32); | 
|  | setOperationAction(ISD::OR, MVT::v2i16, Promote); | 
|  | AddPromotedToType(ISD::OR, MVT::v2i16, MVT::i32); | 
|  | setOperationAction(ISD::XOR, MVT::v2i16, Promote); | 
|  | AddPromotedToType(ISD::XOR, MVT::v2i16, MVT::i32); | 
|  | setOperationAction(ISD::SELECT, MVT::v2i16, Promote); | 
|  | AddPromotedToType(ISD::SELECT, MVT::v2i16, MVT::i32); | 
|  | setOperationAction(ISD::SELECT, MVT::v2f16, Promote); | 
|  | AddPromotedToType(ISD::SELECT, MVT::v2f16, MVT::i32); | 
|  |  | 
|  | setOperationAction(ISD::ADD, MVT::v2i16, Legal); | 
|  | setOperationAction(ISD::SUB, MVT::v2i16, Legal); | 
|  | setOperationAction(ISD::MUL, MVT::v2i16, Legal); | 
|  | setOperationAction(ISD::SHL, MVT::v2i16, Legal); | 
|  | setOperationAction(ISD::SRL, MVT::v2i16, Legal); | 
|  | setOperationAction(ISD::SRA, MVT::v2i16, Legal); | 
|  | setOperationAction(ISD::SMIN, MVT::v2i16, Legal); | 
|  | setOperationAction(ISD::UMIN, MVT::v2i16, Legal); | 
|  | setOperationAction(ISD::SMAX, MVT::v2i16, Legal); | 
|  | setOperationAction(ISD::UMAX, MVT::v2i16, Legal); | 
|  |  | 
|  | setOperationAction(ISD::FADD, MVT::v2f16, Legal); | 
|  | setOperationAction(ISD::FNEG, MVT::v2f16, Legal); | 
|  | setOperationAction(ISD::FMUL, MVT::v2f16, Legal); | 
|  | setOperationAction(ISD::FMA, MVT::v2f16, Legal); | 
|  | setOperationAction(ISD::FMINNUM, MVT::v2f16, Legal); | 
|  | setOperationAction(ISD::FMAXNUM, MVT::v2f16, Legal); | 
|  |  | 
|  | // This isn't really legal, but this avoids the legalizer unrolling it (and | 
|  | // allows matching fneg (fabs x) patterns) | 
|  | setOperationAction(ISD::FABS, MVT::v2f16, Legal); | 
|  |  | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom); | 
|  |  | 
|  | setOperationAction(ISD::ANY_EXTEND, MVT::v2i32, Expand); | 
|  | setOperationAction(ISD::ZERO_EXTEND, MVT::v2i32, Expand); | 
|  | setOperationAction(ISD::SIGN_EXTEND, MVT::v2i32, Expand); | 
|  | setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Expand); | 
|  | } else { | 
|  | setOperationAction(ISD::SELECT, MVT::v2i16, Custom); | 
|  | setOperationAction(ISD::SELECT, MVT::v2f16, Custom); | 
|  | } | 
|  |  | 
|  | for (MVT VT : { MVT::v4i16, MVT::v4f16, MVT::v2i8, MVT::v4i8, MVT::v8i8 }) { | 
|  | setOperationAction(ISD::SELECT, VT, Custom); | 
|  | } | 
|  |  | 
|  | setTargetDAGCombine(ISD::ADD); | 
|  | setTargetDAGCombine(ISD::ADDCARRY); | 
|  | setTargetDAGCombine(ISD::SUB); | 
|  | setTargetDAGCombine(ISD::SUBCARRY); | 
|  | setTargetDAGCombine(ISD::FADD); | 
|  | setTargetDAGCombine(ISD::FSUB); | 
|  | setTargetDAGCombine(ISD::FMINNUM); | 
|  | setTargetDAGCombine(ISD::FMAXNUM); | 
|  | setTargetDAGCombine(ISD::SMIN); | 
|  | setTargetDAGCombine(ISD::SMAX); | 
|  | setTargetDAGCombine(ISD::UMIN); | 
|  | setTargetDAGCombine(ISD::UMAX); | 
|  | setTargetDAGCombine(ISD::SETCC); | 
|  | setTargetDAGCombine(ISD::AND); | 
|  | setTargetDAGCombine(ISD::OR); | 
|  | setTargetDAGCombine(ISD::XOR); | 
|  | setTargetDAGCombine(ISD::SINT_TO_FP); | 
|  | setTargetDAGCombine(ISD::UINT_TO_FP); | 
|  | setTargetDAGCombine(ISD::FCANONICALIZE); | 
|  | setTargetDAGCombine(ISD::SCALAR_TO_VECTOR); | 
|  | setTargetDAGCombine(ISD::ZERO_EXTEND); | 
|  | setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); | 
|  | setTargetDAGCombine(ISD::BUILD_VECTOR); | 
|  |  | 
|  | // All memory operations. Some folding on the pointer operand is done to help | 
|  | // matching the constant offsets in the addressing modes. | 
|  | setTargetDAGCombine(ISD::LOAD); | 
|  | setTargetDAGCombine(ISD::STORE); | 
|  | setTargetDAGCombine(ISD::ATOMIC_LOAD); | 
|  | setTargetDAGCombine(ISD::ATOMIC_STORE); | 
|  | setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP); | 
|  | setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); | 
|  | setTargetDAGCombine(ISD::ATOMIC_SWAP); | 
|  | setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD); | 
|  | setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB); | 
|  | setTargetDAGCombine(ISD::ATOMIC_LOAD_AND); | 
|  | setTargetDAGCombine(ISD::ATOMIC_LOAD_OR); | 
|  | setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR); | 
|  | setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND); | 
|  | setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN); | 
|  | setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX); | 
|  | setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN); | 
|  | setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX); | 
|  |  | 
|  | setSchedulingPreference(Sched::RegPressure); | 
|  | } | 
|  |  | 
|  | const SISubtarget *SITargetLowering::getSubtarget() const { | 
|  | return static_cast<const SISubtarget *>(Subtarget); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // TargetLowering queries | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | bool SITargetLowering::isShuffleMaskLegal(ArrayRef<int>, EVT) const { | 
|  | // SI has some legal vector types, but no legal vector operations. Say no | 
|  | // shuffles are legal in order to prefer scalarizing some vector operations. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool SITargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, | 
|  | const CallInst &CI, | 
|  | MachineFunction &MF, | 
|  | unsigned IntrID) const { | 
|  | switch (IntrID) { | 
|  | case Intrinsic::amdgcn_atomic_inc: | 
|  | case Intrinsic::amdgcn_atomic_dec: | 
|  | case Intrinsic::amdgcn_ds_fadd: | 
|  | case Intrinsic::amdgcn_ds_fmin: | 
|  | case Intrinsic::amdgcn_ds_fmax: { | 
|  | Info.opc = ISD::INTRINSIC_W_CHAIN; | 
|  | Info.memVT = MVT::getVT(CI.getType()); | 
|  | Info.ptrVal = CI.getOperand(0); | 
|  | Info.align = 0; | 
|  | Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; | 
|  |  | 
|  | const ConstantInt *Vol = dyn_cast<ConstantInt>(CI.getOperand(4)); | 
|  | if (!Vol || !Vol->isZero()) | 
|  | Info.flags |= MachineMemOperand::MOVolatile; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Image load. | 
|  | case Intrinsic::amdgcn_image_load: | 
|  | case Intrinsic::amdgcn_image_load_mip: | 
|  |  | 
|  | // Sample. | 
|  | case Intrinsic::amdgcn_image_sample: | 
|  | case Intrinsic::amdgcn_image_sample_cl: | 
|  | case Intrinsic::amdgcn_image_sample_d: | 
|  | case Intrinsic::amdgcn_image_sample_d_cl: | 
|  | case Intrinsic::amdgcn_image_sample_l: | 
|  | case Intrinsic::amdgcn_image_sample_b: | 
|  | case Intrinsic::amdgcn_image_sample_b_cl: | 
|  | case Intrinsic::amdgcn_image_sample_lz: | 
|  | case Intrinsic::amdgcn_image_sample_cd: | 
|  | case Intrinsic::amdgcn_image_sample_cd_cl: | 
|  |  | 
|  | // Sample with comparison. | 
|  | case Intrinsic::amdgcn_image_sample_c: | 
|  | case Intrinsic::amdgcn_image_sample_c_cl: | 
|  | case Intrinsic::amdgcn_image_sample_c_d: | 
|  | case Intrinsic::amdgcn_image_sample_c_d_cl: | 
|  | case Intrinsic::amdgcn_image_sample_c_l: | 
|  | case Intrinsic::amdgcn_image_sample_c_b: | 
|  | case Intrinsic::amdgcn_image_sample_c_b_cl: | 
|  | case Intrinsic::amdgcn_image_sample_c_lz: | 
|  | case Intrinsic::amdgcn_image_sample_c_cd: | 
|  | case Intrinsic::amdgcn_image_sample_c_cd_cl: | 
|  |  | 
|  | // Sample with offsets. | 
|  | case Intrinsic::amdgcn_image_sample_o: | 
|  | case Intrinsic::amdgcn_image_sample_cl_o: | 
|  | case Intrinsic::amdgcn_image_sample_d_o: | 
|  | case Intrinsic::amdgcn_image_sample_d_cl_o: | 
|  | case Intrinsic::amdgcn_image_sample_l_o: | 
|  | case Intrinsic::amdgcn_image_sample_b_o: | 
|  | case Intrinsic::amdgcn_image_sample_b_cl_o: | 
|  | case Intrinsic::amdgcn_image_sample_lz_o: | 
|  | case Intrinsic::amdgcn_image_sample_cd_o: | 
|  | case Intrinsic::amdgcn_image_sample_cd_cl_o: | 
|  |  | 
|  | // Sample with comparison and offsets. | 
|  | case Intrinsic::amdgcn_image_sample_c_o: | 
|  | case Intrinsic::amdgcn_image_sample_c_cl_o: | 
|  | case Intrinsic::amdgcn_image_sample_c_d_o: | 
|  | case Intrinsic::amdgcn_image_sample_c_d_cl_o: | 
|  | case Intrinsic::amdgcn_image_sample_c_l_o: | 
|  | case Intrinsic::amdgcn_image_sample_c_b_o: | 
|  | case Intrinsic::amdgcn_image_sample_c_b_cl_o: | 
|  | case Intrinsic::amdgcn_image_sample_c_lz_o: | 
|  | case Intrinsic::amdgcn_image_sample_c_cd_o: | 
|  | case Intrinsic::amdgcn_image_sample_c_cd_cl_o: | 
|  |  | 
|  | // Basic gather4 | 
|  | case Intrinsic::amdgcn_image_gather4: | 
|  | case Intrinsic::amdgcn_image_gather4_cl: | 
|  | case Intrinsic::amdgcn_image_gather4_l: | 
|  | case Intrinsic::amdgcn_image_gather4_b: | 
|  | case Intrinsic::amdgcn_image_gather4_b_cl: | 
|  | case Intrinsic::amdgcn_image_gather4_lz: | 
|  |  | 
|  | // Gather4 with comparison | 
|  | case Intrinsic::amdgcn_image_gather4_c: | 
|  | case Intrinsic::amdgcn_image_gather4_c_cl: | 
|  | case Intrinsic::amdgcn_image_gather4_c_l: | 
|  | case Intrinsic::amdgcn_image_gather4_c_b: | 
|  | case Intrinsic::amdgcn_image_gather4_c_b_cl: | 
|  | case Intrinsic::amdgcn_image_gather4_c_lz: | 
|  |  | 
|  | // Gather4 with offsets | 
|  | case Intrinsic::amdgcn_image_gather4_o: | 
|  | case Intrinsic::amdgcn_image_gather4_cl_o: | 
|  | case Intrinsic::amdgcn_image_gather4_l_o: | 
|  | case Intrinsic::amdgcn_image_gather4_b_o: | 
|  | case Intrinsic::amdgcn_image_gather4_b_cl_o: | 
|  | case Intrinsic::amdgcn_image_gather4_lz_o: | 
|  |  | 
|  | // Gather4 with comparison and offsets | 
|  | case Intrinsic::amdgcn_image_gather4_c_o: | 
|  | case Intrinsic::amdgcn_image_gather4_c_cl_o: | 
|  | case Intrinsic::amdgcn_image_gather4_c_l_o: | 
|  | case Intrinsic::amdgcn_image_gather4_c_b_o: | 
|  | case Intrinsic::amdgcn_image_gather4_c_b_cl_o: | 
|  | case Intrinsic::amdgcn_image_gather4_c_lz_o: { | 
|  | SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); | 
|  | Info.opc = ISD::INTRINSIC_W_CHAIN; | 
|  | Info.memVT = MVT::getVT(CI.getType()); | 
|  | Info.ptrVal = MFI->getImagePSV( | 
|  | *MF.getSubtarget<SISubtarget>().getInstrInfo(), | 
|  | CI.getArgOperand(1)); | 
|  | Info.align = 0; | 
|  | Info.flags = MachineMemOperand::MOLoad | | 
|  | MachineMemOperand::MODereferenceable; | 
|  | return true; | 
|  | } | 
|  | case Intrinsic::amdgcn_image_store: | 
|  | case Intrinsic::amdgcn_image_store_mip: { | 
|  | SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); | 
|  | Info.opc = ISD::INTRINSIC_VOID; | 
|  | Info.memVT = MVT::getVT(CI.getArgOperand(0)->getType()); | 
|  | Info.ptrVal = MFI->getImagePSV( | 
|  | *MF.getSubtarget<SISubtarget>().getInstrInfo(), | 
|  | CI.getArgOperand(2)); | 
|  | Info.flags = MachineMemOperand::MOStore | | 
|  | MachineMemOperand::MODereferenceable; | 
|  | Info.align = 0; | 
|  | return true; | 
|  | } | 
|  | case Intrinsic::amdgcn_image_atomic_swap: | 
|  | case Intrinsic::amdgcn_image_atomic_add: | 
|  | case Intrinsic::amdgcn_image_atomic_sub: | 
|  | case Intrinsic::amdgcn_image_atomic_smin: | 
|  | case Intrinsic::amdgcn_image_atomic_umin: | 
|  | case Intrinsic::amdgcn_image_atomic_smax: | 
|  | case Intrinsic::amdgcn_image_atomic_umax: | 
|  | case Intrinsic::amdgcn_image_atomic_and: | 
|  | case Intrinsic::amdgcn_image_atomic_or: | 
|  | case Intrinsic::amdgcn_image_atomic_xor: | 
|  | case Intrinsic::amdgcn_image_atomic_inc: | 
|  | case Intrinsic::amdgcn_image_atomic_dec: { | 
|  | SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); | 
|  | Info.opc = ISD::INTRINSIC_W_CHAIN; | 
|  | Info.memVT = MVT::getVT(CI.getType()); | 
|  | Info.ptrVal = MFI->getImagePSV( | 
|  | *MF.getSubtarget<SISubtarget>().getInstrInfo(), | 
|  | CI.getArgOperand(2)); | 
|  |  | 
|  | Info.flags = MachineMemOperand::MOLoad | | 
|  | MachineMemOperand::MOStore | | 
|  | MachineMemOperand::MODereferenceable; | 
|  |  | 
|  | // XXX - Should this be volatile without known ordering? | 
|  | Info.flags |= MachineMemOperand::MOVolatile; | 
|  | return true; | 
|  | } | 
|  | case Intrinsic::amdgcn_image_atomic_cmpswap: { | 
|  | SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); | 
|  | Info.opc = ISD::INTRINSIC_W_CHAIN; | 
|  | Info.memVT = MVT::getVT(CI.getType()); | 
|  | Info.ptrVal = MFI->getImagePSV( | 
|  | *MF.getSubtarget<SISubtarget>().getInstrInfo(), | 
|  | CI.getArgOperand(3)); | 
|  |  | 
|  | Info.flags = MachineMemOperand::MOLoad | | 
|  | MachineMemOperand::MOStore | | 
|  | MachineMemOperand::MODereferenceable; | 
|  |  | 
|  | // XXX - Should this be volatile without known ordering? | 
|  | Info.flags |= MachineMemOperand::MOVolatile; | 
|  | return true; | 
|  | } | 
|  | case Intrinsic::amdgcn_tbuffer_load: | 
|  | case Intrinsic::amdgcn_buffer_load: | 
|  | case Intrinsic::amdgcn_buffer_load_format: { | 
|  | SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); | 
|  | Info.opc = ISD::INTRINSIC_W_CHAIN; | 
|  | Info.ptrVal = MFI->getBufferPSV( | 
|  | *MF.getSubtarget<SISubtarget>().getInstrInfo(), | 
|  | CI.getArgOperand(0)); | 
|  | Info.memVT = MVT::getVT(CI.getType()); | 
|  | Info.flags = MachineMemOperand::MOLoad | | 
|  | MachineMemOperand::MODereferenceable; | 
|  |  | 
|  | // There is a constant offset component, but there are additional register | 
|  | // offsets which could break AA if we set the offset to anything non-0. | 
|  | return true; | 
|  | } | 
|  | case Intrinsic::amdgcn_tbuffer_store: | 
|  | case Intrinsic::amdgcn_buffer_store: | 
|  | case Intrinsic::amdgcn_buffer_store_format: { | 
|  | SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); | 
|  | Info.opc = ISD::INTRINSIC_VOID; | 
|  | Info.ptrVal = MFI->getBufferPSV( | 
|  | *MF.getSubtarget<SISubtarget>().getInstrInfo(), | 
|  | CI.getArgOperand(1)); | 
|  | Info.memVT = MVT::getVT(CI.getArgOperand(0)->getType()); | 
|  | Info.flags = MachineMemOperand::MOStore | | 
|  | MachineMemOperand::MODereferenceable; | 
|  | return true; | 
|  | } | 
|  | case Intrinsic::amdgcn_buffer_atomic_swap: | 
|  | case Intrinsic::amdgcn_buffer_atomic_add: | 
|  | case Intrinsic::amdgcn_buffer_atomic_sub: | 
|  | case Intrinsic::amdgcn_buffer_atomic_smin: | 
|  | case Intrinsic::amdgcn_buffer_atomic_umin: | 
|  | case Intrinsic::amdgcn_buffer_atomic_smax: | 
|  | case Intrinsic::amdgcn_buffer_atomic_umax: | 
|  | case Intrinsic::amdgcn_buffer_atomic_and: | 
|  | case Intrinsic::amdgcn_buffer_atomic_or: | 
|  | case Intrinsic::amdgcn_buffer_atomic_xor: { | 
|  | SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); | 
|  | Info.opc = ISD::INTRINSIC_W_CHAIN; | 
|  | Info.ptrVal = MFI->getBufferPSV( | 
|  | *MF.getSubtarget<SISubtarget>().getInstrInfo(), | 
|  | CI.getArgOperand(1)); | 
|  | Info.memVT = MVT::getVT(CI.getType()); | 
|  | Info.flags = MachineMemOperand::MOLoad | | 
|  | MachineMemOperand::MOStore | | 
|  | MachineMemOperand::MODereferenceable | | 
|  | MachineMemOperand::MOVolatile; | 
|  | return true; | 
|  | } | 
|  | case Intrinsic::amdgcn_buffer_atomic_cmpswap: { | 
|  | SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); | 
|  | Info.opc = ISD::INTRINSIC_W_CHAIN; | 
|  | Info.ptrVal = MFI->getBufferPSV( | 
|  | *MF.getSubtarget<SISubtarget>().getInstrInfo(), | 
|  | CI.getArgOperand(2)); | 
|  | Info.memVT = MVT::getVT(CI.getType()); | 
|  | Info.flags = MachineMemOperand::MOLoad | | 
|  | MachineMemOperand::MOStore | | 
|  | MachineMemOperand::MODereferenceable | | 
|  | MachineMemOperand::MOVolatile; | 
|  | return true; | 
|  | } | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool SITargetLowering::getAddrModeArguments(IntrinsicInst *II, | 
|  | SmallVectorImpl<Value*> &Ops, | 
|  | Type *&AccessTy) const { | 
|  | switch (II->getIntrinsicID()) { | 
|  | case Intrinsic::amdgcn_atomic_inc: | 
|  | case Intrinsic::amdgcn_atomic_dec: | 
|  | case Intrinsic::amdgcn_ds_fadd: | 
|  | case Intrinsic::amdgcn_ds_fmin: | 
|  | case Intrinsic::amdgcn_ds_fmax: { | 
|  | Value *Ptr = II->getArgOperand(0); | 
|  | AccessTy = II->getType(); | 
|  | Ops.push_back(Ptr); | 
|  | return true; | 
|  | } | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM) const { | 
|  | if (!Subtarget->hasFlatInstOffsets()) { | 
|  | // Flat instructions do not have offsets, and only have the register | 
|  | // address. | 
|  | return AM.BaseOffs == 0 && AM.Scale == 0; | 
|  | } | 
|  |  | 
|  | // GFX9 added a 13-bit signed offset. When using regular flat instructions, | 
|  | // the sign bit is ignored and is treated as a 12-bit unsigned offset. | 
|  |  | 
|  | // Just r + i | 
|  | return isUInt<12>(AM.BaseOffs) && AM.Scale == 0; | 
|  | } | 
|  |  | 
|  | bool SITargetLowering::isLegalGlobalAddressingMode(const AddrMode &AM) const { | 
|  | if (Subtarget->hasFlatGlobalInsts()) | 
|  | return isInt<13>(AM.BaseOffs) && AM.Scale == 0; | 
|  |  | 
|  | if (!Subtarget->hasAddr64() || Subtarget->useFlatForGlobal()) { | 
|  | // Assume the we will use FLAT for all global memory accesses | 
|  | // on VI. | 
|  | // FIXME: This assumption is currently wrong.  On VI we still use | 
|  | // MUBUF instructions for the r + i addressing mode.  As currently | 
|  | // implemented, the MUBUF instructions only work on buffer < 4GB. | 
|  | // It may be possible to support > 4GB buffers with MUBUF instructions, | 
|  | // by setting the stride value in the resource descriptor which would | 
|  | // increase the size limit to (stride * 4GB).  However, this is risky, | 
|  | // because it has never been validated. | 
|  | return isLegalFlatAddressingMode(AM); | 
|  | } | 
|  |  | 
|  | return isLegalMUBUFAddressingMode(AM); | 
|  | } | 
|  |  | 
|  | bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const { | 
|  | // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and | 
|  | // additionally can do r + r + i with addr64. 32-bit has more addressing | 
|  | // mode options. Depending on the resource constant, it can also do | 
|  | // (i64 r0) + (i32 r1) * (i14 i). | 
|  | // | 
|  | // Private arrays end up using a scratch buffer most of the time, so also | 
|  | // assume those use MUBUF instructions. Scratch loads / stores are currently | 
|  | // implemented as mubuf instructions with offen bit set, so slightly | 
|  | // different than the normal addr64. | 
|  | if (!isUInt<12>(AM.BaseOffs)) | 
|  | return false; | 
|  |  | 
|  | // FIXME: Since we can split immediate into soffset and immediate offset, | 
|  | // would it make sense to allow any immediate? | 
|  |  | 
|  | switch (AM.Scale) { | 
|  | case 0: // r + i or just i, depending on HasBaseReg. | 
|  | return true; | 
|  | case 1: | 
|  | return true; // We have r + r or r + i. | 
|  | case 2: | 
|  | if (AM.HasBaseReg) { | 
|  | // Reject 2 * r + r. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Allow 2 * r as r + r | 
|  | // Or  2 * r + i is allowed as r + r + i. | 
|  | return true; | 
|  | default: // Don't allow n * r | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL, | 
|  | const AddrMode &AM, Type *Ty, | 
|  | unsigned AS, Instruction *I) const { | 
|  | // No global is ever allowed as a base. | 
|  | if (AM.BaseGV) | 
|  | return false; | 
|  |  | 
|  | if (AS == AMDGPUASI.GLOBAL_ADDRESS) | 
|  | return isLegalGlobalAddressingMode(AM); | 
|  |  | 
|  | if (AS == AMDGPUASI.CONSTANT_ADDRESS || | 
|  | AS == AMDGPUASI.CONSTANT_ADDRESS_32BIT) { | 
|  | // If the offset isn't a multiple of 4, it probably isn't going to be | 
|  | // correctly aligned. | 
|  | // FIXME: Can we get the real alignment here? | 
|  | if (AM.BaseOffs % 4 != 0) | 
|  | return isLegalMUBUFAddressingMode(AM); | 
|  |  | 
|  | // There are no SMRD extloads, so if we have to do a small type access we | 
|  | // will use a MUBUF load. | 
|  | // FIXME?: We also need to do this if unaligned, but we don't know the | 
|  | // alignment here. | 
|  | if (DL.getTypeStoreSize(Ty) < 4) | 
|  | return isLegalGlobalAddressingMode(AM); | 
|  |  | 
|  | if (Subtarget->getGeneration() == SISubtarget::SOUTHERN_ISLANDS) { | 
|  | // SMRD instructions have an 8-bit, dword offset on SI. | 
|  | if (!isUInt<8>(AM.BaseOffs / 4)) | 
|  | return false; | 
|  | } else if (Subtarget->getGeneration() == SISubtarget::SEA_ISLANDS) { | 
|  | // On CI+, this can also be a 32-bit literal constant offset. If it fits | 
|  | // in 8-bits, it can use a smaller encoding. | 
|  | if (!isUInt<32>(AM.BaseOffs / 4)) | 
|  | return false; | 
|  | } else if (Subtarget->getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) { | 
|  | // On VI, these use the SMEM format and the offset is 20-bit in bytes. | 
|  | if (!isUInt<20>(AM.BaseOffs)) | 
|  | return false; | 
|  | } else | 
|  | llvm_unreachable("unhandled generation"); | 
|  |  | 
|  | if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg. | 
|  | return true; | 
|  |  | 
|  | if (AM.Scale == 1 && AM.HasBaseReg) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  |  | 
|  | } else if (AS == AMDGPUASI.PRIVATE_ADDRESS) { | 
|  | return isLegalMUBUFAddressingMode(AM); | 
|  | } else if (AS == AMDGPUASI.LOCAL_ADDRESS || | 
|  | AS == AMDGPUASI.REGION_ADDRESS) { | 
|  | // Basic, single offset DS instructions allow a 16-bit unsigned immediate | 
|  | // field. | 
|  | // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have | 
|  | // an 8-bit dword offset but we don't know the alignment here. | 
|  | if (!isUInt<16>(AM.BaseOffs)) | 
|  | return false; | 
|  |  | 
|  | if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg. | 
|  | return true; | 
|  |  | 
|  | if (AM.Scale == 1 && AM.HasBaseReg) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } else if (AS == AMDGPUASI.FLAT_ADDRESS || | 
|  | AS == AMDGPUASI.UNKNOWN_ADDRESS_SPACE) { | 
|  | // For an unknown address space, this usually means that this is for some | 
|  | // reason being used for pure arithmetic, and not based on some addressing | 
|  | // computation. We don't have instructions that compute pointers with any | 
|  | // addressing modes, so treat them as having no offset like flat | 
|  | // instructions. | 
|  | return isLegalFlatAddressingMode(AM); | 
|  | } else { | 
|  | llvm_unreachable("unhandled address space"); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool SITargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT, | 
|  | const SelectionDAG &DAG) const { | 
|  | if (AS == AMDGPUASI.GLOBAL_ADDRESS || AS == AMDGPUASI.FLAT_ADDRESS) { | 
|  | return (MemVT.getSizeInBits() <= 4 * 32); | 
|  | } else if (AS == AMDGPUASI.PRIVATE_ADDRESS) { | 
|  | unsigned MaxPrivateBits = 8 * getSubtarget()->getMaxPrivateElementSize(); | 
|  | return (MemVT.getSizeInBits() <= MaxPrivateBits); | 
|  | } else if (AS == AMDGPUASI.LOCAL_ADDRESS) { | 
|  | return (MemVT.getSizeInBits() <= 2 * 32); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool SITargetLowering::allowsMisalignedMemoryAccesses(EVT VT, | 
|  | unsigned AddrSpace, | 
|  | unsigned Align, | 
|  | bool *IsFast) const { | 
|  | if (IsFast) | 
|  | *IsFast = false; | 
|  |  | 
|  | // TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96, | 
|  | // which isn't a simple VT. | 
|  | // Until MVT is extended to handle this, simply check for the size and | 
|  | // rely on the condition below: allow accesses if the size is a multiple of 4. | 
|  | if (VT == MVT::Other || (VT != MVT::Other && VT.getSizeInBits() > 1024 && | 
|  | VT.getStoreSize() > 16)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (AddrSpace == AMDGPUASI.LOCAL_ADDRESS || | 
|  | AddrSpace == AMDGPUASI.REGION_ADDRESS) { | 
|  | // ds_read/write_b64 require 8-byte alignment, but we can do a 4 byte | 
|  | // aligned, 8 byte access in a single operation using ds_read2/write2_b32 | 
|  | // with adjacent offsets. | 
|  | bool AlignedBy4 = (Align % 4 == 0); | 
|  | if (IsFast) | 
|  | *IsFast = AlignedBy4; | 
|  |  | 
|  | return AlignedBy4; | 
|  | } | 
|  |  | 
|  | // FIXME: We have to be conservative here and assume that flat operations | 
|  | // will access scratch.  If we had access to the IR function, then we | 
|  | // could determine if any private memory was used in the function. | 
|  | if (!Subtarget->hasUnalignedScratchAccess() && | 
|  | (AddrSpace == AMDGPUASI.PRIVATE_ADDRESS || | 
|  | AddrSpace == AMDGPUASI.FLAT_ADDRESS)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (Subtarget->hasUnalignedBufferAccess()) { | 
|  | // If we have an uniform constant load, it still requires using a slow | 
|  | // buffer instruction if unaligned. | 
|  | if (IsFast) { | 
|  | *IsFast = (AddrSpace == AMDGPUASI.CONSTANT_ADDRESS || | 
|  | AddrSpace == AMDGPUASI.CONSTANT_ADDRESS_32BIT) ? | 
|  | (Align % 4 == 0) : true; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Smaller than dword value must be aligned. | 
|  | if (VT.bitsLT(MVT::i32)) | 
|  | return false; | 
|  |  | 
|  | // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the | 
|  | // byte-address are ignored, thus forcing Dword alignment. | 
|  | // This applies to private, global, and constant memory. | 
|  | if (IsFast) | 
|  | *IsFast = true; | 
|  |  | 
|  | return VT.bitsGT(MVT::i32) && Align % 4 == 0; | 
|  | } | 
|  |  | 
|  | EVT SITargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign, | 
|  | unsigned SrcAlign, bool IsMemset, | 
|  | bool ZeroMemset, | 
|  | bool MemcpyStrSrc, | 
|  | MachineFunction &MF) const { | 
|  | // FIXME: Should account for address space here. | 
|  |  | 
|  | // The default fallback uses the private pointer size as a guess for a type to | 
|  | // use. Make sure we switch these to 64-bit accesses. | 
|  |  | 
|  | if (Size >= 16 && DstAlign >= 4) // XXX: Should only do for global | 
|  | return MVT::v4i32; | 
|  |  | 
|  | if (Size >= 8 && DstAlign >= 4) | 
|  | return MVT::v2i32; | 
|  |  | 
|  | // Use the default. | 
|  | return MVT::Other; | 
|  | } | 
|  |  | 
|  | static bool isFlatGlobalAddrSpace(unsigned AS, AMDGPUAS AMDGPUASI) { | 
|  | return AS == AMDGPUASI.GLOBAL_ADDRESS || | 
|  | AS == AMDGPUASI.FLAT_ADDRESS || | 
|  | AS == AMDGPUASI.CONSTANT_ADDRESS || | 
|  | AS == AMDGPUASI.CONSTANT_ADDRESS_32BIT; | 
|  | } | 
|  |  | 
|  | bool SITargetLowering::isNoopAddrSpaceCast(unsigned SrcAS, | 
|  | unsigned DestAS) const { | 
|  | return isFlatGlobalAddrSpace(SrcAS, AMDGPUASI) && | 
|  | isFlatGlobalAddrSpace(DestAS, AMDGPUASI); | 
|  | } | 
|  |  | 
|  | bool SITargetLowering::isMemOpHasNoClobberedMemOperand(const SDNode *N) const { | 
|  | const MemSDNode *MemNode = cast<MemSDNode>(N); | 
|  | const Value *Ptr = MemNode->getMemOperand()->getValue(); | 
|  | const Instruction *I = dyn_cast<Instruction>(Ptr); | 
|  | return I && I->getMetadata("amdgpu.noclobber"); | 
|  | } | 
|  |  | 
|  | bool SITargetLowering::isCheapAddrSpaceCast(unsigned SrcAS, | 
|  | unsigned DestAS) const { | 
|  | // Flat -> private/local is a simple truncate. | 
|  | // Flat -> global is no-op | 
|  | if (SrcAS == AMDGPUASI.FLAT_ADDRESS) | 
|  | return true; | 
|  |  | 
|  | return isNoopAddrSpaceCast(SrcAS, DestAS); | 
|  | } | 
|  |  | 
|  | bool SITargetLowering::isMemOpUniform(const SDNode *N) const { | 
|  | const MemSDNode *MemNode = cast<MemSDNode>(N); | 
|  |  | 
|  | return AMDGPUInstrInfo::isUniformMMO(MemNode->getMemOperand()); | 
|  | } | 
|  |  | 
|  | TargetLoweringBase::LegalizeTypeAction | 
|  | SITargetLowering::getPreferredVectorAction(EVT VT) const { | 
|  | if (VT.getVectorNumElements() != 1 && VT.getScalarType().bitsLE(MVT::i16)) | 
|  | return TypeSplitVector; | 
|  |  | 
|  | return TargetLoweringBase::getPreferredVectorAction(VT); | 
|  | } | 
|  |  | 
|  | bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, | 
|  | Type *Ty) const { | 
|  | // FIXME: Could be smarter if called for vector constants. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool SITargetLowering::isTypeDesirableForOp(unsigned Op, EVT VT) const { | 
|  | if (Subtarget->has16BitInsts() && VT == MVT::i16) { | 
|  | switch (Op) { | 
|  | case ISD::LOAD: | 
|  | case ISD::STORE: | 
|  |  | 
|  | // These operations are done with 32-bit instructions anyway. | 
|  | case ISD::AND: | 
|  | case ISD::OR: | 
|  | case ISD::XOR: | 
|  | case ISD::SELECT: | 
|  | // TODO: Extensions? | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // SimplifySetCC uses this function to determine whether or not it should | 
|  | // create setcc with i1 operands.  We don't have instructions for i1 setcc. | 
|  | if (VT == MVT::i1 && Op == ISD::SETCC) | 
|  | return false; | 
|  |  | 
|  | return TargetLowering::isTypeDesirableForOp(Op, VT); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::lowerKernArgParameterPtr(SelectionDAG &DAG, | 
|  | const SDLoc &SL, | 
|  | SDValue Chain, | 
|  | uint64_t Offset) const { | 
|  | const DataLayout &DL = DAG.getDataLayout(); | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); | 
|  |  | 
|  | const ArgDescriptor *InputPtrReg; | 
|  | const TargetRegisterClass *RC; | 
|  |  | 
|  | std::tie(InputPtrReg, RC) | 
|  | = Info->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); | 
|  |  | 
|  | MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); | 
|  | MVT PtrVT = getPointerTy(DL, AMDGPUASI.CONSTANT_ADDRESS); | 
|  | SDValue BasePtr = DAG.getCopyFromReg(Chain, SL, | 
|  | MRI.getLiveInVirtReg(InputPtrReg->getRegister()), PtrVT); | 
|  |  | 
|  | return DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, | 
|  | DAG.getConstant(Offset, SL, PtrVT)); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::getImplicitArgPtr(SelectionDAG &DAG, | 
|  | const SDLoc &SL) const { | 
|  | auto MFI = DAG.getMachineFunction().getInfo<SIMachineFunctionInfo>(); | 
|  | uint64_t Offset = getImplicitParameterOffset(MFI, FIRST_IMPLICIT); | 
|  | return lowerKernArgParameterPtr(DAG, SL, DAG.getEntryNode(), Offset); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::convertArgType(SelectionDAG &DAG, EVT VT, EVT MemVT, | 
|  | const SDLoc &SL, SDValue Val, | 
|  | bool Signed, | 
|  | const ISD::InputArg *Arg) const { | 
|  | if (Arg && (Arg->Flags.isSExt() || Arg->Flags.isZExt()) && | 
|  | VT.bitsLT(MemVT)) { | 
|  | unsigned Opc = Arg->Flags.isZExt() ? ISD::AssertZext : ISD::AssertSext; | 
|  | Val = DAG.getNode(Opc, SL, MemVT, Val, DAG.getValueType(VT)); | 
|  | } | 
|  |  | 
|  | if (MemVT.isFloatingPoint()) | 
|  | Val = getFPExtOrFPTrunc(DAG, Val, SL, VT); | 
|  | else if (Signed) | 
|  | Val = DAG.getSExtOrTrunc(Val, SL, VT); | 
|  | else | 
|  | Val = DAG.getZExtOrTrunc(Val, SL, VT); | 
|  |  | 
|  | return Val; | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::lowerKernargMemParameter( | 
|  | SelectionDAG &DAG, EVT VT, EVT MemVT, | 
|  | const SDLoc &SL, SDValue Chain, | 
|  | uint64_t Offset, bool Signed, | 
|  | const ISD::InputArg *Arg) const { | 
|  | const DataLayout &DL = DAG.getDataLayout(); | 
|  | Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); | 
|  | PointerType *PtrTy = PointerType::get(Ty, AMDGPUASI.CONSTANT_ADDRESS); | 
|  | MachinePointerInfo PtrInfo(UndefValue::get(PtrTy)); | 
|  |  | 
|  | unsigned Align = DL.getABITypeAlignment(Ty); | 
|  |  | 
|  | SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, Offset); | 
|  | SDValue Load = DAG.getLoad(MemVT, SL, Chain, Ptr, PtrInfo, Align, | 
|  | MachineMemOperand::MODereferenceable | | 
|  | MachineMemOperand::MOInvariant); | 
|  |  | 
|  | SDValue Val = convertArgType(DAG, VT, MemVT, SL, Load, Signed, Arg); | 
|  | return DAG.getMergeValues({ Val, Load.getValue(1) }, SL); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::lowerStackParameter(SelectionDAG &DAG, CCValAssign &VA, | 
|  | const SDLoc &SL, SDValue Chain, | 
|  | const ISD::InputArg &Arg) const { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | MachineFrameInfo &MFI = MF.getFrameInfo(); | 
|  |  | 
|  | if (Arg.Flags.isByVal()) { | 
|  | unsigned Size = Arg.Flags.getByValSize(); | 
|  | int FrameIdx = MFI.CreateFixedObject(Size, VA.getLocMemOffset(), false); | 
|  | return DAG.getFrameIndex(FrameIdx, MVT::i32); | 
|  | } | 
|  |  | 
|  | unsigned ArgOffset = VA.getLocMemOffset(); | 
|  | unsigned ArgSize = VA.getValVT().getStoreSize(); | 
|  |  | 
|  | int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, true); | 
|  |  | 
|  | // Create load nodes to retrieve arguments from the stack. | 
|  | SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); | 
|  | SDValue ArgValue; | 
|  |  | 
|  | // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT) | 
|  | ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; | 
|  | MVT MemVT = VA.getValVT(); | 
|  |  | 
|  | switch (VA.getLocInfo()) { | 
|  | default: | 
|  | break; | 
|  | case CCValAssign::BCvt: | 
|  | MemVT = VA.getLocVT(); | 
|  | break; | 
|  | case CCValAssign::SExt: | 
|  | ExtType = ISD::SEXTLOAD; | 
|  | break; | 
|  | case CCValAssign::ZExt: | 
|  | ExtType = ISD::ZEXTLOAD; | 
|  | break; | 
|  | case CCValAssign::AExt: | 
|  | ExtType = ISD::EXTLOAD; | 
|  | break; | 
|  | } | 
|  |  | 
|  | ArgValue = DAG.getExtLoad( | 
|  | ExtType, SL, VA.getLocVT(), Chain, FIN, | 
|  | MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), | 
|  | MemVT); | 
|  | return ArgValue; | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::getPreloadedValue(SelectionDAG &DAG, | 
|  | const SIMachineFunctionInfo &MFI, | 
|  | EVT VT, | 
|  | AMDGPUFunctionArgInfo::PreloadedValue PVID) const { | 
|  | const ArgDescriptor *Reg; | 
|  | const TargetRegisterClass *RC; | 
|  |  | 
|  | std::tie(Reg, RC) = MFI.getPreloadedValue(PVID); | 
|  | return CreateLiveInRegister(DAG, RC, Reg->getRegister(), VT); | 
|  | } | 
|  |  | 
|  | static void processShaderInputArgs(SmallVectorImpl<ISD::InputArg> &Splits, | 
|  | CallingConv::ID CallConv, | 
|  | ArrayRef<ISD::InputArg> Ins, | 
|  | BitVector &Skipped, | 
|  | FunctionType *FType, | 
|  | SIMachineFunctionInfo *Info) { | 
|  | for (unsigned I = 0, E = Ins.size(), PSInputNum = 0; I != E; ++I) { | 
|  | const ISD::InputArg &Arg = Ins[I]; | 
|  |  | 
|  | // First check if it's a PS input addr. | 
|  | if (CallConv == CallingConv::AMDGPU_PS && !Arg.Flags.isInReg() && | 
|  | !Arg.Flags.isByVal() && PSInputNum <= 15) { | 
|  |  | 
|  | if (!Arg.Used && !Info->isPSInputAllocated(PSInputNum)) { | 
|  | // We can safely skip PS inputs. | 
|  | Skipped.set(I); | 
|  | ++PSInputNum; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | Info->markPSInputAllocated(PSInputNum); | 
|  | if (Arg.Used) | 
|  | Info->markPSInputEnabled(PSInputNum); | 
|  |  | 
|  | ++PSInputNum; | 
|  | } | 
|  |  | 
|  | // Second split vertices into their elements. | 
|  | if (Arg.VT.isVector()) { | 
|  | ISD::InputArg NewArg = Arg; | 
|  | NewArg.Flags.setSplit(); | 
|  | NewArg.VT = Arg.VT.getVectorElementType(); | 
|  |  | 
|  | // We REALLY want the ORIGINAL number of vertex elements here, e.g. a | 
|  | // three or five element vertex only needs three or five registers, | 
|  | // NOT four or eight. | 
|  | Type *ParamType = FType->getParamType(Arg.getOrigArgIndex()); | 
|  | unsigned NumElements = ParamType->getVectorNumElements(); | 
|  |  | 
|  | for (unsigned J = 0; J != NumElements; ++J) { | 
|  | Splits.push_back(NewArg); | 
|  | NewArg.PartOffset += NewArg.VT.getStoreSize(); | 
|  | } | 
|  | } else { | 
|  | Splits.push_back(Arg); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Allocate special inputs passed in VGPRs. | 
|  | static void allocateSpecialEntryInputVGPRs(CCState &CCInfo, | 
|  | MachineFunction &MF, | 
|  | const SIRegisterInfo &TRI, | 
|  | SIMachineFunctionInfo &Info) { | 
|  | if (Info.hasWorkItemIDX()) { | 
|  | unsigned Reg = AMDGPU::VGPR0; | 
|  | MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass); | 
|  |  | 
|  | CCInfo.AllocateReg(Reg); | 
|  | Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg)); | 
|  | } | 
|  |  | 
|  | if (Info.hasWorkItemIDY()) { | 
|  | unsigned Reg = AMDGPU::VGPR1; | 
|  | MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass); | 
|  |  | 
|  | CCInfo.AllocateReg(Reg); | 
|  | Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg)); | 
|  | } | 
|  |  | 
|  | if (Info.hasWorkItemIDZ()) { | 
|  | unsigned Reg = AMDGPU::VGPR2; | 
|  | MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass); | 
|  |  | 
|  | CCInfo.AllocateReg(Reg); | 
|  | Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Try to allocate a VGPR at the end of the argument list, or if no argument | 
|  | // VGPRs are left allocating a stack slot. | 
|  | static ArgDescriptor allocateVGPR32Input(CCState &CCInfo) { | 
|  | ArrayRef<MCPhysReg> ArgVGPRs | 
|  | = makeArrayRef(AMDGPU::VGPR_32RegClass.begin(), 32); | 
|  | unsigned RegIdx = CCInfo.getFirstUnallocated(ArgVGPRs); | 
|  | if (RegIdx == ArgVGPRs.size()) { | 
|  | // Spill to stack required. | 
|  | int64_t Offset = CCInfo.AllocateStack(4, 4); | 
|  |  | 
|  | return ArgDescriptor::createStack(Offset); | 
|  | } | 
|  |  | 
|  | unsigned Reg = ArgVGPRs[RegIdx]; | 
|  | Reg = CCInfo.AllocateReg(Reg); | 
|  | assert(Reg != AMDGPU::NoRegister); | 
|  |  | 
|  | MachineFunction &MF = CCInfo.getMachineFunction(); | 
|  | MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass); | 
|  | return ArgDescriptor::createRegister(Reg); | 
|  | } | 
|  |  | 
|  | static ArgDescriptor allocateSGPR32InputImpl(CCState &CCInfo, | 
|  | const TargetRegisterClass *RC, | 
|  | unsigned NumArgRegs) { | 
|  | ArrayRef<MCPhysReg> ArgSGPRs = makeArrayRef(RC->begin(), 32); | 
|  | unsigned RegIdx = CCInfo.getFirstUnallocated(ArgSGPRs); | 
|  | if (RegIdx == ArgSGPRs.size()) | 
|  | report_fatal_error("ran out of SGPRs for arguments"); | 
|  |  | 
|  | unsigned Reg = ArgSGPRs[RegIdx]; | 
|  | Reg = CCInfo.AllocateReg(Reg); | 
|  | assert(Reg != AMDGPU::NoRegister); | 
|  |  | 
|  | MachineFunction &MF = CCInfo.getMachineFunction(); | 
|  | MF.addLiveIn(Reg, RC); | 
|  | return ArgDescriptor::createRegister(Reg); | 
|  | } | 
|  |  | 
|  | static ArgDescriptor allocateSGPR32Input(CCState &CCInfo) { | 
|  | return allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, 32); | 
|  | } | 
|  |  | 
|  | static ArgDescriptor allocateSGPR64Input(CCState &CCInfo) { | 
|  | return allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, 16); | 
|  | } | 
|  |  | 
|  | static void allocateSpecialInputVGPRs(CCState &CCInfo, | 
|  | MachineFunction &MF, | 
|  | const SIRegisterInfo &TRI, | 
|  | SIMachineFunctionInfo &Info) { | 
|  | if (Info.hasWorkItemIDX()) | 
|  | Info.setWorkItemIDX(allocateVGPR32Input(CCInfo)); | 
|  |  | 
|  | if (Info.hasWorkItemIDY()) | 
|  | Info.setWorkItemIDY(allocateVGPR32Input(CCInfo)); | 
|  |  | 
|  | if (Info.hasWorkItemIDZ()) | 
|  | Info.setWorkItemIDZ(allocateVGPR32Input(CCInfo)); | 
|  | } | 
|  |  | 
|  | static void allocateSpecialInputSGPRs(CCState &CCInfo, | 
|  | MachineFunction &MF, | 
|  | const SIRegisterInfo &TRI, | 
|  | SIMachineFunctionInfo &Info) { | 
|  | auto &ArgInfo = Info.getArgInfo(); | 
|  |  | 
|  | // TODO: Unify handling with private memory pointers. | 
|  |  | 
|  | if (Info.hasDispatchPtr()) | 
|  | ArgInfo.DispatchPtr = allocateSGPR64Input(CCInfo); | 
|  |  | 
|  | if (Info.hasQueuePtr()) | 
|  | ArgInfo.QueuePtr = allocateSGPR64Input(CCInfo); | 
|  |  | 
|  | if (Info.hasKernargSegmentPtr()) | 
|  | ArgInfo.KernargSegmentPtr = allocateSGPR64Input(CCInfo); | 
|  |  | 
|  | if (Info.hasDispatchID()) | 
|  | ArgInfo.DispatchID = allocateSGPR64Input(CCInfo); | 
|  |  | 
|  | // flat_scratch_init is not applicable for non-kernel functions. | 
|  |  | 
|  | if (Info.hasWorkGroupIDX()) | 
|  | ArgInfo.WorkGroupIDX = allocateSGPR32Input(CCInfo); | 
|  |  | 
|  | if (Info.hasWorkGroupIDY()) | 
|  | ArgInfo.WorkGroupIDY = allocateSGPR32Input(CCInfo); | 
|  |  | 
|  | if (Info.hasWorkGroupIDZ()) | 
|  | ArgInfo.WorkGroupIDZ = allocateSGPR32Input(CCInfo); | 
|  |  | 
|  | if (Info.hasImplicitArgPtr()) | 
|  | ArgInfo.ImplicitArgPtr = allocateSGPR64Input(CCInfo); | 
|  | } | 
|  |  | 
|  | // Allocate special inputs passed in user SGPRs. | 
|  | static void allocateHSAUserSGPRs(CCState &CCInfo, | 
|  | MachineFunction &MF, | 
|  | const SIRegisterInfo &TRI, | 
|  | SIMachineFunctionInfo &Info) { | 
|  | if (Info.hasImplicitBufferPtr()) { | 
|  | unsigned ImplicitBufferPtrReg = Info.addImplicitBufferPtr(TRI); | 
|  | MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass); | 
|  | CCInfo.AllocateReg(ImplicitBufferPtrReg); | 
|  | } | 
|  |  | 
|  | // FIXME: How should these inputs interact with inreg / custom SGPR inputs? | 
|  | if (Info.hasPrivateSegmentBuffer()) { | 
|  | unsigned PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI); | 
|  | MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass); | 
|  | CCInfo.AllocateReg(PrivateSegmentBufferReg); | 
|  | } | 
|  |  | 
|  | if (Info.hasDispatchPtr()) { | 
|  | unsigned DispatchPtrReg = Info.addDispatchPtr(TRI); | 
|  | MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass); | 
|  | CCInfo.AllocateReg(DispatchPtrReg); | 
|  | } | 
|  |  | 
|  | if (Info.hasQueuePtr()) { | 
|  | unsigned QueuePtrReg = Info.addQueuePtr(TRI); | 
|  | MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass); | 
|  | CCInfo.AllocateReg(QueuePtrReg); | 
|  | } | 
|  |  | 
|  | if (Info.hasKernargSegmentPtr()) { | 
|  | unsigned InputPtrReg = Info.addKernargSegmentPtr(TRI); | 
|  | MF.addLiveIn(InputPtrReg, &AMDGPU::SGPR_64RegClass); | 
|  | CCInfo.AllocateReg(InputPtrReg); | 
|  | } | 
|  |  | 
|  | if (Info.hasDispatchID()) { | 
|  | unsigned DispatchIDReg = Info.addDispatchID(TRI); | 
|  | MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass); | 
|  | CCInfo.AllocateReg(DispatchIDReg); | 
|  | } | 
|  |  | 
|  | if (Info.hasFlatScratchInit()) { | 
|  | unsigned FlatScratchInitReg = Info.addFlatScratchInit(TRI); | 
|  | MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass); | 
|  | CCInfo.AllocateReg(FlatScratchInitReg); | 
|  | } | 
|  |  | 
|  | // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read | 
|  | // these from the dispatch pointer. | 
|  | } | 
|  |  | 
|  | // Allocate special input registers that are initialized per-wave. | 
|  | static void allocateSystemSGPRs(CCState &CCInfo, | 
|  | MachineFunction &MF, | 
|  | SIMachineFunctionInfo &Info, | 
|  | CallingConv::ID CallConv, | 
|  | bool IsShader) { | 
|  | if (Info.hasWorkGroupIDX()) { | 
|  | unsigned Reg = Info.addWorkGroupIDX(); | 
|  | MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass); | 
|  | CCInfo.AllocateReg(Reg); | 
|  | } | 
|  |  | 
|  | if (Info.hasWorkGroupIDY()) { | 
|  | unsigned Reg = Info.addWorkGroupIDY(); | 
|  | MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass); | 
|  | CCInfo.AllocateReg(Reg); | 
|  | } | 
|  |  | 
|  | if (Info.hasWorkGroupIDZ()) { | 
|  | unsigned Reg = Info.addWorkGroupIDZ(); | 
|  | MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass); | 
|  | CCInfo.AllocateReg(Reg); | 
|  | } | 
|  |  | 
|  | if (Info.hasWorkGroupInfo()) { | 
|  | unsigned Reg = Info.addWorkGroupInfo(); | 
|  | MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass); | 
|  | CCInfo.AllocateReg(Reg); | 
|  | } | 
|  |  | 
|  | if (Info.hasPrivateSegmentWaveByteOffset()) { | 
|  | // Scratch wave offset passed in system SGPR. | 
|  | unsigned PrivateSegmentWaveByteOffsetReg; | 
|  |  | 
|  | if (IsShader) { | 
|  | PrivateSegmentWaveByteOffsetReg = | 
|  | Info.getPrivateSegmentWaveByteOffsetSystemSGPR(); | 
|  |  | 
|  | // This is true if the scratch wave byte offset doesn't have a fixed | 
|  | // location. | 
|  | if (PrivateSegmentWaveByteOffsetReg == AMDGPU::NoRegister) { | 
|  | PrivateSegmentWaveByteOffsetReg = findFirstFreeSGPR(CCInfo); | 
|  | Info.setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg); | 
|  | } | 
|  | } else | 
|  | PrivateSegmentWaveByteOffsetReg = Info.addPrivateSegmentWaveByteOffset(); | 
|  |  | 
|  | MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass); | 
|  | CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void reservePrivateMemoryRegs(const TargetMachine &TM, | 
|  | MachineFunction &MF, | 
|  | const SIRegisterInfo &TRI, | 
|  | SIMachineFunctionInfo &Info) { | 
|  | // Now that we've figured out where the scratch register inputs are, see if | 
|  | // should reserve the arguments and use them directly. | 
|  | MachineFrameInfo &MFI = MF.getFrameInfo(); | 
|  | bool HasStackObjects = MFI.hasStackObjects(); | 
|  |  | 
|  | // Record that we know we have non-spill stack objects so we don't need to | 
|  | // check all stack objects later. | 
|  | if (HasStackObjects) | 
|  | Info.setHasNonSpillStackObjects(true); | 
|  |  | 
|  | // Everything live out of a block is spilled with fast regalloc, so it's | 
|  | // almost certain that spilling will be required. | 
|  | if (TM.getOptLevel() == CodeGenOpt::None) | 
|  | HasStackObjects = true; | 
|  |  | 
|  | // For now assume stack access is needed in any callee functions, so we need | 
|  | // the scratch registers to pass in. | 
|  | bool RequiresStackAccess = HasStackObjects || MFI.hasCalls(); | 
|  |  | 
|  | const SISubtarget &ST = MF.getSubtarget<SISubtarget>(); | 
|  | if (ST.isAmdCodeObjectV2(MF)) { | 
|  | if (RequiresStackAccess) { | 
|  | // If we have stack objects, we unquestionably need the private buffer | 
|  | // resource. For the Code Object V2 ABI, this will be the first 4 user | 
|  | // SGPR inputs. We can reserve those and use them directly. | 
|  |  | 
|  | unsigned PrivateSegmentBufferReg = Info.getPreloadedReg( | 
|  | AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_BUFFER); | 
|  | Info.setScratchRSrcReg(PrivateSegmentBufferReg); | 
|  |  | 
|  | if (MFI.hasCalls()) { | 
|  | // If we have calls, we need to keep the frame register in a register | 
|  | // that won't be clobbered by a call, so ensure it is copied somewhere. | 
|  |  | 
|  | // This is not a problem for the scratch wave offset, because the same | 
|  | // registers are reserved in all functions. | 
|  |  | 
|  | // FIXME: Nothing is really ensuring this is a call preserved register, | 
|  | // it's just selected from the end so it happens to be. | 
|  | unsigned ReservedOffsetReg | 
|  | = TRI.reservedPrivateSegmentWaveByteOffsetReg(MF); | 
|  | Info.setScratchWaveOffsetReg(ReservedOffsetReg); | 
|  | } else { | 
|  | unsigned PrivateSegmentWaveByteOffsetReg = Info.getPreloadedReg( | 
|  | AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_WAVE_BYTE_OFFSET); | 
|  | Info.setScratchWaveOffsetReg(PrivateSegmentWaveByteOffsetReg); | 
|  | } | 
|  | } else { | 
|  | unsigned ReservedBufferReg | 
|  | = TRI.reservedPrivateSegmentBufferReg(MF); | 
|  | unsigned ReservedOffsetReg | 
|  | = TRI.reservedPrivateSegmentWaveByteOffsetReg(MF); | 
|  |  | 
|  | // We tentatively reserve the last registers (skipping the last two | 
|  | // which may contain VCC). After register allocation, we'll replace | 
|  | // these with the ones immediately after those which were really | 
|  | // allocated. In the prologue copies will be inserted from the argument | 
|  | // to these reserved registers. | 
|  | Info.setScratchRSrcReg(ReservedBufferReg); | 
|  | Info.setScratchWaveOffsetReg(ReservedOffsetReg); | 
|  | } | 
|  | } else { | 
|  | unsigned ReservedBufferReg = TRI.reservedPrivateSegmentBufferReg(MF); | 
|  |  | 
|  | // Without HSA, relocations are used for the scratch pointer and the | 
|  | // buffer resource setup is always inserted in the prologue. Scratch wave | 
|  | // offset is still in an input SGPR. | 
|  | Info.setScratchRSrcReg(ReservedBufferReg); | 
|  |  | 
|  | if (HasStackObjects && !MFI.hasCalls()) { | 
|  | unsigned ScratchWaveOffsetReg = Info.getPreloadedReg( | 
|  | AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_WAVE_BYTE_OFFSET); | 
|  | Info.setScratchWaveOffsetReg(ScratchWaveOffsetReg); | 
|  | } else { | 
|  | unsigned ReservedOffsetReg | 
|  | = TRI.reservedPrivateSegmentWaveByteOffsetReg(MF); | 
|  | Info.setScratchWaveOffsetReg(ReservedOffsetReg); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool SITargetLowering::supportSplitCSR(MachineFunction *MF) const { | 
|  | const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>(); | 
|  | return !Info->isEntryFunction(); | 
|  | } | 
|  |  | 
|  | void SITargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const { | 
|  |  | 
|  | } | 
|  |  | 
|  | void SITargetLowering::insertCopiesSplitCSR( | 
|  | MachineBasicBlock *Entry, | 
|  | const SmallVectorImpl<MachineBasicBlock *> &Exits) const { | 
|  | const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); | 
|  |  | 
|  | const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent()); | 
|  | if (!IStart) | 
|  | return; | 
|  |  | 
|  | const TargetInstrInfo *TII = Subtarget->getInstrInfo(); | 
|  | MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo(); | 
|  | MachineBasicBlock::iterator MBBI = Entry->begin(); | 
|  | for (const MCPhysReg *I = IStart; *I; ++I) { | 
|  | const TargetRegisterClass *RC = nullptr; | 
|  | if (AMDGPU::SReg_64RegClass.contains(*I)) | 
|  | RC = &AMDGPU::SGPR_64RegClass; | 
|  | else if (AMDGPU::SReg_32RegClass.contains(*I)) | 
|  | RC = &AMDGPU::SGPR_32RegClass; | 
|  | else | 
|  | llvm_unreachable("Unexpected register class in CSRsViaCopy!"); | 
|  |  | 
|  | unsigned NewVR = MRI->createVirtualRegister(RC); | 
|  | // Create copy from CSR to a virtual register. | 
|  | Entry->addLiveIn(*I); | 
|  | BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR) | 
|  | .addReg(*I); | 
|  |  | 
|  | // Insert the copy-back instructions right before the terminator. | 
|  | for (auto *Exit : Exits) | 
|  | BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(), | 
|  | TII->get(TargetOpcode::COPY), *I) | 
|  | .addReg(NewVR); | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::LowerFormalArguments( | 
|  | SDValue Chain, CallingConv::ID CallConv, bool isVarArg, | 
|  | const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, | 
|  | SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { | 
|  | const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); | 
|  |  | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | FunctionType *FType = MF.getFunction().getFunctionType(); | 
|  | SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); | 
|  | const SISubtarget &ST = MF.getSubtarget<SISubtarget>(); | 
|  |  | 
|  | if (Subtarget->isAmdHsaOS() && AMDGPU::isShader(CallConv)) { | 
|  | const Function &Fn = MF.getFunction(); | 
|  | DiagnosticInfoUnsupported NoGraphicsHSA( | 
|  | Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc()); | 
|  | DAG.getContext()->diagnose(NoGraphicsHSA); | 
|  | return DAG.getEntryNode(); | 
|  | } | 
|  |  | 
|  | // Create stack objects that are used for emitting debugger prologue if | 
|  | // "amdgpu-debugger-emit-prologue" attribute was specified. | 
|  | if (ST.debuggerEmitPrologue()) | 
|  | createDebuggerPrologueStackObjects(MF); | 
|  |  | 
|  | SmallVector<ISD::InputArg, 16> Splits; | 
|  | SmallVector<CCValAssign, 16> ArgLocs; | 
|  | BitVector Skipped(Ins.size()); | 
|  | CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, | 
|  | *DAG.getContext()); | 
|  |  | 
|  | bool IsShader = AMDGPU::isShader(CallConv); | 
|  | bool IsKernel = AMDGPU::isKernel(CallConv); | 
|  | bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CallConv); | 
|  |  | 
|  | if (!IsEntryFunc) { | 
|  | // 4 bytes are reserved at offset 0 for the emergency stack slot. Skip over | 
|  | // this when allocating argument fixed offsets. | 
|  | CCInfo.AllocateStack(4, 4); | 
|  | } | 
|  |  | 
|  | if (IsShader) { | 
|  | processShaderInputArgs(Splits, CallConv, Ins, Skipped, FType, Info); | 
|  |  | 
|  | // At least one interpolation mode must be enabled or else the GPU will | 
|  | // hang. | 
|  | // | 
|  | // Check PSInputAddr instead of PSInputEnable. The idea is that if the user | 
|  | // set PSInputAddr, the user wants to enable some bits after the compilation | 
|  | // based on run-time states. Since we can't know what the final PSInputEna | 
|  | // will look like, so we shouldn't do anything here and the user should take | 
|  | // responsibility for the correct programming. | 
|  | // | 
|  | // Otherwise, the following restrictions apply: | 
|  | // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled. | 
|  | // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be | 
|  | //   enabled too. | 
|  | if (CallConv == CallingConv::AMDGPU_PS) { | 
|  | if ((Info->getPSInputAddr() & 0x7F) == 0 || | 
|  | ((Info->getPSInputAddr() & 0xF) == 0 && | 
|  | Info->isPSInputAllocated(11))) { | 
|  | CCInfo.AllocateReg(AMDGPU::VGPR0); | 
|  | CCInfo.AllocateReg(AMDGPU::VGPR1); | 
|  | Info->markPSInputAllocated(0); | 
|  | Info->markPSInputEnabled(0); | 
|  | } | 
|  | if (Subtarget->isAmdPalOS()) { | 
|  | // For isAmdPalOS, the user does not enable some bits after compilation | 
|  | // based on run-time states; the register values being generated here are | 
|  | // the final ones set in hardware. Therefore we need to apply the | 
|  | // workaround to PSInputAddr and PSInputEnable together.  (The case where | 
|  | // a bit is set in PSInputAddr but not PSInputEnable is where the | 
|  | // frontend set up an input arg for a particular interpolation mode, but | 
|  | // nothing uses that input arg. Really we should have an earlier pass | 
|  | // that removes such an arg.) | 
|  | unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable(); | 
|  | if ((PsInputBits & 0x7F) == 0 || | 
|  | ((PsInputBits & 0xF) == 0 && | 
|  | (PsInputBits >> 11 & 1))) | 
|  | Info->markPSInputEnabled( | 
|  | countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined)); | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(!Info->hasDispatchPtr() && | 
|  | !Info->hasKernargSegmentPtr() && !Info->hasFlatScratchInit() && | 
|  | !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() && | 
|  | !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() && | 
|  | !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() && | 
|  | !Info->hasWorkItemIDZ()); | 
|  | } else if (IsKernel) { | 
|  | assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX()); | 
|  | } else { | 
|  | Splits.append(Ins.begin(), Ins.end()); | 
|  | } | 
|  |  | 
|  | if (IsEntryFunc) { | 
|  | allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info); | 
|  | allocateHSAUserSGPRs(CCInfo, MF, *TRI, *Info); | 
|  | } | 
|  |  | 
|  | if (IsKernel) { | 
|  | analyzeFormalArgumentsCompute(CCInfo, Ins); | 
|  | } else { | 
|  | CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, isVarArg); | 
|  | CCInfo.AnalyzeFormalArguments(Splits, AssignFn); | 
|  | } | 
|  |  | 
|  | SmallVector<SDValue, 16> Chains; | 
|  |  | 
|  | for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) { | 
|  | const ISD::InputArg &Arg = Ins[i]; | 
|  | if (Skipped[i]) { | 
|  | InVals.push_back(DAG.getUNDEF(Arg.VT)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | CCValAssign &VA = ArgLocs[ArgIdx++]; | 
|  | MVT VT = VA.getLocVT(); | 
|  |  | 
|  | if (IsEntryFunc && VA.isMemLoc()) { | 
|  | VT = Ins[i].VT; | 
|  | EVT MemVT = VA.getLocVT(); | 
|  |  | 
|  | const uint64_t Offset = Subtarget->getExplicitKernelArgOffset(MF) + | 
|  | VA.getLocMemOffset(); | 
|  | Info->setABIArgOffset(Offset + MemVT.getStoreSize()); | 
|  |  | 
|  | // The first 36 bytes of the input buffer contains information about | 
|  | // thread group and global sizes. | 
|  | SDValue Arg = lowerKernargMemParameter( | 
|  | DAG, VT, MemVT, DL, Chain, Offset, Ins[i].Flags.isSExt(), &Ins[i]); | 
|  | Chains.push_back(Arg.getValue(1)); | 
|  |  | 
|  | auto *ParamTy = | 
|  | dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex())); | 
|  | if (Subtarget->getGeneration() == SISubtarget::SOUTHERN_ISLANDS && | 
|  | ParamTy && ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) { | 
|  | // On SI local pointers are just offsets into LDS, so they are always | 
|  | // less than 16-bits.  On CI and newer they could potentially be | 
|  | // real pointers, so we can't guarantee their size. | 
|  | Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg, | 
|  | DAG.getValueType(MVT::i16)); | 
|  | } | 
|  |  | 
|  | InVals.push_back(Arg); | 
|  | continue; | 
|  | } else if (!IsEntryFunc && VA.isMemLoc()) { | 
|  | SDValue Val = lowerStackParameter(DAG, VA, DL, Chain, Arg); | 
|  | InVals.push_back(Val); | 
|  | if (!Arg.Flags.isByVal()) | 
|  | Chains.push_back(Val.getValue(1)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | assert(VA.isRegLoc() && "Parameter must be in a register!"); | 
|  |  | 
|  | unsigned Reg = VA.getLocReg(); | 
|  | const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); | 
|  | EVT ValVT = VA.getValVT(); | 
|  |  | 
|  | Reg = MF.addLiveIn(Reg, RC); | 
|  | SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT); | 
|  |  | 
|  | if (Arg.Flags.isSRet() && !getSubtarget()->enableHugePrivateBuffer()) { | 
|  | // The return object should be reasonably addressable. | 
|  |  | 
|  | // FIXME: This helps when the return is a real sret. If it is a | 
|  | // automatically inserted sret (i.e. CanLowerReturn returns false), an | 
|  | // extra copy is inserted in SelectionDAGBuilder which obscures this. | 
|  | unsigned NumBits = 32 - AssumeFrameIndexHighZeroBits; | 
|  | Val = DAG.getNode(ISD::AssertZext, DL, VT, Val, | 
|  | DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), NumBits))); | 
|  | } | 
|  |  | 
|  | // If this is an 8 or 16-bit value, it is really passed promoted | 
|  | // to 32 bits. Insert an assert[sz]ext to capture this, then | 
|  | // truncate to the right size. | 
|  | switch (VA.getLocInfo()) { | 
|  | case CCValAssign::Full: | 
|  | break; | 
|  | case CCValAssign::BCvt: | 
|  | Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val); | 
|  | break; | 
|  | case CCValAssign::SExt: | 
|  | Val = DAG.getNode(ISD::AssertSext, DL, VT, Val, | 
|  | DAG.getValueType(ValVT)); | 
|  | Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); | 
|  | break; | 
|  | case CCValAssign::ZExt: | 
|  | Val = DAG.getNode(ISD::AssertZext, DL, VT, Val, | 
|  | DAG.getValueType(ValVT)); | 
|  | Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); | 
|  | break; | 
|  | case CCValAssign::AExt: | 
|  | Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("Unknown loc info!"); | 
|  | } | 
|  |  | 
|  | if (IsShader && Arg.VT.isVector()) { | 
|  | // Build a vector from the registers | 
|  | Type *ParamType = FType->getParamType(Arg.getOrigArgIndex()); | 
|  | unsigned NumElements = ParamType->getVectorNumElements(); | 
|  |  | 
|  | SmallVector<SDValue, 4> Regs; | 
|  | Regs.push_back(Val); | 
|  | for (unsigned j = 1; j != NumElements; ++j) { | 
|  | Reg = ArgLocs[ArgIdx++].getLocReg(); | 
|  | Reg = MF.addLiveIn(Reg, RC); | 
|  |  | 
|  | SDValue Copy = DAG.getCopyFromReg(Chain, DL, Reg, VT); | 
|  | Regs.push_back(Copy); | 
|  | } | 
|  |  | 
|  | // Fill up the missing vector elements | 
|  | NumElements = Arg.VT.getVectorNumElements() - NumElements; | 
|  | Regs.append(NumElements, DAG.getUNDEF(VT)); | 
|  |  | 
|  | InVals.push_back(DAG.getBuildVector(Arg.VT, DL, Regs)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | InVals.push_back(Val); | 
|  | } | 
|  |  | 
|  | if (!IsEntryFunc) { | 
|  | // Special inputs come after user arguments. | 
|  | allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info); | 
|  | } | 
|  |  | 
|  | // Start adding system SGPRs. | 
|  | if (IsEntryFunc) { | 
|  | allocateSystemSGPRs(CCInfo, MF, *Info, CallConv, IsShader); | 
|  | } else { | 
|  | CCInfo.AllocateReg(Info->getScratchRSrcReg()); | 
|  | CCInfo.AllocateReg(Info->getScratchWaveOffsetReg()); | 
|  | CCInfo.AllocateReg(Info->getFrameOffsetReg()); | 
|  | allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info); | 
|  | } | 
|  |  | 
|  | auto &ArgUsageInfo = | 
|  | DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>(); | 
|  | ArgUsageInfo.setFuncArgInfo(MF.getFunction(), Info->getArgInfo()); | 
|  |  | 
|  | unsigned StackArgSize = CCInfo.getNextStackOffset(); | 
|  | Info->setBytesInStackArgArea(StackArgSize); | 
|  |  | 
|  | return Chains.empty() ? Chain : | 
|  | DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); | 
|  | } | 
|  |  | 
|  | // TODO: If return values can't fit in registers, we should return as many as | 
|  | // possible in registers before passing on stack. | 
|  | bool SITargetLowering::CanLowerReturn( | 
|  | CallingConv::ID CallConv, | 
|  | MachineFunction &MF, bool IsVarArg, | 
|  | const SmallVectorImpl<ISD::OutputArg> &Outs, | 
|  | LLVMContext &Context) const { | 
|  | // Replacing returns with sret/stack usage doesn't make sense for shaders. | 
|  | // FIXME: Also sort of a workaround for custom vector splitting in LowerReturn | 
|  | // for shaders. Vector types should be explicitly handled by CC. | 
|  | if (AMDGPU::isEntryFunctionCC(CallConv)) | 
|  | return true; | 
|  |  | 
|  | SmallVector<CCValAssign, 16> RVLocs; | 
|  | CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); | 
|  | return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, IsVarArg)); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | SITargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, | 
|  | bool isVarArg, | 
|  | const SmallVectorImpl<ISD::OutputArg> &Outs, | 
|  | const SmallVectorImpl<SDValue> &OutVals, | 
|  | const SDLoc &DL, SelectionDAG &DAG) const { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); | 
|  |  | 
|  | if (AMDGPU::isKernel(CallConv)) { | 
|  | return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs, | 
|  | OutVals, DL, DAG); | 
|  | } | 
|  |  | 
|  | bool IsShader = AMDGPU::isShader(CallConv); | 
|  |  | 
|  | Info->setIfReturnsVoid(Outs.size() == 0); | 
|  | bool IsWaveEnd = Info->returnsVoid() && IsShader; | 
|  |  | 
|  | SmallVector<ISD::OutputArg, 48> Splits; | 
|  | SmallVector<SDValue, 48> SplitVals; | 
|  |  | 
|  | // Split vectors into their elements. | 
|  | for (unsigned i = 0, e = Outs.size(); i != e; ++i) { | 
|  | const ISD::OutputArg &Out = Outs[i]; | 
|  |  | 
|  | if (IsShader && Out.VT.isVector()) { | 
|  | MVT VT = Out.VT.getVectorElementType(); | 
|  | ISD::OutputArg NewOut = Out; | 
|  | NewOut.Flags.setSplit(); | 
|  | NewOut.VT = VT; | 
|  |  | 
|  | // We want the original number of vector elements here, e.g. | 
|  | // three or five, not four or eight. | 
|  | unsigned NumElements = Out.ArgVT.getVectorNumElements(); | 
|  |  | 
|  | for (unsigned j = 0; j != NumElements; ++j) { | 
|  | SDValue Elem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, OutVals[i], | 
|  | DAG.getConstant(j, DL, MVT::i32)); | 
|  | SplitVals.push_back(Elem); | 
|  | Splits.push_back(NewOut); | 
|  | NewOut.PartOffset += NewOut.VT.getStoreSize(); | 
|  | } | 
|  | } else { | 
|  | SplitVals.push_back(OutVals[i]); | 
|  | Splits.push_back(Out); | 
|  | } | 
|  | } | 
|  |  | 
|  | // CCValAssign - represent the assignment of the return value to a location. | 
|  | SmallVector<CCValAssign, 48> RVLocs; | 
|  |  | 
|  | // CCState - Info about the registers and stack slots. | 
|  | CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, | 
|  | *DAG.getContext()); | 
|  |  | 
|  | // Analyze outgoing return values. | 
|  | CCInfo.AnalyzeReturn(Splits, CCAssignFnForReturn(CallConv, isVarArg)); | 
|  |  | 
|  | SDValue Flag; | 
|  | SmallVector<SDValue, 48> RetOps; | 
|  | RetOps.push_back(Chain); // Operand #0 = Chain (updated below) | 
|  |  | 
|  | // Add return address for callable functions. | 
|  | if (!Info->isEntryFunction()) { | 
|  | const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); | 
|  | SDValue ReturnAddrReg = CreateLiveInRegister( | 
|  | DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64); | 
|  |  | 
|  | // FIXME: Should be able to use a vreg here, but need a way to prevent it | 
|  | // from being allcoated to a CSR. | 
|  |  | 
|  | SDValue PhysReturnAddrReg = DAG.getRegister(TRI->getReturnAddressReg(MF), | 
|  | MVT::i64); | 
|  |  | 
|  | Chain = DAG.getCopyToReg(Chain, DL, PhysReturnAddrReg, ReturnAddrReg, Flag); | 
|  | Flag = Chain.getValue(1); | 
|  |  | 
|  | RetOps.push_back(PhysReturnAddrReg); | 
|  | } | 
|  |  | 
|  | // Copy the result values into the output registers. | 
|  | for (unsigned i = 0, realRVLocIdx = 0; | 
|  | i != RVLocs.size(); | 
|  | ++i, ++realRVLocIdx) { | 
|  | CCValAssign &VA = RVLocs[i]; | 
|  | assert(VA.isRegLoc() && "Can only return in registers!"); | 
|  | // TODO: Partially return in registers if return values don't fit. | 
|  |  | 
|  | SDValue Arg = SplitVals[realRVLocIdx]; | 
|  |  | 
|  | // Copied from other backends. | 
|  | switch (VA.getLocInfo()) { | 
|  | case CCValAssign::Full: | 
|  | break; | 
|  | case CCValAssign::BCvt: | 
|  | Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); | 
|  | break; | 
|  | case CCValAssign::SExt: | 
|  | Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); | 
|  | break; | 
|  | case CCValAssign::ZExt: | 
|  | Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); | 
|  | break; | 
|  | case CCValAssign::AExt: | 
|  | Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("Unknown loc info!"); | 
|  | } | 
|  |  | 
|  | Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag); | 
|  | Flag = Chain.getValue(1); | 
|  | RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); | 
|  | } | 
|  |  | 
|  | // FIXME: Does sret work properly? | 
|  | if (!Info->isEntryFunction()) { | 
|  | const SIRegisterInfo *TRI | 
|  | = static_cast<const SISubtarget *>(Subtarget)->getRegisterInfo(); | 
|  | const MCPhysReg *I = | 
|  | TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction()); | 
|  | if (I) { | 
|  | for (; *I; ++I) { | 
|  | if (AMDGPU::SReg_64RegClass.contains(*I)) | 
|  | RetOps.push_back(DAG.getRegister(*I, MVT::i64)); | 
|  | else if (AMDGPU::SReg_32RegClass.contains(*I)) | 
|  | RetOps.push_back(DAG.getRegister(*I, MVT::i32)); | 
|  | else | 
|  | llvm_unreachable("Unexpected register class in CSRsViaCopy!"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Update chain and glue. | 
|  | RetOps[0] = Chain; | 
|  | if (Flag.getNode()) | 
|  | RetOps.push_back(Flag); | 
|  |  | 
|  | unsigned Opc = AMDGPUISD::ENDPGM; | 
|  | if (!IsWaveEnd) | 
|  | Opc = IsShader ? AMDGPUISD::RETURN_TO_EPILOG : AMDGPUISD::RET_FLAG; | 
|  | return DAG.getNode(Opc, DL, MVT::Other, RetOps); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::LowerCallResult( | 
|  | SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg, | 
|  | const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, | 
|  | SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool IsThisReturn, | 
|  | SDValue ThisVal) const { | 
|  | CCAssignFn *RetCC = CCAssignFnForReturn(CallConv, IsVarArg); | 
|  |  | 
|  | // Assign locations to each value returned by this call. | 
|  | SmallVector<CCValAssign, 16> RVLocs; | 
|  | CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, | 
|  | *DAG.getContext()); | 
|  | CCInfo.AnalyzeCallResult(Ins, RetCC); | 
|  |  | 
|  | // Copy all of the result registers out of their specified physreg. | 
|  | for (unsigned i = 0; i != RVLocs.size(); ++i) { | 
|  | CCValAssign VA = RVLocs[i]; | 
|  | SDValue Val; | 
|  |  | 
|  | if (VA.isRegLoc()) { | 
|  | Val = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag); | 
|  | Chain = Val.getValue(1); | 
|  | InFlag = Val.getValue(2); | 
|  | } else if (VA.isMemLoc()) { | 
|  | report_fatal_error("TODO: return values in memory"); | 
|  | } else | 
|  | llvm_unreachable("unknown argument location type"); | 
|  |  | 
|  | switch (VA.getLocInfo()) { | 
|  | case CCValAssign::Full: | 
|  | break; | 
|  | case CCValAssign::BCvt: | 
|  | Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); | 
|  | break; | 
|  | case CCValAssign::ZExt: | 
|  | Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val, | 
|  | DAG.getValueType(VA.getValVT())); | 
|  | Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); | 
|  | break; | 
|  | case CCValAssign::SExt: | 
|  | Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val, | 
|  | DAG.getValueType(VA.getValVT())); | 
|  | Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); | 
|  | break; | 
|  | case CCValAssign::AExt: | 
|  | Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("Unknown loc info!"); | 
|  | } | 
|  |  | 
|  | InVals.push_back(Val); | 
|  | } | 
|  |  | 
|  | return Chain; | 
|  | } | 
|  |  | 
|  | // Add code to pass special inputs required depending on used features separate | 
|  | // from the explicit user arguments present in the IR. | 
|  | void SITargetLowering::passSpecialInputs( | 
|  | CallLoweringInfo &CLI, | 
|  | const SIMachineFunctionInfo &Info, | 
|  | SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass, | 
|  | SmallVectorImpl<SDValue> &MemOpChains, | 
|  | SDValue Chain, | 
|  | SDValue StackPtr) const { | 
|  | // If we don't have a call site, this was a call inserted by | 
|  | // legalization. These can never use special inputs. | 
|  | if (!CLI.CS) | 
|  | return; | 
|  |  | 
|  | const Function *CalleeFunc = CLI.CS.getCalledFunction(); | 
|  | assert(CalleeFunc); | 
|  |  | 
|  | SelectionDAG &DAG = CLI.DAG; | 
|  | const SDLoc &DL = CLI.DL; | 
|  |  | 
|  | const SISubtarget *ST = getSubtarget(); | 
|  | const SIRegisterInfo *TRI = ST->getRegisterInfo(); | 
|  |  | 
|  | auto &ArgUsageInfo = | 
|  | DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>(); | 
|  | const AMDGPUFunctionArgInfo &CalleeArgInfo | 
|  | = ArgUsageInfo.lookupFuncArgInfo(*CalleeFunc); | 
|  |  | 
|  | const AMDGPUFunctionArgInfo &CallerArgInfo = Info.getArgInfo(); | 
|  |  | 
|  | // TODO: Unify with private memory register handling. This is complicated by | 
|  | // the fact that at least in kernels, the input argument is not necessarily | 
|  | // in the same location as the input. | 
|  | AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = { | 
|  | AMDGPUFunctionArgInfo::DISPATCH_PTR, | 
|  | AMDGPUFunctionArgInfo::QUEUE_PTR, | 
|  | AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR, | 
|  | AMDGPUFunctionArgInfo::DISPATCH_ID, | 
|  | AMDGPUFunctionArgInfo::WORKGROUP_ID_X, | 
|  | AMDGPUFunctionArgInfo::WORKGROUP_ID_Y, | 
|  | AMDGPUFunctionArgInfo::WORKGROUP_ID_Z, | 
|  | AMDGPUFunctionArgInfo::WORKITEM_ID_X, | 
|  | AMDGPUFunctionArgInfo::WORKITEM_ID_Y, | 
|  | AMDGPUFunctionArgInfo::WORKITEM_ID_Z, | 
|  | AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR | 
|  | }; | 
|  |  | 
|  | for (auto InputID : InputRegs) { | 
|  | const ArgDescriptor *OutgoingArg; | 
|  | const TargetRegisterClass *ArgRC; | 
|  |  | 
|  | std::tie(OutgoingArg, ArgRC) = CalleeArgInfo.getPreloadedValue(InputID); | 
|  | if (!OutgoingArg) | 
|  | continue; | 
|  |  | 
|  | const ArgDescriptor *IncomingArg; | 
|  | const TargetRegisterClass *IncomingArgRC; | 
|  | std::tie(IncomingArg, IncomingArgRC) | 
|  | = CallerArgInfo.getPreloadedValue(InputID); | 
|  | assert(IncomingArgRC == ArgRC); | 
|  |  | 
|  | // All special arguments are ints for now. | 
|  | EVT ArgVT = TRI->getSpillSize(*ArgRC) == 8 ? MVT::i64 : MVT::i32; | 
|  | SDValue InputReg; | 
|  |  | 
|  | if (IncomingArg) { | 
|  | InputReg = loadInputValue(DAG, ArgRC, ArgVT, DL, *IncomingArg); | 
|  | } else { | 
|  | // The implicit arg ptr is special because it doesn't have a corresponding | 
|  | // input for kernels, and is computed from the kernarg segment pointer. | 
|  | assert(InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR); | 
|  | InputReg = getImplicitArgPtr(DAG, DL); | 
|  | } | 
|  |  | 
|  | if (OutgoingArg->isRegister()) { | 
|  | RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg); | 
|  | } else { | 
|  | SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, StackPtr, | 
|  | InputReg, | 
|  | OutgoingArg->getStackOffset()); | 
|  | MemOpChains.push_back(ArgStore); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool canGuaranteeTCO(CallingConv::ID CC) { | 
|  | return CC == CallingConv::Fast; | 
|  | } | 
|  |  | 
|  | /// Return true if we might ever do TCO for calls with this calling convention. | 
|  | static bool mayTailCallThisCC(CallingConv::ID CC) { | 
|  | switch (CC) { | 
|  | case CallingConv::C: | 
|  | return true; | 
|  | default: | 
|  | return canGuaranteeTCO(CC); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool SITargetLowering::isEligibleForTailCallOptimization( | 
|  | SDValue Callee, CallingConv::ID CalleeCC, bool IsVarArg, | 
|  | const SmallVectorImpl<ISD::OutputArg> &Outs, | 
|  | const SmallVectorImpl<SDValue> &OutVals, | 
|  | const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { | 
|  | if (!mayTailCallThisCC(CalleeCC)) | 
|  | return false; | 
|  |  | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | const Function &CallerF = MF.getFunction(); | 
|  | CallingConv::ID CallerCC = CallerF.getCallingConv(); | 
|  | const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); | 
|  | const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); | 
|  |  | 
|  | // Kernels aren't callable, and don't have a live in return address so it | 
|  | // doesn't make sense to do a tail call with entry functions. | 
|  | if (!CallerPreserved) | 
|  | return false; | 
|  |  | 
|  | bool CCMatch = CallerCC == CalleeCC; | 
|  |  | 
|  | if (DAG.getTarget().Options.GuaranteedTailCallOpt) { | 
|  | if (canGuaranteeTCO(CalleeCC) && CCMatch) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // TODO: Can we handle var args? | 
|  | if (IsVarArg) | 
|  | return false; | 
|  |  | 
|  | for (const Argument &Arg : CallerF.args()) { | 
|  | if (Arg.hasByValAttr()) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | LLVMContext &Ctx = *DAG.getContext(); | 
|  |  | 
|  | // Check that the call results are passed in the same way. | 
|  | if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, Ctx, Ins, | 
|  | CCAssignFnForCall(CalleeCC, IsVarArg), | 
|  | CCAssignFnForCall(CallerCC, IsVarArg))) | 
|  | return false; | 
|  |  | 
|  | // The callee has to preserve all registers the caller needs to preserve. | 
|  | if (!CCMatch) { | 
|  | const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); | 
|  | if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Nothing more to check if the callee is taking no arguments. | 
|  | if (Outs.empty()) | 
|  | return true; | 
|  |  | 
|  | SmallVector<CCValAssign, 16> ArgLocs; | 
|  | CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, Ctx); | 
|  |  | 
|  | CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, IsVarArg)); | 
|  |  | 
|  | const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>(); | 
|  | // If the stack arguments for this call do not fit into our own save area then | 
|  | // the call cannot be made tail. | 
|  | // TODO: Is this really necessary? | 
|  | if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea()) | 
|  | return false; | 
|  |  | 
|  | const MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  | return parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals); | 
|  | } | 
|  |  | 
|  | bool SITargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { | 
|  | if (!CI->isTailCall()) | 
|  | return false; | 
|  |  | 
|  | const Function *ParentFn = CI->getParent()->getParent(); | 
|  | if (AMDGPU::isEntryFunctionCC(ParentFn->getCallingConv())) | 
|  | return false; | 
|  |  | 
|  | auto Attr = ParentFn->getFnAttribute("disable-tail-calls"); | 
|  | return (Attr.getValueAsString() != "true"); | 
|  | } | 
|  |  | 
|  | // The wave scratch offset register is used as the global base pointer. | 
|  | SDValue SITargetLowering::LowerCall(CallLoweringInfo &CLI, | 
|  | SmallVectorImpl<SDValue> &InVals) const { | 
|  | SelectionDAG &DAG = CLI.DAG; | 
|  | const SDLoc &DL = CLI.DL; | 
|  | SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs; | 
|  | SmallVector<SDValue, 32> &OutVals = CLI.OutVals; | 
|  | SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins; | 
|  | SDValue Chain = CLI.Chain; | 
|  | SDValue Callee = CLI.Callee; | 
|  | bool &IsTailCall = CLI.IsTailCall; | 
|  | CallingConv::ID CallConv = CLI.CallConv; | 
|  | bool IsVarArg = CLI.IsVarArg; | 
|  | bool IsSibCall = false; | 
|  | bool IsThisReturn = false; | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  |  | 
|  | if (IsVarArg) { | 
|  | return lowerUnhandledCall(CLI, InVals, | 
|  | "unsupported call to variadic function "); | 
|  | } | 
|  |  | 
|  | if (!CLI.CS.getCalledFunction()) { | 
|  | return lowerUnhandledCall(CLI, InVals, | 
|  | "unsupported indirect call to function "); | 
|  | } | 
|  |  | 
|  | if (IsTailCall && MF.getTarget().Options.GuaranteedTailCallOpt) { | 
|  | return lowerUnhandledCall(CLI, InVals, | 
|  | "unsupported required tail call to function "); | 
|  | } | 
|  |  | 
|  | // The first 4 bytes are reserved for the callee's emergency stack slot. | 
|  | const unsigned CalleeUsableStackOffset = 4; | 
|  |  | 
|  | if (IsTailCall) { | 
|  | IsTailCall = isEligibleForTailCallOptimization( | 
|  | Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG); | 
|  | if (!IsTailCall && CLI.CS && CLI.CS.isMustTailCall()) { | 
|  | report_fatal_error("failed to perform tail call elimination on a call " | 
|  | "site marked musttail"); | 
|  | } | 
|  |  | 
|  | bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt; | 
|  |  | 
|  | // A sibling call is one where we're under the usual C ABI and not planning | 
|  | // to change that but can still do a tail call: | 
|  | if (!TailCallOpt && IsTailCall) | 
|  | IsSibCall = true; | 
|  |  | 
|  | if (IsTailCall) | 
|  | ++NumTailCalls; | 
|  | } | 
|  |  | 
|  | if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Callee)) { | 
|  | // FIXME: Remove this hack for function pointer types after removing | 
|  | // support of old address space mapping. In the new address space | 
|  | // mapping the pointer in default address space is 64 bit, therefore | 
|  | // does not need this hack. | 
|  | if (Callee.getValueType() == MVT::i32) { | 
|  | const GlobalValue *GV = GA->getGlobal(); | 
|  | Callee = DAG.getGlobalAddress(GV, DL, MVT::i64, GA->getOffset(), false, | 
|  | GA->getTargetFlags()); | 
|  | } | 
|  | } | 
|  | assert(Callee.getValueType() == MVT::i64); | 
|  |  | 
|  | const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); | 
|  |  | 
|  | // Analyze operands of the call, assigning locations to each operand. | 
|  | SmallVector<CCValAssign, 16> ArgLocs; | 
|  | CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); | 
|  | CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, IsVarArg); | 
|  | CCInfo.AnalyzeCallOperands(Outs, AssignFn); | 
|  |  | 
|  | // Get a count of how many bytes are to be pushed on the stack. | 
|  | unsigned NumBytes = CCInfo.getNextStackOffset(); | 
|  |  | 
|  | if (IsSibCall) { | 
|  | // Since we're not changing the ABI to make this a tail call, the memory | 
|  | // operands are already available in the caller's incoming argument space. | 
|  | NumBytes = 0; | 
|  | } | 
|  |  | 
|  | // FPDiff is the byte offset of the call's argument area from the callee's. | 
|  | // Stores to callee stack arguments will be placed in FixedStackSlots offset | 
|  | // by this amount for a tail call. In a sibling call it must be 0 because the | 
|  | // caller will deallocate the entire stack and the callee still expects its | 
|  | // arguments to begin at SP+0. Completely unused for non-tail calls. | 
|  | int32_t FPDiff = 0; | 
|  | MachineFrameInfo &MFI = MF.getFrameInfo(); | 
|  | SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; | 
|  |  | 
|  | SDValue CallerSavedFP; | 
|  |  | 
|  | // Adjust the stack pointer for the new arguments... | 
|  | // These operations are automatically eliminated by the prolog/epilog pass | 
|  | if (!IsSibCall) { | 
|  | Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL); | 
|  |  | 
|  | unsigned OffsetReg = Info->getScratchWaveOffsetReg(); | 
|  |  | 
|  | // In the HSA case, this should be an identity copy. | 
|  | SDValue ScratchRSrcReg | 
|  | = DAG.getCopyFromReg(Chain, DL, Info->getScratchRSrcReg(), MVT::v4i32); | 
|  | RegsToPass.emplace_back(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg); | 
|  |  | 
|  | // TODO: Don't hardcode these registers and get from the callee function. | 
|  | SDValue ScratchWaveOffsetReg | 
|  | = DAG.getCopyFromReg(Chain, DL, OffsetReg, MVT::i32); | 
|  | RegsToPass.emplace_back(AMDGPU::SGPR4, ScratchWaveOffsetReg); | 
|  |  | 
|  | if (!Info->isEntryFunction()) { | 
|  | // Avoid clobbering this function's FP value. In the current convention | 
|  | // callee will overwrite this, so do save/restore around the call site. | 
|  | CallerSavedFP = DAG.getCopyFromReg(Chain, DL, | 
|  | Info->getFrameOffsetReg(), MVT::i32); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Stack pointer relative accesses are done by changing the offset SGPR. This | 
|  | // is just the VGPR offset component. | 
|  | SDValue StackPtr = DAG.getConstant(CalleeUsableStackOffset, DL, MVT::i32); | 
|  |  | 
|  | SmallVector<SDValue, 8> MemOpChains; | 
|  | MVT PtrVT = MVT::i32; | 
|  |  | 
|  | // Walk the register/memloc assignments, inserting copies/loads. | 
|  | for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); i != e; | 
|  | ++i, ++realArgIdx) { | 
|  | CCValAssign &VA = ArgLocs[i]; | 
|  | SDValue Arg = OutVals[realArgIdx]; | 
|  |  | 
|  | // Promote the value if needed. | 
|  | switch (VA.getLocInfo()) { | 
|  | case CCValAssign::Full: | 
|  | break; | 
|  | case CCValAssign::BCvt: | 
|  | Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); | 
|  | break; | 
|  | case CCValAssign::ZExt: | 
|  | Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); | 
|  | break; | 
|  | case CCValAssign::SExt: | 
|  | Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); | 
|  | break; | 
|  | case CCValAssign::AExt: | 
|  | Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); | 
|  | break; | 
|  | case CCValAssign::FPExt: | 
|  | Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg); | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("Unknown loc info!"); | 
|  | } | 
|  |  | 
|  | if (VA.isRegLoc()) { | 
|  | RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); | 
|  | } else { | 
|  | assert(VA.isMemLoc()); | 
|  |  | 
|  | SDValue DstAddr; | 
|  | MachinePointerInfo DstInfo; | 
|  |  | 
|  | unsigned LocMemOffset = VA.getLocMemOffset(); | 
|  | int32_t Offset = LocMemOffset; | 
|  |  | 
|  | SDValue PtrOff = DAG.getObjectPtrOffset(DL, StackPtr, Offset); | 
|  |  | 
|  | if (IsTailCall) { | 
|  | ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags; | 
|  | unsigned OpSize = Flags.isByVal() ? | 
|  | Flags.getByValSize() : VA.getValVT().getStoreSize(); | 
|  |  | 
|  | Offset = Offset + FPDiff; | 
|  | int FI = MFI.CreateFixedObject(OpSize, Offset, true); | 
|  |  | 
|  | DstAddr = DAG.getObjectPtrOffset(DL, DAG.getFrameIndex(FI, PtrVT), | 
|  | StackPtr); | 
|  | DstInfo = MachinePointerInfo::getFixedStack(MF, FI); | 
|  |  | 
|  | // Make sure any stack arguments overlapping with where we're storing | 
|  | // are loaded before this eventual operation. Otherwise they'll be | 
|  | // clobbered. | 
|  |  | 
|  | // FIXME: Why is this really necessary? This seems to just result in a | 
|  | // lot of code to copy the stack and write them back to the same | 
|  | // locations, which are supposed to be immutable? | 
|  | Chain = addTokenForArgument(Chain, DAG, MFI, FI); | 
|  | } else { | 
|  | DstAddr = PtrOff; | 
|  | DstInfo = MachinePointerInfo::getStack(MF, LocMemOffset); | 
|  | } | 
|  |  | 
|  | if (Outs[i].Flags.isByVal()) { | 
|  | SDValue SizeNode = | 
|  | DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i32); | 
|  | SDValue Cpy = DAG.getMemcpy( | 
|  | Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getByValAlign(), | 
|  | /*isVol = */ false, /*AlwaysInline = */ true, | 
|  | /*isTailCall = */ false, DstInfo, | 
|  | MachinePointerInfo(UndefValue::get(Type::getInt8PtrTy( | 
|  | *DAG.getContext(), AMDGPUASI.PRIVATE_ADDRESS)))); | 
|  |  | 
|  | MemOpChains.push_back(Cpy); | 
|  | } else { | 
|  | SDValue Store = DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo); | 
|  | MemOpChains.push_back(Store); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Copy special input registers after user input arguments. | 
|  | passSpecialInputs(CLI, *Info, RegsToPass, MemOpChains, Chain, StackPtr); | 
|  |  | 
|  | if (!MemOpChains.empty()) | 
|  | Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); | 
|  |  | 
|  | // Build a sequence of copy-to-reg nodes chained together with token chain | 
|  | // and flag operands which copy the outgoing args into the appropriate regs. | 
|  | SDValue InFlag; | 
|  | for (auto &RegToPass : RegsToPass) { | 
|  | Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first, | 
|  | RegToPass.second, InFlag); | 
|  | InFlag = Chain.getValue(1); | 
|  | } | 
|  |  | 
|  |  | 
|  | SDValue PhysReturnAddrReg; | 
|  | if (IsTailCall) { | 
|  | // Since the return is being combined with the call, we need to pass on the | 
|  | // return address. | 
|  |  | 
|  | const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); | 
|  | SDValue ReturnAddrReg = CreateLiveInRegister( | 
|  | DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64); | 
|  |  | 
|  | PhysReturnAddrReg = DAG.getRegister(TRI->getReturnAddressReg(MF), | 
|  | MVT::i64); | 
|  | Chain = DAG.getCopyToReg(Chain, DL, PhysReturnAddrReg, ReturnAddrReg, InFlag); | 
|  | InFlag = Chain.getValue(1); | 
|  | } | 
|  |  | 
|  | // We don't usually want to end the call-sequence here because we would tidy | 
|  | // the frame up *after* the call, however in the ABI-changing tail-call case | 
|  | // we've carefully laid out the parameters so that when sp is reset they'll be | 
|  | // in the correct location. | 
|  | if (IsTailCall && !IsSibCall) { | 
|  | Chain = DAG.getCALLSEQ_END(Chain, | 
|  | DAG.getTargetConstant(NumBytes, DL, MVT::i32), | 
|  | DAG.getTargetConstant(0, DL, MVT::i32), | 
|  | InFlag, DL); | 
|  | InFlag = Chain.getValue(1); | 
|  | } | 
|  |  | 
|  | std::vector<SDValue> Ops; | 
|  | Ops.push_back(Chain); | 
|  | Ops.push_back(Callee); | 
|  |  | 
|  | if (IsTailCall) { | 
|  | // Each tail call may have to adjust the stack by a different amount, so | 
|  | // this information must travel along with the operation for eventual | 
|  | // consumption by emitEpilogue. | 
|  | Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32)); | 
|  |  | 
|  | Ops.push_back(PhysReturnAddrReg); | 
|  | } | 
|  |  | 
|  | // Add argument registers to the end of the list so that they are known live | 
|  | // into the call. | 
|  | for (auto &RegToPass : RegsToPass) { | 
|  | Ops.push_back(DAG.getRegister(RegToPass.first, | 
|  | RegToPass.second.getValueType())); | 
|  | } | 
|  |  | 
|  | // Add a register mask operand representing the call-preserved registers. | 
|  |  | 
|  | const AMDGPURegisterInfo *TRI = Subtarget->getRegisterInfo(); | 
|  | const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); | 
|  | assert(Mask && "Missing call preserved mask for calling convention"); | 
|  | Ops.push_back(DAG.getRegisterMask(Mask)); | 
|  |  | 
|  | if (InFlag.getNode()) | 
|  | Ops.push_back(InFlag); | 
|  |  | 
|  | SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); | 
|  |  | 
|  | // If we're doing a tall call, use a TC_RETURN here rather than an | 
|  | // actual call instruction. | 
|  | if (IsTailCall) { | 
|  | MFI.setHasTailCall(); | 
|  | return DAG.getNode(AMDGPUISD::TC_RETURN, DL, NodeTys, Ops); | 
|  | } | 
|  |  | 
|  | // Returns a chain and a flag for retval copy to use. | 
|  | SDValue Call = DAG.getNode(AMDGPUISD::CALL, DL, NodeTys, Ops); | 
|  | Chain = Call.getValue(0); | 
|  | InFlag = Call.getValue(1); | 
|  |  | 
|  | if (CallerSavedFP) { | 
|  | SDValue FPReg = DAG.getRegister(Info->getFrameOffsetReg(), MVT::i32); | 
|  | Chain = DAG.getCopyToReg(Chain, DL, FPReg, CallerSavedFP, InFlag); | 
|  | InFlag = Chain.getValue(1); | 
|  | } | 
|  |  | 
|  | uint64_t CalleePopBytes = NumBytes; | 
|  | Chain = DAG.getCALLSEQ_END(Chain, DAG.getTargetConstant(0, DL, MVT::i32), | 
|  | DAG.getTargetConstant(CalleePopBytes, DL, MVT::i32), | 
|  | InFlag, DL); | 
|  | if (!Ins.empty()) | 
|  | InFlag = Chain.getValue(1); | 
|  |  | 
|  | // Handle result values, copying them out of physregs into vregs that we | 
|  | // return. | 
|  | return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG, | 
|  | InVals, IsThisReturn, | 
|  | IsThisReturn ? OutVals[0] : SDValue()); | 
|  | } | 
|  |  | 
|  | unsigned SITargetLowering::getRegisterByName(const char* RegName, EVT VT, | 
|  | SelectionDAG &DAG) const { | 
|  | unsigned Reg = StringSwitch<unsigned>(RegName) | 
|  | .Case("m0", AMDGPU::M0) | 
|  | .Case("exec", AMDGPU::EXEC) | 
|  | .Case("exec_lo", AMDGPU::EXEC_LO) | 
|  | .Case("exec_hi", AMDGPU::EXEC_HI) | 
|  | .Case("flat_scratch", AMDGPU::FLAT_SCR) | 
|  | .Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO) | 
|  | .Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI) | 
|  | .Default(AMDGPU::NoRegister); | 
|  |  | 
|  | if (Reg == AMDGPU::NoRegister) { | 
|  | report_fatal_error(Twine("invalid register name \"" | 
|  | + StringRef(RegName)  + "\".")); | 
|  |  | 
|  | } | 
|  |  | 
|  | if (Subtarget->getGeneration() == SISubtarget::SOUTHERN_ISLANDS && | 
|  | Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) { | 
|  | report_fatal_error(Twine("invalid register \"" | 
|  | + StringRef(RegName)  + "\" for subtarget.")); | 
|  | } | 
|  |  | 
|  | switch (Reg) { | 
|  | case AMDGPU::M0: | 
|  | case AMDGPU::EXEC_LO: | 
|  | case AMDGPU::EXEC_HI: | 
|  | case AMDGPU::FLAT_SCR_LO: | 
|  | case AMDGPU::FLAT_SCR_HI: | 
|  | if (VT.getSizeInBits() == 32) | 
|  | return Reg; | 
|  | break; | 
|  | case AMDGPU::EXEC: | 
|  | case AMDGPU::FLAT_SCR: | 
|  | if (VT.getSizeInBits() == 64) | 
|  | return Reg; | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("missing register type checking"); | 
|  | } | 
|  |  | 
|  | report_fatal_error(Twine("invalid type for register \"" | 
|  | + StringRef(RegName) + "\".")); | 
|  | } | 
|  |  | 
|  | // If kill is not the last instruction, split the block so kill is always a | 
|  | // proper terminator. | 
|  | MachineBasicBlock *SITargetLowering::splitKillBlock(MachineInstr &MI, | 
|  | MachineBasicBlock *BB) const { | 
|  | const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); | 
|  |  | 
|  | MachineBasicBlock::iterator SplitPoint(&MI); | 
|  | ++SplitPoint; | 
|  |  | 
|  | if (SplitPoint == BB->end()) { | 
|  | // Don't bother with a new block. | 
|  | MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode())); | 
|  | return BB; | 
|  | } | 
|  |  | 
|  | MachineFunction *MF = BB->getParent(); | 
|  | MachineBasicBlock *SplitBB | 
|  | = MF->CreateMachineBasicBlock(BB->getBasicBlock()); | 
|  |  | 
|  | MF->insert(++MachineFunction::iterator(BB), SplitBB); | 
|  | SplitBB->splice(SplitBB->begin(), BB, SplitPoint, BB->end()); | 
|  |  | 
|  | SplitBB->transferSuccessorsAndUpdatePHIs(BB); | 
|  | BB->addSuccessor(SplitBB); | 
|  |  | 
|  | MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode())); | 
|  | return SplitBB; | 
|  | } | 
|  |  | 
|  | // Do a v_movrels_b32 or v_movreld_b32 for each unique value of \p IdxReg in the | 
|  | // wavefront. If the value is uniform and just happens to be in a VGPR, this | 
|  | // will only do one iteration. In the worst case, this will loop 64 times. | 
|  | // | 
|  | // TODO: Just use v_readlane_b32 if we know the VGPR has a uniform value. | 
|  | static MachineBasicBlock::iterator emitLoadM0FromVGPRLoop( | 
|  | const SIInstrInfo *TII, | 
|  | MachineRegisterInfo &MRI, | 
|  | MachineBasicBlock &OrigBB, | 
|  | MachineBasicBlock &LoopBB, | 
|  | const DebugLoc &DL, | 
|  | const MachineOperand &IdxReg, | 
|  | unsigned InitReg, | 
|  | unsigned ResultReg, | 
|  | unsigned PhiReg, | 
|  | unsigned InitSaveExecReg, | 
|  | int Offset, | 
|  | bool UseGPRIdxMode, | 
|  | bool IsIndirectSrc) { | 
|  | MachineBasicBlock::iterator I = LoopBB.begin(); | 
|  |  | 
|  | unsigned PhiExec = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass); | 
|  | unsigned NewExec = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass); | 
|  | unsigned CurrentIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); | 
|  | unsigned CondReg = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass); | 
|  |  | 
|  | BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiReg) | 
|  | .addReg(InitReg) | 
|  | .addMBB(&OrigBB) | 
|  | .addReg(ResultReg) | 
|  | .addMBB(&LoopBB); | 
|  |  | 
|  | BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiExec) | 
|  | .addReg(InitSaveExecReg) | 
|  | .addMBB(&OrigBB) | 
|  | .addReg(NewExec) | 
|  | .addMBB(&LoopBB); | 
|  |  | 
|  | // Read the next variant <- also loop target. | 
|  | BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), CurrentIdxReg) | 
|  | .addReg(IdxReg.getReg(), getUndefRegState(IdxReg.isUndef())); | 
|  |  | 
|  | // Compare the just read M0 value to all possible Idx values. | 
|  | BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e64), CondReg) | 
|  | .addReg(CurrentIdxReg) | 
|  | .addReg(IdxReg.getReg(), 0, IdxReg.getSubReg()); | 
|  |  | 
|  | // Update EXEC, save the original EXEC value to VCC. | 
|  | BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_AND_SAVEEXEC_B64), NewExec) | 
|  | .addReg(CondReg, RegState::Kill); | 
|  |  | 
|  | MRI.setSimpleHint(NewExec, CondReg); | 
|  |  | 
|  | if (UseGPRIdxMode) { | 
|  | unsigned IdxReg; | 
|  | if (Offset == 0) { | 
|  | IdxReg = CurrentIdxReg; | 
|  | } else { | 
|  | IdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); | 
|  | BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), IdxReg) | 
|  | .addReg(CurrentIdxReg, RegState::Kill) | 
|  | .addImm(Offset); | 
|  | } | 
|  | unsigned IdxMode = IsIndirectSrc ? | 
|  | VGPRIndexMode::SRC0_ENABLE : VGPRIndexMode::DST_ENABLE; | 
|  | MachineInstr *SetOn = | 
|  | BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON)) | 
|  | .addReg(IdxReg, RegState::Kill) | 
|  | .addImm(IdxMode); | 
|  | SetOn->getOperand(3).setIsUndef(); | 
|  | } else { | 
|  | // Move index from VCC into M0 | 
|  | if (Offset == 0) { | 
|  | BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0) | 
|  | .addReg(CurrentIdxReg, RegState::Kill); | 
|  | } else { | 
|  | BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0) | 
|  | .addReg(CurrentIdxReg, RegState::Kill) | 
|  | .addImm(Offset); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Update EXEC, switch all done bits to 0 and all todo bits to 1. | 
|  | MachineInstr *InsertPt = | 
|  | BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_XOR_B64), AMDGPU::EXEC) | 
|  | .addReg(AMDGPU::EXEC) | 
|  | .addReg(NewExec); | 
|  |  | 
|  | // XXX - s_xor_b64 sets scc to 1 if the result is nonzero, so can we use | 
|  | // s_cbranch_scc0? | 
|  |  | 
|  | // Loop back to V_READFIRSTLANE_B32 if there are still variants to cover. | 
|  | BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ)) | 
|  | .addMBB(&LoopBB); | 
|  |  | 
|  | return InsertPt->getIterator(); | 
|  | } | 
|  |  | 
|  | // This has slightly sub-optimal regalloc when the source vector is killed by | 
|  | // the read. The register allocator does not understand that the kill is | 
|  | // per-workitem, so is kept alive for the whole loop so we end up not re-using a | 
|  | // subregister from it, using 1 more VGPR than necessary. This was saved when | 
|  | // this was expanded after register allocation. | 
|  | static MachineBasicBlock::iterator loadM0FromVGPR(const SIInstrInfo *TII, | 
|  | MachineBasicBlock &MBB, | 
|  | MachineInstr &MI, | 
|  | unsigned InitResultReg, | 
|  | unsigned PhiReg, | 
|  | int Offset, | 
|  | bool UseGPRIdxMode, | 
|  | bool IsIndirectSrc) { | 
|  | MachineFunction *MF = MBB.getParent(); | 
|  | MachineRegisterInfo &MRI = MF->getRegInfo(); | 
|  | const DebugLoc &DL = MI.getDebugLoc(); | 
|  | MachineBasicBlock::iterator I(&MI); | 
|  |  | 
|  | unsigned DstReg = MI.getOperand(0).getReg(); | 
|  | unsigned SaveExec = MRI.createVirtualRegister(&AMDGPU::SReg_64_XEXECRegClass); | 
|  | unsigned TmpExec = MRI.createVirtualRegister(&AMDGPU::SReg_64_XEXECRegClass); | 
|  |  | 
|  | BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), TmpExec); | 
|  |  | 
|  | // Save the EXEC mask | 
|  | BuildMI(MBB, I, DL, TII->get(AMDGPU::S_MOV_B64), SaveExec) | 
|  | .addReg(AMDGPU::EXEC); | 
|  |  | 
|  | // To insert the loop we need to split the block. Move everything after this | 
|  | // point to a new block, and insert a new empty block between the two. | 
|  | MachineBasicBlock *LoopBB = MF->CreateMachineBasicBlock(); | 
|  | MachineBasicBlock *RemainderBB = MF->CreateMachineBasicBlock(); | 
|  | MachineFunction::iterator MBBI(MBB); | 
|  | ++MBBI; | 
|  |  | 
|  | MF->insert(MBBI, LoopBB); | 
|  | MF->insert(MBBI, RemainderBB); | 
|  |  | 
|  | LoopBB->addSuccessor(LoopBB); | 
|  | LoopBB->addSuccessor(RemainderBB); | 
|  |  | 
|  | // Move the rest of the block into a new block. | 
|  | RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB); | 
|  | RemainderBB->splice(RemainderBB->begin(), &MBB, I, MBB.end()); | 
|  |  | 
|  | MBB.addSuccessor(LoopBB); | 
|  |  | 
|  | const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); | 
|  |  | 
|  | auto InsPt = emitLoadM0FromVGPRLoop(TII, MRI, MBB, *LoopBB, DL, *Idx, | 
|  | InitResultReg, DstReg, PhiReg, TmpExec, | 
|  | Offset, UseGPRIdxMode, IsIndirectSrc); | 
|  |  | 
|  | MachineBasicBlock::iterator First = RemainderBB->begin(); | 
|  | BuildMI(*RemainderBB, First, DL, TII->get(AMDGPU::S_MOV_B64), AMDGPU::EXEC) | 
|  | .addReg(SaveExec); | 
|  |  | 
|  | return InsPt; | 
|  | } | 
|  |  | 
|  | // Returns subreg index, offset | 
|  | static std::pair<unsigned, int> | 
|  | computeIndirectRegAndOffset(const SIRegisterInfo &TRI, | 
|  | const TargetRegisterClass *SuperRC, | 
|  | unsigned VecReg, | 
|  | int Offset) { | 
|  | int NumElts = TRI.getRegSizeInBits(*SuperRC) / 32; | 
|  |  | 
|  | // Skip out of bounds offsets, or else we would end up using an undefined | 
|  | // register. | 
|  | if (Offset >= NumElts || Offset < 0) | 
|  | return std::make_pair(AMDGPU::sub0, Offset); | 
|  |  | 
|  | return std::make_pair(AMDGPU::sub0 + Offset, 0); | 
|  | } | 
|  |  | 
|  | // Return true if the index is an SGPR and was set. | 
|  | static bool setM0ToIndexFromSGPR(const SIInstrInfo *TII, | 
|  | MachineRegisterInfo &MRI, | 
|  | MachineInstr &MI, | 
|  | int Offset, | 
|  | bool UseGPRIdxMode, | 
|  | bool IsIndirectSrc) { | 
|  | MachineBasicBlock *MBB = MI.getParent(); | 
|  | const DebugLoc &DL = MI.getDebugLoc(); | 
|  | MachineBasicBlock::iterator I(&MI); | 
|  |  | 
|  | const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); | 
|  | const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg()); | 
|  |  | 
|  | assert(Idx->getReg() != AMDGPU::NoRegister); | 
|  |  | 
|  | if (!TII->getRegisterInfo().isSGPRClass(IdxRC)) | 
|  | return false; | 
|  |  | 
|  | if (UseGPRIdxMode) { | 
|  | unsigned IdxMode = IsIndirectSrc ? | 
|  | VGPRIndexMode::SRC0_ENABLE : VGPRIndexMode::DST_ENABLE; | 
|  | if (Offset == 0) { | 
|  | MachineInstr *SetOn = | 
|  | BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON)) | 
|  | .add(*Idx) | 
|  | .addImm(IdxMode); | 
|  |  | 
|  | SetOn->getOperand(3).setIsUndef(); | 
|  | } else { | 
|  | unsigned Tmp = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); | 
|  | BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), Tmp) | 
|  | .add(*Idx) | 
|  | .addImm(Offset); | 
|  | MachineInstr *SetOn = | 
|  | BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON)) | 
|  | .addReg(Tmp, RegState::Kill) | 
|  | .addImm(IdxMode); | 
|  |  | 
|  | SetOn->getOperand(3).setIsUndef(); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (Offset == 0) { | 
|  | BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0) | 
|  | .add(*Idx); | 
|  | } else { | 
|  | BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0) | 
|  | .add(*Idx) | 
|  | .addImm(Offset); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Control flow needs to be inserted if indexing with a VGPR. | 
|  | static MachineBasicBlock *emitIndirectSrc(MachineInstr &MI, | 
|  | MachineBasicBlock &MBB, | 
|  | const SISubtarget &ST) { | 
|  | const SIInstrInfo *TII = ST.getInstrInfo(); | 
|  | const SIRegisterInfo &TRI = TII->getRegisterInfo(); | 
|  | MachineFunction *MF = MBB.getParent(); | 
|  | MachineRegisterInfo &MRI = MF->getRegInfo(); | 
|  |  | 
|  | unsigned Dst = MI.getOperand(0).getReg(); | 
|  | unsigned SrcReg = TII->getNamedOperand(MI, AMDGPU::OpName::src)->getReg(); | 
|  | int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm(); | 
|  |  | 
|  | const TargetRegisterClass *VecRC = MRI.getRegClass(SrcReg); | 
|  |  | 
|  | unsigned SubReg; | 
|  | std::tie(SubReg, Offset) | 
|  | = computeIndirectRegAndOffset(TRI, VecRC, SrcReg, Offset); | 
|  |  | 
|  | bool UseGPRIdxMode = ST.useVGPRIndexMode(EnableVGPRIndexMode); | 
|  |  | 
|  | if (setM0ToIndexFromSGPR(TII, MRI, MI, Offset, UseGPRIdxMode, true)) { | 
|  | MachineBasicBlock::iterator I(&MI); | 
|  | const DebugLoc &DL = MI.getDebugLoc(); | 
|  |  | 
|  | if (UseGPRIdxMode) { | 
|  | // TODO: Look at the uses to avoid the copy. This may require rescheduling | 
|  | // to avoid interfering with other uses, so probably requires a new | 
|  | // optimization pass. | 
|  | BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOV_B32_e32), Dst) | 
|  | .addReg(SrcReg, RegState::Undef, SubReg) | 
|  | .addReg(SrcReg, RegState::Implicit) | 
|  | .addReg(AMDGPU::M0, RegState::Implicit); | 
|  | BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF)); | 
|  | } else { | 
|  | BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst) | 
|  | .addReg(SrcReg, RegState::Undef, SubReg) | 
|  | .addReg(SrcReg, RegState::Implicit); | 
|  | } | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  |  | 
|  | return &MBB; | 
|  | } | 
|  |  | 
|  | const DebugLoc &DL = MI.getDebugLoc(); | 
|  | MachineBasicBlock::iterator I(&MI); | 
|  |  | 
|  | unsigned PhiReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); | 
|  | unsigned InitReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); | 
|  |  | 
|  | BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), InitReg); | 
|  |  | 
|  | auto InsPt = loadM0FromVGPR(TII, MBB, MI, InitReg, PhiReg, | 
|  | Offset, UseGPRIdxMode, true); | 
|  | MachineBasicBlock *LoopBB = InsPt->getParent(); | 
|  |  | 
|  | if (UseGPRIdxMode) { | 
|  | BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOV_B32_e32), Dst) | 
|  | .addReg(SrcReg, RegState::Undef, SubReg) | 
|  | .addReg(SrcReg, RegState::Implicit) | 
|  | .addReg(AMDGPU::M0, RegState::Implicit); | 
|  | BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF)); | 
|  | } else { | 
|  | BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst) | 
|  | .addReg(SrcReg, RegState::Undef, SubReg) | 
|  | .addReg(SrcReg, RegState::Implicit); | 
|  | } | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  |  | 
|  | return LoopBB; | 
|  | } | 
|  |  | 
|  | static unsigned getMOVRELDPseudo(const SIRegisterInfo &TRI, | 
|  | const TargetRegisterClass *VecRC) { | 
|  | switch (TRI.getRegSizeInBits(*VecRC)) { | 
|  | case 32: // 4 bytes | 
|  | return AMDGPU::V_MOVRELD_B32_V1; | 
|  | case 64: // 8 bytes | 
|  | return AMDGPU::V_MOVRELD_B32_V2; | 
|  | case 128: // 16 bytes | 
|  | return AMDGPU::V_MOVRELD_B32_V4; | 
|  | case 256: // 32 bytes | 
|  | return AMDGPU::V_MOVRELD_B32_V8; | 
|  | case 512: // 64 bytes | 
|  | return AMDGPU::V_MOVRELD_B32_V16; | 
|  | default: | 
|  | llvm_unreachable("unsupported size for MOVRELD pseudos"); | 
|  | } | 
|  | } | 
|  |  | 
|  | static MachineBasicBlock *emitIndirectDst(MachineInstr &MI, | 
|  | MachineBasicBlock &MBB, | 
|  | const SISubtarget &ST) { | 
|  | const SIInstrInfo *TII = ST.getInstrInfo(); | 
|  | const SIRegisterInfo &TRI = TII->getRegisterInfo(); | 
|  | MachineFunction *MF = MBB.getParent(); | 
|  | MachineRegisterInfo &MRI = MF->getRegInfo(); | 
|  |  | 
|  | unsigned Dst = MI.getOperand(0).getReg(); | 
|  | const MachineOperand *SrcVec = TII->getNamedOperand(MI, AMDGPU::OpName::src); | 
|  | const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); | 
|  | const MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val); | 
|  | int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm(); | 
|  | const TargetRegisterClass *VecRC = MRI.getRegClass(SrcVec->getReg()); | 
|  |  | 
|  | // This can be an immediate, but will be folded later. | 
|  | assert(Val->getReg()); | 
|  |  | 
|  | unsigned SubReg; | 
|  | std::tie(SubReg, Offset) = computeIndirectRegAndOffset(TRI, VecRC, | 
|  | SrcVec->getReg(), | 
|  | Offset); | 
|  | bool UseGPRIdxMode = ST.useVGPRIndexMode(EnableVGPRIndexMode); | 
|  |  | 
|  | if (Idx->getReg() == AMDGPU::NoRegister) { | 
|  | MachineBasicBlock::iterator I(&MI); | 
|  | const DebugLoc &DL = MI.getDebugLoc(); | 
|  |  | 
|  | assert(Offset == 0); | 
|  |  | 
|  | BuildMI(MBB, I, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dst) | 
|  | .add(*SrcVec) | 
|  | .add(*Val) | 
|  | .addImm(SubReg); | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | return &MBB; | 
|  | } | 
|  |  | 
|  | if (setM0ToIndexFromSGPR(TII, MRI, MI, Offset, UseGPRIdxMode, false)) { | 
|  | MachineBasicBlock::iterator I(&MI); | 
|  | const DebugLoc &DL = MI.getDebugLoc(); | 
|  |  | 
|  | if (UseGPRIdxMode) { | 
|  | BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOV_B32_indirect)) | 
|  | .addReg(SrcVec->getReg(), RegState::Undef, SubReg) // vdst | 
|  | .add(*Val) | 
|  | .addReg(Dst, RegState::ImplicitDefine) | 
|  | .addReg(SrcVec->getReg(), RegState::Implicit) | 
|  | .addReg(AMDGPU::M0, RegState::Implicit); | 
|  |  | 
|  | BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF)); | 
|  | } else { | 
|  | const MCInstrDesc &MovRelDesc = TII->get(getMOVRELDPseudo(TRI, VecRC)); | 
|  |  | 
|  | BuildMI(MBB, I, DL, MovRelDesc) | 
|  | .addReg(Dst, RegState::Define) | 
|  | .addReg(SrcVec->getReg()) | 
|  | .add(*Val) | 
|  | .addImm(SubReg - AMDGPU::sub0); | 
|  | } | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | return &MBB; | 
|  | } | 
|  |  | 
|  | if (Val->isReg()) | 
|  | MRI.clearKillFlags(Val->getReg()); | 
|  |  | 
|  | const DebugLoc &DL = MI.getDebugLoc(); | 
|  |  | 
|  | unsigned PhiReg = MRI.createVirtualRegister(VecRC); | 
|  |  | 
|  | auto InsPt = loadM0FromVGPR(TII, MBB, MI, SrcVec->getReg(), PhiReg, | 
|  | Offset, UseGPRIdxMode, false); | 
|  | MachineBasicBlock *LoopBB = InsPt->getParent(); | 
|  |  | 
|  | if (UseGPRIdxMode) { | 
|  | BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOV_B32_indirect)) | 
|  | .addReg(PhiReg, RegState::Undef, SubReg) // vdst | 
|  | .add(*Val)                               // src0 | 
|  | .addReg(Dst, RegState::ImplicitDefine) | 
|  | .addReg(PhiReg, RegState::Implicit) | 
|  | .addReg(AMDGPU::M0, RegState::Implicit); | 
|  | BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF)); | 
|  | } else { | 
|  | const MCInstrDesc &MovRelDesc = TII->get(getMOVRELDPseudo(TRI, VecRC)); | 
|  |  | 
|  | BuildMI(*LoopBB, InsPt, DL, MovRelDesc) | 
|  | .addReg(Dst, RegState::Define) | 
|  | .addReg(PhiReg) | 
|  | .add(*Val) | 
|  | .addImm(SubReg - AMDGPU::sub0); | 
|  | } | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  |  | 
|  | return LoopBB; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock *SITargetLowering::EmitInstrWithCustomInserter( | 
|  | MachineInstr &MI, MachineBasicBlock *BB) const { | 
|  |  | 
|  | const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); | 
|  | MachineFunction *MF = BB->getParent(); | 
|  | SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>(); | 
|  |  | 
|  | if (TII->isMIMG(MI)) { | 
|  | if (MI.memoperands_empty() && MI.mayLoadOrStore()) { | 
|  | report_fatal_error("missing mem operand from MIMG instruction"); | 
|  | } | 
|  | // Add a memoperand for mimg instructions so that they aren't assumed to | 
|  | // be ordered memory instuctions. | 
|  |  | 
|  | return BB; | 
|  | } | 
|  |  | 
|  | switch (MI.getOpcode()) { | 
|  | case AMDGPU::S_ADD_U64_PSEUDO: | 
|  | case AMDGPU::S_SUB_U64_PSEUDO: { | 
|  | MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); | 
|  | const DebugLoc &DL = MI.getDebugLoc(); | 
|  |  | 
|  | MachineOperand &Dest = MI.getOperand(0); | 
|  | MachineOperand &Src0 = MI.getOperand(1); | 
|  | MachineOperand &Src1 = MI.getOperand(2); | 
|  |  | 
|  | unsigned DestSub0 = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); | 
|  | unsigned DestSub1 = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); | 
|  |  | 
|  | MachineOperand Src0Sub0 = TII->buildExtractSubRegOrImm(MI, MRI, | 
|  | Src0, &AMDGPU::SReg_64RegClass, AMDGPU::sub0, | 
|  | &AMDGPU::SReg_32_XM0RegClass); | 
|  | MachineOperand Src0Sub1 = TII->buildExtractSubRegOrImm(MI, MRI, | 
|  | Src0, &AMDGPU::SReg_64RegClass, AMDGPU::sub1, | 
|  | &AMDGPU::SReg_32_XM0RegClass); | 
|  |  | 
|  | MachineOperand Src1Sub0 = TII->buildExtractSubRegOrImm(MI, MRI, | 
|  | Src1, &AMDGPU::SReg_64RegClass, AMDGPU::sub0, | 
|  | &AMDGPU::SReg_32_XM0RegClass); | 
|  | MachineOperand Src1Sub1 = TII->buildExtractSubRegOrImm(MI, MRI, | 
|  | Src1, &AMDGPU::SReg_64RegClass, AMDGPU::sub1, | 
|  | &AMDGPU::SReg_32_XM0RegClass); | 
|  |  | 
|  | bool IsAdd = (MI.getOpcode() == AMDGPU::S_ADD_U64_PSEUDO); | 
|  |  | 
|  | unsigned LoOpc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32; | 
|  | unsigned HiOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32; | 
|  | BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0) | 
|  | .add(Src0Sub0) | 
|  | .add(Src1Sub0); | 
|  | BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1) | 
|  | .add(Src0Sub1) | 
|  | .add(Src1Sub1); | 
|  | BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg()) | 
|  | .addReg(DestSub0) | 
|  | .addImm(AMDGPU::sub0) | 
|  | .addReg(DestSub1) | 
|  | .addImm(AMDGPU::sub1); | 
|  | MI.eraseFromParent(); | 
|  | return BB; | 
|  | } | 
|  | case AMDGPU::SI_INIT_M0: { | 
|  | BuildMI(*BB, MI.getIterator(), MI.getDebugLoc(), | 
|  | TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0) | 
|  | .add(MI.getOperand(0)); | 
|  | MI.eraseFromParent(); | 
|  | return BB; | 
|  | } | 
|  | case AMDGPU::SI_INIT_EXEC: | 
|  | // This should be before all vector instructions. | 
|  | BuildMI(*BB, &*BB->begin(), MI.getDebugLoc(), TII->get(AMDGPU::S_MOV_B64), | 
|  | AMDGPU::EXEC) | 
|  | .addImm(MI.getOperand(0).getImm()); | 
|  | MI.eraseFromParent(); | 
|  | return BB; | 
|  |  | 
|  | case AMDGPU::SI_INIT_EXEC_FROM_INPUT: { | 
|  | // Extract the thread count from an SGPR input and set EXEC accordingly. | 
|  | // Since BFM can't shift by 64, handle that case with CMP + CMOV. | 
|  | // | 
|  | // S_BFE_U32 count, input, {shift, 7} | 
|  | // S_BFM_B64 exec, count, 0 | 
|  | // S_CMP_EQ_U32 count, 64 | 
|  | // S_CMOV_B64 exec, -1 | 
|  | MachineInstr *FirstMI = &*BB->begin(); | 
|  | MachineRegisterInfo &MRI = MF->getRegInfo(); | 
|  | unsigned InputReg = MI.getOperand(0).getReg(); | 
|  | unsigned CountReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); | 
|  | bool Found = false; | 
|  |  | 
|  | // Move the COPY of the input reg to the beginning, so that we can use it. | 
|  | for (auto I = BB->begin(); I != &MI; I++) { | 
|  | if (I->getOpcode() != TargetOpcode::COPY || | 
|  | I->getOperand(0).getReg() != InputReg) | 
|  | continue; | 
|  |  | 
|  | if (I == FirstMI) { | 
|  | FirstMI = &*++BB->begin(); | 
|  | } else { | 
|  | I->removeFromParent(); | 
|  | BB->insert(FirstMI, &*I); | 
|  | } | 
|  | Found = true; | 
|  | break; | 
|  | } | 
|  | assert(Found); | 
|  | (void)Found; | 
|  |  | 
|  | // This should be before all vector instructions. | 
|  | BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_BFE_U32), CountReg) | 
|  | .addReg(InputReg) | 
|  | .addImm((MI.getOperand(1).getImm() & 0x7f) | 0x70000); | 
|  | BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_BFM_B64), | 
|  | AMDGPU::EXEC) | 
|  | .addReg(CountReg) | 
|  | .addImm(0); | 
|  | BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_CMP_EQ_U32)) | 
|  | .addReg(CountReg, RegState::Kill) | 
|  | .addImm(64); | 
|  | BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_CMOV_B64), | 
|  | AMDGPU::EXEC) | 
|  | .addImm(-1); | 
|  | MI.eraseFromParent(); | 
|  | return BB; | 
|  | } | 
|  |  | 
|  | case AMDGPU::GET_GROUPSTATICSIZE: { | 
|  | DebugLoc DL = MI.getDebugLoc(); | 
|  | BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_MOV_B32)) | 
|  | .add(MI.getOperand(0)) | 
|  | .addImm(MFI->getLDSSize()); | 
|  | MI.eraseFromParent(); | 
|  | return BB; | 
|  | } | 
|  | case AMDGPU::SI_INDIRECT_SRC_V1: | 
|  | case AMDGPU::SI_INDIRECT_SRC_V2: | 
|  | case AMDGPU::SI_INDIRECT_SRC_V4: | 
|  | case AMDGPU::SI_INDIRECT_SRC_V8: | 
|  | case AMDGPU::SI_INDIRECT_SRC_V16: | 
|  | return emitIndirectSrc(MI, *BB, *getSubtarget()); | 
|  | case AMDGPU::SI_INDIRECT_DST_V1: | 
|  | case AMDGPU::SI_INDIRECT_DST_V2: | 
|  | case AMDGPU::SI_INDIRECT_DST_V4: | 
|  | case AMDGPU::SI_INDIRECT_DST_V8: | 
|  | case AMDGPU::SI_INDIRECT_DST_V16: | 
|  | return emitIndirectDst(MI, *BB, *getSubtarget()); | 
|  | case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO: | 
|  | case AMDGPU::SI_KILL_I1_PSEUDO: | 
|  | return splitKillBlock(MI, BB); | 
|  | case AMDGPU::V_CNDMASK_B64_PSEUDO: { | 
|  | MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); | 
|  |  | 
|  | unsigned Dst = MI.getOperand(0).getReg(); | 
|  | unsigned Src0 = MI.getOperand(1).getReg(); | 
|  | unsigned Src1 = MI.getOperand(2).getReg(); | 
|  | const DebugLoc &DL = MI.getDebugLoc(); | 
|  | unsigned SrcCond = MI.getOperand(3).getReg(); | 
|  |  | 
|  | unsigned DstLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); | 
|  | unsigned DstHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); | 
|  | unsigned SrcCondCopy = MRI.createVirtualRegister(&AMDGPU::SReg_64_XEXECRegClass); | 
|  |  | 
|  | BuildMI(*BB, MI, DL, TII->get(AMDGPU::COPY), SrcCondCopy) | 
|  | .addReg(SrcCond); | 
|  | BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstLo) | 
|  | .addReg(Src0, 0, AMDGPU::sub0) | 
|  | .addReg(Src1, 0, AMDGPU::sub0) | 
|  | .addReg(SrcCondCopy); | 
|  | BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstHi) | 
|  | .addReg(Src0, 0, AMDGPU::sub1) | 
|  | .addReg(Src1, 0, AMDGPU::sub1) | 
|  | .addReg(SrcCondCopy); | 
|  |  | 
|  | BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), Dst) | 
|  | .addReg(DstLo) | 
|  | .addImm(AMDGPU::sub0) | 
|  | .addReg(DstHi) | 
|  | .addImm(AMDGPU::sub1); | 
|  | MI.eraseFromParent(); | 
|  | return BB; | 
|  | } | 
|  | case AMDGPU::SI_BR_UNDEF: { | 
|  | const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); | 
|  | const DebugLoc &DL = MI.getDebugLoc(); | 
|  | MachineInstr *Br = BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CBRANCH_SCC1)) | 
|  | .add(MI.getOperand(0)); | 
|  | Br->getOperand(1).setIsUndef(true); // read undef SCC | 
|  | MI.eraseFromParent(); | 
|  | return BB; | 
|  | } | 
|  | case AMDGPU::ADJCALLSTACKUP: | 
|  | case AMDGPU::ADJCALLSTACKDOWN: { | 
|  | const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>(); | 
|  | MachineInstrBuilder MIB(*MF, &MI); | 
|  | MIB.addReg(Info->getStackPtrOffsetReg(), RegState::ImplicitDefine) | 
|  | .addReg(Info->getStackPtrOffsetReg(), RegState::Implicit); | 
|  | return BB; | 
|  | } | 
|  | case AMDGPU::SI_CALL_ISEL: | 
|  | case AMDGPU::SI_TCRETURN_ISEL: { | 
|  | const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); | 
|  | const DebugLoc &DL = MI.getDebugLoc(); | 
|  | unsigned ReturnAddrReg = TII->getRegisterInfo().getReturnAddressReg(*MF); | 
|  |  | 
|  | MachineRegisterInfo &MRI = MF->getRegInfo(); | 
|  | unsigned GlobalAddrReg = MI.getOperand(0).getReg(); | 
|  | MachineInstr *PCRel = MRI.getVRegDef(GlobalAddrReg); | 
|  | assert(PCRel->getOpcode() == AMDGPU::SI_PC_ADD_REL_OFFSET); | 
|  |  | 
|  | const GlobalValue *G = PCRel->getOperand(1).getGlobal(); | 
|  |  | 
|  | MachineInstrBuilder MIB; | 
|  | if (MI.getOpcode() == AMDGPU::SI_CALL_ISEL) { | 
|  | MIB = BuildMI(*BB, MI, DL, TII->get(AMDGPU::SI_CALL), ReturnAddrReg) | 
|  | .add(MI.getOperand(0)) | 
|  | .addGlobalAddress(G); | 
|  | } else { | 
|  | MIB = BuildMI(*BB, MI, DL, TII->get(AMDGPU::SI_TCRETURN)) | 
|  | .add(MI.getOperand(0)) | 
|  | .addGlobalAddress(G); | 
|  |  | 
|  | // There is an additional imm operand for tcreturn, but it should be in the | 
|  | // right place already. | 
|  | } | 
|  |  | 
|  | for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) | 
|  | MIB.add(MI.getOperand(I)); | 
|  |  | 
|  | MIB.setMemRefs(MI.memoperands_begin(), MI.memoperands_end()); | 
|  | MI.eraseFromParent(); | 
|  | return BB; | 
|  | } | 
|  | default: | 
|  | return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool SITargetLowering::hasBitPreservingFPLogic(EVT VT) const { | 
|  | return isTypeLegal(VT.getScalarType()); | 
|  | } | 
|  |  | 
|  | bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const { | 
|  | // This currently forces unfolding various combinations of fsub into fma with | 
|  | // free fneg'd operands. As long as we have fast FMA (controlled by | 
|  | // isFMAFasterThanFMulAndFAdd), we should perform these. | 
|  |  | 
|  | // When fma is quarter rate, for f64 where add / sub are at best half rate, | 
|  | // most of these combines appear to be cycle neutral but save on instruction | 
|  | // count / code size. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx, | 
|  | EVT VT) const { | 
|  | if (!VT.isVector()) { | 
|  | return MVT::i1; | 
|  | } | 
|  | return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements()); | 
|  | } | 
|  |  | 
|  | MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT VT) const { | 
|  | // TODO: Should i16 be used always if legal? For now it would force VALU | 
|  | // shifts. | 
|  | return (VT == MVT::i16) ? MVT::i16 : MVT::i32; | 
|  | } | 
|  |  | 
|  | // Answering this is somewhat tricky and depends on the specific device which | 
|  | // have different rates for fma or all f64 operations. | 
|  | // | 
|  | // v_fma_f64 and v_mul_f64 always take the same number of cycles as each other | 
|  | // regardless of which device (although the number of cycles differs between | 
|  | // devices), so it is always profitable for f64. | 
|  | // | 
|  | // v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable | 
|  | // only on full rate devices. Normally, we should prefer selecting v_mad_f32 | 
|  | // which we can always do even without fused FP ops since it returns the same | 
|  | // result as the separate operations and since it is always full | 
|  | // rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32 | 
|  | // however does not support denormals, so we do report fma as faster if we have | 
|  | // a fast fma device and require denormals. | 
|  | // | 
|  | bool SITargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { | 
|  | VT = VT.getScalarType(); | 
|  |  | 
|  | switch (VT.getSimpleVT().SimpleTy) { | 
|  | case MVT::f32: | 
|  | // This is as fast on some subtargets. However, we always have full rate f32 | 
|  | // mad available which returns the same result as the separate operations | 
|  | // which we should prefer over fma. We can't use this if we want to support | 
|  | // denormals, so only report this in these cases. | 
|  | return Subtarget->hasFP32Denormals() && Subtarget->hasFastFMAF32(); | 
|  | case MVT::f64: | 
|  | return true; | 
|  | case MVT::f16: | 
|  | return Subtarget->has16BitInsts() && Subtarget->hasFP16Denormals(); | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Custom DAG Lowering Operations | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { | 
|  | switch (Op.getOpcode()) { | 
|  | default: return AMDGPUTargetLowering::LowerOperation(Op, DAG); | 
|  | case ISD::BRCOND: return LowerBRCOND(Op, DAG); | 
|  | case ISD::LOAD: { | 
|  | SDValue Result = LowerLOAD(Op, DAG); | 
|  | assert((!Result.getNode() || | 
|  | Result.getNode()->getNumValues() == 2) && | 
|  | "Load should return a value and a chain"); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | case ISD::FSIN: | 
|  | case ISD::FCOS: | 
|  | return LowerTrig(Op, DAG); | 
|  | case ISD::SELECT: return LowerSELECT(Op, DAG); | 
|  | case ISD::FDIV: return LowerFDIV(Op, DAG); | 
|  | case ISD::ATOMIC_CMP_SWAP: return LowerATOMIC_CMP_SWAP(Op, DAG); | 
|  | case ISD::STORE: return LowerSTORE(Op, DAG); | 
|  | case ISD::GlobalAddress: { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); | 
|  | return LowerGlobalAddress(MFI, Op, DAG); | 
|  | } | 
|  | case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); | 
|  | case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG); | 
|  | case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG); | 
|  | case ISD::ADDRSPACECAST: return lowerADDRSPACECAST(Op, DAG); | 
|  | case ISD::INSERT_VECTOR_ELT: | 
|  | return lowerINSERT_VECTOR_ELT(Op, DAG); | 
|  | case ISD::EXTRACT_VECTOR_ELT: | 
|  | return lowerEXTRACT_VECTOR_ELT(Op, DAG); | 
|  | case ISD::FP_ROUND: | 
|  | return lowerFP_ROUND(Op, DAG); | 
|  | case ISD::TRAP: | 
|  | case ISD::DEBUGTRAP: | 
|  | return lowerTRAP(Op, DAG); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static unsigned getImageOpcode(unsigned IID) { | 
|  | switch (IID) { | 
|  | case Intrinsic::amdgcn_image_load: | 
|  | return AMDGPUISD::IMAGE_LOAD; | 
|  | case Intrinsic::amdgcn_image_load_mip: | 
|  | return AMDGPUISD::IMAGE_LOAD_MIP; | 
|  |  | 
|  | // Basic sample. | 
|  | case Intrinsic::amdgcn_image_sample: | 
|  | return AMDGPUISD::IMAGE_SAMPLE; | 
|  | case Intrinsic::amdgcn_image_sample_cl: | 
|  | return AMDGPUISD::IMAGE_SAMPLE_CL; | 
|  | case Intrinsic::amdgcn_image_sample_d: | 
|  | return AMDGPUISD::IMAGE_SAMPLE_D; | 
|  | case Intrinsic::amdgcn_image_sample_d_cl: | 
|  | return AMDGPUISD::IMAGE_SAMPLE_D_CL; | 
|  | case Intrinsic::amdgcn_image_sample_l: | 
|  | return AMDGPUISD::IMAGE_SAMPLE_L; | 
|  | case Intrinsic::amdgcn_image_sample_b: | 
|  | return AMDGPUISD::IMAGE_SAMPLE_B; | 
|  | case Intrinsic::amdgcn_image_sample_b_cl: | 
|  | return AMDGPUISD::IMAGE_SAMPLE_B_CL; | 
|  | case Intrinsic::amdgcn_image_sample_lz: | 
|  | return AMDGPUISD::IMAGE_SAMPLE_LZ; | 
|  | case Intrinsic::amdgcn_image_sample_cd: | 
|  | return AMDGPUISD::IMAGE_SAMPLE_CD; | 
|  | case Intrinsic::amdgcn_image_sample_cd_cl: | 
|  | return AMDGPUISD::IMAGE_SAMPLE_CD_CL; | 
|  |  | 
|  | // Sample with comparison. | 
|  | case Intrinsic::amdgcn_image_sample_c: | 
|  | return AMDGPUISD::IMAGE_SAMPLE_C; | 
|  | case Intrinsic::amdgcn_image_sample_c_cl: | 
|  | return AMDGPUISD::IMAGE_SAMPLE_C_CL; | 
|  | case Intrinsic::amdgcn_image_sample_c_d: | 
|  | return AMDGPUISD::IMAGE_SAMPLE_C_D; | 
|  | case Intrinsic::amdgcn_image_sample_c_d_cl: | 
|  | return AMDGPUISD::IMAGE_SAMPLE_C_D_CL; | 
|  | case Intrinsic::amdgcn_image_sample_c_l: | 
|  | return AMDGPUISD::IMAGE_SAMPLE_C_L; | 
|  | case Intrinsic::amdgcn_image_sample_c_b: | 
|  | return AMDGPUISD::IMAGE_SAMPLE_C_B; | 
|  | case Intrinsic::amdgcn_image_sample_c_b_cl: | 
|  | return AMDGPUISD::IMAGE_SAMPLE_C_B_CL; | 
|  | case Intrinsic::amdgcn_image_sample_c_lz: | 
|  | return AMDGPUISD::IMAGE_SAMPLE_C_LZ; | 
|  | case Intrinsic::amdgcn_image_sample_c_cd: | 
|  | return AMDGPUISD::IMAGE_SAMPLE_C_CD; | 
|  | case Intrinsic::amdgcn_image_sample_c_cd_cl: | 
|  | return AMDGPUISD::IMAGE_SAMPLE_C_CD_CL; | 
|  |  | 
|  | // Sample with offsets. | 
|  | case Intrinsic::amdgcn_image_sample_o: | 
|  | return AMDGPUISD::IMAGE_SAMPLE_O; | 
|  | case Intrinsic::amdgcn_image_sample_cl_o: | 
|  | return AMDGPUISD::IMAGE_SAMPLE_CL_O; | 
|  | case Intrinsic::amdgcn_image_sample_d_o: | 
|  | return AMDGPUISD::IMAGE_SAMPLE_D_O; | 
|  | case Intrinsic::amdgcn_image_sample_d_cl_o: | 
|  | return AMDGPUISD::IMAGE_SAMPLE_D_CL_O; | 
|  | case Intrinsic::amdgcn_image_sample_l_o: | 
|  | return AMDGPUISD::IMAGE_SAMPLE_L_O; | 
|  | case Intrinsic::amdgcn_image_sample_b_o: | 
|  | return AMDGPUISD::IMAGE_SAMPLE_B_O; | 
|  | case Intrinsic::amdgcn_image_sample_b_cl_o: | 
|  | return AMDGPUISD::IMAGE_SAMPLE_B_CL_O; | 
|  | case Intrinsic::amdgcn_image_sample_lz_o: | 
|  | return AMDGPUISD::IMAGE_SAMPLE_LZ_O; | 
|  | case Intrinsic::amdgcn_image_sample_cd_o: | 
|  | return AMDGPUISD::IMAGE_SAMPLE_CD_O; | 
|  | case Intrinsic::amdgcn_image_sample_cd_cl_o: | 
|  | return AMDGPUISD::IMAGE_SAMPLE_CD_CL_O; | 
|  |  | 
|  | // Sample with comparison and offsets. | 
|  | case Intrinsic::amdgcn_image_sample_c_o: | 
|  | return AMDGPUISD::IMAGE_SAMPLE_C_O; | 
|  | case Intrinsic::amdgcn_image_sample_c_cl_o: | 
|  | return AMDGPUISD::IMAGE_SAMPLE_C_CL_O; | 
|  | case Intrinsic::amdgcn_image_sample_c_d_o: | 
|  | return AMDGPUISD::IMAGE_SAMPLE_C_D_O; | 
|  | case Intrinsic::amdgcn_image_sample_c_d_cl_o: | 
|  | return AMDGPUISD::IMAGE_SAMPLE_C_D_CL_O; | 
|  | case Intrinsic::amdgcn_image_sample_c_l_o: | 
|  | return AMDGPUISD::IMAGE_SAMPLE_C_L_O; | 
|  | case Intrinsic::amdgcn_image_sample_c_b_o: | 
|  | return AMDGPUISD::IMAGE_SAMPLE_C_B_O; | 
|  | case Intrinsic::amdgcn_image_sample_c_b_cl_o: | 
|  | return AMDGPUISD::IMAGE_SAMPLE_C_B_CL_O; | 
|  | case Intrinsic::amdgcn_image_sample_c_lz_o: | 
|  | return AMDGPUISD::IMAGE_SAMPLE_C_LZ_O; | 
|  | case Intrinsic::amdgcn_image_sample_c_cd_o: | 
|  | return AMDGPUISD::IMAGE_SAMPLE_C_CD_O; | 
|  | case Intrinsic::amdgcn_image_sample_c_cd_cl_o: | 
|  | return AMDGPUISD::IMAGE_SAMPLE_C_CD_CL_O; | 
|  |  | 
|  | // Basic gather4. | 
|  | case Intrinsic::amdgcn_image_gather4: | 
|  | return AMDGPUISD::IMAGE_GATHER4; | 
|  | case Intrinsic::amdgcn_image_gather4_cl: | 
|  | return AMDGPUISD::IMAGE_GATHER4_CL; | 
|  | case Intrinsic::amdgcn_image_gather4_l: | 
|  | return AMDGPUISD::IMAGE_GATHER4_L; | 
|  | case Intrinsic::amdgcn_image_gather4_b: | 
|  | return AMDGPUISD::IMAGE_GATHER4_B; | 
|  | case Intrinsic::amdgcn_image_gather4_b_cl: | 
|  | return AMDGPUISD::IMAGE_GATHER4_B_CL; | 
|  | case Intrinsic::amdgcn_image_gather4_lz: | 
|  | return AMDGPUISD::IMAGE_GATHER4_LZ; | 
|  |  | 
|  | // Gather4 with comparison. | 
|  | case Intrinsic::amdgcn_image_gather4_c: | 
|  | return AMDGPUISD::IMAGE_GATHER4_C; | 
|  | case Intrinsic::amdgcn_image_gather4_c_cl: | 
|  | return AMDGPUISD::IMAGE_GATHER4_C_CL; | 
|  | case Intrinsic::amdgcn_image_gather4_c_l: | 
|  | return AMDGPUISD::IMAGE_GATHER4_C_L; | 
|  | case Intrinsic::amdgcn_image_gather4_c_b: | 
|  | return AMDGPUISD::IMAGE_GATHER4_C_B; | 
|  | case Intrinsic::amdgcn_image_gather4_c_b_cl: | 
|  | return AMDGPUISD::IMAGE_GATHER4_C_B_CL; | 
|  | case Intrinsic::amdgcn_image_gather4_c_lz: | 
|  | return AMDGPUISD::IMAGE_GATHER4_C_LZ; | 
|  |  | 
|  | // Gather4 with offsets. | 
|  | case Intrinsic::amdgcn_image_gather4_o: | 
|  | return AMDGPUISD::IMAGE_GATHER4_O; | 
|  | case Intrinsic::amdgcn_image_gather4_cl_o: | 
|  | return AMDGPUISD::IMAGE_GATHER4_CL_O; | 
|  | case Intrinsic::amdgcn_image_gather4_l_o: | 
|  | return AMDGPUISD::IMAGE_GATHER4_L_O; | 
|  | case Intrinsic::amdgcn_image_gather4_b_o: | 
|  | return AMDGPUISD::IMAGE_GATHER4_B_O; | 
|  | case Intrinsic::amdgcn_image_gather4_b_cl_o: | 
|  | return AMDGPUISD::IMAGE_GATHER4_B_CL_O; | 
|  | case Intrinsic::amdgcn_image_gather4_lz_o: | 
|  | return AMDGPUISD::IMAGE_GATHER4_LZ_O; | 
|  |  | 
|  | // Gather4 with comparison and offsets. | 
|  | case Intrinsic::amdgcn_image_gather4_c_o: | 
|  | return AMDGPUISD::IMAGE_GATHER4_C_O; | 
|  | case Intrinsic::amdgcn_image_gather4_c_cl_o: | 
|  | return AMDGPUISD::IMAGE_GATHER4_C_CL_O; | 
|  | case Intrinsic::amdgcn_image_gather4_c_l_o: | 
|  | return AMDGPUISD::IMAGE_GATHER4_C_L_O; | 
|  | case Intrinsic::amdgcn_image_gather4_c_b_o: | 
|  | return AMDGPUISD::IMAGE_GATHER4_C_B_O; | 
|  | case Intrinsic::amdgcn_image_gather4_c_b_cl_o: | 
|  | return AMDGPUISD::IMAGE_GATHER4_C_B_CL_O; | 
|  | case Intrinsic::amdgcn_image_gather4_c_lz_o: | 
|  | return AMDGPUISD::IMAGE_GATHER4_C_LZ_O; | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static SDValue adjustLoadValueType(SDValue Result, EVT LoadVT, SDLoc DL, | 
|  | SelectionDAG &DAG, bool Unpacked) { | 
|  | if (Unpacked) { // From v2i32/v4i32 back to v2f16/v4f16. | 
|  | // Truncate to v2i16/v4i16. | 
|  | EVT IntLoadVT = LoadVT.changeTypeToInteger(); | 
|  | SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, IntLoadVT, Result); | 
|  | // Bitcast to original type (v2f16/v4f16). | 
|  | return DAG.getNode(ISD::BITCAST, DL, LoadVT, Trunc); | 
|  | } | 
|  | // Cast back to the original packed type. | 
|  | return DAG.getNode(ISD::BITCAST, DL, LoadVT, Result); | 
|  | } | 
|  |  | 
|  | // This is to lower INTRINSIC_W_CHAIN with illegal result types. | 
|  | SDValue SITargetLowering::lowerIntrinsicWChain_IllegalReturnType(SDValue Op, | 
|  | SDValue &Chain, SelectionDAG &DAG) const { | 
|  | EVT LoadVT = Op.getValueType(); | 
|  | // TODO: handle v3f16. | 
|  | if (LoadVT != MVT::v2f16 && LoadVT != MVT::v4f16) | 
|  | return SDValue(); | 
|  |  | 
|  | bool Unpacked = Subtarget->hasUnpackedD16VMem(); | 
|  | EVT UnpackedLoadVT = (LoadVT == MVT::v2f16) ? MVT::v2i32 : MVT::v4i32; | 
|  | EVT EquivLoadVT = Unpacked ? UnpackedLoadVT : | 
|  | getEquivalentMemType(*DAG.getContext(), LoadVT); | 
|  | // Change from v4f16/v2f16 to EquivLoadVT. | 
|  | SDVTList VTList = DAG.getVTList(EquivLoadVT, MVT::Other); | 
|  |  | 
|  | SDValue Res; | 
|  | SDLoc DL(Op); | 
|  | MemSDNode *M = cast<MemSDNode>(Op); | 
|  | unsigned IID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); | 
|  | switch (IID) { | 
|  | case Intrinsic::amdgcn_tbuffer_load: { | 
|  | SDValue Ops[] = { | 
|  | Op.getOperand(0),  // Chain | 
|  | Op.getOperand(2),  // rsrc | 
|  | Op.getOperand(3),  // vindex | 
|  | Op.getOperand(4),  // voffset | 
|  | Op.getOperand(5),  // soffset | 
|  | Op.getOperand(6),  // offset | 
|  | Op.getOperand(7),  // dfmt | 
|  | Op.getOperand(8),  // nfmt | 
|  | Op.getOperand(9),  // glc | 
|  | Op.getOperand(10)  // slc | 
|  | }; | 
|  | Res = DAG.getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16, DL, | 
|  | VTList, Ops, M->getMemoryVT(), | 
|  | M->getMemOperand()); | 
|  | Chain = Res.getValue(1); | 
|  | return adjustLoadValueType(Res, LoadVT, DL, DAG, Unpacked); | 
|  | } | 
|  | case Intrinsic::amdgcn_buffer_load_format: { | 
|  | SDValue Ops[] = { | 
|  | Op.getOperand(0), // Chain | 
|  | Op.getOperand(2), // rsrc | 
|  | Op.getOperand(3), // vindex | 
|  | Op.getOperand(4), // offset | 
|  | Op.getOperand(5), // glc | 
|  | Op.getOperand(6)  // slc | 
|  | }; | 
|  | Res = DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, | 
|  | DL, VTList, Ops, M->getMemoryVT(), | 
|  | M->getMemOperand()); | 
|  | Chain = Res.getValue(1); | 
|  | return adjustLoadValueType(Res, LoadVT, DL, DAG, Unpacked); | 
|  | } | 
|  | case Intrinsic::amdgcn_image_load: | 
|  | case Intrinsic::amdgcn_image_load_mip: { | 
|  | SDValue Ops[] = { | 
|  | Op.getOperand(0),  // Chain | 
|  | Op.getOperand(2),  // vaddr | 
|  | Op.getOperand(3),  // rsrc | 
|  | Op.getOperand(4),  // dmask | 
|  | Op.getOperand(5),  // glc | 
|  | Op.getOperand(6),  // slc | 
|  | Op.getOperand(7),  // lwe | 
|  | Op.getOperand(8)   // da | 
|  | }; | 
|  | unsigned Opc = getImageOpcode(IID); | 
|  | Res = DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, M->getMemoryVT(), | 
|  | M->getMemOperand()); | 
|  | Chain = Res.getValue(1); | 
|  | return adjustLoadValueType(Res, LoadVT, DL, DAG, Unpacked); | 
|  | } | 
|  | // Basic sample. | 
|  | case Intrinsic::amdgcn_image_sample: | 
|  | case Intrinsic::amdgcn_image_sample_cl: | 
|  | case Intrinsic::amdgcn_image_sample_d: | 
|  | case Intrinsic::amdgcn_image_sample_d_cl: | 
|  | case Intrinsic::amdgcn_image_sample_l: | 
|  | case Intrinsic::amdgcn_image_sample_b: | 
|  | case Intrinsic::amdgcn_image_sample_b_cl: | 
|  | case Intrinsic::amdgcn_image_sample_lz: | 
|  | case Intrinsic::amdgcn_image_sample_cd: | 
|  | case Intrinsic::amdgcn_image_sample_cd_cl: | 
|  |  | 
|  | // Sample with comparison. | 
|  | case Intrinsic::amdgcn_image_sample_c: | 
|  | case Intrinsic::amdgcn_image_sample_c_cl: | 
|  | case Intrinsic::amdgcn_image_sample_c_d: | 
|  | case Intrinsic::amdgcn_image_sample_c_d_cl: | 
|  | case Intrinsic::amdgcn_image_sample_c_l: | 
|  | case Intrinsic::amdgcn_image_sample_c_b: | 
|  | case Intrinsic::amdgcn_image_sample_c_b_cl: | 
|  | case Intrinsic::amdgcn_image_sample_c_lz: | 
|  | case Intrinsic::amdgcn_image_sample_c_cd: | 
|  | case Intrinsic::amdgcn_image_sample_c_cd_cl: | 
|  |  | 
|  | // Sample with offsets. | 
|  | case Intrinsic::amdgcn_image_sample_o: | 
|  | case Intrinsic::amdgcn_image_sample_cl_o: | 
|  | case Intrinsic::amdgcn_image_sample_d_o: | 
|  | case Intrinsic::amdgcn_image_sample_d_cl_o: | 
|  | case Intrinsic::amdgcn_image_sample_l_o: | 
|  | case Intrinsic::amdgcn_image_sample_b_o: | 
|  | case Intrinsic::amdgcn_image_sample_b_cl_o: | 
|  | case Intrinsic::amdgcn_image_sample_lz_o: | 
|  | case Intrinsic::amdgcn_image_sample_cd_o: | 
|  | case Intrinsic::amdgcn_image_sample_cd_cl_o: | 
|  |  | 
|  | // Sample with comparison and offsets. | 
|  | case Intrinsic::amdgcn_image_sample_c_o: | 
|  | case Intrinsic::amdgcn_image_sample_c_cl_o: | 
|  | case Intrinsic::amdgcn_image_sample_c_d_o: | 
|  | case Intrinsic::amdgcn_image_sample_c_d_cl_o: | 
|  | case Intrinsic::amdgcn_image_sample_c_l_o: | 
|  | case Intrinsic::amdgcn_image_sample_c_b_o: | 
|  | case Intrinsic::amdgcn_image_sample_c_b_cl_o: | 
|  | case Intrinsic::amdgcn_image_sample_c_lz_o: | 
|  | case Intrinsic::amdgcn_image_sample_c_cd_o: | 
|  | case Intrinsic::amdgcn_image_sample_c_cd_cl_o: | 
|  |  | 
|  | // Basic gather4 | 
|  | case Intrinsic::amdgcn_image_gather4: | 
|  | case Intrinsic::amdgcn_image_gather4_cl: | 
|  | case Intrinsic::amdgcn_image_gather4_l: | 
|  | case Intrinsic::amdgcn_image_gather4_b: | 
|  | case Intrinsic::amdgcn_image_gather4_b_cl: | 
|  | case Intrinsic::amdgcn_image_gather4_lz: | 
|  |  | 
|  | // Gather4 with comparison | 
|  | case Intrinsic::amdgcn_image_gather4_c: | 
|  | case Intrinsic::amdgcn_image_gather4_c_cl: | 
|  | case Intrinsic::amdgcn_image_gather4_c_l: | 
|  | case Intrinsic::amdgcn_image_gather4_c_b: | 
|  | case Intrinsic::amdgcn_image_gather4_c_b_cl: | 
|  | case Intrinsic::amdgcn_image_gather4_c_lz: | 
|  |  | 
|  | // Gather4 with offsets | 
|  | case Intrinsic::amdgcn_image_gather4_o: | 
|  | case Intrinsic::amdgcn_image_gather4_cl_o: | 
|  | case Intrinsic::amdgcn_image_gather4_l_o: | 
|  | case Intrinsic::amdgcn_image_gather4_b_o: | 
|  | case Intrinsic::amdgcn_image_gather4_b_cl_o: | 
|  | case Intrinsic::amdgcn_image_gather4_lz_o: | 
|  |  | 
|  | // Gather4 with comparison and offsets | 
|  | case Intrinsic::amdgcn_image_gather4_c_o: | 
|  | case Intrinsic::amdgcn_image_gather4_c_cl_o: | 
|  | case Intrinsic::amdgcn_image_gather4_c_l_o: | 
|  | case Intrinsic::amdgcn_image_gather4_c_b_o: | 
|  | case Intrinsic::amdgcn_image_gather4_c_b_cl_o: | 
|  | case Intrinsic::amdgcn_image_gather4_c_lz_o: { | 
|  | SDValue Ops[] = { | 
|  | Op.getOperand(0),  // Chain | 
|  | Op.getOperand(2),  // vaddr | 
|  | Op.getOperand(3),  // rsrc | 
|  | Op.getOperand(4),  // sampler | 
|  | Op.getOperand(5),  // dmask | 
|  | Op.getOperand(6),  // unorm | 
|  | Op.getOperand(7),  // glc | 
|  | Op.getOperand(8),  // slc | 
|  | Op.getOperand(9),  // lwe | 
|  | Op.getOperand(10)  // da | 
|  | }; | 
|  | unsigned Opc = getImageOpcode(IID); | 
|  | Res = DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, M->getMemoryVT(), | 
|  | M->getMemOperand()); | 
|  | Chain = Res.getValue(1); | 
|  | return adjustLoadValueType(Res, LoadVT, DL, DAG, Unpacked); | 
|  | } | 
|  | default: | 
|  | return SDValue(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void SITargetLowering::ReplaceNodeResults(SDNode *N, | 
|  | SmallVectorImpl<SDValue> &Results, | 
|  | SelectionDAG &DAG) const { | 
|  | switch (N->getOpcode()) { | 
|  | case ISD::INSERT_VECTOR_ELT: { | 
|  | if (SDValue Res = lowerINSERT_VECTOR_ELT(SDValue(N, 0), DAG)) | 
|  | Results.push_back(Res); | 
|  | return; | 
|  | } | 
|  | case ISD::EXTRACT_VECTOR_ELT: { | 
|  | if (SDValue Res = lowerEXTRACT_VECTOR_ELT(SDValue(N, 0), DAG)) | 
|  | Results.push_back(Res); | 
|  | return; | 
|  | } | 
|  | case ISD::INTRINSIC_WO_CHAIN: { | 
|  | unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); | 
|  | switch (IID) { | 
|  | case Intrinsic::amdgcn_cvt_pkrtz: { | 
|  | SDValue Src0 = N->getOperand(1); | 
|  | SDValue Src1 = N->getOperand(2); | 
|  | SDLoc SL(N); | 
|  | SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_PKRTZ_F16_F32, SL, MVT::i32, | 
|  | Src0, Src1); | 
|  | Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Cvt)); | 
|  | return; | 
|  | } | 
|  | case Intrinsic::amdgcn_cvt_pknorm_i16: | 
|  | case Intrinsic::amdgcn_cvt_pknorm_u16: | 
|  | case Intrinsic::amdgcn_cvt_pk_i16: | 
|  | case Intrinsic::amdgcn_cvt_pk_u16: { | 
|  | SDValue Src0 = N->getOperand(1); | 
|  | SDValue Src1 = N->getOperand(2); | 
|  | SDLoc SL(N); | 
|  | unsigned Opcode; | 
|  |  | 
|  | if (IID == Intrinsic::amdgcn_cvt_pknorm_i16) | 
|  | Opcode = AMDGPUISD::CVT_PKNORM_I16_F32; | 
|  | else if (IID == Intrinsic::amdgcn_cvt_pknorm_u16) | 
|  | Opcode = AMDGPUISD::CVT_PKNORM_U16_F32; | 
|  | else if (IID == Intrinsic::amdgcn_cvt_pk_i16) | 
|  | Opcode = AMDGPUISD::CVT_PK_I16_I32; | 
|  | else | 
|  | Opcode = AMDGPUISD::CVT_PK_U16_U32; | 
|  |  | 
|  | SDValue Cvt = DAG.getNode(Opcode, SL, MVT::i32, Src0, Src1); | 
|  | Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, Cvt)); | 
|  | return; | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ISD::INTRINSIC_W_CHAIN: { | 
|  | SDValue Chain; | 
|  | if (SDValue Res = lowerIntrinsicWChain_IllegalReturnType(SDValue(N, 0), | 
|  | Chain, DAG)) { | 
|  | Results.push_back(Res); | 
|  | Results.push_back(Chain); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ISD::SELECT: { | 
|  | SDLoc SL(N); | 
|  | EVT VT = N->getValueType(0); | 
|  | EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); | 
|  | SDValue LHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(1)); | 
|  | SDValue RHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(2)); | 
|  |  | 
|  | EVT SelectVT = NewVT; | 
|  | if (NewVT.bitsLT(MVT::i32)) { | 
|  | LHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, LHS); | 
|  | RHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, RHS); | 
|  | SelectVT = MVT::i32; | 
|  | } | 
|  |  | 
|  | SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, SelectVT, | 
|  | N->getOperand(0), LHS, RHS); | 
|  |  | 
|  | if (NewVT != SelectVT) | 
|  | NewSelect = DAG.getNode(ISD::TRUNCATE, SL, NewVT, NewSelect); | 
|  | Results.push_back(DAG.getNode(ISD::BITCAST, SL, VT, NewSelect)); | 
|  | return; | 
|  | } | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// \brief Helper function for LowerBRCOND | 
|  | static SDNode *findUser(SDValue Value, unsigned Opcode) { | 
|  |  | 
|  | SDNode *Parent = Value.getNode(); | 
|  | for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end(); | 
|  | I != E; ++I) { | 
|  |  | 
|  | if (I.getUse().get() != Value) | 
|  | continue; | 
|  |  | 
|  | if (I->getOpcode() == Opcode) | 
|  | return *I; | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | unsigned SITargetLowering::isCFIntrinsic(const SDNode *Intr) const { | 
|  | if (Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN) { | 
|  | switch (cast<ConstantSDNode>(Intr->getOperand(1))->getZExtValue()) { | 
|  | case Intrinsic::amdgcn_if: | 
|  | return AMDGPUISD::IF; | 
|  | case Intrinsic::amdgcn_else: | 
|  | return AMDGPUISD::ELSE; | 
|  | case Intrinsic::amdgcn_loop: | 
|  | return AMDGPUISD::LOOP; | 
|  | case Intrinsic::amdgcn_end_cf: | 
|  | llvm_unreachable("should not occur"); | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | // break, if_break, else_break are all only used as inputs to loop, not | 
|  | // directly as branch conditions. | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void SITargetLowering::createDebuggerPrologueStackObjects( | 
|  | MachineFunction &MF) const { | 
|  | // Create stack objects that are used for emitting debugger prologue. | 
|  | // | 
|  | // Debugger prologue writes work group IDs and work item IDs to scratch memory | 
|  | // at fixed location in the following format: | 
|  | //   offset 0:  work group ID x | 
|  | //   offset 4:  work group ID y | 
|  | //   offset 8:  work group ID z | 
|  | //   offset 16: work item ID x | 
|  | //   offset 20: work item ID y | 
|  | //   offset 24: work item ID z | 
|  | SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); | 
|  | int ObjectIdx = 0; | 
|  |  | 
|  | // For each dimension: | 
|  | for (unsigned i = 0; i < 3; ++i) { | 
|  | // Create fixed stack object for work group ID. | 
|  | ObjectIdx = MF.getFrameInfo().CreateFixedObject(4, i * 4, true); | 
|  | Info->setDebuggerWorkGroupIDStackObjectIndex(i, ObjectIdx); | 
|  | // Create fixed stack object for work item ID. | 
|  | ObjectIdx = MF.getFrameInfo().CreateFixedObject(4, i * 4 + 16, true); | 
|  | Info->setDebuggerWorkItemIDStackObjectIndex(i, ObjectIdx); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool SITargetLowering::shouldEmitFixup(const GlobalValue *GV) const { | 
|  | const Triple &TT = getTargetMachine().getTargetTriple(); | 
|  | return (GV->getType()->getAddressSpace() == AMDGPUASI.CONSTANT_ADDRESS || | 
|  | GV->getType()->getAddressSpace() == AMDGPUASI.CONSTANT_ADDRESS_32BIT) && | 
|  | AMDGPU::shouldEmitConstantsToTextSection(TT); | 
|  | } | 
|  |  | 
|  | bool SITargetLowering::shouldEmitGOTReloc(const GlobalValue *GV) const { | 
|  | return (GV->getType()->getAddressSpace() == AMDGPUASI.GLOBAL_ADDRESS || | 
|  | GV->getType()->getAddressSpace() == AMDGPUASI.CONSTANT_ADDRESS || | 
|  | GV->getType()->getAddressSpace() == AMDGPUASI.CONSTANT_ADDRESS_32BIT) && | 
|  | !shouldEmitFixup(GV) && | 
|  | !getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); | 
|  | } | 
|  |  | 
|  | bool SITargetLowering::shouldEmitPCReloc(const GlobalValue *GV) const { | 
|  | return !shouldEmitFixup(GV) && !shouldEmitGOTReloc(GV); | 
|  | } | 
|  |  | 
|  | /// This transforms the control flow intrinsics to get the branch destination as | 
|  | /// last parameter, also switches branch target with BR if the need arise | 
|  | SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc DL(BRCOND); | 
|  |  | 
|  | SDNode *Intr = BRCOND.getOperand(1).getNode(); | 
|  | SDValue Target = BRCOND.getOperand(2); | 
|  | SDNode *BR = nullptr; | 
|  | SDNode *SetCC = nullptr; | 
|  |  | 
|  | if (Intr->getOpcode() == ISD::SETCC) { | 
|  | // As long as we negate the condition everything is fine | 
|  | SetCC = Intr; | 
|  | Intr = SetCC->getOperand(0).getNode(); | 
|  |  | 
|  | } else { | 
|  | // Get the target from BR if we don't negate the condition | 
|  | BR = findUser(BRCOND, ISD::BR); | 
|  | Target = BR->getOperand(1); | 
|  | } | 
|  |  | 
|  | // FIXME: This changes the types of the intrinsics instead of introducing new | 
|  | // nodes with the correct types. | 
|  | // e.g. llvm.amdgcn.loop | 
|  |  | 
|  | // eg: i1,ch = llvm.amdgcn.loop t0, TargetConstant:i32<6271>, t3 | 
|  | // =>     t9: ch = llvm.amdgcn.loop t0, TargetConstant:i32<6271>, t3, BasicBlock:ch<bb1 0x7fee5286d088> | 
|  |  | 
|  | unsigned CFNode = isCFIntrinsic(Intr); | 
|  | if (CFNode == 0) { | 
|  | // This is a uniform branch so we don't need to legalize. | 
|  | return BRCOND; | 
|  | } | 
|  |  | 
|  | bool HaveChain = Intr->getOpcode() == ISD::INTRINSIC_VOID || | 
|  | Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN; | 
|  |  | 
|  | assert(!SetCC || | 
|  | (SetCC->getConstantOperandVal(1) == 1 && | 
|  | cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() == | 
|  | ISD::SETNE)); | 
|  |  | 
|  | // operands of the new intrinsic call | 
|  | SmallVector<SDValue, 4> Ops; | 
|  | if (HaveChain) | 
|  | Ops.push_back(BRCOND.getOperand(0)); | 
|  |  | 
|  | Ops.append(Intr->op_begin() + (HaveChain ?  2 : 1), Intr->op_end()); | 
|  | Ops.push_back(Target); | 
|  |  | 
|  | ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end()); | 
|  |  | 
|  | // build the new intrinsic call | 
|  | SDNode *Result = DAG.getNode(CFNode, DL, DAG.getVTList(Res), Ops).getNode(); | 
|  |  | 
|  | if (!HaveChain) { | 
|  | SDValue Ops[] =  { | 
|  | SDValue(Result, 0), | 
|  | BRCOND.getOperand(0) | 
|  | }; | 
|  |  | 
|  | Result = DAG.getMergeValues(Ops, DL).getNode(); | 
|  | } | 
|  |  | 
|  | if (BR) { | 
|  | // Give the branch instruction our target | 
|  | SDValue Ops[] = { | 
|  | BR->getOperand(0), | 
|  | BRCOND.getOperand(2) | 
|  | }; | 
|  | SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops); | 
|  | DAG.ReplaceAllUsesWith(BR, NewBR.getNode()); | 
|  | BR = NewBR.getNode(); | 
|  | } | 
|  |  | 
|  | SDValue Chain = SDValue(Result, Result->getNumValues() - 1); | 
|  |  | 
|  | // Copy the intrinsic results to registers | 
|  | for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) { | 
|  | SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg); | 
|  | if (!CopyToReg) | 
|  | continue; | 
|  |  | 
|  | Chain = DAG.getCopyToReg( | 
|  | Chain, DL, | 
|  | CopyToReg->getOperand(1), | 
|  | SDValue(Result, i - 1), | 
|  | SDValue()); | 
|  |  | 
|  | DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0)); | 
|  | } | 
|  |  | 
|  | // Remove the old intrinsic from the chain | 
|  | DAG.ReplaceAllUsesOfValueWith( | 
|  | SDValue(Intr, Intr->getNumValues() - 1), | 
|  | Intr->getOperand(0)); | 
|  |  | 
|  | return Chain; | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::getFPExtOrFPTrunc(SelectionDAG &DAG, | 
|  | SDValue Op, | 
|  | const SDLoc &DL, | 
|  | EVT VT) const { | 
|  | return Op.getValueType().bitsLE(VT) ? | 
|  | DAG.getNode(ISD::FP_EXTEND, DL, VT, Op) : | 
|  | DAG.getNode(ISD::FTRUNC, DL, VT, Op); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::lowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const { | 
|  | assert(Op.getValueType() == MVT::f16 && | 
|  | "Do not know how to custom lower FP_ROUND for non-f16 type"); | 
|  |  | 
|  | SDValue Src = Op.getOperand(0); | 
|  | EVT SrcVT = Src.getValueType(); | 
|  | if (SrcVT != MVT::f64) | 
|  | return Op; | 
|  |  | 
|  | SDLoc DL(Op); | 
|  |  | 
|  | SDValue FpToFp16 = DAG.getNode(ISD::FP_TO_FP16, DL, MVT::i32, Src); | 
|  | SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToFp16); | 
|  | return DAG.getNode(ISD::BITCAST, DL, MVT::f16, Trunc); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::lowerTRAP(SDValue Op, SelectionDAG &DAG) const { | 
|  | SDLoc SL(Op); | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | SDValue Chain = Op.getOperand(0); | 
|  |  | 
|  | unsigned TrapID = Op.getOpcode() == ISD::DEBUGTRAP ? | 
|  | SISubtarget::TrapIDLLVMDebugTrap : SISubtarget::TrapIDLLVMTrap; | 
|  |  | 
|  | if (Subtarget->getTrapHandlerAbi() == SISubtarget::TrapHandlerAbiHsa && | 
|  | Subtarget->isTrapHandlerEnabled()) { | 
|  | SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); | 
|  | unsigned UserSGPR = Info->getQueuePtrUserSGPR(); | 
|  | assert(UserSGPR != AMDGPU::NoRegister); | 
|  |  | 
|  | SDValue QueuePtr = CreateLiveInRegister( | 
|  | DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64); | 
|  |  | 
|  | SDValue SGPR01 = DAG.getRegister(AMDGPU::SGPR0_SGPR1, MVT::i64); | 
|  |  | 
|  | SDValue ToReg = DAG.getCopyToReg(Chain, SL, SGPR01, | 
|  | QueuePtr, SDValue()); | 
|  |  | 
|  | SDValue Ops[] = { | 
|  | ToReg, | 
|  | DAG.getTargetConstant(TrapID, SL, MVT::i16), | 
|  | SGPR01, | 
|  | ToReg.getValue(1) | 
|  | }; | 
|  |  | 
|  | return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops); | 
|  | } | 
|  |  | 
|  | switch (TrapID) { | 
|  | case SISubtarget::TrapIDLLVMTrap: | 
|  | return DAG.getNode(AMDGPUISD::ENDPGM, SL, MVT::Other, Chain); | 
|  | case SISubtarget::TrapIDLLVMDebugTrap: { | 
|  | DiagnosticInfoUnsupported NoTrap(MF.getFunction(), | 
|  | "debugtrap handler not supported", | 
|  | Op.getDebugLoc(), | 
|  | DS_Warning); | 
|  | LLVMContext &Ctx = MF.getFunction().getContext(); | 
|  | Ctx.diagnose(NoTrap); | 
|  | return Chain; | 
|  | } | 
|  | default: | 
|  | llvm_unreachable("unsupported trap handler type!"); | 
|  | } | 
|  |  | 
|  | return Chain; | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::getSegmentAperture(unsigned AS, const SDLoc &DL, | 
|  | SelectionDAG &DAG) const { | 
|  | // FIXME: Use inline constants (src_{shared, private}_base) instead. | 
|  | if (Subtarget->hasApertureRegs()) { | 
|  | unsigned Offset = AS == AMDGPUASI.LOCAL_ADDRESS ? | 
|  | AMDGPU::Hwreg::OFFSET_SRC_SHARED_BASE : | 
|  | AMDGPU::Hwreg::OFFSET_SRC_PRIVATE_BASE; | 
|  | unsigned WidthM1 = AS == AMDGPUASI.LOCAL_ADDRESS ? | 
|  | AMDGPU::Hwreg::WIDTH_M1_SRC_SHARED_BASE : | 
|  | AMDGPU::Hwreg::WIDTH_M1_SRC_PRIVATE_BASE; | 
|  | unsigned Encoding = | 
|  | AMDGPU::Hwreg::ID_MEM_BASES << AMDGPU::Hwreg::ID_SHIFT_ | | 
|  | Offset << AMDGPU::Hwreg::OFFSET_SHIFT_ | | 
|  | WidthM1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_; | 
|  |  | 
|  | SDValue EncodingImm = DAG.getTargetConstant(Encoding, DL, MVT::i16); | 
|  | SDValue ApertureReg = SDValue( | 
|  | DAG.getMachineNode(AMDGPU::S_GETREG_B32, DL, MVT::i32, EncodingImm), 0); | 
|  | SDValue ShiftAmount = DAG.getTargetConstant(WidthM1 + 1, DL, MVT::i32); | 
|  | return DAG.getNode(ISD::SHL, DL, MVT::i32, ApertureReg, ShiftAmount); | 
|  | } | 
|  |  | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); | 
|  | unsigned UserSGPR = Info->getQueuePtrUserSGPR(); | 
|  | assert(UserSGPR != AMDGPU::NoRegister); | 
|  |  | 
|  | SDValue QueuePtr = CreateLiveInRegister( | 
|  | DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64); | 
|  |  | 
|  | // Offset into amd_queue_t for group_segment_aperture_base_hi / | 
|  | // private_segment_aperture_base_hi. | 
|  | uint32_t StructOffset = (AS == AMDGPUASI.LOCAL_ADDRESS) ? 0x40 : 0x44; | 
|  |  | 
|  | SDValue Ptr = DAG.getObjectPtrOffset(DL, QueuePtr, StructOffset); | 
|  |  | 
|  | // TODO: Use custom target PseudoSourceValue. | 
|  | // TODO: We should use the value from the IR intrinsic call, but it might not | 
|  | // be available and how do we get it? | 
|  | Value *V = UndefValue::get(PointerType::get(Type::getInt8Ty(*DAG.getContext()), | 
|  | AMDGPUASI.CONSTANT_ADDRESS)); | 
|  |  | 
|  | MachinePointerInfo PtrInfo(V, StructOffset); | 
|  | return DAG.getLoad(MVT::i32, DL, QueuePtr.getValue(1), Ptr, PtrInfo, | 
|  | MinAlign(64, StructOffset), | 
|  | MachineMemOperand::MODereferenceable | | 
|  | MachineMemOperand::MOInvariant); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::lowerADDRSPACECAST(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc SL(Op); | 
|  | const AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(Op); | 
|  |  | 
|  | SDValue Src = ASC->getOperand(0); | 
|  | SDValue FlatNullPtr = DAG.getConstant(0, SL, MVT::i64); | 
|  |  | 
|  | const AMDGPUTargetMachine &TM = | 
|  | static_cast<const AMDGPUTargetMachine &>(getTargetMachine()); | 
|  |  | 
|  | // flat -> local/private | 
|  | if (ASC->getSrcAddressSpace() == AMDGPUASI.FLAT_ADDRESS) { | 
|  | unsigned DestAS = ASC->getDestAddressSpace(); | 
|  |  | 
|  | if (DestAS == AMDGPUASI.LOCAL_ADDRESS || | 
|  | DestAS == AMDGPUASI.PRIVATE_ADDRESS) { | 
|  | unsigned NullVal = TM.getNullPointerValue(DestAS); | 
|  | SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32); | 
|  | SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, FlatNullPtr, ISD::SETNE); | 
|  | SDValue Ptr = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src); | 
|  |  | 
|  | return DAG.getNode(ISD::SELECT, SL, MVT::i32, | 
|  | NonNull, Ptr, SegmentNullPtr); | 
|  | } | 
|  | } | 
|  |  | 
|  | // local/private -> flat | 
|  | if (ASC->getDestAddressSpace() == AMDGPUASI.FLAT_ADDRESS) { | 
|  | unsigned SrcAS = ASC->getSrcAddressSpace(); | 
|  |  | 
|  | if (SrcAS == AMDGPUASI.LOCAL_ADDRESS || | 
|  | SrcAS == AMDGPUASI.PRIVATE_ADDRESS) { | 
|  | unsigned NullVal = TM.getNullPointerValue(SrcAS); | 
|  | SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32); | 
|  |  | 
|  | SDValue NonNull | 
|  | = DAG.getSetCC(SL, MVT::i1, Src, SegmentNullPtr, ISD::SETNE); | 
|  |  | 
|  | SDValue Aperture = getSegmentAperture(ASC->getSrcAddressSpace(), SL, DAG); | 
|  | SDValue CvtPtr | 
|  | = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Aperture); | 
|  |  | 
|  | return DAG.getNode(ISD::SELECT, SL, MVT::i64, NonNull, | 
|  | DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr), | 
|  | FlatNullPtr); | 
|  | } | 
|  | } | 
|  |  | 
|  | // global <-> flat are no-ops and never emitted. | 
|  |  | 
|  | const MachineFunction &MF = DAG.getMachineFunction(); | 
|  | DiagnosticInfoUnsupported InvalidAddrSpaceCast( | 
|  | MF.getFunction(), "invalid addrspacecast", SL.getDebugLoc()); | 
|  | DAG.getContext()->diagnose(InvalidAddrSpaceCast); | 
|  |  | 
|  | return DAG.getUNDEF(ASC->getValueType(0)); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDValue Idx = Op.getOperand(2); | 
|  | if (isa<ConstantSDNode>(Idx)) | 
|  | return SDValue(); | 
|  |  | 
|  | // Avoid stack access for dynamic indexing. | 
|  | SDLoc SL(Op); | 
|  | SDValue Vec = Op.getOperand(0); | 
|  | SDValue Val = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Op.getOperand(1)); | 
|  |  | 
|  | // v_bfi_b32 (v_bfm_b32 16, (shl idx, 16)), val, vec | 
|  | SDValue ExtVal = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Val); | 
|  |  | 
|  | // Convert vector index to bit-index. | 
|  | SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, | 
|  | DAG.getConstant(16, SL, MVT::i32)); | 
|  |  | 
|  | SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec); | 
|  |  | 
|  | SDValue BFM = DAG.getNode(ISD::SHL, SL, MVT::i32, | 
|  | DAG.getConstant(0xffff, SL, MVT::i32), | 
|  | ScaledIdx); | 
|  |  | 
|  | SDValue LHS = DAG.getNode(ISD::AND, SL, MVT::i32, BFM, ExtVal); | 
|  | SDValue RHS = DAG.getNode(ISD::AND, SL, MVT::i32, | 
|  | DAG.getNOT(SL, BFM, MVT::i32), BCVec); | 
|  |  | 
|  | SDValue BFI = DAG.getNode(ISD::OR, SL, MVT::i32, LHS, RHS); | 
|  | return DAG.getNode(ISD::BITCAST, SL, Op.getValueType(), BFI); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc SL(Op); | 
|  |  | 
|  | EVT ResultVT = Op.getValueType(); | 
|  | SDValue Vec = Op.getOperand(0); | 
|  | SDValue Idx = Op.getOperand(1); | 
|  |  | 
|  | DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr); | 
|  |  | 
|  | // Make sure we we do any optimizations that will make it easier to fold | 
|  | // source modifiers before obscuring it with bit operations. | 
|  |  | 
|  | // XXX - Why doesn't this get called when vector_shuffle is expanded? | 
|  | if (SDValue Combined = performExtractVectorEltCombine(Op.getNode(), DCI)) | 
|  | return Combined; | 
|  |  | 
|  | if (const ConstantSDNode *CIdx = dyn_cast<ConstantSDNode>(Idx)) { | 
|  | SDValue Result = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec); | 
|  |  | 
|  | if (CIdx->getZExtValue() == 1) { | 
|  | Result = DAG.getNode(ISD::SRL, SL, MVT::i32, Result, | 
|  | DAG.getConstant(16, SL, MVT::i32)); | 
|  | } else { | 
|  | assert(CIdx->getZExtValue() == 0); | 
|  | } | 
|  |  | 
|  | if (ResultVT.bitsLT(MVT::i32)) | 
|  | Result = DAG.getNode(ISD::TRUNCATE, SL, MVT::i16, Result); | 
|  | return DAG.getNode(ISD::BITCAST, SL, ResultVT, Result); | 
|  | } | 
|  |  | 
|  | SDValue Sixteen = DAG.getConstant(16, SL, MVT::i32); | 
|  |  | 
|  | // Convert vector index to bit-index. | 
|  | SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, Sixteen); | 
|  |  | 
|  | SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec); | 
|  | SDValue Elt = DAG.getNode(ISD::SRL, SL, MVT::i32, BC, ScaledIdx); | 
|  |  | 
|  | SDValue Result = Elt; | 
|  | if (ResultVT.bitsLT(MVT::i32)) | 
|  | Result = DAG.getNode(ISD::TRUNCATE, SL, MVT::i16, Result); | 
|  |  | 
|  | return DAG.getNode(ISD::BITCAST, SL, ResultVT, Result); | 
|  | } | 
|  |  | 
|  | bool | 
|  | SITargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { | 
|  | // We can fold offsets for anything that doesn't require a GOT relocation. | 
|  | return (GA->getAddressSpace() == AMDGPUASI.GLOBAL_ADDRESS || | 
|  | GA->getAddressSpace() == AMDGPUASI.CONSTANT_ADDRESS || | 
|  | GA->getAddressSpace() == AMDGPUASI.CONSTANT_ADDRESS_32BIT) && | 
|  | !shouldEmitGOTReloc(GA->getGlobal()); | 
|  | } | 
|  |  | 
|  | static SDValue | 
|  | buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV, | 
|  | const SDLoc &DL, unsigned Offset, EVT PtrVT, | 
|  | unsigned GAFlags = SIInstrInfo::MO_NONE) { | 
|  | // In order to support pc-relative addressing, the PC_ADD_REL_OFFSET SDNode is | 
|  | // lowered to the following code sequence: | 
|  | // | 
|  | // For constant address space: | 
|  | //   s_getpc_b64 s[0:1] | 
|  | //   s_add_u32 s0, s0, $symbol | 
|  | //   s_addc_u32 s1, s1, 0 | 
|  | // | 
|  | //   s_getpc_b64 returns the address of the s_add_u32 instruction and then | 
|  | //   a fixup or relocation is emitted to replace $symbol with a literal | 
|  | //   constant, which is a pc-relative offset from the encoding of the $symbol | 
|  | //   operand to the global variable. | 
|  | // | 
|  | // For global address space: | 
|  | //   s_getpc_b64 s[0:1] | 
|  | //   s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo | 
|  | //   s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi | 
|  | // | 
|  | //   s_getpc_b64 returns the address of the s_add_u32 instruction and then | 
|  | //   fixups or relocations are emitted to replace $symbol@*@lo and | 
|  | //   $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant, | 
|  | //   which is a 64-bit pc-relative offset from the encoding of the $symbol | 
|  | //   operand to the global variable. | 
|  | // | 
|  | // What we want here is an offset from the value returned by s_getpc | 
|  | // (which is the address of the s_add_u32 instruction) to the global | 
|  | // variable, but since the encoding of $symbol starts 4 bytes after the start | 
|  | // of the s_add_u32 instruction, we end up with an offset that is 4 bytes too | 
|  | // small. This requires us to add 4 to the global variable offset in order to | 
|  | // compute the correct address. | 
|  | SDValue PtrLo = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4, | 
|  | GAFlags); | 
|  | SDValue PtrHi = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4, | 
|  | GAFlags == SIInstrInfo::MO_NONE ? | 
|  | GAFlags : GAFlags + 1); | 
|  | return DAG.getNode(AMDGPUISD::PC_ADD_REL_OFFSET, DL, PtrVT, PtrLo, PtrHi); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI, | 
|  | SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op); | 
|  | const GlobalValue *GV = GSD->getGlobal(); | 
|  |  | 
|  | if (GSD->getAddressSpace() != AMDGPUASI.CONSTANT_ADDRESS && | 
|  | GSD->getAddressSpace() != AMDGPUASI.CONSTANT_ADDRESS_32BIT && | 
|  | GSD->getAddressSpace() != AMDGPUASI.GLOBAL_ADDRESS && | 
|  | // FIXME: It isn't correct to rely on the type of the pointer. This should | 
|  | // be removed when address space 0 is 64-bit. | 
|  | !GV->getType()->getElementType()->isFunctionTy()) | 
|  | return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG); | 
|  |  | 
|  | SDLoc DL(GSD); | 
|  | EVT PtrVT = Op.getValueType(); | 
|  |  | 
|  | if (shouldEmitFixup(GV)) | 
|  | return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT); | 
|  | else if (shouldEmitPCReloc(GV)) | 
|  | return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT, | 
|  | SIInstrInfo::MO_REL32); | 
|  |  | 
|  | SDValue GOTAddr = buildPCRelGlobalAddress(DAG, GV, DL, 0, PtrVT, | 
|  | SIInstrInfo::MO_GOTPCREL32); | 
|  |  | 
|  | Type *Ty = PtrVT.getTypeForEVT(*DAG.getContext()); | 
|  | PointerType *PtrTy = PointerType::get(Ty, AMDGPUASI.CONSTANT_ADDRESS); | 
|  | const DataLayout &DataLayout = DAG.getDataLayout(); | 
|  | unsigned Align = DataLayout.getABITypeAlignment(PtrTy); | 
|  | // FIXME: Use a PseudoSourceValue once those can be assigned an address space. | 
|  | MachinePointerInfo PtrInfo(UndefValue::get(PtrTy)); | 
|  |  | 
|  | return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), GOTAddr, PtrInfo, Align, | 
|  | MachineMemOperand::MODereferenceable | | 
|  | MachineMemOperand::MOInvariant); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain, | 
|  | const SDLoc &DL, SDValue V) const { | 
|  | // We can't use S_MOV_B32 directly, because there is no way to specify m0 as | 
|  | // the destination register. | 
|  | // | 
|  | // We can't use CopyToReg, because MachineCSE won't combine COPY instructions, | 
|  | // so we will end up with redundant moves to m0. | 
|  | // | 
|  | // We use a pseudo to ensure we emit s_mov_b32 with m0 as the direct result. | 
|  |  | 
|  | // A Null SDValue creates a glue result. | 
|  | SDNode *M0 = DAG.getMachineNode(AMDGPU::SI_INIT_M0, DL, MVT::Other, MVT::Glue, | 
|  | V, Chain); | 
|  | return SDValue(M0, 0); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG, | 
|  | SDValue Op, | 
|  | MVT VT, | 
|  | unsigned Offset) const { | 
|  | SDLoc SL(Op); | 
|  | SDValue Param = lowerKernargMemParameter(DAG, MVT::i32, MVT::i32, SL, | 
|  | DAG.getEntryNode(), Offset, false); | 
|  | // The local size values will have the hi 16-bits as zero. | 
|  | return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param, | 
|  | DAG.getValueType(VT)); | 
|  | } | 
|  |  | 
|  | static SDValue emitNonHSAIntrinsicError(SelectionDAG &DAG, const SDLoc &DL, | 
|  | EVT VT) { | 
|  | DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(), | 
|  | "non-hsa intrinsic with hsa target", | 
|  | DL.getDebugLoc()); | 
|  | DAG.getContext()->diagnose(BadIntrin); | 
|  | return DAG.getUNDEF(VT); | 
|  | } | 
|  |  | 
|  | static SDValue emitRemovedIntrinsicError(SelectionDAG &DAG, const SDLoc &DL, | 
|  | EVT VT) { | 
|  | DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(), | 
|  | "intrinsic not supported on subtarget", | 
|  | DL.getDebugLoc()); | 
|  | DAG.getContext()->diagnose(BadIntrin); | 
|  | return DAG.getUNDEF(VT); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | auto MFI = MF.getInfo<SIMachineFunctionInfo>(); | 
|  |  | 
|  | EVT VT = Op.getValueType(); | 
|  | SDLoc DL(Op); | 
|  | unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); | 
|  |  | 
|  | // TODO: Should this propagate fast-math-flags? | 
|  |  | 
|  | switch (IntrinsicID) { | 
|  | case Intrinsic::amdgcn_implicit_buffer_ptr: { | 
|  | if (getSubtarget()->isAmdCodeObjectV2(MF)) | 
|  | return emitNonHSAIntrinsicError(DAG, DL, VT); | 
|  | return getPreloadedValue(DAG, *MFI, VT, | 
|  | AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR); | 
|  | } | 
|  | case Intrinsic::amdgcn_dispatch_ptr: | 
|  | case Intrinsic::amdgcn_queue_ptr: { | 
|  | if (!Subtarget->isAmdCodeObjectV2(MF)) { | 
|  | DiagnosticInfoUnsupported BadIntrin( | 
|  | MF.getFunction(), "unsupported hsa intrinsic without hsa target", | 
|  | DL.getDebugLoc()); | 
|  | DAG.getContext()->diagnose(BadIntrin); | 
|  | return DAG.getUNDEF(VT); | 
|  | } | 
|  |  | 
|  | auto RegID = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr ? | 
|  | AMDGPUFunctionArgInfo::DISPATCH_PTR : AMDGPUFunctionArgInfo::QUEUE_PTR; | 
|  | return getPreloadedValue(DAG, *MFI, VT, RegID); | 
|  | } | 
|  | case Intrinsic::amdgcn_implicitarg_ptr: { | 
|  | if (MFI->isEntryFunction()) | 
|  | return getImplicitArgPtr(DAG, DL); | 
|  | return getPreloadedValue(DAG, *MFI, VT, | 
|  | AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR); | 
|  | } | 
|  | case Intrinsic::amdgcn_kernarg_segment_ptr: { | 
|  | return getPreloadedValue(DAG, *MFI, VT, | 
|  | AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); | 
|  | } | 
|  | case Intrinsic::amdgcn_dispatch_id: { | 
|  | return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::DISPATCH_ID); | 
|  | } | 
|  | case Intrinsic::amdgcn_rcp: | 
|  | return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1)); | 
|  | case Intrinsic::amdgcn_rsq: | 
|  | return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1)); | 
|  | case Intrinsic::amdgcn_rsq_legacy: | 
|  | if (Subtarget->getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) | 
|  | return emitRemovedIntrinsicError(DAG, DL, VT); | 
|  |  | 
|  | return DAG.getNode(AMDGPUISD::RSQ_LEGACY, DL, VT, Op.getOperand(1)); | 
|  | case Intrinsic::amdgcn_rcp_legacy: | 
|  | if (Subtarget->getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) | 
|  | return emitRemovedIntrinsicError(DAG, DL, VT); | 
|  | return DAG.getNode(AMDGPUISD::RCP_LEGACY, DL, VT, Op.getOperand(1)); | 
|  | case Intrinsic::amdgcn_rsq_clamp: { | 
|  | if (Subtarget->getGeneration() < SISubtarget::VOLCANIC_ISLANDS) | 
|  | return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1)); | 
|  |  | 
|  | Type *Type = VT.getTypeForEVT(*DAG.getContext()); | 
|  | APFloat Max = APFloat::getLargest(Type->getFltSemantics()); | 
|  | APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true); | 
|  |  | 
|  | SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1)); | 
|  | SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq, | 
|  | DAG.getConstantFP(Max, DL, VT)); | 
|  | return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp, | 
|  | DAG.getConstantFP(Min, DL, VT)); | 
|  | } | 
|  | case Intrinsic::r600_read_ngroups_x: | 
|  | if (Subtarget->isAmdHsaOS()) | 
|  | return emitNonHSAIntrinsicError(DAG, DL, VT); | 
|  |  | 
|  | return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), | 
|  | SI::KernelInputOffsets::NGROUPS_X, false); | 
|  | case Intrinsic::r600_read_ngroups_y: | 
|  | if (Subtarget->isAmdHsaOS()) | 
|  | return emitNonHSAIntrinsicError(DAG, DL, VT); | 
|  |  | 
|  | return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), | 
|  | SI::KernelInputOffsets::NGROUPS_Y, false); | 
|  | case Intrinsic::r600_read_ngroups_z: | 
|  | if (Subtarget->isAmdHsaOS()) | 
|  | return emitNonHSAIntrinsicError(DAG, DL, VT); | 
|  |  | 
|  | return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), | 
|  | SI::KernelInputOffsets::NGROUPS_Z, false); | 
|  | case Intrinsic::r600_read_global_size_x: | 
|  | if (Subtarget->isAmdHsaOS()) | 
|  | return emitNonHSAIntrinsicError(DAG, DL, VT); | 
|  |  | 
|  | return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), | 
|  | SI::KernelInputOffsets::GLOBAL_SIZE_X, false); | 
|  | case Intrinsic::r600_read_global_size_y: | 
|  | if (Subtarget->isAmdHsaOS()) | 
|  | return emitNonHSAIntrinsicError(DAG, DL, VT); | 
|  |  | 
|  | return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), | 
|  | SI::KernelInputOffsets::GLOBAL_SIZE_Y, false); | 
|  | case Intrinsic::r600_read_global_size_z: | 
|  | if (Subtarget->isAmdHsaOS()) | 
|  | return emitNonHSAIntrinsicError(DAG, DL, VT); | 
|  |  | 
|  | return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), | 
|  | SI::KernelInputOffsets::GLOBAL_SIZE_Z, false); | 
|  | case Intrinsic::r600_read_local_size_x: | 
|  | if (Subtarget->isAmdHsaOS()) | 
|  | return emitNonHSAIntrinsicError(DAG, DL, VT); | 
|  |  | 
|  | return lowerImplicitZextParam(DAG, Op, MVT::i16, | 
|  | SI::KernelInputOffsets::LOCAL_SIZE_X); | 
|  | case Intrinsic::r600_read_local_size_y: | 
|  | if (Subtarget->isAmdHsaOS()) | 
|  | return emitNonHSAIntrinsicError(DAG, DL, VT); | 
|  |  | 
|  | return lowerImplicitZextParam(DAG, Op, MVT::i16, | 
|  | SI::KernelInputOffsets::LOCAL_SIZE_Y); | 
|  | case Intrinsic::r600_read_local_size_z: | 
|  | if (Subtarget->isAmdHsaOS()) | 
|  | return emitNonHSAIntrinsicError(DAG, DL, VT); | 
|  |  | 
|  | return lowerImplicitZextParam(DAG, Op, MVT::i16, | 
|  | SI::KernelInputOffsets::LOCAL_SIZE_Z); | 
|  | case Intrinsic::amdgcn_workgroup_id_x: | 
|  | case Intrinsic::r600_read_tgid_x: | 
|  | return getPreloadedValue(DAG, *MFI, VT, | 
|  | AMDGPUFunctionArgInfo::WORKGROUP_ID_X); | 
|  | case Intrinsic::amdgcn_workgroup_id_y: | 
|  | case Intrinsic::r600_read_tgid_y: | 
|  | return getPreloadedValue(DAG, *MFI, VT, | 
|  | AMDGPUFunctionArgInfo::WORKGROUP_ID_Y); | 
|  | case Intrinsic::amdgcn_workgroup_id_z: | 
|  | case Intrinsic::r600_read_tgid_z: | 
|  | return getPreloadedValue(DAG, *MFI, VT, | 
|  | AMDGPUFunctionArgInfo::WORKGROUP_ID_Z); | 
|  | case Intrinsic::amdgcn_workitem_id_x: { | 
|  | case Intrinsic::r600_read_tidig_x: | 
|  | return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32, | 
|  | SDLoc(DAG.getEntryNode()), | 
|  | MFI->getArgInfo().WorkItemIDX); | 
|  | } | 
|  | case Intrinsic::amdgcn_workitem_id_y: | 
|  | case Intrinsic::r600_read_tidig_y: | 
|  | return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32, | 
|  | SDLoc(DAG.getEntryNode()), | 
|  | MFI->getArgInfo().WorkItemIDY); | 
|  | case Intrinsic::amdgcn_workitem_id_z: | 
|  | case Intrinsic::r600_read_tidig_z: | 
|  | return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32, | 
|  | SDLoc(DAG.getEntryNode()), | 
|  | MFI->getArgInfo().WorkItemIDZ); | 
|  | case AMDGPUIntrinsic::SI_load_const: { | 
|  | SDValue Ops[] = { | 
|  | Op.getOperand(1), | 
|  | Op.getOperand(2) | 
|  | }; | 
|  |  | 
|  | MachineMemOperand *MMO = MF.getMachineMemOperand( | 
|  | MachinePointerInfo(), | 
|  | MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | | 
|  | MachineMemOperand::MOInvariant, | 
|  | VT.getStoreSize(), 4); | 
|  | return DAG.getMemIntrinsicNode(AMDGPUISD::LOAD_CONSTANT, DL, | 
|  | Op->getVTList(), Ops, VT, MMO); | 
|  | } | 
|  | case Intrinsic::amdgcn_fdiv_fast: | 
|  | return lowerFDIV_FAST(Op, DAG); | 
|  | case Intrinsic::amdgcn_interp_mov: { | 
|  | SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(4)); | 
|  | SDValue Glue = M0.getValue(1); | 
|  | return DAG.getNode(AMDGPUISD::INTERP_MOV, DL, MVT::f32, Op.getOperand(1), | 
|  | Op.getOperand(2), Op.getOperand(3), Glue); | 
|  | } | 
|  | case Intrinsic::amdgcn_interp_p1: { | 
|  | SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(4)); | 
|  | SDValue Glue = M0.getValue(1); | 
|  | return DAG.getNode(AMDGPUISD::INTERP_P1, DL, MVT::f32, Op.getOperand(1), | 
|  | Op.getOperand(2), Op.getOperand(3), Glue); | 
|  | } | 
|  | case Intrinsic::amdgcn_interp_p2: { | 
|  | SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(5)); | 
|  | SDValue Glue = SDValue(M0.getNode(), 1); | 
|  | return DAG.getNode(AMDGPUISD::INTERP_P2, DL, MVT::f32, Op.getOperand(1), | 
|  | Op.getOperand(2), Op.getOperand(3), Op.getOperand(4), | 
|  | Glue); | 
|  | } | 
|  | case Intrinsic::amdgcn_sin: | 
|  | return DAG.getNode(AMDGPUISD::SIN_HW, DL, VT, Op.getOperand(1)); | 
|  |  | 
|  | case Intrinsic::amdgcn_cos: | 
|  | return DAG.getNode(AMDGPUISD::COS_HW, DL, VT, Op.getOperand(1)); | 
|  |  | 
|  | case Intrinsic::amdgcn_log_clamp: { | 
|  | if (Subtarget->getGeneration() < SISubtarget::VOLCANIC_ISLANDS) | 
|  | return SDValue(); | 
|  |  | 
|  | DiagnosticInfoUnsupported BadIntrin( | 
|  | MF.getFunction(), "intrinsic not supported on subtarget", | 
|  | DL.getDebugLoc()); | 
|  | DAG.getContext()->diagnose(BadIntrin); | 
|  | return DAG.getUNDEF(VT); | 
|  | } | 
|  | case Intrinsic::amdgcn_ldexp: | 
|  | return DAG.getNode(AMDGPUISD::LDEXP, DL, VT, | 
|  | Op.getOperand(1), Op.getOperand(2)); | 
|  |  | 
|  | case Intrinsic::amdgcn_fract: | 
|  | return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1)); | 
|  |  | 
|  | case Intrinsic::amdgcn_class: | 
|  | return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT, | 
|  | Op.getOperand(1), Op.getOperand(2)); | 
|  | case Intrinsic::amdgcn_div_fmas: | 
|  | return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT, | 
|  | Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), | 
|  | Op.getOperand(4)); | 
|  |  | 
|  | case Intrinsic::amdgcn_div_fixup: | 
|  | return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT, | 
|  | Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); | 
|  |  | 
|  | case Intrinsic::amdgcn_trig_preop: | 
|  | return DAG.getNode(AMDGPUISD::TRIG_PREOP, DL, VT, | 
|  | Op.getOperand(1), Op.getOperand(2)); | 
|  | case Intrinsic::amdgcn_div_scale: { | 
|  | // 3rd parameter required to be a constant. | 
|  | const ConstantSDNode *Param = dyn_cast<ConstantSDNode>(Op.getOperand(3)); | 
|  | if (!Param) | 
|  | return DAG.getMergeValues({ DAG.getUNDEF(VT), DAG.getUNDEF(MVT::i1) }, DL); | 
|  |  | 
|  | // Translate to the operands expected by the machine instruction. The | 
|  | // first parameter must be the same as the first instruction. | 
|  | SDValue Numerator = Op.getOperand(1); | 
|  | SDValue Denominator = Op.getOperand(2); | 
|  |  | 
|  | // Note this order is opposite of the machine instruction's operations, | 
|  | // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The | 
|  | // intrinsic has the numerator as the first operand to match a normal | 
|  | // division operation. | 
|  |  | 
|  | SDValue Src0 = Param->isAllOnesValue() ? Numerator : Denominator; | 
|  |  | 
|  | return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0, | 
|  | Denominator, Numerator); | 
|  | } | 
|  | case Intrinsic::amdgcn_icmp: { | 
|  | const auto *CD = dyn_cast<ConstantSDNode>(Op.getOperand(3)); | 
|  | if (!CD) | 
|  | return DAG.getUNDEF(VT); | 
|  |  | 
|  | int CondCode = CD->getSExtValue(); | 
|  | if (CondCode < ICmpInst::Predicate::FIRST_ICMP_PREDICATE || | 
|  | CondCode > ICmpInst::Predicate::LAST_ICMP_PREDICATE) | 
|  | return DAG.getUNDEF(VT); | 
|  |  | 
|  | ICmpInst::Predicate IcInput = static_cast<ICmpInst::Predicate>(CondCode); | 
|  | ISD::CondCode CCOpcode = getICmpCondCode(IcInput); | 
|  | return DAG.getNode(AMDGPUISD::SETCC, DL, VT, Op.getOperand(1), | 
|  | Op.getOperand(2), DAG.getCondCode(CCOpcode)); | 
|  | } | 
|  | case Intrinsic::amdgcn_fcmp: { | 
|  | const auto *CD = dyn_cast<ConstantSDNode>(Op.getOperand(3)); | 
|  | if (!CD) | 
|  | return DAG.getUNDEF(VT); | 
|  |  | 
|  | int CondCode = CD->getSExtValue(); | 
|  | if (CondCode < FCmpInst::Predicate::FIRST_FCMP_PREDICATE || | 
|  | CondCode > FCmpInst::Predicate::LAST_FCMP_PREDICATE) | 
|  | return DAG.getUNDEF(VT); | 
|  |  | 
|  | FCmpInst::Predicate IcInput = static_cast<FCmpInst::Predicate>(CondCode); | 
|  | ISD::CondCode CCOpcode = getFCmpCondCode(IcInput); | 
|  | return DAG.getNode(AMDGPUISD::SETCC, DL, VT, Op.getOperand(1), | 
|  | Op.getOperand(2), DAG.getCondCode(CCOpcode)); | 
|  | } | 
|  | case Intrinsic::amdgcn_fmed3: | 
|  | return DAG.getNode(AMDGPUISD::FMED3, DL, VT, | 
|  | Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); | 
|  | case Intrinsic::amdgcn_fmul_legacy: | 
|  | return DAG.getNode(AMDGPUISD::FMUL_LEGACY, DL, VT, | 
|  | Op.getOperand(1), Op.getOperand(2)); | 
|  | case Intrinsic::amdgcn_sffbh: | 
|  | return DAG.getNode(AMDGPUISD::FFBH_I32, DL, VT, Op.getOperand(1)); | 
|  | case Intrinsic::amdgcn_sbfe: | 
|  | return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT, | 
|  | Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); | 
|  | case Intrinsic::amdgcn_ubfe: | 
|  | return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT, | 
|  | Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); | 
|  | case Intrinsic::amdgcn_cvt_pkrtz: | 
|  | case Intrinsic::amdgcn_cvt_pknorm_i16: | 
|  | case Intrinsic::amdgcn_cvt_pknorm_u16: | 
|  | case Intrinsic::amdgcn_cvt_pk_i16: | 
|  | case Intrinsic::amdgcn_cvt_pk_u16: { | 
|  | // FIXME: Stop adding cast if v2f16/v2i16 are legal. | 
|  | EVT VT = Op.getValueType(); | 
|  | unsigned Opcode; | 
|  |  | 
|  | if (IntrinsicID == Intrinsic::amdgcn_cvt_pkrtz) | 
|  | Opcode = AMDGPUISD::CVT_PKRTZ_F16_F32; | 
|  | else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_i16) | 
|  | Opcode = AMDGPUISD::CVT_PKNORM_I16_F32; | 
|  | else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_u16) | 
|  | Opcode = AMDGPUISD::CVT_PKNORM_U16_F32; | 
|  | else if (IntrinsicID == Intrinsic::amdgcn_cvt_pk_i16) | 
|  | Opcode = AMDGPUISD::CVT_PK_I16_I32; | 
|  | else | 
|  | Opcode = AMDGPUISD::CVT_PK_U16_U32; | 
|  |  | 
|  | SDValue Node = DAG.getNode(Opcode, DL, MVT::i32, | 
|  | Op.getOperand(1), Op.getOperand(2)); | 
|  | return DAG.getNode(ISD::BITCAST, DL, VT, Node); | 
|  | } | 
|  | case Intrinsic::amdgcn_wqm: { | 
|  | SDValue Src = Op.getOperand(1); | 
|  | return SDValue(DAG.getMachineNode(AMDGPU::WQM, DL, Src.getValueType(), Src), | 
|  | 0); | 
|  | } | 
|  | case Intrinsic::amdgcn_wwm: { | 
|  | SDValue Src = Op.getOperand(1); | 
|  | return SDValue(DAG.getMachineNode(AMDGPU::WWM, DL, Src.getValueType(), Src), | 
|  | 0); | 
|  | } | 
|  | case Intrinsic::amdgcn_image_getlod: | 
|  | case Intrinsic::amdgcn_image_getresinfo: { | 
|  | unsigned Idx = (IntrinsicID == Intrinsic::amdgcn_image_getresinfo) ? 3 : 4; | 
|  |  | 
|  | // Replace dmask with everything disabled with undef. | 
|  | const ConstantSDNode *DMask = dyn_cast<ConstantSDNode>(Op.getOperand(Idx)); | 
|  | if (!DMask || DMask->isNullValue()) | 
|  | return DAG.getUNDEF(Op.getValueType()); | 
|  | return SDValue(); | 
|  | } | 
|  | default: | 
|  | return Op; | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | unsigned IntrID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); | 
|  | SDLoc DL(Op); | 
|  |  | 
|  | switch (IntrID) { | 
|  | case Intrinsic::amdgcn_atomic_inc: | 
|  | case Intrinsic::amdgcn_atomic_dec: | 
|  | case Intrinsic::amdgcn_ds_fadd: | 
|  | case Intrinsic::amdgcn_ds_fmin: | 
|  | case Intrinsic::amdgcn_ds_fmax: { | 
|  | MemSDNode *M = cast<MemSDNode>(Op); | 
|  | unsigned Opc; | 
|  | switch (IntrID) { | 
|  | case Intrinsic::amdgcn_atomic_inc: | 
|  | Opc = AMDGPUISD::ATOMIC_INC; | 
|  | break; | 
|  | case Intrinsic::amdgcn_atomic_dec: | 
|  | Opc = AMDGPUISD::ATOMIC_DEC; | 
|  | break; | 
|  | case Intrinsic::amdgcn_ds_fadd: | 
|  | Opc = AMDGPUISD::ATOMIC_LOAD_FADD; | 
|  | break; | 
|  | case Intrinsic::amdgcn_ds_fmin: | 
|  | Opc = AMDGPUISD::ATOMIC_LOAD_FMIN; | 
|  | break; | 
|  | case Intrinsic::amdgcn_ds_fmax: | 
|  | Opc = AMDGPUISD::ATOMIC_LOAD_FMAX; | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("Unknown intrinsic!"); | 
|  | } | 
|  | SDValue Ops[] = { | 
|  | M->getOperand(0), // Chain | 
|  | M->getOperand(2), // Ptr | 
|  | M->getOperand(3)  // Value | 
|  | }; | 
|  |  | 
|  | return DAG.getMemIntrinsicNode(Opc, SDLoc(Op), M->getVTList(), Ops, | 
|  | M->getMemoryVT(), M->getMemOperand()); | 
|  | } | 
|  | case Intrinsic::amdgcn_buffer_load: | 
|  | case Intrinsic::amdgcn_buffer_load_format: { | 
|  | SDValue Ops[] = { | 
|  | Op.getOperand(0), // Chain | 
|  | Op.getOperand(2), // rsrc | 
|  | Op.getOperand(3), // vindex | 
|  | Op.getOperand(4), // offset | 
|  | Op.getOperand(5), // glc | 
|  | Op.getOperand(6)  // slc | 
|  | }; | 
|  |  | 
|  | unsigned Opc = (IntrID == Intrinsic::amdgcn_buffer_load) ? | 
|  | AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT; | 
|  | EVT VT = Op.getValueType(); | 
|  | EVT IntVT = VT.changeTypeToInteger(); | 
|  |  | 
|  | auto *M = cast<MemSDNode>(Op); | 
|  | return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT, | 
|  | M->getMemOperand()); | 
|  | } | 
|  | case Intrinsic::amdgcn_tbuffer_load: { | 
|  | MemSDNode *M = cast<MemSDNode>(Op); | 
|  | SDValue Ops[] = { | 
|  | Op.getOperand(0),  // Chain | 
|  | Op.getOperand(2),  // rsrc | 
|  | Op.getOperand(3),  // vindex | 
|  | Op.getOperand(4),  // voffset | 
|  | Op.getOperand(5),  // soffset | 
|  | Op.getOperand(6),  // offset | 
|  | Op.getOperand(7),  // dfmt | 
|  | Op.getOperand(8),  // nfmt | 
|  | Op.getOperand(9),  // glc | 
|  | Op.getOperand(10)   // slc | 
|  | }; | 
|  |  | 
|  | EVT VT = Op.getValueType(); | 
|  |  | 
|  | return DAG.getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL, | 
|  | Op->getVTList(), Ops, VT, M->getMemOperand()); | 
|  | } | 
|  | case Intrinsic::amdgcn_buffer_atomic_swap: | 
|  | case Intrinsic::amdgcn_buffer_atomic_add: | 
|  | case Intrinsic::amdgcn_buffer_atomic_sub: | 
|  | case Intrinsic::amdgcn_buffer_atomic_smin: | 
|  | case Intrinsic::amdgcn_buffer_atomic_umin: | 
|  | case Intrinsic::amdgcn_buffer_atomic_smax: | 
|  | case Intrinsic::amdgcn_buffer_atomic_umax: | 
|  | case Intrinsic::amdgcn_buffer_atomic_and: | 
|  | case Intrinsic::amdgcn_buffer_atomic_or: | 
|  | case Intrinsic::amdgcn_buffer_atomic_xor: { | 
|  | SDValue Ops[] = { | 
|  | Op.getOperand(0), // Chain | 
|  | Op.getOperand(2), // vdata | 
|  | Op.getOperand(3), // rsrc | 
|  | Op.getOperand(4), // vindex | 
|  | Op.getOperand(5), // offset | 
|  | Op.getOperand(6)  // slc | 
|  | }; | 
|  | EVT VT = Op.getValueType(); | 
|  |  | 
|  | auto *M = cast<MemSDNode>(Op); | 
|  | unsigned Opcode = 0; | 
|  |  | 
|  | switch (IntrID) { | 
|  | case Intrinsic::amdgcn_buffer_atomic_swap: | 
|  | Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP; | 
|  | break; | 
|  | case Intrinsic::amdgcn_buffer_atomic_add: | 
|  | Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD; | 
|  | break; | 
|  | case Intrinsic::amdgcn_buffer_atomic_sub: | 
|  | Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB; | 
|  | break; | 
|  | case Intrinsic::amdgcn_buffer_atomic_smin: | 
|  | Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN; | 
|  | break; | 
|  | case Intrinsic::amdgcn_buffer_atomic_umin: | 
|  | Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN; | 
|  | break; | 
|  | case Intrinsic::amdgcn_buffer_atomic_smax: | 
|  | Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX; | 
|  | break; | 
|  | case Intrinsic::amdgcn_buffer_atomic_umax: | 
|  | Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX; | 
|  | break; | 
|  | case Intrinsic::amdgcn_buffer_atomic_and: | 
|  | Opcode = AMDGPUISD::BUFFER_ATOMIC_AND; | 
|  | break; | 
|  | case Intrinsic::amdgcn_buffer_atomic_or: | 
|  | Opcode = AMDGPUISD::BUFFER_ATOMIC_OR; | 
|  | break; | 
|  | case Intrinsic::amdgcn_buffer_atomic_xor: | 
|  | Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR; | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("unhandled atomic opcode"); | 
|  | } | 
|  |  | 
|  | return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT, | 
|  | M->getMemOperand()); | 
|  | } | 
|  |  | 
|  | case Intrinsic::amdgcn_buffer_atomic_cmpswap: { | 
|  | SDValue Ops[] = { | 
|  | Op.getOperand(0), // Chain | 
|  | Op.getOperand(2), // src | 
|  | Op.getOperand(3), // cmp | 
|  | Op.getOperand(4), // rsrc | 
|  | Op.getOperand(5), // vindex | 
|  | Op.getOperand(6), // offset | 
|  | Op.getOperand(7)  // slc | 
|  | }; | 
|  | EVT VT = Op.getValueType(); | 
|  | auto *M = cast<MemSDNode>(Op); | 
|  |  | 
|  | return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL, | 
|  | Op->getVTList(), Ops, VT, M->getMemOperand()); | 
|  | } | 
|  |  | 
|  | // Basic sample. | 
|  | case Intrinsic::amdgcn_image_sample: | 
|  | case Intrinsic::amdgcn_image_sample_cl: | 
|  | case Intrinsic::amdgcn_image_sample_d: | 
|  | case Intrinsic::amdgcn_image_sample_d_cl: | 
|  | case Intrinsic::amdgcn_image_sample_l: | 
|  | case Intrinsic::amdgcn_image_sample_b: | 
|  | case Intrinsic::amdgcn_image_sample_b_cl: | 
|  | case Intrinsic::amdgcn_image_sample_lz: | 
|  | case Intrinsic::amdgcn_image_sample_cd: | 
|  | case Intrinsic::amdgcn_image_sample_cd_cl: | 
|  |  | 
|  | // Sample with comparison. | 
|  | case Intrinsic::amdgcn_image_sample_c: | 
|  | case Intrinsic::amdgcn_image_sample_c_cl: | 
|  | case Intrinsic::amdgcn_image_sample_c_d: | 
|  | case Intrinsic::amdgcn_image_sample_c_d_cl: | 
|  | case Intrinsic::amdgcn_image_sample_c_l: | 
|  | case Intrinsic::amdgcn_image_sample_c_b: | 
|  | case Intrinsic::amdgcn_image_sample_c_b_cl: | 
|  | case Intrinsic::amdgcn_image_sample_c_lz: | 
|  | case Intrinsic::amdgcn_image_sample_c_cd: | 
|  | case Intrinsic::amdgcn_image_sample_c_cd_cl: | 
|  |  | 
|  | // Sample with offsets. | 
|  | case Intrinsic::amdgcn_image_sample_o: | 
|  | case Intrinsic::amdgcn_image_sample_cl_o: | 
|  | case Intrinsic::amdgcn_image_sample_d_o: | 
|  | case Intrinsic::amdgcn_image_sample_d_cl_o: | 
|  | case Intrinsic::amdgcn_image_sample_l_o: | 
|  | case Intrinsic::amdgcn_image_sample_b_o: | 
|  | case Intrinsic::amdgcn_image_sample_b_cl_o: | 
|  | case Intrinsic::amdgcn_image_sample_lz_o: | 
|  | case Intrinsic::amdgcn_image_sample_cd_o: | 
|  | case Intrinsic::amdgcn_image_sample_cd_cl_o: | 
|  |  | 
|  | // Sample with comparison and offsets. | 
|  | case Intrinsic::amdgcn_image_sample_c_o: | 
|  | case Intrinsic::amdgcn_image_sample_c_cl_o: | 
|  | case Intrinsic::amdgcn_image_sample_c_d_o: | 
|  | case Intrinsic::amdgcn_image_sample_c_d_cl_o: | 
|  | case Intrinsic::amdgcn_image_sample_c_l_o: | 
|  | case Intrinsic::amdgcn_image_sample_c_b_o: | 
|  | case Intrinsic::amdgcn_image_sample_c_b_cl_o: | 
|  | case Intrinsic::amdgcn_image_sample_c_lz_o: | 
|  | case Intrinsic::amdgcn_image_sample_c_cd_o: | 
|  | case Intrinsic::amdgcn_image_sample_c_cd_cl_o: { | 
|  | // Replace dmask with everything disabled with undef. | 
|  | const ConstantSDNode *DMask = dyn_cast<ConstantSDNode>(Op.getOperand(5)); | 
|  | if (!DMask || DMask->isNullValue()) { | 
|  | SDValue Undef = DAG.getUNDEF(Op.getValueType()); | 
|  | return DAG.getMergeValues({ Undef, Op.getOperand(0) }, SDLoc(Op)); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  | default: | 
|  | return SDValue(); | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::handleD16VData(SDValue VData, | 
|  | SelectionDAG &DAG) const { | 
|  | EVT StoreVT = VData.getValueType(); | 
|  | SDLoc DL(VData); | 
|  |  | 
|  | if (StoreVT.isVector()) { | 
|  | assert ((StoreVT.getVectorNumElements() != 3) && "Handle v3f16"); | 
|  | if (!Subtarget->hasUnpackedD16VMem()) { | 
|  | if (!isTypeLegal(StoreVT)) { | 
|  | // If Target supports packed vmem, we just need to workaround | 
|  | // the illegal type by casting to an equivalent one. | 
|  | EVT EquivStoreVT = getEquivalentMemType(*DAG.getContext(), StoreVT); | 
|  | return DAG.getNode(ISD::BITCAST, DL, EquivStoreVT, VData); | 
|  | } | 
|  | } else { // We need to unpack the packed data to store. | 
|  | EVT IntStoreVT = StoreVT.changeTypeToInteger(); | 
|  | SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData); | 
|  | EVT EquivStoreVT = (StoreVT == MVT::v2f16) ? MVT::v2i32 : MVT::v4i32; | 
|  | return DAG.getNode(ISD::ZERO_EXTEND, DL, EquivStoreVT, IntVData); | 
|  | } | 
|  | } | 
|  | // No change for f16 and legal vector D16 types. | 
|  | return VData; | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc DL(Op); | 
|  | SDValue Chain = Op.getOperand(0); | 
|  | unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  |  | 
|  | switch (IntrinsicID) { | 
|  | case Intrinsic::amdgcn_exp: { | 
|  | const ConstantSDNode *Tgt = cast<ConstantSDNode>(Op.getOperand(2)); | 
|  | const ConstantSDNode *En = cast<ConstantSDNode>(Op.getOperand(3)); | 
|  | const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(8)); | 
|  | const ConstantSDNode *VM = cast<ConstantSDNode>(Op.getOperand(9)); | 
|  |  | 
|  | const SDValue Ops[] = { | 
|  | Chain, | 
|  | DAG.getTargetConstant(Tgt->getZExtValue(), DL, MVT::i8), // tgt | 
|  | DAG.getTargetConstant(En->getZExtValue(), DL, MVT::i8),  // en | 
|  | Op.getOperand(4), // src0 | 
|  | Op.getOperand(5), // src1 | 
|  | Op.getOperand(6), // src2 | 
|  | Op.getOperand(7), // src3 | 
|  | DAG.getTargetConstant(0, DL, MVT::i1), // compr | 
|  | DAG.getTargetConstant(VM->getZExtValue(), DL, MVT::i1) | 
|  | }; | 
|  |  | 
|  | unsigned Opc = Done->isNullValue() ? | 
|  | AMDGPUISD::EXPORT : AMDGPUISD::EXPORT_DONE; | 
|  | return DAG.getNode(Opc, DL, Op->getVTList(), Ops); | 
|  | } | 
|  | case Intrinsic::amdgcn_exp_compr: { | 
|  | const ConstantSDNode *Tgt = cast<ConstantSDNode>(Op.getOperand(2)); | 
|  | const ConstantSDNode *En = cast<ConstantSDNode>(Op.getOperand(3)); | 
|  | SDValue Src0 = Op.getOperand(4); | 
|  | SDValue Src1 = Op.getOperand(5); | 
|  | const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(6)); | 
|  | const ConstantSDNode *VM = cast<ConstantSDNode>(Op.getOperand(7)); | 
|  |  | 
|  | SDValue Undef = DAG.getUNDEF(MVT::f32); | 
|  | const SDValue Ops[] = { | 
|  | Chain, | 
|  | DAG.getTargetConstant(Tgt->getZExtValue(), DL, MVT::i8), // tgt | 
|  | DAG.getTargetConstant(En->getZExtValue(), DL, MVT::i8),  // en | 
|  | DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src0), | 
|  | DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src1), | 
|  | Undef, // src2 | 
|  | Undef, // src3 | 
|  | DAG.getTargetConstant(1, DL, MVT::i1), // compr | 
|  | DAG.getTargetConstant(VM->getZExtValue(), DL, MVT::i1) | 
|  | }; | 
|  |  | 
|  | unsigned Opc = Done->isNullValue() ? | 
|  | AMDGPUISD::EXPORT : AMDGPUISD::EXPORT_DONE; | 
|  | return DAG.getNode(Opc, DL, Op->getVTList(), Ops); | 
|  | } | 
|  | case Intrinsic::amdgcn_s_sendmsg: | 
|  | case Intrinsic::amdgcn_s_sendmsghalt: { | 
|  | unsigned NodeOp = (IntrinsicID == Intrinsic::amdgcn_s_sendmsg) ? | 
|  | AMDGPUISD::SENDMSG : AMDGPUISD::SENDMSGHALT; | 
|  | Chain = copyToM0(DAG, Chain, DL, Op.getOperand(3)); | 
|  | SDValue Glue = Chain.getValue(1); | 
|  | return DAG.getNode(NodeOp, DL, MVT::Other, Chain, | 
|  | Op.getOperand(2), Glue); | 
|  | } | 
|  | case Intrinsic::amdgcn_init_exec: { | 
|  | return DAG.getNode(AMDGPUISD::INIT_EXEC, DL, MVT::Other, Chain, | 
|  | Op.getOperand(2)); | 
|  | } | 
|  | case Intrinsic::amdgcn_init_exec_from_input: { | 
|  | return DAG.getNode(AMDGPUISD::INIT_EXEC_FROM_INPUT, DL, MVT::Other, Chain, | 
|  | Op.getOperand(2), Op.getOperand(3)); | 
|  | } | 
|  | case AMDGPUIntrinsic::AMDGPU_kill: { | 
|  | SDValue Src = Op.getOperand(2); | 
|  | if (const ConstantFPSDNode *K = dyn_cast<ConstantFPSDNode>(Src)) { | 
|  | if (!K->isNegative()) | 
|  | return Chain; | 
|  |  | 
|  | SDValue NegOne = DAG.getTargetConstant(FloatToBits(-1.0f), DL, MVT::i32); | 
|  | return DAG.getNode(AMDGPUISD::KILL, DL, MVT::Other, Chain, NegOne); | 
|  | } | 
|  |  | 
|  | SDValue Cast = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Src); | 
|  | return DAG.getNode(AMDGPUISD::KILL, DL, MVT::Other, Chain, Cast); | 
|  | } | 
|  | case Intrinsic::amdgcn_s_barrier: { | 
|  | if (getTargetMachine().getOptLevel() > CodeGenOpt::None) { | 
|  | const SISubtarget &ST = MF.getSubtarget<SISubtarget>(); | 
|  | unsigned WGSize = ST.getFlatWorkGroupSizes(MF.getFunction()).second; | 
|  | if (WGSize <= ST.getWavefrontSize()) | 
|  | return SDValue(DAG.getMachineNode(AMDGPU::WAVE_BARRIER, DL, MVT::Other, | 
|  | Op.getOperand(0)), 0); | 
|  | } | 
|  | return SDValue(); | 
|  | }; | 
|  | case AMDGPUIntrinsic::SI_tbuffer_store: { | 
|  |  | 
|  | // Extract vindex and voffset from vaddr as appropriate | 
|  | const ConstantSDNode *OffEn = cast<ConstantSDNode>(Op.getOperand(10)); | 
|  | const ConstantSDNode *IdxEn = cast<ConstantSDNode>(Op.getOperand(11)); | 
|  | SDValue VAddr = Op.getOperand(5); | 
|  |  | 
|  | SDValue Zero = DAG.getTargetConstant(0, DL, MVT::i32); | 
|  |  | 
|  | assert(!(OffEn->isOne() && IdxEn->isOne()) && | 
|  | "Legacy intrinsic doesn't support both offset and index - use new version"); | 
|  |  | 
|  | SDValue VIndex = IdxEn->isOne() ? VAddr : Zero; | 
|  | SDValue VOffset = OffEn->isOne() ? VAddr : Zero; | 
|  |  | 
|  | // Deal with the vec-3 case | 
|  | const ConstantSDNode *NumChannels = cast<ConstantSDNode>(Op.getOperand(4)); | 
|  | auto Opcode = NumChannels->getZExtValue() == 3 ? | 
|  | AMDGPUISD::TBUFFER_STORE_FORMAT_X3 : AMDGPUISD::TBUFFER_STORE_FORMAT; | 
|  |  | 
|  | SDValue Ops[] = { | 
|  | Chain, | 
|  | Op.getOperand(3),  // vdata | 
|  | Op.getOperand(2),  // rsrc | 
|  | VIndex, | 
|  | VOffset, | 
|  | Op.getOperand(6),  // soffset | 
|  | Op.getOperand(7),  // inst_offset | 
|  | Op.getOperand(8),  // dfmt | 
|  | Op.getOperand(9),  // nfmt | 
|  | Op.getOperand(12), // glc | 
|  | Op.getOperand(13), // slc | 
|  | }; | 
|  |  | 
|  | assert((cast<ConstantSDNode>(Op.getOperand(14)))->getZExtValue() == 0 && | 
|  | "Value of tfe other than zero is unsupported"); | 
|  |  | 
|  | EVT VT = Op.getOperand(3).getValueType(); | 
|  | MachineMemOperand *MMO = MF.getMachineMemOperand( | 
|  | MachinePointerInfo(), | 
|  | MachineMemOperand::MOStore, | 
|  | VT.getStoreSize(), 4); | 
|  | return DAG.getMemIntrinsicNode(Opcode, DL, | 
|  | Op->getVTList(), Ops, VT, MMO); | 
|  | } | 
|  |  | 
|  | case Intrinsic::amdgcn_tbuffer_store: { | 
|  | SDValue VData = Op.getOperand(2); | 
|  | bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); | 
|  | if (IsD16) | 
|  | VData = handleD16VData(VData, DAG); | 
|  | SDValue Ops[] = { | 
|  | Chain, | 
|  | VData,             // vdata | 
|  | Op.getOperand(3),  // rsrc | 
|  | Op.getOperand(4),  // vindex | 
|  | Op.getOperand(5),  // voffset | 
|  | Op.getOperand(6),  // soffset | 
|  | Op.getOperand(7),  // offset | 
|  | Op.getOperand(8),  // dfmt | 
|  | Op.getOperand(9),  // nfmt | 
|  | Op.getOperand(10), // glc | 
|  | Op.getOperand(11)  // slc | 
|  | }; | 
|  | unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 : | 
|  | AMDGPUISD::TBUFFER_STORE_FORMAT; | 
|  | MemSDNode *M = cast<MemSDNode>(Op); | 
|  | return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, | 
|  | M->getMemoryVT(), M->getMemOperand()); | 
|  | } | 
|  |  | 
|  | case Intrinsic::amdgcn_buffer_store: | 
|  | case Intrinsic::amdgcn_buffer_store_format: { | 
|  | SDValue VData = Op.getOperand(2); | 
|  | bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); | 
|  | if (IsD16) | 
|  | VData = handleD16VData(VData, DAG); | 
|  | SDValue Ops[] = { | 
|  | Chain, | 
|  | VData,            // vdata | 
|  | Op.getOperand(3), // rsrc | 
|  | Op.getOperand(4), // vindex | 
|  | Op.getOperand(5), // offset | 
|  | Op.getOperand(6), // glc | 
|  | Op.getOperand(7)  // slc | 
|  | }; | 
|  | unsigned Opc = IntrinsicID == Intrinsic::amdgcn_buffer_store ? | 
|  | AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT; | 
|  | Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc; | 
|  | MemSDNode *M = cast<MemSDNode>(Op); | 
|  | return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, | 
|  | M->getMemoryVT(), M->getMemOperand()); | 
|  | } | 
|  |  | 
|  | case Intrinsic::amdgcn_image_store: | 
|  | case Intrinsic::amdgcn_image_store_mip: { | 
|  | SDValue VData = Op.getOperand(2); | 
|  | bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); | 
|  | if (IsD16) | 
|  | VData = handleD16VData(VData, DAG); | 
|  | SDValue Ops[] = { | 
|  | Chain, // Chain | 
|  | VData, // vdata | 
|  | Op.getOperand(3), // vaddr | 
|  | Op.getOperand(4), // rsrc | 
|  | Op.getOperand(5), // dmask | 
|  | Op.getOperand(6), // glc | 
|  | Op.getOperand(7), // slc | 
|  | Op.getOperand(8), // lwe | 
|  | Op.getOperand(9)  // da | 
|  | }; | 
|  | unsigned Opc = (IntrinsicID==Intrinsic::amdgcn_image_store) ? | 
|  | AMDGPUISD::IMAGE_STORE : AMDGPUISD::IMAGE_STORE_MIP; | 
|  | MemSDNode *M = cast<MemSDNode>(Op); | 
|  | return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, | 
|  | M->getMemoryVT(), M->getMemOperand()); | 
|  | } | 
|  |  | 
|  | default: | 
|  | return Op; | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { | 
|  | SDLoc DL(Op); | 
|  | LoadSDNode *Load = cast<LoadSDNode>(Op); | 
|  | ISD::LoadExtType ExtType = Load->getExtensionType(); | 
|  | EVT MemVT = Load->getMemoryVT(); | 
|  |  | 
|  | if (ExtType == ISD::NON_EXTLOAD && MemVT.getSizeInBits() < 32) { | 
|  | if (MemVT == MVT::i16 && isTypeLegal(MVT::i16)) | 
|  | return SDValue(); | 
|  |  | 
|  | // FIXME: Copied from PPC | 
|  | // First, load into 32 bits, then truncate to 1 bit. | 
|  |  | 
|  | SDValue Chain = Load->getChain(); | 
|  | SDValue BasePtr = Load->getBasePtr(); | 
|  | MachineMemOperand *MMO = Load->getMemOperand(); | 
|  |  | 
|  | EVT RealMemVT = (MemVT == MVT::i1) ? MVT::i8 : MVT::i16; | 
|  |  | 
|  | SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain, | 
|  | BasePtr, RealMemVT, MMO); | 
|  |  | 
|  | SDValue Ops[] = { | 
|  | DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewLD), | 
|  | NewLD.getValue(1) | 
|  | }; | 
|  |  | 
|  | return DAG.getMergeValues(Ops, DL); | 
|  | } | 
|  |  | 
|  | if (!MemVT.isVector()) | 
|  | return SDValue(); | 
|  |  | 
|  | assert(Op.getValueType().getVectorElementType() == MVT::i32 && | 
|  | "Custom lowering for non-i32 vectors hasn't been implemented."); | 
|  |  | 
|  | unsigned AS = Load->getAddressSpace(); | 
|  | if (!allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT, | 
|  | AS, Load->getAlignment())) { | 
|  | SDValue Ops[2]; | 
|  | std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG); | 
|  | return DAG.getMergeValues(Ops, DL); | 
|  | } | 
|  |  | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); | 
|  | // If there is a possibilty that flat instruction access scratch memory | 
|  | // then we need to use the same legalization rules we use for private. | 
|  | if (AS == AMDGPUASI.FLAT_ADDRESS) | 
|  | AS = MFI->hasFlatScratchInit() ? | 
|  | AMDGPUASI.PRIVATE_ADDRESS : AMDGPUASI.GLOBAL_ADDRESS; | 
|  |  | 
|  | unsigned NumElements = MemVT.getVectorNumElements(); | 
|  | if (AS == AMDGPUASI.CONSTANT_ADDRESS || | 
|  | AS == AMDGPUASI.CONSTANT_ADDRESS_32BIT) { | 
|  | if (isMemOpUniform(Load)) | 
|  | return SDValue(); | 
|  | // Non-uniform loads will be selected to MUBUF instructions, so they | 
|  | // have the same legalization requirements as global and private | 
|  | // loads. | 
|  | // | 
|  | } | 
|  | if (AS == AMDGPUASI.CONSTANT_ADDRESS || | 
|  | AS == AMDGPUASI.CONSTANT_ADDRESS_32BIT || | 
|  | AS == AMDGPUASI.GLOBAL_ADDRESS) { | 
|  | if (Subtarget->getScalarizeGlobalBehavior() && isMemOpUniform(Load) && | 
|  | !Load->isVolatile() && isMemOpHasNoClobberedMemOperand(Load)) | 
|  | return SDValue(); | 
|  | // Non-uniform loads will be selected to MUBUF instructions, so they | 
|  | // have the same legalization requirements as global and private | 
|  | // loads. | 
|  | // | 
|  | } | 
|  | if (AS == AMDGPUASI.CONSTANT_ADDRESS || | 
|  | AS == AMDGPUASI.CONSTANT_ADDRESS_32BIT || | 
|  | AS == AMDGPUASI.GLOBAL_ADDRESS || | 
|  | AS == AMDGPUASI.FLAT_ADDRESS) { | 
|  | if (NumElements > 4) | 
|  | return SplitVectorLoad(Op, DAG); | 
|  | // v4 loads are supported for private and global memory. | 
|  | return SDValue(); | 
|  | } | 
|  | if (AS == AMDGPUASI.PRIVATE_ADDRESS) { | 
|  | // Depending on the setting of the private_element_size field in the | 
|  | // resource descriptor, we can only make private accesses up to a certain | 
|  | // size. | 
|  | switch (Subtarget->getMaxPrivateElementSize()) { | 
|  | case 4: | 
|  | return scalarizeVectorLoad(Load, DAG); | 
|  | case 8: | 
|  | if (NumElements > 2) | 
|  | return SplitVectorLoad(Op, DAG); | 
|  | return SDValue(); | 
|  | case 16: | 
|  | // Same as global/flat | 
|  | if (NumElements > 4) | 
|  | return SplitVectorLoad(Op, DAG); | 
|  | return SDValue(); | 
|  | default: | 
|  | llvm_unreachable("unsupported private_element_size"); | 
|  | } | 
|  | } else if (AS == AMDGPUASI.LOCAL_ADDRESS) { | 
|  | if (NumElements > 2) | 
|  | return SplitVectorLoad(Op, DAG); | 
|  |  | 
|  | if (NumElements == 2) | 
|  | return SDValue(); | 
|  |  | 
|  | // If properly aligned, if we split we might be able to use ds_read_b64. | 
|  | return SplitVectorLoad(Op, DAG); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const { | 
|  | if (Op.getValueType() != MVT::i64) | 
|  | return SDValue(); | 
|  |  | 
|  | SDLoc DL(Op); | 
|  | SDValue Cond = Op.getOperand(0); | 
|  |  | 
|  | SDValue Zero = DAG.getConstant(0, DL, MVT::i32); | 
|  | SDValue One = DAG.getConstant(1, DL, MVT::i32); | 
|  |  | 
|  | SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1)); | 
|  | SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2)); | 
|  |  | 
|  | SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero); | 
|  | SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero); | 
|  |  | 
|  | SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1); | 
|  |  | 
|  | SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One); | 
|  | SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One); | 
|  |  | 
|  | SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1); | 
|  |  | 
|  | SDValue Res = DAG.getBuildVector(MVT::v2i32, DL, {Lo, Hi}); | 
|  | return DAG.getNode(ISD::BITCAST, DL, MVT::i64, Res); | 
|  | } | 
|  |  | 
|  | // Catch division cases where we can use shortcuts with rcp and rsq | 
|  | // instructions. | 
|  | SDValue SITargetLowering::lowerFastUnsafeFDIV(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc SL(Op); | 
|  | SDValue LHS = Op.getOperand(0); | 
|  | SDValue RHS = Op.getOperand(1); | 
|  | EVT VT = Op.getValueType(); | 
|  | const SDNodeFlags Flags = Op->getFlags(); | 
|  | bool Unsafe = DAG.getTarget().Options.UnsafeFPMath || | 
|  | Flags.hasUnsafeAlgebra() || Flags.hasAllowReciprocal(); | 
|  |  | 
|  | if (!Unsafe && VT == MVT::f32 && Subtarget->hasFP32Denormals()) | 
|  | return SDValue(); | 
|  |  | 
|  | if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) { | 
|  | if (Unsafe || VT == MVT::f32 || VT == MVT::f16) { | 
|  | if (CLHS->isExactlyValue(1.0)) { | 
|  | // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to | 
|  | // the CI documentation has a worst case error of 1 ulp. | 
|  | // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to | 
|  | // use it as long as we aren't trying to use denormals. | 
|  | // | 
|  | // v_rcp_f16 and v_rsq_f16 DO support denormals. | 
|  |  | 
|  | // 1.0 / sqrt(x) -> rsq(x) | 
|  |  | 
|  | // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP | 
|  | // error seems really high at 2^29 ULP. | 
|  | if (RHS.getOpcode() == ISD::FSQRT) | 
|  | return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0)); | 
|  |  | 
|  | // 1.0 / x -> rcp(x) | 
|  | return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS); | 
|  | } | 
|  |  | 
|  | // Same as for 1.0, but expand the sign out of the constant. | 
|  | if (CLHS->isExactlyValue(-1.0)) { | 
|  | // -1.0 / x -> rcp (fneg x) | 
|  | SDValue FNegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); | 
|  | return DAG.getNode(AMDGPUISD::RCP, SL, VT, FNegRHS); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Unsafe) { | 
|  | // Turn into multiply by the reciprocal. | 
|  | // x / y -> x * (1.0 / y) | 
|  | SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS); | 
|  | return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, Flags); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue getFPBinOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL, | 
|  | EVT VT, SDValue A, SDValue B, SDValue GlueChain) { | 
|  | if (GlueChain->getNumValues() <= 1) { | 
|  | return DAG.getNode(Opcode, SL, VT, A, B); | 
|  | } | 
|  |  | 
|  | assert(GlueChain->getNumValues() == 3); | 
|  |  | 
|  | SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue); | 
|  | switch (Opcode) { | 
|  | default: llvm_unreachable("no chain equivalent for opcode"); | 
|  | case ISD::FMUL: | 
|  | Opcode = AMDGPUISD::FMUL_W_CHAIN; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return DAG.getNode(Opcode, SL, VTList, GlueChain.getValue(1), A, B, | 
|  | GlueChain.getValue(2)); | 
|  | } | 
|  |  | 
|  | static SDValue getFPTernOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL, | 
|  | EVT VT, SDValue A, SDValue B, SDValue C, | 
|  | SDValue GlueChain) { | 
|  | if (GlueChain->getNumValues() <= 1) { | 
|  | return DAG.getNode(Opcode, SL, VT, A, B, C); | 
|  | } | 
|  |  | 
|  | assert(GlueChain->getNumValues() == 3); | 
|  |  | 
|  | SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue); | 
|  | switch (Opcode) { | 
|  | default: llvm_unreachable("no chain equivalent for opcode"); | 
|  | case ISD::FMA: | 
|  | Opcode = AMDGPUISD::FMA_W_CHAIN; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return DAG.getNode(Opcode, SL, VTList, GlueChain.getValue(1), A, B, C, | 
|  | GlueChain.getValue(2)); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::LowerFDIV16(SDValue Op, SelectionDAG &DAG) const { | 
|  | if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG)) | 
|  | return FastLowered; | 
|  |  | 
|  | SDLoc SL(Op); | 
|  | SDValue Src0 = Op.getOperand(0); | 
|  | SDValue Src1 = Op.getOperand(1); | 
|  |  | 
|  | SDValue CvtSrc0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0); | 
|  | SDValue CvtSrc1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1); | 
|  |  | 
|  | SDValue RcpSrc1 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, CvtSrc1); | 
|  | SDValue Quot = DAG.getNode(ISD::FMUL, SL, MVT::f32, CvtSrc0, RcpSrc1); | 
|  |  | 
|  | SDValue FPRoundFlag = DAG.getTargetConstant(0, SL, MVT::i32); | 
|  | SDValue BestQuot = DAG.getNode(ISD::FP_ROUND, SL, MVT::f16, Quot, FPRoundFlag); | 
|  |  | 
|  | return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f16, BestQuot, Src1, Src0); | 
|  | } | 
|  |  | 
|  | // Faster 2.5 ULP division that does not support denormals. | 
|  | SDValue SITargetLowering::lowerFDIV_FAST(SDValue Op, SelectionDAG &DAG) const { | 
|  | SDLoc SL(Op); | 
|  | SDValue LHS = Op.getOperand(1); | 
|  | SDValue RHS = Op.getOperand(2); | 
|  |  | 
|  | SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS); | 
|  |  | 
|  | const APFloat K0Val(BitsToFloat(0x6f800000)); | 
|  | const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32); | 
|  |  | 
|  | const APFloat K1Val(BitsToFloat(0x2f800000)); | 
|  | const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32); | 
|  |  | 
|  | const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); | 
|  |  | 
|  | EVT SetCCVT = | 
|  | getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32); | 
|  |  | 
|  | SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT); | 
|  |  | 
|  | SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One); | 
|  |  | 
|  | // TODO: Should this propagate fast-math-flags? | 
|  | r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3); | 
|  |  | 
|  | // rcp does not support denormals. | 
|  | SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1); | 
|  |  | 
|  | SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0); | 
|  |  | 
|  | return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const { | 
|  | if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG)) | 
|  | return FastLowered; | 
|  |  | 
|  | SDLoc SL(Op); | 
|  | SDValue LHS = Op.getOperand(0); | 
|  | SDValue RHS = Op.getOperand(1); | 
|  |  | 
|  | const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); | 
|  |  | 
|  | SDVTList ScaleVT = DAG.getVTList(MVT::f32, MVT::i1); | 
|  |  | 
|  | SDValue DenominatorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, | 
|  | RHS, RHS, LHS); | 
|  | SDValue NumeratorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, | 
|  | LHS, RHS, LHS); | 
|  |  | 
|  | // Denominator is scaled to not be denormal, so using rcp is ok. | 
|  | SDValue ApproxRcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, | 
|  | DenominatorScaled); | 
|  | SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f32, | 
|  | DenominatorScaled); | 
|  |  | 
|  | const unsigned Denorm32Reg = AMDGPU::Hwreg::ID_MODE | | 
|  | (4 << AMDGPU::Hwreg::OFFSET_SHIFT_) | | 
|  | (1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_); | 
|  |  | 
|  | const SDValue BitField = DAG.getTargetConstant(Denorm32Reg, SL, MVT::i16); | 
|  |  | 
|  | if (!Subtarget->hasFP32Denormals()) { | 
|  | SDVTList BindParamVTs = DAG.getVTList(MVT::Other, MVT::Glue); | 
|  | const SDValue EnableDenormValue = DAG.getConstant(FP_DENORM_FLUSH_NONE, | 
|  | SL, MVT::i32); | 
|  | SDValue EnableDenorm = DAG.getNode(AMDGPUISD::SETREG, SL, BindParamVTs, | 
|  | DAG.getEntryNode(), | 
|  | EnableDenormValue, BitField); | 
|  | SDValue Ops[3] = { | 
|  | NegDivScale0, | 
|  | EnableDenorm.getValue(0), | 
|  | EnableDenorm.getValue(1) | 
|  | }; | 
|  |  | 
|  | NegDivScale0 = DAG.getMergeValues(Ops, SL); | 
|  | } | 
|  |  | 
|  | SDValue Fma0 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, | 
|  | ApproxRcp, One, NegDivScale0); | 
|  |  | 
|  | SDValue Fma1 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma0, ApproxRcp, | 
|  | ApproxRcp, Fma0); | 
|  |  | 
|  | SDValue Mul = getFPBinOp(DAG, ISD::FMUL, SL, MVT::f32, NumeratorScaled, | 
|  | Fma1, Fma1); | 
|  |  | 
|  | SDValue Fma2 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Mul, | 
|  | NumeratorScaled, Mul); | 
|  |  | 
|  | SDValue Fma3 = getFPTernOp(DAG, ISD::FMA,SL, MVT::f32, Fma2, Fma1, Mul, Fma2); | 
|  |  | 
|  | SDValue Fma4 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Fma3, | 
|  | NumeratorScaled, Fma3); | 
|  |  | 
|  | if (!Subtarget->hasFP32Denormals()) { | 
|  | const SDValue DisableDenormValue = | 
|  | DAG.getConstant(FP_DENORM_FLUSH_IN_FLUSH_OUT, SL, MVT::i32); | 
|  | SDValue DisableDenorm = DAG.getNode(AMDGPUISD::SETREG, SL, MVT::Other, | 
|  | Fma4.getValue(1), | 
|  | DisableDenormValue, | 
|  | BitField, | 
|  | Fma4.getValue(2)); | 
|  |  | 
|  | SDValue OutputChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, | 
|  | DisableDenorm, DAG.getRoot()); | 
|  | DAG.setRoot(OutputChain); | 
|  | } | 
|  |  | 
|  | SDValue Scale = NumeratorScaled.getValue(1); | 
|  | SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f32, | 
|  | Fma4, Fma1, Fma3, Scale); | 
|  |  | 
|  | return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f32, Fmas, RHS, LHS); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const { | 
|  | if (DAG.getTarget().Options.UnsafeFPMath) | 
|  | return lowerFastUnsafeFDIV(Op, DAG); | 
|  |  | 
|  | SDLoc SL(Op); | 
|  | SDValue X = Op.getOperand(0); | 
|  | SDValue Y = Op.getOperand(1); | 
|  |  | 
|  | const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); | 
|  |  | 
|  | SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1); | 
|  |  | 
|  | SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X); | 
|  |  | 
|  | SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0); | 
|  |  | 
|  | SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0); | 
|  |  | 
|  | SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One); | 
|  |  | 
|  | SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp); | 
|  |  | 
|  | SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One); | 
|  |  | 
|  | SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X); | 
|  |  | 
|  | SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1); | 
|  | SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3); | 
|  |  | 
|  | SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64, | 
|  | NegDivScale0, Mul, DivScale1); | 
|  |  | 
|  | SDValue Scale; | 
|  |  | 
|  | if (Subtarget->getGeneration() == SISubtarget::SOUTHERN_ISLANDS) { | 
|  | // Workaround a hardware bug on SI where the condition output from div_scale | 
|  | // is not usable. | 
|  |  | 
|  | const SDValue Hi = DAG.getConstant(1, SL, MVT::i32); | 
|  |  | 
|  | // Figure out if the scale to use for div_fmas. | 
|  | SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); | 
|  | SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y); | 
|  | SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0); | 
|  | SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1); | 
|  |  | 
|  | SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi); | 
|  | SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi); | 
|  |  | 
|  | SDValue Scale0Hi | 
|  | = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi); | 
|  | SDValue Scale1Hi | 
|  | = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi); | 
|  |  | 
|  | SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ); | 
|  | SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ); | 
|  | Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen); | 
|  | } else { | 
|  | Scale = DivScale1.getValue(1); | 
|  | } | 
|  |  | 
|  | SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64, | 
|  | Fma4, Fma3, Mul, Scale); | 
|  |  | 
|  | return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const { | 
|  | EVT VT = Op.getValueType(); | 
|  |  | 
|  | if (VT == MVT::f32) | 
|  | return LowerFDIV32(Op, DAG); | 
|  |  | 
|  | if (VT == MVT::f64) | 
|  | return LowerFDIV64(Op, DAG); | 
|  |  | 
|  | if (VT == MVT::f16) | 
|  | return LowerFDIV16(Op, DAG); | 
|  |  | 
|  | llvm_unreachable("Unexpected type for fdiv"); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { | 
|  | SDLoc DL(Op); | 
|  | StoreSDNode *Store = cast<StoreSDNode>(Op); | 
|  | EVT VT = Store->getMemoryVT(); | 
|  |  | 
|  | if (VT == MVT::i1) { | 
|  | return DAG.getTruncStore(Store->getChain(), DL, | 
|  | DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32), | 
|  | Store->getBasePtr(), MVT::i1, Store->getMemOperand()); | 
|  | } | 
|  |  | 
|  | assert(VT.isVector() && | 
|  | Store->getValue().getValueType().getScalarType() == MVT::i32); | 
|  |  | 
|  | unsigned AS = Store->getAddressSpace(); | 
|  | if (!allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT, | 
|  | AS, Store->getAlignment())) { | 
|  | return expandUnalignedStore(Store, DAG); | 
|  | } | 
|  |  | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); | 
|  | // If there is a possibilty that flat instruction access scratch memory | 
|  | // then we need to use the same legalization rules we use for private. | 
|  | if (AS == AMDGPUASI.FLAT_ADDRESS) | 
|  | AS = MFI->hasFlatScratchInit() ? | 
|  | AMDGPUASI.PRIVATE_ADDRESS : AMDGPUASI.GLOBAL_ADDRESS; | 
|  |  | 
|  | unsigned NumElements = VT.getVectorNumElements(); | 
|  | if (AS == AMDGPUASI.GLOBAL_ADDRESS || | 
|  | AS == AMDGPUASI.FLAT_ADDRESS) { | 
|  | if (NumElements > 4) | 
|  | return SplitVectorStore(Op, DAG); | 
|  | return SDValue(); | 
|  | } else if (AS == AMDGPUASI.PRIVATE_ADDRESS) { | 
|  | switch (Subtarget->getMaxPrivateElementSize()) { | 
|  | case 4: | 
|  | return scalarizeVectorStore(Store, DAG); | 
|  | case 8: | 
|  | if (NumElements > 2) | 
|  | return SplitVectorStore(Op, DAG); | 
|  | return SDValue(); | 
|  | case 16: | 
|  | if (NumElements > 4) | 
|  | return SplitVectorStore(Op, DAG); | 
|  | return SDValue(); | 
|  | default: | 
|  | llvm_unreachable("unsupported private_element_size"); | 
|  | } | 
|  | } else if (AS == AMDGPUASI.LOCAL_ADDRESS) { | 
|  | if (NumElements > 2) | 
|  | return SplitVectorStore(Op, DAG); | 
|  |  | 
|  | if (NumElements == 2) | 
|  | return Op; | 
|  |  | 
|  | // If properly aligned, if we split we might be able to use ds_write_b64. | 
|  | return SplitVectorStore(Op, DAG); | 
|  | } else { | 
|  | llvm_unreachable("unhandled address space"); | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const { | 
|  | SDLoc DL(Op); | 
|  | EVT VT = Op.getValueType(); | 
|  | SDValue Arg = Op.getOperand(0); | 
|  | // TODO: Should this propagate fast-math-flags? | 
|  | SDValue FractPart = DAG.getNode(AMDGPUISD::FRACT, DL, VT, | 
|  | DAG.getNode(ISD::FMUL, DL, VT, Arg, | 
|  | DAG.getConstantFP(0.5/M_PI, DL, | 
|  | VT))); | 
|  |  | 
|  | switch (Op.getOpcode()) { | 
|  | case ISD::FCOS: | 
|  | return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, FractPart); | 
|  | case ISD::FSIN: | 
|  | return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, FractPart); | 
|  | default: | 
|  | llvm_unreachable("Wrong trig opcode"); | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const { | 
|  | AtomicSDNode *AtomicNode = cast<AtomicSDNode>(Op); | 
|  | assert(AtomicNode->isCompareAndSwap()); | 
|  | unsigned AS = AtomicNode->getAddressSpace(); | 
|  |  | 
|  | // No custom lowering required for local address space | 
|  | if (!isFlatGlobalAddrSpace(AS, AMDGPUASI)) | 
|  | return Op; | 
|  |  | 
|  | // Non-local address space requires custom lowering for atomic compare | 
|  | // and swap; cmp and swap should be in a v2i32 or v2i64 in case of _X2 | 
|  | SDLoc DL(Op); | 
|  | SDValue ChainIn = Op.getOperand(0); | 
|  | SDValue Addr = Op.getOperand(1); | 
|  | SDValue Old = Op.getOperand(2); | 
|  | SDValue New = Op.getOperand(3); | 
|  | EVT VT = Op.getValueType(); | 
|  | MVT SimpleVT = VT.getSimpleVT(); | 
|  | MVT VecType = MVT::getVectorVT(SimpleVT, 2); | 
|  |  | 
|  | SDValue NewOld = DAG.getBuildVector(VecType, DL, {New, Old}); | 
|  | SDValue Ops[] = { ChainIn, Addr, NewOld }; | 
|  |  | 
|  | return DAG.getMemIntrinsicNode(AMDGPUISD::ATOMIC_CMP_SWAP, DL, Op->getVTList(), | 
|  | Ops, VT, AtomicNode->getMemOperand()); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Custom DAG optimizations | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | EVT VT = N->getValueType(0); | 
|  | EVT ScalarVT = VT.getScalarType(); | 
|  | if (ScalarVT != MVT::f32) | 
|  | return SDValue(); | 
|  |  | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | SDLoc DL(N); | 
|  |  | 
|  | SDValue Src = N->getOperand(0); | 
|  | EVT SrcVT = Src.getValueType(); | 
|  |  | 
|  | // TODO: We could try to match extracting the higher bytes, which would be | 
|  | // easier if i8 vectors weren't promoted to i32 vectors, particularly after | 
|  | // types are legalized. v4i8 -> v4f32 is probably the only case to worry | 
|  | // about in practice. | 
|  | if (DCI.isAfterLegalizeVectorOps() && SrcVT == MVT::i32) { | 
|  | if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) { | 
|  | SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Src); | 
|  | DCI.AddToWorklist(Cvt.getNode()); | 
|  | return Cvt; | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2) | 
|  |  | 
|  | // This is a variant of | 
|  | // (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2), | 
|  | // | 
|  | // The normal DAG combiner will do this, but only if the add has one use since | 
|  | // that would increase the number of instructions. | 
|  | // | 
|  | // This prevents us from seeing a constant offset that can be folded into a | 
|  | // memory instruction's addressing mode. If we know the resulting add offset of | 
|  | // a pointer can be folded into an addressing offset, we can replace the pointer | 
|  | // operand with the add of new constant offset. This eliminates one of the uses, | 
|  | // and may allow the remaining use to also be simplified. | 
|  | // | 
|  | SDValue SITargetLowering::performSHLPtrCombine(SDNode *N, | 
|  | unsigned AddrSpace, | 
|  | EVT MemVT, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  |  | 
|  | // We only do this to handle cases where it's profitable when there are | 
|  | // multiple uses of the add, so defer to the standard combine. | 
|  | if ((N0.getOpcode() != ISD::ADD && N0.getOpcode() != ISD::OR) || | 
|  | N0->hasOneUse()) | 
|  | return SDValue(); | 
|  |  | 
|  | const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1); | 
|  | if (!CN1) | 
|  | return SDValue(); | 
|  |  | 
|  | const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1)); | 
|  | if (!CAdd) | 
|  | return SDValue(); | 
|  |  | 
|  | // If the resulting offset is too large, we can't fold it into the addressing | 
|  | // mode offset. | 
|  | APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue(); | 
|  | Type *Ty = MemVT.getTypeForEVT(*DCI.DAG.getContext()); | 
|  |  | 
|  | AddrMode AM; | 
|  | AM.HasBaseReg = true; | 
|  | AM.BaseOffs = Offset.getSExtValue(); | 
|  | if (!isLegalAddressingMode(DCI.DAG.getDataLayout(), AM, Ty, AddrSpace)) | 
|  | return SDValue(); | 
|  |  | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | SDLoc SL(N); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1); | 
|  | SDValue COffset = DAG.getConstant(Offset, SL, MVT::i32); | 
|  |  | 
|  | SDNodeFlags Flags; | 
|  | Flags.setNoUnsignedWrap(N->getFlags().hasNoUnsignedWrap() && | 
|  | (N0.getOpcode() == ISD::OR || | 
|  | N0->getFlags().hasNoUnsignedWrap())); | 
|  |  | 
|  | return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset, Flags); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::performMemSDNodeCombine(MemSDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | SDValue Ptr = N->getBasePtr(); | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | SDLoc SL(N); | 
|  |  | 
|  | // TODO: We could also do this for multiplies. | 
|  | if (Ptr.getOpcode() == ISD::SHL) { | 
|  | SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(),  N->getAddressSpace(), | 
|  | N->getMemoryVT(), DCI); | 
|  | if (NewPtr) { | 
|  | SmallVector<SDValue, 8> NewOps(N->op_begin(), N->op_end()); | 
|  |  | 
|  | NewOps[N->getOpcode() == ISD::STORE ? 2 : 1] = NewPtr; | 
|  | return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static bool bitOpWithConstantIsReducible(unsigned Opc, uint32_t Val) { | 
|  | return (Opc == ISD::AND && (Val == 0 || Val == 0xffffffff)) || | 
|  | (Opc == ISD::OR && (Val == 0xffffffff || Val == 0)) || | 
|  | (Opc == ISD::XOR && Val == 0); | 
|  | } | 
|  |  | 
|  | // Break up 64-bit bit operation of a constant into two 32-bit and/or/xor. This | 
|  | // will typically happen anyway for a VALU 64-bit and. This exposes other 32-bit | 
|  | // integer combine opportunities since most 64-bit operations are decomposed | 
|  | // this way.  TODO: We won't want this for SALU especially if it is an inline | 
|  | // immediate. | 
|  | SDValue SITargetLowering::splitBinaryBitConstantOp( | 
|  | DAGCombinerInfo &DCI, | 
|  | const SDLoc &SL, | 
|  | unsigned Opc, SDValue LHS, | 
|  | const ConstantSDNode *CRHS) const { | 
|  | uint64_t Val = CRHS->getZExtValue(); | 
|  | uint32_t ValLo = Lo_32(Val); | 
|  | uint32_t ValHi = Hi_32(Val); | 
|  | const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); | 
|  |  | 
|  | if ((bitOpWithConstantIsReducible(Opc, ValLo) || | 
|  | bitOpWithConstantIsReducible(Opc, ValHi)) || | 
|  | (CRHS->hasOneUse() && !TII->isInlineConstant(CRHS->getAPIntValue()))) { | 
|  | // If we need to materialize a 64-bit immediate, it will be split up later | 
|  | // anyway. Avoid creating the harder to understand 64-bit immediate | 
|  | // materialization. | 
|  | return splitBinaryBitConstantOpImpl(DCI, SL, Opc, LHS, ValLo, ValHi); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Returns true if argument is a boolean value which is not serialized into | 
|  | // memory or argument and does not require v_cmdmask_b32 to be deserialized. | 
|  | static bool isBoolSGPR(SDValue V) { | 
|  | if (V.getValueType() != MVT::i1) | 
|  | return false; | 
|  | switch (V.getOpcode()) { | 
|  | default: break; | 
|  | case ISD::SETCC: | 
|  | case ISD::AND: | 
|  | case ISD::OR: | 
|  | case ISD::XOR: | 
|  | case AMDGPUISD::FP_CLASS: | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::performAndCombine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | if (DCI.isBeforeLegalize()) | 
|  | return SDValue(); | 
|  |  | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | EVT VT = N->getValueType(0); | 
|  | SDValue LHS = N->getOperand(0); | 
|  | SDValue RHS = N->getOperand(1); | 
|  |  | 
|  |  | 
|  | const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS); | 
|  | if (VT == MVT::i64 && CRHS) { | 
|  | if (SDValue Split | 
|  | = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::AND, LHS, CRHS)) | 
|  | return Split; | 
|  | } | 
|  |  | 
|  | if (CRHS && VT == MVT::i32) { | 
|  | // and (srl x, c), mask => shl (bfe x, nb + c, mask >> nb), nb | 
|  | // nb = number of trailing zeroes in mask | 
|  | // It can be optimized out using SDWA for GFX8+ in the SDWA peephole pass, | 
|  | // given that we are selecting 8 or 16 bit fields starting at byte boundary. | 
|  | uint64_t Mask = CRHS->getZExtValue(); | 
|  | unsigned Bits = countPopulation(Mask); | 
|  | if (getSubtarget()->hasSDWA() && LHS->getOpcode() == ISD::SRL && | 
|  | (Bits == 8 || Bits == 16) && isShiftedMask_64(Mask) && !(Mask & 1)) { | 
|  | if (auto *CShift = dyn_cast<ConstantSDNode>(LHS->getOperand(1))) { | 
|  | unsigned Shift = CShift->getZExtValue(); | 
|  | unsigned NB = CRHS->getAPIntValue().countTrailingZeros(); | 
|  | unsigned Offset = NB + Shift; | 
|  | if ((Offset & (Bits - 1)) == 0) { // Starts at a byte or word boundary. | 
|  | SDLoc SL(N); | 
|  | SDValue BFE = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, | 
|  | LHS->getOperand(0), | 
|  | DAG.getConstant(Offset, SL, MVT::i32), | 
|  | DAG.getConstant(Bits, SL, MVT::i32)); | 
|  | EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(), Bits); | 
|  | SDValue Ext = DAG.getNode(ISD::AssertZext, SL, VT, BFE, | 
|  | DAG.getValueType(NarrowVT)); | 
|  | SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(LHS), VT, Ext, | 
|  | DAG.getConstant(NB, SDLoc(CRHS), MVT::i32)); | 
|  | return Shl; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) -> | 
|  | // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity) | 
|  | if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == ISD::SETCC) { | 
|  | ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); | 
|  | ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get(); | 
|  |  | 
|  | SDValue X = LHS.getOperand(0); | 
|  | SDValue Y = RHS.getOperand(0); | 
|  | if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X) | 
|  | return SDValue(); | 
|  |  | 
|  | if (LCC == ISD::SETO) { | 
|  | if (X != LHS.getOperand(1)) | 
|  | return SDValue(); | 
|  |  | 
|  | if (RCC == ISD::SETUNE) { | 
|  | const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1)); | 
|  | if (!C1 || !C1->isInfinity() || C1->isNegative()) | 
|  | return SDValue(); | 
|  |  | 
|  | const uint32_t Mask = SIInstrFlags::N_NORMAL | | 
|  | SIInstrFlags::N_SUBNORMAL | | 
|  | SIInstrFlags::N_ZERO | | 
|  | SIInstrFlags::P_ZERO | | 
|  | SIInstrFlags::P_SUBNORMAL | | 
|  | SIInstrFlags::P_NORMAL; | 
|  |  | 
|  | static_assert(((~(SIInstrFlags::S_NAN | | 
|  | SIInstrFlags::Q_NAN | | 
|  | SIInstrFlags::N_INFINITY | | 
|  | SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask, | 
|  | "mask not equal"); | 
|  |  | 
|  | SDLoc DL(N); | 
|  | return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, | 
|  | X, DAG.getConstant(Mask, DL, MVT::i32)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (VT == MVT::i32 && | 
|  | (RHS.getOpcode() == ISD::SIGN_EXTEND || LHS.getOpcode() == ISD::SIGN_EXTEND)) { | 
|  | // and x, (sext cc from i1) => select cc, x, 0 | 
|  | if (RHS.getOpcode() != ISD::SIGN_EXTEND) | 
|  | std::swap(LHS, RHS); | 
|  | if (isBoolSGPR(RHS.getOperand(0))) | 
|  | return DAG.getSelect(SDLoc(N), MVT::i32, RHS.getOperand(0), | 
|  | LHS, DAG.getConstant(0, SDLoc(N), MVT::i32)); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::performOrCombine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | SDValue LHS = N->getOperand(0); | 
|  | SDValue RHS = N->getOperand(1); | 
|  |  | 
|  | EVT VT = N->getValueType(0); | 
|  | if (VT == MVT::i1) { | 
|  | // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2) | 
|  | if (LHS.getOpcode() == AMDGPUISD::FP_CLASS && | 
|  | RHS.getOpcode() == AMDGPUISD::FP_CLASS) { | 
|  | SDValue Src = LHS.getOperand(0); | 
|  | if (Src != RHS.getOperand(0)) | 
|  | return SDValue(); | 
|  |  | 
|  | const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1)); | 
|  | const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1)); | 
|  | if (!CLHS || !CRHS) | 
|  | return SDValue(); | 
|  |  | 
|  | // Only 10 bits are used. | 
|  | static const uint32_t MaxMask = 0x3ff; | 
|  |  | 
|  | uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask; | 
|  | SDLoc DL(N); | 
|  | return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, | 
|  | Src, DAG.getConstant(NewMask, DL, MVT::i32)); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | if (VT != MVT::i64) | 
|  | return SDValue(); | 
|  |  | 
|  | // TODO: This could be a generic combine with a predicate for extracting the | 
|  | // high half of an integer being free. | 
|  |  | 
|  | // (or i64:x, (zero_extend i32:y)) -> | 
|  | //   i64 (bitcast (v2i32 build_vector (or i32:y, lo_32(x)), hi_32(x))) | 
|  | if (LHS.getOpcode() == ISD::ZERO_EXTEND && | 
|  | RHS.getOpcode() != ISD::ZERO_EXTEND) | 
|  | std::swap(LHS, RHS); | 
|  |  | 
|  | if (RHS.getOpcode() == ISD::ZERO_EXTEND) { | 
|  | SDValue ExtSrc = RHS.getOperand(0); | 
|  | EVT SrcVT = ExtSrc.getValueType(); | 
|  | if (SrcVT == MVT::i32) { | 
|  | SDLoc SL(N); | 
|  | SDValue LowLHS, HiBits; | 
|  | std::tie(LowLHS, HiBits) = split64BitValue(LHS, DAG); | 
|  | SDValue LowOr = DAG.getNode(ISD::OR, SL, MVT::i32, LowLHS, ExtSrc); | 
|  |  | 
|  | DCI.AddToWorklist(LowOr.getNode()); | 
|  | DCI.AddToWorklist(HiBits.getNode()); | 
|  |  | 
|  | SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, | 
|  | LowOr, HiBits); | 
|  | return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); | 
|  | } | 
|  | } | 
|  |  | 
|  | const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); | 
|  | if (CRHS) { | 
|  | if (SDValue Split | 
|  | = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::OR, LHS, CRHS)) | 
|  | return Split; | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::performXorCombine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | EVT VT = N->getValueType(0); | 
|  | if (VT != MVT::i64) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue LHS = N->getOperand(0); | 
|  | SDValue RHS = N->getOperand(1); | 
|  |  | 
|  | const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS); | 
|  | if (CRHS) { | 
|  | if (SDValue Split | 
|  | = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::XOR, LHS, CRHS)) | 
|  | return Split; | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Instructions that will be lowered with a final instruction that zeros the | 
|  | // high result bits. | 
|  | // XXX - probably only need to list legal operations. | 
|  | static bool fp16SrcZerosHighBits(unsigned Opc) { | 
|  | switch (Opc) { | 
|  | case ISD::FADD: | 
|  | case ISD::FSUB: | 
|  | case ISD::FMUL: | 
|  | case ISD::FDIV: | 
|  | case ISD::FREM: | 
|  | case ISD::FMA: | 
|  | case ISD::FMAD: | 
|  | case ISD::FCANONICALIZE: | 
|  | case ISD::FP_ROUND: | 
|  | case ISD::UINT_TO_FP: | 
|  | case ISD::SINT_TO_FP: | 
|  | case ISD::FABS: | 
|  | // Fabs is lowered to a bit operation, but it's an and which will clear the | 
|  | // high bits anyway. | 
|  | case ISD::FSQRT: | 
|  | case ISD::FSIN: | 
|  | case ISD::FCOS: | 
|  | case ISD::FPOWI: | 
|  | case ISD::FPOW: | 
|  | case ISD::FLOG: | 
|  | case ISD::FLOG2: | 
|  | case ISD::FLOG10: | 
|  | case ISD::FEXP: | 
|  | case ISD::FEXP2: | 
|  | case ISD::FCEIL: | 
|  | case ISD::FTRUNC: | 
|  | case ISD::FRINT: | 
|  | case ISD::FNEARBYINT: | 
|  | case ISD::FROUND: | 
|  | case ISD::FFLOOR: | 
|  | case ISD::FMINNUM: | 
|  | case ISD::FMAXNUM: | 
|  | case AMDGPUISD::FRACT: | 
|  | case AMDGPUISD::CLAMP: | 
|  | case AMDGPUISD::COS_HW: | 
|  | case AMDGPUISD::SIN_HW: | 
|  | case AMDGPUISD::FMIN3: | 
|  | case AMDGPUISD::FMAX3: | 
|  | case AMDGPUISD::FMED3: | 
|  | case AMDGPUISD::FMAD_FTZ: | 
|  | case AMDGPUISD::RCP: | 
|  | case AMDGPUISD::RSQ: | 
|  | case AMDGPUISD::LDEXP: | 
|  | return true; | 
|  | default: | 
|  | // fcopysign, select and others may be lowered to 32-bit bit operations | 
|  | // which don't zero the high bits. | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::performZeroExtendCombine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | if (!Subtarget->has16BitInsts() || | 
|  | DCI.getDAGCombineLevel() < AfterLegalizeDAG) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT VT = N->getValueType(0); | 
|  | if (VT != MVT::i32) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue Src = N->getOperand(0); | 
|  | if (Src.getValueType() != MVT::i16) | 
|  | return SDValue(); | 
|  |  | 
|  | // (i32 zext (i16 (bitcast f16:$src))) -> fp16_zext $src | 
|  | // FIXME: It is not universally true that the high bits are zeroed on gfx9. | 
|  | if (Src.getOpcode() == ISD::BITCAST) { | 
|  | SDValue BCSrc = Src.getOperand(0); | 
|  | if (BCSrc.getValueType() == MVT::f16 && | 
|  | fp16SrcZerosHighBits(BCSrc.getOpcode())) | 
|  | return DCI.DAG.getNode(AMDGPUISD::FP16_ZEXT, SDLoc(N), VT, BCSrc); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::performClassCombine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | SDValue Mask = N->getOperand(1); | 
|  |  | 
|  | // fp_class x, 0 -> false | 
|  | if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) { | 
|  | if (CMask->isNullValue()) | 
|  | return DAG.getConstant(0, SDLoc(N), MVT::i1); | 
|  | } | 
|  |  | 
|  | if (N->getOperand(0).isUndef()) | 
|  | return DAG.getUNDEF(MVT::i1); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static bool isKnownNeverSNan(SelectionDAG &DAG, SDValue Op) { | 
|  | if (!DAG.getTargetLoweringInfo().hasFloatingPointExceptions()) | 
|  | return true; | 
|  |  | 
|  | return DAG.isKnownNeverNaN(Op); | 
|  | } | 
|  |  | 
|  | static bool isCanonicalized(SelectionDAG &DAG, SDValue Op, | 
|  | const SISubtarget *ST, unsigned MaxDepth=5) { | 
|  | // If source is a result of another standard FP operation it is already in | 
|  | // canonical form. | 
|  |  | 
|  | switch (Op.getOpcode()) { | 
|  | default: | 
|  | break; | 
|  |  | 
|  | // These will flush denorms if required. | 
|  | case ISD::FADD: | 
|  | case ISD::FSUB: | 
|  | case ISD::FMUL: | 
|  | case ISD::FSQRT: | 
|  | case ISD::FCEIL: | 
|  | case ISD::FFLOOR: | 
|  | case ISD::FMA: | 
|  | case ISD::FMAD: | 
|  |  | 
|  | case ISD::FCANONICALIZE: | 
|  | return true; | 
|  |  | 
|  | case ISD::FP_ROUND: | 
|  | return Op.getValueType().getScalarType() != MVT::f16 || | 
|  | ST->hasFP16Denormals(); | 
|  |  | 
|  | case ISD::FP_EXTEND: | 
|  | return Op.getOperand(0).getValueType().getScalarType() != MVT::f16 || | 
|  | ST->hasFP16Denormals(); | 
|  |  | 
|  | case ISD::FP16_TO_FP: | 
|  | case ISD::FP_TO_FP16: | 
|  | return ST->hasFP16Denormals(); | 
|  |  | 
|  | // It can/will be lowered or combined as a bit operation. | 
|  | // Need to check their input recursively to handle. | 
|  | case ISD::FNEG: | 
|  | case ISD::FABS: | 
|  | return (MaxDepth > 0) && | 
|  | isCanonicalized(DAG, Op.getOperand(0), ST, MaxDepth - 1); | 
|  |  | 
|  | case ISD::FSIN: | 
|  | case ISD::FCOS: | 
|  | case ISD::FSINCOS: | 
|  | return Op.getValueType().getScalarType() != MVT::f16; | 
|  |  | 
|  | // In pre-GFX9 targets V_MIN_F32 and others do not flush denorms. | 
|  | // For such targets need to check their input recursively. | 
|  | case ISD::FMINNUM: | 
|  | case ISD::FMAXNUM: | 
|  | case ISD::FMINNAN: | 
|  | case ISD::FMAXNAN: | 
|  |  | 
|  | if (ST->supportsMinMaxDenormModes() && | 
|  | DAG.isKnownNeverNaN(Op.getOperand(0)) && | 
|  | DAG.isKnownNeverNaN(Op.getOperand(1))) | 
|  | return true; | 
|  |  | 
|  | return (MaxDepth > 0) && | 
|  | isCanonicalized(DAG, Op.getOperand(0), ST, MaxDepth - 1) && | 
|  | isCanonicalized(DAG, Op.getOperand(1), ST, MaxDepth - 1); | 
|  |  | 
|  | case ISD::ConstantFP: { | 
|  | auto F = cast<ConstantFPSDNode>(Op)->getValueAPF(); | 
|  | return !F.isDenormal() && !(F.isNaN() && F.isSignaling()); | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Constant fold canonicalize. | 
|  | SDValue SITargetLowering::performFCanonicalizeCombine( | 
|  | SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | ConstantFPSDNode *CFP = isConstOrConstSplatFP(N->getOperand(0)); | 
|  |  | 
|  | if (!CFP) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N0.getValueType().getScalarType(); | 
|  | auto ST = getSubtarget(); | 
|  |  | 
|  | if (((VT == MVT::f32 && ST->hasFP32Denormals()) || | 
|  | (VT == MVT::f64 && ST->hasFP64Denormals()) || | 
|  | (VT == MVT::f16 && ST->hasFP16Denormals())) && | 
|  | DAG.isKnownNeverNaN(N0)) | 
|  | return N0; | 
|  |  | 
|  | bool IsIEEEMode = Subtarget->enableIEEEBit(DAG.getMachineFunction()); | 
|  |  | 
|  | if ((IsIEEEMode || isKnownNeverSNan(DAG, N0)) && | 
|  | isCanonicalized(DAG, N0, ST)) | 
|  | return N0; | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | const APFloat &C = CFP->getValueAPF(); | 
|  |  | 
|  | // Flush denormals to 0 if not enabled. | 
|  | if (C.isDenormal()) { | 
|  | EVT VT = N->getValueType(0); | 
|  | EVT SVT = VT.getScalarType(); | 
|  | if (SVT == MVT::f32 && !Subtarget->hasFP32Denormals()) | 
|  | return DAG.getConstantFP(0.0, SDLoc(N), VT); | 
|  |  | 
|  | if (SVT == MVT::f64 && !Subtarget->hasFP64Denormals()) | 
|  | return DAG.getConstantFP(0.0, SDLoc(N), VT); | 
|  |  | 
|  | if (SVT == MVT::f16 && !Subtarget->hasFP16Denormals()) | 
|  | return DAG.getConstantFP(0.0, SDLoc(N), VT); | 
|  | } | 
|  |  | 
|  | if (C.isNaN()) { | 
|  | EVT VT = N->getValueType(0); | 
|  | APFloat CanonicalQNaN = APFloat::getQNaN(C.getSemantics()); | 
|  | if (C.isSignaling()) { | 
|  | // Quiet a signaling NaN. | 
|  | return DAG.getConstantFP(CanonicalQNaN, SDLoc(N), VT); | 
|  | } | 
|  |  | 
|  | // Make sure it is the canonical NaN bitpattern. | 
|  | // | 
|  | // TODO: Can we use -1 as the canonical NaN value since it's an inline | 
|  | // immediate? | 
|  | if (C.bitcastToAPInt() != CanonicalQNaN.bitcastToAPInt()) | 
|  | return DAG.getConstantFP(CanonicalQNaN, SDLoc(N), VT); | 
|  | } | 
|  |  | 
|  | return N->getOperand(0); | 
|  | } | 
|  |  | 
|  | static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) { | 
|  | switch (Opc) { | 
|  | case ISD::FMAXNUM: | 
|  | return AMDGPUISD::FMAX3; | 
|  | case ISD::SMAX: | 
|  | return AMDGPUISD::SMAX3; | 
|  | case ISD::UMAX: | 
|  | return AMDGPUISD::UMAX3; | 
|  | case ISD::FMINNUM: | 
|  | return AMDGPUISD::FMIN3; | 
|  | case ISD::SMIN: | 
|  | return AMDGPUISD::SMIN3; | 
|  | case ISD::UMIN: | 
|  | return AMDGPUISD::UMIN3; | 
|  | default: | 
|  | llvm_unreachable("Not a min/max opcode"); | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::performIntMed3ImmCombine( | 
|  | SelectionDAG &DAG, const SDLoc &SL, | 
|  | SDValue Op0, SDValue Op1, bool Signed) const { | 
|  | ConstantSDNode *K1 = dyn_cast<ConstantSDNode>(Op1); | 
|  | if (!K1) | 
|  | return SDValue(); | 
|  |  | 
|  | ConstantSDNode *K0 = dyn_cast<ConstantSDNode>(Op0.getOperand(1)); | 
|  | if (!K0) | 
|  | return SDValue(); | 
|  |  | 
|  | if (Signed) { | 
|  | if (K0->getAPIntValue().sge(K1->getAPIntValue())) | 
|  | return SDValue(); | 
|  | } else { | 
|  | if (K0->getAPIntValue().uge(K1->getAPIntValue())) | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | EVT VT = K0->getValueType(0); | 
|  | unsigned Med3Opc = Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3; | 
|  | if (VT == MVT::i32 || (VT == MVT::i16 && Subtarget->hasMed3_16())) { | 
|  | return DAG.getNode(Med3Opc, SL, VT, | 
|  | Op0.getOperand(0), SDValue(K0, 0), SDValue(K1, 0)); | 
|  | } | 
|  |  | 
|  | // If there isn't a 16-bit med3 operation, convert to 32-bit. | 
|  | MVT NVT = MVT::i32; | 
|  | unsigned ExtOp = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; | 
|  |  | 
|  | SDValue Tmp1 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(0)); | 
|  | SDValue Tmp2 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(1)); | 
|  | SDValue Tmp3 = DAG.getNode(ExtOp, SL, NVT, Op1); | 
|  |  | 
|  | SDValue Med3 = DAG.getNode(Med3Opc, SL, NVT, Tmp1, Tmp2, Tmp3); | 
|  | return DAG.getNode(ISD::TRUNCATE, SL, VT, Med3); | 
|  | } | 
|  |  | 
|  | static ConstantFPSDNode *getSplatConstantFP(SDValue Op) { | 
|  | if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) | 
|  | return C; | 
|  |  | 
|  | if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op)) { | 
|  | if (ConstantFPSDNode *C = BV->getConstantFPSplatNode()) | 
|  | return C; | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::performFPMed3ImmCombine(SelectionDAG &DAG, | 
|  | const SDLoc &SL, | 
|  | SDValue Op0, | 
|  | SDValue Op1) const { | 
|  | ConstantFPSDNode *K1 = getSplatConstantFP(Op1); | 
|  | if (!K1) | 
|  | return SDValue(); | 
|  |  | 
|  | ConstantFPSDNode *K0 = getSplatConstantFP(Op0.getOperand(1)); | 
|  | if (!K0) | 
|  | return SDValue(); | 
|  |  | 
|  | // Ordered >= (although NaN inputs should have folded away by now). | 
|  | APFloat::cmpResult Cmp = K0->getValueAPF().compare(K1->getValueAPF()); | 
|  | if (Cmp == APFloat::cmpGreaterThan) | 
|  | return SDValue(); | 
|  |  | 
|  | // TODO: Check IEEE bit enabled? | 
|  | EVT VT = Op0.getValueType(); | 
|  | if (Subtarget->enableDX10Clamp()) { | 
|  | // If dx10_clamp is enabled, NaNs clamp to 0.0. This is the same as the | 
|  | // hardware fmed3 behavior converting to a min. | 
|  | // FIXME: Should this be allowing -0.0? | 
|  | if (K1->isExactlyValue(1.0) && K0->isExactlyValue(0.0)) | 
|  | return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Op0.getOperand(0)); | 
|  | } | 
|  |  | 
|  | // med3 for f16 is only available on gfx9+, and not available for v2f16. | 
|  | if (VT == MVT::f32 || (VT == MVT::f16 && Subtarget->hasMed3_16())) { | 
|  | // This isn't safe with signaling NaNs because in IEEE mode, min/max on a | 
|  | // signaling NaN gives a quiet NaN. The quiet NaN input to the min would | 
|  | // then give the other result, which is different from med3 with a NaN | 
|  | // input. | 
|  | SDValue Var = Op0.getOperand(0); | 
|  | if (!isKnownNeverSNan(DAG, Var)) | 
|  | return SDValue(); | 
|  |  | 
|  | return DAG.getNode(AMDGPUISD::FMED3, SL, K0->getValueType(0), | 
|  | Var, SDValue(K0, 0), SDValue(K1, 0)); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::performMinMaxCombine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  |  | 
|  | EVT VT = N->getValueType(0); | 
|  | unsigned Opc = N->getOpcode(); | 
|  | SDValue Op0 = N->getOperand(0); | 
|  | SDValue Op1 = N->getOperand(1); | 
|  |  | 
|  | // Only do this if the inner op has one use since this will just increases | 
|  | // register pressure for no benefit. | 
|  |  | 
|  |  | 
|  | if (Opc != AMDGPUISD::FMIN_LEGACY && Opc != AMDGPUISD::FMAX_LEGACY && | 
|  | VT != MVT::f64 && | 
|  | ((VT != MVT::f16 && VT != MVT::i16) || Subtarget->hasMin3Max3_16())) { | 
|  | // max(max(a, b), c) -> max3(a, b, c) | 
|  | // min(min(a, b), c) -> min3(a, b, c) | 
|  | if (Op0.getOpcode() == Opc && Op0.hasOneUse()) { | 
|  | SDLoc DL(N); | 
|  | return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc), | 
|  | DL, | 
|  | N->getValueType(0), | 
|  | Op0.getOperand(0), | 
|  | Op0.getOperand(1), | 
|  | Op1); | 
|  | } | 
|  |  | 
|  | // Try commuted. | 
|  | // max(a, max(b, c)) -> max3(a, b, c) | 
|  | // min(a, min(b, c)) -> min3(a, b, c) | 
|  | if (Op1.getOpcode() == Opc && Op1.hasOneUse()) { | 
|  | SDLoc DL(N); | 
|  | return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc), | 
|  | DL, | 
|  | N->getValueType(0), | 
|  | Op0, | 
|  | Op1.getOperand(0), | 
|  | Op1.getOperand(1)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // min(max(x, K0), K1), K0 < K1 -> med3(x, K0, K1) | 
|  | if (Opc == ISD::SMIN && Op0.getOpcode() == ISD::SMAX && Op0.hasOneUse()) { | 
|  | if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, true)) | 
|  | return Med3; | 
|  | } | 
|  |  | 
|  | if (Opc == ISD::UMIN && Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) { | 
|  | if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, false)) | 
|  | return Med3; | 
|  | } | 
|  |  | 
|  | // fminnum(fmaxnum(x, K0), K1), K0 < K1 && !is_snan(x) -> fmed3(x, K0, K1) | 
|  | if (((Opc == ISD::FMINNUM && Op0.getOpcode() == ISD::FMAXNUM) || | 
|  | (Opc == AMDGPUISD::FMIN_LEGACY && | 
|  | Op0.getOpcode() == AMDGPUISD::FMAX_LEGACY)) && | 
|  | (VT == MVT::f32 || VT == MVT::f64 || | 
|  | (VT == MVT::f16 && Subtarget->has16BitInsts()) || | 
|  | (VT == MVT::v2f16 && Subtarget->hasVOP3PInsts())) && | 
|  | Op0.hasOneUse()) { | 
|  | if (SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(N), Op0, Op1)) | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static bool isClampZeroToOne(SDValue A, SDValue B) { | 
|  | if (ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) { | 
|  | if (ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) { | 
|  | // FIXME: Should this be allowing -0.0? | 
|  | return (CA->isExactlyValue(0.0) && CB->isExactlyValue(1.0)) || | 
|  | (CA->isExactlyValue(1.0) && CB->isExactlyValue(0.0)); | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // FIXME: Should only worry about snans for version with chain. | 
|  | SDValue SITargetLowering::performFMed3Combine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | EVT VT = N->getValueType(0); | 
|  | // v_med3_f32 and v_max_f32 behave identically wrt denorms, exceptions and | 
|  | // NaNs. With a NaN input, the order of the operands may change the result. | 
|  |  | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | SDLoc SL(N); | 
|  |  | 
|  | SDValue Src0 = N->getOperand(0); | 
|  | SDValue Src1 = N->getOperand(1); | 
|  | SDValue Src2 = N->getOperand(2); | 
|  |  | 
|  | if (isClampZeroToOne(Src0, Src1)) { | 
|  | // const_a, const_b, x -> clamp is safe in all cases including signaling | 
|  | // nans. | 
|  | // FIXME: Should this be allowing -0.0? | 
|  | return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src2); | 
|  | } | 
|  |  | 
|  | // FIXME: dx10_clamp behavior assumed in instcombine. Should we really bother | 
|  | // handling no dx10-clamp? | 
|  | if (Subtarget->enableDX10Clamp()) { | 
|  | // If NaNs is clamped to 0, we are free to reorder the inputs. | 
|  |  | 
|  | if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1)) | 
|  | std::swap(Src0, Src1); | 
|  |  | 
|  | if (isa<ConstantFPSDNode>(Src1) && !isa<ConstantFPSDNode>(Src2)) | 
|  | std::swap(Src1, Src2); | 
|  |  | 
|  | if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1)) | 
|  | std::swap(Src0, Src1); | 
|  |  | 
|  | if (isClampZeroToOne(Src1, Src2)) | 
|  | return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src0); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::performCvtPkRTZCombine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | SDValue Src0 = N->getOperand(0); | 
|  | SDValue Src1 = N->getOperand(1); | 
|  | if (Src0.isUndef() && Src1.isUndef()) | 
|  | return DCI.DAG.getUNDEF(N->getValueType(0)); | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::performExtractVectorEltCombine( | 
|  | SDNode *N, DAGCombinerInfo &DCI) const { | 
|  | SDValue Vec = N->getOperand(0); | 
|  |  | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | if (Vec.getOpcode() == ISD::FNEG && allUsesHaveSourceMods(N)) { | 
|  | SDLoc SL(N); | 
|  | EVT EltVT = N->getValueType(0); | 
|  | SDValue Idx = N->getOperand(1); | 
|  | SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, | 
|  | Vec.getOperand(0), Idx); | 
|  | return DAG.getNode(ISD::FNEG, SL, EltVT, Elt); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static bool convertBuildVectorCastElt(SelectionDAG &DAG, | 
|  | SDValue &Lo, SDValue &Hi) { | 
|  | if (Hi.getOpcode() == ISD::BITCAST && | 
|  | Hi.getOperand(0).getValueType() == MVT::f16 && | 
|  | (isa<ConstantSDNode>(Lo) || Lo.isUndef())) { | 
|  | Lo = DAG.getNode(ISD::BITCAST, SDLoc(Lo), MVT::f16, Lo); | 
|  | Hi = Hi.getOperand(0); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::performBuildVectorCombine( | 
|  | SDNode *N, DAGCombinerInfo &DCI) const { | 
|  | SDLoc SL(N); | 
|  |  | 
|  | if (!isTypeLegal(MVT::v2i16)) | 
|  | return SDValue(); | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | if (VT == MVT::v2i16) { | 
|  | SDValue Lo = N->getOperand(0); | 
|  | SDValue Hi = N->getOperand(1); | 
|  |  | 
|  | // v2i16 build_vector (const|undef), (bitcast f16:$x) | 
|  | // -> bitcast (v2f16 build_vector const|undef, $x | 
|  | if (convertBuildVectorCastElt(DAG, Lo, Hi)) { | 
|  | SDValue NewVec = DAG.getBuildVector(MVT::v2f16, SL, { Lo, Hi  }); | 
|  | return DAG.getNode(ISD::BITCAST, SL, VT, NewVec); | 
|  | } | 
|  |  | 
|  | if (convertBuildVectorCastElt(DAG, Hi, Lo)) { | 
|  | SDValue NewVec = DAG.getBuildVector(MVT::v2f16, SL, { Hi, Lo  }); | 
|  | return DAG.getNode(ISD::BITCAST, SL, VT, NewVec); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | unsigned SITargetLowering::getFusedOpcode(const SelectionDAG &DAG, | 
|  | const SDNode *N0, | 
|  | const SDNode *N1) const { | 
|  | EVT VT = N0->getValueType(0); | 
|  |  | 
|  | // Only do this if we are not trying to support denormals. v_mad_f32 does not | 
|  | // support denormals ever. | 
|  | if ((VT == MVT::f32 && !Subtarget->hasFP32Denormals()) || | 
|  | (VT == MVT::f16 && !Subtarget->hasFP16Denormals())) | 
|  | return ISD::FMAD; | 
|  |  | 
|  | const TargetOptions &Options = DAG.getTarget().Options; | 
|  | if ((Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath || | 
|  | (N0->getFlags().hasUnsafeAlgebra() && | 
|  | N1->getFlags().hasUnsafeAlgebra())) && | 
|  | isFMAFasterThanFMulAndFAdd(VT)) { | 
|  | return ISD::FMA; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static SDValue getMad64_32(SelectionDAG &DAG, const SDLoc &SL, | 
|  | EVT VT, | 
|  | SDValue N0, SDValue N1, SDValue N2, | 
|  | bool Signed) { | 
|  | unsigned MadOpc = Signed ? AMDGPUISD::MAD_I64_I32 : AMDGPUISD::MAD_U64_U32; | 
|  | SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i1); | 
|  | SDValue Mad = DAG.getNode(MadOpc, SL, VTs, N0, N1, N2); | 
|  | return DAG.getNode(ISD::TRUNCATE, SL, VT, Mad); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::performAddCombine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | EVT VT = N->getValueType(0); | 
|  | SDLoc SL(N); | 
|  | SDValue LHS = N->getOperand(0); | 
|  | SDValue RHS = N->getOperand(1); | 
|  |  | 
|  | if ((LHS.getOpcode() == ISD::MUL || RHS.getOpcode() == ISD::MUL) | 
|  | && Subtarget->hasMad64_32() && | 
|  | !VT.isVector() && VT.getScalarSizeInBits() > 32 && | 
|  | VT.getScalarSizeInBits() <= 64) { | 
|  | if (LHS.getOpcode() != ISD::MUL) | 
|  | std::swap(LHS, RHS); | 
|  |  | 
|  | SDValue MulLHS = LHS.getOperand(0); | 
|  | SDValue MulRHS = LHS.getOperand(1); | 
|  | SDValue AddRHS = RHS; | 
|  |  | 
|  | // TODO: Maybe restrict if SGPR inputs. | 
|  | if (numBitsUnsigned(MulLHS, DAG) <= 32 && | 
|  | numBitsUnsigned(MulRHS, DAG) <= 32) { | 
|  | MulLHS = DAG.getZExtOrTrunc(MulLHS, SL, MVT::i32); | 
|  | MulRHS = DAG.getZExtOrTrunc(MulRHS, SL, MVT::i32); | 
|  | AddRHS = DAG.getZExtOrTrunc(AddRHS, SL, MVT::i64); | 
|  | return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, false); | 
|  | } | 
|  |  | 
|  | if (numBitsSigned(MulLHS, DAG) < 32 && numBitsSigned(MulRHS, DAG) < 32) { | 
|  | MulLHS = DAG.getSExtOrTrunc(MulLHS, SL, MVT::i32); | 
|  | MulRHS = DAG.getSExtOrTrunc(MulRHS, SL, MVT::i32); | 
|  | AddRHS = DAG.getSExtOrTrunc(AddRHS, SL, MVT::i64); | 
|  | return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, true); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | if (VT != MVT::i32) | 
|  | return SDValue(); | 
|  |  | 
|  | // add x, zext (setcc) => addcarry x, 0, setcc | 
|  | // add x, sext (setcc) => subcarry x, 0, setcc | 
|  | unsigned Opc = LHS.getOpcode(); | 
|  | if (Opc == ISD::ZERO_EXTEND || Opc == ISD::SIGN_EXTEND || | 
|  | Opc == ISD::ANY_EXTEND || Opc == ISD::ADDCARRY) | 
|  | std::swap(RHS, LHS); | 
|  |  | 
|  | Opc = RHS.getOpcode(); | 
|  | switch (Opc) { | 
|  | default: break; | 
|  | case ISD::ZERO_EXTEND: | 
|  | case ISD::SIGN_EXTEND: | 
|  | case ISD::ANY_EXTEND: { | 
|  | auto Cond = RHS.getOperand(0); | 
|  | if (!isBoolSGPR(Cond)) | 
|  | break; | 
|  | SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1); | 
|  | SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond }; | 
|  | Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::SUBCARRY : ISD::ADDCARRY; | 
|  | return DAG.getNode(Opc, SL, VTList, Args); | 
|  | } | 
|  | case ISD::ADDCARRY: { | 
|  | // add x, (addcarry y, 0, cc) => addcarry x, y, cc | 
|  | auto C = dyn_cast<ConstantSDNode>(RHS.getOperand(1)); | 
|  | if (!C || C->getZExtValue() != 0) break; | 
|  | SDValue Args[] = { LHS, RHS.getOperand(0), RHS.getOperand(2) }; | 
|  | return DAG.getNode(ISD::ADDCARRY, SDLoc(N), RHS->getVTList(), Args); | 
|  | } | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::performSubCombine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | if (VT != MVT::i32) | 
|  | return SDValue(); | 
|  |  | 
|  | SDLoc SL(N); | 
|  | SDValue LHS = N->getOperand(0); | 
|  | SDValue RHS = N->getOperand(1); | 
|  |  | 
|  | unsigned Opc = LHS.getOpcode(); | 
|  | if (Opc != ISD::SUBCARRY) | 
|  | std::swap(RHS, LHS); | 
|  |  | 
|  | if (LHS.getOpcode() == ISD::SUBCARRY) { | 
|  | // sub (subcarry x, 0, cc), y => subcarry x, y, cc | 
|  | auto C = dyn_cast<ConstantSDNode>(LHS.getOperand(1)); | 
|  | if (!C || C->getZExtValue() != 0) | 
|  | return SDValue(); | 
|  | SDValue Args[] = { LHS.getOperand(0), RHS, LHS.getOperand(2) }; | 
|  | return DAG.getNode(ISD::SUBCARRY, SDLoc(N), LHS->getVTList(), Args); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::performAddCarrySubCarryCombine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  |  | 
|  | if (N->getValueType(0) != MVT::i32) | 
|  | return SDValue(); | 
|  |  | 
|  | auto C = dyn_cast<ConstantSDNode>(N->getOperand(1)); | 
|  | if (!C || C->getZExtValue() != 0) | 
|  | return SDValue(); | 
|  |  | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | SDValue LHS = N->getOperand(0); | 
|  |  | 
|  | // addcarry (add x, y), 0, cc => addcarry x, y, cc | 
|  | // subcarry (sub x, y), 0, cc => subcarry x, y, cc | 
|  | unsigned LHSOpc = LHS.getOpcode(); | 
|  | unsigned Opc = N->getOpcode(); | 
|  | if ((LHSOpc == ISD::ADD && Opc == ISD::ADDCARRY) || | 
|  | (LHSOpc == ISD::SUB && Opc == ISD::SUBCARRY)) { | 
|  | SDValue Args[] = { LHS.getOperand(0), LHS.getOperand(1), N->getOperand(2) }; | 
|  | return DAG.getNode(Opc, SDLoc(N), N->getVTList(), Args); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::performFAddCombine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) | 
|  | return SDValue(); | 
|  |  | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | SDLoc SL(N); | 
|  | SDValue LHS = N->getOperand(0); | 
|  | SDValue RHS = N->getOperand(1); | 
|  |  | 
|  | // These should really be instruction patterns, but writing patterns with | 
|  | // source modiifiers is a pain. | 
|  |  | 
|  | // fadd (fadd (a, a), b) -> mad 2.0, a, b | 
|  | if (LHS.getOpcode() == ISD::FADD) { | 
|  | SDValue A = LHS.getOperand(0); | 
|  | if (A == LHS.getOperand(1)) { | 
|  | unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode()); | 
|  | if (FusedOp != 0) { | 
|  | const SDValue Two = DAG.getConstantFP(2.0, SL, VT); | 
|  | return DAG.getNode(FusedOp, SL, VT, A, Two, RHS); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // fadd (b, fadd (a, a)) -> mad 2.0, a, b | 
|  | if (RHS.getOpcode() == ISD::FADD) { | 
|  | SDValue A = RHS.getOperand(0); | 
|  | if (A == RHS.getOperand(1)) { | 
|  | unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode()); | 
|  | if (FusedOp != 0) { | 
|  | const SDValue Two = DAG.getConstantFP(2.0, SL, VT); | 
|  | return DAG.getNode(FusedOp, SL, VT, A, Two, LHS); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::performFSubCombine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) | 
|  | return SDValue(); | 
|  |  | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | SDLoc SL(N); | 
|  | EVT VT = N->getValueType(0); | 
|  | assert(!VT.isVector()); | 
|  |  | 
|  | // Try to get the fneg to fold into the source modifier. This undoes generic | 
|  | // DAG combines and folds them into the mad. | 
|  | // | 
|  | // Only do this if we are not trying to support denormals. v_mad_f32 does | 
|  | // not support denormals ever. | 
|  | SDValue LHS = N->getOperand(0); | 
|  | SDValue RHS = N->getOperand(1); | 
|  | if (LHS.getOpcode() == ISD::FADD) { | 
|  | // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c) | 
|  | SDValue A = LHS.getOperand(0); | 
|  | if (A == LHS.getOperand(1)) { | 
|  | unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode()); | 
|  | if (FusedOp != 0){ | 
|  | const SDValue Two = DAG.getConstantFP(2.0, SL, VT); | 
|  | SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); | 
|  |  | 
|  | return DAG.getNode(FusedOp, SL, VT, A, Two, NegRHS); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (RHS.getOpcode() == ISD::FADD) { | 
|  | // (fsub c, (fadd a, a)) -> mad -2.0, a, c | 
|  |  | 
|  | SDValue A = RHS.getOperand(0); | 
|  | if (A == RHS.getOperand(1)) { | 
|  | unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode()); | 
|  | if (FusedOp != 0){ | 
|  | const SDValue NegTwo = DAG.getConstantFP(-2.0, SL, VT); | 
|  | return DAG.getNode(FusedOp, SL, VT, A, NegTwo, LHS); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::performSetCCCombine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | SDLoc SL(N); | 
|  |  | 
|  | SDValue LHS = N->getOperand(0); | 
|  | SDValue RHS = N->getOperand(1); | 
|  | EVT VT = LHS.getValueType(); | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); | 
|  |  | 
|  | auto CRHS = dyn_cast<ConstantSDNode>(RHS); | 
|  | if (!CRHS) { | 
|  | CRHS = dyn_cast<ConstantSDNode>(LHS); | 
|  | if (CRHS) { | 
|  | std::swap(LHS, RHS); | 
|  | CC = getSetCCSwappedOperands(CC); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (CRHS && VT == MVT::i32 && LHS.getOpcode() == ISD::SIGN_EXTEND && | 
|  | isBoolSGPR(LHS.getOperand(0))) { | 
|  | // setcc (sext from i1 cc), -1, ne|sgt|ult) => not cc => xor cc, -1 | 
|  | // setcc (sext from i1 cc), -1, eq|sle|uge) => cc | 
|  | // setcc (sext from i1 cc),  0, eq|sge|ule) => not cc => xor cc, -1 | 
|  | // setcc (sext from i1 cc),  0, ne|ugt|slt) => cc | 
|  | if ((CRHS->isAllOnesValue() && | 
|  | (CC == ISD::SETNE || CC == ISD::SETGT || CC == ISD::SETULT)) || | 
|  | (CRHS->isNullValue() && | 
|  | (CC == ISD::SETEQ || CC == ISD::SETGE || CC == ISD::SETULE))) | 
|  | return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0), | 
|  | DAG.getConstant(-1, SL, MVT::i1)); | 
|  | if ((CRHS->isAllOnesValue() && | 
|  | (CC == ISD::SETEQ || CC == ISD::SETLE || CC == ISD::SETUGE)) || | 
|  | (CRHS->isNullValue() && | 
|  | (CC == ISD::SETNE || CC == ISD::SETUGT || CC == ISD::SETLT))) | 
|  | return LHS.getOperand(0); | 
|  | } | 
|  |  | 
|  | if (VT != MVT::f32 && VT != MVT::f64 && (Subtarget->has16BitInsts() && | 
|  | VT != MVT::f16)) | 
|  | return SDValue(); | 
|  |  | 
|  | // Match isinf pattern | 
|  | // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity)) | 
|  | if (CC == ISD::SETOEQ && LHS.getOpcode() == ISD::FABS) { | 
|  | const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); | 
|  | if (!CRHS) | 
|  | return SDValue(); | 
|  |  | 
|  | const APFloat &APF = CRHS->getValueAPF(); | 
|  | if (APF.isInfinity() && !APF.isNegative()) { | 
|  | unsigned Mask = SIInstrFlags::P_INFINITY | SIInstrFlags::N_INFINITY; | 
|  | return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0), | 
|  | DAG.getConstant(Mask, SL, MVT::i32)); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::performCvtF32UByteNCombine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | SDLoc SL(N); | 
|  | unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0; | 
|  |  | 
|  | SDValue Src = N->getOperand(0); | 
|  | SDValue Srl = N->getOperand(0); | 
|  | if (Srl.getOpcode() == ISD::ZERO_EXTEND) | 
|  | Srl = Srl.getOperand(0); | 
|  |  | 
|  | // TODO: Handle (or x, (srl y, 8)) pattern when known bits are zero. | 
|  | if (Srl.getOpcode() == ISD::SRL) { | 
|  | // cvt_f32_ubyte0 (srl x, 16) -> cvt_f32_ubyte2 x | 
|  | // cvt_f32_ubyte1 (srl x, 16) -> cvt_f32_ubyte3 x | 
|  | // cvt_f32_ubyte0 (srl x, 8) -> cvt_f32_ubyte1 x | 
|  |  | 
|  | if (const ConstantSDNode *C = | 
|  | dyn_cast<ConstantSDNode>(Srl.getOperand(1))) { | 
|  | Srl = DAG.getZExtOrTrunc(Srl.getOperand(0), SDLoc(Srl.getOperand(0)), | 
|  | EVT(MVT::i32)); | 
|  |  | 
|  | unsigned SrcOffset = C->getZExtValue() + 8 * Offset; | 
|  | if (SrcOffset < 32 && SrcOffset % 8 == 0) { | 
|  | return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0 + SrcOffset / 8, SL, | 
|  | MVT::f32, Srl); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | APInt Demanded = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8); | 
|  |  | 
|  | KnownBits Known; | 
|  | TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), | 
|  | !DCI.isBeforeLegalizeOps()); | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | if (TLI.ShrinkDemandedConstant(Src, Demanded, TLO) || | 
|  | TLI.SimplifyDemandedBits(Src, Demanded, Known, TLO)) { | 
|  | DCI.CommitTargetLoweringOpt(TLO); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::PerformDAGCombine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | switch (N->getOpcode()) { | 
|  | default: | 
|  | return AMDGPUTargetLowering::PerformDAGCombine(N, DCI); | 
|  | case ISD::ADD: | 
|  | return performAddCombine(N, DCI); | 
|  | case ISD::SUB: | 
|  | return performSubCombine(N, DCI); | 
|  | case ISD::ADDCARRY: | 
|  | case ISD::SUBCARRY: | 
|  | return performAddCarrySubCarryCombine(N, DCI); | 
|  | case ISD::FADD: | 
|  | return performFAddCombine(N, DCI); | 
|  | case ISD::FSUB: | 
|  | return performFSubCombine(N, DCI); | 
|  | case ISD::SETCC: | 
|  | return performSetCCCombine(N, DCI); | 
|  | case ISD::FMAXNUM: | 
|  | case ISD::FMINNUM: | 
|  | case ISD::SMAX: | 
|  | case ISD::SMIN: | 
|  | case ISD::UMAX: | 
|  | case ISD::UMIN: | 
|  | case AMDGPUISD::FMIN_LEGACY: | 
|  | case AMDGPUISD::FMAX_LEGACY: { | 
|  | if (DCI.getDAGCombineLevel() >= AfterLegalizeDAG && | 
|  | getTargetMachine().getOptLevel() > CodeGenOpt::None) | 
|  | return performMinMaxCombine(N, DCI); | 
|  | break; | 
|  | } | 
|  | case ISD::LOAD: | 
|  | case ISD::STORE: | 
|  | case ISD::ATOMIC_LOAD: | 
|  | case ISD::ATOMIC_STORE: | 
|  | case ISD::ATOMIC_CMP_SWAP: | 
|  | case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: | 
|  | case ISD::ATOMIC_SWAP: | 
|  | case ISD::ATOMIC_LOAD_ADD: | 
|  | case ISD::ATOMIC_LOAD_SUB: | 
|  | case ISD::ATOMIC_LOAD_AND: | 
|  | case ISD::ATOMIC_LOAD_OR: | 
|  | case ISD::ATOMIC_LOAD_XOR: | 
|  | case ISD::ATOMIC_LOAD_NAND: | 
|  | case ISD::ATOMIC_LOAD_MIN: | 
|  | case ISD::ATOMIC_LOAD_MAX: | 
|  | case ISD::ATOMIC_LOAD_UMIN: | 
|  | case ISD::ATOMIC_LOAD_UMAX: | 
|  | case AMDGPUISD::ATOMIC_INC: | 
|  | case AMDGPUISD::ATOMIC_DEC: | 
|  | case AMDGPUISD::ATOMIC_LOAD_FADD: | 
|  | case AMDGPUISD::ATOMIC_LOAD_FMIN: | 
|  | case AMDGPUISD::ATOMIC_LOAD_FMAX:  // TODO: Target mem intrinsics. | 
|  | if (DCI.isBeforeLegalize()) | 
|  | break; | 
|  | return performMemSDNodeCombine(cast<MemSDNode>(N), DCI); | 
|  | case ISD::AND: | 
|  | return performAndCombine(N, DCI); | 
|  | case ISD::OR: | 
|  | return performOrCombine(N, DCI); | 
|  | case ISD::XOR: | 
|  | return performXorCombine(N, DCI); | 
|  | case ISD::ZERO_EXTEND: | 
|  | return performZeroExtendCombine(N, DCI); | 
|  | case AMDGPUISD::FP_CLASS: | 
|  | return performClassCombine(N, DCI); | 
|  | case ISD::FCANONICALIZE: | 
|  | return performFCanonicalizeCombine(N, DCI); | 
|  | case AMDGPUISD::FRACT: | 
|  | case AMDGPUISD::RCP: | 
|  | case AMDGPUISD::RSQ: | 
|  | case AMDGPUISD::RCP_LEGACY: | 
|  | case AMDGPUISD::RSQ_LEGACY: | 
|  | case AMDGPUISD::RSQ_CLAMP: | 
|  | case AMDGPUISD::LDEXP: { | 
|  | SDValue Src = N->getOperand(0); | 
|  | if (Src.isUndef()) | 
|  | return Src; | 
|  | break; | 
|  | } | 
|  | case ISD::SINT_TO_FP: | 
|  | case ISD::UINT_TO_FP: | 
|  | return performUCharToFloatCombine(N, DCI); | 
|  | case AMDGPUISD::CVT_F32_UBYTE0: | 
|  | case AMDGPUISD::CVT_F32_UBYTE1: | 
|  | case AMDGPUISD::CVT_F32_UBYTE2: | 
|  | case AMDGPUISD::CVT_F32_UBYTE3: | 
|  | return performCvtF32UByteNCombine(N, DCI); | 
|  | case AMDGPUISD::FMED3: | 
|  | return performFMed3Combine(N, DCI); | 
|  | case AMDGPUISD::CVT_PKRTZ_F16_F32: | 
|  | return performCvtPkRTZCombine(N, DCI); | 
|  | case ISD::SCALAR_TO_VECTOR: { | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // v2i16 (scalar_to_vector i16:x) -> v2i16 (bitcast (any_extend i16:x)) | 
|  | if (VT == MVT::v2i16 || VT == MVT::v2f16) { | 
|  | SDLoc SL(N); | 
|  | SDValue Src = N->getOperand(0); | 
|  | EVT EltVT = Src.getValueType(); | 
|  | if (EltVT == MVT::f16) | 
|  | Src = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Src); | 
|  |  | 
|  | SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Src); | 
|  | return DAG.getNode(ISD::BITCAST, SL, VT, Ext); | 
|  | } | 
|  |  | 
|  | break; | 
|  | } | 
|  | case ISD::EXTRACT_VECTOR_ELT: | 
|  | return performExtractVectorEltCombine(N, DCI); | 
|  | case ISD::BUILD_VECTOR: | 
|  | return performBuildVectorCombine(N, DCI); | 
|  | } | 
|  | return AMDGPUTargetLowering::PerformDAGCombine(N, DCI); | 
|  | } | 
|  |  | 
|  | /// \brief Helper function for adjustWritemask | 
|  | static unsigned SubIdx2Lane(unsigned Idx) { | 
|  | switch (Idx) { | 
|  | default: return 0; | 
|  | case AMDGPU::sub0: return 0; | 
|  | case AMDGPU::sub1: return 1; | 
|  | case AMDGPU::sub2: return 2; | 
|  | case AMDGPU::sub3: return 3; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// \brief Adjust the writemask of MIMG instructions | 
|  | SDNode *SITargetLowering::adjustWritemask(MachineSDNode *&Node, | 
|  | SelectionDAG &DAG) const { | 
|  | SDNode *Users[4] = { nullptr }; | 
|  | unsigned Lane = 0; | 
|  | unsigned DmaskIdx = (Node->getNumOperands() - Node->getNumValues() == 9) ? 2 : 3; | 
|  | unsigned OldDmask = Node->getConstantOperandVal(DmaskIdx); | 
|  | unsigned NewDmask = 0; | 
|  | bool HasChain = Node->getNumValues() > 1; | 
|  |  | 
|  | if (OldDmask == 0) { | 
|  | // These are folded out, but on the chance it happens don't assert. | 
|  | return Node; | 
|  | } | 
|  |  | 
|  | // Try to figure out the used register components | 
|  | for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end(); | 
|  | I != E; ++I) { | 
|  |  | 
|  | // Don't look at users of the chain. | 
|  | if (I.getUse().getResNo() != 0) | 
|  | continue; | 
|  |  | 
|  | // Abort if we can't understand the usage | 
|  | if (!I->isMachineOpcode() || | 
|  | I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG) | 
|  | return Node; | 
|  |  | 
|  | // Lane means which subreg of %vgpra_vgprb_vgprc_vgprd is used. | 
|  | // Note that subregs are packed, i.e. Lane==0 is the first bit set | 
|  | // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit | 
|  | // set, etc. | 
|  | Lane = SubIdx2Lane(I->getConstantOperandVal(1)); | 
|  |  | 
|  | // Set which texture component corresponds to the lane. | 
|  | unsigned Comp; | 
|  | for (unsigned i = 0, Dmask = OldDmask; i <= Lane; i++) { | 
|  | Comp = countTrailingZeros(Dmask); | 
|  | Dmask &= ~(1 << Comp); | 
|  | } | 
|  |  | 
|  | // Abort if we have more than one user per component | 
|  | if (Users[Lane]) | 
|  | return Node; | 
|  |  | 
|  | Users[Lane] = *I; | 
|  | NewDmask |= 1 << Comp; | 
|  | } | 
|  |  | 
|  | // Abort if there's no change | 
|  | if (NewDmask == OldDmask) | 
|  | return Node; | 
|  |  | 
|  | unsigned BitsSet = countPopulation(NewDmask); | 
|  |  | 
|  | const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); | 
|  | int NewOpcode = AMDGPU::getMaskedMIMGOp(*TII, | 
|  | Node->getMachineOpcode(), BitsSet); | 
|  | assert(NewOpcode != -1 && | 
|  | NewOpcode != static_cast<int>(Node->getMachineOpcode()) && | 
|  | "failed to find equivalent MIMG op"); | 
|  |  | 
|  | // Adjust the writemask in the node | 
|  | SmallVector<SDValue, 12> Ops; | 
|  | Ops.insert(Ops.end(), Node->op_begin(), Node->op_begin() + DmaskIdx); | 
|  | Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32)); | 
|  | Ops.insert(Ops.end(), Node->op_begin() + DmaskIdx + 1, Node->op_end()); | 
|  |  | 
|  | MVT SVT = Node->getValueType(0).getVectorElementType().getSimpleVT(); | 
|  |  | 
|  | MVT ResultVT = BitsSet == 1 ? | 
|  | SVT : MVT::getVectorVT(SVT, BitsSet == 3 ? 4 : BitsSet); | 
|  | SDVTList NewVTList = HasChain ? | 
|  | DAG.getVTList(ResultVT, MVT::Other) : DAG.getVTList(ResultVT); | 
|  |  | 
|  |  | 
|  | MachineSDNode *NewNode = DAG.getMachineNode(NewOpcode, SDLoc(Node), | 
|  | NewVTList, Ops); | 
|  |  | 
|  | if (HasChain) { | 
|  | // Update chain. | 
|  | NewNode->setMemRefs(Node->memoperands_begin(), Node->memoperands_end()); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), SDValue(NewNode, 1)); | 
|  | } | 
|  |  | 
|  | if (BitsSet == 1) { | 
|  | assert(Node->hasNUsesOfValue(1, 0)); | 
|  | SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY, | 
|  | SDLoc(Node), Users[Lane]->getValueType(0), | 
|  | SDValue(NewNode, 0)); | 
|  | DAG.ReplaceAllUsesWith(Users[Lane], Copy); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Update the users of the node with the new indices | 
|  | for (unsigned i = 0, Idx = AMDGPU::sub0; i < 4; ++i) { | 
|  | SDNode *User = Users[i]; | 
|  | if (!User) | 
|  | continue; | 
|  |  | 
|  | SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32); | 
|  | DAG.UpdateNodeOperands(User, SDValue(NewNode, 0), Op); | 
|  |  | 
|  | switch (Idx) { | 
|  | default: break; | 
|  | case AMDGPU::sub0: Idx = AMDGPU::sub1; break; | 
|  | case AMDGPU::sub1: Idx = AMDGPU::sub2; break; | 
|  | case AMDGPU::sub2: Idx = AMDGPU::sub3; break; | 
|  | } | 
|  | } | 
|  |  | 
|  | DAG.RemoveDeadNode(Node); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | static bool isFrameIndexOp(SDValue Op) { | 
|  | if (Op.getOpcode() == ISD::AssertZext) | 
|  | Op = Op.getOperand(0); | 
|  |  | 
|  | return isa<FrameIndexSDNode>(Op); | 
|  | } | 
|  |  | 
|  | /// \brief Legalize target independent instructions (e.g. INSERT_SUBREG) | 
|  | /// with frame index operands. | 
|  | /// LLVM assumes that inputs are to these instructions are registers. | 
|  | SDNode *SITargetLowering::legalizeTargetIndependentNode(SDNode *Node, | 
|  | SelectionDAG &DAG) const { | 
|  | if (Node->getOpcode() == ISD::CopyToReg) { | 
|  | RegisterSDNode *DestReg = cast<RegisterSDNode>(Node->getOperand(1)); | 
|  | SDValue SrcVal = Node->getOperand(2); | 
|  |  | 
|  | // Insert a copy to a VReg_1 virtual register so LowerI1Copies doesn't have | 
|  | // to try understanding copies to physical registers. | 
|  | if (SrcVal.getValueType() == MVT::i1 && | 
|  | TargetRegisterInfo::isPhysicalRegister(DestReg->getReg())) { | 
|  | SDLoc SL(Node); | 
|  | MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); | 
|  | SDValue VReg = DAG.getRegister( | 
|  | MRI.createVirtualRegister(&AMDGPU::VReg_1RegClass), MVT::i1); | 
|  |  | 
|  | SDNode *Glued = Node->getGluedNode(); | 
|  | SDValue ToVReg | 
|  | = DAG.getCopyToReg(Node->getOperand(0), SL, VReg, SrcVal, | 
|  | SDValue(Glued, Glued ? Glued->getNumValues() - 1 : 0)); | 
|  | SDValue ToResultReg | 
|  | = DAG.getCopyToReg(ToVReg, SL, SDValue(DestReg, 0), | 
|  | VReg, ToVReg.getValue(1)); | 
|  | DAG.ReplaceAllUsesWith(Node, ToResultReg.getNode()); | 
|  | DAG.RemoveDeadNode(Node); | 
|  | return ToResultReg.getNode(); | 
|  | } | 
|  | } | 
|  |  | 
|  | SmallVector<SDValue, 8> Ops; | 
|  | for (unsigned i = 0; i < Node->getNumOperands(); ++i) { | 
|  | if (!isFrameIndexOp(Node->getOperand(i))) { | 
|  | Ops.push_back(Node->getOperand(i)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | SDLoc DL(Node); | 
|  | Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, | 
|  | Node->getOperand(i).getValueType(), | 
|  | Node->getOperand(i)), 0)); | 
|  | } | 
|  |  | 
|  | return DAG.UpdateNodeOperands(Node, Ops); | 
|  | } | 
|  |  | 
|  | /// \brief Fold the instructions after selecting them. | 
|  | /// Returns null if users were already updated. | 
|  | SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node, | 
|  | SelectionDAG &DAG) const { | 
|  | const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); | 
|  | unsigned Opcode = Node->getMachineOpcode(); | 
|  |  | 
|  | if (TII->isMIMG(Opcode) && !TII->get(Opcode).mayStore() && | 
|  | !TII->isGather4(Opcode) && !TII->isD16(Opcode)) { | 
|  | return adjustWritemask(Node, DAG); | 
|  | } | 
|  |  | 
|  | if (Opcode == AMDGPU::INSERT_SUBREG || | 
|  | Opcode == AMDGPU::REG_SEQUENCE) { | 
|  | legalizeTargetIndependentNode(Node, DAG); | 
|  | return Node; | 
|  | } | 
|  |  | 
|  | switch (Opcode) { | 
|  | case AMDGPU::V_DIV_SCALE_F32: | 
|  | case AMDGPU::V_DIV_SCALE_F64: { | 
|  | // Satisfy the operand register constraint when one of the inputs is | 
|  | // undefined. Ordinarily each undef value will have its own implicit_def of | 
|  | // a vreg, so force these to use a single register. | 
|  | SDValue Src0 = Node->getOperand(0); | 
|  | SDValue Src1 = Node->getOperand(1); | 
|  | SDValue Src2 = Node->getOperand(2); | 
|  |  | 
|  | if ((Src0.isMachineOpcode() && | 
|  | Src0.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) && | 
|  | (Src0 == Src1 || Src0 == Src2)) | 
|  | break; | 
|  |  | 
|  | MVT VT = Src0.getValueType().getSimpleVT(); | 
|  | const TargetRegisterClass *RC = getRegClassFor(VT); | 
|  |  | 
|  | MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); | 
|  | SDValue UndefReg = DAG.getRegister(MRI.createVirtualRegister(RC), VT); | 
|  |  | 
|  | SDValue ImpDef = DAG.getCopyToReg(DAG.getEntryNode(), SDLoc(Node), | 
|  | UndefReg, Src0, SDValue()); | 
|  |  | 
|  | // src0 must be the same register as src1 or src2, even if the value is | 
|  | // undefined, so make sure we don't violate this constraint. | 
|  | if (Src0.isMachineOpcode() && | 
|  | Src0.getMachineOpcode() == AMDGPU::IMPLICIT_DEF) { | 
|  | if (Src1.isMachineOpcode() && | 
|  | Src1.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) | 
|  | Src0 = Src1; | 
|  | else if (Src2.isMachineOpcode() && | 
|  | Src2.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) | 
|  | Src0 = Src2; | 
|  | else { | 
|  | assert(Src1.getMachineOpcode() == AMDGPU::IMPLICIT_DEF); | 
|  | Src0 = UndefReg; | 
|  | Src1 = UndefReg; | 
|  | } | 
|  | } else | 
|  | break; | 
|  |  | 
|  | SmallVector<SDValue, 4> Ops = { Src0, Src1, Src2 }; | 
|  | for (unsigned I = 3, N = Node->getNumOperands(); I != N; ++I) | 
|  | Ops.push_back(Node->getOperand(I)); | 
|  |  | 
|  | Ops.push_back(ImpDef.getValue(1)); | 
|  | return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops); | 
|  | } | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return Node; | 
|  | } | 
|  |  | 
|  | /// \brief Assign the register class depending on the number of | 
|  | /// bits set in the writemask | 
|  | void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, | 
|  | SDNode *Node) const { | 
|  | const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); | 
|  |  | 
|  | MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); | 
|  |  | 
|  | if (TII->isVOP3(MI.getOpcode())) { | 
|  | // Make sure constant bus requirements are respected. | 
|  | TII->legalizeOperandsVOP3(MRI, MI); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Replace unused atomics with the no return version. | 
|  | int NoRetAtomicOp = AMDGPU::getAtomicNoRetOp(MI.getOpcode()); | 
|  | if (NoRetAtomicOp != -1) { | 
|  | if (!Node->hasAnyUseOfValue(0)) { | 
|  | MI.setDesc(TII->get(NoRetAtomicOp)); | 
|  | MI.RemoveOperand(0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // For mubuf_atomic_cmpswap, we need to have tablegen use an extract_subreg | 
|  | // instruction, because the return type of these instructions is a vec2 of | 
|  | // the memory type, so it can be tied to the input operand. | 
|  | // This means these instructions always have a use, so we need to add a | 
|  | // special case to check if the atomic has only one extract_subreg use, | 
|  | // which itself has no uses. | 
|  | if ((Node->hasNUsesOfValue(1, 0) && | 
|  | Node->use_begin()->isMachineOpcode() && | 
|  | Node->use_begin()->getMachineOpcode() == AMDGPU::EXTRACT_SUBREG && | 
|  | !Node->use_begin()->hasAnyUseOfValue(0))) { | 
|  | unsigned Def = MI.getOperand(0).getReg(); | 
|  |  | 
|  | // Change this into a noret atomic. | 
|  | MI.setDesc(TII->get(NoRetAtomicOp)); | 
|  | MI.RemoveOperand(0); | 
|  |  | 
|  | // If we only remove the def operand from the atomic instruction, the | 
|  | // extract_subreg will be left with a use of a vreg without a def. | 
|  | // So we need to insert an implicit_def to avoid machine verifier | 
|  | // errors. | 
|  | BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), | 
|  | TII->get(AMDGPU::IMPLICIT_DEF), Def); | 
|  | } | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | static SDValue buildSMovImm32(SelectionDAG &DAG, const SDLoc &DL, | 
|  | uint64_t Val) { | 
|  | SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32); | 
|  | return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0); | 
|  | } | 
|  |  | 
|  | MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG, | 
|  | const SDLoc &DL, | 
|  | SDValue Ptr) const { | 
|  | const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); | 
|  |  | 
|  | // Build the half of the subregister with the constants before building the | 
|  | // full 128-bit register. If we are building multiple resource descriptors, | 
|  | // this will allow CSEing of the 2-component register. | 
|  | const SDValue Ops0[] = { | 
|  | DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32), | 
|  | buildSMovImm32(DAG, DL, 0), | 
|  | DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32), | 
|  | buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32), | 
|  | DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32) | 
|  | }; | 
|  |  | 
|  | SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, | 
|  | MVT::v2i32, Ops0), 0); | 
|  |  | 
|  | // Combine the constants and the pointer. | 
|  | const SDValue Ops1[] = { | 
|  | DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32), | 
|  | Ptr, | 
|  | DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32), | 
|  | SubRegHi, | 
|  | DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32) | 
|  | }; | 
|  |  | 
|  | return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1); | 
|  | } | 
|  |  | 
|  | /// \brief Return a resource descriptor with the 'Add TID' bit enabled | 
|  | ///        The TID (Thread ID) is multiplied by the stride value (bits [61:48] | 
|  | ///        of the resource descriptor) to create an offset, which is added to | 
|  | ///        the resource pointer. | 
|  | MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG, const SDLoc &DL, | 
|  | SDValue Ptr, uint32_t RsrcDword1, | 
|  | uint64_t RsrcDword2And3) const { | 
|  | SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr); | 
|  | SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr); | 
|  | if (RsrcDword1) { | 
|  | PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi, | 
|  | DAG.getConstant(RsrcDword1, DL, MVT::i32)), | 
|  | 0); | 
|  | } | 
|  |  | 
|  | SDValue DataLo = buildSMovImm32(DAG, DL, | 
|  | RsrcDword2And3 & UINT64_C(0xFFFFFFFF)); | 
|  | SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32); | 
|  |  | 
|  | const SDValue Ops[] = { | 
|  | DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32), | 
|  | PtrLo, | 
|  | DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32), | 
|  | PtrHi, | 
|  | DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32), | 
|  | DataLo, | 
|  | DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32), | 
|  | DataHi, | 
|  | DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32) | 
|  | }; | 
|  |  | 
|  | return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                         SI Inline Assembly Support | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | std::pair<unsigned, const TargetRegisterClass *> | 
|  | SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, | 
|  | StringRef Constraint, | 
|  | MVT VT) const { | 
|  | if (!isTypeLegal(VT)) | 
|  | return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); | 
|  |  | 
|  | if (Constraint.size() == 1) { | 
|  | switch (Constraint[0]) { | 
|  | case 's': | 
|  | case 'r': | 
|  | switch (VT.getSizeInBits()) { | 
|  | default: | 
|  | return std::make_pair(0U, nullptr); | 
|  | case 32: | 
|  | case 16: | 
|  | return std::make_pair(0U, &AMDGPU::SReg_32_XM0RegClass); | 
|  | case 64: | 
|  | return std::make_pair(0U, &AMDGPU::SGPR_64RegClass); | 
|  | case 128: | 
|  | return std::make_pair(0U, &AMDGPU::SReg_128RegClass); | 
|  | case 256: | 
|  | return std::make_pair(0U, &AMDGPU::SReg_256RegClass); | 
|  | case 512: | 
|  | return std::make_pair(0U, &AMDGPU::SReg_512RegClass); | 
|  | } | 
|  |  | 
|  | case 'v': | 
|  | switch (VT.getSizeInBits()) { | 
|  | default: | 
|  | return std::make_pair(0U, nullptr); | 
|  | case 32: | 
|  | case 16: | 
|  | return std::make_pair(0U, &AMDGPU::VGPR_32RegClass); | 
|  | case 64: | 
|  | return std::make_pair(0U, &AMDGPU::VReg_64RegClass); | 
|  | case 96: | 
|  | return std::make_pair(0U, &AMDGPU::VReg_96RegClass); | 
|  | case 128: | 
|  | return std::make_pair(0U, &AMDGPU::VReg_128RegClass); | 
|  | case 256: | 
|  | return std::make_pair(0U, &AMDGPU::VReg_256RegClass); | 
|  | case 512: | 
|  | return std::make_pair(0U, &AMDGPU::VReg_512RegClass); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Constraint.size() > 1) { | 
|  | const TargetRegisterClass *RC = nullptr; | 
|  | if (Constraint[1] == 'v') { | 
|  | RC = &AMDGPU::VGPR_32RegClass; | 
|  | } else if (Constraint[1] == 's') { | 
|  | RC = &AMDGPU::SGPR_32RegClass; | 
|  | } | 
|  |  | 
|  | if (RC) { | 
|  | uint32_t Idx; | 
|  | bool Failed = Constraint.substr(2).getAsInteger(10, Idx); | 
|  | if (!Failed && Idx < RC->getNumRegs()) | 
|  | return std::make_pair(RC->getRegister(Idx), RC); | 
|  | } | 
|  | } | 
|  | return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); | 
|  | } | 
|  |  | 
|  | SITargetLowering::ConstraintType | 
|  | SITargetLowering::getConstraintType(StringRef Constraint) const { | 
|  | if (Constraint.size() == 1) { | 
|  | switch (Constraint[0]) { | 
|  | default: break; | 
|  | case 's': | 
|  | case 'v': | 
|  | return C_RegisterClass; | 
|  | } | 
|  | } | 
|  | return TargetLowering::getConstraintType(Constraint); | 
|  | } | 
|  |  | 
|  | // Figure out which registers should be reserved for stack access. Only after | 
|  | // the function is legalized do we know all of the non-spill stack objects or if | 
|  | // calls are present. | 
|  | void SITargetLowering::finalizeLowering(MachineFunction &MF) const { | 
|  | MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  | SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); | 
|  | const MachineFrameInfo &MFI = MF.getFrameInfo(); | 
|  | const SISubtarget &ST = MF.getSubtarget<SISubtarget>(); | 
|  | const SIRegisterInfo *TRI = ST.getRegisterInfo(); | 
|  |  | 
|  | if (Info->isEntryFunction()) { | 
|  | // Callable functions have fixed registers used for stack access. | 
|  | reservePrivateMemoryRegs(getTargetMachine(), MF, *TRI, *Info); | 
|  | } | 
|  |  | 
|  | // We have to assume the SP is needed in case there are calls in the function | 
|  | // during lowering. Calls are only detected after the function is | 
|  | // lowered. We're about to reserve registers, so don't bother using it if we | 
|  | // aren't really going to use it. | 
|  | bool NeedSP = !Info->isEntryFunction() || | 
|  | MFI.hasVarSizedObjects() || | 
|  | MFI.hasCalls(); | 
|  |  | 
|  | if (NeedSP) { | 
|  | unsigned ReservedStackPtrOffsetReg = TRI->reservedStackPtrOffsetReg(MF); | 
|  | Info->setStackPtrOffsetReg(ReservedStackPtrOffsetReg); | 
|  |  | 
|  | assert(Info->getStackPtrOffsetReg() != Info->getFrameOffsetReg()); | 
|  | assert(!TRI->isSubRegister(Info->getScratchRSrcReg(), | 
|  | Info->getStackPtrOffsetReg())); | 
|  | MRI.replaceRegWith(AMDGPU::SP_REG, Info->getStackPtrOffsetReg()); | 
|  | } | 
|  |  | 
|  | MRI.replaceRegWith(AMDGPU::PRIVATE_RSRC_REG, Info->getScratchRSrcReg()); | 
|  | MRI.replaceRegWith(AMDGPU::FP_REG, Info->getFrameOffsetReg()); | 
|  | MRI.replaceRegWith(AMDGPU::SCRATCH_WAVE_OFFSET_REG, | 
|  | Info->getScratchWaveOffsetReg()); | 
|  |  | 
|  | TargetLoweringBase::finalizeLowering(MF); | 
|  | } | 
|  |  | 
|  | void SITargetLowering::computeKnownBitsForFrameIndex(const SDValue Op, | 
|  | KnownBits &Known, | 
|  | const APInt &DemandedElts, | 
|  | const SelectionDAG &DAG, | 
|  | unsigned Depth) const { | 
|  | TargetLowering::computeKnownBitsForFrameIndex(Op, Known, DemandedElts, | 
|  | DAG, Depth); | 
|  |  | 
|  | if (getSubtarget()->enableHugePrivateBuffer()) | 
|  | return; | 
|  |  | 
|  | // Technically it may be possible to have a dispatch with a single workitem | 
|  | // that uses the full private memory size, but that's not really useful. We | 
|  | // can't use vaddr in MUBUF instructions if we don't know the address | 
|  | // calculation won't overflow, so assume the sign bit is never set. | 
|  | Known.Zero.setHighBits(AssumeFrameIndexHighZeroBits); | 
|  | } |