|  | //===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the SelectionDAG::Legalize method. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/CodeGen/SelectionDAG.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Triple.h" | 
|  | #include "llvm/CodeGen/Analysis.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineJumpTableInfo.h" | 
|  | #include "llvm/DebugInfo.h" | 
|  | #include "llvm/IR/CallingConv.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Target/TargetFrameLowering.h" | 
|  | #include "llvm/Target/TargetLowering.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | /// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and | 
|  | /// hacks on it until the target machine can handle it.  This involves | 
|  | /// eliminating value sizes the machine cannot handle (promoting small sizes to | 
|  | /// large sizes or splitting up large values into small values) as well as | 
|  | /// eliminating operations the machine cannot handle. | 
|  | /// | 
|  | /// This code also does a small amount of optimization and recognition of idioms | 
|  | /// as part of its processing.  For example, if a target does not support a | 
|  | /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this | 
|  | /// will attempt merge setcc and brc instructions into brcc's. | 
|  | /// | 
|  | namespace { | 
|  | class SelectionDAGLegalize : public SelectionDAG::DAGUpdateListener { | 
|  | const TargetMachine &TM; | 
|  | const TargetLowering &TLI; | 
|  | SelectionDAG &DAG; | 
|  |  | 
|  | /// LegalizePosition - The iterator for walking through the node list. | 
|  | SelectionDAG::allnodes_iterator LegalizePosition; | 
|  |  | 
|  | /// LegalizedNodes - The set of nodes which have already been legalized. | 
|  | SmallPtrSet<SDNode *, 16> LegalizedNodes; | 
|  |  | 
|  | // Libcall insertion helpers. | 
|  |  | 
|  | public: | 
|  | explicit SelectionDAGLegalize(SelectionDAG &DAG); | 
|  |  | 
|  | void LegalizeDAG(); | 
|  |  | 
|  | private: | 
|  | /// LegalizeOp - Legalizes the given operation. | 
|  | void LegalizeOp(SDNode *Node); | 
|  |  | 
|  | SDValue OptimizeFloatStore(StoreSDNode *ST); | 
|  |  | 
|  | void LegalizeLoadOps(SDNode *Node); | 
|  | void LegalizeStoreOps(SDNode *Node); | 
|  |  | 
|  | /// PerformInsertVectorEltInMemory - Some target cannot handle a variable | 
|  | /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it | 
|  | /// is necessary to spill the vector being inserted into to memory, perform | 
|  | /// the insert there, and then read the result back. | 
|  | SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, | 
|  | SDValue Idx, DebugLoc dl); | 
|  | SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, | 
|  | SDValue Idx, DebugLoc dl); | 
|  |  | 
|  | /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which | 
|  | /// performs the same shuffe in terms of order or result bytes, but on a type | 
|  | /// whose vector element type is narrower than the original shuffle type. | 
|  | /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> | 
|  | SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl, | 
|  | SDValue N1, SDValue N2, | 
|  | ArrayRef<int> Mask) const; | 
|  |  | 
|  | void LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, | 
|  | DebugLoc dl); | 
|  |  | 
|  | SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned); | 
|  | SDValue ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, const SDValue *Ops, | 
|  | unsigned NumOps, bool isSigned, DebugLoc dl); | 
|  |  | 
|  | std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC, | 
|  | SDNode *Node, bool isSigned); | 
|  | SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32, | 
|  | RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80, | 
|  | RTLIB::Libcall Call_F128, | 
|  | RTLIB::Libcall Call_PPCF128); | 
|  | SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, | 
|  | RTLIB::Libcall Call_I8, | 
|  | RTLIB::Libcall Call_I16, | 
|  | RTLIB::Libcall Call_I32, | 
|  | RTLIB::Libcall Call_I64, | 
|  | RTLIB::Libcall Call_I128); | 
|  | void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); | 
|  | void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); | 
|  |  | 
|  | SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, DebugLoc dl); | 
|  | SDValue ExpandBUILD_VECTOR(SDNode *Node); | 
|  | SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node); | 
|  | void ExpandDYNAMIC_STACKALLOC(SDNode *Node, | 
|  | SmallVectorImpl<SDValue> &Results); | 
|  | SDValue ExpandFCOPYSIGN(SDNode *Node); | 
|  | SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT, | 
|  | DebugLoc dl); | 
|  | SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned, | 
|  | DebugLoc dl); | 
|  | SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned, | 
|  | DebugLoc dl); | 
|  |  | 
|  | SDValue ExpandBSWAP(SDValue Op, DebugLoc dl); | 
|  | SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl); | 
|  |  | 
|  | SDValue ExpandExtractFromVectorThroughStack(SDValue Op); | 
|  | SDValue ExpandInsertToVectorThroughStack(SDValue Op); | 
|  | SDValue ExpandVectorBuildThroughStack(SDNode* Node); | 
|  |  | 
|  | SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP); | 
|  |  | 
|  | std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node); | 
|  |  | 
|  | void ExpandNode(SDNode *Node); | 
|  | void PromoteNode(SDNode *Node); | 
|  |  | 
|  | void ForgetNode(SDNode *N) { | 
|  | LegalizedNodes.erase(N); | 
|  | if (LegalizePosition == SelectionDAG::allnodes_iterator(N)) | 
|  | ++LegalizePosition; | 
|  | } | 
|  |  | 
|  | public: | 
|  | // DAGUpdateListener implementation. | 
|  | virtual void NodeDeleted(SDNode *N, SDNode *E) { | 
|  | ForgetNode(N); | 
|  | } | 
|  | virtual void NodeUpdated(SDNode *N) {} | 
|  |  | 
|  | // Node replacement helpers | 
|  | void ReplacedNode(SDNode *N) { | 
|  | if (N->use_empty()) { | 
|  | DAG.RemoveDeadNode(N); | 
|  | } else { | 
|  | ForgetNode(N); | 
|  | } | 
|  | } | 
|  | void ReplaceNode(SDNode *Old, SDNode *New) { | 
|  | DAG.ReplaceAllUsesWith(Old, New); | 
|  | ReplacedNode(Old); | 
|  | } | 
|  | void ReplaceNode(SDValue Old, SDValue New) { | 
|  | DAG.ReplaceAllUsesWith(Old, New); | 
|  | ReplacedNode(Old.getNode()); | 
|  | } | 
|  | void ReplaceNode(SDNode *Old, const SDValue *New) { | 
|  | DAG.ReplaceAllUsesWith(Old, New); | 
|  | ReplacedNode(Old); | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which | 
|  | /// performs the same shuffe in terms of order or result bytes, but on a type | 
|  | /// whose vector element type is narrower than the original shuffle type. | 
|  | /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> | 
|  | SDValue | 
|  | SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT,  DebugLoc dl, | 
|  | SDValue N1, SDValue N2, | 
|  | ArrayRef<int> Mask) const { | 
|  | unsigned NumMaskElts = VT.getVectorNumElements(); | 
|  | unsigned NumDestElts = NVT.getVectorNumElements(); | 
|  | unsigned NumEltsGrowth = NumDestElts / NumMaskElts; | 
|  |  | 
|  | assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); | 
|  |  | 
|  | if (NumEltsGrowth == 1) | 
|  | return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]); | 
|  |  | 
|  | SmallVector<int, 8> NewMask; | 
|  | for (unsigned i = 0; i != NumMaskElts; ++i) { | 
|  | int Idx = Mask[i]; | 
|  | for (unsigned j = 0; j != NumEltsGrowth; ++j) { | 
|  | if (Idx < 0) | 
|  | NewMask.push_back(-1); | 
|  | else | 
|  | NewMask.push_back(Idx * NumEltsGrowth + j); | 
|  | } | 
|  | } | 
|  | assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?"); | 
|  | assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?"); | 
|  | return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]); | 
|  | } | 
|  |  | 
|  | SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag) | 
|  | : SelectionDAG::DAGUpdateListener(dag), | 
|  | TM(dag.getTarget()), TLI(dag.getTargetLoweringInfo()), | 
|  | DAG(dag) { | 
|  | } | 
|  |  | 
|  | void SelectionDAGLegalize::LegalizeDAG() { | 
|  | DAG.AssignTopologicalOrder(); | 
|  |  | 
|  | // Visit all the nodes. We start in topological order, so that we see | 
|  | // nodes with their original operands intact. Legalization can produce | 
|  | // new nodes which may themselves need to be legalized. Iterate until all | 
|  | // nodes have been legalized. | 
|  | for (;;) { | 
|  | bool AnyLegalized = false; | 
|  | for (LegalizePosition = DAG.allnodes_end(); | 
|  | LegalizePosition != DAG.allnodes_begin(); ) { | 
|  | --LegalizePosition; | 
|  |  | 
|  | SDNode *N = LegalizePosition; | 
|  | if (LegalizedNodes.insert(N)) { | 
|  | AnyLegalized = true; | 
|  | LegalizeOp(N); | 
|  | } | 
|  | } | 
|  | if (!AnyLegalized) | 
|  | break; | 
|  |  | 
|  | } | 
|  |  | 
|  | // Remove dead nodes now. | 
|  | DAG.RemoveDeadNodes(); | 
|  | } | 
|  |  | 
|  | /// ExpandConstantFP - Expands the ConstantFP node to an integer constant or | 
|  | /// a load from the constant pool. | 
|  | SDValue | 
|  | SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) { | 
|  | bool Extend = false; | 
|  | DebugLoc dl = CFP->getDebugLoc(); | 
|  |  | 
|  | // If a FP immediate is precise when represented as a float and if the | 
|  | // target can do an extending load from float to double, we put it into | 
|  | // the constant pool as a float, even if it's is statically typed as a | 
|  | // double.  This shrinks FP constants and canonicalizes them for targets where | 
|  | // an FP extending load is the same cost as a normal load (such as on the x87 | 
|  | // fp stack or PPC FP unit). | 
|  | EVT VT = CFP->getValueType(0); | 
|  | ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue()); | 
|  | if (!UseCP) { | 
|  | assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion"); | 
|  | return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), | 
|  | (VT == MVT::f64) ? MVT::i64 : MVT::i32); | 
|  | } | 
|  |  | 
|  | EVT OrigVT = VT; | 
|  | EVT SVT = VT; | 
|  | while (SVT != MVT::f32) { | 
|  | SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1); | 
|  | if (ConstantFPSDNode::isValueValidForType(SVT, CFP->getValueAPF()) && | 
|  | // Only do this if the target has a native EXTLOAD instruction from | 
|  | // smaller type. | 
|  | TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) && | 
|  | TLI.ShouldShrinkFPConstant(OrigVT)) { | 
|  | Type *SType = SVT.getTypeForEVT(*DAG.getContext()); | 
|  | LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType)); | 
|  | VT = SVT; | 
|  | Extend = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy()); | 
|  | unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); | 
|  | if (Extend) { | 
|  | SDValue Result = | 
|  | DAG.getExtLoad(ISD::EXTLOAD, dl, OrigVT, | 
|  | DAG.getEntryNode(), | 
|  | CPIdx, MachinePointerInfo::getConstantPool(), | 
|  | VT, false, false, Alignment); | 
|  | return Result; | 
|  | } | 
|  | SDValue Result = | 
|  | DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx, | 
|  | MachinePointerInfo::getConstantPool(), false, false, false, | 
|  | Alignment); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | /// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores. | 
|  | static void ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG, | 
|  | const TargetLowering &TLI, | 
|  | SelectionDAGLegalize *DAGLegalize) { | 
|  | assert(ST->getAddressingMode() == ISD::UNINDEXED && | 
|  | "unaligned indexed stores not implemented!"); | 
|  | SDValue Chain = ST->getChain(); | 
|  | SDValue Ptr = ST->getBasePtr(); | 
|  | SDValue Val = ST->getValue(); | 
|  | EVT VT = Val.getValueType(); | 
|  | int Alignment = ST->getAlignment(); | 
|  | DebugLoc dl = ST->getDebugLoc(); | 
|  | if (ST->getMemoryVT().isFloatingPoint() || | 
|  | ST->getMemoryVT().isVector()) { | 
|  | EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); | 
|  | if (TLI.isTypeLegal(intVT)) { | 
|  | // Expand to a bitconvert of the value to the integer type of the | 
|  | // same size, then a (misaligned) int store. | 
|  | // FIXME: Does not handle truncating floating point stores! | 
|  | SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); | 
|  | Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), | 
|  | ST->isVolatile(), ST->isNonTemporal(), Alignment); | 
|  | DAGLegalize->ReplaceNode(SDValue(ST, 0), Result); | 
|  | return; | 
|  | } | 
|  | // Do a (aligned) store to a stack slot, then copy from the stack slot | 
|  | // to the final destination using (unaligned) integer loads and stores. | 
|  | EVT StoredVT = ST->getMemoryVT(); | 
|  | MVT RegVT = | 
|  | TLI.getRegisterType(*DAG.getContext(), | 
|  | EVT::getIntegerVT(*DAG.getContext(), | 
|  | StoredVT.getSizeInBits())); | 
|  | unsigned StoredBytes = StoredVT.getSizeInBits() / 8; | 
|  | unsigned RegBytes = RegVT.getSizeInBits() / 8; | 
|  | unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; | 
|  |  | 
|  | // Make sure the stack slot is also aligned for the register type. | 
|  | SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT); | 
|  |  | 
|  | // Perform the original store, only redirected to the stack slot. | 
|  | SDValue Store = DAG.getTruncStore(Chain, dl, | 
|  | Val, StackPtr, MachinePointerInfo(), | 
|  | StoredVT, false, false, 0); | 
|  | SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy()); | 
|  | SmallVector<SDValue, 8> Stores; | 
|  | unsigned Offset = 0; | 
|  |  | 
|  | // Do all but one copies using the full register width. | 
|  | for (unsigned i = 1; i < NumRegs; i++) { | 
|  | // Load one integer register's worth from the stack slot. | 
|  | SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr, | 
|  | MachinePointerInfo(), | 
|  | false, false, false, 0); | 
|  | // Store it to the final location.  Remember the store. | 
|  | Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, | 
|  | ST->getPointerInfo().getWithOffset(Offset), | 
|  | ST->isVolatile(), ST->isNonTemporal(), | 
|  | MinAlign(ST->getAlignment(), Offset))); | 
|  | // Increment the pointers. | 
|  | Offset += RegBytes; | 
|  | StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr, | 
|  | Increment); | 
|  | Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); | 
|  | } | 
|  |  | 
|  | // The last store may be partial.  Do a truncating store.  On big-endian | 
|  | // machines this requires an extending load from the stack slot to ensure | 
|  | // that the bits are in the right place. | 
|  | EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), | 
|  | 8 * (StoredBytes - Offset)); | 
|  |  | 
|  | // Load from the stack slot. | 
|  | SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr, | 
|  | MachinePointerInfo(), | 
|  | MemVT, false, false, 0); | 
|  |  | 
|  | Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, | 
|  | ST->getPointerInfo() | 
|  | .getWithOffset(Offset), | 
|  | MemVT, ST->isVolatile(), | 
|  | ST->isNonTemporal(), | 
|  | MinAlign(ST->getAlignment(), Offset))); | 
|  | // The order of the stores doesn't matter - say it with a TokenFactor. | 
|  | SDValue Result = | 
|  | DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0], | 
|  | Stores.size()); | 
|  | DAGLegalize->ReplaceNode(SDValue(ST, 0), Result); | 
|  | return; | 
|  | } | 
|  | assert(ST->getMemoryVT().isInteger() && | 
|  | !ST->getMemoryVT().isVector() && | 
|  | "Unaligned store of unknown type."); | 
|  | // Get the half-size VT | 
|  | EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext()); | 
|  | int NumBits = NewStoredVT.getSizeInBits(); | 
|  | int IncrementSize = NumBits / 8; | 
|  |  | 
|  | // Divide the stored value in two parts. | 
|  | SDValue ShiftAmount = DAG.getConstant(NumBits, | 
|  | TLI.getShiftAmountTy(Val.getValueType())); | 
|  | SDValue Lo = Val; | 
|  | SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); | 
|  |  | 
|  | // Store the two parts | 
|  | SDValue Store1, Store2; | 
|  | Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr, | 
|  | ST->getPointerInfo(), NewStoredVT, | 
|  | ST->isVolatile(), ST->isNonTemporal(), Alignment); | 
|  | Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, | 
|  | DAG.getConstant(IncrementSize, TLI.getPointerTy())); | 
|  | Alignment = MinAlign(Alignment, IncrementSize); | 
|  | Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr, | 
|  | ST->getPointerInfo().getWithOffset(IncrementSize), | 
|  | NewStoredVT, ST->isVolatile(), ST->isNonTemporal(), | 
|  | Alignment); | 
|  |  | 
|  | SDValue Result = | 
|  | DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); | 
|  | DAGLegalize->ReplaceNode(SDValue(ST, 0), Result); | 
|  | } | 
|  |  | 
|  | /// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads. | 
|  | static void | 
|  | ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG, | 
|  | const TargetLowering &TLI, | 
|  | SDValue &ValResult, SDValue &ChainResult) { | 
|  | assert(LD->getAddressingMode() == ISD::UNINDEXED && | 
|  | "unaligned indexed loads not implemented!"); | 
|  | SDValue Chain = LD->getChain(); | 
|  | SDValue Ptr = LD->getBasePtr(); | 
|  | EVT VT = LD->getValueType(0); | 
|  | EVT LoadedVT = LD->getMemoryVT(); | 
|  | DebugLoc dl = LD->getDebugLoc(); | 
|  | if (VT.isFloatingPoint() || VT.isVector()) { | 
|  | EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); | 
|  | if (TLI.isTypeLegal(intVT) && TLI.isTypeLegal(LoadedVT)) { | 
|  | // Expand to a (misaligned) integer load of the same size, | 
|  | // then bitconvert to floating point or vector. | 
|  | SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getPointerInfo(), | 
|  | LD->isVolatile(), | 
|  | LD->isNonTemporal(), | 
|  | LD->isInvariant(), LD->getAlignment()); | 
|  | SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); | 
|  | if (LoadedVT != VT) | 
|  | Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : | 
|  | ISD::ANY_EXTEND, dl, VT, Result); | 
|  |  | 
|  | ValResult = Result; | 
|  | ChainResult = Chain; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Copy the value to a (aligned) stack slot using (unaligned) integer | 
|  | // loads and stores, then do a (aligned) load from the stack slot. | 
|  | MVT RegVT = TLI.getRegisterType(*DAG.getContext(), intVT); | 
|  | unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8; | 
|  | unsigned RegBytes = RegVT.getSizeInBits() / 8; | 
|  | unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; | 
|  |  | 
|  | // Make sure the stack slot is also aligned for the register type. | 
|  | SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); | 
|  |  | 
|  | SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy()); | 
|  | SmallVector<SDValue, 8> Stores; | 
|  | SDValue StackPtr = StackBase; | 
|  | unsigned Offset = 0; | 
|  |  | 
|  | // Do all but one copies using the full register width. | 
|  | for (unsigned i = 1; i < NumRegs; i++) { | 
|  | // Load one integer register's worth from the original location. | 
|  | SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr, | 
|  | LD->getPointerInfo().getWithOffset(Offset), | 
|  | LD->isVolatile(), LD->isNonTemporal(), | 
|  | LD->isInvariant(), | 
|  | MinAlign(LD->getAlignment(), Offset)); | 
|  | // Follow the load with a store to the stack slot.  Remember the store. | 
|  | Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr, | 
|  | MachinePointerInfo(), false, false, 0)); | 
|  | // Increment the pointers. | 
|  | Offset += RegBytes; | 
|  | Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); | 
|  | StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr, | 
|  | Increment); | 
|  | } | 
|  |  | 
|  | // The last copy may be partial.  Do an extending load. | 
|  | EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), | 
|  | 8 * (LoadedBytes - Offset)); | 
|  | SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, | 
|  | LD->getPointerInfo().getWithOffset(Offset), | 
|  | MemVT, LD->isVolatile(), | 
|  | LD->isNonTemporal(), | 
|  | MinAlign(LD->getAlignment(), Offset)); | 
|  | // Follow the load with a store to the stack slot.  Remember the store. | 
|  | // On big-endian machines this requires a truncating store to ensure | 
|  | // that the bits end up in the right place. | 
|  | Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr, | 
|  | MachinePointerInfo(), MemVT, | 
|  | false, false, 0)); | 
|  |  | 
|  | // The order of the stores doesn't matter - say it with a TokenFactor. | 
|  | SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0], | 
|  | Stores.size()); | 
|  |  | 
|  | // Finally, perform the original load only redirected to the stack slot. | 
|  | Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, | 
|  | MachinePointerInfo(), LoadedVT, false, false, 0); | 
|  |  | 
|  | // Callers expect a MERGE_VALUES node. | 
|  | ValResult = Load; | 
|  | ChainResult = TF; | 
|  | return; | 
|  | } | 
|  | assert(LoadedVT.isInteger() && !LoadedVT.isVector() && | 
|  | "Unaligned load of unsupported type."); | 
|  |  | 
|  | // Compute the new VT that is half the size of the old one.  This is an | 
|  | // integer MVT. | 
|  | unsigned NumBits = LoadedVT.getSizeInBits(); | 
|  | EVT NewLoadedVT; | 
|  | NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); | 
|  | NumBits >>= 1; | 
|  |  | 
|  | unsigned Alignment = LD->getAlignment(); | 
|  | unsigned IncrementSize = NumBits / 8; | 
|  | ISD::LoadExtType HiExtType = LD->getExtensionType(); | 
|  |  | 
|  | // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. | 
|  | if (HiExtType == ISD::NON_EXTLOAD) | 
|  | HiExtType = ISD::ZEXTLOAD; | 
|  |  | 
|  | // Load the value in two parts | 
|  | SDValue Lo, Hi; | 
|  | if (TLI.isLittleEndian()) { | 
|  | Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), | 
|  | NewLoadedVT, LD->isVolatile(), | 
|  | LD->isNonTemporal(), Alignment); | 
|  | Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, | 
|  | DAG.getConstant(IncrementSize, TLI.getPointerTy())); | 
|  | Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, | 
|  | LD->getPointerInfo().getWithOffset(IncrementSize), | 
|  | NewLoadedVT, LD->isVolatile(), | 
|  | LD->isNonTemporal(), MinAlign(Alignment,IncrementSize)); | 
|  | } else { | 
|  | Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), | 
|  | NewLoadedVT, LD->isVolatile(), | 
|  | LD->isNonTemporal(), Alignment); | 
|  | Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, | 
|  | DAG.getConstant(IncrementSize, TLI.getPointerTy())); | 
|  | Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, | 
|  | LD->getPointerInfo().getWithOffset(IncrementSize), | 
|  | NewLoadedVT, LD->isVolatile(), | 
|  | LD->isNonTemporal(), MinAlign(Alignment,IncrementSize)); | 
|  | } | 
|  |  | 
|  | // aggregate the two parts | 
|  | SDValue ShiftAmount = DAG.getConstant(NumBits, | 
|  | TLI.getShiftAmountTy(Hi.getValueType())); | 
|  | SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); | 
|  | Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); | 
|  |  | 
|  | SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), | 
|  | Hi.getValue(1)); | 
|  |  | 
|  | ValResult = Result; | 
|  | ChainResult = TF; | 
|  | } | 
|  |  | 
|  | /// PerformInsertVectorEltInMemory - Some target cannot handle a variable | 
|  | /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it | 
|  | /// is necessary to spill the vector being inserted into to memory, perform | 
|  | /// the insert there, and then read the result back. | 
|  | SDValue SelectionDAGLegalize:: | 
|  | PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx, | 
|  | DebugLoc dl) { | 
|  | SDValue Tmp1 = Vec; | 
|  | SDValue Tmp2 = Val; | 
|  | SDValue Tmp3 = Idx; | 
|  |  | 
|  | // If the target doesn't support this, we have to spill the input vector | 
|  | // to a temporary stack slot, update the element, then reload it.  This is | 
|  | // badness.  We could also load the value into a vector register (either | 
|  | // with a "move to register" or "extload into register" instruction, then | 
|  | // permute it into place, if the idx is a constant and if the idx is | 
|  | // supported by the target. | 
|  | EVT VT    = Tmp1.getValueType(); | 
|  | EVT EltVT = VT.getVectorElementType(); | 
|  | EVT IdxVT = Tmp3.getValueType(); | 
|  | EVT PtrVT = TLI.getPointerTy(); | 
|  | SDValue StackPtr = DAG.CreateStackTemporary(VT); | 
|  |  | 
|  | int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); | 
|  |  | 
|  | // Store the vector. | 
|  | SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr, | 
|  | MachinePointerInfo::getFixedStack(SPFI), | 
|  | false, false, 0); | 
|  |  | 
|  | // Truncate or zero extend offset to target pointer type. | 
|  | unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND; | 
|  | Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3); | 
|  | // Add the offset to the index. | 
|  | unsigned EltSize = EltVT.getSizeInBits()/8; | 
|  | Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT)); | 
|  | SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr); | 
|  | // Store the scalar value. | 
|  | Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT, | 
|  | false, false, 0); | 
|  | // Load the updated vector. | 
|  | return DAG.getLoad(VT, dl, Ch, StackPtr, | 
|  | MachinePointerInfo::getFixedStack(SPFI), false, false, | 
|  | false, 0); | 
|  | } | 
|  |  | 
|  |  | 
|  | SDValue SelectionDAGLegalize:: | 
|  | ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl) { | 
|  | if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) { | 
|  | // SCALAR_TO_VECTOR requires that the type of the value being inserted | 
|  | // match the element type of the vector being created, except for | 
|  | // integers in which case the inserted value can be over width. | 
|  | EVT EltVT = Vec.getValueType().getVectorElementType(); | 
|  | if (Val.getValueType() == EltVT || | 
|  | (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) { | 
|  | SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, | 
|  | Vec.getValueType(), Val); | 
|  |  | 
|  | unsigned NumElts = Vec.getValueType().getVectorNumElements(); | 
|  | // We generate a shuffle of InVec and ScVec, so the shuffle mask | 
|  | // should be 0,1,2,3,4,5... with the appropriate element replaced with | 
|  | // elt 0 of the RHS. | 
|  | SmallVector<int, 8> ShufOps; | 
|  | for (unsigned i = 0; i != NumElts; ++i) | 
|  | ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts); | 
|  |  | 
|  | return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, | 
|  | &ShufOps[0]); | 
|  | } | 
|  | } | 
|  | return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl); | 
|  | } | 
|  |  | 
|  | SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) { | 
|  | // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' | 
|  | // FIXME: We shouldn't do this for TargetConstantFP's. | 
|  | // FIXME: move this to the DAG Combiner!  Note that we can't regress due | 
|  | // to phase ordering between legalized code and the dag combiner.  This | 
|  | // probably means that we need to integrate dag combiner and legalizer | 
|  | // together. | 
|  | // We generally can't do this one for long doubles. | 
|  | SDValue Chain = ST->getChain(); | 
|  | SDValue Ptr = ST->getBasePtr(); | 
|  | unsigned Alignment = ST->getAlignment(); | 
|  | bool isVolatile = ST->isVolatile(); | 
|  | bool isNonTemporal = ST->isNonTemporal(); | 
|  | DebugLoc dl = ST->getDebugLoc(); | 
|  | if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) { | 
|  | if (CFP->getValueType(0) == MVT::f32 && | 
|  | TLI.isTypeLegal(MVT::i32)) { | 
|  | SDValue Con = DAG.getConstant(CFP->getValueAPF(). | 
|  | bitcastToAPInt().zextOrTrunc(32), | 
|  | MVT::i32); | 
|  | return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), | 
|  | isVolatile, isNonTemporal, Alignment); | 
|  | } | 
|  |  | 
|  | if (CFP->getValueType(0) == MVT::f64) { | 
|  | // If this target supports 64-bit registers, do a single 64-bit store. | 
|  | if (TLI.isTypeLegal(MVT::i64)) { | 
|  | SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). | 
|  | zextOrTrunc(64), MVT::i64); | 
|  | return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), | 
|  | isVolatile, isNonTemporal, Alignment); | 
|  | } | 
|  |  | 
|  | if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) { | 
|  | // Otherwise, if the target supports 32-bit registers, use 2 32-bit | 
|  | // stores.  If the target supports neither 32- nor 64-bits, this | 
|  | // xform is certainly not worth it. | 
|  | const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt(); | 
|  | SDValue Lo = DAG.getConstant(IntVal.trunc(32), MVT::i32); | 
|  | SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32); | 
|  | if (TLI.isBigEndian()) std::swap(Lo, Hi); | 
|  |  | 
|  | Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), isVolatile, | 
|  | isNonTemporal, Alignment); | 
|  | Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, | 
|  | DAG.getIntPtrConstant(4)); | 
|  | Hi = DAG.getStore(Chain, dl, Hi, Ptr, | 
|  | ST->getPointerInfo().getWithOffset(4), | 
|  | isVolatile, isNonTemporal, MinAlign(Alignment, 4U)); | 
|  |  | 
|  | return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); | 
|  | } | 
|  | } | 
|  | } | 
|  | return SDValue(0, 0); | 
|  | } | 
|  |  | 
|  | void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) { | 
|  | StoreSDNode *ST = cast<StoreSDNode>(Node); | 
|  | SDValue Chain = ST->getChain(); | 
|  | SDValue Ptr = ST->getBasePtr(); | 
|  | DebugLoc dl = Node->getDebugLoc(); | 
|  |  | 
|  | unsigned Alignment = ST->getAlignment(); | 
|  | bool isVolatile = ST->isVolatile(); | 
|  | bool isNonTemporal = ST->isNonTemporal(); | 
|  |  | 
|  | if (!ST->isTruncatingStore()) { | 
|  | if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) { | 
|  | ReplaceNode(ST, OptStore); | 
|  | return; | 
|  | } | 
|  |  | 
|  | { | 
|  | SDValue Value = ST->getValue(); | 
|  | MVT VT = Value.getSimpleValueType(); | 
|  | switch (TLI.getOperationAction(ISD::STORE, VT)) { | 
|  | default: llvm_unreachable("This action is not supported yet!"); | 
|  | case TargetLowering::Legal: | 
|  | // If this is an unaligned store and the target doesn't support it, | 
|  | // expand it. | 
|  | if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) { | 
|  | Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext()); | 
|  | unsigned ABIAlignment= TLI.getDataLayout()->getABITypeAlignment(Ty); | 
|  | if (ST->getAlignment() < ABIAlignment) | 
|  | ExpandUnalignedStore(cast<StoreSDNode>(Node), | 
|  | DAG, TLI, this); | 
|  | } | 
|  | break; | 
|  | case TargetLowering::Custom: { | 
|  | SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); | 
|  | if (Res.getNode()) | 
|  | ReplaceNode(SDValue(Node, 0), Res); | 
|  | return; | 
|  | } | 
|  | case TargetLowering::Promote: { | 
|  | MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT); | 
|  | assert(NVT.getSizeInBits() == VT.getSizeInBits() && | 
|  | "Can only promote stores to same size type"); | 
|  | Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value); | 
|  | SDValue Result = | 
|  | DAG.getStore(Chain, dl, Value, Ptr, | 
|  | ST->getPointerInfo(), isVolatile, | 
|  | isNonTemporal, Alignment); | 
|  | ReplaceNode(SDValue(Node, 0), Result); | 
|  | break; | 
|  | } | 
|  | } | 
|  | return; | 
|  | } | 
|  | } else { | 
|  | SDValue Value = ST->getValue(); | 
|  |  | 
|  | EVT StVT = ST->getMemoryVT(); | 
|  | unsigned StWidth = StVT.getSizeInBits(); | 
|  |  | 
|  | if (StWidth != StVT.getStoreSizeInBits()) { | 
|  | // Promote to a byte-sized store with upper bits zero if not | 
|  | // storing an integral number of bytes.  For example, promote | 
|  | // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) | 
|  | EVT NVT = EVT::getIntegerVT(*DAG.getContext(), | 
|  | StVT.getStoreSizeInBits()); | 
|  | Value = DAG.getZeroExtendInReg(Value, dl, StVT); | 
|  | SDValue Result = | 
|  | DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), | 
|  | NVT, isVolatile, isNonTemporal, Alignment); | 
|  | ReplaceNode(SDValue(Node, 0), Result); | 
|  | } else if (StWidth & (StWidth - 1)) { | 
|  | // If not storing a power-of-2 number of bits, expand as two stores. | 
|  | assert(!StVT.isVector() && "Unsupported truncstore!"); | 
|  | unsigned RoundWidth = 1 << Log2_32(StWidth); | 
|  | assert(RoundWidth < StWidth); | 
|  | unsigned ExtraWidth = StWidth - RoundWidth; | 
|  | assert(ExtraWidth < RoundWidth); | 
|  | assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && | 
|  | "Store size not an integral number of bytes!"); | 
|  | EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); | 
|  | EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); | 
|  | SDValue Lo, Hi; | 
|  | unsigned IncrementSize; | 
|  |  | 
|  | if (TLI.isLittleEndian()) { | 
|  | // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16) | 
|  | // Store the bottom RoundWidth bits. | 
|  | Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), | 
|  | RoundVT, | 
|  | isVolatile, isNonTemporal, Alignment); | 
|  |  | 
|  | // Store the remaining ExtraWidth bits. | 
|  | IncrementSize = RoundWidth / 8; | 
|  | Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, | 
|  | DAG.getIntPtrConstant(IncrementSize)); | 
|  | Hi = DAG.getNode(ISD::SRL, dl, Value.getValueType(), Value, | 
|  | DAG.getConstant(RoundWidth, | 
|  | TLI.getShiftAmountTy(Value.getValueType()))); | 
|  | Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, | 
|  | ST->getPointerInfo().getWithOffset(IncrementSize), | 
|  | ExtraVT, isVolatile, isNonTemporal, | 
|  | MinAlign(Alignment, IncrementSize)); | 
|  | } else { | 
|  | // Big endian - avoid unaligned stores. | 
|  | // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X | 
|  | // Store the top RoundWidth bits. | 
|  | Hi = DAG.getNode(ISD::SRL, dl, Value.getValueType(), Value, | 
|  | DAG.getConstant(ExtraWidth, | 
|  | TLI.getShiftAmountTy(Value.getValueType()))); | 
|  | Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(), | 
|  | RoundVT, isVolatile, isNonTemporal, Alignment); | 
|  |  | 
|  | // Store the remaining ExtraWidth bits. | 
|  | IncrementSize = RoundWidth / 8; | 
|  | Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, | 
|  | DAG.getIntPtrConstant(IncrementSize)); | 
|  | Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, | 
|  | ST->getPointerInfo().getWithOffset(IncrementSize), | 
|  | ExtraVT, isVolatile, isNonTemporal, | 
|  | MinAlign(Alignment, IncrementSize)); | 
|  | } | 
|  |  | 
|  | // The order of the stores doesn't matter. | 
|  | SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); | 
|  | ReplaceNode(SDValue(Node, 0), Result); | 
|  | } else { | 
|  | switch (TLI.getTruncStoreAction(ST->getValue().getSimpleValueType(), | 
|  | StVT.getSimpleVT())) { | 
|  | default: llvm_unreachable("This action is not supported yet!"); | 
|  | case TargetLowering::Legal: | 
|  | // If this is an unaligned store and the target doesn't support it, | 
|  | // expand it. | 
|  | if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) { | 
|  | Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext()); | 
|  | unsigned ABIAlignment= TLI.getDataLayout()->getABITypeAlignment(Ty); | 
|  | if (ST->getAlignment() < ABIAlignment) | 
|  | ExpandUnalignedStore(cast<StoreSDNode>(Node), DAG, TLI, this); | 
|  | } | 
|  | break; | 
|  | case TargetLowering::Custom: { | 
|  | SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); | 
|  | if (Res.getNode()) | 
|  | ReplaceNode(SDValue(Node, 0), Res); | 
|  | return; | 
|  | } | 
|  | case TargetLowering::Expand: | 
|  | assert(!StVT.isVector() && | 
|  | "Vector Stores are handled in LegalizeVectorOps"); | 
|  |  | 
|  | // TRUNCSTORE:i16 i32 -> STORE i16 | 
|  | assert(TLI.isTypeLegal(StVT) && | 
|  | "Do not know how to expand this store!"); | 
|  | Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value); | 
|  | SDValue Result = | 
|  | DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), | 
|  | isVolatile, isNonTemporal, Alignment); | 
|  | ReplaceNode(SDValue(Node, 0), Result); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) { | 
|  | LoadSDNode *LD = cast<LoadSDNode>(Node); | 
|  | SDValue Chain = LD->getChain();  // The chain. | 
|  | SDValue Ptr = LD->getBasePtr();  // The base pointer. | 
|  | SDValue Value;                   // The value returned by the load op. | 
|  | DebugLoc dl = Node->getDebugLoc(); | 
|  |  | 
|  | ISD::LoadExtType ExtType = LD->getExtensionType(); | 
|  | if (ExtType == ISD::NON_EXTLOAD) { | 
|  | MVT VT = Node->getSimpleValueType(0); | 
|  | SDValue RVal = SDValue(Node, 0); | 
|  | SDValue RChain = SDValue(Node, 1); | 
|  |  | 
|  | switch (TLI.getOperationAction(Node->getOpcode(), VT)) { | 
|  | default: llvm_unreachable("This action is not supported yet!"); | 
|  | case TargetLowering::Legal: | 
|  | // If this is an unaligned load and the target doesn't support it, | 
|  | // expand it. | 
|  | if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) { | 
|  | Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext()); | 
|  | unsigned ABIAlignment = | 
|  | TLI.getDataLayout()->getABITypeAlignment(Ty); | 
|  | if (LD->getAlignment() < ABIAlignment){ | 
|  | ExpandUnalignedLoad(cast<LoadSDNode>(Node), DAG, TLI, RVal, RChain); | 
|  | } | 
|  | } | 
|  | break; | 
|  | case TargetLowering::Custom: { | 
|  | SDValue Res = TLI.LowerOperation(RVal, DAG); | 
|  | if (Res.getNode()) { | 
|  | RVal = Res; | 
|  | RChain = Res.getValue(1); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case TargetLowering::Promote: { | 
|  | MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); | 
|  | assert(NVT.getSizeInBits() == VT.getSizeInBits() && | 
|  | "Can only promote loads to same size type"); | 
|  |  | 
|  | SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getPointerInfo(), | 
|  | LD->isVolatile(), LD->isNonTemporal(), | 
|  | LD->isInvariant(), LD->getAlignment()); | 
|  | RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res); | 
|  | RChain = Res.getValue(1); | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (RChain.getNode() != Node) { | 
|  | assert(RVal.getNode() != Node && "Load must be completely replaced"); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain); | 
|  | ReplacedNode(Node); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | EVT SrcVT = LD->getMemoryVT(); | 
|  | unsigned SrcWidth = SrcVT.getSizeInBits(); | 
|  | unsigned Alignment = LD->getAlignment(); | 
|  | bool isVolatile = LD->isVolatile(); | 
|  | bool isNonTemporal = LD->isNonTemporal(); | 
|  |  | 
|  | if (SrcWidth != SrcVT.getStoreSizeInBits() && | 
|  | // Some targets pretend to have an i1 loading operation, and actually | 
|  | // load an i8.  This trick is correct for ZEXTLOAD because the top 7 | 
|  | // bits are guaranteed to be zero; it helps the optimizers understand | 
|  | // that these bits are zero.  It is also useful for EXTLOAD, since it | 
|  | // tells the optimizers that those bits are undefined.  It would be | 
|  | // nice to have an effective generic way of getting these benefits... | 
|  | // Until such a way is found, don't insist on promoting i1 here. | 
|  | (SrcVT != MVT::i1 || | 
|  | TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) { | 
|  | // Promote to a byte-sized load if not loading an integral number of | 
|  | // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24. | 
|  | unsigned NewWidth = SrcVT.getStoreSizeInBits(); | 
|  | EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth); | 
|  | SDValue Ch; | 
|  |  | 
|  | // The extra bits are guaranteed to be zero, since we stored them that | 
|  | // way.  A zext load from NVT thus automatically gives zext from SrcVT. | 
|  |  | 
|  | ISD::LoadExtType NewExtType = | 
|  | ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD; | 
|  |  | 
|  | SDValue Result = | 
|  | DAG.getExtLoad(NewExtType, dl, Node->getValueType(0), | 
|  | Chain, Ptr, LD->getPointerInfo(), | 
|  | NVT, isVolatile, isNonTemporal, Alignment); | 
|  |  | 
|  | Ch = Result.getValue(1); // The chain. | 
|  |  | 
|  | if (ExtType == ISD::SEXTLOAD) | 
|  | // Having the top bits zero doesn't help when sign extending. | 
|  | Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, | 
|  | Result.getValueType(), | 
|  | Result, DAG.getValueType(SrcVT)); | 
|  | else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType()) | 
|  | // All the top bits are guaranteed to be zero - inform the optimizers. | 
|  | Result = DAG.getNode(ISD::AssertZext, dl, | 
|  | Result.getValueType(), Result, | 
|  | DAG.getValueType(SrcVT)); | 
|  |  | 
|  | Value = Result; | 
|  | Chain = Ch; | 
|  | } else if (SrcWidth & (SrcWidth - 1)) { | 
|  | // If not loading a power-of-2 number of bits, expand as two loads. | 
|  | assert(!SrcVT.isVector() && "Unsupported extload!"); | 
|  | unsigned RoundWidth = 1 << Log2_32(SrcWidth); | 
|  | assert(RoundWidth < SrcWidth); | 
|  | unsigned ExtraWidth = SrcWidth - RoundWidth; | 
|  | assert(ExtraWidth < RoundWidth); | 
|  | assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && | 
|  | "Load size not an integral number of bytes!"); | 
|  | EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); | 
|  | EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); | 
|  | SDValue Lo, Hi, Ch; | 
|  | unsigned IncrementSize; | 
|  |  | 
|  | if (TLI.isLittleEndian()) { | 
|  | // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16) | 
|  | // Load the bottom RoundWidth bits. | 
|  | Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), | 
|  | Chain, Ptr, | 
|  | LD->getPointerInfo(), RoundVT, isVolatile, | 
|  | isNonTemporal, Alignment); | 
|  |  | 
|  | // Load the remaining ExtraWidth bits. | 
|  | IncrementSize = RoundWidth / 8; | 
|  | Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, | 
|  | DAG.getIntPtrConstant(IncrementSize)); | 
|  | Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, | 
|  | LD->getPointerInfo().getWithOffset(IncrementSize), | 
|  | ExtraVT, isVolatile, isNonTemporal, | 
|  | MinAlign(Alignment, IncrementSize)); | 
|  |  | 
|  | // Build a factor node to remember that this load is independent of | 
|  | // the other one. | 
|  | Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), | 
|  | Hi.getValue(1)); | 
|  |  | 
|  | // Move the top bits to the right place. | 
|  | Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi, | 
|  | DAG.getConstant(RoundWidth, | 
|  | TLI.getShiftAmountTy(Hi.getValueType()))); | 
|  |  | 
|  | // Join the hi and lo parts. | 
|  | Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); | 
|  | } else { | 
|  | // Big endian - avoid unaligned loads. | 
|  | // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8 | 
|  | // Load the top RoundWidth bits. | 
|  | Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, | 
|  | LD->getPointerInfo(), RoundVT, isVolatile, | 
|  | isNonTemporal, Alignment); | 
|  |  | 
|  | // Load the remaining ExtraWidth bits. | 
|  | IncrementSize = RoundWidth / 8; | 
|  | Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, | 
|  | DAG.getIntPtrConstant(IncrementSize)); | 
|  | Lo = DAG.getExtLoad(ISD::ZEXTLOAD, | 
|  | dl, Node->getValueType(0), Chain, Ptr, | 
|  | LD->getPointerInfo().getWithOffset(IncrementSize), | 
|  | ExtraVT, isVolatile, isNonTemporal, | 
|  | MinAlign(Alignment, IncrementSize)); | 
|  |  | 
|  | // Build a factor node to remember that this load is independent of | 
|  | // the other one. | 
|  | Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), | 
|  | Hi.getValue(1)); | 
|  |  | 
|  | // Move the top bits to the right place. | 
|  | Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi, | 
|  | DAG.getConstant(ExtraWidth, | 
|  | TLI.getShiftAmountTy(Hi.getValueType()))); | 
|  |  | 
|  | // Join the hi and lo parts. | 
|  | Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); | 
|  | } | 
|  |  | 
|  | Chain = Ch; | 
|  | } else { | 
|  | bool isCustom = false; | 
|  | switch (TLI.getLoadExtAction(ExtType, SrcVT.getSimpleVT())) { | 
|  | default: llvm_unreachable("This action is not supported yet!"); | 
|  | case TargetLowering::Custom: | 
|  | isCustom = true; | 
|  | // FALLTHROUGH | 
|  | case TargetLowering::Legal: { | 
|  | Value = SDValue(Node, 0); | 
|  | Chain = SDValue(Node, 1); | 
|  |  | 
|  | if (isCustom) { | 
|  | SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); | 
|  | if (Res.getNode()) { | 
|  | Value = Res; | 
|  | Chain = Res.getValue(1); | 
|  | } | 
|  | } else { | 
|  | // If this is an unaligned load and the target doesn't support it, | 
|  | // expand it. | 
|  | if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) { | 
|  | Type *Ty = | 
|  | LD->getMemoryVT().getTypeForEVT(*DAG.getContext()); | 
|  | unsigned ABIAlignment = | 
|  | TLI.getDataLayout()->getABITypeAlignment(Ty); | 
|  | if (LD->getAlignment() < ABIAlignment){ | 
|  | ExpandUnalignedLoad(cast<LoadSDNode>(Node), | 
|  | DAG, TLI, Value, Chain); | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | case TargetLowering::Expand: | 
|  | if (!TLI.isLoadExtLegal(ISD::EXTLOAD, SrcVT) && TLI.isTypeLegal(SrcVT)) { | 
|  | SDValue Load = DAG.getLoad(SrcVT, dl, Chain, Ptr, | 
|  | LD->getPointerInfo(), | 
|  | LD->isVolatile(), LD->isNonTemporal(), | 
|  | LD->isInvariant(), LD->getAlignment()); | 
|  | unsigned ExtendOp; | 
|  | switch (ExtType) { | 
|  | case ISD::EXTLOAD: | 
|  | ExtendOp = (SrcVT.isFloatingPoint() ? | 
|  | ISD::FP_EXTEND : ISD::ANY_EXTEND); | 
|  | break; | 
|  | case ISD::SEXTLOAD: ExtendOp = ISD::SIGN_EXTEND; break; | 
|  | case ISD::ZEXTLOAD: ExtendOp = ISD::ZERO_EXTEND; break; | 
|  | default: llvm_unreachable("Unexpected extend load type!"); | 
|  | } | 
|  | Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load); | 
|  | Chain = Load.getValue(1); | 
|  | break; | 
|  | } | 
|  |  | 
|  | assert(!SrcVT.isVector() && | 
|  | "Vector Loads are handled in LegalizeVectorOps"); | 
|  |  | 
|  | // FIXME: This does not work for vectors on most targets.  Sign- and | 
|  | // zero-extend operations are currently folded into extending loads, | 
|  | // whether they are legal or not, and then we end up here without any | 
|  | // support for legalizing them. | 
|  | assert(ExtType != ISD::EXTLOAD && | 
|  | "EXTLOAD should always be supported!"); | 
|  | // Turn the unsupported load into an EXTLOAD followed by an explicit | 
|  | // zero/sign extend inreg. | 
|  | SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0), | 
|  | Chain, Ptr, LD->getPointerInfo(), SrcVT, | 
|  | LD->isVolatile(), LD->isNonTemporal(), | 
|  | LD->getAlignment()); | 
|  | SDValue ValRes; | 
|  | if (ExtType == ISD::SEXTLOAD) | 
|  | ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, | 
|  | Result.getValueType(), | 
|  | Result, DAG.getValueType(SrcVT)); | 
|  | else | 
|  | ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT.getScalarType()); | 
|  | Value = ValRes; | 
|  | Chain = Result.getValue(1); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Since loads produce two values, make sure to remember that we legalized | 
|  | // both of them. | 
|  | if (Chain.getNode() != Node) { | 
|  | assert(Value.getNode() != Node && "Load must be completely replaced"); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); | 
|  | ReplacedNode(Node); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// LegalizeOp - Return a legal replacement for the given operation, with | 
|  | /// all legal operands. | 
|  | void SelectionDAGLegalize::LegalizeOp(SDNode *Node) { | 
|  | if (Node->getOpcode() == ISD::TargetConstant) // Allow illegal target nodes. | 
|  | return; | 
|  |  | 
|  | for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) | 
|  | assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) == | 
|  | TargetLowering::TypeLegal && | 
|  | "Unexpected illegal type!"); | 
|  |  | 
|  | for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) | 
|  | assert((TLI.getTypeAction(*DAG.getContext(), | 
|  | Node->getOperand(i).getValueType()) == | 
|  | TargetLowering::TypeLegal || | 
|  | Node->getOperand(i).getOpcode() == ISD::TargetConstant) && | 
|  | "Unexpected illegal type!"); | 
|  |  | 
|  | // Figure out the correct action; the way to query this varies by opcode | 
|  | TargetLowering::LegalizeAction Action = TargetLowering::Legal; | 
|  | bool SimpleFinishLegalizing = true; | 
|  | switch (Node->getOpcode()) { | 
|  | case ISD::INTRINSIC_W_CHAIN: | 
|  | case ISD::INTRINSIC_WO_CHAIN: | 
|  | case ISD::INTRINSIC_VOID: | 
|  | case ISD::STACKSAVE: | 
|  | Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); | 
|  | break; | 
|  | case ISD::VAARG: | 
|  | Action = TLI.getOperationAction(Node->getOpcode(), | 
|  | Node->getValueType(0)); | 
|  | if (Action != TargetLowering::Promote) | 
|  | Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); | 
|  | break; | 
|  | case ISD::SINT_TO_FP: | 
|  | case ISD::UINT_TO_FP: | 
|  | case ISD::EXTRACT_VECTOR_ELT: | 
|  | Action = TLI.getOperationAction(Node->getOpcode(), | 
|  | Node->getOperand(0).getValueType()); | 
|  | break; | 
|  | case ISD::FP_ROUND_INREG: | 
|  | case ISD::SIGN_EXTEND_INREG: { | 
|  | EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT(); | 
|  | Action = TLI.getOperationAction(Node->getOpcode(), InnerType); | 
|  | break; | 
|  | } | 
|  | case ISD::ATOMIC_STORE: { | 
|  | Action = TLI.getOperationAction(Node->getOpcode(), | 
|  | Node->getOperand(2).getValueType()); | 
|  | break; | 
|  | } | 
|  | case ISD::SELECT_CC: | 
|  | case ISD::SETCC: | 
|  | case ISD::BR_CC: { | 
|  | unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 : | 
|  | Node->getOpcode() == ISD::SETCC ? 2 : 1; | 
|  | unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0; | 
|  | MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType(); | 
|  | ISD::CondCode CCCode = | 
|  | cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get(); | 
|  | Action = TLI.getCondCodeAction(CCCode, OpVT); | 
|  | if (Action == TargetLowering::Legal) { | 
|  | if (Node->getOpcode() == ISD::SELECT_CC) | 
|  | Action = TLI.getOperationAction(Node->getOpcode(), | 
|  | Node->getValueType(0)); | 
|  | else | 
|  | Action = TLI.getOperationAction(Node->getOpcode(), OpVT); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ISD::LOAD: | 
|  | case ISD::STORE: | 
|  | // FIXME: Model these properly.  LOAD and STORE are complicated, and | 
|  | // STORE expects the unlegalized operand in some cases. | 
|  | SimpleFinishLegalizing = false; | 
|  | break; | 
|  | case ISD::CALLSEQ_START: | 
|  | case ISD::CALLSEQ_END: | 
|  | // FIXME: This shouldn't be necessary.  These nodes have special properties | 
|  | // dealing with the recursive nature of legalization.  Removing this | 
|  | // special case should be done as part of making LegalizeDAG non-recursive. | 
|  | SimpleFinishLegalizing = false; | 
|  | break; | 
|  | case ISD::EXTRACT_ELEMENT: | 
|  | case ISD::FLT_ROUNDS_: | 
|  | case ISD::SADDO: | 
|  | case ISD::SSUBO: | 
|  | case ISD::UADDO: | 
|  | case ISD::USUBO: | 
|  | case ISD::SMULO: | 
|  | case ISD::UMULO: | 
|  | case ISD::FPOWI: | 
|  | case ISD::MERGE_VALUES: | 
|  | case ISD::EH_RETURN: | 
|  | case ISD::FRAME_TO_ARGS_OFFSET: | 
|  | case ISD::EH_SJLJ_SETJMP: | 
|  | case ISD::EH_SJLJ_LONGJMP: | 
|  | // These operations lie about being legal: when they claim to be legal, | 
|  | // they should actually be expanded. | 
|  | Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); | 
|  | if (Action == TargetLowering::Legal) | 
|  | Action = TargetLowering::Expand; | 
|  | break; | 
|  | case ISD::INIT_TRAMPOLINE: | 
|  | case ISD::ADJUST_TRAMPOLINE: | 
|  | case ISD::FRAMEADDR: | 
|  | case ISD::RETURNADDR: | 
|  | // These operations lie about being legal: when they claim to be legal, | 
|  | // they should actually be custom-lowered. | 
|  | Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); | 
|  | if (Action == TargetLowering::Legal) | 
|  | Action = TargetLowering::Custom; | 
|  | break; | 
|  | case ISD::DEBUGTRAP: | 
|  | Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); | 
|  | if (Action == TargetLowering::Expand) { | 
|  | // replace ISD::DEBUGTRAP with ISD::TRAP | 
|  | SDValue NewVal; | 
|  | NewVal = DAG.getNode(ISD::TRAP, Node->getDebugLoc(), Node->getVTList(), | 
|  | Node->getOperand(0)); | 
|  | ReplaceNode(Node, NewVal.getNode()); | 
|  | LegalizeOp(NewVal.getNode()); | 
|  | return; | 
|  | } | 
|  | break; | 
|  |  | 
|  | default: | 
|  | if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { | 
|  | Action = TargetLowering::Legal; | 
|  | } else { | 
|  | Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (SimpleFinishLegalizing) { | 
|  | SDNode *NewNode = Node; | 
|  | switch (Node->getOpcode()) { | 
|  | default: break; | 
|  | case ISD::SHL: | 
|  | case ISD::SRL: | 
|  | case ISD::SRA: | 
|  | case ISD::ROTL: | 
|  | case ISD::ROTR: | 
|  | // Legalizing shifts/rotates requires adjusting the shift amount | 
|  | // to the appropriate width. | 
|  | if (!Node->getOperand(1).getValueType().isVector()) { | 
|  | SDValue SAO = | 
|  | DAG.getShiftAmountOperand(Node->getOperand(0).getValueType(), | 
|  | Node->getOperand(1)); | 
|  | HandleSDNode Handle(SAO); | 
|  | LegalizeOp(SAO.getNode()); | 
|  | NewNode = DAG.UpdateNodeOperands(Node, Node->getOperand(0), | 
|  | Handle.getValue()); | 
|  | } | 
|  | break; | 
|  | case ISD::SRL_PARTS: | 
|  | case ISD::SRA_PARTS: | 
|  | case ISD::SHL_PARTS: | 
|  | // Legalizing shifts/rotates requires adjusting the shift amount | 
|  | // to the appropriate width. | 
|  | if (!Node->getOperand(2).getValueType().isVector()) { | 
|  | SDValue SAO = | 
|  | DAG.getShiftAmountOperand(Node->getOperand(0).getValueType(), | 
|  | Node->getOperand(2)); | 
|  | HandleSDNode Handle(SAO); | 
|  | LegalizeOp(SAO.getNode()); | 
|  | NewNode = DAG.UpdateNodeOperands(Node, Node->getOperand(0), | 
|  | Node->getOperand(1), | 
|  | Handle.getValue()); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (NewNode != Node) { | 
|  | DAG.ReplaceAllUsesWith(Node, NewNode); | 
|  | for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) | 
|  | DAG.TransferDbgValues(SDValue(Node, i), SDValue(NewNode, i)); | 
|  | ReplacedNode(Node); | 
|  | Node = NewNode; | 
|  | } | 
|  | switch (Action) { | 
|  | case TargetLowering::Legal: | 
|  | return; | 
|  | case TargetLowering::Custom: { | 
|  | // FIXME: The handling for custom lowering with multiple results is | 
|  | // a complete mess. | 
|  | SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); | 
|  | if (Res.getNode()) { | 
|  | SmallVector<SDValue, 8> ResultVals; | 
|  | for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) { | 
|  | if (e == 1) | 
|  | ResultVals.push_back(Res); | 
|  | else | 
|  | ResultVals.push_back(Res.getValue(i)); | 
|  | } | 
|  | if (Res.getNode() != Node || Res.getResNo() != 0) { | 
|  | DAG.ReplaceAllUsesWith(Node, ResultVals.data()); | 
|  | for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) | 
|  | DAG.TransferDbgValues(SDValue(Node, i), ResultVals[i]); | 
|  | ReplacedNode(Node); | 
|  | } | 
|  | return; | 
|  | } | 
|  | } | 
|  | // FALL THROUGH | 
|  | case TargetLowering::Expand: | 
|  | ExpandNode(Node); | 
|  | return; | 
|  | case TargetLowering::Promote: | 
|  | PromoteNode(Node); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | switch (Node->getOpcode()) { | 
|  | default: | 
|  | #ifndef NDEBUG | 
|  | dbgs() << "NODE: "; | 
|  | Node->dump( &DAG); | 
|  | dbgs() << "\n"; | 
|  | #endif | 
|  | llvm_unreachable("Do not know how to legalize this operator!"); | 
|  |  | 
|  | case ISD::CALLSEQ_START: | 
|  | case ISD::CALLSEQ_END: | 
|  | break; | 
|  | case ISD::LOAD: { | 
|  | return LegalizeLoadOps(Node); | 
|  | } | 
|  | case ISD::STORE: { | 
|  | return LegalizeStoreOps(Node); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) { | 
|  | SDValue Vec = Op.getOperand(0); | 
|  | SDValue Idx = Op.getOperand(1); | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  | // Store the value to a temporary stack slot, then LOAD the returned part. | 
|  | SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType()); | 
|  | SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, | 
|  | MachinePointerInfo(), false, false, 0); | 
|  |  | 
|  | // Add the offset to the index. | 
|  | unsigned EltSize = | 
|  | Vec.getValueType().getVectorElementType().getSizeInBits()/8; | 
|  | Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx, | 
|  | DAG.getConstant(EltSize, Idx.getValueType())); | 
|  |  | 
|  | if (Idx.getValueType().bitsGT(TLI.getPointerTy())) | 
|  | Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx); | 
|  | else | 
|  | Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx); | 
|  |  | 
|  | StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr); | 
|  |  | 
|  | if (Op.getValueType().isVector()) | 
|  | return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr,MachinePointerInfo(), | 
|  | false, false, false, 0); | 
|  | return DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr, | 
|  | MachinePointerInfo(), | 
|  | Vec.getValueType().getVectorElementType(), | 
|  | false, false, 0); | 
|  | } | 
|  |  | 
|  | SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) { | 
|  | assert(Op.getValueType().isVector() && "Non-vector insert subvector!"); | 
|  |  | 
|  | SDValue Vec  = Op.getOperand(0); | 
|  | SDValue Part = Op.getOperand(1); | 
|  | SDValue Idx  = Op.getOperand(2); | 
|  | DebugLoc dl  = Op.getDebugLoc(); | 
|  |  | 
|  | // Store the value to a temporary stack slot, then LOAD the returned part. | 
|  |  | 
|  | SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType()); | 
|  | int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); | 
|  | MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI); | 
|  |  | 
|  | // First store the whole vector. | 
|  | SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo, | 
|  | false, false, 0); | 
|  |  | 
|  | // Then store the inserted part. | 
|  |  | 
|  | // Add the offset to the index. | 
|  | unsigned EltSize = | 
|  | Vec.getValueType().getVectorElementType().getSizeInBits()/8; | 
|  |  | 
|  | Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx, | 
|  | DAG.getConstant(EltSize, Idx.getValueType())); | 
|  |  | 
|  | if (Idx.getValueType().bitsGT(TLI.getPointerTy())) | 
|  | Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx); | 
|  | else | 
|  | Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx); | 
|  |  | 
|  | SDValue SubStackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, | 
|  | StackPtr); | 
|  |  | 
|  | // Store the subvector. | 
|  | Ch = DAG.getStore(DAG.getEntryNode(), dl, Part, SubStackPtr, | 
|  | MachinePointerInfo(), false, false, 0); | 
|  |  | 
|  | // Finally, load the updated vector. | 
|  | return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo, | 
|  | false, false, false, 0); | 
|  | } | 
|  |  | 
|  | SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) { | 
|  | // We can't handle this case efficiently.  Allocate a sufficiently | 
|  | // aligned object on the stack, store each element into it, then load | 
|  | // the result as a vector. | 
|  | // Create the stack frame object. | 
|  | EVT VT = Node->getValueType(0); | 
|  | EVT EltVT = VT.getVectorElementType(); | 
|  | DebugLoc dl = Node->getDebugLoc(); | 
|  | SDValue FIPtr = DAG.CreateStackTemporary(VT); | 
|  | int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex(); | 
|  | MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI); | 
|  |  | 
|  | // Emit a store of each element to the stack slot. | 
|  | SmallVector<SDValue, 8> Stores; | 
|  | unsigned TypeByteSize = EltVT.getSizeInBits() / 8; | 
|  | // Store (in the right endianness) the elements to memory. | 
|  | for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { | 
|  | // Ignore undef elements. | 
|  | if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue; | 
|  |  | 
|  | unsigned Offset = TypeByteSize*i; | 
|  |  | 
|  | SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType()); | 
|  | Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx); | 
|  |  | 
|  | // If the destination vector element type is narrower than the source | 
|  | // element type, only store the bits necessary. | 
|  | if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) { | 
|  | Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl, | 
|  | Node->getOperand(i), Idx, | 
|  | PtrInfo.getWithOffset(Offset), | 
|  | EltVT, false, false, 0)); | 
|  | } else | 
|  | Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, | 
|  | Node->getOperand(i), Idx, | 
|  | PtrInfo.getWithOffset(Offset), | 
|  | false, false, 0)); | 
|  | } | 
|  |  | 
|  | SDValue StoreChain; | 
|  | if (!Stores.empty())    // Not all undef elements? | 
|  | StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, | 
|  | &Stores[0], Stores.size()); | 
|  | else | 
|  | StoreChain = DAG.getEntryNode(); | 
|  |  | 
|  | // Result is a load from the stack slot. | 
|  | return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo, | 
|  | false, false, false, 0); | 
|  | } | 
|  |  | 
|  | SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) { | 
|  | DebugLoc dl = Node->getDebugLoc(); | 
|  | SDValue Tmp1 = Node->getOperand(0); | 
|  | SDValue Tmp2 = Node->getOperand(1); | 
|  |  | 
|  | // Get the sign bit of the RHS.  First obtain a value that has the same | 
|  | // sign as the sign bit, i.e. negative if and only if the sign bit is 1. | 
|  | SDValue SignBit; | 
|  | EVT FloatVT = Tmp2.getValueType(); | 
|  | EVT IVT = EVT::getIntegerVT(*DAG.getContext(), FloatVT.getSizeInBits()); | 
|  | if (TLI.isTypeLegal(IVT)) { | 
|  | // Convert to an integer with the same sign bit. | 
|  | SignBit = DAG.getNode(ISD::BITCAST, dl, IVT, Tmp2); | 
|  | } else { | 
|  | // Store the float to memory, then load the sign part out as an integer. | 
|  | MVT LoadTy = TLI.getPointerTy(); | 
|  | // First create a temporary that is aligned for both the load and store. | 
|  | SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy); | 
|  | // Then store the float to it. | 
|  | SDValue Ch = | 
|  | DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StackPtr, MachinePointerInfo(), | 
|  | false, false, 0); | 
|  | if (TLI.isBigEndian()) { | 
|  | assert(FloatVT.isByteSized() && "Unsupported floating point type!"); | 
|  | // Load out a legal integer with the same sign bit as the float. | 
|  | SignBit = DAG.getLoad(LoadTy, dl, Ch, StackPtr, MachinePointerInfo(), | 
|  | false, false, false, 0); | 
|  | } else { // Little endian | 
|  | SDValue LoadPtr = StackPtr; | 
|  | // The float may be wider than the integer we are going to load.  Advance | 
|  | // the pointer so that the loaded integer will contain the sign bit. | 
|  | unsigned Strides = (FloatVT.getSizeInBits()-1)/LoadTy.getSizeInBits(); | 
|  | unsigned ByteOffset = (Strides * LoadTy.getSizeInBits()) / 8; | 
|  | LoadPtr = DAG.getNode(ISD::ADD, dl, LoadPtr.getValueType(), | 
|  | LoadPtr, DAG.getIntPtrConstant(ByteOffset)); | 
|  | // Load a legal integer containing the sign bit. | 
|  | SignBit = DAG.getLoad(LoadTy, dl, Ch, LoadPtr, MachinePointerInfo(), | 
|  | false, false, false, 0); | 
|  | // Move the sign bit to the top bit of the loaded integer. | 
|  | unsigned BitShift = LoadTy.getSizeInBits() - | 
|  | (FloatVT.getSizeInBits() - 8 * ByteOffset); | 
|  | assert(BitShift < LoadTy.getSizeInBits() && "Pointer advanced wrong?"); | 
|  | if (BitShift) | 
|  | SignBit = DAG.getNode(ISD::SHL, dl, LoadTy, SignBit, | 
|  | DAG.getConstant(BitShift, | 
|  | TLI.getShiftAmountTy(SignBit.getValueType()))); | 
|  | } | 
|  | } | 
|  | // Now get the sign bit proper, by seeing whether the value is negative. | 
|  | SignBit = DAG.getSetCC(dl, TLI.getSetCCResultType(SignBit.getValueType()), | 
|  | SignBit, DAG.getConstant(0, SignBit.getValueType()), | 
|  | ISD::SETLT); | 
|  | // Get the absolute value of the result. | 
|  | SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1); | 
|  | // Select between the nabs and abs value based on the sign bit of | 
|  | // the input. | 
|  | return DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit, | 
|  | DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal), | 
|  | AbsVal); | 
|  | } | 
|  |  | 
|  | void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node, | 
|  | SmallVectorImpl<SDValue> &Results) { | 
|  | unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); | 
|  | assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" | 
|  | " not tell us which reg is the stack pointer!"); | 
|  | DebugLoc dl = Node->getDebugLoc(); | 
|  | EVT VT = Node->getValueType(0); | 
|  | SDValue Tmp1 = SDValue(Node, 0); | 
|  | SDValue Tmp2 = SDValue(Node, 1); | 
|  | SDValue Tmp3 = Node->getOperand(2); | 
|  | SDValue Chain = Tmp1.getOperand(0); | 
|  |  | 
|  | // Chain the dynamic stack allocation so that it doesn't modify the stack | 
|  | // pointer when other instructions are using the stack. | 
|  | Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true)); | 
|  |  | 
|  | SDValue Size  = Tmp2.getOperand(1); | 
|  | SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); | 
|  | Chain = SP.getValue(1); | 
|  | unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue(); | 
|  | unsigned StackAlign = TM.getFrameLowering()->getStackAlignment(); | 
|  | if (Align > StackAlign) | 
|  | SP = DAG.getNode(ISD::AND, dl, VT, SP, | 
|  | DAG.getConstant(-(uint64_t)Align, VT)); | 
|  | Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size);       // Value | 
|  | Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);     // Output chain | 
|  |  | 
|  | Tmp2 = DAG.getCALLSEQ_END(Chain,  DAG.getIntPtrConstant(0, true), | 
|  | DAG.getIntPtrConstant(0, true), SDValue()); | 
|  |  | 
|  | Results.push_back(Tmp1); | 
|  | Results.push_back(Tmp2); | 
|  | } | 
|  |  | 
|  | /// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and | 
|  | /// condition code CC on the current target. This routine expands SETCC with | 
|  | /// illegal condition code into AND / OR of multiple SETCC values. | 
|  | void SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT, | 
|  | SDValue &LHS, SDValue &RHS, | 
|  | SDValue &CC, | 
|  | DebugLoc dl) { | 
|  | MVT OpVT = LHS.getSimpleValueType(); | 
|  | ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); | 
|  | switch (TLI.getCondCodeAction(CCCode, OpVT)) { | 
|  | default: llvm_unreachable("Unknown condition code action!"); | 
|  | case TargetLowering::Legal: | 
|  | // Nothing to do. | 
|  | break; | 
|  | case TargetLowering::Expand: { | 
|  | ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; | 
|  | ISD::CondCode InvCC = ISD::SETCC_INVALID; | 
|  | unsigned Opc = 0; | 
|  | switch (CCCode) { | 
|  | default: llvm_unreachable("Don't know how to expand this condition!"); | 
|  | case ISD::SETO: | 
|  | assert(TLI.getCondCodeAction(ISD::SETOEQ, OpVT) | 
|  | == TargetLowering::Legal | 
|  | && "If SETO is expanded, SETOEQ must be legal!"); | 
|  | CC1 = ISD::SETOEQ; CC2 = ISD::SETOEQ; Opc = ISD::AND; break; | 
|  | case ISD::SETUO: | 
|  | assert(TLI.getCondCodeAction(ISD::SETUNE, OpVT) | 
|  | == TargetLowering::Legal | 
|  | && "If SETUO is expanded, SETUNE must be legal!"); | 
|  | CC1 = ISD::SETUNE; CC2 = ISD::SETUNE; Opc = ISD::OR;  break; | 
|  | case ISD::SETOEQ: | 
|  | case ISD::SETOGT: | 
|  | case ISD::SETOGE: | 
|  | case ISD::SETOLT: | 
|  | case ISD::SETOLE: | 
|  | case ISD::SETONE: | 
|  | case ISD::SETUEQ: | 
|  | case ISD::SETUNE: | 
|  | case ISD::SETUGT: | 
|  | case ISD::SETUGE: | 
|  | case ISD::SETULT: | 
|  | case ISD::SETULE: | 
|  | // If we are floating point, assign and break, otherwise fall through. | 
|  | if (!OpVT.isInteger()) { | 
|  | // We can use the 4th bit to tell if we are the unordered | 
|  | // or ordered version of the opcode. | 
|  | CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; | 
|  | Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; | 
|  | CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); | 
|  | break; | 
|  | } | 
|  | // Fallthrough if we are unsigned integer. | 
|  | case ISD::SETLE: | 
|  | case ISD::SETGT: | 
|  | case ISD::SETGE: | 
|  | case ISD::SETLT: | 
|  | case ISD::SETNE: | 
|  | case ISD::SETEQ: | 
|  | InvCC = ISD::getSetCCSwappedOperands(CCCode); | 
|  | if (TLI.getCondCodeAction(InvCC, OpVT) == TargetLowering::Expand) { | 
|  | // We only support using the inverted operation and not a | 
|  | // different manner of supporting expanding these cases. | 
|  | llvm_unreachable("Don't know how to expand this condition!"); | 
|  | } | 
|  | LHS = DAG.getSetCC(dl, VT, RHS, LHS, InvCC); | 
|  | RHS = SDValue(); | 
|  | CC = SDValue(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | SDValue SetCC1, SetCC2; | 
|  | if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { | 
|  | // If we aren't the ordered or unorder operation, | 
|  | // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). | 
|  | SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1); | 
|  | SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2); | 
|  | } else { | 
|  | // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) | 
|  | SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1); | 
|  | SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2); | 
|  | } | 
|  | LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); | 
|  | RHS = SDValue(); | 
|  | CC  = SDValue(); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// EmitStackConvert - Emit a store/load combination to the stack.  This stores | 
|  | /// SrcOp to a stack slot of type SlotVT, truncating it if needed.  It then does | 
|  | /// a load from the stack slot to DestVT, extending it if needed. | 
|  | /// The resultant code need not be legal. | 
|  | SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, | 
|  | EVT SlotVT, | 
|  | EVT DestVT, | 
|  | DebugLoc dl) { | 
|  | // Create the stack frame object. | 
|  | unsigned SrcAlign = | 
|  | TLI.getDataLayout()->getPrefTypeAlignment(SrcOp.getValueType(). | 
|  | getTypeForEVT(*DAG.getContext())); | 
|  | SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign); | 
|  |  | 
|  | FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr); | 
|  | int SPFI = StackPtrFI->getIndex(); | 
|  | MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(SPFI); | 
|  |  | 
|  | unsigned SrcSize = SrcOp.getValueType().getSizeInBits(); | 
|  | unsigned SlotSize = SlotVT.getSizeInBits(); | 
|  | unsigned DestSize = DestVT.getSizeInBits(); | 
|  | Type *DestType = DestVT.getTypeForEVT(*DAG.getContext()); | 
|  | unsigned DestAlign = TLI.getDataLayout()->getPrefTypeAlignment(DestType); | 
|  |  | 
|  | // Emit a store to the stack slot.  Use a truncstore if the input value is | 
|  | // later than DestVT. | 
|  | SDValue Store; | 
|  |  | 
|  | if (SrcSize > SlotSize) | 
|  | Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr, | 
|  | PtrInfo, SlotVT, false, false, SrcAlign); | 
|  | else { | 
|  | assert(SrcSize == SlotSize && "Invalid store"); | 
|  | Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr, | 
|  | PtrInfo, false, false, SrcAlign); | 
|  | } | 
|  |  | 
|  | // Result is a load from the stack slot. | 
|  | if (SlotSize == DestSize) | 
|  | return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, | 
|  | false, false, false, DestAlign); | 
|  |  | 
|  | assert(SlotSize < DestSize && "Unknown extension!"); | 
|  | return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, | 
|  | PtrInfo, SlotVT, false, false, DestAlign); | 
|  | } | 
|  |  | 
|  | SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { | 
|  | DebugLoc dl = Node->getDebugLoc(); | 
|  | // Create a vector sized/aligned stack slot, store the value to element #0, | 
|  | // then load the whole vector back out. | 
|  | SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); | 
|  |  | 
|  | FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr); | 
|  | int SPFI = StackPtrFI->getIndex(); | 
|  |  | 
|  | SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0), | 
|  | StackPtr, | 
|  | MachinePointerInfo::getFixedStack(SPFI), | 
|  | Node->getValueType(0).getVectorElementType(), | 
|  | false, false, 0); | 
|  | return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr, | 
|  | MachinePointerInfo::getFixedStack(SPFI), | 
|  | false, false, false, 0); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't | 
|  | /// support the operation, but do support the resultant vector type. | 
|  | SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { | 
|  | unsigned NumElems = Node->getNumOperands(); | 
|  | SDValue Value1, Value2; | 
|  | DebugLoc dl = Node->getDebugLoc(); | 
|  | EVT VT = Node->getValueType(0); | 
|  | EVT OpVT = Node->getOperand(0).getValueType(); | 
|  | EVT EltVT = VT.getVectorElementType(); | 
|  |  | 
|  | // If the only non-undef value is the low element, turn this into a | 
|  | // SCALAR_TO_VECTOR node.  If this is { X, X, X, X }, determine X. | 
|  | bool isOnlyLowElement = true; | 
|  | bool MoreThanTwoValues = false; | 
|  | bool isConstant = true; | 
|  | for (unsigned i = 0; i < NumElems; ++i) { | 
|  | SDValue V = Node->getOperand(i); | 
|  | if (V.getOpcode() == ISD::UNDEF) | 
|  | continue; | 
|  | if (i > 0) | 
|  | isOnlyLowElement = false; | 
|  | if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) | 
|  | isConstant = false; | 
|  |  | 
|  | if (!Value1.getNode()) { | 
|  | Value1 = V; | 
|  | } else if (!Value2.getNode()) { | 
|  | if (V != Value1) | 
|  | Value2 = V; | 
|  | } else if (V != Value1 && V != Value2) { | 
|  | MoreThanTwoValues = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!Value1.getNode()) | 
|  | return DAG.getUNDEF(VT); | 
|  |  | 
|  | if (isOnlyLowElement) | 
|  | return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0)); | 
|  |  | 
|  | // If all elements are constants, create a load from the constant pool. | 
|  | if (isConstant) { | 
|  | SmallVector<Constant*, 16> CV; | 
|  | for (unsigned i = 0, e = NumElems; i != e; ++i) { | 
|  | if (ConstantFPSDNode *V = | 
|  | dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) { | 
|  | CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue())); | 
|  | } else if (ConstantSDNode *V = | 
|  | dyn_cast<ConstantSDNode>(Node->getOperand(i))) { | 
|  | if (OpVT==EltVT) | 
|  | CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue())); | 
|  | else { | 
|  | // If OpVT and EltVT don't match, EltVT is not legal and the | 
|  | // element values have been promoted/truncated earlier.  Undo this; | 
|  | // we don't want a v16i8 to become a v16i32 for example. | 
|  | const ConstantInt *CI = V->getConstantIntValue(); | 
|  | CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()), | 
|  | CI->getZExtValue())); | 
|  | } | 
|  | } else { | 
|  | assert(Node->getOperand(i).getOpcode() == ISD::UNDEF); | 
|  | Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext()); | 
|  | CV.push_back(UndefValue::get(OpNTy)); | 
|  | } | 
|  | } | 
|  | Constant *CP = ConstantVector::get(CV); | 
|  | SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy()); | 
|  | unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); | 
|  | return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx, | 
|  | MachinePointerInfo::getConstantPool(), | 
|  | false, false, false, Alignment); | 
|  | } | 
|  |  | 
|  | if (!MoreThanTwoValues) { | 
|  | SmallVector<int, 8> ShuffleVec(NumElems, -1); | 
|  | for (unsigned i = 0; i < NumElems; ++i) { | 
|  | SDValue V = Node->getOperand(i); | 
|  | if (V.getOpcode() == ISD::UNDEF) | 
|  | continue; | 
|  | ShuffleVec[i] = V == Value1 ? 0 : NumElems; | 
|  | } | 
|  | if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) { | 
|  | // Get the splatted value into the low element of a vector register. | 
|  | SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1); | 
|  | SDValue Vec2; | 
|  | if (Value2.getNode()) | 
|  | Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2); | 
|  | else | 
|  | Vec2 = DAG.getUNDEF(VT); | 
|  |  | 
|  | // Return shuffle(LowValVec, undef, <0,0,0,0>) | 
|  | return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise, we can't handle this case efficiently. | 
|  | return ExpandVectorBuildThroughStack(Node); | 
|  | } | 
|  |  | 
|  | // ExpandLibCall - Expand a node into a call to a libcall.  If the result value | 
|  | // does not fit into a register, return the lo part and set the hi part to the | 
|  | // by-reg argument.  If it does fit into a single register, return the result | 
|  | // and leave the Hi part unset. | 
|  | SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, | 
|  | bool isSigned) { | 
|  | TargetLowering::ArgListTy Args; | 
|  | TargetLowering::ArgListEntry Entry; | 
|  | for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { | 
|  | EVT ArgVT = Node->getOperand(i).getValueType(); | 
|  | Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); | 
|  | Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy; | 
|  | Entry.isSExt = isSigned; | 
|  | Entry.isZExt = !isSigned; | 
|  | Args.push_back(Entry); | 
|  | } | 
|  | SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), | 
|  | TLI.getPointerTy()); | 
|  |  | 
|  | Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext()); | 
|  |  | 
|  | // By default, the input chain to this libcall is the entry node of the | 
|  | // function. If the libcall is going to be emitted as a tail call then | 
|  | // TLI.isUsedByReturnOnly will change it to the right chain if the return | 
|  | // node which is being folded has a non-entry input chain. | 
|  | SDValue InChain = DAG.getEntryNode(); | 
|  |  | 
|  | // isTailCall may be true since the callee does not reference caller stack | 
|  | // frame. Check if it's in the right position. | 
|  | SDValue TCChain = InChain; | 
|  | bool isTailCall = TLI.isInTailCallPosition(DAG, Node, TCChain); | 
|  | if (isTailCall) | 
|  | InChain = TCChain; | 
|  |  | 
|  | TargetLowering:: | 
|  | CallLoweringInfo CLI(InChain, RetTy, isSigned, !isSigned, false, false, | 
|  | 0, TLI.getLibcallCallingConv(LC), isTailCall, | 
|  | /*doesNotReturn=*/false, /*isReturnValueUsed=*/true, | 
|  | Callee, Args, DAG, Node->getDebugLoc()); | 
|  | std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); | 
|  |  | 
|  |  | 
|  | if (!CallInfo.second.getNode()) | 
|  | // It's a tailcall, return the chain (which is the DAG root). | 
|  | return DAG.getRoot(); | 
|  |  | 
|  | return CallInfo.first; | 
|  | } | 
|  |  | 
|  | /// ExpandLibCall - Generate a libcall taking the given operands as arguments | 
|  | /// and returning a result of type RetVT. | 
|  | SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, | 
|  | const SDValue *Ops, unsigned NumOps, | 
|  | bool isSigned, DebugLoc dl) { | 
|  | TargetLowering::ArgListTy Args; | 
|  | Args.reserve(NumOps); | 
|  |  | 
|  | TargetLowering::ArgListEntry Entry; | 
|  | for (unsigned i = 0; i != NumOps; ++i) { | 
|  | Entry.Node = Ops[i]; | 
|  | Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); | 
|  | Entry.isSExt = isSigned; | 
|  | Entry.isZExt = !isSigned; | 
|  | Args.push_back(Entry); | 
|  | } | 
|  | SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), | 
|  | TLI.getPointerTy()); | 
|  |  | 
|  | Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); | 
|  | TargetLowering:: | 
|  | CallLoweringInfo CLI(DAG.getEntryNode(), RetTy, isSigned, !isSigned, false, | 
|  | false, 0, TLI.getLibcallCallingConv(LC), | 
|  | /*isTailCall=*/false, | 
|  | /*doesNotReturn=*/false, /*isReturnValueUsed=*/true, | 
|  | Callee, Args, DAG, dl); | 
|  | std::pair<SDValue,SDValue> CallInfo = TLI.LowerCallTo(CLI); | 
|  |  | 
|  | return CallInfo.first; | 
|  | } | 
|  |  | 
|  | // ExpandChainLibCall - Expand a node into a call to a libcall. Similar to | 
|  | // ExpandLibCall except that the first operand is the in-chain. | 
|  | std::pair<SDValue, SDValue> | 
|  | SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC, | 
|  | SDNode *Node, | 
|  | bool isSigned) { | 
|  | SDValue InChain = Node->getOperand(0); | 
|  |  | 
|  | TargetLowering::ArgListTy Args; | 
|  | TargetLowering::ArgListEntry Entry; | 
|  | for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) { | 
|  | EVT ArgVT = Node->getOperand(i).getValueType(); | 
|  | Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); | 
|  | Entry.Node = Node->getOperand(i); | 
|  | Entry.Ty = ArgTy; | 
|  | Entry.isSExt = isSigned; | 
|  | Entry.isZExt = !isSigned; | 
|  | Args.push_back(Entry); | 
|  | } | 
|  | SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), | 
|  | TLI.getPointerTy()); | 
|  |  | 
|  | Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext()); | 
|  | TargetLowering:: | 
|  | CallLoweringInfo CLI(InChain, RetTy, isSigned, !isSigned, false, false, | 
|  | 0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false, | 
|  | /*doesNotReturn=*/false, /*isReturnValueUsed=*/true, | 
|  | Callee, Args, DAG, Node->getDebugLoc()); | 
|  | std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); | 
|  |  | 
|  | return CallInfo; | 
|  | } | 
|  |  | 
|  | SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node, | 
|  | RTLIB::Libcall Call_F32, | 
|  | RTLIB::Libcall Call_F64, | 
|  | RTLIB::Libcall Call_F80, | 
|  | RTLIB::Libcall Call_F128, | 
|  | RTLIB::Libcall Call_PPCF128) { | 
|  | RTLIB::Libcall LC; | 
|  | switch (Node->getValueType(0).getSimpleVT().SimpleTy) { | 
|  | default: llvm_unreachable("Unexpected request for libcall!"); | 
|  | case MVT::f32: LC = Call_F32; break; | 
|  | case MVT::f64: LC = Call_F64; break; | 
|  | case MVT::f80: LC = Call_F80; break; | 
|  | case MVT::f128: LC = Call_F128; break; | 
|  | case MVT::ppcf128: LC = Call_PPCF128; break; | 
|  | } | 
|  | return ExpandLibCall(LC, Node, false); | 
|  | } | 
|  |  | 
|  | SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned, | 
|  | RTLIB::Libcall Call_I8, | 
|  | RTLIB::Libcall Call_I16, | 
|  | RTLIB::Libcall Call_I32, | 
|  | RTLIB::Libcall Call_I64, | 
|  | RTLIB::Libcall Call_I128) { | 
|  | RTLIB::Libcall LC; | 
|  | switch (Node->getValueType(0).getSimpleVT().SimpleTy) { | 
|  | default: llvm_unreachable("Unexpected request for libcall!"); | 
|  | case MVT::i8:   LC = Call_I8; break; | 
|  | case MVT::i16:  LC = Call_I16; break; | 
|  | case MVT::i32:  LC = Call_I32; break; | 
|  | case MVT::i64:  LC = Call_I64; break; | 
|  | case MVT::i128: LC = Call_I128; break; | 
|  | } | 
|  | return ExpandLibCall(LC, Node, isSigned); | 
|  | } | 
|  |  | 
|  | /// isDivRemLibcallAvailable - Return true if divmod libcall is available. | 
|  | static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned, | 
|  | const TargetLowering &TLI) { | 
|  | RTLIB::Libcall LC; | 
|  | switch (Node->getValueType(0).getSimpleVT().SimpleTy) { | 
|  | default: llvm_unreachable("Unexpected request for libcall!"); | 
|  | case MVT::i8:   LC= isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break; | 
|  | case MVT::i16:  LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; | 
|  | case MVT::i32:  LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; | 
|  | case MVT::i64:  LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; | 
|  | case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; | 
|  | } | 
|  |  | 
|  | return TLI.getLibcallName(LC) != 0; | 
|  | } | 
|  |  | 
|  | /// useDivRem - Only issue divrem libcall if both quotient and remainder are | 
|  | /// needed. | 
|  | static bool useDivRem(SDNode *Node, bool isSigned, bool isDIV) { | 
|  | // The other use might have been replaced with a divrem already. | 
|  | unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; | 
|  | unsigned OtherOpcode = 0; | 
|  | if (isSigned) | 
|  | OtherOpcode = isDIV ? ISD::SREM : ISD::SDIV; | 
|  | else | 
|  | OtherOpcode = isDIV ? ISD::UREM : ISD::UDIV; | 
|  |  | 
|  | SDValue Op0 = Node->getOperand(0); | 
|  | SDValue Op1 = Node->getOperand(1); | 
|  | for (SDNode::use_iterator UI = Op0.getNode()->use_begin(), | 
|  | UE = Op0.getNode()->use_end(); UI != UE; ++UI) { | 
|  | SDNode *User = *UI; | 
|  | if (User == Node) | 
|  | continue; | 
|  | if ((User->getOpcode() == OtherOpcode || User->getOpcode() == DivRemOpc) && | 
|  | User->getOperand(0) == Op0 && | 
|  | User->getOperand(1) == Op1) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// ExpandDivRemLibCall - Issue libcalls to __{u}divmod to compute div / rem | 
|  | /// pairs. | 
|  | void | 
|  | SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node, | 
|  | SmallVectorImpl<SDValue> &Results) { | 
|  | unsigned Opcode = Node->getOpcode(); | 
|  | bool isSigned = Opcode == ISD::SDIVREM; | 
|  |  | 
|  | RTLIB::Libcall LC; | 
|  | switch (Node->getValueType(0).getSimpleVT().SimpleTy) { | 
|  | default: llvm_unreachable("Unexpected request for libcall!"); | 
|  | case MVT::i8:   LC= isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break; | 
|  | case MVT::i16:  LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; | 
|  | case MVT::i32:  LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; | 
|  | case MVT::i64:  LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; | 
|  | case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; | 
|  | } | 
|  |  | 
|  | // The input chain to this libcall is the entry node of the function. | 
|  | // Legalizing the call will automatically add the previous call to the | 
|  | // dependence. | 
|  | SDValue InChain = DAG.getEntryNode(); | 
|  |  | 
|  | EVT RetVT = Node->getValueType(0); | 
|  | Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); | 
|  |  | 
|  | TargetLowering::ArgListTy Args; | 
|  | TargetLowering::ArgListEntry Entry; | 
|  | for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { | 
|  | EVT ArgVT = Node->getOperand(i).getValueType(); | 
|  | Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); | 
|  | Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy; | 
|  | Entry.isSExt = isSigned; | 
|  | Entry.isZExt = !isSigned; | 
|  | Args.push_back(Entry); | 
|  | } | 
|  |  | 
|  | // Also pass the return address of the remainder. | 
|  | SDValue FIPtr = DAG.CreateStackTemporary(RetVT); | 
|  | Entry.Node = FIPtr; | 
|  | Entry.Ty = RetTy->getPointerTo(); | 
|  | Entry.isSExt = isSigned; | 
|  | Entry.isZExt = !isSigned; | 
|  | Args.push_back(Entry); | 
|  |  | 
|  | SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), | 
|  | TLI.getPointerTy()); | 
|  |  | 
|  | DebugLoc dl = Node->getDebugLoc(); | 
|  | TargetLowering:: | 
|  | CallLoweringInfo CLI(InChain, RetTy, isSigned, !isSigned, false, false, | 
|  | 0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false, | 
|  | /*doesNotReturn=*/false, /*isReturnValueUsed=*/true, | 
|  | Callee, Args, DAG, dl); | 
|  | std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); | 
|  |  | 
|  | // Remainder is loaded back from the stack frame. | 
|  | SDValue Rem = DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr, | 
|  | MachinePointerInfo(), false, false, false, 0); | 
|  | Results.push_back(CallInfo.first); | 
|  | Results.push_back(Rem); | 
|  | } | 
|  |  | 
|  | /// isSinCosLibcallAvailable - Return true if sincos libcall is available. | 
|  | static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) { | 
|  | RTLIB::Libcall LC; | 
|  | switch (Node->getValueType(0).getSimpleVT().SimpleTy) { | 
|  | default: llvm_unreachable("Unexpected request for libcall!"); | 
|  | case MVT::f32:     LC = RTLIB::SINCOS_F32; break; | 
|  | case MVT::f64:     LC = RTLIB::SINCOS_F64; break; | 
|  | case MVT::f80:     LC = RTLIB::SINCOS_F80; break; | 
|  | case MVT::f128:    LC = RTLIB::SINCOS_F128; break; | 
|  | case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; | 
|  | } | 
|  | return TLI.getLibcallName(LC) != 0; | 
|  | } | 
|  |  | 
|  | /// canCombineSinCosLibcall - Return true if sincos libcall is available and | 
|  | /// can be used to combine sin and cos. | 
|  | static bool canCombineSinCosLibcall(SDNode *Node, const TargetLowering &TLI, | 
|  | const TargetMachine &TM) { | 
|  | if (!isSinCosLibcallAvailable(Node, TLI)) | 
|  | return false; | 
|  | // GNU sin/cos functions set errno while sincos does not. Therefore | 
|  | // combining sin and cos is only safe if unsafe-fpmath is enabled. | 
|  | bool isGNU = Triple(TM.getTargetTriple()).getEnvironment() == Triple::GNU; | 
|  | if (isGNU && !TM.Options.UnsafeFPMath) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// useSinCos - Only issue sincos libcall if both sin and cos are | 
|  | /// needed. | 
|  | static bool useSinCos(SDNode *Node) { | 
|  | unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN | 
|  | ? ISD::FCOS : ISD::FSIN; | 
|  |  | 
|  | SDValue Op0 = Node->getOperand(0); | 
|  | for (SDNode::use_iterator UI = Op0.getNode()->use_begin(), | 
|  | UE = Op0.getNode()->use_end(); UI != UE; ++UI) { | 
|  | SDNode *User = *UI; | 
|  | if (User == Node) | 
|  | continue; | 
|  | // The other user might have been turned into sincos already. | 
|  | if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// ExpandSinCosLibCall - Issue libcalls to sincos to compute sin / cos | 
|  | /// pairs. | 
|  | void | 
|  | SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node, | 
|  | SmallVectorImpl<SDValue> &Results) { | 
|  | RTLIB::Libcall LC; | 
|  | switch (Node->getValueType(0).getSimpleVT().SimpleTy) { | 
|  | default: llvm_unreachable("Unexpected request for libcall!"); | 
|  | case MVT::f32:     LC = RTLIB::SINCOS_F32; break; | 
|  | case MVT::f64:     LC = RTLIB::SINCOS_F64; break; | 
|  | case MVT::f80:     LC = RTLIB::SINCOS_F80; break; | 
|  | case MVT::f128:    LC = RTLIB::SINCOS_F128; break; | 
|  | case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; | 
|  | } | 
|  |  | 
|  | // The input chain to this libcall is the entry node of the function. | 
|  | // Legalizing the call will automatically add the previous call to the | 
|  | // dependence. | 
|  | SDValue InChain = DAG.getEntryNode(); | 
|  |  | 
|  | EVT RetVT = Node->getValueType(0); | 
|  | Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); | 
|  |  | 
|  | TargetLowering::ArgListTy Args; | 
|  | TargetLowering::ArgListEntry Entry; | 
|  |  | 
|  | // Pass the argument. | 
|  | Entry.Node = Node->getOperand(0); | 
|  | Entry.Ty = RetTy; | 
|  | Entry.isSExt = false; | 
|  | Entry.isZExt = false; | 
|  | Args.push_back(Entry); | 
|  |  | 
|  | // Pass the return address of sin. | 
|  | SDValue SinPtr = DAG.CreateStackTemporary(RetVT); | 
|  | Entry.Node = SinPtr; | 
|  | Entry.Ty = RetTy->getPointerTo(); | 
|  | Entry.isSExt = false; | 
|  | Entry.isZExt = false; | 
|  | Args.push_back(Entry); | 
|  |  | 
|  | // Also pass the return address of the cos. | 
|  | SDValue CosPtr = DAG.CreateStackTemporary(RetVT); | 
|  | Entry.Node = CosPtr; | 
|  | Entry.Ty = RetTy->getPointerTo(); | 
|  | Entry.isSExt = false; | 
|  | Entry.isZExt = false; | 
|  | Args.push_back(Entry); | 
|  |  | 
|  | SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), | 
|  | TLI.getPointerTy()); | 
|  |  | 
|  | DebugLoc dl = Node->getDebugLoc(); | 
|  | TargetLowering:: | 
|  | CallLoweringInfo CLI(InChain, Type::getVoidTy(*DAG.getContext()), | 
|  | false, false, false, false, | 
|  | 0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false, | 
|  | /*doesNotReturn=*/false, /*isReturnValueUsed=*/true, | 
|  | Callee, Args, DAG, dl); | 
|  | std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); | 
|  |  | 
|  | Results.push_back(DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr, | 
|  | MachinePointerInfo(), false, false, false, 0)); | 
|  | Results.push_back(DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr, | 
|  | MachinePointerInfo(), false, false, false, 0)); | 
|  | } | 
|  |  | 
|  | /// ExpandLegalINT_TO_FP - This function is responsible for legalizing a | 
|  | /// INT_TO_FP operation of the specified operand when the target requests that | 
|  | /// we expand it.  At this point, we know that the result and operand types are | 
|  | /// legal for the target. | 
|  | SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned, | 
|  | SDValue Op0, | 
|  | EVT DestVT, | 
|  | DebugLoc dl) { | 
|  | if (Op0.getValueType() == MVT::i32 && TLI.isTypeLegal(MVT::f64)) { | 
|  | // simple 32-bit [signed|unsigned] integer to float/double expansion | 
|  |  | 
|  | // Get the stack frame index of a 8 byte buffer. | 
|  | SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64); | 
|  |  | 
|  | // word offset constant for Hi/Lo address computation | 
|  | SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy()); | 
|  | // set up Hi and Lo (into buffer) address based on endian | 
|  | SDValue Hi = StackSlot; | 
|  | SDValue Lo = DAG.getNode(ISD::ADD, dl, | 
|  | TLI.getPointerTy(), StackSlot, WordOff); | 
|  | if (TLI.isLittleEndian()) | 
|  | std::swap(Hi, Lo); | 
|  |  | 
|  | // if signed map to unsigned space | 
|  | SDValue Op0Mapped; | 
|  | if (isSigned) { | 
|  | // constant used to invert sign bit (signed to unsigned mapping) | 
|  | SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32); | 
|  | Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit); | 
|  | } else { | 
|  | Op0Mapped = Op0; | 
|  | } | 
|  | // store the lo of the constructed double - based on integer input | 
|  | SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, | 
|  | Op0Mapped, Lo, MachinePointerInfo(), | 
|  | false, false, 0); | 
|  | // initial hi portion of constructed double | 
|  | SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32); | 
|  | // store the hi of the constructed double - biased exponent | 
|  | SDValue Store2 = DAG.getStore(Store1, dl, InitialHi, Hi, | 
|  | MachinePointerInfo(), | 
|  | false, false, 0); | 
|  | // load the constructed double | 
|  | SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot, | 
|  | MachinePointerInfo(), false, false, false, 0); | 
|  | // FP constant to bias correct the final result | 
|  | SDValue Bias = DAG.getConstantFP(isSigned ? | 
|  | BitsToDouble(0x4330000080000000ULL) : | 
|  | BitsToDouble(0x4330000000000000ULL), | 
|  | MVT::f64); | 
|  | // subtract the bias | 
|  | SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias); | 
|  | // final result | 
|  | SDValue Result; | 
|  | // handle final rounding | 
|  | if (DestVT == MVT::f64) { | 
|  | // do nothing | 
|  | Result = Sub; | 
|  | } else if (DestVT.bitsLT(MVT::f64)) { | 
|  | Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub, | 
|  | DAG.getIntPtrConstant(0)); | 
|  | } else if (DestVT.bitsGT(MVT::f64)) { | 
|  | Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub); | 
|  | } | 
|  | return Result; | 
|  | } | 
|  | assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet"); | 
|  | // Code below here assumes !isSigned without checking again. | 
|  |  | 
|  | // Implementation of unsigned i64 to f64 following the algorithm in | 
|  | // __floatundidf in compiler_rt. This implementation has the advantage | 
|  | // of performing rounding correctly, both in the default rounding mode | 
|  | // and in all alternate rounding modes. | 
|  | // TODO: Generalize this for use with other types. | 
|  | if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f64) { | 
|  | SDValue TwoP52 = | 
|  | DAG.getConstant(UINT64_C(0x4330000000000000), MVT::i64); | 
|  | SDValue TwoP84PlusTwoP52 = | 
|  | DAG.getConstantFP(BitsToDouble(UINT64_C(0x4530000000100000)), MVT::f64); | 
|  | SDValue TwoP84 = | 
|  | DAG.getConstant(UINT64_C(0x4530000000000000), MVT::i64); | 
|  |  | 
|  | SDValue Lo = DAG.getZeroExtendInReg(Op0, dl, MVT::i32); | 
|  | SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, | 
|  | DAG.getConstant(32, MVT::i64)); | 
|  | SDValue LoOr = DAG.getNode(ISD::OR, dl, MVT::i64, Lo, TwoP52); | 
|  | SDValue HiOr = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, TwoP84); | 
|  | SDValue LoFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, LoOr); | 
|  | SDValue HiFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, HiOr); | 
|  | SDValue HiSub = DAG.getNode(ISD::FSUB, dl, MVT::f64, HiFlt, | 
|  | TwoP84PlusTwoP52); | 
|  | return DAG.getNode(ISD::FADD, dl, MVT::f64, LoFlt, HiSub); | 
|  | } | 
|  |  | 
|  | // Implementation of unsigned i64 to f32. | 
|  | // TODO: Generalize this for use with other types. | 
|  | if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f32) { | 
|  | // For unsigned conversions, convert them to signed conversions using the | 
|  | // algorithm from the x86_64 __floatundidf in compiler_rt. | 
|  | if (!isSigned) { | 
|  | SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Op0); | 
|  |  | 
|  | SDValue ShiftConst = | 
|  | DAG.getConstant(1, TLI.getShiftAmountTy(Op0.getValueType())); | 
|  | SDValue Shr = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, ShiftConst); | 
|  | SDValue AndConst = DAG.getConstant(1, MVT::i64); | 
|  | SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, AndConst); | 
|  | SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, Shr); | 
|  |  | 
|  | SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Or); | 
|  | SDValue Slow = DAG.getNode(ISD::FADD, dl, MVT::f32, SignCvt, SignCvt); | 
|  |  | 
|  | // TODO: This really should be implemented using a branch rather than a | 
|  | // select.  We happen to get lucky and machinesink does the right | 
|  | // thing most of the time.  This would be a good candidate for a | 
|  | //pseudo-op, or, even better, for whole-function isel. | 
|  | SDValue SignBitTest = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64), | 
|  | Op0, DAG.getConstant(0, MVT::i64), ISD::SETLT); | 
|  | return DAG.getNode(ISD::SELECT, dl, MVT::f32, SignBitTest, Slow, Fast); | 
|  | } | 
|  |  | 
|  | // Otherwise, implement the fully general conversion. | 
|  |  | 
|  | SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, | 
|  | DAG.getConstant(UINT64_C(0xfffffffffffff800), MVT::i64)); | 
|  | SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, | 
|  | DAG.getConstant(UINT64_C(0x800), MVT::i64)); | 
|  | SDValue And2 = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, | 
|  | DAG.getConstant(UINT64_C(0x7ff), MVT::i64)); | 
|  | SDValue Ne = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64), | 
|  | And2, DAG.getConstant(UINT64_C(0), MVT::i64), ISD::SETNE); | 
|  | SDValue Sel = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ne, Or, Op0); | 
|  | SDValue Ge = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64), | 
|  | Op0, DAG.getConstant(UINT64_C(0x0020000000000000), MVT::i64), | 
|  | ISD::SETUGE); | 
|  | SDValue Sel2 = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ge, Sel, Op0); | 
|  | EVT SHVT = TLI.getShiftAmountTy(Sel2.getValueType()); | 
|  |  | 
|  | SDValue Sh = DAG.getNode(ISD::SRL, dl, MVT::i64, Sel2, | 
|  | DAG.getConstant(32, SHVT)); | 
|  | SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sh); | 
|  | SDValue Fcvt = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Trunc); | 
|  | SDValue TwoP32 = | 
|  | DAG.getConstantFP(BitsToDouble(UINT64_C(0x41f0000000000000)), MVT::f64); | 
|  | SDValue Fmul = DAG.getNode(ISD::FMUL, dl, MVT::f64, TwoP32, Fcvt); | 
|  | SDValue Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sel2); | 
|  | SDValue Fcvt2 = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Lo); | 
|  | SDValue Fadd = DAG.getNode(ISD::FADD, dl, MVT::f64, Fmul, Fcvt2); | 
|  | return DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Fadd, | 
|  | DAG.getIntPtrConstant(0)); | 
|  | } | 
|  |  | 
|  | SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); | 
|  |  | 
|  | SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()), | 
|  | Op0, DAG.getConstant(0, Op0.getValueType()), | 
|  | ISD::SETLT); | 
|  | SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4); | 
|  | SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), | 
|  | SignSet, Four, Zero); | 
|  |  | 
|  | // If the sign bit of the integer is set, the large number will be treated | 
|  | // as a negative number.  To counteract this, the dynamic code adds an | 
|  | // offset depending on the data type. | 
|  | uint64_t FF; | 
|  | switch (Op0.getValueType().getSimpleVT().SimpleTy) { | 
|  | default: llvm_unreachable("Unsupported integer type!"); | 
|  | case MVT::i8 : FF = 0x43800000ULL; break;  // 2^8  (as a float) | 
|  | case MVT::i16: FF = 0x47800000ULL; break;  // 2^16 (as a float) | 
|  | case MVT::i32: FF = 0x4F800000ULL; break;  // 2^32 (as a float) | 
|  | case MVT::i64: FF = 0x5F800000ULL; break;  // 2^64 (as a float) | 
|  | } | 
|  | if (TLI.isLittleEndian()) FF <<= 32; | 
|  | Constant *FudgeFactor = ConstantInt::get( | 
|  | Type::getInt64Ty(*DAG.getContext()), FF); | 
|  |  | 
|  | SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy()); | 
|  | unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); | 
|  | CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset); | 
|  | Alignment = std::min(Alignment, 4u); | 
|  | SDValue FudgeInReg; | 
|  | if (DestVT == MVT::f32) | 
|  | FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx, | 
|  | MachinePointerInfo::getConstantPool(), | 
|  | false, false, false, Alignment); | 
|  | else { | 
|  | SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, | 
|  | DAG.getEntryNode(), CPIdx, | 
|  | MachinePointerInfo::getConstantPool(), | 
|  | MVT::f32, false, false, Alignment); | 
|  | HandleSDNode Handle(Load); | 
|  | LegalizeOp(Load.getNode()); | 
|  | FudgeInReg = Handle.getValue(); | 
|  | } | 
|  |  | 
|  | return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg); | 
|  | } | 
|  |  | 
|  | /// PromoteLegalINT_TO_FP - This function is responsible for legalizing a | 
|  | /// *INT_TO_FP operation of the specified operand when the target requests that | 
|  | /// we promote it.  At this point, we know that the result and operand types are | 
|  | /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP | 
|  | /// operation that takes a larger input. | 
|  | SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp, | 
|  | EVT DestVT, | 
|  | bool isSigned, | 
|  | DebugLoc dl) { | 
|  | // First step, figure out the appropriate *INT_TO_FP operation to use. | 
|  | EVT NewInTy = LegalOp.getValueType(); | 
|  |  | 
|  | unsigned OpToUse = 0; | 
|  |  | 
|  | // Scan for the appropriate larger type to use. | 
|  | while (1) { | 
|  | NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1); | 
|  | assert(NewInTy.isInteger() && "Ran out of possibilities!"); | 
|  |  | 
|  | // If the target supports SINT_TO_FP of this type, use it. | 
|  | if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) { | 
|  | OpToUse = ISD::SINT_TO_FP; | 
|  | break; | 
|  | } | 
|  | if (isSigned) continue; | 
|  |  | 
|  | // If the target supports UINT_TO_FP of this type, use it. | 
|  | if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) { | 
|  | OpToUse = ISD::UINT_TO_FP; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Otherwise, try a larger type. | 
|  | } | 
|  |  | 
|  | // Okay, we found the operation and type to use.  Zero extend our input to the | 
|  | // desired type then run the operation on it. | 
|  | return DAG.getNode(OpToUse, dl, DestVT, | 
|  | DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, | 
|  | dl, NewInTy, LegalOp)); | 
|  | } | 
|  |  | 
|  | /// PromoteLegalFP_TO_INT - This function is responsible for legalizing a | 
|  | /// FP_TO_*INT operation of the specified operand when the target requests that | 
|  | /// we promote it.  At this point, we know that the result and operand types are | 
|  | /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT | 
|  | /// operation that returns a larger result. | 
|  | SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp, | 
|  | EVT DestVT, | 
|  | bool isSigned, | 
|  | DebugLoc dl) { | 
|  | // First step, figure out the appropriate FP_TO*INT operation to use. | 
|  | EVT NewOutTy = DestVT; | 
|  |  | 
|  | unsigned OpToUse = 0; | 
|  |  | 
|  | // Scan for the appropriate larger type to use. | 
|  | while (1) { | 
|  | NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1); | 
|  | assert(NewOutTy.isInteger() && "Ran out of possibilities!"); | 
|  |  | 
|  | if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) { | 
|  | OpToUse = ISD::FP_TO_SINT; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) { | 
|  | OpToUse = ISD::FP_TO_UINT; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Otherwise, try a larger type. | 
|  | } | 
|  |  | 
|  |  | 
|  | // Okay, we found the operation and type to use. | 
|  | SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp); | 
|  |  | 
|  | // Truncate the result of the extended FP_TO_*INT operation to the desired | 
|  | // size. | 
|  | return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation); | 
|  | } | 
|  |  | 
|  | /// ExpandBSWAP - Open code the operations for BSWAP of the specified operation. | 
|  | /// | 
|  | SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) { | 
|  | EVT VT = Op.getValueType(); | 
|  | EVT SHVT = TLI.getShiftAmountTy(VT); | 
|  | SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; | 
|  | switch (VT.getSimpleVT().SimpleTy) { | 
|  | default: llvm_unreachable("Unhandled Expand type in BSWAP!"); | 
|  | case MVT::i16: | 
|  | Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT)); | 
|  | Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT)); | 
|  | return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); | 
|  | case MVT::i32: | 
|  | Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT)); | 
|  | Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT)); | 
|  | Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT)); | 
|  | Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT)); | 
|  | Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT)); | 
|  | Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT)); | 
|  | Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); | 
|  | Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); | 
|  | return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); | 
|  | case MVT::i64: | 
|  | Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT)); | 
|  | Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT)); | 
|  | Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT)); | 
|  | Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT)); | 
|  | Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT)); | 
|  | Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT)); | 
|  | Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT)); | 
|  | Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT)); | 
|  | Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT)); | 
|  | Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT)); | 
|  | Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT)); | 
|  | Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT)); | 
|  | Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT)); | 
|  | Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT)); | 
|  | Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); | 
|  | Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); | 
|  | Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); | 
|  | Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); | 
|  | Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); | 
|  | Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); | 
|  | return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// ExpandBitCount - Expand the specified bitcount instruction into operations. | 
|  | /// | 
|  | SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op, | 
|  | DebugLoc dl) { | 
|  | switch (Opc) { | 
|  | default: llvm_unreachable("Cannot expand this yet!"); | 
|  | case ISD::CTPOP: { | 
|  | EVT VT = Op.getValueType(); | 
|  | EVT ShVT = TLI.getShiftAmountTy(VT); | 
|  | unsigned Len = VT.getSizeInBits(); | 
|  |  | 
|  | assert(VT.isInteger() && Len <= 128 && Len % 8 == 0 && | 
|  | "CTPOP not implemented for this type."); | 
|  |  | 
|  | // This is the "best" algorithm from | 
|  | // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel | 
|  |  | 
|  | SDValue Mask55 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), VT); | 
|  | SDValue Mask33 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), VT); | 
|  | SDValue Mask0F = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), VT); | 
|  | SDValue Mask01 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), VT); | 
|  |  | 
|  | // v = v - ((v >> 1) & 0x55555555...) | 
|  | Op = DAG.getNode(ISD::SUB, dl, VT, Op, | 
|  | DAG.getNode(ISD::AND, dl, VT, | 
|  | DAG.getNode(ISD::SRL, dl, VT, Op, | 
|  | DAG.getConstant(1, ShVT)), | 
|  | Mask55)); | 
|  | // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) | 
|  | Op = DAG.getNode(ISD::ADD, dl, VT, | 
|  | DAG.getNode(ISD::AND, dl, VT, Op, Mask33), | 
|  | DAG.getNode(ISD::AND, dl, VT, | 
|  | DAG.getNode(ISD::SRL, dl, VT, Op, | 
|  | DAG.getConstant(2, ShVT)), | 
|  | Mask33)); | 
|  | // v = (v + (v >> 4)) & 0x0F0F0F0F... | 
|  | Op = DAG.getNode(ISD::AND, dl, VT, | 
|  | DAG.getNode(ISD::ADD, dl, VT, Op, | 
|  | DAG.getNode(ISD::SRL, dl, VT, Op, | 
|  | DAG.getConstant(4, ShVT))), | 
|  | Mask0F); | 
|  | // v = (v * 0x01010101...) >> (Len - 8) | 
|  | Op = DAG.getNode(ISD::SRL, dl, VT, | 
|  | DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), | 
|  | DAG.getConstant(Len - 8, ShVT)); | 
|  |  | 
|  | return Op; | 
|  | } | 
|  | case ISD::CTLZ_ZERO_UNDEF: | 
|  | // This trivially expands to CTLZ. | 
|  | return DAG.getNode(ISD::CTLZ, dl, Op.getValueType(), Op); | 
|  | case ISD::CTLZ: { | 
|  | // for now, we do this: | 
|  | // x = x | (x >> 1); | 
|  | // x = x | (x >> 2); | 
|  | // ... | 
|  | // x = x | (x >>16); | 
|  | // x = x | (x >>32); // for 64-bit input | 
|  | // return popcount(~x); | 
|  | // | 
|  | // but see also: http://www.hackersdelight.org/HDcode/nlz.cc | 
|  | EVT VT = Op.getValueType(); | 
|  | EVT ShVT = TLI.getShiftAmountTy(VT); | 
|  | unsigned len = VT.getSizeInBits(); | 
|  | for (unsigned i = 0; (1U << i) <= (len / 2); ++i) { | 
|  | SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT); | 
|  | Op = DAG.getNode(ISD::OR, dl, VT, Op, | 
|  | DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3)); | 
|  | } | 
|  | Op = DAG.getNOT(dl, Op, VT); | 
|  | return DAG.getNode(ISD::CTPOP, dl, VT, Op); | 
|  | } | 
|  | case ISD::CTTZ_ZERO_UNDEF: | 
|  | // This trivially expands to CTTZ. | 
|  | return DAG.getNode(ISD::CTTZ, dl, Op.getValueType(), Op); | 
|  | case ISD::CTTZ: { | 
|  | // for now, we use: { return popcount(~x & (x - 1)); } | 
|  | // unless the target has ctlz but not ctpop, in which case we use: | 
|  | // { return 32 - nlz(~x & (x-1)); } | 
|  | // see also http://www.hackersdelight.org/HDcode/ntz.cc | 
|  | EVT VT = Op.getValueType(); | 
|  | SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT, | 
|  | DAG.getNOT(dl, Op, VT), | 
|  | DAG.getNode(ISD::SUB, dl, VT, Op, | 
|  | DAG.getConstant(1, VT))); | 
|  | // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. | 
|  | if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) && | 
|  | TLI.isOperationLegalOrCustom(ISD::CTLZ, VT)) | 
|  | return DAG.getNode(ISD::SUB, dl, VT, | 
|  | DAG.getConstant(VT.getSizeInBits(), VT), | 
|  | DAG.getNode(ISD::CTLZ, dl, VT, Tmp3)); | 
|  | return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | std::pair <SDValue, SDValue> SelectionDAGLegalize::ExpandAtomic(SDNode *Node) { | 
|  | unsigned Opc = Node->getOpcode(); | 
|  | MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT(); | 
|  | RTLIB::Libcall LC; | 
|  |  | 
|  | switch (Opc) { | 
|  | default: | 
|  | llvm_unreachable("Unhandled atomic intrinsic Expand!"); | 
|  | case ISD::ATOMIC_SWAP: | 
|  | switch (VT.SimpleTy) { | 
|  | default: llvm_unreachable("Unexpected value type for atomic!"); | 
|  | case MVT::i8:  LC = RTLIB::SYNC_LOCK_TEST_AND_SET_1; break; | 
|  | case MVT::i16: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_2; break; | 
|  | case MVT::i32: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_4; break; | 
|  | case MVT::i64: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_8; break; | 
|  | } | 
|  | break; | 
|  | case ISD::ATOMIC_CMP_SWAP: | 
|  | switch (VT.SimpleTy) { | 
|  | default: llvm_unreachable("Unexpected value type for atomic!"); | 
|  | case MVT::i8:  LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1; break; | 
|  | case MVT::i16: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2; break; | 
|  | case MVT::i32: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4; break; | 
|  | case MVT::i64: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8; break; | 
|  | } | 
|  | break; | 
|  | case ISD::ATOMIC_LOAD_ADD: | 
|  | switch (VT.SimpleTy) { | 
|  | default: llvm_unreachable("Unexpected value type for atomic!"); | 
|  | case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_ADD_1; break; | 
|  | case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_ADD_2; break; | 
|  | case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_ADD_4; break; | 
|  | case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_ADD_8; break; | 
|  | } | 
|  | break; | 
|  | case ISD::ATOMIC_LOAD_SUB: | 
|  | switch (VT.SimpleTy) { | 
|  | default: llvm_unreachable("Unexpected value type for atomic!"); | 
|  | case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_SUB_1; break; | 
|  | case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_SUB_2; break; | 
|  | case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_SUB_4; break; | 
|  | case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_SUB_8; break; | 
|  | } | 
|  | break; | 
|  | case ISD::ATOMIC_LOAD_AND: | 
|  | switch (VT.SimpleTy) { | 
|  | default: llvm_unreachable("Unexpected value type for atomic!"); | 
|  | case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_AND_1; break; | 
|  | case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_AND_2; break; | 
|  | case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_AND_4; break; | 
|  | case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_AND_8; break; | 
|  | } | 
|  | break; | 
|  | case ISD::ATOMIC_LOAD_OR: | 
|  | switch (VT.SimpleTy) { | 
|  | default: llvm_unreachable("Unexpected value type for atomic!"); | 
|  | case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_OR_1; break; | 
|  | case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_OR_2; break; | 
|  | case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_OR_4; break; | 
|  | case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_OR_8; break; | 
|  | } | 
|  | break; | 
|  | case ISD::ATOMIC_LOAD_XOR: | 
|  | switch (VT.SimpleTy) { | 
|  | default: llvm_unreachable("Unexpected value type for atomic!"); | 
|  | case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_XOR_1; break; | 
|  | case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_XOR_2; break; | 
|  | case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_XOR_4; break; | 
|  | case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_XOR_8; break; | 
|  | } | 
|  | break; | 
|  | case ISD::ATOMIC_LOAD_NAND: | 
|  | switch (VT.SimpleTy) { | 
|  | default: llvm_unreachable("Unexpected value type for atomic!"); | 
|  | case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_NAND_1; break; | 
|  | case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_NAND_2; break; | 
|  | case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_NAND_4; break; | 
|  | case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_NAND_8; break; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | return ExpandChainLibCall(LC, Node, false); | 
|  | } | 
|  |  | 
|  | void SelectionDAGLegalize::ExpandNode(SDNode *Node) { | 
|  | SmallVector<SDValue, 8> Results; | 
|  | DebugLoc dl = Node->getDebugLoc(); | 
|  | SDValue Tmp1, Tmp2, Tmp3, Tmp4; | 
|  | switch (Node->getOpcode()) { | 
|  | case ISD::CTPOP: | 
|  | case ISD::CTLZ: | 
|  | case ISD::CTLZ_ZERO_UNDEF: | 
|  | case ISD::CTTZ: | 
|  | case ISD::CTTZ_ZERO_UNDEF: | 
|  | Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl); | 
|  | Results.push_back(Tmp1); | 
|  | break; | 
|  | case ISD::BSWAP: | 
|  | Results.push_back(ExpandBSWAP(Node->getOperand(0), dl)); | 
|  | break; | 
|  | case ISD::FRAMEADDR: | 
|  | case ISD::RETURNADDR: | 
|  | case ISD::FRAME_TO_ARGS_OFFSET: | 
|  | Results.push_back(DAG.getConstant(0, Node->getValueType(0))); | 
|  | break; | 
|  | case ISD::FLT_ROUNDS_: | 
|  | Results.push_back(DAG.getConstant(1, Node->getValueType(0))); | 
|  | break; | 
|  | case ISD::EH_RETURN: | 
|  | case ISD::EH_LABEL: | 
|  | case ISD::PREFETCH: | 
|  | case ISD::VAEND: | 
|  | case ISD::EH_SJLJ_LONGJMP: | 
|  | // If the target didn't expand these, there's nothing to do, so just | 
|  | // preserve the chain and be done. | 
|  | Results.push_back(Node->getOperand(0)); | 
|  | break; | 
|  | case ISD::EH_SJLJ_SETJMP: | 
|  | // If the target didn't expand this, just return 'zero' and preserve the | 
|  | // chain. | 
|  | Results.push_back(DAG.getConstant(0, MVT::i32)); | 
|  | Results.push_back(Node->getOperand(0)); | 
|  | break; | 
|  | case ISD::ATOMIC_FENCE: | 
|  | case ISD::MEMBARRIER: { | 
|  | // If the target didn't lower this, lower it to '__sync_synchronize()' call | 
|  | // FIXME: handle "fence singlethread" more efficiently. | 
|  | TargetLowering::ArgListTy Args; | 
|  | TargetLowering:: | 
|  | CallLoweringInfo CLI(Node->getOperand(0), | 
|  | Type::getVoidTy(*DAG.getContext()), | 
|  | false, false, false, false, 0, CallingConv::C, | 
|  | /*isTailCall=*/false, | 
|  | /*doesNotReturn=*/false, /*isReturnValueUsed=*/true, | 
|  | DAG.getExternalSymbol("__sync_synchronize", | 
|  | TLI.getPointerTy()), | 
|  | Args, DAG, dl); | 
|  | std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); | 
|  |  | 
|  | Results.push_back(CallResult.second); | 
|  | break; | 
|  | } | 
|  | case ISD::ATOMIC_LOAD: { | 
|  | // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP. | 
|  | SDValue Zero = DAG.getConstant(0, Node->getValueType(0)); | 
|  | SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, | 
|  | cast<AtomicSDNode>(Node)->getMemoryVT(), | 
|  | Node->getOperand(0), | 
|  | Node->getOperand(1), Zero, Zero, | 
|  | cast<AtomicSDNode>(Node)->getMemOperand(), | 
|  | cast<AtomicSDNode>(Node)->getOrdering(), | 
|  | cast<AtomicSDNode>(Node)->getSynchScope()); | 
|  | Results.push_back(Swap.getValue(0)); | 
|  | Results.push_back(Swap.getValue(1)); | 
|  | break; | 
|  | } | 
|  | case ISD::ATOMIC_STORE: { | 
|  | // There is no libcall for atomic store; fake it with ATOMIC_SWAP. | 
|  | SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl, | 
|  | cast<AtomicSDNode>(Node)->getMemoryVT(), | 
|  | Node->getOperand(0), | 
|  | Node->getOperand(1), Node->getOperand(2), | 
|  | cast<AtomicSDNode>(Node)->getMemOperand(), | 
|  | cast<AtomicSDNode>(Node)->getOrdering(), | 
|  | cast<AtomicSDNode>(Node)->getSynchScope()); | 
|  | Results.push_back(Swap.getValue(1)); | 
|  | break; | 
|  | } | 
|  | // By default, atomic intrinsics are marked Legal and lowered. Targets | 
|  | // which don't support them directly, however, may want libcalls, in which | 
|  | // case they mark them Expand, and we get here. | 
|  | case ISD::ATOMIC_SWAP: | 
|  | case ISD::ATOMIC_LOAD_ADD: | 
|  | case ISD::ATOMIC_LOAD_SUB: | 
|  | case ISD::ATOMIC_LOAD_AND: | 
|  | case ISD::ATOMIC_LOAD_OR: | 
|  | case ISD::ATOMIC_LOAD_XOR: | 
|  | case ISD::ATOMIC_LOAD_NAND: | 
|  | case ISD::ATOMIC_LOAD_MIN: | 
|  | case ISD::ATOMIC_LOAD_MAX: | 
|  | case ISD::ATOMIC_LOAD_UMIN: | 
|  | case ISD::ATOMIC_LOAD_UMAX: | 
|  | case ISD::ATOMIC_CMP_SWAP: { | 
|  | std::pair<SDValue, SDValue> Tmp = ExpandAtomic(Node); | 
|  | Results.push_back(Tmp.first); | 
|  | Results.push_back(Tmp.second); | 
|  | break; | 
|  | } | 
|  | case ISD::DYNAMIC_STACKALLOC: | 
|  | ExpandDYNAMIC_STACKALLOC(Node, Results); | 
|  | break; | 
|  | case ISD::MERGE_VALUES: | 
|  | for (unsigned i = 0; i < Node->getNumValues(); i++) | 
|  | Results.push_back(Node->getOperand(i)); | 
|  | break; | 
|  | case ISD::UNDEF: { | 
|  | EVT VT = Node->getValueType(0); | 
|  | if (VT.isInteger()) | 
|  | Results.push_back(DAG.getConstant(0, VT)); | 
|  | else { | 
|  | assert(VT.isFloatingPoint() && "Unknown value type!"); | 
|  | Results.push_back(DAG.getConstantFP(0, VT)); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ISD::TRAP: { | 
|  | // If this operation is not supported, lower it to 'abort()' call | 
|  | TargetLowering::ArgListTy Args; | 
|  | TargetLowering:: | 
|  | CallLoweringInfo CLI(Node->getOperand(0), | 
|  | Type::getVoidTy(*DAG.getContext()), | 
|  | false, false, false, false, 0, CallingConv::C, | 
|  | /*isTailCall=*/false, | 
|  | /*doesNotReturn=*/false, /*isReturnValueUsed=*/true, | 
|  | DAG.getExternalSymbol("abort", TLI.getPointerTy()), | 
|  | Args, DAG, dl); | 
|  | std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); | 
|  |  | 
|  | Results.push_back(CallResult.second); | 
|  | break; | 
|  | } | 
|  | case ISD::FP_ROUND: | 
|  | case ISD::BITCAST: | 
|  | Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), | 
|  | Node->getValueType(0), dl); | 
|  | Results.push_back(Tmp1); | 
|  | break; | 
|  | case ISD::FP_EXTEND: | 
|  | Tmp1 = EmitStackConvert(Node->getOperand(0), | 
|  | Node->getOperand(0).getValueType(), | 
|  | Node->getValueType(0), dl); | 
|  | Results.push_back(Tmp1); | 
|  | break; | 
|  | case ISD::SIGN_EXTEND_INREG: { | 
|  | // NOTE: we could fall back on load/store here too for targets without | 
|  | // SAR.  However, it is doubtful that any exist. | 
|  | EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); | 
|  | EVT VT = Node->getValueType(0); | 
|  | EVT ShiftAmountTy = TLI.getShiftAmountTy(VT); | 
|  | if (VT.isVector()) | 
|  | ShiftAmountTy = VT; | 
|  | unsigned BitsDiff = VT.getScalarType().getSizeInBits() - | 
|  | ExtraVT.getScalarType().getSizeInBits(); | 
|  | SDValue ShiftCst = DAG.getConstant(BitsDiff, ShiftAmountTy); | 
|  | Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0), | 
|  | Node->getOperand(0), ShiftCst); | 
|  | Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst); | 
|  | Results.push_back(Tmp1); | 
|  | break; | 
|  | } | 
|  | case ISD::FP_ROUND_INREG: { | 
|  | // The only way we can lower this is to turn it into a TRUNCSTORE, | 
|  | // EXTLOAD pair, targeting a temporary location (a stack slot). | 
|  |  | 
|  | // NOTE: there is a choice here between constantly creating new stack | 
|  | // slots and always reusing the same one.  We currently always create | 
|  | // new ones, as reuse may inhibit scheduling. | 
|  | EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); | 
|  | Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT, | 
|  | Node->getValueType(0), dl); | 
|  | Results.push_back(Tmp1); | 
|  | break; | 
|  | } | 
|  | case ISD::SINT_TO_FP: | 
|  | case ISD::UINT_TO_FP: | 
|  | Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP, | 
|  | Node->getOperand(0), Node->getValueType(0), dl); | 
|  | Results.push_back(Tmp1); | 
|  | break; | 
|  | case ISD::FP_TO_UINT: { | 
|  | SDValue True, False; | 
|  | EVT VT =  Node->getOperand(0).getValueType(); | 
|  | EVT NVT = Node->getValueType(0); | 
|  | APFloat apf(DAG.EVTToAPFloatSemantics(VT), | 
|  | APInt::getNullValue(VT.getSizeInBits())); | 
|  | APInt x = APInt::getSignBit(NVT.getSizeInBits()); | 
|  | (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven); | 
|  | Tmp1 = DAG.getConstantFP(apf, VT); | 
|  | Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), | 
|  | Node->getOperand(0), | 
|  | Tmp1, ISD::SETLT); | 
|  | True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0)); | 
|  | False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, | 
|  | DAG.getNode(ISD::FSUB, dl, VT, | 
|  | Node->getOperand(0), Tmp1)); | 
|  | False = DAG.getNode(ISD::XOR, dl, NVT, False, | 
|  | DAG.getConstant(x, NVT)); | 
|  | Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, True, False); | 
|  | Results.push_back(Tmp1); | 
|  | break; | 
|  | } | 
|  | case ISD::VAARG: { | 
|  | const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); | 
|  | EVT VT = Node->getValueType(0); | 
|  | Tmp1 = Node->getOperand(0); | 
|  | Tmp2 = Node->getOperand(1); | 
|  | unsigned Align = Node->getConstantOperandVal(3); | 
|  |  | 
|  | SDValue VAListLoad = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2, | 
|  | MachinePointerInfo(V), | 
|  | false, false, false, 0); | 
|  | SDValue VAList = VAListLoad; | 
|  |  | 
|  | if (Align > TLI.getMinStackArgumentAlignment()) { | 
|  | assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2"); | 
|  |  | 
|  | VAList = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList, | 
|  | DAG.getConstant(Align - 1, | 
|  | TLI.getPointerTy())); | 
|  |  | 
|  | VAList = DAG.getNode(ISD::AND, dl, TLI.getPointerTy(), VAList, | 
|  | DAG.getConstant(-(int64_t)Align, | 
|  | TLI.getPointerTy())); | 
|  | } | 
|  |  | 
|  | // Increment the pointer, VAList, to the next vaarg | 
|  | Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList, | 
|  | DAG.getConstant(TLI.getDataLayout()-> | 
|  | getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())), | 
|  | TLI.getPointerTy())); | 
|  | // Store the incremented VAList to the legalized pointer | 
|  | Tmp3 = DAG.getStore(VAListLoad.getValue(1), dl, Tmp3, Tmp2, | 
|  | MachinePointerInfo(V), false, false, 0); | 
|  | // Load the actual argument out of the pointer VAList | 
|  | Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, MachinePointerInfo(), | 
|  | false, false, false, 0)); | 
|  | Results.push_back(Results[0].getValue(1)); | 
|  | break; | 
|  | } | 
|  | case ISD::VACOPY: { | 
|  | // This defaults to loading a pointer from the input and storing it to the | 
|  | // output, returning the chain. | 
|  | const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); | 
|  | const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); | 
|  | Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0), | 
|  | Node->getOperand(2), MachinePointerInfo(VS), | 
|  | false, false, false, 0); | 
|  | Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), | 
|  | MachinePointerInfo(VD), false, false, 0); | 
|  | Results.push_back(Tmp1); | 
|  | break; | 
|  | } | 
|  | case ISD::EXTRACT_VECTOR_ELT: | 
|  | if (Node->getOperand(0).getValueType().getVectorNumElements() == 1) | 
|  | // This must be an access of the only element.  Return it. | 
|  | Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), | 
|  | Node->getOperand(0)); | 
|  | else | 
|  | Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0)); | 
|  | Results.push_back(Tmp1); | 
|  | break; | 
|  | case ISD::EXTRACT_SUBVECTOR: | 
|  | Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0))); | 
|  | break; | 
|  | case ISD::INSERT_SUBVECTOR: | 
|  | Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0))); | 
|  | break; | 
|  | case ISD::CONCAT_VECTORS: { | 
|  | Results.push_back(ExpandVectorBuildThroughStack(Node)); | 
|  | break; | 
|  | } | 
|  | case ISD::SCALAR_TO_VECTOR: | 
|  | Results.push_back(ExpandSCALAR_TO_VECTOR(Node)); | 
|  | break; | 
|  | case ISD::INSERT_VECTOR_ELT: | 
|  | Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0), | 
|  | Node->getOperand(1), | 
|  | Node->getOperand(2), dl)); | 
|  | break; | 
|  | case ISD::VECTOR_SHUFFLE: { | 
|  | SmallVector<int, 32> NewMask; | 
|  | ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); | 
|  |  | 
|  | EVT VT = Node->getValueType(0); | 
|  | EVT EltVT = VT.getVectorElementType(); | 
|  | SDValue Op0 = Node->getOperand(0); | 
|  | SDValue Op1 = Node->getOperand(1); | 
|  | if (!TLI.isTypeLegal(EltVT)) { | 
|  |  | 
|  | EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT); | 
|  |  | 
|  | // BUILD_VECTOR operands are allowed to be wider than the element type. | 
|  | // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept it | 
|  | if (NewEltVT.bitsLT(EltVT)) { | 
|  |  | 
|  | // Convert shuffle node. | 
|  | // If original node was v4i64 and the new EltVT is i32, | 
|  | // cast operands to v8i32 and re-build the mask. | 
|  |  | 
|  | // Calculate new VT, the size of the new VT should be equal to original. | 
|  | EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltVT, | 
|  | VT.getSizeInBits()/NewEltVT.getSizeInBits()); | 
|  | assert(NewVT.bitsEq(VT)); | 
|  |  | 
|  | // cast operands to new VT | 
|  | Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0); | 
|  | Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1); | 
|  |  | 
|  | // Convert the shuffle mask | 
|  | unsigned int factor = NewVT.getVectorNumElements()/VT.getVectorNumElements(); | 
|  |  | 
|  | // EltVT gets smaller | 
|  | assert(factor > 0); | 
|  |  | 
|  | for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) { | 
|  | if (Mask[i] < 0) { | 
|  | for (unsigned fi = 0; fi < factor; ++fi) | 
|  | NewMask.push_back(Mask[i]); | 
|  | } | 
|  | else { | 
|  | for (unsigned fi = 0; fi < factor; ++fi) | 
|  | NewMask.push_back(Mask[i]*factor+fi); | 
|  | } | 
|  | } | 
|  | Mask = NewMask; | 
|  | VT = NewVT; | 
|  | } | 
|  | EltVT = NewEltVT; | 
|  | } | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  | SmallVector<SDValue, 16> Ops; | 
|  | for (unsigned i = 0; i != NumElems; ++i) { | 
|  | if (Mask[i] < 0) { | 
|  | Ops.push_back(DAG.getUNDEF(EltVT)); | 
|  | continue; | 
|  | } | 
|  | unsigned Idx = Mask[i]; | 
|  | if (Idx < NumElems) | 
|  | Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, | 
|  | Op0, | 
|  | DAG.getIntPtrConstant(Idx))); | 
|  | else | 
|  | Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, | 
|  | Op1, | 
|  | DAG.getIntPtrConstant(Idx - NumElems))); | 
|  | } | 
|  |  | 
|  | Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size()); | 
|  | // We may have changed the BUILD_VECTOR type. Cast it back to the Node type. | 
|  | Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1); | 
|  | Results.push_back(Tmp1); | 
|  | break; | 
|  | } | 
|  | case ISD::EXTRACT_ELEMENT: { | 
|  | EVT OpTy = Node->getOperand(0).getValueType(); | 
|  | if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) { | 
|  | // 1 -> Hi | 
|  | Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0), | 
|  | DAG.getConstant(OpTy.getSizeInBits()/2, | 
|  | TLI.getShiftAmountTy(Node->getOperand(0).getValueType()))); | 
|  | Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1); | 
|  | } else { | 
|  | // 0 -> Lo | 
|  | Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), | 
|  | Node->getOperand(0)); | 
|  | } | 
|  | Results.push_back(Tmp1); | 
|  | break; | 
|  | } | 
|  | case ISD::STACKSAVE: | 
|  | // Expand to CopyFromReg if the target set | 
|  | // StackPointerRegisterToSaveRestore. | 
|  | if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { | 
|  | Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP, | 
|  | Node->getValueType(0))); | 
|  | Results.push_back(Results[0].getValue(1)); | 
|  | } else { | 
|  | Results.push_back(DAG.getUNDEF(Node->getValueType(0))); | 
|  | Results.push_back(Node->getOperand(0)); | 
|  | } | 
|  | break; | 
|  | case ISD::STACKRESTORE: | 
|  | // Expand to CopyToReg if the target set | 
|  | // StackPointerRegisterToSaveRestore. | 
|  | if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { | 
|  | Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP, | 
|  | Node->getOperand(1))); | 
|  | } else { | 
|  | Results.push_back(Node->getOperand(0)); | 
|  | } | 
|  | break; | 
|  | case ISD::FCOPYSIGN: | 
|  | Results.push_back(ExpandFCOPYSIGN(Node)); | 
|  | break; | 
|  | case ISD::FNEG: | 
|  | // Expand Y = FNEG(X) ->  Y = SUB -0.0, X | 
|  | Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0)); | 
|  | Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1, | 
|  | Node->getOperand(0)); | 
|  | Results.push_back(Tmp1); | 
|  | break; | 
|  | case ISD::FABS: { | 
|  | // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X). | 
|  | EVT VT = Node->getValueType(0); | 
|  | Tmp1 = Node->getOperand(0); | 
|  | Tmp2 = DAG.getConstantFP(0.0, VT); | 
|  | Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()), | 
|  | Tmp1, Tmp2, ISD::SETUGT); | 
|  | Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1); | 
|  | Tmp1 = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3); | 
|  | Results.push_back(Tmp1); | 
|  | break; | 
|  | } | 
|  | case ISD::FSQRT: | 
|  | Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64, | 
|  | RTLIB::SQRT_F80, RTLIB::SQRT_F128, | 
|  | RTLIB::SQRT_PPCF128)); | 
|  | break; | 
|  | case ISD::FSIN: | 
|  | case ISD::FCOS: { | 
|  | EVT VT = Node->getValueType(0); | 
|  | bool isSIN = Node->getOpcode() == ISD::FSIN; | 
|  | // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin / | 
|  | // fcos which share the same operand and both are used. | 
|  | if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) || | 
|  | canCombineSinCosLibcall(Node, TLI, TM)) | 
|  | && useSinCos(Node)) { | 
|  | SDVTList VTs = DAG.getVTList(VT, VT); | 
|  | Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0)); | 
|  | if (!isSIN) | 
|  | Tmp1 = Tmp1.getValue(1); | 
|  | Results.push_back(Tmp1); | 
|  | } else if (isSIN) { | 
|  | Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64, | 
|  | RTLIB::SIN_F80, RTLIB::SIN_F128, | 
|  | RTLIB::SIN_PPCF128)); | 
|  | } else { | 
|  | Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64, | 
|  | RTLIB::COS_F80, RTLIB::COS_F128, | 
|  | RTLIB::COS_PPCF128)); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ISD::FSINCOS: | 
|  | // Expand into sincos libcall. | 
|  | ExpandSinCosLibCall(Node, Results); | 
|  | break; | 
|  | case ISD::FLOG: | 
|  | Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64, | 
|  | RTLIB::LOG_F80, RTLIB::LOG_F128, | 
|  | RTLIB::LOG_PPCF128)); | 
|  | break; | 
|  | case ISD::FLOG2: | 
|  | Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64, | 
|  | RTLIB::LOG2_F80, RTLIB::LOG2_F128, | 
|  | RTLIB::LOG2_PPCF128)); | 
|  | break; | 
|  | case ISD::FLOG10: | 
|  | Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64, | 
|  | RTLIB::LOG10_F80, RTLIB::LOG10_F128, | 
|  | RTLIB::LOG10_PPCF128)); | 
|  | break; | 
|  | case ISD::FEXP: | 
|  | Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64, | 
|  | RTLIB::EXP_F80, RTLIB::EXP_F128, | 
|  | RTLIB::EXP_PPCF128)); | 
|  | break; | 
|  | case ISD::FEXP2: | 
|  | Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64, | 
|  | RTLIB::EXP2_F80, RTLIB::EXP2_F128, | 
|  | RTLIB::EXP2_PPCF128)); | 
|  | break; | 
|  | case ISD::FTRUNC: | 
|  | Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, | 
|  | RTLIB::TRUNC_F80, RTLIB::TRUNC_F128, | 
|  | RTLIB::TRUNC_PPCF128)); | 
|  | break; | 
|  | case ISD::FFLOOR: | 
|  | Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, | 
|  | RTLIB::FLOOR_F80, RTLIB::FLOOR_F128, | 
|  | RTLIB::FLOOR_PPCF128)); | 
|  | break; | 
|  | case ISD::FCEIL: | 
|  | Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64, | 
|  | RTLIB::CEIL_F80, RTLIB::CEIL_F128, | 
|  | RTLIB::CEIL_PPCF128)); | 
|  | break; | 
|  | case ISD::FRINT: | 
|  | Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64, | 
|  | RTLIB::RINT_F80, RTLIB::RINT_F128, | 
|  | RTLIB::RINT_PPCF128)); | 
|  | break; | 
|  | case ISD::FNEARBYINT: | 
|  | Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32, | 
|  | RTLIB::NEARBYINT_F64, | 
|  | RTLIB::NEARBYINT_F80, | 
|  | RTLIB::NEARBYINT_F128, | 
|  | RTLIB::NEARBYINT_PPCF128)); | 
|  | break; | 
|  | case ISD::FPOWI: | 
|  | Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64, | 
|  | RTLIB::POWI_F80, RTLIB::POWI_F128, | 
|  | RTLIB::POWI_PPCF128)); | 
|  | break; | 
|  | case ISD::FPOW: | 
|  | Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64, | 
|  | RTLIB::POW_F80, RTLIB::POW_F128, | 
|  | RTLIB::POW_PPCF128)); | 
|  | break; | 
|  | case ISD::FDIV: | 
|  | Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64, | 
|  | RTLIB::DIV_F80, RTLIB::DIV_F128, | 
|  | RTLIB::DIV_PPCF128)); | 
|  | break; | 
|  | case ISD::FREM: | 
|  | Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64, | 
|  | RTLIB::REM_F80, RTLIB::REM_F128, | 
|  | RTLIB::REM_PPCF128)); | 
|  | break; | 
|  | case ISD::FMA: | 
|  | Results.push_back(ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64, | 
|  | RTLIB::FMA_F80, RTLIB::FMA_F128, | 
|  | RTLIB::FMA_PPCF128)); | 
|  | break; | 
|  | case ISD::FP16_TO_FP32: | 
|  | Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false)); | 
|  | break; | 
|  | case ISD::FP32_TO_FP16: | 
|  | Results.push_back(ExpandLibCall(RTLIB::FPROUND_F32_F16, Node, false)); | 
|  | break; | 
|  | case ISD::ConstantFP: { | 
|  | ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); | 
|  | // Check to see if this FP immediate is already legal. | 
|  | // If this is a legal constant, turn it into a TargetConstantFP node. | 
|  | if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0))) | 
|  | Results.push_back(ExpandConstantFP(CFP, true)); | 
|  | break; | 
|  | } | 
|  | case ISD::EHSELECTION: { | 
|  | unsigned Reg = TLI.getExceptionSelectorRegister(); | 
|  | assert(Reg && "Can't expand to unknown register!"); | 
|  | Results.push_back(DAG.getCopyFromReg(Node->getOperand(1), dl, Reg, | 
|  | Node->getValueType(0))); | 
|  | Results.push_back(Results[0].getValue(1)); | 
|  | break; | 
|  | } | 
|  | case ISD::EXCEPTIONADDR: { | 
|  | unsigned Reg = TLI.getExceptionPointerRegister(); | 
|  | assert(Reg && "Can't expand to unknown register!"); | 
|  | Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, Reg, | 
|  | Node->getValueType(0))); | 
|  | Results.push_back(Results[0].getValue(1)); | 
|  | break; | 
|  | } | 
|  | case ISD::FSUB: { | 
|  | EVT VT = Node->getValueType(0); | 
|  | assert(TLI.isOperationLegalOrCustom(ISD::FADD, VT) && | 
|  | TLI.isOperationLegalOrCustom(ISD::FNEG, VT) && | 
|  | "Don't know how to expand this FP subtraction!"); | 
|  | Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1)); | 
|  | Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1); | 
|  | Results.push_back(Tmp1); | 
|  | break; | 
|  | } | 
|  | case ISD::SUB: { | 
|  | EVT VT = Node->getValueType(0); | 
|  | assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) && | 
|  | TLI.isOperationLegalOrCustom(ISD::XOR, VT) && | 
|  | "Don't know how to expand this subtraction!"); | 
|  | Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1), | 
|  | DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT)); | 
|  | Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, VT)); | 
|  | Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1)); | 
|  | break; | 
|  | } | 
|  | case ISD::UREM: | 
|  | case ISD::SREM: { | 
|  | EVT VT = Node->getValueType(0); | 
|  | bool isSigned = Node->getOpcode() == ISD::SREM; | 
|  | unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; | 
|  | unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; | 
|  | Tmp2 = Node->getOperand(0); | 
|  | Tmp3 = Node->getOperand(1); | 
|  | if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) || | 
|  | (isDivRemLibcallAvailable(Node, isSigned, TLI) && | 
|  | // If div is legal, it's better to do the normal expansion | 
|  | !TLI.isOperationLegalOrCustom(DivOpc, Node->getValueType(0)) && | 
|  | useDivRem(Node, isSigned, false))) { | 
|  | SDVTList VTs = DAG.getVTList(VT, VT); | 
|  | Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1); | 
|  | } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) { | 
|  | // X % Y -> X-X/Y*Y | 
|  | Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3); | 
|  | Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3); | 
|  | Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1); | 
|  | } else if (isSigned) | 
|  | Tmp1 = ExpandIntLibCall(Node, true, | 
|  | RTLIB::SREM_I8, | 
|  | RTLIB::SREM_I16, RTLIB::SREM_I32, | 
|  | RTLIB::SREM_I64, RTLIB::SREM_I128); | 
|  | else | 
|  | Tmp1 = ExpandIntLibCall(Node, false, | 
|  | RTLIB::UREM_I8, | 
|  | RTLIB::UREM_I16, RTLIB::UREM_I32, | 
|  | RTLIB::UREM_I64, RTLIB::UREM_I128); | 
|  | Results.push_back(Tmp1); | 
|  | break; | 
|  | } | 
|  | case ISD::UDIV: | 
|  | case ISD::SDIV: { | 
|  | bool isSigned = Node->getOpcode() == ISD::SDIV; | 
|  | unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; | 
|  | EVT VT = Node->getValueType(0); | 
|  | SDVTList VTs = DAG.getVTList(VT, VT); | 
|  | if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) || | 
|  | (isDivRemLibcallAvailable(Node, isSigned, TLI) && | 
|  | useDivRem(Node, isSigned, true))) | 
|  | Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0), | 
|  | Node->getOperand(1)); | 
|  | else if (isSigned) | 
|  | Tmp1 = ExpandIntLibCall(Node, true, | 
|  | RTLIB::SDIV_I8, | 
|  | RTLIB::SDIV_I16, RTLIB::SDIV_I32, | 
|  | RTLIB::SDIV_I64, RTLIB::SDIV_I128); | 
|  | else | 
|  | Tmp1 = ExpandIntLibCall(Node, false, | 
|  | RTLIB::UDIV_I8, | 
|  | RTLIB::UDIV_I16, RTLIB::UDIV_I32, | 
|  | RTLIB::UDIV_I64, RTLIB::UDIV_I128); | 
|  | Results.push_back(Tmp1); | 
|  | break; | 
|  | } | 
|  | case ISD::MULHU: | 
|  | case ISD::MULHS: { | 
|  | unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : | 
|  | ISD::SMUL_LOHI; | 
|  | EVT VT = Node->getValueType(0); | 
|  | SDVTList VTs = DAG.getVTList(VT, VT); | 
|  | assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) && | 
|  | "If this wasn't legal, it shouldn't have been created!"); | 
|  | Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0), | 
|  | Node->getOperand(1)); | 
|  | Results.push_back(Tmp1.getValue(1)); | 
|  | break; | 
|  | } | 
|  | case ISD::SDIVREM: | 
|  | case ISD::UDIVREM: | 
|  | // Expand into divrem libcall | 
|  | ExpandDivRemLibCall(Node, Results); | 
|  | break; | 
|  | case ISD::MUL: { | 
|  | EVT VT = Node->getValueType(0); | 
|  | SDVTList VTs = DAG.getVTList(VT, VT); | 
|  | // See if multiply or divide can be lowered using two-result operations. | 
|  | // We just need the low half of the multiply; try both the signed | 
|  | // and unsigned forms. If the target supports both SMUL_LOHI and | 
|  | // UMUL_LOHI, form a preference by checking which forms of plain | 
|  | // MULH it supports. | 
|  | bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT); | 
|  | bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT); | 
|  | bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT); | 
|  | bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT); | 
|  | unsigned OpToUse = 0; | 
|  | if (HasSMUL_LOHI && !HasMULHS) { | 
|  | OpToUse = ISD::SMUL_LOHI; | 
|  | } else if (HasUMUL_LOHI && !HasMULHU) { | 
|  | OpToUse = ISD::UMUL_LOHI; | 
|  | } else if (HasSMUL_LOHI) { | 
|  | OpToUse = ISD::SMUL_LOHI; | 
|  | } else if (HasUMUL_LOHI) { | 
|  | OpToUse = ISD::UMUL_LOHI; | 
|  | } | 
|  | if (OpToUse) { | 
|  | Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0), | 
|  | Node->getOperand(1))); | 
|  | break; | 
|  | } | 
|  | Tmp1 = ExpandIntLibCall(Node, false, | 
|  | RTLIB::MUL_I8, | 
|  | RTLIB::MUL_I16, RTLIB::MUL_I32, | 
|  | RTLIB::MUL_I64, RTLIB::MUL_I128); | 
|  | Results.push_back(Tmp1); | 
|  | break; | 
|  | } | 
|  | case ISD::SADDO: | 
|  | case ISD::SSUBO: { | 
|  | SDValue LHS = Node->getOperand(0); | 
|  | SDValue RHS = Node->getOperand(1); | 
|  | SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ? | 
|  | ISD::ADD : ISD::SUB, dl, LHS.getValueType(), | 
|  | LHS, RHS); | 
|  | Results.push_back(Sum); | 
|  | EVT OType = Node->getValueType(1); | 
|  |  | 
|  | SDValue Zero = DAG.getConstant(0, LHS.getValueType()); | 
|  |  | 
|  | //   LHSSign -> LHS >= 0 | 
|  | //   RHSSign -> RHS >= 0 | 
|  | //   SumSign -> Sum >= 0 | 
|  | // | 
|  | //   Add: | 
|  | //   Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign) | 
|  | //   Sub: | 
|  | //   Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign) | 
|  | // | 
|  | SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE); | 
|  | SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE); | 
|  | SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign, | 
|  | Node->getOpcode() == ISD::SADDO ? | 
|  | ISD::SETEQ : ISD::SETNE); | 
|  |  | 
|  | SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE); | 
|  | SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE); | 
|  |  | 
|  | SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE); | 
|  | Results.push_back(Cmp); | 
|  | break; | 
|  | } | 
|  | case ISD::UADDO: | 
|  | case ISD::USUBO: { | 
|  | SDValue LHS = Node->getOperand(0); | 
|  | SDValue RHS = Node->getOperand(1); | 
|  | SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ? | 
|  | ISD::ADD : ISD::SUB, dl, LHS.getValueType(), | 
|  | LHS, RHS); | 
|  | Results.push_back(Sum); | 
|  | Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS, | 
|  | Node->getOpcode () == ISD::UADDO ? | 
|  | ISD::SETULT : ISD::SETUGT)); | 
|  | break; | 
|  | } | 
|  | case ISD::UMULO: | 
|  | case ISD::SMULO: { | 
|  | EVT VT = Node->getValueType(0); | 
|  | EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2); | 
|  | SDValue LHS = Node->getOperand(0); | 
|  | SDValue RHS = Node->getOperand(1); | 
|  | SDValue BottomHalf; | 
|  | SDValue TopHalf; | 
|  | static const unsigned Ops[2][3] = | 
|  | { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, | 
|  | { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; | 
|  | bool isSigned = Node->getOpcode() == ISD::SMULO; | 
|  | if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) { | 
|  | BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); | 
|  | TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); | 
|  | } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) { | 
|  | BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, | 
|  | RHS); | 
|  | TopHalf = BottomHalf.getValue(1); | 
|  | } else if (TLI.isTypeLegal(EVT::getIntegerVT(*DAG.getContext(), | 
|  | VT.getSizeInBits() * 2))) { | 
|  | LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); | 
|  | RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); | 
|  | Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); | 
|  | BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1, | 
|  | DAG.getIntPtrConstant(0)); | 
|  | TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1, | 
|  | DAG.getIntPtrConstant(1)); | 
|  | } else { | 
|  | // We can fall back to a libcall with an illegal type for the MUL if we | 
|  | // have a libcall big enough. | 
|  | // Also, we can fall back to a division in some cases, but that's a big | 
|  | // performance hit in the general case. | 
|  | RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; | 
|  | if (WideVT == MVT::i16) | 
|  | LC = RTLIB::MUL_I16; | 
|  | else if (WideVT == MVT::i32) | 
|  | LC = RTLIB::MUL_I32; | 
|  | else if (WideVT == MVT::i64) | 
|  | LC = RTLIB::MUL_I64; | 
|  | else if (WideVT == MVT::i128) | 
|  | LC = RTLIB::MUL_I128; | 
|  | assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); | 
|  |  | 
|  | // The high part is obtained by SRA'ing all but one of the bits of low | 
|  | // part. | 
|  | unsigned LoSize = VT.getSizeInBits(); | 
|  | SDValue HiLHS = DAG.getNode(ISD::SRA, dl, VT, RHS, | 
|  | DAG.getConstant(LoSize-1, TLI.getPointerTy())); | 
|  | SDValue HiRHS = DAG.getNode(ISD::SRA, dl, VT, LHS, | 
|  | DAG.getConstant(LoSize-1, TLI.getPointerTy())); | 
|  |  | 
|  | // Here we're passing the 2 arguments explicitly as 4 arguments that are | 
|  | // pre-lowered to the correct types. This all depends upon WideVT not | 
|  | // being a legal type for the architecture and thus has to be split to | 
|  | // two arguments. | 
|  | SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; | 
|  | SDValue Ret = ExpandLibCall(LC, WideVT, Args, 4, isSigned, dl); | 
|  | BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret, | 
|  | DAG.getIntPtrConstant(0)); | 
|  | TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret, | 
|  | DAG.getIntPtrConstant(1)); | 
|  | // Ret is a node with an illegal type. Because such things are not | 
|  | // generally permitted during this phase of legalization, delete the | 
|  | // node. The above EXTRACT_ELEMENT nodes should have been folded. | 
|  | DAG.DeleteNode(Ret.getNode()); | 
|  | } | 
|  |  | 
|  | if (isSigned) { | 
|  | Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1, | 
|  | TLI.getShiftAmountTy(BottomHalf.getValueType())); | 
|  | Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1); | 
|  | TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, Tmp1, | 
|  | ISD::SETNE); | 
|  | } else { | 
|  | TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, | 
|  | DAG.getConstant(0, VT), ISD::SETNE); | 
|  | } | 
|  | Results.push_back(BottomHalf); | 
|  | Results.push_back(TopHalf); | 
|  | break; | 
|  | } | 
|  | case ISD::BUILD_PAIR: { | 
|  | EVT PairTy = Node->getValueType(0); | 
|  | Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0)); | 
|  | Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1)); | 
|  | Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2, | 
|  | DAG.getConstant(PairTy.getSizeInBits()/2, | 
|  | TLI.getShiftAmountTy(PairTy))); | 
|  | Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2)); | 
|  | break; | 
|  | } | 
|  | case ISD::SELECT: | 
|  | Tmp1 = Node->getOperand(0); | 
|  | Tmp2 = Node->getOperand(1); | 
|  | Tmp3 = Node->getOperand(2); | 
|  | if (Tmp1.getOpcode() == ISD::SETCC) { | 
|  | Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1), | 
|  | Tmp2, Tmp3, | 
|  | cast<CondCodeSDNode>(Tmp1.getOperand(2))->get()); | 
|  | } else { | 
|  | Tmp1 = DAG.getSelectCC(dl, Tmp1, | 
|  | DAG.getConstant(0, Tmp1.getValueType()), | 
|  | Tmp2, Tmp3, ISD::SETNE); | 
|  | } | 
|  | Results.push_back(Tmp1); | 
|  | break; | 
|  | case ISD::BR_JT: { | 
|  | SDValue Chain = Node->getOperand(0); | 
|  | SDValue Table = Node->getOperand(1); | 
|  | SDValue Index = Node->getOperand(2); | 
|  |  | 
|  | EVT PTy = TLI.getPointerTy(); | 
|  |  | 
|  | const DataLayout &TD = *TLI.getDataLayout(); | 
|  | unsigned EntrySize = | 
|  | DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD); | 
|  |  | 
|  | Index = DAG.getNode(ISD::MUL, dl, PTy, | 
|  | Index, DAG.getConstant(EntrySize, PTy)); | 
|  | SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table); | 
|  |  | 
|  | EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8); | 
|  | SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr, | 
|  | MachinePointerInfo::getJumpTable(), MemVT, | 
|  | false, false, 0); | 
|  | Addr = LD; | 
|  | if (TM.getRelocationModel() == Reloc::PIC_) { | 
|  | // For PIC, the sequence is: | 
|  | // BRIND(load(Jumptable + index) + RelocBase) | 
|  | // RelocBase can be JumpTable, GOT or some sort of global base. | 
|  | Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, | 
|  | TLI.getPICJumpTableRelocBase(Table, DAG)); | 
|  | } | 
|  | Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr); | 
|  | Results.push_back(Tmp1); | 
|  | break; | 
|  | } | 
|  | case ISD::BRCOND: | 
|  | // Expand brcond's setcc into its constituent parts and create a BR_CC | 
|  | // Node. | 
|  | Tmp1 = Node->getOperand(0); | 
|  | Tmp2 = Node->getOperand(1); | 
|  | if (Tmp2.getOpcode() == ISD::SETCC) { | 
|  | Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, | 
|  | Tmp1, Tmp2.getOperand(2), | 
|  | Tmp2.getOperand(0), Tmp2.getOperand(1), | 
|  | Node->getOperand(2)); | 
|  | } else { | 
|  | // We test only the i1 bit.  Skip the AND if UNDEF. | 
|  | Tmp3 = (Tmp2.getOpcode() == ISD::UNDEF) ? Tmp2 : | 
|  | DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2, | 
|  | DAG.getConstant(1, Tmp2.getValueType())); | 
|  | Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, | 
|  | DAG.getCondCode(ISD::SETNE), Tmp3, | 
|  | DAG.getConstant(0, Tmp3.getValueType()), | 
|  | Node->getOperand(2)); | 
|  | } | 
|  | Results.push_back(Tmp1); | 
|  | break; | 
|  | case ISD::SETCC: { | 
|  | Tmp1 = Node->getOperand(0); | 
|  | Tmp2 = Node->getOperand(1); | 
|  | Tmp3 = Node->getOperand(2); | 
|  | LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl); | 
|  |  | 
|  | // If we expanded the SETCC into an AND/OR, return the new node | 
|  | if (Tmp2.getNode() == 0) { | 
|  | Results.push_back(Tmp1); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Otherwise, SETCC for the given comparison type must be completely | 
|  | // illegal; expand it into a SELECT_CC. | 
|  | EVT VT = Node->getValueType(0); | 
|  | Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2, | 
|  | DAG.getConstant(1, VT), DAG.getConstant(0, VT), Tmp3); | 
|  | Results.push_back(Tmp1); | 
|  | break; | 
|  | } | 
|  | case ISD::SELECT_CC: { | 
|  | Tmp1 = Node->getOperand(0);   // LHS | 
|  | Tmp2 = Node->getOperand(1);   // RHS | 
|  | Tmp3 = Node->getOperand(2);   // True | 
|  | Tmp4 = Node->getOperand(3);   // False | 
|  | SDValue CC = Node->getOperand(4); | 
|  |  | 
|  | LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp1.getValueType()), | 
|  | Tmp1, Tmp2, CC, dl); | 
|  |  | 
|  | assert(!Tmp2.getNode() && "Can't legalize SELECT_CC with legal condition!"); | 
|  | Tmp2 = DAG.getConstant(0, Tmp1.getValueType()); | 
|  | CC = DAG.getCondCode(ISD::SETNE); | 
|  | Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2, | 
|  | Tmp3, Tmp4, CC); | 
|  | Results.push_back(Tmp1); | 
|  | break; | 
|  | } | 
|  | case ISD::BR_CC: { | 
|  | Tmp1 = Node->getOperand(0);              // Chain | 
|  | Tmp2 = Node->getOperand(2);              // LHS | 
|  | Tmp3 = Node->getOperand(3);              // RHS | 
|  | Tmp4 = Node->getOperand(1);              // CC | 
|  |  | 
|  | LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp2.getValueType()), | 
|  | Tmp2, Tmp3, Tmp4, dl); | 
|  |  | 
|  | assert(!Tmp3.getNode() && "Can't legalize BR_CC with legal condition!"); | 
|  | Tmp3 = DAG.getConstant(0, Tmp2.getValueType()); | 
|  | Tmp4 = DAG.getCondCode(ISD::SETNE); | 
|  | Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2, | 
|  | Tmp3, Node->getOperand(4)); | 
|  | Results.push_back(Tmp1); | 
|  | break; | 
|  | } | 
|  | case ISD::BUILD_VECTOR: | 
|  | Results.push_back(ExpandBUILD_VECTOR(Node)); | 
|  | break; | 
|  | case ISD::SRA: | 
|  | case ISD::SRL: | 
|  | case ISD::SHL: { | 
|  | // Scalarize vector SRA/SRL/SHL. | 
|  | EVT VT = Node->getValueType(0); | 
|  | assert(VT.isVector() && "Unable to legalize non-vector shift"); | 
|  | assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal"); | 
|  | unsigned NumElem = VT.getVectorNumElements(); | 
|  |  | 
|  | SmallVector<SDValue, 8> Scalars; | 
|  | for (unsigned Idx = 0; Idx < NumElem; Idx++) { | 
|  | SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, | 
|  | VT.getScalarType(), | 
|  | Node->getOperand(0), DAG.getIntPtrConstant(Idx)); | 
|  | SDValue Sh = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, | 
|  | VT.getScalarType(), | 
|  | Node->getOperand(1), DAG.getIntPtrConstant(Idx)); | 
|  | Scalars.push_back(DAG.getNode(Node->getOpcode(), dl, | 
|  | VT.getScalarType(), Ex, Sh)); | 
|  | } | 
|  | SDValue Result = | 
|  | DAG.getNode(ISD::BUILD_VECTOR, dl, Node->getValueType(0), | 
|  | &Scalars[0], Scalars.size()); | 
|  | ReplaceNode(SDValue(Node, 0), Result); | 
|  | break; | 
|  | } | 
|  | case ISD::GLOBAL_OFFSET_TABLE: | 
|  | case ISD::GlobalAddress: | 
|  | case ISD::GlobalTLSAddress: | 
|  | case ISD::ExternalSymbol: | 
|  | case ISD::ConstantPool: | 
|  | case ISD::JumpTable: | 
|  | case ISD::INTRINSIC_W_CHAIN: | 
|  | case ISD::INTRINSIC_WO_CHAIN: | 
|  | case ISD::INTRINSIC_VOID: | 
|  | // FIXME: Custom lowering for these operations shouldn't return null! | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Replace the original node with the legalized result. | 
|  | if (!Results.empty()) | 
|  | ReplaceNode(Node, Results.data()); | 
|  | } | 
|  |  | 
|  | void SelectionDAGLegalize::PromoteNode(SDNode *Node) { | 
|  | SmallVector<SDValue, 8> Results; | 
|  | MVT OVT = Node->getSimpleValueType(0); | 
|  | if (Node->getOpcode() == ISD::UINT_TO_FP || | 
|  | Node->getOpcode() == ISD::SINT_TO_FP || | 
|  | Node->getOpcode() == ISD::SETCC) { | 
|  | OVT = Node->getOperand(0).getSimpleValueType(); | 
|  | } | 
|  | MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); | 
|  | DebugLoc dl = Node->getDebugLoc(); | 
|  | SDValue Tmp1, Tmp2, Tmp3; | 
|  | switch (Node->getOpcode()) { | 
|  | case ISD::CTTZ: | 
|  | case ISD::CTTZ_ZERO_UNDEF: | 
|  | case ISD::CTLZ: | 
|  | case ISD::CTLZ_ZERO_UNDEF: | 
|  | case ISD::CTPOP: | 
|  | // Zero extend the argument. | 
|  | Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); | 
|  | // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is | 
|  | // already the correct result. | 
|  | Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); | 
|  | if (Node->getOpcode() == ISD::CTTZ) { | 
|  | // FIXME: This should set a bit in the zero extended value instead. | 
|  | Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT), | 
|  | Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT), | 
|  | ISD::SETEQ); | 
|  | Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, | 
|  | DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1); | 
|  | } else if (Node->getOpcode() == ISD::CTLZ || | 
|  | Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) { | 
|  | // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) | 
|  | Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1, | 
|  | DAG.getConstant(NVT.getSizeInBits() - | 
|  | OVT.getSizeInBits(), NVT)); | 
|  | } | 
|  | Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); | 
|  | break; | 
|  | case ISD::BSWAP: { | 
|  | unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits(); | 
|  | Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); | 
|  | Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1); | 
|  | Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1, | 
|  | DAG.getConstant(DiffBits, TLI.getShiftAmountTy(NVT))); | 
|  | Results.push_back(Tmp1); | 
|  | break; | 
|  | } | 
|  | case ISD::FP_TO_UINT: | 
|  | case ISD::FP_TO_SINT: | 
|  | Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0), | 
|  | Node->getOpcode() == ISD::FP_TO_SINT, dl); | 
|  | Results.push_back(Tmp1); | 
|  | break; | 
|  | case ISD::UINT_TO_FP: | 
|  | case ISD::SINT_TO_FP: | 
|  | Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0), | 
|  | Node->getOpcode() == ISD::SINT_TO_FP, dl); | 
|  | Results.push_back(Tmp1); | 
|  | break; | 
|  | case ISD::VAARG: { | 
|  | SDValue Chain = Node->getOperand(0); // Get the chain. | 
|  | SDValue Ptr = Node->getOperand(1); // Get the pointer. | 
|  |  | 
|  | unsigned TruncOp; | 
|  | if (OVT.isVector()) { | 
|  | TruncOp = ISD::BITCAST; | 
|  | } else { | 
|  | assert(OVT.isInteger() | 
|  | && "VAARG promotion is supported only for vectors or integer types"); | 
|  | TruncOp = ISD::TRUNCATE; | 
|  | } | 
|  |  | 
|  | // Perform the larger operation, then convert back | 
|  | Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2), | 
|  | Node->getConstantOperandVal(3)); | 
|  | Chain = Tmp1.getValue(1); | 
|  |  | 
|  | Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1); | 
|  |  | 
|  | // Modified the chain result - switch anything that used the old chain to | 
|  | // use the new one. | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); | 
|  | ReplacedNode(Node); | 
|  | break; | 
|  | } | 
|  | case ISD::AND: | 
|  | case ISD::OR: | 
|  | case ISD::XOR: { | 
|  | unsigned ExtOp, TruncOp; | 
|  | if (OVT.isVector()) { | 
|  | ExtOp   = ISD::BITCAST; | 
|  | TruncOp = ISD::BITCAST; | 
|  | } else { | 
|  | assert(OVT.isInteger() && "Cannot promote logic operation"); | 
|  | ExtOp   = ISD::ANY_EXTEND; | 
|  | TruncOp = ISD::TRUNCATE; | 
|  | } | 
|  | // Promote each of the values to the new type. | 
|  | Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); | 
|  | Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); | 
|  | // Perform the larger operation, then convert back | 
|  | Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); | 
|  | Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1)); | 
|  | break; | 
|  | } | 
|  | case ISD::SELECT: { | 
|  | unsigned ExtOp, TruncOp; | 
|  | if (Node->getValueType(0).isVector()) { | 
|  | ExtOp   = ISD::BITCAST; | 
|  | TruncOp = ISD::BITCAST; | 
|  | } else if (Node->getValueType(0).isInteger()) { | 
|  | ExtOp   = ISD::ANY_EXTEND; | 
|  | TruncOp = ISD::TRUNCATE; | 
|  | } else { | 
|  | ExtOp   = ISD::FP_EXTEND; | 
|  | TruncOp = ISD::FP_ROUND; | 
|  | } | 
|  | Tmp1 = Node->getOperand(0); | 
|  | // Promote each of the values to the new type. | 
|  | Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); | 
|  | Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); | 
|  | // Perform the larger operation, then round down. | 
|  | Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3); | 
|  | if (TruncOp != ISD::FP_ROUND) | 
|  | Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1); | 
|  | else | 
|  | Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1, | 
|  | DAG.getIntPtrConstant(0)); | 
|  | Results.push_back(Tmp1); | 
|  | break; | 
|  | } | 
|  | case ISD::VECTOR_SHUFFLE: { | 
|  | ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); | 
|  |  | 
|  | // Cast the two input vectors. | 
|  | Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0)); | 
|  | Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1)); | 
|  |  | 
|  | // Convert the shuffle mask to the right # elements. | 
|  | Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask); | 
|  | Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1); | 
|  | Results.push_back(Tmp1); | 
|  | break; | 
|  | } | 
|  | case ISD::SETCC: { | 
|  | unsigned ExtOp = ISD::FP_EXTEND; | 
|  | if (NVT.isInteger()) { | 
|  | ISD::CondCode CCCode = | 
|  | cast<CondCodeSDNode>(Node->getOperand(2))->get(); | 
|  | ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; | 
|  | } | 
|  | Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); | 
|  | Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); | 
|  | Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), | 
|  | Tmp1, Tmp2, Node->getOperand(2))); | 
|  | break; | 
|  | } | 
|  | case ISD::FDIV: | 
|  | case ISD::FREM: | 
|  | case ISD::FPOW: { | 
|  | Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); | 
|  | Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); | 
|  | Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); | 
|  | Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, | 
|  | Tmp3, DAG.getIntPtrConstant(0))); | 
|  | break; | 
|  | } | 
|  | case ISD::FLOG2: | 
|  | case ISD::FEXP2: | 
|  | case ISD::FLOG: | 
|  | case ISD::FEXP: { | 
|  | Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); | 
|  | Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); | 
|  | Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, | 
|  | Tmp2, DAG.getIntPtrConstant(0))); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Replace the original node with the legalized result. | 
|  | if (!Results.empty()) | 
|  | ReplaceNode(Node, Results.data()); | 
|  | } | 
|  |  | 
|  | // SelectionDAG::Legalize - This is the entry point for the file. | 
|  | // | 
|  | void SelectionDAG::Legalize() { | 
|  | /// run - This is the main entry point to this class. | 
|  | /// | 
|  | SelectionDAGLegalize(*this).LegalizeDAG(); | 
|  | } |