|  | //===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This pass performs a simple dominator tree walk that eliminates trivially | 
|  | // redundant instructions. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Transforms/Scalar/EarlyCSE.h" | 
|  | #include "llvm/ADT/Hashing.h" | 
|  | #include "llvm/ADT/ScopedHashTable.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Analysis/AssumptionCache.h" | 
|  | #include "llvm/Analysis/InstructionSimplify.h" | 
|  | #include "llvm/Analysis/TargetLibraryInfo.h" | 
|  | #include "llvm/Analysis/TargetTransformInfo.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/PatternMatch.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/RecyclingAllocator.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Transforms/Scalar.h" | 
|  | #include "llvm/Transforms/Utils/Local.h" | 
|  | #include <deque> | 
|  | using namespace llvm; | 
|  | using namespace llvm::PatternMatch; | 
|  |  | 
|  | #define DEBUG_TYPE "early-cse" | 
|  |  | 
|  | STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd"); | 
|  | STATISTIC(NumCSE,      "Number of instructions CSE'd"); | 
|  | STATISTIC(NumCSELoad,  "Number of load instructions CSE'd"); | 
|  | STATISTIC(NumCSECall,  "Number of call instructions CSE'd"); | 
|  | STATISTIC(NumDSE,      "Number of trivial dead stores removed"); | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // SimpleValue | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | namespace { | 
|  | /// \brief Struct representing the available values in the scoped hash table. | 
|  | struct SimpleValue { | 
|  | Instruction *Inst; | 
|  |  | 
|  | SimpleValue(Instruction *I) : Inst(I) { | 
|  | assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); | 
|  | } | 
|  |  | 
|  | bool isSentinel() const { | 
|  | return Inst == DenseMapInfo<Instruction *>::getEmptyKey() || | 
|  | Inst == DenseMapInfo<Instruction *>::getTombstoneKey(); | 
|  | } | 
|  |  | 
|  | static bool canHandle(Instruction *Inst) { | 
|  | // This can only handle non-void readnone functions. | 
|  | if (CallInst *CI = dyn_cast<CallInst>(Inst)) | 
|  | return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy(); | 
|  | return isa<CastInst>(Inst) || isa<BinaryOperator>(Inst) || | 
|  | isa<GetElementPtrInst>(Inst) || isa<CmpInst>(Inst) || | 
|  | isa<SelectInst>(Inst) || isa<ExtractElementInst>(Inst) || | 
|  | isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst) || | 
|  | isa<ExtractValueInst>(Inst) || isa<InsertValueInst>(Inst); | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | namespace llvm { | 
|  | template <> struct DenseMapInfo<SimpleValue> { | 
|  | static inline SimpleValue getEmptyKey() { | 
|  | return DenseMapInfo<Instruction *>::getEmptyKey(); | 
|  | } | 
|  | static inline SimpleValue getTombstoneKey() { | 
|  | return DenseMapInfo<Instruction *>::getTombstoneKey(); | 
|  | } | 
|  | static unsigned getHashValue(SimpleValue Val); | 
|  | static bool isEqual(SimpleValue LHS, SimpleValue RHS); | 
|  | }; | 
|  | } | 
|  |  | 
|  | unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) { | 
|  | Instruction *Inst = Val.Inst; | 
|  | // Hash in all of the operands as pointers. | 
|  | if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst)) { | 
|  | Value *LHS = BinOp->getOperand(0); | 
|  | Value *RHS = BinOp->getOperand(1); | 
|  | if (BinOp->isCommutative() && BinOp->getOperand(0) > BinOp->getOperand(1)) | 
|  | std::swap(LHS, RHS); | 
|  |  | 
|  | if (isa<OverflowingBinaryOperator>(BinOp)) { | 
|  | // Hash the overflow behavior | 
|  | unsigned Overflow = | 
|  | BinOp->hasNoSignedWrap() * OverflowingBinaryOperator::NoSignedWrap | | 
|  | BinOp->hasNoUnsignedWrap() * | 
|  | OverflowingBinaryOperator::NoUnsignedWrap; | 
|  | return hash_combine(BinOp->getOpcode(), Overflow, LHS, RHS); | 
|  | } | 
|  |  | 
|  | return hash_combine(BinOp->getOpcode(), LHS, RHS); | 
|  | } | 
|  |  | 
|  | if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) { | 
|  | Value *LHS = CI->getOperand(0); | 
|  | Value *RHS = CI->getOperand(1); | 
|  | CmpInst::Predicate Pred = CI->getPredicate(); | 
|  | if (Inst->getOperand(0) > Inst->getOperand(1)) { | 
|  | std::swap(LHS, RHS); | 
|  | Pred = CI->getSwappedPredicate(); | 
|  | } | 
|  | return hash_combine(Inst->getOpcode(), Pred, LHS, RHS); | 
|  | } | 
|  |  | 
|  | if (CastInst *CI = dyn_cast<CastInst>(Inst)) | 
|  | return hash_combine(CI->getOpcode(), CI->getType(), CI->getOperand(0)); | 
|  |  | 
|  | if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst)) | 
|  | return hash_combine(EVI->getOpcode(), EVI->getOperand(0), | 
|  | hash_combine_range(EVI->idx_begin(), EVI->idx_end())); | 
|  |  | 
|  | if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst)) | 
|  | return hash_combine(IVI->getOpcode(), IVI->getOperand(0), | 
|  | IVI->getOperand(1), | 
|  | hash_combine_range(IVI->idx_begin(), IVI->idx_end())); | 
|  |  | 
|  | assert((isa<CallInst>(Inst) || isa<BinaryOperator>(Inst) || | 
|  | isa<GetElementPtrInst>(Inst) || isa<SelectInst>(Inst) || | 
|  | isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) || | 
|  | isa<ShuffleVectorInst>(Inst)) && | 
|  | "Invalid/unknown instruction"); | 
|  |  | 
|  | // Mix in the opcode. | 
|  | return hash_combine( | 
|  | Inst->getOpcode(), | 
|  | hash_combine_range(Inst->value_op_begin(), Inst->value_op_end())); | 
|  | } | 
|  |  | 
|  | bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) { | 
|  | Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; | 
|  |  | 
|  | if (LHS.isSentinel() || RHS.isSentinel()) | 
|  | return LHSI == RHSI; | 
|  |  | 
|  | if (LHSI->getOpcode() != RHSI->getOpcode()) | 
|  | return false; | 
|  | if (LHSI->isIdenticalTo(RHSI)) | 
|  | return true; | 
|  |  | 
|  | // If we're not strictly identical, we still might be a commutable instruction | 
|  | if (BinaryOperator *LHSBinOp = dyn_cast<BinaryOperator>(LHSI)) { | 
|  | if (!LHSBinOp->isCommutative()) | 
|  | return false; | 
|  |  | 
|  | assert(isa<BinaryOperator>(RHSI) && | 
|  | "same opcode, but different instruction type?"); | 
|  | BinaryOperator *RHSBinOp = cast<BinaryOperator>(RHSI); | 
|  |  | 
|  | // Check overflow attributes | 
|  | if (isa<OverflowingBinaryOperator>(LHSBinOp)) { | 
|  | assert(isa<OverflowingBinaryOperator>(RHSBinOp) && | 
|  | "same opcode, but different operator type?"); | 
|  | if (LHSBinOp->hasNoUnsignedWrap() != RHSBinOp->hasNoUnsignedWrap() || | 
|  | LHSBinOp->hasNoSignedWrap() != RHSBinOp->hasNoSignedWrap()) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Commuted equality | 
|  | return LHSBinOp->getOperand(0) == RHSBinOp->getOperand(1) && | 
|  | LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0); | 
|  | } | 
|  | if (CmpInst *LHSCmp = dyn_cast<CmpInst>(LHSI)) { | 
|  | assert(isa<CmpInst>(RHSI) && | 
|  | "same opcode, but different instruction type?"); | 
|  | CmpInst *RHSCmp = cast<CmpInst>(RHSI); | 
|  | // Commuted equality | 
|  | return LHSCmp->getOperand(0) == RHSCmp->getOperand(1) && | 
|  | LHSCmp->getOperand(1) == RHSCmp->getOperand(0) && | 
|  | LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate(); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // CallValue | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | namespace { | 
|  | /// \brief Struct representing the available call values in the scoped hash | 
|  | /// table. | 
|  | struct CallValue { | 
|  | Instruction *Inst; | 
|  |  | 
|  | CallValue(Instruction *I) : Inst(I) { | 
|  | assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); | 
|  | } | 
|  |  | 
|  | bool isSentinel() const { | 
|  | return Inst == DenseMapInfo<Instruction *>::getEmptyKey() || | 
|  | Inst == DenseMapInfo<Instruction *>::getTombstoneKey(); | 
|  | } | 
|  |  | 
|  | static bool canHandle(Instruction *Inst) { | 
|  | // Don't value number anything that returns void. | 
|  | if (Inst->getType()->isVoidTy()) | 
|  | return false; | 
|  |  | 
|  | CallInst *CI = dyn_cast<CallInst>(Inst); | 
|  | if (!CI || !CI->onlyReadsMemory()) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | namespace llvm { | 
|  | template <> struct DenseMapInfo<CallValue> { | 
|  | static inline CallValue getEmptyKey() { | 
|  | return DenseMapInfo<Instruction *>::getEmptyKey(); | 
|  | } | 
|  | static inline CallValue getTombstoneKey() { | 
|  | return DenseMapInfo<Instruction *>::getTombstoneKey(); | 
|  | } | 
|  | static unsigned getHashValue(CallValue Val); | 
|  | static bool isEqual(CallValue LHS, CallValue RHS); | 
|  | }; | 
|  | } | 
|  |  | 
|  | unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) { | 
|  | Instruction *Inst = Val.Inst; | 
|  | // Hash all of the operands as pointers and mix in the opcode. | 
|  | return hash_combine( | 
|  | Inst->getOpcode(), | 
|  | hash_combine_range(Inst->value_op_begin(), Inst->value_op_end())); | 
|  | } | 
|  |  | 
|  | bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) { | 
|  | Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; | 
|  | if (LHS.isSentinel() || RHS.isSentinel()) | 
|  | return LHSI == RHSI; | 
|  | return LHSI->isIdenticalTo(RHSI); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // EarlyCSE implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | namespace { | 
|  | /// \brief A simple and fast domtree-based CSE pass. | 
|  | /// | 
|  | /// This pass does a simple depth-first walk over the dominator tree, | 
|  | /// eliminating trivially redundant instructions and using instsimplify to | 
|  | /// canonicalize things as it goes. It is intended to be fast and catch obvious | 
|  | /// cases so that instcombine and other passes are more effective. It is | 
|  | /// expected that a later pass of GVN will catch the interesting/hard cases. | 
|  | class EarlyCSE { | 
|  | public: | 
|  | Function &F; | 
|  | const TargetLibraryInfo &TLI; | 
|  | const TargetTransformInfo &TTI; | 
|  | DominatorTree &DT; | 
|  | AssumptionCache &AC; | 
|  | typedef RecyclingAllocator< | 
|  | BumpPtrAllocator, ScopedHashTableVal<SimpleValue, Value *>> AllocatorTy; | 
|  | typedef ScopedHashTable<SimpleValue, Value *, DenseMapInfo<SimpleValue>, | 
|  | AllocatorTy> ScopedHTType; | 
|  |  | 
|  | /// \brief A scoped hash table of the current values of all of our simple | 
|  | /// scalar expressions. | 
|  | /// | 
|  | /// As we walk down the domtree, we look to see if instructions are in this: | 
|  | /// if so, we replace them with what we find, otherwise we insert them so | 
|  | /// that dominated values can succeed in their lookup. | 
|  | ScopedHTType AvailableValues; | 
|  |  | 
|  | /// \brief A scoped hash table of the current values of loads. | 
|  | /// | 
|  | /// This allows us to get efficient access to dominating loads when we have | 
|  | /// a fully redundant load.  In addition to the most recent load, we keep | 
|  | /// track of a generation count of the read, which is compared against the | 
|  | /// current generation count.  The current generation count is incremented | 
|  | /// after every possibly writing memory operation, which ensures that we only | 
|  | /// CSE loads with other loads that have no intervening store. | 
|  | typedef RecyclingAllocator< | 
|  | BumpPtrAllocator, | 
|  | ScopedHashTableVal<Value *, std::pair<Value *, unsigned>>> | 
|  | LoadMapAllocator; | 
|  | typedef ScopedHashTable<Value *, std::pair<Value *, unsigned>, | 
|  | DenseMapInfo<Value *>, LoadMapAllocator> LoadHTType; | 
|  | LoadHTType AvailableLoads; | 
|  |  | 
|  | /// \brief A scoped hash table of the current values of read-only call | 
|  | /// values. | 
|  | /// | 
|  | /// It uses the same generation count as loads. | 
|  | typedef ScopedHashTable<CallValue, std::pair<Value *, unsigned>> CallHTType; | 
|  | CallHTType AvailableCalls; | 
|  |  | 
|  | /// \brief This is the current generation of the memory value. | 
|  | unsigned CurrentGeneration; | 
|  |  | 
|  | /// \brief Set up the EarlyCSE runner for a particular function. | 
|  | EarlyCSE(Function &F, const TargetLibraryInfo &TLI, | 
|  | const TargetTransformInfo &TTI, DominatorTree &DT, | 
|  | AssumptionCache &AC) | 
|  | : F(F), TLI(TLI), TTI(TTI), DT(DT), AC(AC), CurrentGeneration(0) {} | 
|  |  | 
|  | bool run(); | 
|  |  | 
|  | private: | 
|  | // Almost a POD, but needs to call the constructors for the scoped hash | 
|  | // tables so that a new scope gets pushed on. These are RAII so that the | 
|  | // scope gets popped when the NodeScope is destroyed. | 
|  | class NodeScope { | 
|  | public: | 
|  | NodeScope(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads, | 
|  | CallHTType &AvailableCalls) | 
|  | : Scope(AvailableValues), LoadScope(AvailableLoads), | 
|  | CallScope(AvailableCalls) {} | 
|  |  | 
|  | private: | 
|  | NodeScope(const NodeScope &) = delete; | 
|  | void operator=(const NodeScope &) = delete; | 
|  |  | 
|  | ScopedHTType::ScopeTy Scope; | 
|  | LoadHTType::ScopeTy LoadScope; | 
|  | CallHTType::ScopeTy CallScope; | 
|  | }; | 
|  |  | 
|  | // Contains all the needed information to create a stack for doing a depth | 
|  | // first tranversal of the tree. This includes scopes for values, loads, and | 
|  | // calls as well as the generation. There is a child iterator so that the | 
|  | // children do not need to be store spearately. | 
|  | class StackNode { | 
|  | public: | 
|  | StackNode(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads, | 
|  | CallHTType &AvailableCalls, unsigned cg, DomTreeNode *n, | 
|  | DomTreeNode::iterator child, DomTreeNode::iterator end) | 
|  | : CurrentGeneration(cg), ChildGeneration(cg), Node(n), ChildIter(child), | 
|  | EndIter(end), Scopes(AvailableValues, AvailableLoads, AvailableCalls), | 
|  | Processed(false) {} | 
|  |  | 
|  | // Accessors. | 
|  | unsigned currentGeneration() { return CurrentGeneration; } | 
|  | unsigned childGeneration() { return ChildGeneration; } | 
|  | void childGeneration(unsigned generation) { ChildGeneration = generation; } | 
|  | DomTreeNode *node() { return Node; } | 
|  | DomTreeNode::iterator childIter() { return ChildIter; } | 
|  | DomTreeNode *nextChild() { | 
|  | DomTreeNode *child = *ChildIter; | 
|  | ++ChildIter; | 
|  | return child; | 
|  | } | 
|  | DomTreeNode::iterator end() { return EndIter; } | 
|  | bool isProcessed() { return Processed; } | 
|  | void process() { Processed = true; } | 
|  |  | 
|  | private: | 
|  | StackNode(const StackNode &) = delete; | 
|  | void operator=(const StackNode &) = delete; | 
|  |  | 
|  | // Members. | 
|  | unsigned CurrentGeneration; | 
|  | unsigned ChildGeneration; | 
|  | DomTreeNode *Node; | 
|  | DomTreeNode::iterator ChildIter; | 
|  | DomTreeNode::iterator EndIter; | 
|  | NodeScope Scopes; | 
|  | bool Processed; | 
|  | }; | 
|  |  | 
|  | /// \brief Wrapper class to handle memory instructions, including loads, | 
|  | /// stores and intrinsic loads and stores defined by the target. | 
|  | class ParseMemoryInst { | 
|  | public: | 
|  | ParseMemoryInst(Instruction *Inst, const TargetTransformInfo &TTI) | 
|  | : Load(false), Store(false), Vol(false), MayReadFromMemory(false), | 
|  | MayWriteToMemory(false), MatchingId(-1), Ptr(nullptr) { | 
|  | MayReadFromMemory = Inst->mayReadFromMemory(); | 
|  | MayWriteToMemory = Inst->mayWriteToMemory(); | 
|  | if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { | 
|  | MemIntrinsicInfo Info; | 
|  | if (!TTI.getTgtMemIntrinsic(II, Info)) | 
|  | return; | 
|  | if (Info.NumMemRefs == 1) { | 
|  | Store = Info.WriteMem; | 
|  | Load = Info.ReadMem; | 
|  | MatchingId = Info.MatchingId; | 
|  | MayReadFromMemory = Info.ReadMem; | 
|  | MayWriteToMemory = Info.WriteMem; | 
|  | Vol = Info.Vol; | 
|  | Ptr = Info.PtrVal; | 
|  | } | 
|  | } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { | 
|  | Load = true; | 
|  | Vol = !LI->isSimple(); | 
|  | Ptr = LI->getPointerOperand(); | 
|  | } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { | 
|  | Store = true; | 
|  | Vol = !SI->isSimple(); | 
|  | Ptr = SI->getPointerOperand(); | 
|  | } | 
|  | } | 
|  | bool isLoad() { return Load; } | 
|  | bool isStore() { return Store; } | 
|  | bool isVolatile() { return Vol; } | 
|  | bool isMatchingMemLoc(const ParseMemoryInst &Inst) { | 
|  | return Ptr == Inst.Ptr && MatchingId == Inst.MatchingId; | 
|  | } | 
|  | bool isValid() { return Ptr != nullptr; } | 
|  | int getMatchingId() { return MatchingId; } | 
|  | Value *getPtr() { return Ptr; } | 
|  | bool mayReadFromMemory() { return MayReadFromMemory; } | 
|  | bool mayWriteToMemory() { return MayWriteToMemory; } | 
|  |  | 
|  | private: | 
|  | bool Load; | 
|  | bool Store; | 
|  | bool Vol; | 
|  | bool MayReadFromMemory; | 
|  | bool MayWriteToMemory; | 
|  | // For regular (non-intrinsic) loads/stores, this is set to -1. For | 
|  | // intrinsic loads/stores, the id is retrieved from the corresponding | 
|  | // field in the MemIntrinsicInfo structure.  That field contains | 
|  | // non-negative values only. | 
|  | int MatchingId; | 
|  | Value *Ptr; | 
|  | }; | 
|  |  | 
|  | bool processNode(DomTreeNode *Node); | 
|  |  | 
|  | Value *getOrCreateResult(Value *Inst, Type *ExpectedType) const { | 
|  | if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) | 
|  | return LI; | 
|  | else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) | 
|  | return SI->getValueOperand(); | 
|  | assert(isa<IntrinsicInst>(Inst) && "Instruction not supported"); | 
|  | return TTI.getOrCreateResultFromMemIntrinsic(cast<IntrinsicInst>(Inst), | 
|  | ExpectedType); | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | bool EarlyCSE::processNode(DomTreeNode *Node) { | 
|  | BasicBlock *BB = Node->getBlock(); | 
|  |  | 
|  | // If this block has a single predecessor, then the predecessor is the parent | 
|  | // of the domtree node and all of the live out memory values are still current | 
|  | // in this block.  If this block has multiple predecessors, then they could | 
|  | // have invalidated the live-out memory values of our parent value.  For now, | 
|  | // just be conservative and invalidate memory if this block has multiple | 
|  | // predecessors. | 
|  | if (!BB->getSinglePredecessor()) | 
|  | ++CurrentGeneration; | 
|  |  | 
|  | // If this node has a single predecessor which ends in a conditional branch, | 
|  | // we can infer the value of the branch condition given that we took this | 
|  | // path.  We need the single predeccesor to ensure there's not another path | 
|  | // which reaches this block where the condition might hold a different | 
|  | // value.  Since we're adding this to the scoped hash table (like any other | 
|  | // def), it will have been popped if we encounter a future merge block. | 
|  | if (BasicBlock *Pred = BB->getSinglePredecessor()) | 
|  | if (auto *BI = dyn_cast<BranchInst>(Pred->getTerminator())) | 
|  | if (BI->isConditional()) | 
|  | if (auto *CondInst = dyn_cast<Instruction>(BI->getCondition())) | 
|  | if (SimpleValue::canHandle(CondInst)) { | 
|  | assert(BI->getSuccessor(0) == BB || BI->getSuccessor(1) == BB); | 
|  | auto *ConditionalConstant = (BI->getSuccessor(0) == BB) ? | 
|  | ConstantInt::getTrue(BB->getContext()) : | 
|  | ConstantInt::getFalse(BB->getContext()); | 
|  | AvailableValues.insert(CondInst, ConditionalConstant); | 
|  | DEBUG(dbgs() << "EarlyCSE CVP: Add conditional value for '" | 
|  | << CondInst->getName() << "' as " << *ConditionalConstant | 
|  | << " in " << BB->getName() << "\n"); | 
|  | // Replace all dominated uses with the known value | 
|  | replaceDominatedUsesWith(CondInst, ConditionalConstant, DT, | 
|  | BasicBlockEdge(Pred, BB)); | 
|  | } | 
|  |  | 
|  | /// LastStore - Keep track of the last non-volatile store that we saw... for | 
|  | /// as long as there in no instruction that reads memory.  If we see a store | 
|  | /// to the same location, we delete the dead store.  This zaps trivial dead | 
|  | /// stores which can occur in bitfield code among other things. | 
|  | Instruction *LastStore = nullptr; | 
|  |  | 
|  | bool Changed = false; | 
|  | const DataLayout &DL = BB->getModule()->getDataLayout(); | 
|  |  | 
|  | // See if any instructions in the block can be eliminated.  If so, do it.  If | 
|  | // not, add them to AvailableValues. | 
|  | for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { | 
|  | Instruction *Inst = I++; | 
|  |  | 
|  | // Dead instructions should just be removed. | 
|  | if (isInstructionTriviallyDead(Inst, &TLI)) { | 
|  | DEBUG(dbgs() << "EarlyCSE DCE: " << *Inst << '\n'); | 
|  | Inst->eraseFromParent(); | 
|  | Changed = true; | 
|  | ++NumSimplify; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Skip assume intrinsics, they don't really have side effects (although | 
|  | // they're marked as such to ensure preservation of control dependencies), | 
|  | // and this pass will not disturb any of the assumption's control | 
|  | // dependencies. | 
|  | if (match(Inst, m_Intrinsic<Intrinsic::assume>())) { | 
|  | DEBUG(dbgs() << "EarlyCSE skipping assumption: " << *Inst << '\n'); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If the instruction can be simplified (e.g. X+0 = X) then replace it with | 
|  | // its simpler value. | 
|  | if (Value *V = SimplifyInstruction(Inst, DL, &TLI, &DT, &AC)) { | 
|  | DEBUG(dbgs() << "EarlyCSE Simplify: " << *Inst << "  to: " << *V << '\n'); | 
|  | Inst->replaceAllUsesWith(V); | 
|  | Inst->eraseFromParent(); | 
|  | Changed = true; | 
|  | ++NumSimplify; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If this is a simple instruction that we can value number, process it. | 
|  | if (SimpleValue::canHandle(Inst)) { | 
|  | // See if the instruction has an available value.  If so, use it. | 
|  | if (Value *V = AvailableValues.lookup(Inst)) { | 
|  | DEBUG(dbgs() << "EarlyCSE CSE: " << *Inst << "  to: " << *V << '\n'); | 
|  | Inst->replaceAllUsesWith(V); | 
|  | Inst->eraseFromParent(); | 
|  | Changed = true; | 
|  | ++NumCSE; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Otherwise, just remember that this value is available. | 
|  | AvailableValues.insert(Inst, Inst); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | ParseMemoryInst MemInst(Inst, TTI); | 
|  | // If this is a non-volatile load, process it. | 
|  | if (MemInst.isValid() && MemInst.isLoad()) { | 
|  | // Ignore volatile loads. | 
|  | if (MemInst.isVolatile()) { | 
|  | LastStore = nullptr; | 
|  | // Don't CSE across synchronization boundaries. | 
|  | if (Inst->mayWriteToMemory()) | 
|  | ++CurrentGeneration; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If we have an available version of this load, and if it is the right | 
|  | // generation, replace this instruction. | 
|  | std::pair<Value *, unsigned> InVal = | 
|  | AvailableLoads.lookup(MemInst.getPtr()); | 
|  | if (InVal.first != nullptr && InVal.second == CurrentGeneration) { | 
|  | Value *Op = getOrCreateResult(InVal.first, Inst->getType()); | 
|  | if (Op != nullptr) { | 
|  | DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << *Inst | 
|  | << "  to: " << *InVal.first << '\n'); | 
|  | if (!Inst->use_empty()) | 
|  | Inst->replaceAllUsesWith(Op); | 
|  | Inst->eraseFromParent(); | 
|  | Changed = true; | 
|  | ++NumCSELoad; | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise, remember that we have this instruction. | 
|  | AvailableLoads.insert(MemInst.getPtr(), std::pair<Value *, unsigned>( | 
|  | Inst, CurrentGeneration)); | 
|  | LastStore = nullptr; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If this instruction may read from memory, forget LastStore. | 
|  | // Load/store intrinsics will indicate both a read and a write to | 
|  | // memory.  The target may override this (e.g. so that a store intrinsic | 
|  | // does not read  from memory, and thus will be treated the same as a | 
|  | // regular store for commoning purposes). | 
|  | if (Inst->mayReadFromMemory() && | 
|  | !(MemInst.isValid() && !MemInst.mayReadFromMemory())) | 
|  | LastStore = nullptr; | 
|  |  | 
|  | // If this is a read-only call, process it. | 
|  | if (CallValue::canHandle(Inst)) { | 
|  | // If we have an available version of this call, and if it is the right | 
|  | // generation, replace this instruction. | 
|  | std::pair<Value *, unsigned> InVal = AvailableCalls.lookup(Inst); | 
|  | if (InVal.first != nullptr && InVal.second == CurrentGeneration) { | 
|  | DEBUG(dbgs() << "EarlyCSE CSE CALL: " << *Inst | 
|  | << "  to: " << *InVal.first << '\n'); | 
|  | if (!Inst->use_empty()) | 
|  | Inst->replaceAllUsesWith(InVal.first); | 
|  | Inst->eraseFromParent(); | 
|  | Changed = true; | 
|  | ++NumCSECall; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Otherwise, remember that we have this instruction. | 
|  | AvailableCalls.insert( | 
|  | Inst, std::pair<Value *, unsigned>(Inst, CurrentGeneration)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Okay, this isn't something we can CSE at all.  Check to see if it is | 
|  | // something that could modify memory.  If so, our available memory values | 
|  | // cannot be used so bump the generation count. | 
|  | if (Inst->mayWriteToMemory()) { | 
|  | ++CurrentGeneration; | 
|  |  | 
|  | if (MemInst.isValid() && MemInst.isStore()) { | 
|  | // We do a trivial form of DSE if there are two stores to the same | 
|  | // location with no intervening loads.  Delete the earlier store. | 
|  | if (LastStore) { | 
|  | ParseMemoryInst LastStoreMemInst(LastStore, TTI); | 
|  | if (LastStoreMemInst.isMatchingMemLoc(MemInst)) { | 
|  | DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore | 
|  | << "  due to: " << *Inst << '\n'); | 
|  | LastStore->eraseFromParent(); | 
|  | Changed = true; | 
|  | ++NumDSE; | 
|  | LastStore = nullptr; | 
|  | } | 
|  | // fallthrough - we can exploit information about this store | 
|  | } | 
|  |  | 
|  | // Okay, we just invalidated anything we knew about loaded values.  Try | 
|  | // to salvage *something* by remembering that the stored value is a live | 
|  | // version of the pointer.  It is safe to forward from volatile stores | 
|  | // to non-volatile loads, so we don't have to check for volatility of | 
|  | // the store. | 
|  | AvailableLoads.insert(MemInst.getPtr(), std::pair<Value *, unsigned>( | 
|  | Inst, CurrentGeneration)); | 
|  |  | 
|  | // Remember that this was the last store we saw for DSE. | 
|  | if (!MemInst.isVolatile()) | 
|  | LastStore = Inst; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | bool EarlyCSE::run() { | 
|  | // Note, deque is being used here because there is significant performance | 
|  | // gains over vector when the container becomes very large due to the | 
|  | // specific access patterns. For more information see the mailing list | 
|  | // discussion on this: | 
|  | // http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html | 
|  | std::deque<StackNode *> nodesToProcess; | 
|  |  | 
|  | bool Changed = false; | 
|  |  | 
|  | // Process the root node. | 
|  | nodesToProcess.push_back(new StackNode( | 
|  | AvailableValues, AvailableLoads, AvailableCalls, CurrentGeneration, | 
|  | DT.getRootNode(), DT.getRootNode()->begin(), DT.getRootNode()->end())); | 
|  |  | 
|  | // Save the current generation. | 
|  | unsigned LiveOutGeneration = CurrentGeneration; | 
|  |  | 
|  | // Process the stack. | 
|  | while (!nodesToProcess.empty()) { | 
|  | // Grab the first item off the stack. Set the current generation, remove | 
|  | // the node from the stack, and process it. | 
|  | StackNode *NodeToProcess = nodesToProcess.back(); | 
|  |  | 
|  | // Initialize class members. | 
|  | CurrentGeneration = NodeToProcess->currentGeneration(); | 
|  |  | 
|  | // Check if the node needs to be processed. | 
|  | if (!NodeToProcess->isProcessed()) { | 
|  | // Process the node. | 
|  | Changed |= processNode(NodeToProcess->node()); | 
|  | NodeToProcess->childGeneration(CurrentGeneration); | 
|  | NodeToProcess->process(); | 
|  | } else if (NodeToProcess->childIter() != NodeToProcess->end()) { | 
|  | // Push the next child onto the stack. | 
|  | DomTreeNode *child = NodeToProcess->nextChild(); | 
|  | nodesToProcess.push_back( | 
|  | new StackNode(AvailableValues, AvailableLoads, AvailableCalls, | 
|  | NodeToProcess->childGeneration(), child, child->begin(), | 
|  | child->end())); | 
|  | } else { | 
|  | // It has been processed, and there are no more children to process, | 
|  | // so delete it and pop it off the stack. | 
|  | delete NodeToProcess; | 
|  | nodesToProcess.pop_back(); | 
|  | } | 
|  | } // while (!nodes...) | 
|  |  | 
|  | // Reset the current generation. | 
|  | CurrentGeneration = LiveOutGeneration; | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | PreservedAnalyses EarlyCSEPass::run(Function &F, | 
|  | AnalysisManager<Function> *AM) { | 
|  | auto &TLI = AM->getResult<TargetLibraryAnalysis>(F); | 
|  | auto &TTI = AM->getResult<TargetIRAnalysis>(F); | 
|  | auto &DT = AM->getResult<DominatorTreeAnalysis>(F); | 
|  | auto &AC = AM->getResult<AssumptionAnalysis>(F); | 
|  |  | 
|  | EarlyCSE CSE(F, TLI, TTI, DT, AC); | 
|  |  | 
|  | if (!CSE.run()) | 
|  | return PreservedAnalyses::all(); | 
|  |  | 
|  | // CSE preserves the dominator tree because it doesn't mutate the CFG. | 
|  | // FIXME: Bundle this with other CFG-preservation. | 
|  | PreservedAnalyses PA; | 
|  | PA.preserve<DominatorTreeAnalysis>(); | 
|  | return PA; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | /// \brief A simple and fast domtree-based CSE pass. | 
|  | /// | 
|  | /// This pass does a simple depth-first walk over the dominator tree, | 
|  | /// eliminating trivially redundant instructions and using instsimplify to | 
|  | /// canonicalize things as it goes. It is intended to be fast and catch obvious | 
|  | /// cases so that instcombine and other passes are more effective. It is | 
|  | /// expected that a later pass of GVN will catch the interesting/hard cases. | 
|  | class EarlyCSELegacyPass : public FunctionPass { | 
|  | public: | 
|  | static char ID; | 
|  |  | 
|  | EarlyCSELegacyPass() : FunctionPass(ID) { | 
|  | initializeEarlyCSELegacyPassPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | bool runOnFunction(Function &F) override { | 
|  | if (skipOptnoneFunction(F)) | 
|  | return false; | 
|  |  | 
|  | auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); | 
|  | auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); | 
|  | auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); | 
|  | auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); | 
|  |  | 
|  | EarlyCSE CSE(F, TLI, TTI, DT, AC); | 
|  |  | 
|  | return CSE.run(); | 
|  | } | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.addRequired<AssumptionCacheTracker>(); | 
|  | AU.addRequired<DominatorTreeWrapperPass>(); | 
|  | AU.addRequired<TargetLibraryInfoWrapperPass>(); | 
|  | AU.addRequired<TargetTransformInfoWrapperPass>(); | 
|  | AU.setPreservesCFG(); | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | char EarlyCSELegacyPass::ID = 0; | 
|  |  | 
|  | FunctionPass *llvm::createEarlyCSEPass() { return new EarlyCSELegacyPass(); } | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN(EarlyCSELegacyPass, "early-cse", "Early CSE", false, | 
|  | false) | 
|  | INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) | 
|  | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) | 
|  | INITIALIZE_PASS_END(EarlyCSELegacyPass, "early-cse", "Early CSE", false, false) |