|  | //===--- SemaDeclAttr.cpp - Declaration Attribute Handling ----------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | //  This file implements decl-related attribute processing. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "clang/AST/ASTConsumer.h" | 
|  | #include "clang/AST/ASTContext.h" | 
|  | #include "clang/AST/ASTMutationListener.h" | 
|  | #include "clang/AST/CXXInheritance.h" | 
|  | #include "clang/AST/DeclCXX.h" | 
|  | #include "clang/AST/DeclObjC.h" | 
|  | #include "clang/AST/DeclTemplate.h" | 
|  | #include "clang/AST/Expr.h" | 
|  | #include "clang/AST/ExprCXX.h" | 
|  | #include "clang/AST/Mangle.h" | 
|  | #include "clang/AST/RecursiveASTVisitor.h" | 
|  | #include "clang/Basic/CharInfo.h" | 
|  | #include "clang/Basic/SourceManager.h" | 
|  | #include "clang/Basic/TargetInfo.h" | 
|  | #include "clang/Lex/Preprocessor.h" | 
|  | #include "clang/Sema/DeclSpec.h" | 
|  | #include "clang/Sema/DelayedDiagnostic.h" | 
|  | #include "clang/Sema/Initialization.h" | 
|  | #include "clang/Sema/Lookup.h" | 
|  | #include "clang/Sema/Scope.h" | 
|  | #include "clang/Sema/ScopeInfo.h" | 
|  | #include "clang/Sema/SemaInternal.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/StringExtras.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  |  | 
|  | using namespace clang; | 
|  | using namespace sema; | 
|  |  | 
|  | namespace AttributeLangSupport { | 
|  | enum LANG { | 
|  | C, | 
|  | Cpp, | 
|  | ObjC | 
|  | }; | 
|  | } // end namespace AttributeLangSupport | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  Helper functions | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// isFunctionOrMethod - Return true if the given decl has function | 
|  | /// type (function or function-typed variable) or an Objective-C | 
|  | /// method. | 
|  | static bool isFunctionOrMethod(const Decl *D) { | 
|  | return (D->getFunctionType() != nullptr) || isa<ObjCMethodDecl>(D); | 
|  | } | 
|  |  | 
|  | /// Return true if the given decl has function type (function or | 
|  | /// function-typed variable) or an Objective-C method or a block. | 
|  | static bool isFunctionOrMethodOrBlock(const Decl *D) { | 
|  | return isFunctionOrMethod(D) || isa<BlockDecl>(D); | 
|  | } | 
|  |  | 
|  | /// Return true if the given decl has a declarator that should have | 
|  | /// been processed by Sema::GetTypeForDeclarator. | 
|  | static bool hasDeclarator(const Decl *D) { | 
|  | // In some sense, TypedefDecl really *ought* to be a DeclaratorDecl. | 
|  | return isa<DeclaratorDecl>(D) || isa<BlockDecl>(D) || isa<TypedefNameDecl>(D) || | 
|  | isa<ObjCPropertyDecl>(D); | 
|  | } | 
|  |  | 
|  | /// hasFunctionProto - Return true if the given decl has a argument | 
|  | /// information. This decl should have already passed | 
|  | /// isFunctionOrMethod or isFunctionOrMethodOrBlock. | 
|  | static bool hasFunctionProto(const Decl *D) { | 
|  | if (const FunctionType *FnTy = D->getFunctionType()) | 
|  | return isa<FunctionProtoType>(FnTy); | 
|  | return isa<ObjCMethodDecl>(D) || isa<BlockDecl>(D); | 
|  | } | 
|  |  | 
|  | /// getFunctionOrMethodNumParams - Return number of function or method | 
|  | /// parameters. It is an error to call this on a K&R function (use | 
|  | /// hasFunctionProto first). | 
|  | static unsigned getFunctionOrMethodNumParams(const Decl *D) { | 
|  | if (const FunctionType *FnTy = D->getFunctionType()) | 
|  | return cast<FunctionProtoType>(FnTy)->getNumParams(); | 
|  | if (const auto *BD = dyn_cast<BlockDecl>(D)) | 
|  | return BD->getNumParams(); | 
|  | return cast<ObjCMethodDecl>(D)->param_size(); | 
|  | } | 
|  |  | 
|  | static QualType getFunctionOrMethodParamType(const Decl *D, unsigned Idx) { | 
|  | if (const FunctionType *FnTy = D->getFunctionType()) | 
|  | return cast<FunctionProtoType>(FnTy)->getParamType(Idx); | 
|  | if (const auto *BD = dyn_cast<BlockDecl>(D)) | 
|  | return BD->getParamDecl(Idx)->getType(); | 
|  |  | 
|  | return cast<ObjCMethodDecl>(D)->parameters()[Idx]->getType(); | 
|  | } | 
|  |  | 
|  | static SourceRange getFunctionOrMethodParamRange(const Decl *D, unsigned Idx) { | 
|  | if (const auto *FD = dyn_cast<FunctionDecl>(D)) | 
|  | return FD->getParamDecl(Idx)->getSourceRange(); | 
|  | if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) | 
|  | return MD->parameters()[Idx]->getSourceRange(); | 
|  | if (const auto *BD = dyn_cast<BlockDecl>(D)) | 
|  | return BD->getParamDecl(Idx)->getSourceRange(); | 
|  | return SourceRange(); | 
|  | } | 
|  |  | 
|  | static QualType getFunctionOrMethodResultType(const Decl *D) { | 
|  | if (const FunctionType *FnTy = D->getFunctionType()) | 
|  | return FnTy->getReturnType(); | 
|  | return cast<ObjCMethodDecl>(D)->getReturnType(); | 
|  | } | 
|  |  | 
|  | static SourceRange getFunctionOrMethodResultSourceRange(const Decl *D) { | 
|  | if (const auto *FD = dyn_cast<FunctionDecl>(D)) | 
|  | return FD->getReturnTypeSourceRange(); | 
|  | if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) | 
|  | return MD->getReturnTypeSourceRange(); | 
|  | return SourceRange(); | 
|  | } | 
|  |  | 
|  | static bool isFunctionOrMethodVariadic(const Decl *D) { | 
|  | if (const FunctionType *FnTy = D->getFunctionType()) | 
|  | return cast<FunctionProtoType>(FnTy)->isVariadic(); | 
|  | if (const auto *BD = dyn_cast<BlockDecl>(D)) | 
|  | return BD->isVariadic(); | 
|  | return cast<ObjCMethodDecl>(D)->isVariadic(); | 
|  | } | 
|  |  | 
|  | static bool isInstanceMethod(const Decl *D) { | 
|  | if (const auto *MethodDecl = dyn_cast<CXXMethodDecl>(D)) | 
|  | return MethodDecl->isInstance(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static inline bool isNSStringType(QualType T, ASTContext &Ctx) { | 
|  | const auto *PT = T->getAs<ObjCObjectPointerType>(); | 
|  | if (!PT) | 
|  | return false; | 
|  |  | 
|  | ObjCInterfaceDecl *Cls = PT->getObjectType()->getInterface(); | 
|  | if (!Cls) | 
|  | return false; | 
|  |  | 
|  | IdentifierInfo* ClsName = Cls->getIdentifier(); | 
|  |  | 
|  | // FIXME: Should we walk the chain of classes? | 
|  | return ClsName == &Ctx.Idents.get("NSString") || | 
|  | ClsName == &Ctx.Idents.get("NSMutableString"); | 
|  | } | 
|  |  | 
|  | static inline bool isCFStringType(QualType T, ASTContext &Ctx) { | 
|  | const auto *PT = T->getAs<PointerType>(); | 
|  | if (!PT) | 
|  | return false; | 
|  |  | 
|  | const auto *RT = PT->getPointeeType()->getAs<RecordType>(); | 
|  | if (!RT) | 
|  | return false; | 
|  |  | 
|  | const RecordDecl *RD = RT->getDecl(); | 
|  | if (RD->getTagKind() != TTK_Struct) | 
|  | return false; | 
|  |  | 
|  | return RD->getIdentifier() == &Ctx.Idents.get("__CFString"); | 
|  | } | 
|  |  | 
|  | static unsigned getNumAttributeArgs(const ParsedAttr &AL) { | 
|  | // FIXME: Include the type in the argument list. | 
|  | return AL.getNumArgs() + AL.hasParsedType(); | 
|  | } | 
|  |  | 
|  | template <typename Compare> | 
|  | static bool checkAttributeNumArgsImpl(Sema &S, const ParsedAttr &AL, | 
|  | unsigned Num, unsigned Diag, | 
|  | Compare Comp) { | 
|  | if (Comp(getNumAttributeArgs(AL), Num)) { | 
|  | S.Diag(AL.getLoc(), Diag) << AL << Num; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Check if the attribute has exactly as many args as Num. May | 
|  | /// output an error. | 
|  | static bool checkAttributeNumArgs(Sema &S, const ParsedAttr &AL, unsigned Num) { | 
|  | return checkAttributeNumArgsImpl(S, AL, Num, | 
|  | diag::err_attribute_wrong_number_arguments, | 
|  | std::not_equal_to<unsigned>()); | 
|  | } | 
|  |  | 
|  | /// Check if the attribute has at least as many args as Num. May | 
|  | /// output an error. | 
|  | static bool checkAttributeAtLeastNumArgs(Sema &S, const ParsedAttr &AL, | 
|  | unsigned Num) { | 
|  | return checkAttributeNumArgsImpl(S, AL, Num, | 
|  | diag::err_attribute_too_few_arguments, | 
|  | std::less<unsigned>()); | 
|  | } | 
|  |  | 
|  | /// Check if the attribute has at most as many args as Num. May | 
|  | /// output an error. | 
|  | static bool checkAttributeAtMostNumArgs(Sema &S, const ParsedAttr &AL, | 
|  | unsigned Num) { | 
|  | return checkAttributeNumArgsImpl(S, AL, Num, | 
|  | diag::err_attribute_too_many_arguments, | 
|  | std::greater<unsigned>()); | 
|  | } | 
|  |  | 
|  | /// A helper function to provide Attribute Location for the Attr types | 
|  | /// AND the ParsedAttr. | 
|  | template <typename AttrInfo> | 
|  | static typename std::enable_if<std::is_base_of<Attr, AttrInfo>::value, | 
|  | SourceLocation>::type | 
|  | getAttrLoc(const AttrInfo &AL) { | 
|  | return AL.getLocation(); | 
|  | } | 
|  | static SourceLocation getAttrLoc(const ParsedAttr &AL) { return AL.getLoc(); } | 
|  |  | 
|  | /// If Expr is a valid integer constant, get the value of the integer | 
|  | /// expression and return success or failure. May output an error. | 
|  | /// | 
|  | /// Negative argument is implicitly converted to unsigned, unless | 
|  | /// \p StrictlyUnsigned is true. | 
|  | template <typename AttrInfo> | 
|  | static bool checkUInt32Argument(Sema &S, const AttrInfo &AI, const Expr *Expr, | 
|  | uint32_t &Val, unsigned Idx = UINT_MAX, | 
|  | bool StrictlyUnsigned = false) { | 
|  | llvm::APSInt I(32); | 
|  | if (Expr->isTypeDependent() || Expr->isValueDependent() || | 
|  | !Expr->isIntegerConstantExpr(I, S.Context)) { | 
|  | if (Idx != UINT_MAX) | 
|  | S.Diag(getAttrLoc(AI), diag::err_attribute_argument_n_type) | 
|  | << AI << Idx << AANT_ArgumentIntegerConstant | 
|  | << Expr->getSourceRange(); | 
|  | else | 
|  | S.Diag(getAttrLoc(AI), diag::err_attribute_argument_type) | 
|  | << AI << AANT_ArgumentIntegerConstant << Expr->getSourceRange(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!I.isIntN(32)) { | 
|  | S.Diag(Expr->getExprLoc(), diag::err_ice_too_large) | 
|  | << I.toString(10, false) << 32 << /* Unsigned */ 1; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (StrictlyUnsigned && I.isSigned() && I.isNegative()) { | 
|  | S.Diag(getAttrLoc(AI), diag::err_attribute_requires_positive_integer) | 
|  | << AI << /*non-negative*/ 1; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Val = (uint32_t)I.getZExtValue(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Wrapper around checkUInt32Argument, with an extra check to be sure | 
|  | /// that the result will fit into a regular (signed) int. All args have the same | 
|  | /// purpose as they do in checkUInt32Argument. | 
|  | template <typename AttrInfo> | 
|  | static bool checkPositiveIntArgument(Sema &S, const AttrInfo &AI, const Expr *Expr, | 
|  | int &Val, unsigned Idx = UINT_MAX) { | 
|  | uint32_t UVal; | 
|  | if (!checkUInt32Argument(S, AI, Expr, UVal, Idx)) | 
|  | return false; | 
|  |  | 
|  | if (UVal > (uint32_t)std::numeric_limits<int>::max()) { | 
|  | llvm::APSInt I(32); // for toString | 
|  | I = UVal; | 
|  | S.Diag(Expr->getExprLoc(), diag::err_ice_too_large) | 
|  | << I.toString(10, false) << 32 << /* Unsigned */ 0; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Val = UVal; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Diagnose mutually exclusive attributes when present on a given | 
|  | /// declaration. Returns true if diagnosed. | 
|  | template <typename AttrTy> | 
|  | static bool checkAttrMutualExclusion(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | if (const auto *A = D->getAttr<AttrTy>()) { | 
|  | S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible) << AL << A; | 
|  | S.Diag(A->getLocation(), diag::note_conflicting_attribute); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | template <typename AttrTy> | 
|  | static bool checkAttrMutualExclusion(Sema &S, Decl *D, const Attr &AL) { | 
|  | if (const auto *A = D->getAttr<AttrTy>()) { | 
|  | S.Diag(AL.getLocation(), diag::err_attributes_are_not_compatible) << &AL | 
|  | << A; | 
|  | S.Diag(A->getLocation(), diag::note_conflicting_attribute); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Check if IdxExpr is a valid parameter index for a function or | 
|  | /// instance method D.  May output an error. | 
|  | /// | 
|  | /// \returns true if IdxExpr is a valid index. | 
|  | template <typename AttrInfo> | 
|  | static bool checkFunctionOrMethodParameterIndex( | 
|  | Sema &S, const Decl *D, const AttrInfo &AI, unsigned AttrArgNum, | 
|  | const Expr *IdxExpr, ParamIdx &Idx, bool CanIndexImplicitThis = false) { | 
|  | assert(isFunctionOrMethodOrBlock(D)); | 
|  |  | 
|  | // In C++ the implicit 'this' function parameter also counts. | 
|  | // Parameters are counted from one. | 
|  | bool HP = hasFunctionProto(D); | 
|  | bool HasImplicitThisParam = isInstanceMethod(D); | 
|  | bool IV = HP && isFunctionOrMethodVariadic(D); | 
|  | unsigned NumParams = | 
|  | (HP ? getFunctionOrMethodNumParams(D) : 0) + HasImplicitThisParam; | 
|  |  | 
|  | llvm::APSInt IdxInt; | 
|  | if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent() || | 
|  | !IdxExpr->isIntegerConstantExpr(IdxInt, S.Context)) { | 
|  | S.Diag(getAttrLoc(AI), diag::err_attribute_argument_n_type) | 
|  | << &AI << AttrArgNum << AANT_ArgumentIntegerConstant | 
|  | << IdxExpr->getSourceRange(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | unsigned IdxSource = IdxInt.getLimitedValue(UINT_MAX); | 
|  | if (IdxSource < 1 || (!IV && IdxSource > NumParams)) { | 
|  | S.Diag(getAttrLoc(AI), diag::err_attribute_argument_out_of_bounds) | 
|  | << &AI << AttrArgNum << IdxExpr->getSourceRange(); | 
|  | return false; | 
|  | } | 
|  | if (HasImplicitThisParam && !CanIndexImplicitThis) { | 
|  | if (IdxSource == 1) { | 
|  | S.Diag(getAttrLoc(AI), diag::err_attribute_invalid_implicit_this_argument) | 
|  | << &AI << IdxExpr->getSourceRange(); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | Idx = ParamIdx(IdxSource, D); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Check if the argument \p ArgNum of \p Attr is a ASCII string literal. | 
|  | /// If not emit an error and return false. If the argument is an identifier it | 
|  | /// will emit an error with a fixit hint and treat it as if it was a string | 
|  | /// literal. | 
|  | bool Sema::checkStringLiteralArgumentAttr(const ParsedAttr &AL, unsigned ArgNum, | 
|  | StringRef &Str, | 
|  | SourceLocation *ArgLocation) { | 
|  | // Look for identifiers. If we have one emit a hint to fix it to a literal. | 
|  | if (AL.isArgIdent(ArgNum)) { | 
|  | IdentifierLoc *Loc = AL.getArgAsIdent(ArgNum); | 
|  | Diag(Loc->Loc, diag::err_attribute_argument_type) | 
|  | << AL << AANT_ArgumentString | 
|  | << FixItHint::CreateInsertion(Loc->Loc, "\"") | 
|  | << FixItHint::CreateInsertion(getLocForEndOfToken(Loc->Loc), "\""); | 
|  | Str = Loc->Ident->getName(); | 
|  | if (ArgLocation) | 
|  | *ArgLocation = Loc->Loc; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Now check for an actual string literal. | 
|  | Expr *ArgExpr = AL.getArgAsExpr(ArgNum); | 
|  | const auto *Literal = dyn_cast<StringLiteral>(ArgExpr->IgnoreParenCasts()); | 
|  | if (ArgLocation) | 
|  | *ArgLocation = ArgExpr->getBeginLoc(); | 
|  |  | 
|  | if (!Literal || !Literal->isAscii()) { | 
|  | Diag(ArgExpr->getBeginLoc(), diag::err_attribute_argument_type) | 
|  | << AL << AANT_ArgumentString; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Str = Literal->getString(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Applies the given attribute to the Decl without performing any | 
|  | /// additional semantic checking. | 
|  | template <typename AttrType> | 
|  | static void handleSimpleAttribute(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | D->addAttr(::new (S.Context) AttrType(AL.getRange(), S.Context, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | template <typename AttrType> | 
|  | static void handleSimpleAttributeWithExclusions(Sema &S, Decl *D, | 
|  | const ParsedAttr &AL) { | 
|  | handleSimpleAttribute<AttrType>(S, D, AL); | 
|  | } | 
|  |  | 
|  | /// Applies the given attribute to the Decl so long as the Decl doesn't | 
|  | /// already have one of the given incompatible attributes. | 
|  | template <typename AttrType, typename IncompatibleAttrType, | 
|  | typename... IncompatibleAttrTypes> | 
|  | static void handleSimpleAttributeWithExclusions(Sema &S, Decl *D, | 
|  | const ParsedAttr &AL) { | 
|  | if (checkAttrMutualExclusion<IncompatibleAttrType>(S, D, AL)) | 
|  | return; | 
|  | handleSimpleAttributeWithExclusions<AttrType, IncompatibleAttrTypes...>(S, D, | 
|  | AL); | 
|  | } | 
|  |  | 
|  | /// Check if the passed-in expression is of type int or bool. | 
|  | static bool isIntOrBool(Expr *Exp) { | 
|  | QualType QT = Exp->getType(); | 
|  | return QT->isBooleanType() || QT->isIntegerType(); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Check to see if the type is a smart pointer of some kind.  We assume | 
|  | // it's a smart pointer if it defines both operator-> and operator*. | 
|  | static bool threadSafetyCheckIsSmartPointer(Sema &S, const RecordType* RT) { | 
|  | auto IsOverloadedOperatorPresent = [&S](const RecordDecl *Record, | 
|  | OverloadedOperatorKind Op) { | 
|  | DeclContextLookupResult Result = | 
|  | Record->lookup(S.Context.DeclarationNames.getCXXOperatorName(Op)); | 
|  | return !Result.empty(); | 
|  | }; | 
|  |  | 
|  | const RecordDecl *Record = RT->getDecl(); | 
|  | bool foundStarOperator = IsOverloadedOperatorPresent(Record, OO_Star); | 
|  | bool foundArrowOperator = IsOverloadedOperatorPresent(Record, OO_Arrow); | 
|  | if (foundStarOperator && foundArrowOperator) | 
|  | return true; | 
|  |  | 
|  | const CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record); | 
|  | if (!CXXRecord) | 
|  | return false; | 
|  |  | 
|  | for (auto BaseSpecifier : CXXRecord->bases()) { | 
|  | if (!foundStarOperator) | 
|  | foundStarOperator = IsOverloadedOperatorPresent( | 
|  | BaseSpecifier.getType()->getAsRecordDecl(), OO_Star); | 
|  | if (!foundArrowOperator) | 
|  | foundArrowOperator = IsOverloadedOperatorPresent( | 
|  | BaseSpecifier.getType()->getAsRecordDecl(), OO_Arrow); | 
|  | } | 
|  |  | 
|  | if (foundStarOperator && foundArrowOperator) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Check if passed in Decl is a pointer type. | 
|  | /// Note that this function may produce an error message. | 
|  | /// \return true if the Decl is a pointer type; false otherwise | 
|  | static bool threadSafetyCheckIsPointer(Sema &S, const Decl *D, | 
|  | const ParsedAttr &AL) { | 
|  | const auto *VD = cast<ValueDecl>(D); | 
|  | QualType QT = VD->getType(); | 
|  | if (QT->isAnyPointerType()) | 
|  | return true; | 
|  |  | 
|  | if (const auto *RT = QT->getAs<RecordType>()) { | 
|  | // If it's an incomplete type, it could be a smart pointer; skip it. | 
|  | // (We don't want to force template instantiation if we can avoid it, | 
|  | // since that would alter the order in which templates are instantiated.) | 
|  | if (RT->isIncompleteType()) | 
|  | return true; | 
|  |  | 
|  | if (threadSafetyCheckIsSmartPointer(S, RT)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | S.Diag(AL.getLoc(), diag::warn_thread_attribute_decl_not_pointer) << AL << QT; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Checks that the passed in QualType either is of RecordType or points | 
|  | /// to RecordType. Returns the relevant RecordType, null if it does not exit. | 
|  | static const RecordType *getRecordType(QualType QT) { | 
|  | if (const auto *RT = QT->getAs<RecordType>()) | 
|  | return RT; | 
|  |  | 
|  | // Now check if we point to record type. | 
|  | if (const auto *PT = QT->getAs<PointerType>()) | 
|  | return PT->getPointeeType()->getAs<RecordType>(); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | template <typename AttrType> | 
|  | static bool checkRecordDeclForAttr(const RecordDecl *RD) { | 
|  | // Check if the record itself has the attribute. | 
|  | if (RD->hasAttr<AttrType>()) | 
|  | return true; | 
|  |  | 
|  | // Else check if any base classes have the attribute. | 
|  | if (const auto *CRD = dyn_cast<CXXRecordDecl>(RD)) { | 
|  | CXXBasePaths BPaths(false, false); | 
|  | if (CRD->lookupInBases( | 
|  | [](const CXXBaseSpecifier *BS, CXXBasePath &) { | 
|  | const auto &Ty = *BS->getType(); | 
|  | // If it's type-dependent, we assume it could have the attribute. | 
|  | if (Ty.isDependentType()) | 
|  | return true; | 
|  | return Ty.getAs<RecordType>()->getDecl()->hasAttr<AttrType>(); | 
|  | }, | 
|  | BPaths, true)) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool checkRecordTypeForCapability(Sema &S, QualType Ty) { | 
|  | const RecordType *RT = getRecordType(Ty); | 
|  |  | 
|  | if (!RT) | 
|  | return false; | 
|  |  | 
|  | // Don't check for the capability if the class hasn't been defined yet. | 
|  | if (RT->isIncompleteType()) | 
|  | return true; | 
|  |  | 
|  | // Allow smart pointers to be used as capability objects. | 
|  | // FIXME -- Check the type that the smart pointer points to. | 
|  | if (threadSafetyCheckIsSmartPointer(S, RT)) | 
|  | return true; | 
|  |  | 
|  | return checkRecordDeclForAttr<CapabilityAttr>(RT->getDecl()); | 
|  | } | 
|  |  | 
|  | static bool checkTypedefTypeForCapability(QualType Ty) { | 
|  | const auto *TD = Ty->getAs<TypedefType>(); | 
|  | if (!TD) | 
|  | return false; | 
|  |  | 
|  | TypedefNameDecl *TN = TD->getDecl(); | 
|  | if (!TN) | 
|  | return false; | 
|  |  | 
|  | return TN->hasAttr<CapabilityAttr>(); | 
|  | } | 
|  |  | 
|  | static bool typeHasCapability(Sema &S, QualType Ty) { | 
|  | if (checkTypedefTypeForCapability(Ty)) | 
|  | return true; | 
|  |  | 
|  | if (checkRecordTypeForCapability(S, Ty)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool isCapabilityExpr(Sema &S, const Expr *Ex) { | 
|  | // Capability expressions are simple expressions involving the boolean logic | 
|  | // operators &&, || or !, a simple DeclRefExpr, CastExpr or a ParenExpr. Once | 
|  | // a DeclRefExpr is found, its type should be checked to determine whether it | 
|  | // is a capability or not. | 
|  |  | 
|  | if (const auto *E = dyn_cast<CastExpr>(Ex)) | 
|  | return isCapabilityExpr(S, E->getSubExpr()); | 
|  | else if (const auto *E = dyn_cast<ParenExpr>(Ex)) | 
|  | return isCapabilityExpr(S, E->getSubExpr()); | 
|  | else if (const auto *E = dyn_cast<UnaryOperator>(Ex)) { | 
|  | if (E->getOpcode() == UO_LNot || E->getOpcode() == UO_AddrOf || | 
|  | E->getOpcode() == UO_Deref) | 
|  | return isCapabilityExpr(S, E->getSubExpr()); | 
|  | return false; | 
|  | } else if (const auto *E = dyn_cast<BinaryOperator>(Ex)) { | 
|  | if (E->getOpcode() == BO_LAnd || E->getOpcode() == BO_LOr) | 
|  | return isCapabilityExpr(S, E->getLHS()) && | 
|  | isCapabilityExpr(S, E->getRHS()); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return typeHasCapability(S, Ex->getType()); | 
|  | } | 
|  |  | 
|  | /// Checks that all attribute arguments, starting from Sidx, resolve to | 
|  | /// a capability object. | 
|  | /// \param Sidx The attribute argument index to start checking with. | 
|  | /// \param ParamIdxOk Whether an argument can be indexing into a function | 
|  | /// parameter list. | 
|  | static void checkAttrArgsAreCapabilityObjs(Sema &S, Decl *D, | 
|  | const ParsedAttr &AL, | 
|  | SmallVectorImpl<Expr *> &Args, | 
|  | unsigned Sidx = 0, | 
|  | bool ParamIdxOk = false) { | 
|  | if (Sidx == AL.getNumArgs()) { | 
|  | // If we don't have any capability arguments, the attribute implicitly | 
|  | // refers to 'this'. So we need to make sure that 'this' exists, i.e. we're | 
|  | // a non-static method, and that the class is a (scoped) capability. | 
|  | const auto *MD = dyn_cast<const CXXMethodDecl>(D); | 
|  | if (MD && !MD->isStatic()) { | 
|  | const CXXRecordDecl *RD = MD->getParent(); | 
|  | // FIXME -- need to check this again on template instantiation | 
|  | if (!checkRecordDeclForAttr<CapabilityAttr>(RD) && | 
|  | !checkRecordDeclForAttr<ScopedLockableAttr>(RD)) | 
|  | S.Diag(AL.getLoc(), | 
|  | diag::warn_thread_attribute_not_on_capability_member) | 
|  | << AL << MD->getParent(); | 
|  | } else { | 
|  | S.Diag(AL.getLoc(), diag::warn_thread_attribute_not_on_non_static_member) | 
|  | << AL; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (unsigned Idx = Sidx; Idx < AL.getNumArgs(); ++Idx) { | 
|  | Expr *ArgExp = AL.getArgAsExpr(Idx); | 
|  |  | 
|  | if (ArgExp->isTypeDependent()) { | 
|  | // FIXME -- need to check this again on template instantiation | 
|  | Args.push_back(ArgExp); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (const auto *StrLit = dyn_cast<StringLiteral>(ArgExp)) { | 
|  | if (StrLit->getLength() == 0 || | 
|  | (StrLit->isAscii() && StrLit->getString() == StringRef("*"))) { | 
|  | // Pass empty strings to the analyzer without warnings. | 
|  | // Treat "*" as the universal lock. | 
|  | Args.push_back(ArgExp); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // We allow constant strings to be used as a placeholder for expressions | 
|  | // that are not valid C++ syntax, but warn that they are ignored. | 
|  | S.Diag(AL.getLoc(), diag::warn_thread_attribute_ignored) << AL; | 
|  | Args.push_back(ArgExp); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | QualType ArgTy = ArgExp->getType(); | 
|  |  | 
|  | // A pointer to member expression of the form  &MyClass::mu is treated | 
|  | // specially -- we need to look at the type of the member. | 
|  | if (const auto *UOp = dyn_cast<UnaryOperator>(ArgExp)) | 
|  | if (UOp->getOpcode() == UO_AddrOf) | 
|  | if (const auto *DRE = dyn_cast<DeclRefExpr>(UOp->getSubExpr())) | 
|  | if (DRE->getDecl()->isCXXInstanceMember()) | 
|  | ArgTy = DRE->getDecl()->getType(); | 
|  |  | 
|  | // First see if we can just cast to record type, or pointer to record type. | 
|  | const RecordType *RT = getRecordType(ArgTy); | 
|  |  | 
|  | // Now check if we index into a record type function param. | 
|  | if(!RT && ParamIdxOk) { | 
|  | const auto *FD = dyn_cast<FunctionDecl>(D); | 
|  | const auto *IL = dyn_cast<IntegerLiteral>(ArgExp); | 
|  | if(FD && IL) { | 
|  | unsigned int NumParams = FD->getNumParams(); | 
|  | llvm::APInt ArgValue = IL->getValue(); | 
|  | uint64_t ParamIdxFromOne = ArgValue.getZExtValue(); | 
|  | uint64_t ParamIdxFromZero = ParamIdxFromOne - 1; | 
|  | if (!ArgValue.isStrictlyPositive() || ParamIdxFromOne > NumParams) { | 
|  | S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_range) | 
|  | << AL << Idx + 1 << NumParams; | 
|  | continue; | 
|  | } | 
|  | ArgTy = FD->getParamDecl(ParamIdxFromZero)->getType(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the type does not have a capability, see if the components of the | 
|  | // expression have capabilities. This allows for writing C code where the | 
|  | // capability may be on the type, and the expression is a capability | 
|  | // boolean logic expression. Eg) requires_capability(A || B && !C) | 
|  | if (!typeHasCapability(S, ArgTy) && !isCapabilityExpr(S, ArgExp)) | 
|  | S.Diag(AL.getLoc(), diag::warn_thread_attribute_argument_not_lockable) | 
|  | << AL << ArgTy; | 
|  |  | 
|  | Args.push_back(ArgExp); | 
|  | } | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Attribute Implementations | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | static void handlePtGuardedVarAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | if (!threadSafetyCheckIsPointer(S, D, AL)) | 
|  | return; | 
|  |  | 
|  | D->addAttr(::new (S.Context) | 
|  | PtGuardedVarAttr(AL.getRange(), S.Context, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static bool checkGuardedByAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL, | 
|  | Expr *&Arg) { | 
|  | SmallVector<Expr *, 1> Args; | 
|  | // check that all arguments are lockable objects | 
|  | checkAttrArgsAreCapabilityObjs(S, D, AL, Args); | 
|  | unsigned Size = Args.size(); | 
|  | if (Size != 1) | 
|  | return false; | 
|  |  | 
|  | Arg = Args[0]; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void handleGuardedByAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | Expr *Arg = nullptr; | 
|  | if (!checkGuardedByAttrCommon(S, D, AL, Arg)) | 
|  | return; | 
|  |  | 
|  | D->addAttr(::new (S.Context) GuardedByAttr( | 
|  | AL.getRange(), S.Context, Arg, AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void handlePtGuardedByAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | Expr *Arg = nullptr; | 
|  | if (!checkGuardedByAttrCommon(S, D, AL, Arg)) | 
|  | return; | 
|  |  | 
|  | if (!threadSafetyCheckIsPointer(S, D, AL)) | 
|  | return; | 
|  |  | 
|  | D->addAttr(::new (S.Context) PtGuardedByAttr( | 
|  | AL.getRange(), S.Context, Arg, AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static bool checkAcquireOrderAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL, | 
|  | SmallVectorImpl<Expr *> &Args) { | 
|  | if (!checkAttributeAtLeastNumArgs(S, AL, 1)) | 
|  | return false; | 
|  |  | 
|  | // Check that this attribute only applies to lockable types. | 
|  | QualType QT = cast<ValueDecl>(D)->getType(); | 
|  | if (!QT->isDependentType() && !typeHasCapability(S, QT)) { | 
|  | S.Diag(AL.getLoc(), diag::warn_thread_attribute_decl_not_lockable) << AL; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Check that all arguments are lockable objects. | 
|  | checkAttrArgsAreCapabilityObjs(S, D, AL, Args); | 
|  | if (Args.empty()) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void handleAcquiredAfterAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | SmallVector<Expr *, 1> Args; | 
|  | if (!checkAcquireOrderAttrCommon(S, D, AL, Args)) | 
|  | return; | 
|  |  | 
|  | Expr **StartArg = &Args[0]; | 
|  | D->addAttr(::new (S.Context) AcquiredAfterAttr( | 
|  | AL.getRange(), S.Context, StartArg, Args.size(), | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void handleAcquiredBeforeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | SmallVector<Expr *, 1> Args; | 
|  | if (!checkAcquireOrderAttrCommon(S, D, AL, Args)) | 
|  | return; | 
|  |  | 
|  | Expr **StartArg = &Args[0]; | 
|  | D->addAttr(::new (S.Context) AcquiredBeforeAttr( | 
|  | AL.getRange(), S.Context, StartArg, Args.size(), | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static bool checkLockFunAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL, | 
|  | SmallVectorImpl<Expr *> &Args) { | 
|  | // zero or more arguments ok | 
|  | // check that all arguments are lockable objects | 
|  | checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 0, /*ParamIdxOk=*/true); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void handleAssertSharedLockAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | SmallVector<Expr *, 1> Args; | 
|  | if (!checkLockFunAttrCommon(S, D, AL, Args)) | 
|  | return; | 
|  |  | 
|  | unsigned Size = Args.size(); | 
|  | Expr **StartArg = Size == 0 ? nullptr : &Args[0]; | 
|  | D->addAttr(::new (S.Context) | 
|  | AssertSharedLockAttr(AL.getRange(), S.Context, StartArg, Size, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void handleAssertExclusiveLockAttr(Sema &S, Decl *D, | 
|  | const ParsedAttr &AL) { | 
|  | SmallVector<Expr *, 1> Args; | 
|  | if (!checkLockFunAttrCommon(S, D, AL, Args)) | 
|  | return; | 
|  |  | 
|  | unsigned Size = Args.size(); | 
|  | Expr **StartArg = Size == 0 ? nullptr : &Args[0]; | 
|  | D->addAttr(::new (S.Context) AssertExclusiveLockAttr( | 
|  | AL.getRange(), S.Context, StartArg, Size, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | /// Checks to be sure that the given parameter number is in bounds, and | 
|  | /// is an integral type. Will emit appropriate diagnostics if this returns | 
|  | /// false. | 
|  | /// | 
|  | /// AttrArgNo is used to actually retrieve the argument, so it's base-0. | 
|  | template <typename AttrInfo> | 
|  | static bool checkParamIsIntegerType(Sema &S, const FunctionDecl *FD, | 
|  | const AttrInfo &AI, unsigned AttrArgNo) { | 
|  | assert(AI.isArgExpr(AttrArgNo) && "Expected expression argument"); | 
|  | Expr *AttrArg = AI.getArgAsExpr(AttrArgNo); | 
|  | ParamIdx Idx; | 
|  | if (!checkFunctionOrMethodParameterIndex(S, FD, AI, AttrArgNo + 1, AttrArg, | 
|  | Idx)) | 
|  | return false; | 
|  |  | 
|  | const ParmVarDecl *Param = FD->getParamDecl(Idx.getASTIndex()); | 
|  | if (!Param->getType()->isIntegerType() && !Param->getType()->isCharType()) { | 
|  | SourceLocation SrcLoc = AttrArg->getBeginLoc(); | 
|  | S.Diag(SrcLoc, diag::err_attribute_integers_only) | 
|  | << AI << Param->getSourceRange(); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void handleAllocSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | if (!checkAttributeAtLeastNumArgs(S, AL, 1) || | 
|  | !checkAttributeAtMostNumArgs(S, AL, 2)) | 
|  | return; | 
|  |  | 
|  | const auto *FD = cast<FunctionDecl>(D); | 
|  | if (!FD->getReturnType()->isPointerType()) { | 
|  | S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only) << AL; | 
|  | return; | 
|  | } | 
|  |  | 
|  | const Expr *SizeExpr = AL.getArgAsExpr(0); | 
|  | int SizeArgNoVal; | 
|  | // Parameter indices are 1-indexed, hence Index=1 | 
|  | if (!checkPositiveIntArgument(S, AL, SizeExpr, SizeArgNoVal, /*Index=*/1)) | 
|  | return; | 
|  | if (!checkParamIsIntegerType(S, FD, AL, /*AttrArgNo=*/0)) | 
|  | return; | 
|  | ParamIdx SizeArgNo(SizeArgNoVal, D); | 
|  |  | 
|  | ParamIdx NumberArgNo; | 
|  | if (AL.getNumArgs() == 2) { | 
|  | const Expr *NumberExpr = AL.getArgAsExpr(1); | 
|  | int Val; | 
|  | // Parameter indices are 1-based, hence Index=2 | 
|  | if (!checkPositiveIntArgument(S, AL, NumberExpr, Val, /*Index=*/2)) | 
|  | return; | 
|  | if (!checkParamIsIntegerType(S, FD, AL, /*AttrArgNo=*/1)) | 
|  | return; | 
|  | NumberArgNo = ParamIdx(Val, D); | 
|  | } | 
|  |  | 
|  | D->addAttr(::new (S.Context) | 
|  | AllocSizeAttr(AL.getRange(), S.Context, SizeArgNo, NumberArgNo, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static bool checkTryLockFunAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL, | 
|  | SmallVectorImpl<Expr *> &Args) { | 
|  | if (!checkAttributeAtLeastNumArgs(S, AL, 1)) | 
|  | return false; | 
|  |  | 
|  | if (!isIntOrBool(AL.getArgAsExpr(0))) { | 
|  | S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) | 
|  | << AL << 1 << AANT_ArgumentIntOrBool; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // check that all arguments are lockable objects | 
|  | checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 1); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void handleSharedTrylockFunctionAttr(Sema &S, Decl *D, | 
|  | const ParsedAttr &AL) { | 
|  | SmallVector<Expr*, 2> Args; | 
|  | if (!checkTryLockFunAttrCommon(S, D, AL, Args)) | 
|  | return; | 
|  |  | 
|  | D->addAttr(::new (S.Context) SharedTrylockFunctionAttr( | 
|  | AL.getRange(), S.Context, AL.getArgAsExpr(0), Args.data(), Args.size(), | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void handleExclusiveTrylockFunctionAttr(Sema &S, Decl *D, | 
|  | const ParsedAttr &AL) { | 
|  | SmallVector<Expr*, 2> Args; | 
|  | if (!checkTryLockFunAttrCommon(S, D, AL, Args)) | 
|  | return; | 
|  |  | 
|  | D->addAttr(::new (S.Context) ExclusiveTrylockFunctionAttr( | 
|  | AL.getRange(), S.Context, AL.getArgAsExpr(0), Args.data(), | 
|  | Args.size(), AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void handleLockReturnedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | // check that the argument is lockable object | 
|  | SmallVector<Expr*, 1> Args; | 
|  | checkAttrArgsAreCapabilityObjs(S, D, AL, Args); | 
|  | unsigned Size = Args.size(); | 
|  | if (Size == 0) | 
|  | return; | 
|  |  | 
|  | D->addAttr(::new (S.Context) | 
|  | LockReturnedAttr(AL.getRange(), S.Context, Args[0], | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void handleLocksExcludedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | if (!checkAttributeAtLeastNumArgs(S, AL, 1)) | 
|  | return; | 
|  |  | 
|  | // check that all arguments are lockable objects | 
|  | SmallVector<Expr*, 1> Args; | 
|  | checkAttrArgsAreCapabilityObjs(S, D, AL, Args); | 
|  | unsigned Size = Args.size(); | 
|  | if (Size == 0) | 
|  | return; | 
|  | Expr **StartArg = &Args[0]; | 
|  |  | 
|  | D->addAttr(::new (S.Context) | 
|  | LocksExcludedAttr(AL.getRange(), S.Context, StartArg, Size, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static bool checkFunctionConditionAttr(Sema &S, Decl *D, const ParsedAttr &AL, | 
|  | Expr *&Cond, StringRef &Msg) { | 
|  | Cond = AL.getArgAsExpr(0); | 
|  | if (!Cond->isTypeDependent()) { | 
|  | ExprResult Converted = S.PerformContextuallyConvertToBool(Cond); | 
|  | if (Converted.isInvalid()) | 
|  | return false; | 
|  | Cond = Converted.get(); | 
|  | } | 
|  |  | 
|  | if (!S.checkStringLiteralArgumentAttr(AL, 1, Msg)) | 
|  | return false; | 
|  |  | 
|  | if (Msg.empty()) | 
|  | Msg = "<no message provided>"; | 
|  |  | 
|  | SmallVector<PartialDiagnosticAt, 8> Diags; | 
|  | if (isa<FunctionDecl>(D) && !Cond->isValueDependent() && | 
|  | !Expr::isPotentialConstantExprUnevaluated(Cond, cast<FunctionDecl>(D), | 
|  | Diags)) { | 
|  | S.Diag(AL.getLoc(), diag::err_attr_cond_never_constant_expr) << AL; | 
|  | for (const PartialDiagnosticAt &PDiag : Diags) | 
|  | S.Diag(PDiag.first, PDiag.second); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void handleEnableIfAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | S.Diag(AL.getLoc(), diag::ext_clang_enable_if); | 
|  |  | 
|  | Expr *Cond; | 
|  | StringRef Msg; | 
|  | if (checkFunctionConditionAttr(S, D, AL, Cond, Msg)) | 
|  | D->addAttr(::new (S.Context) | 
|  | EnableIfAttr(AL.getRange(), S.Context, Cond, Msg, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | /// Determines if a given Expr references any of the given function's | 
|  | /// ParmVarDecls, or the function's implicit `this` parameter (if applicable). | 
|  | class ArgumentDependenceChecker | 
|  | : public RecursiveASTVisitor<ArgumentDependenceChecker> { | 
|  | #ifndef NDEBUG | 
|  | const CXXRecordDecl *ClassType; | 
|  | #endif | 
|  | llvm::SmallPtrSet<const ParmVarDecl *, 16> Parms; | 
|  | bool Result; | 
|  |  | 
|  | public: | 
|  | ArgumentDependenceChecker(const FunctionDecl *FD) { | 
|  | #ifndef NDEBUG | 
|  | if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) | 
|  | ClassType = MD->getParent(); | 
|  | else | 
|  | ClassType = nullptr; | 
|  | #endif | 
|  | Parms.insert(FD->param_begin(), FD->param_end()); | 
|  | } | 
|  |  | 
|  | bool referencesArgs(Expr *E) { | 
|  | Result = false; | 
|  | TraverseStmt(E); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | bool VisitCXXThisExpr(CXXThisExpr *E) { | 
|  | assert(E->getType()->getPointeeCXXRecordDecl() == ClassType && | 
|  | "`this` doesn't refer to the enclosing class?"); | 
|  | Result = true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool VisitDeclRefExpr(DeclRefExpr *DRE) { | 
|  | if (const auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) | 
|  | if (Parms.count(PVD)) { | 
|  | Result = true; | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | static void handleDiagnoseIfAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | S.Diag(AL.getLoc(), diag::ext_clang_diagnose_if); | 
|  |  | 
|  | Expr *Cond; | 
|  | StringRef Msg; | 
|  | if (!checkFunctionConditionAttr(S, D, AL, Cond, Msg)) | 
|  | return; | 
|  |  | 
|  | StringRef DiagTypeStr; | 
|  | if (!S.checkStringLiteralArgumentAttr(AL, 2, DiagTypeStr)) | 
|  | return; | 
|  |  | 
|  | DiagnoseIfAttr::DiagnosticType DiagType; | 
|  | if (!DiagnoseIfAttr::ConvertStrToDiagnosticType(DiagTypeStr, DiagType)) { | 
|  | S.Diag(AL.getArgAsExpr(2)->getBeginLoc(), | 
|  | diag::err_diagnose_if_invalid_diagnostic_type); | 
|  | return; | 
|  | } | 
|  |  | 
|  | bool ArgDependent = false; | 
|  | if (const auto *FD = dyn_cast<FunctionDecl>(D)) | 
|  | ArgDependent = ArgumentDependenceChecker(FD).referencesArgs(Cond); | 
|  | D->addAttr(::new (S.Context) DiagnoseIfAttr( | 
|  | AL.getRange(), S.Context, Cond, Msg, DiagType, ArgDependent, | 
|  | cast<NamedDecl>(D), AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void handlePassObjectSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | if (D->hasAttr<PassObjectSizeAttr>()) { | 
|  | S.Diag(D->getBeginLoc(), diag::err_attribute_only_once_per_parameter) << AL; | 
|  | return; | 
|  | } | 
|  |  | 
|  | Expr *E = AL.getArgAsExpr(0); | 
|  | uint32_t Type; | 
|  | if (!checkUInt32Argument(S, AL, E, Type, /*Idx=*/1)) | 
|  | return; | 
|  |  | 
|  | // pass_object_size's argument is passed in as the second argument of | 
|  | // __builtin_object_size. So, it has the same constraints as that second | 
|  | // argument; namely, it must be in the range [0, 3]. | 
|  | if (Type > 3) { | 
|  | S.Diag(E->getBeginLoc(), diag::err_attribute_argument_outof_range) | 
|  | << AL << 0 << 3 << E->getSourceRange(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // pass_object_size is only supported on constant pointer parameters; as a | 
|  | // kindness to users, we allow the parameter to be non-const for declarations. | 
|  | // At this point, we have no clue if `D` belongs to a function declaration or | 
|  | // definition, so we defer the constness check until later. | 
|  | if (!cast<ParmVarDecl>(D)->getType()->isPointerType()) { | 
|  | S.Diag(D->getBeginLoc(), diag::err_attribute_pointers_only) << AL << 1; | 
|  | return; | 
|  | } | 
|  |  | 
|  | D->addAttr(::new (S.Context) PassObjectSizeAttr( | 
|  | AL.getRange(), S.Context, (int)Type, AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void handleConsumableAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | ConsumableAttr::ConsumedState DefaultState; | 
|  |  | 
|  | if (AL.isArgIdent(0)) { | 
|  | IdentifierLoc *IL = AL.getArgAsIdent(0); | 
|  | if (!ConsumableAttr::ConvertStrToConsumedState(IL->Ident->getName(), | 
|  | DefaultState)) { | 
|  | S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << AL | 
|  | << IL->Ident; | 
|  | return; | 
|  | } | 
|  | } else { | 
|  | S.Diag(AL.getLoc(), diag::err_attribute_argument_type) | 
|  | << AL << AANT_ArgumentIdentifier; | 
|  | return; | 
|  | } | 
|  |  | 
|  | D->addAttr(::new (S.Context) | 
|  | ConsumableAttr(AL.getRange(), S.Context, DefaultState, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static bool checkForConsumableClass(Sema &S, const CXXMethodDecl *MD, | 
|  | const ParsedAttr &AL) { | 
|  | ASTContext &CurrContext = S.getASTContext(); | 
|  | QualType ThisType = MD->getThisType(CurrContext)->getPointeeType(); | 
|  |  | 
|  | if (const CXXRecordDecl *RD = ThisType->getAsCXXRecordDecl()) { | 
|  | if (!RD->hasAttr<ConsumableAttr>()) { | 
|  | S.Diag(AL.getLoc(), diag::warn_attr_on_unconsumable_class) << | 
|  | RD->getNameAsString(); | 
|  |  | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void handleCallableWhenAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | if (!checkAttributeAtLeastNumArgs(S, AL, 1)) | 
|  | return; | 
|  |  | 
|  | if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), AL)) | 
|  | return; | 
|  |  | 
|  | SmallVector<CallableWhenAttr::ConsumedState, 3> States; | 
|  | for (unsigned ArgIndex = 0; ArgIndex < AL.getNumArgs(); ++ArgIndex) { | 
|  | CallableWhenAttr::ConsumedState CallableState; | 
|  |  | 
|  | StringRef StateString; | 
|  | SourceLocation Loc; | 
|  | if (AL.isArgIdent(ArgIndex)) { | 
|  | IdentifierLoc *Ident = AL.getArgAsIdent(ArgIndex); | 
|  | StateString = Ident->Ident->getName(); | 
|  | Loc = Ident->Loc; | 
|  | } else { | 
|  | if (!S.checkStringLiteralArgumentAttr(AL, ArgIndex, StateString, &Loc)) | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!CallableWhenAttr::ConvertStrToConsumedState(StateString, | 
|  | CallableState)) { | 
|  | S.Diag(Loc, diag::warn_attribute_type_not_supported) << AL << StateString; | 
|  | return; | 
|  | } | 
|  |  | 
|  | States.push_back(CallableState); | 
|  | } | 
|  |  | 
|  | D->addAttr(::new (S.Context) | 
|  | CallableWhenAttr(AL.getRange(), S.Context, States.data(), | 
|  | States.size(), AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void handleParamTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | ParamTypestateAttr::ConsumedState ParamState; | 
|  |  | 
|  | if (AL.isArgIdent(0)) { | 
|  | IdentifierLoc *Ident = AL.getArgAsIdent(0); | 
|  | StringRef StateString = Ident->Ident->getName(); | 
|  |  | 
|  | if (!ParamTypestateAttr::ConvertStrToConsumedState(StateString, | 
|  | ParamState)) { | 
|  | S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported) | 
|  | << AL << StateString; | 
|  | return; | 
|  | } | 
|  | } else { | 
|  | S.Diag(AL.getLoc(), diag::err_attribute_argument_type) | 
|  | << AL << AANT_ArgumentIdentifier; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // FIXME: This check is currently being done in the analysis.  It can be | 
|  | //        enabled here only after the parser propagates attributes at | 
|  | //        template specialization definition, not declaration. | 
|  | //QualType ReturnType = cast<ParmVarDecl>(D)->getType(); | 
|  | //const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl(); | 
|  | // | 
|  | //if (!RD || !RD->hasAttr<ConsumableAttr>()) { | 
|  | //    S.Diag(AL.getLoc(), diag::warn_return_state_for_unconsumable_type) << | 
|  | //      ReturnType.getAsString(); | 
|  | //    return; | 
|  | //} | 
|  |  | 
|  | D->addAttr(::new (S.Context) | 
|  | ParamTypestateAttr(AL.getRange(), S.Context, ParamState, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void handleReturnTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | ReturnTypestateAttr::ConsumedState ReturnState; | 
|  |  | 
|  | if (AL.isArgIdent(0)) { | 
|  | IdentifierLoc *IL = AL.getArgAsIdent(0); | 
|  | if (!ReturnTypestateAttr::ConvertStrToConsumedState(IL->Ident->getName(), | 
|  | ReturnState)) { | 
|  | S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << AL | 
|  | << IL->Ident; | 
|  | return; | 
|  | } | 
|  | } else { | 
|  | S.Diag(AL.getLoc(), diag::err_attribute_argument_type) | 
|  | << AL << AANT_ArgumentIdentifier; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // FIXME: This check is currently being done in the analysis.  It can be | 
|  | //        enabled here only after the parser propagates attributes at | 
|  | //        template specialization definition, not declaration. | 
|  | //QualType ReturnType; | 
|  | // | 
|  | //if (const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D)) { | 
|  | //  ReturnType = Param->getType(); | 
|  | // | 
|  | //} else if (const CXXConstructorDecl *Constructor = | 
|  | //             dyn_cast<CXXConstructorDecl>(D)) { | 
|  | //  ReturnType = Constructor->getThisType(S.getASTContext())->getPointeeType(); | 
|  | // | 
|  | //} else { | 
|  | // | 
|  | //  ReturnType = cast<FunctionDecl>(D)->getCallResultType(); | 
|  | //} | 
|  | // | 
|  | //const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl(); | 
|  | // | 
|  | //if (!RD || !RD->hasAttr<ConsumableAttr>()) { | 
|  | //    S.Diag(Attr.getLoc(), diag::warn_return_state_for_unconsumable_type) << | 
|  | //      ReturnType.getAsString(); | 
|  | //    return; | 
|  | //} | 
|  |  | 
|  | D->addAttr(::new (S.Context) | 
|  | ReturnTypestateAttr(AL.getRange(), S.Context, ReturnState, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void handleSetTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), AL)) | 
|  | return; | 
|  |  | 
|  | SetTypestateAttr::ConsumedState NewState; | 
|  | if (AL.isArgIdent(0)) { | 
|  | IdentifierLoc *Ident = AL.getArgAsIdent(0); | 
|  | StringRef Param = Ident->Ident->getName(); | 
|  | if (!SetTypestateAttr::ConvertStrToConsumedState(Param, NewState)) { | 
|  | S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported) << AL | 
|  | << Param; | 
|  | return; | 
|  | } | 
|  | } else { | 
|  | S.Diag(AL.getLoc(), diag::err_attribute_argument_type) | 
|  | << AL << AANT_ArgumentIdentifier; | 
|  | return; | 
|  | } | 
|  |  | 
|  | D->addAttr(::new (S.Context) | 
|  | SetTypestateAttr(AL.getRange(), S.Context, NewState, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void handleTestTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), AL)) | 
|  | return; | 
|  |  | 
|  | TestTypestateAttr::ConsumedState TestState; | 
|  | if (AL.isArgIdent(0)) { | 
|  | IdentifierLoc *Ident = AL.getArgAsIdent(0); | 
|  | StringRef Param = Ident->Ident->getName(); | 
|  | if (!TestTypestateAttr::ConvertStrToConsumedState(Param, TestState)) { | 
|  | S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported) << AL | 
|  | << Param; | 
|  | return; | 
|  | } | 
|  | } else { | 
|  | S.Diag(AL.getLoc(), diag::err_attribute_argument_type) | 
|  | << AL << AANT_ArgumentIdentifier; | 
|  | return; | 
|  | } | 
|  |  | 
|  | D->addAttr(::new (S.Context) | 
|  | TestTypestateAttr(AL.getRange(), S.Context, TestState, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void handleExtVectorTypeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | // Remember this typedef decl, we will need it later for diagnostics. | 
|  | S.ExtVectorDecls.push_back(cast<TypedefNameDecl>(D)); | 
|  | } | 
|  |  | 
|  | static void handlePackedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | if (auto *TD = dyn_cast<TagDecl>(D)) | 
|  | TD->addAttr(::new (S.Context) PackedAttr(AL.getRange(), S.Context, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | else if (auto *FD = dyn_cast<FieldDecl>(D)) { | 
|  | bool BitfieldByteAligned = (!FD->getType()->isDependentType() && | 
|  | !FD->getType()->isIncompleteType() && | 
|  | FD->isBitField() && | 
|  | S.Context.getTypeAlign(FD->getType()) <= 8); | 
|  |  | 
|  | if (S.getASTContext().getTargetInfo().getTriple().isPS4()) { | 
|  | if (BitfieldByteAligned) | 
|  | // The PS4 target needs to maintain ABI backwards compatibility. | 
|  | S.Diag(AL.getLoc(), diag::warn_attribute_ignored_for_field_of_type) | 
|  | << AL << FD->getType(); | 
|  | else | 
|  | FD->addAttr(::new (S.Context) PackedAttr( | 
|  | AL.getRange(), S.Context, AL.getAttributeSpellingListIndex())); | 
|  | } else { | 
|  | // Report warning about changed offset in the newer compiler versions. | 
|  | if (BitfieldByteAligned) | 
|  | S.Diag(AL.getLoc(), diag::warn_attribute_packed_for_bitfield); | 
|  |  | 
|  | FD->addAttr(::new (S.Context) PackedAttr( | 
|  | AL.getRange(), S.Context, AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | } else | 
|  | S.Diag(AL.getLoc(), diag::warn_attribute_ignored) << AL; | 
|  | } | 
|  |  | 
|  | static bool checkIBOutletCommon(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | // The IBOutlet/IBOutletCollection attributes only apply to instance | 
|  | // variables or properties of Objective-C classes.  The outlet must also | 
|  | // have an object reference type. | 
|  | if (const auto *VD = dyn_cast<ObjCIvarDecl>(D)) { | 
|  | if (!VD->getType()->getAs<ObjCObjectPointerType>()) { | 
|  | S.Diag(AL.getLoc(), diag::warn_iboutlet_object_type) | 
|  | << AL << VD->getType() << 0; | 
|  | return false; | 
|  | } | 
|  | } | 
|  | else if (const auto *PD = dyn_cast<ObjCPropertyDecl>(D)) { | 
|  | if (!PD->getType()->getAs<ObjCObjectPointerType>()) { | 
|  | S.Diag(AL.getLoc(), diag::warn_iboutlet_object_type) | 
|  | << AL << PD->getType() << 1; | 
|  | return false; | 
|  | } | 
|  | } | 
|  | else { | 
|  | S.Diag(AL.getLoc(), diag::warn_attribute_iboutlet) << AL; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void handleIBOutlet(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | if (!checkIBOutletCommon(S, D, AL)) | 
|  | return; | 
|  |  | 
|  | D->addAttr(::new (S.Context) | 
|  | IBOutletAttr(AL.getRange(), S.Context, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void handleIBOutletCollection(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  |  | 
|  | // The iboutletcollection attribute can have zero or one arguments. | 
|  | if (AL.getNumArgs() > 1) { | 
|  | S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!checkIBOutletCommon(S, D, AL)) | 
|  | return; | 
|  |  | 
|  | ParsedType PT; | 
|  |  | 
|  | if (AL.hasParsedType()) | 
|  | PT = AL.getTypeArg(); | 
|  | else { | 
|  | PT = S.getTypeName(S.Context.Idents.get("NSObject"), AL.getLoc(), | 
|  | S.getScopeForContext(D->getDeclContext()->getParent())); | 
|  | if (!PT) { | 
|  | S.Diag(AL.getLoc(), diag::err_iboutletcollection_type) << "NSObject"; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | TypeSourceInfo *QTLoc = nullptr; | 
|  | QualType QT = S.GetTypeFromParser(PT, &QTLoc); | 
|  | if (!QTLoc) | 
|  | QTLoc = S.Context.getTrivialTypeSourceInfo(QT, AL.getLoc()); | 
|  |  | 
|  | // Diagnose use of non-object type in iboutletcollection attribute. | 
|  | // FIXME. Gnu attribute extension ignores use of builtin types in | 
|  | // attributes. So, __attribute__((iboutletcollection(char))) will be | 
|  | // treated as __attribute__((iboutletcollection())). | 
|  | if (!QT->isObjCIdType() && !QT->isObjCObjectType()) { | 
|  | S.Diag(AL.getLoc(), | 
|  | QT->isBuiltinType() ? diag::err_iboutletcollection_builtintype | 
|  | : diag::err_iboutletcollection_type) << QT; | 
|  | return; | 
|  | } | 
|  |  | 
|  | D->addAttr(::new (S.Context) | 
|  | IBOutletCollectionAttr(AL.getRange(), S.Context, QTLoc, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | bool Sema::isValidPointerAttrType(QualType T, bool RefOkay) { | 
|  | if (RefOkay) { | 
|  | if (T->isReferenceType()) | 
|  | return true; | 
|  | } else { | 
|  | T = T.getNonReferenceType(); | 
|  | } | 
|  |  | 
|  | // The nonnull attribute, and other similar attributes, can be applied to a | 
|  | // transparent union that contains a pointer type. | 
|  | if (const RecordType *UT = T->getAsUnionType()) { | 
|  | if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) { | 
|  | RecordDecl *UD = UT->getDecl(); | 
|  | for (const auto *I : UD->fields()) { | 
|  | QualType QT = I->getType(); | 
|  | if (QT->isAnyPointerType() || QT->isBlockPointerType()) | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return T->isAnyPointerType() || T->isBlockPointerType(); | 
|  | } | 
|  |  | 
|  | static bool attrNonNullArgCheck(Sema &S, QualType T, const ParsedAttr &AL, | 
|  | SourceRange AttrParmRange, | 
|  | SourceRange TypeRange, | 
|  | bool isReturnValue = false) { | 
|  | if (!S.isValidPointerAttrType(T)) { | 
|  | if (isReturnValue) | 
|  | S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only) | 
|  | << AL << AttrParmRange << TypeRange; | 
|  | else | 
|  | S.Diag(AL.getLoc(), diag::warn_attribute_pointers_only) | 
|  | << AL << AttrParmRange << TypeRange << 0; | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void handleNonNullAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | SmallVector<ParamIdx, 8> NonNullArgs; | 
|  | for (unsigned I = 0; I < AL.getNumArgs(); ++I) { | 
|  | Expr *Ex = AL.getArgAsExpr(I); | 
|  | ParamIdx Idx; | 
|  | if (!checkFunctionOrMethodParameterIndex(S, D, AL, I + 1, Ex, Idx)) | 
|  | return; | 
|  |  | 
|  | // Is the function argument a pointer type? | 
|  | if (Idx.getASTIndex() < getFunctionOrMethodNumParams(D) && | 
|  | !attrNonNullArgCheck( | 
|  | S, getFunctionOrMethodParamType(D, Idx.getASTIndex()), AL, | 
|  | Ex->getSourceRange(), | 
|  | getFunctionOrMethodParamRange(D, Idx.getASTIndex()))) | 
|  | continue; | 
|  |  | 
|  | NonNullArgs.push_back(Idx); | 
|  | } | 
|  |  | 
|  | // If no arguments were specified to __attribute__((nonnull)) then all pointer | 
|  | // arguments have a nonnull attribute; warn if there aren't any. Skip this | 
|  | // check if the attribute came from a macro expansion or a template | 
|  | // instantiation. | 
|  | if (NonNullArgs.empty() && AL.getLoc().isFileID() && | 
|  | !S.inTemplateInstantiation()) { | 
|  | bool AnyPointers = isFunctionOrMethodVariadic(D); | 
|  | for (unsigned I = 0, E = getFunctionOrMethodNumParams(D); | 
|  | I != E && !AnyPointers; ++I) { | 
|  | QualType T = getFunctionOrMethodParamType(D, I); | 
|  | if (T->isDependentType() || S.isValidPointerAttrType(T)) | 
|  | AnyPointers = true; | 
|  | } | 
|  |  | 
|  | if (!AnyPointers) | 
|  | S.Diag(AL.getLoc(), diag::warn_attribute_nonnull_no_pointers); | 
|  | } | 
|  |  | 
|  | ParamIdx *Start = NonNullArgs.data(); | 
|  | unsigned Size = NonNullArgs.size(); | 
|  | llvm::array_pod_sort(Start, Start + Size); | 
|  | D->addAttr(::new (S.Context) | 
|  | NonNullAttr(AL.getRange(), S.Context, Start, Size, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void handleNonNullAttrParameter(Sema &S, ParmVarDecl *D, | 
|  | const ParsedAttr &AL) { | 
|  | if (AL.getNumArgs() > 0) { | 
|  | if (D->getFunctionType()) { | 
|  | handleNonNullAttr(S, D, AL); | 
|  | } else { | 
|  | S.Diag(AL.getLoc(), diag::warn_attribute_nonnull_parm_no_args) | 
|  | << D->getSourceRange(); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Is the argument a pointer type? | 
|  | if (!attrNonNullArgCheck(S, D->getType(), AL, SourceRange(), | 
|  | D->getSourceRange())) | 
|  | return; | 
|  |  | 
|  | D->addAttr(::new (S.Context) | 
|  | NonNullAttr(AL.getRange(), S.Context, nullptr, 0, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void handleReturnsNonNullAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | QualType ResultType = getFunctionOrMethodResultType(D); | 
|  | SourceRange SR = getFunctionOrMethodResultSourceRange(D); | 
|  | if (!attrNonNullArgCheck(S, ResultType, AL, SourceRange(), SR, | 
|  | /* isReturnValue */ true)) | 
|  | return; | 
|  |  | 
|  | D->addAttr(::new (S.Context) | 
|  | ReturnsNonNullAttr(AL.getRange(), S.Context, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void handleNoEscapeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | if (D->isInvalidDecl()) | 
|  | return; | 
|  |  | 
|  | // noescape only applies to pointer types. | 
|  | QualType T = cast<ParmVarDecl>(D)->getType(); | 
|  | if (!S.isValidPointerAttrType(T, /* RefOkay */ true)) { | 
|  | S.Diag(AL.getLoc(), diag::warn_attribute_pointers_only) | 
|  | << AL << AL.getRange() << 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | D->addAttr(::new (S.Context) NoEscapeAttr( | 
|  | AL.getRange(), S.Context, AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void handleAssumeAlignedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | Expr *E = AL.getArgAsExpr(0), | 
|  | *OE = AL.getNumArgs() > 1 ? AL.getArgAsExpr(1) : nullptr; | 
|  | S.AddAssumeAlignedAttr(AL.getRange(), D, E, OE, | 
|  | AL.getAttributeSpellingListIndex()); | 
|  | } | 
|  |  | 
|  | static void handleAllocAlignAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | S.AddAllocAlignAttr(AL.getRange(), D, AL.getArgAsExpr(0), | 
|  | AL.getAttributeSpellingListIndex()); | 
|  | } | 
|  |  | 
|  | void Sema::AddAssumeAlignedAttr(SourceRange AttrRange, Decl *D, Expr *E, | 
|  | Expr *OE, unsigned SpellingListIndex) { | 
|  | QualType ResultType = getFunctionOrMethodResultType(D); | 
|  | SourceRange SR = getFunctionOrMethodResultSourceRange(D); | 
|  |  | 
|  | AssumeAlignedAttr TmpAttr(AttrRange, Context, E, OE, SpellingListIndex); | 
|  | SourceLocation AttrLoc = AttrRange.getBegin(); | 
|  |  | 
|  | if (!isValidPointerAttrType(ResultType, /* RefOkay */ true)) { | 
|  | Diag(AttrLoc, diag::warn_attribute_return_pointers_refs_only) | 
|  | << &TmpAttr << AttrRange << SR; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!E->isValueDependent()) { | 
|  | llvm::APSInt I(64); | 
|  | if (!E->isIntegerConstantExpr(I, Context)) { | 
|  | if (OE) | 
|  | Diag(AttrLoc, diag::err_attribute_argument_n_type) | 
|  | << &TmpAttr << 1 << AANT_ArgumentIntegerConstant | 
|  | << E->getSourceRange(); | 
|  | else | 
|  | Diag(AttrLoc, diag::err_attribute_argument_type) | 
|  | << &TmpAttr << AANT_ArgumentIntegerConstant | 
|  | << E->getSourceRange(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!I.isPowerOf2()) { | 
|  | Diag(AttrLoc, diag::err_alignment_not_power_of_two) | 
|  | << E->getSourceRange(); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (OE) { | 
|  | if (!OE->isValueDependent()) { | 
|  | llvm::APSInt I(64); | 
|  | if (!OE->isIntegerConstantExpr(I, Context)) { | 
|  | Diag(AttrLoc, diag::err_attribute_argument_n_type) | 
|  | << &TmpAttr << 2 << AANT_ArgumentIntegerConstant | 
|  | << OE->getSourceRange(); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | D->addAttr(::new (Context) | 
|  | AssumeAlignedAttr(AttrRange, Context, E, OE, SpellingListIndex)); | 
|  | } | 
|  |  | 
|  | void Sema::AddAllocAlignAttr(SourceRange AttrRange, Decl *D, Expr *ParamExpr, | 
|  | unsigned SpellingListIndex) { | 
|  | QualType ResultType = getFunctionOrMethodResultType(D); | 
|  |  | 
|  | AllocAlignAttr TmpAttr(AttrRange, Context, ParamIdx(), SpellingListIndex); | 
|  | SourceLocation AttrLoc = AttrRange.getBegin(); | 
|  |  | 
|  | if (!ResultType->isDependentType() && | 
|  | !isValidPointerAttrType(ResultType, /* RefOkay */ true)) { | 
|  | Diag(AttrLoc, diag::warn_attribute_return_pointers_refs_only) | 
|  | << &TmpAttr << AttrRange << getFunctionOrMethodResultSourceRange(D); | 
|  | return; | 
|  | } | 
|  |  | 
|  | ParamIdx Idx; | 
|  | const auto *FuncDecl = cast<FunctionDecl>(D); | 
|  | if (!checkFunctionOrMethodParameterIndex(*this, FuncDecl, TmpAttr, | 
|  | /*AttrArgNo=*/1, ParamExpr, Idx)) | 
|  | return; | 
|  |  | 
|  | QualType Ty = getFunctionOrMethodParamType(D, Idx.getASTIndex()); | 
|  | if (!Ty->isDependentType() && !Ty->isIntegralType(Context)) { | 
|  | Diag(ParamExpr->getBeginLoc(), diag::err_attribute_integers_only) | 
|  | << &TmpAttr | 
|  | << FuncDecl->getParamDecl(Idx.getASTIndex())->getSourceRange(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | D->addAttr(::new (Context) | 
|  | AllocAlignAttr(AttrRange, Context, Idx, SpellingListIndex)); | 
|  | } | 
|  |  | 
|  | /// Normalize the attribute, __foo__ becomes foo. | 
|  | /// Returns true if normalization was applied. | 
|  | static bool normalizeName(StringRef &AttrName) { | 
|  | if (AttrName.size() > 4 && AttrName.startswith("__") && | 
|  | AttrName.endswith("__")) { | 
|  | AttrName = AttrName.drop_front(2).drop_back(2); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void handleOwnershipAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | // This attribute must be applied to a function declaration. The first | 
|  | // argument to the attribute must be an identifier, the name of the resource, | 
|  | // for example: malloc. The following arguments must be argument indexes, the | 
|  | // arguments must be of integer type for Returns, otherwise of pointer type. | 
|  | // The difference between Holds and Takes is that a pointer may still be used | 
|  | // after being held. free() should be __attribute((ownership_takes)), whereas | 
|  | // a list append function may well be __attribute((ownership_holds)). | 
|  |  | 
|  | if (!AL.isArgIdent(0)) { | 
|  | S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) | 
|  | << AL << 1 << AANT_ArgumentIdentifier; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Figure out our Kind. | 
|  | OwnershipAttr::OwnershipKind K = | 
|  | OwnershipAttr(AL.getLoc(), S.Context, nullptr, nullptr, 0, | 
|  | AL.getAttributeSpellingListIndex()).getOwnKind(); | 
|  |  | 
|  | // Check arguments. | 
|  | switch (K) { | 
|  | case OwnershipAttr::Takes: | 
|  | case OwnershipAttr::Holds: | 
|  | if (AL.getNumArgs() < 2) { | 
|  | S.Diag(AL.getLoc(), diag::err_attribute_too_few_arguments) << AL << 2; | 
|  | return; | 
|  | } | 
|  | break; | 
|  | case OwnershipAttr::Returns: | 
|  | if (AL.getNumArgs() > 2) { | 
|  | S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 1; | 
|  | return; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | IdentifierInfo *Module = AL.getArgAsIdent(0)->Ident; | 
|  |  | 
|  | StringRef ModuleName = Module->getName(); | 
|  | if (normalizeName(ModuleName)) { | 
|  | Module = &S.PP.getIdentifierTable().get(ModuleName); | 
|  | } | 
|  |  | 
|  | SmallVector<ParamIdx, 8> OwnershipArgs; | 
|  | for (unsigned i = 1; i < AL.getNumArgs(); ++i) { | 
|  | Expr *Ex = AL.getArgAsExpr(i); | 
|  | ParamIdx Idx; | 
|  | if (!checkFunctionOrMethodParameterIndex(S, D, AL, i, Ex, Idx)) | 
|  | return; | 
|  |  | 
|  | // Is the function argument a pointer type? | 
|  | QualType T = getFunctionOrMethodParamType(D, Idx.getASTIndex()); | 
|  | int Err = -1;  // No error | 
|  | switch (K) { | 
|  | case OwnershipAttr::Takes: | 
|  | case OwnershipAttr::Holds: | 
|  | if (!T->isAnyPointerType() && !T->isBlockPointerType()) | 
|  | Err = 0; | 
|  | break; | 
|  | case OwnershipAttr::Returns: | 
|  | if (!T->isIntegerType()) | 
|  | Err = 1; | 
|  | break; | 
|  | } | 
|  | if (-1 != Err) { | 
|  | S.Diag(AL.getLoc(), diag::err_ownership_type) << AL << Err | 
|  | << Ex->getSourceRange(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Check we don't have a conflict with another ownership attribute. | 
|  | for (const auto *I : D->specific_attrs<OwnershipAttr>()) { | 
|  | // Cannot have two ownership attributes of different kinds for the same | 
|  | // index. | 
|  | if (I->getOwnKind() != K && I->args_end() != | 
|  | std::find(I->args_begin(), I->args_end(), Idx)) { | 
|  | S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible) << AL << I; | 
|  | return; | 
|  | } else if (K == OwnershipAttr::Returns && | 
|  | I->getOwnKind() == OwnershipAttr::Returns) { | 
|  | // A returns attribute conflicts with any other returns attribute using | 
|  | // a different index. | 
|  | if (std::find(I->args_begin(), I->args_end(), Idx) == I->args_end()) { | 
|  | S.Diag(I->getLocation(), diag::err_ownership_returns_index_mismatch) | 
|  | << I->args_begin()->getSourceIndex(); | 
|  | if (I->args_size()) | 
|  | S.Diag(AL.getLoc(), diag::note_ownership_returns_index_mismatch) | 
|  | << Idx.getSourceIndex() << Ex->getSourceRange(); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  | OwnershipArgs.push_back(Idx); | 
|  | } | 
|  |  | 
|  | ParamIdx *Start = OwnershipArgs.data(); | 
|  | unsigned Size = OwnershipArgs.size(); | 
|  | llvm::array_pod_sort(Start, Start + Size); | 
|  | D->addAttr(::new (S.Context) | 
|  | OwnershipAttr(AL.getLoc(), S.Context, Module, Start, Size, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void handleWeakRefAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | // Check the attribute arguments. | 
|  | if (AL.getNumArgs() > 1) { | 
|  | S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // gcc rejects | 
|  | // class c { | 
|  | //   static int a __attribute__((weakref ("v2"))); | 
|  | //   static int b() __attribute__((weakref ("f3"))); | 
|  | // }; | 
|  | // and ignores the attributes of | 
|  | // void f(void) { | 
|  | //   static int a __attribute__((weakref ("v2"))); | 
|  | // } | 
|  | // we reject them | 
|  | const DeclContext *Ctx = D->getDeclContext()->getRedeclContext(); | 
|  | if (!Ctx->isFileContext()) { | 
|  | S.Diag(AL.getLoc(), diag::err_attribute_weakref_not_global_context) | 
|  | << cast<NamedDecl>(D); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // The GCC manual says | 
|  | // | 
|  | // At present, a declaration to which `weakref' is attached can only | 
|  | // be `static'. | 
|  | // | 
|  | // It also says | 
|  | // | 
|  | // Without a TARGET, | 
|  | // given as an argument to `weakref' or to `alias', `weakref' is | 
|  | // equivalent to `weak'. | 
|  | // | 
|  | // gcc 4.4.1 will accept | 
|  | // int a7 __attribute__((weakref)); | 
|  | // as | 
|  | // int a7 __attribute__((weak)); | 
|  | // This looks like a bug in gcc. We reject that for now. We should revisit | 
|  | // it if this behaviour is actually used. | 
|  |  | 
|  | // GCC rejects | 
|  | // static ((alias ("y"), weakref)). | 
|  | // Should we? How to check that weakref is before or after alias? | 
|  |  | 
|  | // FIXME: it would be good for us to keep the WeakRefAttr as-written instead | 
|  | // of transforming it into an AliasAttr.  The WeakRefAttr never uses the | 
|  | // StringRef parameter it was given anyway. | 
|  | StringRef Str; | 
|  | if (AL.getNumArgs() && S.checkStringLiteralArgumentAttr(AL, 0, Str)) | 
|  | // GCC will accept anything as the argument of weakref. Should we | 
|  | // check for an existing decl? | 
|  | D->addAttr(::new (S.Context) AliasAttr(AL.getRange(), S.Context, Str, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  |  | 
|  | D->addAttr(::new (S.Context) | 
|  | WeakRefAttr(AL.getRange(), S.Context, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void handleIFuncAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | StringRef Str; | 
|  | if (!S.checkStringLiteralArgumentAttr(AL, 0, Str)) | 
|  | return; | 
|  |  | 
|  | // Aliases should be on declarations, not definitions. | 
|  | const auto *FD = cast<FunctionDecl>(D); | 
|  | if (FD->isThisDeclarationADefinition()) { | 
|  | S.Diag(AL.getLoc(), diag::err_alias_is_definition) << FD << 1; | 
|  | return; | 
|  | } | 
|  |  | 
|  | D->addAttr(::new (S.Context) IFuncAttr(AL.getRange(), S.Context, Str, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void handleAliasAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | StringRef Str; | 
|  | if (!S.checkStringLiteralArgumentAttr(AL, 0, Str)) | 
|  | return; | 
|  |  | 
|  | if (S.Context.getTargetInfo().getTriple().isOSDarwin()) { | 
|  | S.Diag(AL.getLoc(), diag::err_alias_not_supported_on_darwin); | 
|  | return; | 
|  | } | 
|  | if (S.Context.getTargetInfo().getTriple().isNVPTX()) { | 
|  | S.Diag(AL.getLoc(), diag::err_alias_not_supported_on_nvptx); | 
|  | } | 
|  |  | 
|  | // Aliases should be on declarations, not definitions. | 
|  | if (const auto *FD = dyn_cast<FunctionDecl>(D)) { | 
|  | if (FD->isThisDeclarationADefinition()) { | 
|  | S.Diag(AL.getLoc(), diag::err_alias_is_definition) << FD << 0; | 
|  | return; | 
|  | } | 
|  | } else { | 
|  | const auto *VD = cast<VarDecl>(D); | 
|  | if (VD->isThisDeclarationADefinition() && VD->isExternallyVisible()) { | 
|  | S.Diag(AL.getLoc(), diag::err_alias_is_definition) << VD << 0; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // FIXME: check if target symbol exists in current file | 
|  |  | 
|  | D->addAttr(::new (S.Context) AliasAttr(AL.getRange(), S.Context, Str, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void handleTLSModelAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | StringRef Model; | 
|  | SourceLocation LiteralLoc; | 
|  | // Check that it is a string. | 
|  | if (!S.checkStringLiteralArgumentAttr(AL, 0, Model, &LiteralLoc)) | 
|  | return; | 
|  |  | 
|  | // Check that the value. | 
|  | if (Model != "global-dynamic" && Model != "local-dynamic" | 
|  | && Model != "initial-exec" && Model != "local-exec") { | 
|  | S.Diag(LiteralLoc, diag::err_attr_tlsmodel_arg); | 
|  | return; | 
|  | } | 
|  |  | 
|  | D->addAttr(::new (S.Context) | 
|  | TLSModelAttr(AL.getRange(), S.Context, Model, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void handleRestrictAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | QualType ResultType = getFunctionOrMethodResultType(D); | 
|  | if (ResultType->isAnyPointerType() || ResultType->isBlockPointerType()) { | 
|  | D->addAttr(::new (S.Context) RestrictAttr( | 
|  | AL.getRange(), S.Context, AL.getAttributeSpellingListIndex())); | 
|  | return; | 
|  | } | 
|  |  | 
|  | S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only) | 
|  | << AL << getFunctionOrMethodResultSourceRange(D); | 
|  | } | 
|  |  | 
|  | static void handleCPUSpecificAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | FunctionDecl *FD = cast<FunctionDecl>(D); | 
|  |  | 
|  | if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) { | 
|  | if (MD->getParent()->isLambda()) { | 
|  | S.Diag(AL.getLoc(), diag::err_attribute_dll_lambda) << AL; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!checkAttributeAtLeastNumArgs(S, AL, 1)) | 
|  | return; | 
|  |  | 
|  | SmallVector<IdentifierInfo *, 8> CPUs; | 
|  | for (unsigned ArgNo = 0; ArgNo < getNumAttributeArgs(AL); ++ArgNo) { | 
|  | if (!AL.isArgIdent(ArgNo)) { | 
|  | S.Diag(AL.getLoc(), diag::err_attribute_argument_type) | 
|  | << AL << AANT_ArgumentIdentifier; | 
|  | return; | 
|  | } | 
|  |  | 
|  | IdentifierLoc *CPUArg = AL.getArgAsIdent(ArgNo); | 
|  | StringRef CPUName = CPUArg->Ident->getName().trim(); | 
|  |  | 
|  | if (!S.Context.getTargetInfo().validateCPUSpecificCPUDispatch(CPUName)) { | 
|  | S.Diag(CPUArg->Loc, diag::err_invalid_cpu_specific_dispatch_value) | 
|  | << CPUName << (AL.getKind() == ParsedAttr::AT_CPUDispatch); | 
|  | return; | 
|  | } | 
|  |  | 
|  | const TargetInfo &Target = S.Context.getTargetInfo(); | 
|  | if (llvm::any_of(CPUs, [CPUName, &Target](const IdentifierInfo *Cur) { | 
|  | return Target.CPUSpecificManglingCharacter(CPUName) == | 
|  | Target.CPUSpecificManglingCharacter(Cur->getName()); | 
|  | })) { | 
|  | S.Diag(AL.getLoc(), diag::warn_multiversion_duplicate_entries); | 
|  | return; | 
|  | } | 
|  | CPUs.push_back(CPUArg->Ident); | 
|  | } | 
|  |  | 
|  | FD->setIsMultiVersion(true); | 
|  | if (AL.getKind() == ParsedAttr::AT_CPUSpecific) | 
|  | D->addAttr(::new (S.Context) CPUSpecificAttr( | 
|  | AL.getRange(), S.Context, CPUs.data(), CPUs.size(), | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | else | 
|  | D->addAttr(::new (S.Context) CPUDispatchAttr( | 
|  | AL.getRange(), S.Context, CPUs.data(), CPUs.size(), | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void handleCommonAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | if (S.LangOpts.CPlusPlus) { | 
|  | S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang) | 
|  | << AL << AttributeLangSupport::Cpp; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (CommonAttr *CA = S.mergeCommonAttr(D, AL)) | 
|  | D->addAttr(CA); | 
|  | } | 
|  |  | 
|  | static void handleNakedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | if (checkAttrMutualExclusion<DisableTailCallsAttr>(S, D, AL)) | 
|  | return; | 
|  |  | 
|  | if (AL.isDeclspecAttribute()) { | 
|  | const auto &Triple = S.getASTContext().getTargetInfo().getTriple(); | 
|  | const auto &Arch = Triple.getArch(); | 
|  | if (Arch != llvm::Triple::x86 && | 
|  | (Arch != llvm::Triple::arm && Arch != llvm::Triple::thumb)) { | 
|  | S.Diag(AL.getLoc(), diag::err_attribute_not_supported_on_arch) | 
|  | << AL << Triple.getArchName(); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | D->addAttr(::new (S.Context) NakedAttr(AL.getRange(), S.Context, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void handleNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &Attrs) { | 
|  | if (hasDeclarator(D)) return; | 
|  |  | 
|  | if (!isa<ObjCMethodDecl>(D)) { | 
|  | S.Diag(Attrs.getLoc(), diag::warn_attribute_wrong_decl_type) | 
|  | << Attrs << ExpectedFunctionOrMethod; | 
|  | return; | 
|  | } | 
|  |  | 
|  | D->addAttr(::new (S.Context) NoReturnAttr( | 
|  | Attrs.getRange(), S.Context, Attrs.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void handleNoCfCheckAttr(Sema &S, Decl *D, const ParsedAttr &Attrs) { | 
|  | if (!S.getLangOpts().CFProtectionBranch) | 
|  | S.Diag(Attrs.getLoc(), diag::warn_nocf_check_attribute_ignored); | 
|  | else | 
|  | handleSimpleAttribute<AnyX86NoCfCheckAttr>(S, D, Attrs); | 
|  | } | 
|  |  | 
|  | bool Sema::CheckAttrNoArgs(const ParsedAttr &Attrs) { | 
|  | if (!checkAttributeNumArgs(*this, Attrs, 0)) { | 
|  | Attrs.setInvalid(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Sema::CheckAttrTarget(const ParsedAttr &AL) { | 
|  | // Check whether the attribute is valid on the current target. | 
|  | if (!AL.existsInTarget(Context.getTargetInfo())) { | 
|  | Diag(AL.getLoc(), diag::warn_unknown_attribute_ignored) << AL; | 
|  | AL.setInvalid(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void handleAnalyzerNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  |  | 
|  | // The checking path for 'noreturn' and 'analyzer_noreturn' are different | 
|  | // because 'analyzer_noreturn' does not impact the type. | 
|  | if (!isFunctionOrMethodOrBlock(D)) { | 
|  | ValueDecl *VD = dyn_cast<ValueDecl>(D); | 
|  | if (!VD || (!VD->getType()->isBlockPointerType() && | 
|  | !VD->getType()->isFunctionPointerType())) { | 
|  | S.Diag(AL.getLoc(), AL.isCXX11Attribute() | 
|  | ? diag::err_attribute_wrong_decl_type | 
|  | : diag::warn_attribute_wrong_decl_type) | 
|  | << AL << ExpectedFunctionMethodOrBlock; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | D->addAttr(::new (S.Context) | 
|  | AnalyzerNoReturnAttr(AL.getRange(), S.Context, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | // PS3 PPU-specific. | 
|  | static void handleVecReturnAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | /* | 
|  | Returning a Vector Class in Registers | 
|  |  | 
|  | According to the PPU ABI specifications, a class with a single member of | 
|  | vector type is returned in memory when used as the return value of a | 
|  | function. | 
|  | This results in inefficient code when implementing vector classes. To return | 
|  | the value in a single vector register, add the vecreturn attribute to the | 
|  | class definition. This attribute is also applicable to struct types. | 
|  |  | 
|  | Example: | 
|  |  | 
|  | struct Vector | 
|  | { | 
|  | __vector float xyzw; | 
|  | } __attribute__((vecreturn)); | 
|  |  | 
|  | Vector Add(Vector lhs, Vector rhs) | 
|  | { | 
|  | Vector result; | 
|  | result.xyzw = vec_add(lhs.xyzw, rhs.xyzw); | 
|  | return result; // This will be returned in a register | 
|  | } | 
|  | */ | 
|  | if (VecReturnAttr *A = D->getAttr<VecReturnAttr>()) { | 
|  | S.Diag(AL.getLoc(), diag::err_repeat_attribute) << A; | 
|  | return; | 
|  | } | 
|  |  | 
|  | const auto *R = cast<RecordDecl>(D); | 
|  | int count = 0; | 
|  |  | 
|  | if (!isa<CXXRecordDecl>(R)) { | 
|  | S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_vector_member); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!cast<CXXRecordDecl>(R)->isPOD()) { | 
|  | S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_pod_record); | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (const auto *I : R->fields()) { | 
|  | if ((count == 1) || !I->getType()->isVectorType()) { | 
|  | S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_vector_member); | 
|  | return; | 
|  | } | 
|  | count++; | 
|  | } | 
|  |  | 
|  | D->addAttr(::new (S.Context) VecReturnAttr( | 
|  | AL.getRange(), S.Context, AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void handleDependencyAttr(Sema &S, Scope *Scope, Decl *D, | 
|  | const ParsedAttr &AL) { | 
|  | if (isa<ParmVarDecl>(D)) { | 
|  | // [[carries_dependency]] can only be applied to a parameter if it is a | 
|  | // parameter of a function declaration or lambda. | 
|  | if (!(Scope->getFlags() & clang::Scope::FunctionDeclarationScope)) { | 
|  | S.Diag(AL.getLoc(), | 
|  | diag::err_carries_dependency_param_not_function_decl); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | D->addAttr(::new (S.Context) CarriesDependencyAttr( | 
|  | AL.getRange(), S.Context, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void handleUnusedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | bool IsCXX17Attr = AL.isCXX11Attribute() && !AL.getScopeName(); | 
|  |  | 
|  | // If this is spelled as the standard C++17 attribute, but not in C++17, warn | 
|  | // about using it as an extension. | 
|  | if (!S.getLangOpts().CPlusPlus17 && IsCXX17Attr) | 
|  | S.Diag(AL.getLoc(), diag::ext_cxx17_attr) << AL; | 
|  |  | 
|  | D->addAttr(::new (S.Context) UnusedAttr( | 
|  | AL.getRange(), S.Context, AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void handleConstructorAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | uint32_t priority = ConstructorAttr::DefaultPriority; | 
|  | if (AL.getNumArgs() && | 
|  | !checkUInt32Argument(S, AL, AL.getArgAsExpr(0), priority)) | 
|  | return; | 
|  |  | 
|  | D->addAttr(::new (S.Context) | 
|  | ConstructorAttr(AL.getRange(), S.Context, priority, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void handleDestructorAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | uint32_t priority = DestructorAttr::DefaultPriority; | 
|  | if (AL.getNumArgs() && | 
|  | !checkUInt32Argument(S, AL, AL.getArgAsExpr(0), priority)) | 
|  | return; | 
|  |  | 
|  | D->addAttr(::new (S.Context) | 
|  | DestructorAttr(AL.getRange(), S.Context, priority, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | template <typename AttrTy> | 
|  | static void handleAttrWithMessage(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | // Handle the case where the attribute has a text message. | 
|  | StringRef Str; | 
|  | if (AL.getNumArgs() == 1 && !S.checkStringLiteralArgumentAttr(AL, 0, Str)) | 
|  | return; | 
|  |  | 
|  | D->addAttr(::new (S.Context) AttrTy(AL.getRange(), S.Context, Str, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void handleObjCSuppresProtocolAttr(Sema &S, Decl *D, | 
|  | const ParsedAttr &AL) { | 
|  | if (!cast<ObjCProtocolDecl>(D)->isThisDeclarationADefinition()) { | 
|  | S.Diag(AL.getLoc(), diag::err_objc_attr_protocol_requires_definition) | 
|  | << AL << AL.getRange(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | D->addAttr(::new (S.Context) | 
|  | ObjCExplicitProtocolImplAttr(AL.getRange(), S.Context, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static bool checkAvailabilityAttr(Sema &S, SourceRange Range, | 
|  | IdentifierInfo *Platform, | 
|  | VersionTuple Introduced, | 
|  | VersionTuple Deprecated, | 
|  | VersionTuple Obsoleted) { | 
|  | StringRef PlatformName | 
|  | = AvailabilityAttr::getPrettyPlatformName(Platform->getName()); | 
|  | if (PlatformName.empty()) | 
|  | PlatformName = Platform->getName(); | 
|  |  | 
|  | // Ensure that Introduced <= Deprecated <= Obsoleted (although not all | 
|  | // of these steps are needed). | 
|  | if (!Introduced.empty() && !Deprecated.empty() && | 
|  | !(Introduced <= Deprecated)) { | 
|  | S.Diag(Range.getBegin(), diag::warn_availability_version_ordering) | 
|  | << 1 << PlatformName << Deprecated.getAsString() | 
|  | << 0 << Introduced.getAsString(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (!Introduced.empty() && !Obsoleted.empty() && | 
|  | !(Introduced <= Obsoleted)) { | 
|  | S.Diag(Range.getBegin(), diag::warn_availability_version_ordering) | 
|  | << 2 << PlatformName << Obsoleted.getAsString() | 
|  | << 0 << Introduced.getAsString(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (!Deprecated.empty() && !Obsoleted.empty() && | 
|  | !(Deprecated <= Obsoleted)) { | 
|  | S.Diag(Range.getBegin(), diag::warn_availability_version_ordering) | 
|  | << 2 << PlatformName << Obsoleted.getAsString() | 
|  | << 1 << Deprecated.getAsString(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Check whether the two versions match. | 
|  | /// | 
|  | /// If either version tuple is empty, then they are assumed to match. If | 
|  | /// \p BeforeIsOkay is true, then \p X can be less than or equal to \p Y. | 
|  | static bool versionsMatch(const VersionTuple &X, const VersionTuple &Y, | 
|  | bool BeforeIsOkay) { | 
|  | if (X.empty() || Y.empty()) | 
|  | return true; | 
|  |  | 
|  | if (X == Y) | 
|  | return true; | 
|  |  | 
|  | if (BeforeIsOkay && X < Y) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | AvailabilityAttr *Sema::mergeAvailabilityAttr(NamedDecl *D, SourceRange Range, | 
|  | IdentifierInfo *Platform, | 
|  | bool Implicit, | 
|  | VersionTuple Introduced, | 
|  | VersionTuple Deprecated, | 
|  | VersionTuple Obsoleted, | 
|  | bool IsUnavailable, | 
|  | StringRef Message, | 
|  | bool IsStrict, | 
|  | StringRef Replacement, | 
|  | AvailabilityMergeKind AMK, | 
|  | unsigned AttrSpellingListIndex) { | 
|  | VersionTuple MergedIntroduced = Introduced; | 
|  | VersionTuple MergedDeprecated = Deprecated; | 
|  | VersionTuple MergedObsoleted = Obsoleted; | 
|  | bool FoundAny = false; | 
|  | bool OverrideOrImpl = false; | 
|  | switch (AMK) { | 
|  | case AMK_None: | 
|  | case AMK_Redeclaration: | 
|  | OverrideOrImpl = false; | 
|  | break; | 
|  |  | 
|  | case AMK_Override: | 
|  | case AMK_ProtocolImplementation: | 
|  | OverrideOrImpl = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (D->hasAttrs()) { | 
|  | AttrVec &Attrs = D->getAttrs(); | 
|  | for (unsigned i = 0, e = Attrs.size(); i != e;) { | 
|  | const auto *OldAA = dyn_cast<AvailabilityAttr>(Attrs[i]); | 
|  | if (!OldAA) { | 
|  | ++i; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | IdentifierInfo *OldPlatform = OldAA->getPlatform(); | 
|  | if (OldPlatform != Platform) { | 
|  | ++i; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If there is an existing availability attribute for this platform that | 
|  | // is explicit and the new one is implicit use the explicit one and | 
|  | // discard the new implicit attribute. | 
|  | if (!OldAA->isImplicit() && Implicit) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // If there is an existing attribute for this platform that is implicit | 
|  | // and the new attribute is explicit then erase the old one and | 
|  | // continue processing the attributes. | 
|  | if (!Implicit && OldAA->isImplicit()) { | 
|  | Attrs.erase(Attrs.begin() + i); | 
|  | --e; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | FoundAny = true; | 
|  | VersionTuple OldIntroduced = OldAA->getIntroduced(); | 
|  | VersionTuple OldDeprecated = OldAA->getDeprecated(); | 
|  | VersionTuple OldObsoleted = OldAA->getObsoleted(); | 
|  | bool OldIsUnavailable = OldAA->getUnavailable(); | 
|  |  | 
|  | if (!versionsMatch(OldIntroduced, Introduced, OverrideOrImpl) || | 
|  | !versionsMatch(Deprecated, OldDeprecated, OverrideOrImpl) || | 
|  | !versionsMatch(Obsoleted, OldObsoleted, OverrideOrImpl) || | 
|  | !(OldIsUnavailable == IsUnavailable || | 
|  | (OverrideOrImpl && !OldIsUnavailable && IsUnavailable))) { | 
|  | if (OverrideOrImpl) { | 
|  | int Which = -1; | 
|  | VersionTuple FirstVersion; | 
|  | VersionTuple SecondVersion; | 
|  | if (!versionsMatch(OldIntroduced, Introduced, OverrideOrImpl)) { | 
|  | Which = 0; | 
|  | FirstVersion = OldIntroduced; | 
|  | SecondVersion = Introduced; | 
|  | } else if (!versionsMatch(Deprecated, OldDeprecated, OverrideOrImpl)) { | 
|  | Which = 1; | 
|  | FirstVersion = Deprecated; | 
|  | SecondVersion = OldDeprecated; | 
|  | } else if (!versionsMatch(Obsoleted, OldObsoleted, OverrideOrImpl)) { | 
|  | Which = 2; | 
|  | FirstVersion = Obsoleted; | 
|  | SecondVersion = OldObsoleted; | 
|  | } | 
|  |  | 
|  | if (Which == -1) { | 
|  | Diag(OldAA->getLocation(), | 
|  | diag::warn_mismatched_availability_override_unavail) | 
|  | << AvailabilityAttr::getPrettyPlatformName(Platform->getName()) | 
|  | << (AMK == AMK_Override); | 
|  | } else { | 
|  | Diag(OldAA->getLocation(), | 
|  | diag::warn_mismatched_availability_override) | 
|  | << Which | 
|  | << AvailabilityAttr::getPrettyPlatformName(Platform->getName()) | 
|  | << FirstVersion.getAsString() << SecondVersion.getAsString() | 
|  | << (AMK == AMK_Override); | 
|  | } | 
|  | if (AMK == AMK_Override) | 
|  | Diag(Range.getBegin(), diag::note_overridden_method); | 
|  | else | 
|  | Diag(Range.getBegin(), diag::note_protocol_method); | 
|  | } else { | 
|  | Diag(OldAA->getLocation(), diag::warn_mismatched_availability); | 
|  | Diag(Range.getBegin(), diag::note_previous_attribute); | 
|  | } | 
|  |  | 
|  | Attrs.erase(Attrs.begin() + i); | 
|  | --e; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | VersionTuple MergedIntroduced2 = MergedIntroduced; | 
|  | VersionTuple MergedDeprecated2 = MergedDeprecated; | 
|  | VersionTuple MergedObsoleted2 = MergedObsoleted; | 
|  |  | 
|  | if (MergedIntroduced2.empty()) | 
|  | MergedIntroduced2 = OldIntroduced; | 
|  | if (MergedDeprecated2.empty()) | 
|  | MergedDeprecated2 = OldDeprecated; | 
|  | if (MergedObsoleted2.empty()) | 
|  | MergedObsoleted2 = OldObsoleted; | 
|  |  | 
|  | if (checkAvailabilityAttr(*this, OldAA->getRange(), Platform, | 
|  | MergedIntroduced2, MergedDeprecated2, | 
|  | MergedObsoleted2)) { | 
|  | Attrs.erase(Attrs.begin() + i); | 
|  | --e; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | MergedIntroduced = MergedIntroduced2; | 
|  | MergedDeprecated = MergedDeprecated2; | 
|  | MergedObsoleted = MergedObsoleted2; | 
|  | ++i; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (FoundAny && | 
|  | MergedIntroduced == Introduced && | 
|  | MergedDeprecated == Deprecated && | 
|  | MergedObsoleted == Obsoleted) | 
|  | return nullptr; | 
|  |  | 
|  | // Only create a new attribute if !OverrideOrImpl, but we want to do | 
|  | // the checking. | 
|  | if (!checkAvailabilityAttr(*this, Range, Platform, MergedIntroduced, | 
|  | MergedDeprecated, MergedObsoleted) && | 
|  | !OverrideOrImpl) { | 
|  | auto *Avail =  ::new (Context) AvailabilityAttr(Range, Context, Platform, | 
|  | Introduced, Deprecated, | 
|  | Obsoleted, IsUnavailable, Message, | 
|  | IsStrict, Replacement, | 
|  | AttrSpellingListIndex); | 
|  | Avail->setImplicit(Implicit); | 
|  | return Avail; | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | static void handleAvailabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | if (!checkAttributeNumArgs(S, AL, 1)) | 
|  | return; | 
|  | IdentifierLoc *Platform = AL.getArgAsIdent(0); | 
|  | unsigned Index = AL.getAttributeSpellingListIndex(); | 
|  |  | 
|  | IdentifierInfo *II = Platform->Ident; | 
|  | if (AvailabilityAttr::getPrettyPlatformName(II->getName()).empty()) | 
|  | S.Diag(Platform->Loc, diag::warn_availability_unknown_platform) | 
|  | << Platform->Ident; | 
|  |  | 
|  | auto *ND = dyn_cast<NamedDecl>(D); | 
|  | if (!ND) // We warned about this already, so just return. | 
|  | return; | 
|  |  | 
|  | AvailabilityChange Introduced = AL.getAvailabilityIntroduced(); | 
|  | AvailabilityChange Deprecated = AL.getAvailabilityDeprecated(); | 
|  | AvailabilityChange Obsoleted = AL.getAvailabilityObsoleted(); | 
|  | bool IsUnavailable = AL.getUnavailableLoc().isValid(); | 
|  | bool IsStrict = AL.getStrictLoc().isValid(); | 
|  | StringRef Str; | 
|  | if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getMessageExpr())) | 
|  | Str = SE->getString(); | 
|  | StringRef Replacement; | 
|  | if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getReplacementExpr())) | 
|  | Replacement = SE->getString(); | 
|  |  | 
|  | AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(ND, AL.getRange(), II, | 
|  | false/*Implicit*/, | 
|  | Introduced.Version, | 
|  | Deprecated.Version, | 
|  | Obsoleted.Version, | 
|  | IsUnavailable, Str, | 
|  | IsStrict, Replacement, | 
|  | Sema::AMK_None, | 
|  | Index); | 
|  | if (NewAttr) | 
|  | D->addAttr(NewAttr); | 
|  |  | 
|  | // Transcribe "ios" to "watchos" (and add a new attribute) if the versioning | 
|  | // matches before the start of the watchOS platform. | 
|  | if (S.Context.getTargetInfo().getTriple().isWatchOS()) { | 
|  | IdentifierInfo *NewII = nullptr; | 
|  | if (II->getName() == "ios") | 
|  | NewII = &S.Context.Idents.get("watchos"); | 
|  | else if (II->getName() == "ios_app_extension") | 
|  | NewII = &S.Context.Idents.get("watchos_app_extension"); | 
|  |  | 
|  | if (NewII) { | 
|  | auto adjustWatchOSVersion = [](VersionTuple Version) -> VersionTuple { | 
|  | if (Version.empty()) | 
|  | return Version; | 
|  | auto Major = Version.getMajor(); | 
|  | auto NewMajor = Major >= 9 ? Major - 7 : 0; | 
|  | if (NewMajor >= 2) { | 
|  | if (Version.getMinor().hasValue()) { | 
|  | if (Version.getSubminor().hasValue()) | 
|  | return VersionTuple(NewMajor, Version.getMinor().getValue(), | 
|  | Version.getSubminor().getValue()); | 
|  | else | 
|  | return VersionTuple(NewMajor, Version.getMinor().getValue()); | 
|  | } | 
|  | } | 
|  |  | 
|  | return VersionTuple(2, 0); | 
|  | }; | 
|  |  | 
|  | auto NewIntroduced = adjustWatchOSVersion(Introduced.Version); | 
|  | auto NewDeprecated = adjustWatchOSVersion(Deprecated.Version); | 
|  | auto NewObsoleted = adjustWatchOSVersion(Obsoleted.Version); | 
|  |  | 
|  | AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(ND, | 
|  | AL.getRange(), | 
|  | NewII, | 
|  | true/*Implicit*/, | 
|  | NewIntroduced, | 
|  | NewDeprecated, | 
|  | NewObsoleted, | 
|  | IsUnavailable, Str, | 
|  | IsStrict, | 
|  | Replacement, | 
|  | Sema::AMK_None, | 
|  | Index); | 
|  | if (NewAttr) | 
|  | D->addAttr(NewAttr); | 
|  | } | 
|  | } else if (S.Context.getTargetInfo().getTriple().isTvOS()) { | 
|  | // Transcribe "ios" to "tvos" (and add a new attribute) if the versioning | 
|  | // matches before the start of the tvOS platform. | 
|  | IdentifierInfo *NewII = nullptr; | 
|  | if (II->getName() == "ios") | 
|  | NewII = &S.Context.Idents.get("tvos"); | 
|  | else if (II->getName() == "ios_app_extension") | 
|  | NewII = &S.Context.Idents.get("tvos_app_extension"); | 
|  |  | 
|  | if (NewII) { | 
|  | AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(ND, | 
|  | AL.getRange(), | 
|  | NewII, | 
|  | true/*Implicit*/, | 
|  | Introduced.Version, | 
|  | Deprecated.Version, | 
|  | Obsoleted.Version, | 
|  | IsUnavailable, Str, | 
|  | IsStrict, | 
|  | Replacement, | 
|  | Sema::AMK_None, | 
|  | Index); | 
|  | if (NewAttr) | 
|  | D->addAttr(NewAttr); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void handleExternalSourceSymbolAttr(Sema &S, Decl *D, | 
|  | const ParsedAttr &AL) { | 
|  | if (!checkAttributeAtLeastNumArgs(S, AL, 1)) | 
|  | return; | 
|  | assert(checkAttributeAtMostNumArgs(S, AL, 3) && | 
|  | "Invalid number of arguments in an external_source_symbol attribute"); | 
|  |  | 
|  | StringRef Language; | 
|  | if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getArgAsExpr(0))) | 
|  | Language = SE->getString(); | 
|  | StringRef DefinedIn; | 
|  | if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getArgAsExpr(1))) | 
|  | DefinedIn = SE->getString(); | 
|  | bool IsGeneratedDeclaration = AL.getArgAsIdent(2) != nullptr; | 
|  |  | 
|  | D->addAttr(::new (S.Context) ExternalSourceSymbolAttr( | 
|  | AL.getRange(), S.Context, Language, DefinedIn, IsGeneratedDeclaration, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | template <class T> | 
|  | static T *mergeVisibilityAttr(Sema &S, Decl *D, SourceRange range, | 
|  | typename T::VisibilityType value, | 
|  | unsigned attrSpellingListIndex) { | 
|  | T *existingAttr = D->getAttr<T>(); | 
|  | if (existingAttr) { | 
|  | typename T::VisibilityType existingValue = existingAttr->getVisibility(); | 
|  | if (existingValue == value) | 
|  | return nullptr; | 
|  | S.Diag(existingAttr->getLocation(), diag::err_mismatched_visibility); | 
|  | S.Diag(range.getBegin(), diag::note_previous_attribute); | 
|  | D->dropAttr<T>(); | 
|  | } | 
|  | return ::new (S.Context) T(range, S.Context, value, attrSpellingListIndex); | 
|  | } | 
|  |  | 
|  | VisibilityAttr *Sema::mergeVisibilityAttr(Decl *D, SourceRange Range, | 
|  | VisibilityAttr::VisibilityType Vis, | 
|  | unsigned AttrSpellingListIndex) { | 
|  | return ::mergeVisibilityAttr<VisibilityAttr>(*this, D, Range, Vis, | 
|  | AttrSpellingListIndex); | 
|  | } | 
|  |  | 
|  | TypeVisibilityAttr *Sema::mergeTypeVisibilityAttr(Decl *D, SourceRange Range, | 
|  | TypeVisibilityAttr::VisibilityType Vis, | 
|  | unsigned AttrSpellingListIndex) { | 
|  | return ::mergeVisibilityAttr<TypeVisibilityAttr>(*this, D, Range, Vis, | 
|  | AttrSpellingListIndex); | 
|  | } | 
|  |  | 
|  | static void handleVisibilityAttr(Sema &S, Decl *D, const ParsedAttr &AL, | 
|  | bool isTypeVisibility) { | 
|  | // Visibility attributes don't mean anything on a typedef. | 
|  | if (isa<TypedefNameDecl>(D)) { | 
|  | S.Diag(AL.getRange().getBegin(), diag::warn_attribute_ignored) << AL; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // 'type_visibility' can only go on a type or namespace. | 
|  | if (isTypeVisibility && | 
|  | !(isa<TagDecl>(D) || | 
|  | isa<ObjCInterfaceDecl>(D) || | 
|  | isa<NamespaceDecl>(D))) { | 
|  | S.Diag(AL.getRange().getBegin(), diag::err_attribute_wrong_decl_type) | 
|  | << AL << ExpectedTypeOrNamespace; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Check that the argument is a string literal. | 
|  | StringRef TypeStr; | 
|  | SourceLocation LiteralLoc; | 
|  | if (!S.checkStringLiteralArgumentAttr(AL, 0, TypeStr, &LiteralLoc)) | 
|  | return; | 
|  |  | 
|  | VisibilityAttr::VisibilityType type; | 
|  | if (!VisibilityAttr::ConvertStrToVisibilityType(TypeStr, type)) { | 
|  | S.Diag(LiteralLoc, diag::warn_attribute_type_not_supported) << AL | 
|  | << TypeStr; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Complain about attempts to use protected visibility on targets | 
|  | // (like Darwin) that don't support it. | 
|  | if (type == VisibilityAttr::Protected && | 
|  | !S.Context.getTargetInfo().hasProtectedVisibility()) { | 
|  | S.Diag(AL.getLoc(), diag::warn_attribute_protected_visibility); | 
|  | type = VisibilityAttr::Default; | 
|  | } | 
|  |  | 
|  | unsigned Index = AL.getAttributeSpellingListIndex(); | 
|  | Attr *newAttr; | 
|  | if (isTypeVisibility) { | 
|  | newAttr = S.mergeTypeVisibilityAttr(D, AL.getRange(), | 
|  | (TypeVisibilityAttr::VisibilityType) type, | 
|  | Index); | 
|  | } else { | 
|  | newAttr = S.mergeVisibilityAttr(D, AL.getRange(), type, Index); | 
|  | } | 
|  | if (newAttr) | 
|  | D->addAttr(newAttr); | 
|  | } | 
|  |  | 
|  | static void handleObjCMethodFamilyAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | const auto *M = cast<ObjCMethodDecl>(D); | 
|  | if (!AL.isArgIdent(0)) { | 
|  | S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) | 
|  | << AL << 1 << AANT_ArgumentIdentifier; | 
|  | return; | 
|  | } | 
|  |  | 
|  | IdentifierLoc *IL = AL.getArgAsIdent(0); | 
|  | ObjCMethodFamilyAttr::FamilyKind F; | 
|  | if (!ObjCMethodFamilyAttr::ConvertStrToFamilyKind(IL->Ident->getName(), F)) { | 
|  | S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << AL << IL->Ident; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (F == ObjCMethodFamilyAttr::OMF_init && | 
|  | !M->getReturnType()->isObjCObjectPointerType()) { | 
|  | S.Diag(M->getLocation(), diag::err_init_method_bad_return_type) | 
|  | << M->getReturnType(); | 
|  | // Ignore the attribute. | 
|  | return; | 
|  | } | 
|  |  | 
|  | D->addAttr(new (S.Context) ObjCMethodFamilyAttr( | 
|  | AL.getRange(), S.Context, F, AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void handleObjCNSObject(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) { | 
|  | QualType T = TD->getUnderlyingType(); | 
|  | if (!T->isCARCBridgableType()) { | 
|  | S.Diag(TD->getLocation(), diag::err_nsobject_attribute); | 
|  | return; | 
|  | } | 
|  | } | 
|  | else if (const auto *PD = dyn_cast<ObjCPropertyDecl>(D)) { | 
|  | QualType T = PD->getType(); | 
|  | if (!T->isCARCBridgableType()) { | 
|  | S.Diag(PD->getLocation(), diag::err_nsobject_attribute); | 
|  | return; | 
|  | } | 
|  | } | 
|  | else { | 
|  | // It is okay to include this attribute on properties, e.g.: | 
|  | // | 
|  | //  @property (retain, nonatomic) struct Bork *Q __attribute__((NSObject)); | 
|  | // | 
|  | // In this case it follows tradition and suppresses an error in the above | 
|  | // case. | 
|  | S.Diag(D->getLocation(), diag::warn_nsobject_attribute); | 
|  | } | 
|  | D->addAttr(::new (S.Context) | 
|  | ObjCNSObjectAttr(AL.getRange(), S.Context, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void handleObjCIndependentClass(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) { | 
|  | QualType T = TD->getUnderlyingType(); | 
|  | if (!T->isObjCObjectPointerType()) { | 
|  | S.Diag(TD->getLocation(), diag::warn_ptr_independentclass_attribute); | 
|  | return; | 
|  | } | 
|  | } else { | 
|  | S.Diag(D->getLocation(), diag::warn_independentclass_attribute); | 
|  | return; | 
|  | } | 
|  | D->addAttr(::new (S.Context) | 
|  | ObjCIndependentClassAttr(AL.getRange(), S.Context, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void handleBlocksAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | if (!AL.isArgIdent(0)) { | 
|  | S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) | 
|  | << AL << 1 << AANT_ArgumentIdentifier; | 
|  | return; | 
|  | } | 
|  |  | 
|  | IdentifierInfo *II = AL.getArgAsIdent(0)->Ident; | 
|  | BlocksAttr::BlockType type; | 
|  | if (!BlocksAttr::ConvertStrToBlockType(II->getName(), type)) { | 
|  | S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II; | 
|  | return; | 
|  | } | 
|  |  | 
|  | D->addAttr(::new (S.Context) | 
|  | BlocksAttr(AL.getRange(), S.Context, type, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void handleSentinelAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | unsigned sentinel = (unsigned)SentinelAttr::DefaultSentinel; | 
|  | if (AL.getNumArgs() > 0) { | 
|  | Expr *E = AL.getArgAsExpr(0); | 
|  | llvm::APSInt Idx(32); | 
|  | if (E->isTypeDependent() || E->isValueDependent() || | 
|  | !E->isIntegerConstantExpr(Idx, S.Context)) { | 
|  | S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) | 
|  | << AL << 1 << AANT_ArgumentIntegerConstant << E->getSourceRange(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (Idx.isSigned() && Idx.isNegative()) { | 
|  | S.Diag(AL.getLoc(), diag::err_attribute_sentinel_less_than_zero) | 
|  | << E->getSourceRange(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | sentinel = Idx.getZExtValue(); | 
|  | } | 
|  |  | 
|  | unsigned nullPos = (unsigned)SentinelAttr::DefaultNullPos; | 
|  | if (AL.getNumArgs() > 1) { | 
|  | Expr *E = AL.getArgAsExpr(1); | 
|  | llvm::APSInt Idx(32); | 
|  | if (E->isTypeDependent() || E->isValueDependent() || | 
|  | !E->isIntegerConstantExpr(Idx, S.Context)) { | 
|  | S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) | 
|  | << AL << 2 << AANT_ArgumentIntegerConstant << E->getSourceRange(); | 
|  | return; | 
|  | } | 
|  | nullPos = Idx.getZExtValue(); | 
|  |  | 
|  | if ((Idx.isSigned() && Idx.isNegative()) || nullPos > 1) { | 
|  | // FIXME: This error message could be improved, it would be nice | 
|  | // to say what the bounds actually are. | 
|  | S.Diag(AL.getLoc(), diag::err_attribute_sentinel_not_zero_or_one) | 
|  | << E->getSourceRange(); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (const auto *FD = dyn_cast<FunctionDecl>(D)) { | 
|  | const FunctionType *FT = FD->getType()->castAs<FunctionType>(); | 
|  | if (isa<FunctionNoProtoType>(FT)) { | 
|  | S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_named_arguments); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!cast<FunctionProtoType>(FT)->isVariadic()) { | 
|  | S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0; | 
|  | return; | 
|  | } | 
|  | } else if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) { | 
|  | if (!MD->isVariadic()) { | 
|  | S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0; | 
|  | return; | 
|  | } | 
|  | } else if (const auto *BD = dyn_cast<BlockDecl>(D)) { | 
|  | if (!BD->isVariadic()) { | 
|  | S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 1; | 
|  | return; | 
|  | } | 
|  | } else if (const auto *V = dyn_cast<VarDecl>(D)) { | 
|  | QualType Ty = V->getType(); | 
|  | if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) { | 
|  | const FunctionType *FT = Ty->isFunctionPointerType() | 
|  | ? D->getFunctionType() | 
|  | : Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>(); | 
|  | if (!cast<FunctionProtoType>(FT)->isVariadic()) { | 
|  | int m = Ty->isFunctionPointerType() ? 0 : 1; | 
|  | S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << m; | 
|  | return; | 
|  | } | 
|  | } else { | 
|  | S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) | 
|  | << AL << ExpectedFunctionMethodOrBlock; | 
|  | return; | 
|  | } | 
|  | } else { | 
|  | S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) | 
|  | << AL << ExpectedFunctionMethodOrBlock; | 
|  | return; | 
|  | } | 
|  | D->addAttr(::new (S.Context) | 
|  | SentinelAttr(AL.getRange(), S.Context, sentinel, nullPos, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void handleWarnUnusedResult(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | if (D->getFunctionType() && | 
|  | D->getFunctionType()->getReturnType()->isVoidType()) { | 
|  | S.Diag(AL.getLoc(), diag::warn_attribute_void_function_method) << AL << 0; | 
|  | return; | 
|  | } | 
|  | if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) | 
|  | if (MD->getReturnType()->isVoidType()) { | 
|  | S.Diag(AL.getLoc(), diag::warn_attribute_void_function_method) << AL << 1; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If this is spelled as the standard C++17 attribute, but not in C++17, warn | 
|  | // about using it as an extension. | 
|  | if (!S.getLangOpts().CPlusPlus17 && AL.isCXX11Attribute() && | 
|  | !AL.getScopeName()) | 
|  | S.Diag(AL.getLoc(), diag::ext_cxx17_attr) << AL; | 
|  |  | 
|  | D->addAttr(::new (S.Context) | 
|  | WarnUnusedResultAttr(AL.getRange(), S.Context, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void handleWeakImportAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | // weak_import only applies to variable & function declarations. | 
|  | bool isDef = false; | 
|  | if (!D->canBeWeakImported(isDef)) { | 
|  | if (isDef) | 
|  | S.Diag(AL.getLoc(), diag::warn_attribute_invalid_on_definition) | 
|  | << "weak_import"; | 
|  | else if (isa<ObjCPropertyDecl>(D) || isa<ObjCMethodDecl>(D) || | 
|  | (S.Context.getTargetInfo().getTriple().isOSDarwin() && | 
|  | (isa<ObjCInterfaceDecl>(D) || isa<EnumDecl>(D)))) { | 
|  | // Nothing to warn about here. | 
|  | } else | 
|  | S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) | 
|  | << AL << ExpectedVariableOrFunction; | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | D->addAttr(::new (S.Context) | 
|  | WeakImportAttr(AL.getRange(), S.Context, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | // Handles reqd_work_group_size and work_group_size_hint. | 
|  | template <typename WorkGroupAttr> | 
|  | static void handleWorkGroupSize(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | uint32_t WGSize[3]; | 
|  | for (unsigned i = 0; i < 3; ++i) { | 
|  | const Expr *E = AL.getArgAsExpr(i); | 
|  | if (!checkUInt32Argument(S, AL, E, WGSize[i], i, | 
|  | /*StrictlyUnsigned=*/true)) | 
|  | return; | 
|  | if (WGSize[i] == 0) { | 
|  | S.Diag(AL.getLoc(), diag::err_attribute_argument_is_zero) | 
|  | << AL << E->getSourceRange(); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | WorkGroupAttr *Existing = D->getAttr<WorkGroupAttr>(); | 
|  | if (Existing && !(Existing->getXDim() == WGSize[0] && | 
|  | Existing->getYDim() == WGSize[1] && | 
|  | Existing->getZDim() == WGSize[2])) | 
|  | S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL; | 
|  |  | 
|  | D->addAttr(::new (S.Context) WorkGroupAttr(AL.getRange(), S.Context, | 
|  | WGSize[0], WGSize[1], WGSize[2], | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | // Handles intel_reqd_sub_group_size. | 
|  | static void handleSubGroupSize(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | uint32_t SGSize; | 
|  | const Expr *E = AL.getArgAsExpr(0); | 
|  | if (!checkUInt32Argument(S, AL, E, SGSize)) | 
|  | return; | 
|  | if (SGSize == 0) { | 
|  | S.Diag(AL.getLoc(), diag::err_attribute_argument_is_zero) | 
|  | << AL << E->getSourceRange(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | OpenCLIntelReqdSubGroupSizeAttr *Existing = | 
|  | D->getAttr<OpenCLIntelReqdSubGroupSizeAttr>(); | 
|  | if (Existing && Existing->getSubGroupSize() != SGSize) | 
|  | S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL; | 
|  |  | 
|  | D->addAttr(::new (S.Context) OpenCLIntelReqdSubGroupSizeAttr( | 
|  | AL.getRange(), S.Context, SGSize, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void handleVecTypeHint(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | if (!AL.hasParsedType()) { | 
|  | S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1; | 
|  | return; | 
|  | } | 
|  |  | 
|  | TypeSourceInfo *ParmTSI = nullptr; | 
|  | QualType ParmType = S.GetTypeFromParser(AL.getTypeArg(), &ParmTSI); | 
|  | assert(ParmTSI && "no type source info for attribute argument"); | 
|  |  | 
|  | if (!ParmType->isExtVectorType() && !ParmType->isFloatingType() && | 
|  | (ParmType->isBooleanType() || | 
|  | !ParmType->isIntegralType(S.getASTContext()))) { | 
|  | S.Diag(AL.getLoc(), diag::err_attribute_argument_vec_type_hint) | 
|  | << ParmType; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (VecTypeHintAttr *A = D->getAttr<VecTypeHintAttr>()) { | 
|  | if (!S.Context.hasSameType(A->getTypeHint(), ParmType)) { | 
|  | S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | D->addAttr(::new (S.Context) VecTypeHintAttr(AL.getLoc(), S.Context, | 
|  | ParmTSI, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | SectionAttr *Sema::mergeSectionAttr(Decl *D, SourceRange Range, | 
|  | StringRef Name, | 
|  | unsigned AttrSpellingListIndex) { | 
|  | // Explicit or partial specializations do not inherit | 
|  | // the section attribute from the primary template. | 
|  | if (const auto *FD = dyn_cast<FunctionDecl>(D)) { | 
|  | if (AttrSpellingListIndex == SectionAttr::Declspec_allocate && | 
|  | FD->isFunctionTemplateSpecialization()) | 
|  | return nullptr; | 
|  | } | 
|  | if (SectionAttr *ExistingAttr = D->getAttr<SectionAttr>()) { | 
|  | if (ExistingAttr->getName() == Name) | 
|  | return nullptr; | 
|  | Diag(ExistingAttr->getLocation(), diag::warn_mismatched_section) | 
|  | << 1 /*section*/; | 
|  | Diag(Range.getBegin(), diag::note_previous_attribute); | 
|  | return nullptr; | 
|  | } | 
|  | return ::new (Context) SectionAttr(Range, Context, Name, | 
|  | AttrSpellingListIndex); | 
|  | } | 
|  |  | 
|  | bool Sema::checkSectionName(SourceLocation LiteralLoc, StringRef SecName) { | 
|  | std::string Error = Context.getTargetInfo().isValidSectionSpecifier(SecName); | 
|  | if (!Error.empty()) { | 
|  | Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target) << Error | 
|  | << 1 /*'section'*/; | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void handleSectionAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | // Make sure that there is a string literal as the sections's single | 
|  | // argument. | 
|  | StringRef Str; | 
|  | SourceLocation LiteralLoc; | 
|  | if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc)) | 
|  | return; | 
|  |  | 
|  | if (!S.checkSectionName(LiteralLoc, Str)) | 
|  | return; | 
|  |  | 
|  | // If the target wants to validate the section specifier, make it happen. | 
|  | std::string Error = S.Context.getTargetInfo().isValidSectionSpecifier(Str); | 
|  | if (!Error.empty()) { | 
|  | S.Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target) | 
|  | << Error; | 
|  | return; | 
|  | } | 
|  |  | 
|  | unsigned Index = AL.getAttributeSpellingListIndex(); | 
|  | SectionAttr *NewAttr = S.mergeSectionAttr(D, AL.getRange(), Str, Index); | 
|  | if (NewAttr) | 
|  | D->addAttr(NewAttr); | 
|  | } | 
|  |  | 
|  | static bool checkCodeSegName(Sema&S, SourceLocation LiteralLoc, StringRef CodeSegName) { | 
|  | std::string Error = S.Context.getTargetInfo().isValidSectionSpecifier(CodeSegName); | 
|  | if (!Error.empty()) { | 
|  | S.Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target) << Error | 
|  | << 0 /*'code-seg'*/; | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | CodeSegAttr *Sema::mergeCodeSegAttr(Decl *D, SourceRange Range, | 
|  | StringRef Name, | 
|  | unsigned AttrSpellingListIndex) { | 
|  | // Explicit or partial specializations do not inherit | 
|  | // the code_seg attribute from the primary template. | 
|  | if (const auto *FD = dyn_cast<FunctionDecl>(D)) { | 
|  | if (FD->isFunctionTemplateSpecialization()) | 
|  | return nullptr; | 
|  | } | 
|  | if (const auto *ExistingAttr = D->getAttr<CodeSegAttr>()) { | 
|  | if (ExistingAttr->getName() == Name) | 
|  | return nullptr; | 
|  | Diag(ExistingAttr->getLocation(), diag::warn_mismatched_section) | 
|  | << 0 /*codeseg*/; | 
|  | Diag(Range.getBegin(), diag::note_previous_attribute); | 
|  | return nullptr; | 
|  | } | 
|  | return ::new (Context) CodeSegAttr(Range, Context, Name, | 
|  | AttrSpellingListIndex); | 
|  | } | 
|  |  | 
|  | static void handleCodeSegAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | StringRef Str; | 
|  | SourceLocation LiteralLoc; | 
|  | if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc)) | 
|  | return; | 
|  | if (!checkCodeSegName(S, LiteralLoc, Str)) | 
|  | return; | 
|  | if (const auto *ExistingAttr = D->getAttr<CodeSegAttr>()) { | 
|  | if (!ExistingAttr->isImplicit()) { | 
|  | S.Diag(AL.getLoc(), | 
|  | ExistingAttr->getName() == Str | 
|  | ? diag::warn_duplicate_codeseg_attribute | 
|  | : diag::err_conflicting_codeseg_attribute); | 
|  | return; | 
|  | } | 
|  | D->dropAttr<CodeSegAttr>(); | 
|  | } | 
|  | if (CodeSegAttr *CSA = S.mergeCodeSegAttr(D, AL.getRange(), Str, | 
|  | AL.getAttributeSpellingListIndex())) | 
|  | D->addAttr(CSA); | 
|  | } | 
|  |  | 
|  | // Check for things we'd like to warn about. Multiversioning issues are | 
|  | // handled later in the process, once we know how many exist. | 
|  | bool Sema::checkTargetAttr(SourceLocation LiteralLoc, StringRef AttrStr) { | 
|  | enum FirstParam { Unsupported, Duplicate }; | 
|  | enum SecondParam { None, Architecture }; | 
|  | for (auto Str : {"tune=", "fpmath="}) | 
|  | if (AttrStr.find(Str) != StringRef::npos) | 
|  | return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) | 
|  | << Unsupported << None << Str; | 
|  |  | 
|  | TargetAttr::ParsedTargetAttr ParsedAttrs = TargetAttr::parse(AttrStr); | 
|  |  | 
|  | if (!ParsedAttrs.Architecture.empty() && | 
|  | !Context.getTargetInfo().isValidCPUName(ParsedAttrs.Architecture)) | 
|  | return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) | 
|  | << Unsupported << Architecture << ParsedAttrs.Architecture; | 
|  |  | 
|  | if (ParsedAttrs.DuplicateArchitecture) | 
|  | return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) | 
|  | << Duplicate << None << "arch="; | 
|  |  | 
|  | for (const auto &Feature : ParsedAttrs.Features) { | 
|  | auto CurFeature = StringRef(Feature).drop_front(); // remove + or -. | 
|  | if (!Context.getTargetInfo().isValidFeatureName(CurFeature)) | 
|  | return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) | 
|  | << Unsupported << None << CurFeature; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void handleTargetAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | StringRef Str; | 
|  | SourceLocation LiteralLoc; | 
|  | if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc) || | 
|  | S.checkTargetAttr(LiteralLoc, Str)) | 
|  | return; | 
|  |  | 
|  | unsigned Index = AL.getAttributeSpellingListIndex(); | 
|  | TargetAttr *NewAttr = | 
|  | ::new (S.Context) TargetAttr(AL.getRange(), S.Context, Str, Index); | 
|  | D->addAttr(NewAttr); | 
|  | } | 
|  |  | 
|  | static void handleMinVectorWidthAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | Expr *E = AL.getArgAsExpr(0); | 
|  | uint32_t VecWidth; | 
|  | if (!checkUInt32Argument(S, AL, E, VecWidth)) { | 
|  | AL.setInvalid(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | MinVectorWidthAttr *Existing = D->getAttr<MinVectorWidthAttr>(); | 
|  | if (Existing && Existing->getVectorWidth() != VecWidth) { | 
|  | S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL; | 
|  | return; | 
|  | } | 
|  |  | 
|  | D->addAttr(::new (S.Context) | 
|  | MinVectorWidthAttr(AL.getRange(), S.Context, VecWidth, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void handleCleanupAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | Expr *E = AL.getArgAsExpr(0); | 
|  | SourceLocation Loc = E->getExprLoc(); | 
|  | FunctionDecl *FD = nullptr; | 
|  | DeclarationNameInfo NI; | 
|  |  | 
|  | // gcc only allows for simple identifiers. Since we support more than gcc, we | 
|  | // will warn the user. | 
|  | if (auto *DRE = dyn_cast<DeclRefExpr>(E)) { | 
|  | if (DRE->hasQualifier()) | 
|  | S.Diag(Loc, diag::warn_cleanup_ext); | 
|  | FD = dyn_cast<FunctionDecl>(DRE->getDecl()); | 
|  | NI = DRE->getNameInfo(); | 
|  | if (!FD) { | 
|  | S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 1 | 
|  | << NI.getName(); | 
|  | return; | 
|  | } | 
|  | } else if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(E)) { | 
|  | if (ULE->hasExplicitTemplateArgs()) | 
|  | S.Diag(Loc, diag::warn_cleanup_ext); | 
|  | FD = S.ResolveSingleFunctionTemplateSpecialization(ULE, true); | 
|  | NI = ULE->getNameInfo(); | 
|  | if (!FD) { | 
|  | S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 2 | 
|  | << NI.getName(); | 
|  | if (ULE->getType() == S.Context.OverloadTy) | 
|  | S.NoteAllOverloadCandidates(ULE); | 
|  | return; | 
|  | } | 
|  | } else { | 
|  | S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (FD->getNumParams() != 1) { | 
|  | S.Diag(Loc, diag::err_attribute_cleanup_func_must_take_one_arg) | 
|  | << NI.getName(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // We're currently more strict than GCC about what function types we accept. | 
|  | // If this ever proves to be a problem it should be easy to fix. | 
|  | QualType Ty = S.Context.getPointerType(cast<VarDecl>(D)->getType()); | 
|  | QualType ParamTy = FD->getParamDecl(0)->getType(); | 
|  | if (S.CheckAssignmentConstraints(FD->getParamDecl(0)->getLocation(), | 
|  | ParamTy, Ty) != Sema::Compatible) { | 
|  | S.Diag(Loc, diag::err_attribute_cleanup_func_arg_incompatible_type) | 
|  | << NI.getName() << ParamTy << Ty; | 
|  | return; | 
|  | } | 
|  |  | 
|  | D->addAttr(::new (S.Context) | 
|  | CleanupAttr(AL.getRange(), S.Context, FD, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void handleEnumExtensibilityAttr(Sema &S, Decl *D, | 
|  | const ParsedAttr &AL) { | 
|  | if (!AL.isArgIdent(0)) { | 
|  | S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) | 
|  | << AL << 0 << AANT_ArgumentIdentifier; | 
|  | return; | 
|  | } | 
|  |  | 
|  | EnumExtensibilityAttr::Kind ExtensibilityKind; | 
|  | IdentifierInfo *II = AL.getArgAsIdent(0)->Ident; | 
|  | if (!EnumExtensibilityAttr::ConvertStrToKind(II->getName(), | 
|  | ExtensibilityKind)) { | 
|  | S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II; | 
|  | return; | 
|  | } | 
|  |  | 
|  | D->addAttr(::new (S.Context) EnumExtensibilityAttr( | 
|  | AL.getRange(), S.Context, ExtensibilityKind, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | /// Handle __attribute__((format_arg((idx)))) attribute based on | 
|  | /// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html | 
|  | static void handleFormatArgAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | Expr *IdxExpr = AL.getArgAsExpr(0); | 
|  | ParamIdx Idx; | 
|  | if (!checkFunctionOrMethodParameterIndex(S, D, AL, 1, IdxExpr, Idx)) | 
|  | return; | 
|  |  | 
|  | // Make sure the format string is really a string. | 
|  | QualType Ty = getFunctionOrMethodParamType(D, Idx.getASTIndex()); | 
|  |  | 
|  | bool NotNSStringTy = !isNSStringType(Ty, S.Context); | 
|  | if (NotNSStringTy && | 
|  | !isCFStringType(Ty, S.Context) && | 
|  | (!Ty->isPointerType() || | 
|  | !Ty->getAs<PointerType>()->getPointeeType()->isCharType())) { | 
|  | S.Diag(AL.getLoc(), diag::err_format_attribute_not) | 
|  | << "a string type" << IdxExpr->getSourceRange() | 
|  | << getFunctionOrMethodParamRange(D, 0); | 
|  | return; | 
|  | } | 
|  | Ty = getFunctionOrMethodResultType(D); | 
|  | if (!isNSStringType(Ty, S.Context) && | 
|  | !isCFStringType(Ty, S.Context) && | 
|  | (!Ty->isPointerType() || | 
|  | !Ty->getAs<PointerType>()->getPointeeType()->isCharType())) { | 
|  | S.Diag(AL.getLoc(), diag::err_format_attribute_result_not) | 
|  | << (NotNSStringTy ? "string type" : "NSString") | 
|  | << IdxExpr->getSourceRange() << getFunctionOrMethodParamRange(D, 0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | D->addAttr(::new (S.Context) FormatArgAttr( | 
|  | AL.getRange(), S.Context, Idx, AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | enum FormatAttrKind { | 
|  | CFStringFormat, | 
|  | NSStringFormat, | 
|  | StrftimeFormat, | 
|  | SupportedFormat, | 
|  | IgnoredFormat, | 
|  | InvalidFormat | 
|  | }; | 
|  |  | 
|  | /// getFormatAttrKind - Map from format attribute names to supported format | 
|  | /// types. | 
|  | static FormatAttrKind getFormatAttrKind(StringRef Format) { | 
|  | return llvm::StringSwitch<FormatAttrKind>(Format) | 
|  | // Check for formats that get handled specially. | 
|  | .Case("NSString", NSStringFormat) | 
|  | .Case("CFString", CFStringFormat) | 
|  | .Case("strftime", StrftimeFormat) | 
|  |  | 
|  | // Otherwise, check for supported formats. | 
|  | .Cases("scanf", "printf", "printf0", "strfmon", SupportedFormat) | 
|  | .Cases("cmn_err", "vcmn_err", "zcmn_err", SupportedFormat) | 
|  | .Case("kprintf", SupportedFormat)         // OpenBSD. | 
|  | .Case("freebsd_kprintf", SupportedFormat) // FreeBSD. | 
|  | .Case("os_trace", SupportedFormat) | 
|  | .Case("os_log", SupportedFormat) | 
|  |  | 
|  | .Cases("gcc_diag", "gcc_cdiag", "gcc_cxxdiag", "gcc_tdiag", IgnoredFormat) | 
|  | .Default(InvalidFormat); | 
|  | } | 
|  |  | 
|  | /// Handle __attribute__((init_priority(priority))) attributes based on | 
|  | /// http://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Attributes.html | 
|  | static void handleInitPriorityAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | if (!S.getLangOpts().CPlusPlus) { | 
|  | S.Diag(AL.getLoc(), diag::warn_attribute_ignored) << AL; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (S.getCurFunctionOrMethodDecl()) { | 
|  | S.Diag(AL.getLoc(), diag::err_init_priority_object_attr); | 
|  | AL.setInvalid(); | 
|  | return; | 
|  | } | 
|  | QualType T = cast<VarDecl>(D)->getType(); | 
|  | if (S.Context.getAsArrayType(T)) | 
|  | T = S.Context.getBaseElementType(T); | 
|  | if (!T->getAs<RecordType>()) { | 
|  | S.Diag(AL.getLoc(), diag::err_init_priority_object_attr); | 
|  | AL.setInvalid(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | Expr *E = AL.getArgAsExpr(0); | 
|  | uint32_t prioritynum; | 
|  | if (!checkUInt32Argument(S, AL, E, prioritynum)) { | 
|  | AL.setInvalid(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (prioritynum < 101 || prioritynum > 65535) { | 
|  | S.Diag(AL.getLoc(), diag::err_attribute_argument_outof_range) | 
|  | << E->getSourceRange() << AL << 101 << 65535; | 
|  | AL.setInvalid(); | 
|  | return; | 
|  | } | 
|  | D->addAttr(::new (S.Context) | 
|  | InitPriorityAttr(AL.getRange(), S.Context, prioritynum, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | FormatAttr *Sema::mergeFormatAttr(Decl *D, SourceRange Range, | 
|  | IdentifierInfo *Format, int FormatIdx, | 
|  | int FirstArg, | 
|  | unsigned AttrSpellingListIndex) { | 
|  | // Check whether we already have an equivalent format attribute. | 
|  | for (auto *F : D->specific_attrs<FormatAttr>()) { | 
|  | if (F->getType() == Format && | 
|  | F->getFormatIdx() == FormatIdx && | 
|  | F->getFirstArg() == FirstArg) { | 
|  | // If we don't have a valid location for this attribute, adopt the | 
|  | // location. | 
|  | if (F->getLocation().isInvalid()) | 
|  | F->setRange(Range); | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | return ::new (Context) FormatAttr(Range, Context, Format, FormatIdx, | 
|  | FirstArg, AttrSpellingListIndex); | 
|  | } | 
|  |  | 
|  | /// Handle __attribute__((format(type,idx,firstarg))) attributes based on | 
|  | /// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html | 
|  | static void handleFormatAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | if (!AL.isArgIdent(0)) { | 
|  | S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) | 
|  | << AL << 1 << AANT_ArgumentIdentifier; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // In C++ the implicit 'this' function parameter also counts, and they are | 
|  | // counted from one. | 
|  | bool HasImplicitThisParam = isInstanceMethod(D); | 
|  | unsigned NumArgs = getFunctionOrMethodNumParams(D) + HasImplicitThisParam; | 
|  |  | 
|  | IdentifierInfo *II = AL.getArgAsIdent(0)->Ident; | 
|  | StringRef Format = II->getName(); | 
|  |  | 
|  | if (normalizeName(Format)) { | 
|  | // If we've modified the string name, we need a new identifier for it. | 
|  | II = &S.Context.Idents.get(Format); | 
|  | } | 
|  |  | 
|  | // Check for supported formats. | 
|  | FormatAttrKind Kind = getFormatAttrKind(Format); | 
|  |  | 
|  | if (Kind == IgnoredFormat) | 
|  | return; | 
|  |  | 
|  | if (Kind == InvalidFormat) { | 
|  | S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) | 
|  | << AL << II->getName(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // checks for the 2nd argument | 
|  | Expr *IdxExpr = AL.getArgAsExpr(1); | 
|  | uint32_t Idx; | 
|  | if (!checkUInt32Argument(S, AL, IdxExpr, Idx, 2)) | 
|  | return; | 
|  |  | 
|  | if (Idx < 1 || Idx > NumArgs) { | 
|  | S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds) | 
|  | << AL << 2 << IdxExpr->getSourceRange(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // FIXME: Do we need to bounds check? | 
|  | unsigned ArgIdx = Idx - 1; | 
|  |  | 
|  | if (HasImplicitThisParam) { | 
|  | if (ArgIdx == 0) { | 
|  | S.Diag(AL.getLoc(), | 
|  | diag::err_format_attribute_implicit_this_format_string) | 
|  | << IdxExpr->getSourceRange(); | 
|  | return; | 
|  | } | 
|  | ArgIdx--; | 
|  | } | 
|  |  | 
|  | // make sure the format string is really a string | 
|  | QualType Ty = getFunctionOrMethodParamType(D, ArgIdx); | 
|  |  | 
|  | if (Kind == CFStringFormat) { | 
|  | if (!isCFStringType(Ty, S.Context)) { | 
|  | S.Diag(AL.getLoc(), diag::err_format_attribute_not) | 
|  | << "a CFString" << IdxExpr->getSourceRange() | 
|  | << getFunctionOrMethodParamRange(D, ArgIdx); | 
|  | return; | 
|  | } | 
|  | } else if (Kind == NSStringFormat) { | 
|  | // FIXME: do we need to check if the type is NSString*?  What are the | 
|  | // semantics? | 
|  | if (!isNSStringType(Ty, S.Context)) { | 
|  | S.Diag(AL.getLoc(), diag::err_format_attribute_not) | 
|  | << "an NSString" << IdxExpr->getSourceRange() | 
|  | << getFunctionOrMethodParamRange(D, ArgIdx); | 
|  | return; | 
|  | } | 
|  | } else if (!Ty->isPointerType() || | 
|  | !Ty->getAs<PointerType>()->getPointeeType()->isCharType()) { | 
|  | S.Diag(AL.getLoc(), diag::err_format_attribute_not) | 
|  | << "a string type" << IdxExpr->getSourceRange() | 
|  | << getFunctionOrMethodParamRange(D, ArgIdx); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // check the 3rd argument | 
|  | Expr *FirstArgExpr = AL.getArgAsExpr(2); | 
|  | uint32_t FirstArg; | 
|  | if (!checkUInt32Argument(S, AL, FirstArgExpr, FirstArg, 3)) | 
|  | return; | 
|  |  | 
|  | // check if the function is variadic if the 3rd argument non-zero | 
|  | if (FirstArg != 0) { | 
|  | if (isFunctionOrMethodVariadic(D)) { | 
|  | ++NumArgs; // +1 for ... | 
|  | } else { | 
|  | S.Diag(D->getLocation(), diag::err_format_attribute_requires_variadic); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // strftime requires FirstArg to be 0 because it doesn't read from any | 
|  | // variable the input is just the current time + the format string. | 
|  | if (Kind == StrftimeFormat) { | 
|  | if (FirstArg != 0) { | 
|  | S.Diag(AL.getLoc(), diag::err_format_strftime_third_parameter) | 
|  | << FirstArgExpr->getSourceRange(); | 
|  | return; | 
|  | } | 
|  | // if 0 it disables parameter checking (to use with e.g. va_list) | 
|  | } else if (FirstArg != 0 && FirstArg != NumArgs) { | 
|  | S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds) | 
|  | << AL << 3 << FirstArgExpr->getSourceRange(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | FormatAttr *NewAttr = S.mergeFormatAttr(D, AL.getRange(), II, | 
|  | Idx, FirstArg, | 
|  | AL.getAttributeSpellingListIndex()); | 
|  | if (NewAttr) | 
|  | D->addAttr(NewAttr); | 
|  | } | 
|  |  | 
|  | static void handleTransparentUnionAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | // Try to find the underlying union declaration. | 
|  | RecordDecl *RD = nullptr; | 
|  | const auto *TD = dyn_cast<TypedefNameDecl>(D); | 
|  | if (TD && TD->getUnderlyingType()->isUnionType()) | 
|  | RD = TD->getUnderlyingType()->getAsUnionType()->getDecl(); | 
|  | else | 
|  | RD = dyn_cast<RecordDecl>(D); | 
|  |  | 
|  | if (!RD || !RD->isUnion()) { | 
|  | S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) << AL | 
|  | << ExpectedUnion; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!RD->isCompleteDefinition()) { | 
|  | if (!RD->isBeingDefined()) | 
|  | S.Diag(AL.getLoc(), | 
|  | diag::warn_transparent_union_attribute_not_definition); | 
|  | return; | 
|  | } | 
|  |  | 
|  | RecordDecl::field_iterator Field = RD->field_begin(), | 
|  | FieldEnd = RD->field_end(); | 
|  | if (Field == FieldEnd) { | 
|  | S.Diag(AL.getLoc(), diag::warn_transparent_union_attribute_zero_fields); | 
|  | return; | 
|  | } | 
|  |  | 
|  | FieldDecl *FirstField = *Field; | 
|  | QualType FirstType = FirstField->getType(); | 
|  | if (FirstType->hasFloatingRepresentation() || FirstType->isVectorType()) { | 
|  | S.Diag(FirstField->getLocation(), | 
|  | diag::warn_transparent_union_attribute_floating) | 
|  | << FirstType->isVectorType() << FirstType; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (FirstType->isIncompleteType()) | 
|  | return; | 
|  | uint64_t FirstSize = S.Context.getTypeSize(FirstType); | 
|  | uint64_t FirstAlign = S.Context.getTypeAlign(FirstType); | 
|  | for (; Field != FieldEnd; ++Field) { | 
|  | QualType FieldType = Field->getType(); | 
|  | if (FieldType->isIncompleteType()) | 
|  | return; | 
|  | // FIXME: this isn't fully correct; we also need to test whether the | 
|  | // members of the union would all have the same calling convention as the | 
|  | // first member of the union. Checking just the size and alignment isn't | 
|  | // sufficient (consider structs passed on the stack instead of in registers | 
|  | // as an example). | 
|  | if (S.Context.getTypeSize(FieldType) != FirstSize || | 
|  | S.Context.getTypeAlign(FieldType) > FirstAlign) { | 
|  | // Warn if we drop the attribute. | 
|  | bool isSize = S.Context.getTypeSize(FieldType) != FirstSize; | 
|  | unsigned FieldBits = isSize? S.Context.getTypeSize(FieldType) | 
|  | : S.Context.getTypeAlign(FieldType); | 
|  | S.Diag(Field->getLocation(), | 
|  | diag::warn_transparent_union_attribute_field_size_align) | 
|  | << isSize << Field->getDeclName() << FieldBits; | 
|  | unsigned FirstBits = isSize? FirstSize : FirstAlign; | 
|  | S.Diag(FirstField->getLocation(), | 
|  | diag::note_transparent_union_first_field_size_align) | 
|  | << isSize << FirstBits; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | RD->addAttr(::new (S.Context) | 
|  | TransparentUnionAttr(AL.getRange(), S.Context, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void handleAnnotateAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | // Make sure that there is a string literal as the annotation's single | 
|  | // argument. | 
|  | StringRef Str; | 
|  | if (!S.checkStringLiteralArgumentAttr(AL, 0, Str)) | 
|  | return; | 
|  |  | 
|  | // Don't duplicate annotations that are already set. | 
|  | for (const auto *I : D->specific_attrs<AnnotateAttr>()) { | 
|  | if (I->getAnnotation() == Str) | 
|  | return; | 
|  | } | 
|  |  | 
|  | D->addAttr(::new (S.Context) | 
|  | AnnotateAttr(AL.getRange(), S.Context, Str, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void handleAlignValueAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | S.AddAlignValueAttr(AL.getRange(), D, AL.getArgAsExpr(0), | 
|  | AL.getAttributeSpellingListIndex()); | 
|  | } | 
|  |  | 
|  | void Sema::AddAlignValueAttr(SourceRange AttrRange, Decl *D, Expr *E, | 
|  | unsigned SpellingListIndex) { | 
|  | AlignValueAttr TmpAttr(AttrRange, Context, E, SpellingListIndex); | 
|  | SourceLocation AttrLoc = AttrRange.getBegin(); | 
|  |  | 
|  | QualType T; | 
|  | if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) | 
|  | T = TD->getUnderlyingType(); | 
|  | else if (const auto *VD = dyn_cast<ValueDecl>(D)) | 
|  | T = VD->getType(); | 
|  | else | 
|  | llvm_unreachable("Unknown decl type for align_value"); | 
|  |  | 
|  | if (!T->isDependentType() && !T->isAnyPointerType() && | 
|  | !T->isReferenceType() && !T->isMemberPointerType()) { | 
|  | Diag(AttrLoc, diag::warn_attribute_pointer_or_reference_only) | 
|  | << &TmpAttr /*TmpAttr.getName()*/ << T << D->getSourceRange(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!E->isValueDependent()) { | 
|  | llvm::APSInt Alignment; | 
|  | ExprResult ICE | 
|  | = VerifyIntegerConstantExpression(E, &Alignment, | 
|  | diag::err_align_value_attribute_argument_not_int, | 
|  | /*AllowFold*/ false); | 
|  | if (ICE.isInvalid()) | 
|  | return; | 
|  |  | 
|  | if (!Alignment.isPowerOf2()) { | 
|  | Diag(AttrLoc, diag::err_alignment_not_power_of_two) | 
|  | << E->getSourceRange(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | D->addAttr(::new (Context) | 
|  | AlignValueAttr(AttrRange, Context, ICE.get(), | 
|  | SpellingListIndex)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Save dependent expressions in the AST to be instantiated. | 
|  | D->addAttr(::new (Context) AlignValueAttr(TmpAttr)); | 
|  | } | 
|  |  | 
|  | static void handleAlignedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | // check the attribute arguments. | 
|  | if (AL.getNumArgs() > 1) { | 
|  | S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (AL.getNumArgs() == 0) { | 
|  | D->addAttr(::new (S.Context) AlignedAttr(AL.getRange(), S.Context, | 
|  | true, nullptr, AL.getAttributeSpellingListIndex())); | 
|  | return; | 
|  | } | 
|  |  | 
|  | Expr *E = AL.getArgAsExpr(0); | 
|  | if (AL.isPackExpansion() && !E->containsUnexpandedParameterPack()) { | 
|  | S.Diag(AL.getEllipsisLoc(), | 
|  | diag::err_pack_expansion_without_parameter_packs); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!AL.isPackExpansion() && S.DiagnoseUnexpandedParameterPack(E)) | 
|  | return; | 
|  |  | 
|  | S.AddAlignedAttr(AL.getRange(), D, E, AL.getAttributeSpellingListIndex(), | 
|  | AL.isPackExpansion()); | 
|  | } | 
|  |  | 
|  | void Sema::AddAlignedAttr(SourceRange AttrRange, Decl *D, Expr *E, | 
|  | unsigned SpellingListIndex, bool IsPackExpansion) { | 
|  | AlignedAttr TmpAttr(AttrRange, Context, true, E, SpellingListIndex); | 
|  | SourceLocation AttrLoc = AttrRange.getBegin(); | 
|  |  | 
|  | // C++11 alignas(...) and C11 _Alignas(...) have additional requirements. | 
|  | if (TmpAttr.isAlignas()) { | 
|  | // C++11 [dcl.align]p1: | 
|  | //   An alignment-specifier may be applied to a variable or to a class | 
|  | //   data member, but it shall not be applied to a bit-field, a function | 
|  | //   parameter, the formal parameter of a catch clause, or a variable | 
|  | //   declared with the register storage class specifier. An | 
|  | //   alignment-specifier may also be applied to the declaration of a class | 
|  | //   or enumeration type. | 
|  | // C11 6.7.5/2: | 
|  | //   An alignment attribute shall not be specified in a declaration of | 
|  | //   a typedef, or a bit-field, or a function, or a parameter, or an | 
|  | //   object declared with the register storage-class specifier. | 
|  | int DiagKind = -1; | 
|  | if (isa<ParmVarDecl>(D)) { | 
|  | DiagKind = 0; | 
|  | } else if (const auto *VD = dyn_cast<VarDecl>(D)) { | 
|  | if (VD->getStorageClass() == SC_Register) | 
|  | DiagKind = 1; | 
|  | if (VD->isExceptionVariable()) | 
|  | DiagKind = 2; | 
|  | } else if (const auto *FD = dyn_cast<FieldDecl>(D)) { | 
|  | if (FD->isBitField()) | 
|  | DiagKind = 3; | 
|  | } else if (!isa<TagDecl>(D)) { | 
|  | Diag(AttrLoc, diag::err_attribute_wrong_decl_type) << &TmpAttr | 
|  | << (TmpAttr.isC11() ? ExpectedVariableOrField | 
|  | : ExpectedVariableFieldOrTag); | 
|  | return; | 
|  | } | 
|  | if (DiagKind != -1) { | 
|  | Diag(AttrLoc, diag::err_alignas_attribute_wrong_decl_type) | 
|  | << &TmpAttr << DiagKind; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (E->isValueDependent()) { | 
|  | // We can't support a dependent alignment on a non-dependent type, | 
|  | // because we have no way to model that a type is "alignment-dependent" | 
|  | // but not dependent in any other way. | 
|  | if (const auto *TND = dyn_cast<TypedefNameDecl>(D)) { | 
|  | if (!TND->getUnderlyingType()->isDependentType()) { | 
|  | Diag(AttrLoc, diag::err_alignment_dependent_typedef_name) | 
|  | << E->getSourceRange(); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Save dependent expressions in the AST to be instantiated. | 
|  | AlignedAttr *AA = ::new (Context) AlignedAttr(TmpAttr); | 
|  | AA->setPackExpansion(IsPackExpansion); | 
|  | D->addAttr(AA); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // FIXME: Cache the number on the AL object? | 
|  | llvm::APSInt Alignment; | 
|  | ExprResult ICE | 
|  | = VerifyIntegerConstantExpression(E, &Alignment, | 
|  | diag::err_aligned_attribute_argument_not_int, | 
|  | /*AllowFold*/ false); | 
|  | if (ICE.isInvalid()) | 
|  | return; | 
|  |  | 
|  | uint64_t AlignVal = Alignment.getZExtValue(); | 
|  |  | 
|  | // C++11 [dcl.align]p2: | 
|  | //   -- if the constant expression evaluates to zero, the alignment | 
|  | //      specifier shall have no effect | 
|  | // C11 6.7.5p6: | 
|  | //   An alignment specification of zero has no effect. | 
|  | if (!(TmpAttr.isAlignas() && !Alignment)) { | 
|  | if (!llvm::isPowerOf2_64(AlignVal)) { | 
|  | Diag(AttrLoc, diag::err_alignment_not_power_of_two) | 
|  | << E->getSourceRange(); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Alignment calculations can wrap around if it's greater than 2**28. | 
|  | unsigned MaxValidAlignment = | 
|  | Context.getTargetInfo().getTriple().isOSBinFormatCOFF() ? 8192 | 
|  | : 268435456; | 
|  | if (AlignVal > MaxValidAlignment) { | 
|  | Diag(AttrLoc, diag::err_attribute_aligned_too_great) << MaxValidAlignment | 
|  | << E->getSourceRange(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (Context.getTargetInfo().isTLSSupported()) { | 
|  | unsigned MaxTLSAlign = | 
|  | Context.toCharUnitsFromBits(Context.getTargetInfo().getMaxTLSAlign()) | 
|  | .getQuantity(); | 
|  | const auto *VD = dyn_cast<VarDecl>(D); | 
|  | if (MaxTLSAlign && AlignVal > MaxTLSAlign && VD && | 
|  | VD->getTLSKind() != VarDecl::TLS_None) { | 
|  | Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum) | 
|  | << (unsigned)AlignVal << VD << MaxTLSAlign; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | AlignedAttr *AA = ::new (Context) AlignedAttr(AttrRange, Context, true, | 
|  | ICE.get(), SpellingListIndex); | 
|  | AA->setPackExpansion(IsPackExpansion); | 
|  | D->addAttr(AA); | 
|  | } | 
|  |  | 
|  | void Sema::AddAlignedAttr(SourceRange AttrRange, Decl *D, TypeSourceInfo *TS, | 
|  | unsigned SpellingListIndex, bool IsPackExpansion) { | 
|  | // FIXME: Cache the number on the AL object if non-dependent? | 
|  | // FIXME: Perform checking of type validity | 
|  | AlignedAttr *AA = ::new (Context) AlignedAttr(AttrRange, Context, false, TS, | 
|  | SpellingListIndex); | 
|  | AA->setPackExpansion(IsPackExpansion); | 
|  | D->addAttr(AA); | 
|  | } | 
|  |  | 
|  | void Sema::CheckAlignasUnderalignment(Decl *D) { | 
|  | assert(D->hasAttrs() && "no attributes on decl"); | 
|  |  | 
|  | QualType UnderlyingTy, DiagTy; | 
|  | if (const auto *VD = dyn_cast<ValueDecl>(D)) { | 
|  | UnderlyingTy = DiagTy = VD->getType(); | 
|  | } else { | 
|  | UnderlyingTy = DiagTy = Context.getTagDeclType(cast<TagDecl>(D)); | 
|  | if (const auto *ED = dyn_cast<EnumDecl>(D)) | 
|  | UnderlyingTy = ED->getIntegerType(); | 
|  | } | 
|  | if (DiagTy->isDependentType() || DiagTy->isIncompleteType()) | 
|  | return; | 
|  |  | 
|  | // C++11 [dcl.align]p5, C11 6.7.5/4: | 
|  | //   The combined effect of all alignment attributes in a declaration shall | 
|  | //   not specify an alignment that is less strict than the alignment that | 
|  | //   would otherwise be required for the entity being declared. | 
|  | AlignedAttr *AlignasAttr = nullptr; | 
|  | unsigned Align = 0; | 
|  | for (auto *I : D->specific_attrs<AlignedAttr>()) { | 
|  | if (I->isAlignmentDependent()) | 
|  | return; | 
|  | if (I->isAlignas()) | 
|  | AlignasAttr = I; | 
|  | Align = std::max(Align, I->getAlignment(Context)); | 
|  | } | 
|  |  | 
|  | if (AlignasAttr && Align) { | 
|  | CharUnits RequestedAlign = Context.toCharUnitsFromBits(Align); | 
|  | CharUnits NaturalAlign = Context.getTypeAlignInChars(UnderlyingTy); | 
|  | if (NaturalAlign > RequestedAlign) | 
|  | Diag(AlignasAttr->getLocation(), diag::err_alignas_underaligned) | 
|  | << DiagTy << (unsigned)NaturalAlign.getQuantity(); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool Sema::checkMSInheritanceAttrOnDefinition( | 
|  | CXXRecordDecl *RD, SourceRange Range, bool BestCase, | 
|  | MSInheritanceAttr::Spelling SemanticSpelling) { | 
|  | assert(RD->hasDefinition() && "RD has no definition!"); | 
|  |  | 
|  | // We may not have seen base specifiers or any virtual methods yet.  We will | 
|  | // have to wait until the record is defined to catch any mismatches. | 
|  | if (!RD->getDefinition()->isCompleteDefinition()) | 
|  | return false; | 
|  |  | 
|  | // The unspecified model never matches what a definition could need. | 
|  | if (SemanticSpelling == MSInheritanceAttr::Keyword_unspecified_inheritance) | 
|  | return false; | 
|  |  | 
|  | if (BestCase) { | 
|  | if (RD->calculateInheritanceModel() == SemanticSpelling) | 
|  | return false; | 
|  | } else { | 
|  | if (RD->calculateInheritanceModel() <= SemanticSpelling) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Diag(Range.getBegin(), diag::err_mismatched_ms_inheritance) | 
|  | << 0 /*definition*/; | 
|  | Diag(RD->getDefinition()->getLocation(), diag::note_defined_here) | 
|  | << RD->getNameAsString(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// parseModeAttrArg - Parses attribute mode string and returns parsed type | 
|  | /// attribute. | 
|  | static void parseModeAttrArg(Sema &S, StringRef Str, unsigned &DestWidth, | 
|  | bool &IntegerMode, bool &ComplexMode) { | 
|  | IntegerMode = true; | 
|  | ComplexMode = false; | 
|  | switch (Str.size()) { | 
|  | case 2: | 
|  | switch (Str[0]) { | 
|  | case 'Q': | 
|  | DestWidth = 8; | 
|  | break; | 
|  | case 'H': | 
|  | DestWidth = 16; | 
|  | break; | 
|  | case 'S': | 
|  | DestWidth = 32; | 
|  | break; | 
|  | case 'D': | 
|  | DestWidth = 64; | 
|  | break; | 
|  | case 'X': | 
|  | DestWidth = 96; | 
|  | break; | 
|  | case 'T': | 
|  | DestWidth = 128; | 
|  | break; | 
|  | } | 
|  | if (Str[1] == 'F') { | 
|  | IntegerMode = false; | 
|  | } else if (Str[1] == 'C') { | 
|  | IntegerMode = false; | 
|  | ComplexMode = true; | 
|  | } else if (Str[1] != 'I') { | 
|  | DestWidth = 0; | 
|  | } | 
|  | break; | 
|  | case 4: | 
|  | // FIXME: glibc uses 'word' to define register_t; this is narrower than a | 
|  | // pointer on PIC16 and other embedded platforms. | 
|  | if (Str == "word") | 
|  | DestWidth = S.Context.getTargetInfo().getRegisterWidth(); | 
|  | else if (Str == "byte") | 
|  | DestWidth = S.Context.getTargetInfo().getCharWidth(); | 
|  | break; | 
|  | case 7: | 
|  | if (Str == "pointer") | 
|  | DestWidth = S.Context.getTargetInfo().getPointerWidth(0); | 
|  | break; | 
|  | case 11: | 
|  | if (Str == "unwind_word") | 
|  | DestWidth = S.Context.getTargetInfo().getUnwindWordWidth(); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// handleModeAttr - This attribute modifies the width of a decl with primitive | 
|  | /// type. | 
|  | /// | 
|  | /// Despite what would be logical, the mode attribute is a decl attribute, not a | 
|  | /// type attribute: 'int ** __attribute((mode(HI))) *G;' tries to make 'G' be | 
|  | /// HImode, not an intermediate pointer. | 
|  | static void handleModeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | // This attribute isn't documented, but glibc uses it.  It changes | 
|  | // the width of an int or unsigned int to the specified size. | 
|  | if (!AL.isArgIdent(0)) { | 
|  | S.Diag(AL.getLoc(), diag::err_attribute_argument_type) | 
|  | << AL << AANT_ArgumentIdentifier; | 
|  | return; | 
|  | } | 
|  |  | 
|  | IdentifierInfo *Name = AL.getArgAsIdent(0)->Ident; | 
|  |  | 
|  | S.AddModeAttr(AL.getRange(), D, Name, AL.getAttributeSpellingListIndex()); | 
|  | } | 
|  |  | 
|  | void Sema::AddModeAttr(SourceRange AttrRange, Decl *D, IdentifierInfo *Name, | 
|  | unsigned SpellingListIndex, bool InInstantiation) { | 
|  | StringRef Str = Name->getName(); | 
|  | normalizeName(Str); | 
|  | SourceLocation AttrLoc = AttrRange.getBegin(); | 
|  |  | 
|  | unsigned DestWidth = 0; | 
|  | bool IntegerMode = true; | 
|  | bool ComplexMode = false; | 
|  | llvm::APInt VectorSize(64, 0); | 
|  | if (Str.size() >= 4 && Str[0] == 'V') { | 
|  | // Minimal length of vector mode is 4: 'V' + NUMBER(>=1) + TYPE(>=2). | 
|  | size_t StrSize = Str.size(); | 
|  | size_t VectorStringLength = 0; | 
|  | while ((VectorStringLength + 1) < StrSize && | 
|  | isdigit(Str[VectorStringLength + 1])) | 
|  | ++VectorStringLength; | 
|  | if (VectorStringLength && | 
|  | !Str.substr(1, VectorStringLength).getAsInteger(10, VectorSize) && | 
|  | VectorSize.isPowerOf2()) { | 
|  | parseModeAttrArg(*this, Str.substr(VectorStringLength + 1), DestWidth, | 
|  | IntegerMode, ComplexMode); | 
|  | // Avoid duplicate warning from template instantiation. | 
|  | if (!InInstantiation) | 
|  | Diag(AttrLoc, diag::warn_vector_mode_deprecated); | 
|  | } else { | 
|  | VectorSize = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!VectorSize) | 
|  | parseModeAttrArg(*this, Str, DestWidth, IntegerMode, ComplexMode); | 
|  |  | 
|  | // FIXME: Sync this with InitializePredefinedMacros; we need to match int8_t | 
|  | // and friends, at least with glibc. | 
|  | // FIXME: Make sure floating-point mappings are accurate | 
|  | // FIXME: Support XF and TF types | 
|  | if (!DestWidth) { | 
|  | Diag(AttrLoc, diag::err_machine_mode) << 0 /*Unknown*/ << Name; | 
|  | return; | 
|  | } | 
|  |  | 
|  | QualType OldTy; | 
|  | if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) | 
|  | OldTy = TD->getUnderlyingType(); | 
|  | else if (const auto *ED = dyn_cast<EnumDecl>(D)) { | 
|  | // Something like 'typedef enum { X } __attribute__((mode(XX))) T;'. | 
|  | // Try to get type from enum declaration, default to int. | 
|  | OldTy = ED->getIntegerType(); | 
|  | if (OldTy.isNull()) | 
|  | OldTy = Context.IntTy; | 
|  | } else | 
|  | OldTy = cast<ValueDecl>(D)->getType(); | 
|  |  | 
|  | if (OldTy->isDependentType()) { | 
|  | D->addAttr(::new (Context) | 
|  | ModeAttr(AttrRange, Context, Name, SpellingListIndex)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Base type can also be a vector type (see PR17453). | 
|  | // Distinguish between base type and base element type. | 
|  | QualType OldElemTy = OldTy; | 
|  | if (const auto *VT = OldTy->getAs<VectorType>()) | 
|  | OldElemTy = VT->getElementType(); | 
|  |  | 
|  | // GCC allows 'mode' attribute on enumeration types (even incomplete), except | 
|  | // for vector modes. So, 'enum X __attribute__((mode(QI)));' forms a complete | 
|  | // type, 'enum { A } __attribute__((mode(V4SI)))' is rejected. | 
|  | if ((isa<EnumDecl>(D) || OldElemTy->getAs<EnumType>()) && | 
|  | VectorSize.getBoolValue()) { | 
|  | Diag(AttrLoc, diag::err_enum_mode_vector_type) << Name << AttrRange; | 
|  | return; | 
|  | } | 
|  | bool IntegralOrAnyEnumType = | 
|  | OldElemTy->isIntegralOrEnumerationType() || OldElemTy->getAs<EnumType>(); | 
|  |  | 
|  | if (!OldElemTy->getAs<BuiltinType>() && !OldElemTy->isComplexType() && | 
|  | !IntegralOrAnyEnumType) | 
|  | Diag(AttrLoc, diag::err_mode_not_primitive); | 
|  | else if (IntegerMode) { | 
|  | if (!IntegralOrAnyEnumType) | 
|  | Diag(AttrLoc, diag::err_mode_wrong_type); | 
|  | } else if (ComplexMode) { | 
|  | if (!OldElemTy->isComplexType()) | 
|  | Diag(AttrLoc, diag::err_mode_wrong_type); | 
|  | } else { | 
|  | if (!OldElemTy->isFloatingType()) | 
|  | Diag(AttrLoc, diag::err_mode_wrong_type); | 
|  | } | 
|  |  | 
|  | QualType NewElemTy; | 
|  |  | 
|  | if (IntegerMode) | 
|  | NewElemTy = Context.getIntTypeForBitwidth(DestWidth, | 
|  | OldElemTy->isSignedIntegerType()); | 
|  | else | 
|  | NewElemTy = Context.getRealTypeForBitwidth(DestWidth); | 
|  |  | 
|  | if (NewElemTy.isNull()) { | 
|  | Diag(AttrLoc, diag::err_machine_mode) << 1 /*Unsupported*/ << Name; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (ComplexMode) { | 
|  | NewElemTy = Context.getComplexType(NewElemTy); | 
|  | } | 
|  |  | 
|  | QualType NewTy = NewElemTy; | 
|  | if (VectorSize.getBoolValue()) { | 
|  | NewTy = Context.getVectorType(NewTy, VectorSize.getZExtValue(), | 
|  | VectorType::GenericVector); | 
|  | } else if (const auto *OldVT = OldTy->getAs<VectorType>()) { | 
|  | // Complex machine mode does not support base vector types. | 
|  | if (ComplexMode) { | 
|  | Diag(AttrLoc, diag::err_complex_mode_vector_type); | 
|  | return; | 
|  | } | 
|  | unsigned NumElements = Context.getTypeSize(OldElemTy) * | 
|  | OldVT->getNumElements() / | 
|  | Context.getTypeSize(NewElemTy); | 
|  | NewTy = | 
|  | Context.getVectorType(NewElemTy, NumElements, OldVT->getVectorKind()); | 
|  | } | 
|  |  | 
|  | if (NewTy.isNull()) { | 
|  | Diag(AttrLoc, diag::err_mode_wrong_type); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Install the new type. | 
|  | if (auto *TD = dyn_cast<TypedefNameDecl>(D)) | 
|  | TD->setModedTypeSourceInfo(TD->getTypeSourceInfo(), NewTy); | 
|  | else if (auto *ED = dyn_cast<EnumDecl>(D)) | 
|  | ED->setIntegerType(NewTy); | 
|  | else | 
|  | cast<ValueDecl>(D)->setType(NewTy); | 
|  |  | 
|  | D->addAttr(::new (Context) | 
|  | ModeAttr(AttrRange, Context, Name, SpellingListIndex)); | 
|  | } | 
|  |  | 
|  | static void handleNoDebugAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | D->addAttr(::new (S.Context) | 
|  | NoDebugAttr(AL.getRange(), S.Context, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | AlwaysInlineAttr *Sema::mergeAlwaysInlineAttr(Decl *D, SourceRange Range, | 
|  | IdentifierInfo *Ident, | 
|  | unsigned AttrSpellingListIndex) { | 
|  | if (OptimizeNoneAttr *Optnone = D->getAttr<OptimizeNoneAttr>()) { | 
|  | Diag(Range.getBegin(), diag::warn_attribute_ignored) << Ident; | 
|  | Diag(Optnone->getLocation(), diag::note_conflicting_attribute); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | if (D->hasAttr<AlwaysInlineAttr>()) | 
|  | return nullptr; | 
|  |  | 
|  | return ::new (Context) AlwaysInlineAttr(Range, Context, | 
|  | AttrSpellingListIndex); | 
|  | } | 
|  |  | 
|  | CommonAttr *Sema::mergeCommonAttr(Decl *D, const ParsedAttr &AL) { | 
|  | if (checkAttrMutualExclusion<InternalLinkageAttr>(*this, D, AL)) | 
|  | return nullptr; | 
|  |  | 
|  | return ::new (Context) | 
|  | CommonAttr(AL.getRange(), Context, AL.getAttributeSpellingListIndex()); | 
|  | } | 
|  |  | 
|  | CommonAttr *Sema::mergeCommonAttr(Decl *D, const CommonAttr &AL) { | 
|  | if (checkAttrMutualExclusion<InternalLinkageAttr>(*this, D, AL)) | 
|  | return nullptr; | 
|  |  | 
|  | return ::new (Context) | 
|  | CommonAttr(AL.getRange(), Context, AL.getSpellingListIndex()); | 
|  | } | 
|  |  | 
|  | InternalLinkageAttr *Sema::mergeInternalLinkageAttr(Decl *D, | 
|  | const ParsedAttr &AL) { | 
|  | if (const auto *VD = dyn_cast<VarDecl>(D)) { | 
|  | // Attribute applies to Var but not any subclass of it (like ParmVar, | 
|  | // ImplicitParm or VarTemplateSpecialization). | 
|  | if (VD->getKind() != Decl::Var) { | 
|  | Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) | 
|  | << AL << (getLangOpts().CPlusPlus ? ExpectedFunctionVariableOrClass | 
|  | : ExpectedVariableOrFunction); | 
|  | return nullptr; | 
|  | } | 
|  | // Attribute does not apply to non-static local variables. | 
|  | if (VD->hasLocalStorage()) { | 
|  | Diag(VD->getLocation(), diag::warn_internal_linkage_local_storage); | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (checkAttrMutualExclusion<CommonAttr>(*this, D, AL)) | 
|  | return nullptr; | 
|  |  | 
|  | return ::new (Context) InternalLinkageAttr( | 
|  | AL.getRange(), Context, AL.getAttributeSpellingListIndex()); | 
|  | } | 
|  | InternalLinkageAttr * | 
|  | Sema::mergeInternalLinkageAttr(Decl *D, const InternalLinkageAttr &AL) { | 
|  | if (const auto *VD = dyn_cast<VarDecl>(D)) { | 
|  | // Attribute applies to Var but not any subclass of it (like ParmVar, | 
|  | // ImplicitParm or VarTemplateSpecialization). | 
|  | if (VD->getKind() != Decl::Var) { | 
|  | Diag(AL.getLocation(), diag::warn_attribute_wrong_decl_type) | 
|  | << &AL << (getLangOpts().CPlusPlus ? ExpectedFunctionVariableOrClass | 
|  | : ExpectedVariableOrFunction); | 
|  | return nullptr; | 
|  | } | 
|  | // Attribute does not apply to non-static local variables. | 
|  | if (VD->hasLocalStorage()) { | 
|  | Diag(VD->getLocation(), diag::warn_internal_linkage_local_storage); | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (checkAttrMutualExclusion<CommonAttr>(*this, D, AL)) | 
|  | return nullptr; | 
|  |  | 
|  | return ::new (Context) | 
|  | InternalLinkageAttr(AL.getRange(), Context, AL.getSpellingListIndex()); | 
|  | } | 
|  |  | 
|  | MinSizeAttr *Sema::mergeMinSizeAttr(Decl *D, SourceRange Range, | 
|  | unsigned AttrSpellingListIndex) { | 
|  | if (OptimizeNoneAttr *Optnone = D->getAttr<OptimizeNoneAttr>()) { | 
|  | Diag(Range.getBegin(), diag::warn_attribute_ignored) << "'minsize'"; | 
|  | Diag(Optnone->getLocation(), diag::note_conflicting_attribute); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | if (D->hasAttr<MinSizeAttr>()) | 
|  | return nullptr; | 
|  |  | 
|  | return ::new (Context) MinSizeAttr(Range, Context, AttrSpellingListIndex); | 
|  | } | 
|  |  | 
|  | OptimizeNoneAttr *Sema::mergeOptimizeNoneAttr(Decl *D, SourceRange Range, | 
|  | unsigned AttrSpellingListIndex) { | 
|  | if (AlwaysInlineAttr *Inline = D->getAttr<AlwaysInlineAttr>()) { | 
|  | Diag(Inline->getLocation(), diag::warn_attribute_ignored) << Inline; | 
|  | Diag(Range.getBegin(), diag::note_conflicting_attribute); | 
|  | D->dropAttr<AlwaysInlineAttr>(); | 
|  | } | 
|  | if (MinSizeAttr *MinSize = D->getAttr<MinSizeAttr>()) { | 
|  | Diag(MinSize->getLocation(), diag::warn_attribute_ignored) << MinSize; | 
|  | Diag(Range.getBegin(), diag::note_conflicting_attribute); | 
|  | D->dropAttr<MinSizeAttr>(); | 
|  | } | 
|  |  | 
|  | if (D->hasAttr<OptimizeNoneAttr>()) | 
|  | return nullptr; | 
|  |  | 
|  | return ::new (Context) OptimizeNoneAttr(Range, Context, | 
|  | AttrSpellingListIndex); | 
|  | } | 
|  |  | 
|  | static void handleAlwaysInlineAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | if (checkAttrMutualExclusion<NotTailCalledAttr>(S, D, AL)) | 
|  | return; | 
|  |  | 
|  | if (AlwaysInlineAttr *Inline = S.mergeAlwaysInlineAttr( | 
|  | D, AL.getRange(), AL.getName(), | 
|  | AL.getAttributeSpellingListIndex())) | 
|  | D->addAttr(Inline); | 
|  | } | 
|  |  | 
|  | static void handleMinSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | if (MinSizeAttr *MinSize = S.mergeMinSizeAttr( | 
|  | D, AL.getRange(), AL.getAttributeSpellingListIndex())) | 
|  | D->addAttr(MinSize); | 
|  | } | 
|  |  | 
|  | static void handleOptimizeNoneAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | if (OptimizeNoneAttr *Optnone = S.mergeOptimizeNoneAttr( | 
|  | D, AL.getRange(), AL.getAttributeSpellingListIndex())) | 
|  | D->addAttr(Optnone); | 
|  | } | 
|  |  | 
|  | static void handleConstantAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | if (checkAttrMutualExclusion<CUDASharedAttr>(S, D, AL)) | 
|  | return; | 
|  | const auto *VD = cast<VarDecl>(D); | 
|  | if (!VD->hasGlobalStorage()) { | 
|  | S.Diag(AL.getLoc(), diag::err_cuda_nonglobal_constant); | 
|  | return; | 
|  | } | 
|  | D->addAttr(::new (S.Context) CUDAConstantAttr( | 
|  | AL.getRange(), S.Context, AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void handleSharedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | if (checkAttrMutualExclusion<CUDAConstantAttr>(S, D, AL)) | 
|  | return; | 
|  | const auto *VD = cast<VarDecl>(D); | 
|  | // extern __shared__ is only allowed on arrays with no length (e.g. | 
|  | // "int x[]"). | 
|  | if (!S.getLangOpts().CUDARelocatableDeviceCode && VD->hasExternalStorage() && | 
|  | !isa<IncompleteArrayType>(VD->getType())) { | 
|  | S.Diag(AL.getLoc(), diag::err_cuda_extern_shared) << VD; | 
|  | return; | 
|  | } | 
|  | if (S.getLangOpts().CUDA && VD->hasLocalStorage() && | 
|  | S.CUDADiagIfHostCode(AL.getLoc(), diag::err_cuda_host_shared) | 
|  | << S.CurrentCUDATarget()) | 
|  | return; | 
|  | D->addAttr(::new (S.Context) CUDASharedAttr( | 
|  | AL.getRange(), S.Context, AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void handleGlobalAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | if (checkAttrMutualExclusion<CUDADeviceAttr>(S, D, AL) || | 
|  | checkAttrMutualExclusion<CUDAHostAttr>(S, D, AL)) { | 
|  | return; | 
|  | } | 
|  | const auto *FD = cast<FunctionDecl>(D); | 
|  | if (!FD->getReturnType()->isVoidType()) { | 
|  | SourceRange RTRange = FD->getReturnTypeSourceRange(); | 
|  | S.Diag(FD->getTypeSpecStartLoc(), diag::err_kern_type_not_void_return) | 
|  | << FD->getType() | 
|  | << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void") | 
|  | : FixItHint()); | 
|  | return; | 
|  | } | 
|  | if (const auto *Method = dyn_cast<CXXMethodDecl>(FD)) { | 
|  | if (Method->isInstance()) { | 
|  | S.Diag(Method->getBeginLoc(), diag::err_kern_is_nonstatic_method) | 
|  | << Method; | 
|  | return; | 
|  | } | 
|  | S.Diag(Method->getBeginLoc(), diag::warn_kern_is_method) << Method; | 
|  | } | 
|  | // Only warn for "inline" when compiling for host, to cut down on noise. | 
|  | if (FD->isInlineSpecified() && !S.getLangOpts().CUDAIsDevice) | 
|  | S.Diag(FD->getBeginLoc(), diag::warn_kern_is_inline) << FD; | 
|  |  | 
|  | D->addAttr(::new (S.Context) | 
|  | CUDAGlobalAttr(AL.getRange(), S.Context, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void handleGNUInlineAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | const auto *Fn = cast<FunctionDecl>(D); | 
|  | if (!Fn->isInlineSpecified()) { | 
|  | S.Diag(AL.getLoc(), diag::warn_gnu_inline_attribute_requires_inline); | 
|  | return; | 
|  | } | 
|  |  | 
|  | D->addAttr(::new (S.Context) | 
|  | GNUInlineAttr(AL.getRange(), S.Context, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void handleCallConvAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | if (hasDeclarator(D)) return; | 
|  |  | 
|  | // Diagnostic is emitted elsewhere: here we store the (valid) AL | 
|  | // in the Decl node for syntactic reasoning, e.g., pretty-printing. | 
|  | CallingConv CC; | 
|  | if (S.CheckCallingConvAttr(AL, CC, /*FD*/nullptr)) | 
|  | return; | 
|  |  | 
|  | if (!isa<ObjCMethodDecl>(D)) { | 
|  | S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) | 
|  | << AL << ExpectedFunctionOrMethod; | 
|  | return; | 
|  | } | 
|  |  | 
|  | switch (AL.getKind()) { | 
|  | case ParsedAttr::AT_FastCall: | 
|  | D->addAttr(::new (S.Context) | 
|  | FastCallAttr(AL.getRange(), S.Context, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | return; | 
|  | case ParsedAttr::AT_StdCall: | 
|  | D->addAttr(::new (S.Context) | 
|  | StdCallAttr(AL.getRange(), S.Context, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | return; | 
|  | case ParsedAttr::AT_ThisCall: | 
|  | D->addAttr(::new (S.Context) | 
|  | ThisCallAttr(AL.getRange(), S.Context, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | return; | 
|  | case ParsedAttr::AT_CDecl: | 
|  | D->addAttr(::new (S.Context) | 
|  | CDeclAttr(AL.getRange(), S.Context, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | return; | 
|  | case ParsedAttr::AT_Pascal: | 
|  | D->addAttr(::new (S.Context) | 
|  | PascalAttr(AL.getRange(), S.Context, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | return; | 
|  | case ParsedAttr::AT_SwiftCall: | 
|  | D->addAttr(::new (S.Context) | 
|  | SwiftCallAttr(AL.getRange(), S.Context, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | return; | 
|  | case ParsedAttr::AT_VectorCall: | 
|  | D->addAttr(::new (S.Context) | 
|  | VectorCallAttr(AL.getRange(), S.Context, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | return; | 
|  | case ParsedAttr::AT_MSABI: | 
|  | D->addAttr(::new (S.Context) | 
|  | MSABIAttr(AL.getRange(), S.Context, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | return; | 
|  | case ParsedAttr::AT_SysVABI: | 
|  | D->addAttr(::new (S.Context) | 
|  | SysVABIAttr(AL.getRange(), S.Context, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | return; | 
|  | case ParsedAttr::AT_RegCall: | 
|  | D->addAttr(::new (S.Context) RegCallAttr( | 
|  | AL.getRange(), S.Context, AL.getAttributeSpellingListIndex())); | 
|  | return; | 
|  | case ParsedAttr::AT_Pcs: { | 
|  | PcsAttr::PCSType PCS; | 
|  | switch (CC) { | 
|  | case CC_AAPCS: | 
|  | PCS = PcsAttr::AAPCS; | 
|  | break; | 
|  | case CC_AAPCS_VFP: | 
|  | PCS = PcsAttr::AAPCS_VFP; | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("unexpected calling convention in pcs attribute"); | 
|  | } | 
|  |  | 
|  | D->addAttr(::new (S.Context) | 
|  | PcsAttr(AL.getRange(), S.Context, PCS, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | return; | 
|  | } | 
|  | case ParsedAttr::AT_IntelOclBicc: | 
|  | D->addAttr(::new (S.Context) | 
|  | IntelOclBiccAttr(AL.getRange(), S.Context, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | return; | 
|  | case ParsedAttr::AT_PreserveMost: | 
|  | D->addAttr(::new (S.Context) PreserveMostAttr( | 
|  | AL.getRange(), S.Context, AL.getAttributeSpellingListIndex())); | 
|  | return; | 
|  | case ParsedAttr::AT_PreserveAll: | 
|  | D->addAttr(::new (S.Context) PreserveAllAttr( | 
|  | AL.getRange(), S.Context, AL.getAttributeSpellingListIndex())); | 
|  | return; | 
|  | default: | 
|  | llvm_unreachable("unexpected attribute kind"); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void handleSuppressAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | if (!checkAttributeAtLeastNumArgs(S, AL, 1)) | 
|  | return; | 
|  |  | 
|  | std::vector<StringRef> DiagnosticIdentifiers; | 
|  | for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) { | 
|  | StringRef RuleName; | 
|  |  | 
|  | if (!S.checkStringLiteralArgumentAttr(AL, I, RuleName, nullptr)) | 
|  | return; | 
|  |  | 
|  | // FIXME: Warn if the rule name is unknown. This is tricky because only | 
|  | // clang-tidy knows about available rules. | 
|  | DiagnosticIdentifiers.push_back(RuleName); | 
|  | } | 
|  | D->addAttr(::new (S.Context) SuppressAttr( | 
|  | AL.getRange(), S.Context, DiagnosticIdentifiers.data(), | 
|  | DiagnosticIdentifiers.size(), AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | bool Sema::CheckCallingConvAttr(const ParsedAttr &Attrs, CallingConv &CC, | 
|  | const FunctionDecl *FD) { | 
|  | if (Attrs.isInvalid()) | 
|  | return true; | 
|  |  | 
|  | if (Attrs.hasProcessingCache()) { | 
|  | CC = (CallingConv) Attrs.getProcessingCache(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | unsigned ReqArgs = Attrs.getKind() == ParsedAttr::AT_Pcs ? 1 : 0; | 
|  | if (!checkAttributeNumArgs(*this, Attrs, ReqArgs)) { | 
|  | Attrs.setInvalid(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // TODO: diagnose uses of these conventions on the wrong target. | 
|  | switch (Attrs.getKind()) { | 
|  | case ParsedAttr::AT_CDecl: | 
|  | CC = CC_C; | 
|  | break; | 
|  | case ParsedAttr::AT_FastCall: | 
|  | CC = CC_X86FastCall; | 
|  | break; | 
|  | case ParsedAttr::AT_StdCall: | 
|  | CC = CC_X86StdCall; | 
|  | break; | 
|  | case ParsedAttr::AT_ThisCall: | 
|  | CC = CC_X86ThisCall; | 
|  | break; | 
|  | case ParsedAttr::AT_Pascal: | 
|  | CC = CC_X86Pascal; | 
|  | break; | 
|  | case ParsedAttr::AT_SwiftCall: | 
|  | CC = CC_Swift; | 
|  | break; | 
|  | case ParsedAttr::AT_VectorCall: | 
|  | CC = CC_X86VectorCall; | 
|  | break; | 
|  | case ParsedAttr::AT_RegCall: | 
|  | CC = CC_X86RegCall; | 
|  | break; | 
|  | case ParsedAttr::AT_MSABI: | 
|  | CC = Context.getTargetInfo().getTriple().isOSWindows() ? CC_C : | 
|  | CC_Win64; | 
|  | break; | 
|  | case ParsedAttr::AT_SysVABI: | 
|  | CC = Context.getTargetInfo().getTriple().isOSWindows() ? CC_X86_64SysV : | 
|  | CC_C; | 
|  | break; | 
|  | case ParsedAttr::AT_Pcs: { | 
|  | StringRef StrRef; | 
|  | if (!checkStringLiteralArgumentAttr(Attrs, 0, StrRef)) { | 
|  | Attrs.setInvalid(); | 
|  | return true; | 
|  | } | 
|  | if (StrRef == "aapcs") { | 
|  | CC = CC_AAPCS; | 
|  | break; | 
|  | } else if (StrRef == "aapcs-vfp") { | 
|  | CC = CC_AAPCS_VFP; | 
|  | break; | 
|  | } | 
|  |  | 
|  | Attrs.setInvalid(); | 
|  | Diag(Attrs.getLoc(), diag::err_invalid_pcs); | 
|  | return true; | 
|  | } | 
|  | case ParsedAttr::AT_IntelOclBicc: | 
|  | CC = CC_IntelOclBicc; | 
|  | break; | 
|  | case ParsedAttr::AT_PreserveMost: | 
|  | CC = CC_PreserveMost; | 
|  | break; | 
|  | case ParsedAttr::AT_PreserveAll: | 
|  | CC = CC_PreserveAll; | 
|  | break; | 
|  | default: llvm_unreachable("unexpected attribute kind"); | 
|  | } | 
|  |  | 
|  | const TargetInfo &TI = Context.getTargetInfo(); | 
|  | TargetInfo::CallingConvCheckResult A = TI.checkCallingConvention(CC); | 
|  | if (A != TargetInfo::CCCR_OK) { | 
|  | if (A == TargetInfo::CCCR_Warning) | 
|  | Diag(Attrs.getLoc(), diag::warn_cconv_ignored) << Attrs; | 
|  |  | 
|  | // This convention is not valid for the target. Use the default function or | 
|  | // method calling convention. | 
|  | bool IsCXXMethod = false, IsVariadic = false; | 
|  | if (FD) { | 
|  | IsCXXMethod = FD->isCXXInstanceMember(); | 
|  | IsVariadic = FD->isVariadic(); | 
|  | } | 
|  | CC = Context.getDefaultCallingConvention(IsVariadic, IsCXXMethod); | 
|  | } | 
|  |  | 
|  | Attrs.setProcessingCache((unsigned) CC); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Pointer-like types in the default address space. | 
|  | static bool isValidSwiftContextType(QualType Ty) { | 
|  | if (!Ty->hasPointerRepresentation()) | 
|  | return Ty->isDependentType(); | 
|  | return Ty->getPointeeType().getAddressSpace() == LangAS::Default; | 
|  | } | 
|  |  | 
|  | /// Pointers and references in the default address space. | 
|  | static bool isValidSwiftIndirectResultType(QualType Ty) { | 
|  | if (const auto *PtrType = Ty->getAs<PointerType>()) { | 
|  | Ty = PtrType->getPointeeType(); | 
|  | } else if (const auto *RefType = Ty->getAs<ReferenceType>()) { | 
|  | Ty = RefType->getPointeeType(); | 
|  | } else { | 
|  | return Ty->isDependentType(); | 
|  | } | 
|  | return Ty.getAddressSpace() == LangAS::Default; | 
|  | } | 
|  |  | 
|  | /// Pointers and references to pointers in the default address space. | 
|  | static bool isValidSwiftErrorResultType(QualType Ty) { | 
|  | if (const auto *PtrType = Ty->getAs<PointerType>()) { | 
|  | Ty = PtrType->getPointeeType(); | 
|  | } else if (const auto *RefType = Ty->getAs<ReferenceType>()) { | 
|  | Ty = RefType->getPointeeType(); | 
|  | } else { | 
|  | return Ty->isDependentType(); | 
|  | } | 
|  | if (!Ty.getQualifiers().empty()) | 
|  | return false; | 
|  | return isValidSwiftContextType(Ty); | 
|  | } | 
|  |  | 
|  | static void handleParameterABIAttr(Sema &S, Decl *D, const ParsedAttr &Attrs, | 
|  | ParameterABI Abi) { | 
|  | S.AddParameterABIAttr(Attrs.getRange(), D, Abi, | 
|  | Attrs.getAttributeSpellingListIndex()); | 
|  | } | 
|  |  | 
|  | void Sema::AddParameterABIAttr(SourceRange range, Decl *D, ParameterABI abi, | 
|  | unsigned spellingIndex) { | 
|  |  | 
|  | QualType type = cast<ParmVarDecl>(D)->getType(); | 
|  |  | 
|  | if (auto existingAttr = D->getAttr<ParameterABIAttr>()) { | 
|  | if (existingAttr->getABI() != abi) { | 
|  | Diag(range.getBegin(), diag::err_attributes_are_not_compatible) | 
|  | << getParameterABISpelling(abi) << existingAttr; | 
|  | Diag(existingAttr->getLocation(), diag::note_conflicting_attribute); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | switch (abi) { | 
|  | case ParameterABI::Ordinary: | 
|  | llvm_unreachable("explicit attribute for ordinary parameter ABI?"); | 
|  |  | 
|  | case ParameterABI::SwiftContext: | 
|  | if (!isValidSwiftContextType(type)) { | 
|  | Diag(range.getBegin(), diag::err_swift_abi_parameter_wrong_type) | 
|  | << getParameterABISpelling(abi) | 
|  | << /*pointer to pointer */ 0 << type; | 
|  | } | 
|  | D->addAttr(::new (Context) | 
|  | SwiftContextAttr(range, Context, spellingIndex)); | 
|  | return; | 
|  |  | 
|  | case ParameterABI::SwiftErrorResult: | 
|  | if (!isValidSwiftErrorResultType(type)) { | 
|  | Diag(range.getBegin(), diag::err_swift_abi_parameter_wrong_type) | 
|  | << getParameterABISpelling(abi) | 
|  | << /*pointer to pointer */ 1 << type; | 
|  | } | 
|  | D->addAttr(::new (Context) | 
|  | SwiftErrorResultAttr(range, Context, spellingIndex)); | 
|  | return; | 
|  |  | 
|  | case ParameterABI::SwiftIndirectResult: | 
|  | if (!isValidSwiftIndirectResultType(type)) { | 
|  | Diag(range.getBegin(), diag::err_swift_abi_parameter_wrong_type) | 
|  | << getParameterABISpelling(abi) | 
|  | << /*pointer*/ 0 << type; | 
|  | } | 
|  | D->addAttr(::new (Context) | 
|  | SwiftIndirectResultAttr(range, Context, spellingIndex)); | 
|  | return; | 
|  | } | 
|  | llvm_unreachable("bad parameter ABI attribute"); | 
|  | } | 
|  |  | 
|  | /// Checks a regparm attribute, returning true if it is ill-formed and | 
|  | /// otherwise setting numParams to the appropriate value. | 
|  | bool Sema::CheckRegparmAttr(const ParsedAttr &AL, unsigned &numParams) { | 
|  | if (AL.isInvalid()) | 
|  | return true; | 
|  |  | 
|  | if (!checkAttributeNumArgs(*this, AL, 1)) { | 
|  | AL.setInvalid(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | uint32_t NP; | 
|  | Expr *NumParamsExpr = AL.getArgAsExpr(0); | 
|  | if (!checkUInt32Argument(*this, AL, NumParamsExpr, NP)) { | 
|  | AL.setInvalid(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (Context.getTargetInfo().getRegParmMax() == 0) { | 
|  | Diag(AL.getLoc(), diag::err_attribute_regparm_wrong_platform) | 
|  | << NumParamsExpr->getSourceRange(); | 
|  | AL.setInvalid(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | numParams = NP; | 
|  | if (numParams > Context.getTargetInfo().getRegParmMax()) { | 
|  | Diag(AL.getLoc(), diag::err_attribute_regparm_invalid_number) | 
|  | << Context.getTargetInfo().getRegParmMax() << NumParamsExpr->getSourceRange(); | 
|  | AL.setInvalid(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Checks whether an argument of launch_bounds attribute is | 
|  | // acceptable, performs implicit conversion to Rvalue, and returns | 
|  | // non-nullptr Expr result on success. Otherwise, it returns nullptr | 
|  | // and may output an error. | 
|  | static Expr *makeLaunchBoundsArgExpr(Sema &S, Expr *E, | 
|  | const CUDALaunchBoundsAttr &AL, | 
|  | const unsigned Idx) { | 
|  | if (S.DiagnoseUnexpandedParameterPack(E)) | 
|  | return nullptr; | 
|  |  | 
|  | // Accept template arguments for now as they depend on something else. | 
|  | // We'll get to check them when they eventually get instantiated. | 
|  | if (E->isValueDependent()) | 
|  | return E; | 
|  |  | 
|  | llvm::APSInt I(64); | 
|  | if (!E->isIntegerConstantExpr(I, S.Context)) { | 
|  | S.Diag(E->getExprLoc(), diag::err_attribute_argument_n_type) | 
|  | << &AL << Idx << AANT_ArgumentIntegerConstant << E->getSourceRange(); | 
|  | return nullptr; | 
|  | } | 
|  | // Make sure we can fit it in 32 bits. | 
|  | if (!I.isIntN(32)) { | 
|  | S.Diag(E->getExprLoc(), diag::err_ice_too_large) << I.toString(10, false) | 
|  | << 32 << /* Unsigned */ 1; | 
|  | return nullptr; | 
|  | } | 
|  | if (I < 0) | 
|  | S.Diag(E->getExprLoc(), diag::warn_attribute_argument_n_negative) | 
|  | << &AL << Idx << E->getSourceRange(); | 
|  |  | 
|  | // We may need to perform implicit conversion of the argument. | 
|  | InitializedEntity Entity = InitializedEntity::InitializeParameter( | 
|  | S.Context, S.Context.getConstType(S.Context.IntTy), /*consume*/ false); | 
|  | ExprResult ValArg = S.PerformCopyInitialization(Entity, SourceLocation(), E); | 
|  | assert(!ValArg.isInvalid() && | 
|  | "Unexpected PerformCopyInitialization() failure."); | 
|  |  | 
|  | return ValArg.getAs<Expr>(); | 
|  | } | 
|  |  | 
|  | void Sema::AddLaunchBoundsAttr(SourceRange AttrRange, Decl *D, Expr *MaxThreads, | 
|  | Expr *MinBlocks, unsigned SpellingListIndex) { | 
|  | CUDALaunchBoundsAttr TmpAttr(AttrRange, Context, MaxThreads, MinBlocks, | 
|  | SpellingListIndex); | 
|  | MaxThreads = makeLaunchBoundsArgExpr(*this, MaxThreads, TmpAttr, 0); | 
|  | if (MaxThreads == nullptr) | 
|  | return; | 
|  |  | 
|  | if (MinBlocks) { | 
|  | MinBlocks = makeLaunchBoundsArgExpr(*this, MinBlocks, TmpAttr, 1); | 
|  | if (MinBlocks == nullptr) | 
|  | return; | 
|  | } | 
|  |  | 
|  | D->addAttr(::new (Context) CUDALaunchBoundsAttr( | 
|  | AttrRange, Context, MaxThreads, MinBlocks, SpellingListIndex)); | 
|  | } | 
|  |  | 
|  | static void handleLaunchBoundsAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | if (!checkAttributeAtLeastNumArgs(S, AL, 1) || | 
|  | !checkAttributeAtMostNumArgs(S, AL, 2)) | 
|  | return; | 
|  |  | 
|  | S.AddLaunchBoundsAttr(AL.getRange(), D, AL.getArgAsExpr(0), | 
|  | AL.getNumArgs() > 1 ? AL.getArgAsExpr(1) : nullptr, | 
|  | AL.getAttributeSpellingListIndex()); | 
|  | } | 
|  |  | 
|  | static void handleArgumentWithTypeTagAttr(Sema &S, Decl *D, | 
|  | const ParsedAttr &AL) { | 
|  | if (!AL.isArgIdent(0)) { | 
|  | S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) | 
|  | << AL << /* arg num = */ 1 << AANT_ArgumentIdentifier; | 
|  | return; | 
|  | } | 
|  |  | 
|  | ParamIdx ArgumentIdx; | 
|  | if (!checkFunctionOrMethodParameterIndex(S, D, AL, 2, AL.getArgAsExpr(1), | 
|  | ArgumentIdx)) | 
|  | return; | 
|  |  | 
|  | ParamIdx TypeTagIdx; | 
|  | if (!checkFunctionOrMethodParameterIndex(S, D, AL, 3, AL.getArgAsExpr(2), | 
|  | TypeTagIdx)) | 
|  | return; | 
|  |  | 
|  | bool IsPointer = AL.getName()->getName() == "pointer_with_type_tag"; | 
|  | if (IsPointer) { | 
|  | // Ensure that buffer has a pointer type. | 
|  | unsigned ArgumentIdxAST = ArgumentIdx.getASTIndex(); | 
|  | if (ArgumentIdxAST >= getFunctionOrMethodNumParams(D) || | 
|  | !getFunctionOrMethodParamType(D, ArgumentIdxAST)->isPointerType()) | 
|  | S.Diag(AL.getLoc(), diag::err_attribute_pointers_only) << AL << 0; | 
|  | } | 
|  |  | 
|  | D->addAttr(::new (S.Context) ArgumentWithTypeTagAttr( | 
|  | AL.getRange(), S.Context, AL.getArgAsIdent(0)->Ident, ArgumentIdx, | 
|  | TypeTagIdx, IsPointer, AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void handleTypeTagForDatatypeAttr(Sema &S, Decl *D, | 
|  | const ParsedAttr &AL) { | 
|  | if (!AL.isArgIdent(0)) { | 
|  | S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) | 
|  | << AL << 1 << AANT_ArgumentIdentifier; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!checkAttributeNumArgs(S, AL, 1)) | 
|  | return; | 
|  |  | 
|  | if (!isa<VarDecl>(D)) { | 
|  | S.Diag(AL.getLoc(), diag::err_attribute_wrong_decl_type) | 
|  | << AL << ExpectedVariable; | 
|  | return; | 
|  | } | 
|  |  | 
|  | IdentifierInfo *PointerKind = AL.getArgAsIdent(0)->Ident; | 
|  | TypeSourceInfo *MatchingCTypeLoc = nullptr; | 
|  | S.GetTypeFromParser(AL.getMatchingCType(), &MatchingCTypeLoc); | 
|  | assert(MatchingCTypeLoc && "no type source info for attribute argument"); | 
|  |  | 
|  | D->addAttr(::new (S.Context) | 
|  | TypeTagForDatatypeAttr(AL.getRange(), S.Context, PointerKind, | 
|  | MatchingCTypeLoc, | 
|  | AL.getLayoutCompatible(), | 
|  | AL.getMustBeNull(), | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void handleXRayLogArgsAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | ParamIdx ArgCount; | 
|  |  | 
|  | if (!checkFunctionOrMethodParameterIndex(S, D, AL, 1, AL.getArgAsExpr(0), | 
|  | ArgCount, | 
|  | true /* CanIndexImplicitThis */)) | 
|  | return; | 
|  |  | 
|  | // ArgCount isn't a parameter index [0;n), it's a count [1;n] | 
|  | D->addAttr(::new (S.Context) XRayLogArgsAttr( | 
|  | AL.getRange(), S.Context, ArgCount.getSourceIndex(), | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Checker-specific attribute handlers. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | static bool isValidSubjectOfNSReturnsRetainedAttribute(QualType QT) { | 
|  | return QT->isDependentType() || QT->isObjCRetainableType(); | 
|  | } | 
|  |  | 
|  | static bool isValidSubjectOfNSAttribute(Sema &S, QualType QT) { | 
|  | return QT->isDependentType() || QT->isObjCObjectPointerType() || | 
|  | S.Context.isObjCNSObjectType(QT); | 
|  | } | 
|  |  | 
|  | static bool isValidSubjectOfCFAttribute(Sema &S, QualType QT) { | 
|  | return QT->isDependentType() || QT->isPointerType() || | 
|  | isValidSubjectOfNSAttribute(S, QT); | 
|  | } | 
|  |  | 
|  | static void handleNSConsumedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | S.AddNSConsumedAttr(AL.getRange(), D, AL.getAttributeSpellingListIndex(), | 
|  | AL.getKind() == ParsedAttr::AT_NSConsumed, | 
|  | /*template instantiation*/ false); | 
|  | } | 
|  |  | 
|  | void Sema::AddNSConsumedAttr(SourceRange AttrRange, Decl *D, | 
|  | unsigned SpellingIndex, bool IsNSConsumed, | 
|  | bool IsTemplateInstantiation) { | 
|  | const auto *Param = cast<ParmVarDecl>(D); | 
|  | bool TypeOK; | 
|  |  | 
|  | if (IsNSConsumed) | 
|  | TypeOK = isValidSubjectOfNSAttribute(*this, Param->getType()); | 
|  | else | 
|  | TypeOK = isValidSubjectOfCFAttribute(*this, Param->getType()); | 
|  |  | 
|  | if (!TypeOK) { | 
|  | // These attributes are normally just advisory, but in ARC, ns_consumed | 
|  | // is significant.  Allow non-dependent code to contain inappropriate | 
|  | // attributes even in ARC, but require template instantiations to be | 
|  | // set up correctly. | 
|  | Diag(D->getBeginLoc(), (IsTemplateInstantiation && IsNSConsumed && | 
|  | getLangOpts().ObjCAutoRefCount | 
|  | ? diag::err_ns_attribute_wrong_parameter_type | 
|  | : diag::warn_ns_attribute_wrong_parameter_type)) | 
|  | << AttrRange << (IsNSConsumed ? "ns_consumed" : "cf_consumed") | 
|  | << (IsNSConsumed ? /*objc pointers*/ 0 : /*cf pointers*/ 1); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (IsNSConsumed) | 
|  | D->addAttr(::new (Context) | 
|  | NSConsumedAttr(AttrRange, Context, SpellingIndex)); | 
|  | else | 
|  | D->addAttr(::new (Context) | 
|  | CFConsumedAttr(AttrRange, Context, SpellingIndex)); | 
|  | } | 
|  |  | 
|  | bool Sema::checkNSReturnsRetainedReturnType(SourceLocation Loc, QualType QT) { | 
|  | if (isValidSubjectOfNSReturnsRetainedAttribute(QT)) | 
|  | return false; | 
|  |  | 
|  | Diag(Loc, diag::warn_ns_attribute_wrong_return_type) | 
|  | << "'ns_returns_retained'" << 0 << 0; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void handleNSReturnsRetainedAttr(Sema &S, Decl *D, | 
|  | const ParsedAttr &AL) { | 
|  | QualType ReturnType; | 
|  |  | 
|  | if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) | 
|  | ReturnType = MD->getReturnType(); | 
|  | else if (S.getLangOpts().ObjCAutoRefCount && hasDeclarator(D) && | 
|  | (AL.getKind() == ParsedAttr::AT_NSReturnsRetained)) | 
|  | return; // ignore: was handled as a type attribute | 
|  | else if (const auto *PD = dyn_cast<ObjCPropertyDecl>(D)) | 
|  | ReturnType = PD->getType(); | 
|  | else if (const auto *FD = dyn_cast<FunctionDecl>(D)) | 
|  | ReturnType = FD->getReturnType(); | 
|  | else if (const auto *Param = dyn_cast<ParmVarDecl>(D)) { | 
|  | ReturnType = Param->getType()->getPointeeType(); | 
|  | if (ReturnType.isNull()) { | 
|  | S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_parameter_type) | 
|  | << AL << /*pointer-to-CF*/ 2 << AL.getRange(); | 
|  | return; | 
|  | } | 
|  | } else if (AL.isUsedAsTypeAttr()) { | 
|  | return; | 
|  | } else { | 
|  | AttributeDeclKind ExpectedDeclKind; | 
|  | switch (AL.getKind()) { | 
|  | default: llvm_unreachable("invalid ownership attribute"); | 
|  | case ParsedAttr::AT_NSReturnsRetained: | 
|  | case ParsedAttr::AT_NSReturnsAutoreleased: | 
|  | case ParsedAttr::AT_NSReturnsNotRetained: | 
|  | ExpectedDeclKind = ExpectedFunctionOrMethod; | 
|  | break; | 
|  |  | 
|  | case ParsedAttr::AT_CFReturnsRetained: | 
|  | case ParsedAttr::AT_CFReturnsNotRetained: | 
|  | ExpectedDeclKind = ExpectedFunctionMethodOrParameter; | 
|  | break; | 
|  | } | 
|  | S.Diag(D->getBeginLoc(), diag::warn_attribute_wrong_decl_type) | 
|  | << AL.getRange() << AL << ExpectedDeclKind; | 
|  | return; | 
|  | } | 
|  |  | 
|  | bool TypeOK; | 
|  | bool Cf; | 
|  | switch (AL.getKind()) { | 
|  | default: llvm_unreachable("invalid ownership attribute"); | 
|  | case ParsedAttr::AT_NSReturnsRetained: | 
|  | TypeOK = isValidSubjectOfNSReturnsRetainedAttribute(ReturnType); | 
|  | Cf = false; | 
|  | break; | 
|  |  | 
|  | case ParsedAttr::AT_NSReturnsAutoreleased: | 
|  | case ParsedAttr::AT_NSReturnsNotRetained: | 
|  | TypeOK = isValidSubjectOfNSAttribute(S, ReturnType); | 
|  | Cf = false; | 
|  | break; | 
|  |  | 
|  | case ParsedAttr::AT_CFReturnsRetained: | 
|  | case ParsedAttr::AT_CFReturnsNotRetained: | 
|  | TypeOK = isValidSubjectOfCFAttribute(S, ReturnType); | 
|  | Cf = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!TypeOK) { | 
|  | if (AL.isUsedAsTypeAttr()) | 
|  | return; | 
|  |  | 
|  | if (isa<ParmVarDecl>(D)) { | 
|  | S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_parameter_type) | 
|  | << AL << /*pointer-to-CF*/ 2 << AL.getRange(); | 
|  | } else { | 
|  | // Needs to be kept in sync with warn_ns_attribute_wrong_return_type. | 
|  | enum : unsigned { | 
|  | Function, | 
|  | Method, | 
|  | Property | 
|  | } SubjectKind = Function; | 
|  | if (isa<ObjCMethodDecl>(D)) | 
|  | SubjectKind = Method; | 
|  | else if (isa<ObjCPropertyDecl>(D)) | 
|  | SubjectKind = Property; | 
|  | S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_return_type) | 
|  | << AL << SubjectKind << Cf << AL.getRange(); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | switch (AL.getKind()) { | 
|  | default: | 
|  | llvm_unreachable("invalid ownership attribute"); | 
|  | case ParsedAttr::AT_NSReturnsAutoreleased: | 
|  | D->addAttr(::new (S.Context) NSReturnsAutoreleasedAttr( | 
|  | AL.getRange(), S.Context, AL.getAttributeSpellingListIndex())); | 
|  | return; | 
|  | case ParsedAttr::AT_CFReturnsNotRetained: | 
|  | D->addAttr(::new (S.Context) CFReturnsNotRetainedAttr( | 
|  | AL.getRange(), S.Context, AL.getAttributeSpellingListIndex())); | 
|  | return; | 
|  | case ParsedAttr::AT_NSReturnsNotRetained: | 
|  | D->addAttr(::new (S.Context) NSReturnsNotRetainedAttr( | 
|  | AL.getRange(), S.Context, AL.getAttributeSpellingListIndex())); | 
|  | return; | 
|  | case ParsedAttr::AT_CFReturnsRetained: | 
|  | D->addAttr(::new (S.Context) CFReturnsRetainedAttr( | 
|  | AL.getRange(), S.Context, AL.getAttributeSpellingListIndex())); | 
|  | return; | 
|  | case ParsedAttr::AT_NSReturnsRetained: | 
|  | D->addAttr(::new (S.Context) NSReturnsRetainedAttr( | 
|  | AL.getRange(), S.Context, AL.getAttributeSpellingListIndex())); | 
|  | return; | 
|  | }; | 
|  | } | 
|  |  | 
|  | static void handleObjCReturnsInnerPointerAttr(Sema &S, Decl *D, | 
|  | const ParsedAttr &Attrs) { | 
|  | const int EP_ObjCMethod = 1; | 
|  | const int EP_ObjCProperty = 2; | 
|  |  | 
|  | SourceLocation loc = Attrs.getLoc(); | 
|  | QualType resultType; | 
|  | if (isa<ObjCMethodDecl>(D)) | 
|  | resultType = cast<ObjCMethodDecl>(D)->getReturnType(); | 
|  | else | 
|  | resultType = cast<ObjCPropertyDecl>(D)->getType(); | 
|  |  | 
|  | if (!resultType->isReferenceType() && | 
|  | (!resultType->isPointerType() || resultType->isObjCRetainableType())) { | 
|  | S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_return_type) | 
|  | << SourceRange(loc) << Attrs | 
|  | << (isa<ObjCMethodDecl>(D) ? EP_ObjCMethod : EP_ObjCProperty) | 
|  | << /*non-retainable pointer*/ 2; | 
|  |  | 
|  | // Drop the attribute. | 
|  | return; | 
|  | } | 
|  |  | 
|  | D->addAttr(::new (S.Context) ObjCReturnsInnerPointerAttr( | 
|  | Attrs.getRange(), S.Context, Attrs.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void handleObjCRequiresSuperAttr(Sema &S, Decl *D, | 
|  | const ParsedAttr &Attrs) { | 
|  | const auto *Method = cast<ObjCMethodDecl>(D); | 
|  |  | 
|  | const DeclContext *DC = Method->getDeclContext(); | 
|  | if (const auto *PDecl = dyn_cast_or_null<ObjCProtocolDecl>(DC)) { | 
|  | S.Diag(D->getBeginLoc(), diag::warn_objc_requires_super_protocol) << Attrs | 
|  | << 0; | 
|  | S.Diag(PDecl->getLocation(), diag::note_protocol_decl); | 
|  | return; | 
|  | } | 
|  | if (Method->getMethodFamily() == OMF_dealloc) { | 
|  | S.Diag(D->getBeginLoc(), diag::warn_objc_requires_super_protocol) << Attrs | 
|  | << 1; | 
|  | return; | 
|  | } | 
|  |  | 
|  | D->addAttr(::new (S.Context) ObjCRequiresSuperAttr( | 
|  | Attrs.getRange(), S.Context, Attrs.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void handleObjCBridgeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | IdentifierLoc *Parm = AL.isArgIdent(0) ? AL.getArgAsIdent(0) : nullptr; | 
|  |  | 
|  | if (!Parm) { | 
|  | S.Diag(D->getBeginLoc(), diag::err_objc_attr_not_id) << AL << 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Typedefs only allow objc_bridge(id) and have some additional checking. | 
|  | if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) { | 
|  | if (!Parm->Ident->isStr("id")) { | 
|  | S.Diag(AL.getLoc(), diag::err_objc_attr_typedef_not_id) << AL; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Only allow 'cv void *'. | 
|  | QualType T = TD->getUnderlyingType(); | 
|  | if (!T->isVoidPointerType()) { | 
|  | S.Diag(AL.getLoc(), diag::err_objc_attr_typedef_not_void_pointer); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | D->addAttr(::new (S.Context) | 
|  | ObjCBridgeAttr(AL.getRange(), S.Context, Parm->Ident, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void handleObjCBridgeMutableAttr(Sema &S, Decl *D, | 
|  | const ParsedAttr &AL) { | 
|  | IdentifierLoc *Parm = AL.isArgIdent(0) ? AL.getArgAsIdent(0) : nullptr; | 
|  |  | 
|  | if (!Parm) { | 
|  | S.Diag(D->getBeginLoc(), diag::err_objc_attr_not_id) << AL << 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | D->addAttr(::new (S.Context) | 
|  | ObjCBridgeMutableAttr(AL.getRange(), S.Context, Parm->Ident, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void handleObjCBridgeRelatedAttr(Sema &S, Decl *D, | 
|  | const ParsedAttr &AL) { | 
|  | IdentifierInfo *RelatedClass = | 
|  | AL.isArgIdent(0) ? AL.getArgAsIdent(0)->Ident : nullptr; | 
|  | if (!RelatedClass) { | 
|  | S.Diag(D->getBeginLoc(), diag::err_objc_attr_not_id) << AL << 0; | 
|  | return; | 
|  | } | 
|  | IdentifierInfo *ClassMethod = | 
|  | AL.getArgAsIdent(1) ? AL.getArgAsIdent(1)->Ident : nullptr; | 
|  | IdentifierInfo *InstanceMethod = | 
|  | AL.getArgAsIdent(2) ? AL.getArgAsIdent(2)->Ident : nullptr; | 
|  | D->addAttr(::new (S.Context) | 
|  | ObjCBridgeRelatedAttr(AL.getRange(), S.Context, RelatedClass, | 
|  | ClassMethod, InstanceMethod, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void handleObjCDesignatedInitializer(Sema &S, Decl *D, | 
|  | const ParsedAttr &AL) { | 
|  | ObjCInterfaceDecl *IFace; | 
|  | if (auto *CatDecl = dyn_cast<ObjCCategoryDecl>(D->getDeclContext())) | 
|  | IFace = CatDecl->getClassInterface(); | 
|  | else | 
|  | IFace = cast<ObjCInterfaceDecl>(D->getDeclContext()); | 
|  |  | 
|  | if (!IFace) | 
|  | return; | 
|  |  | 
|  | IFace->setHasDesignatedInitializers(); | 
|  | D->addAttr(::new (S.Context) | 
|  | ObjCDesignatedInitializerAttr(AL.getRange(), S.Context, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void handleObjCRuntimeName(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | StringRef MetaDataName; | 
|  | if (!S.checkStringLiteralArgumentAttr(AL, 0, MetaDataName)) | 
|  | return; | 
|  | D->addAttr(::new (S.Context) | 
|  | ObjCRuntimeNameAttr(AL.getRange(), S.Context, | 
|  | MetaDataName, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | // When a user wants to use objc_boxable with a union or struct | 
|  | // but they don't have access to the declaration (legacy/third-party code) | 
|  | // then they can 'enable' this feature with a typedef: | 
|  | // typedef struct __attribute((objc_boxable)) legacy_struct legacy_struct; | 
|  | static void handleObjCBoxable(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | bool notify = false; | 
|  |  | 
|  | auto *RD = dyn_cast<RecordDecl>(D); | 
|  | if (RD && RD->getDefinition()) { | 
|  | RD = RD->getDefinition(); | 
|  | notify = true; | 
|  | } | 
|  |  | 
|  | if (RD) { | 
|  | ObjCBoxableAttr *BoxableAttr = ::new (S.Context) | 
|  | ObjCBoxableAttr(AL.getRange(), S.Context, | 
|  | AL.getAttributeSpellingListIndex()); | 
|  | RD->addAttr(BoxableAttr); | 
|  | if (notify) { | 
|  | // we need to notify ASTReader/ASTWriter about | 
|  | // modification of existing declaration | 
|  | if (ASTMutationListener *L = S.getASTMutationListener()) | 
|  | L->AddedAttributeToRecord(BoxableAttr, RD); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void handleObjCOwnershipAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | if (hasDeclarator(D)) return; | 
|  |  | 
|  | S.Diag(D->getBeginLoc(), diag::err_attribute_wrong_decl_type) | 
|  | << AL.getRange() << AL << ExpectedVariable; | 
|  | } | 
|  |  | 
|  | static void handleObjCPreciseLifetimeAttr(Sema &S, Decl *D, | 
|  | const ParsedAttr &AL) { | 
|  | const auto *VD = cast<ValueDecl>(D); | 
|  | QualType QT = VD->getType(); | 
|  |  | 
|  | if (!QT->isDependentType() && | 
|  | !QT->isObjCLifetimeType()) { | 
|  | S.Diag(AL.getLoc(), diag::err_objc_precise_lifetime_bad_type) | 
|  | << QT; | 
|  | return; | 
|  | } | 
|  |  | 
|  | Qualifiers::ObjCLifetime Lifetime = QT.getObjCLifetime(); | 
|  |  | 
|  | // If we have no lifetime yet, check the lifetime we're presumably | 
|  | // going to infer. | 
|  | if (Lifetime == Qualifiers::OCL_None && !QT->isDependentType()) | 
|  | Lifetime = QT->getObjCARCImplicitLifetime(); | 
|  |  | 
|  | switch (Lifetime) { | 
|  | case Qualifiers::OCL_None: | 
|  | assert(QT->isDependentType() && | 
|  | "didn't infer lifetime for non-dependent type?"); | 
|  | break; | 
|  |  | 
|  | case Qualifiers::OCL_Weak:   // meaningful | 
|  | case Qualifiers::OCL_Strong: // meaningful | 
|  | break; | 
|  |  | 
|  | case Qualifiers::OCL_ExplicitNone: | 
|  | case Qualifiers::OCL_Autoreleasing: | 
|  | S.Diag(AL.getLoc(), diag::warn_objc_precise_lifetime_meaningless) | 
|  | << (Lifetime == Qualifiers::OCL_Autoreleasing); | 
|  | break; | 
|  | } | 
|  |  | 
|  | D->addAttr(::new (S.Context) | 
|  | ObjCPreciseLifetimeAttr(AL.getRange(), S.Context, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Microsoft specific attribute handlers. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | UuidAttr *Sema::mergeUuidAttr(Decl *D, SourceRange Range, | 
|  | unsigned AttrSpellingListIndex, StringRef Uuid) { | 
|  | if (const auto *UA = D->getAttr<UuidAttr>()) { | 
|  | if (UA->getGuid().equals_lower(Uuid)) | 
|  | return nullptr; | 
|  | Diag(UA->getLocation(), diag::err_mismatched_uuid); | 
|  | Diag(Range.getBegin(), diag::note_previous_uuid); | 
|  | D->dropAttr<UuidAttr>(); | 
|  | } | 
|  |  | 
|  | return ::new (Context) UuidAttr(Range, Context, Uuid, AttrSpellingListIndex); | 
|  | } | 
|  |  | 
|  | static void handleUuidAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | if (!S.LangOpts.CPlusPlus) { | 
|  | S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang) | 
|  | << AL << AttributeLangSupport::C; | 
|  | return; | 
|  | } | 
|  |  | 
|  | StringRef StrRef; | 
|  | SourceLocation LiteralLoc; | 
|  | if (!S.checkStringLiteralArgumentAttr(AL, 0, StrRef, &LiteralLoc)) | 
|  | return; | 
|  |  | 
|  | // GUID format is "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX" or | 
|  | // "{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}", normalize to the former. | 
|  | if (StrRef.size() == 38 && StrRef.front() == '{' && StrRef.back() == '}') | 
|  | StrRef = StrRef.drop_front().drop_back(); | 
|  |  | 
|  | // Validate GUID length. | 
|  | if (StrRef.size() != 36) { | 
|  | S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid); | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (unsigned i = 0; i < 36; ++i) { | 
|  | if (i == 8 || i == 13 || i == 18 || i == 23) { | 
|  | if (StrRef[i] != '-') { | 
|  | S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid); | 
|  | return; | 
|  | } | 
|  | } else if (!isHexDigit(StrRef[i])) { | 
|  | S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // FIXME: It'd be nice to also emit a fixit removing uuid(...) (and, if it's | 
|  | // the only thing in the [] list, the [] too), and add an insertion of | 
|  | // __declspec(uuid(...)).  But sadly, neither the SourceLocs of the commas | 
|  | // separating attributes nor of the [ and the ] are in the AST. | 
|  | // Cf "SourceLocations of attribute list delimiters - [[ ... , ... ]] etc" | 
|  | // on cfe-dev. | 
|  | if (AL.isMicrosoftAttribute()) // Check for [uuid(...)] spelling. | 
|  | S.Diag(AL.getLoc(), diag::warn_atl_uuid_deprecated); | 
|  |  | 
|  | UuidAttr *UA = S.mergeUuidAttr(D, AL.getRange(), | 
|  | AL.getAttributeSpellingListIndex(), StrRef); | 
|  | if (UA) | 
|  | D->addAttr(UA); | 
|  | } | 
|  |  | 
|  | static void handleMSInheritanceAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | if (!S.LangOpts.CPlusPlus) { | 
|  | S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang) | 
|  | << AL << AttributeLangSupport::C; | 
|  | return; | 
|  | } | 
|  | MSInheritanceAttr *IA = S.mergeMSInheritanceAttr( | 
|  | D, AL.getRange(), /*BestCase=*/true, | 
|  | AL.getAttributeSpellingListIndex(), | 
|  | (MSInheritanceAttr::Spelling)AL.getSemanticSpelling()); | 
|  | if (IA) { | 
|  | D->addAttr(IA); | 
|  | S.Consumer.AssignInheritanceModel(cast<CXXRecordDecl>(D)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void handleDeclspecThreadAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | const auto *VD = cast<VarDecl>(D); | 
|  | if (!S.Context.getTargetInfo().isTLSSupported()) { | 
|  | S.Diag(AL.getLoc(), diag::err_thread_unsupported); | 
|  | return; | 
|  | } | 
|  | if (VD->getTSCSpec() != TSCS_unspecified) { | 
|  | S.Diag(AL.getLoc(), diag::err_declspec_thread_on_thread_variable); | 
|  | return; | 
|  | } | 
|  | if (VD->hasLocalStorage()) { | 
|  | S.Diag(AL.getLoc(), diag::err_thread_non_global) << "__declspec(thread)"; | 
|  | return; | 
|  | } | 
|  | D->addAttr(::new (S.Context) ThreadAttr(AL.getRange(), S.Context, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void handleAbiTagAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | SmallVector<StringRef, 4> Tags; | 
|  | for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) { | 
|  | StringRef Tag; | 
|  | if (!S.checkStringLiteralArgumentAttr(AL, I, Tag)) | 
|  | return; | 
|  | Tags.push_back(Tag); | 
|  | } | 
|  |  | 
|  | if (const auto *NS = dyn_cast<NamespaceDecl>(D)) { | 
|  | if (!NS->isInline()) { | 
|  | S.Diag(AL.getLoc(), diag::warn_attr_abi_tag_namespace) << 0; | 
|  | return; | 
|  | } | 
|  | if (NS->isAnonymousNamespace()) { | 
|  | S.Diag(AL.getLoc(), diag::warn_attr_abi_tag_namespace) << 1; | 
|  | return; | 
|  | } | 
|  | if (AL.getNumArgs() == 0) | 
|  | Tags.push_back(NS->getName()); | 
|  | } else if (!checkAttributeAtLeastNumArgs(S, AL, 1)) | 
|  | return; | 
|  |  | 
|  | // Store tags sorted and without duplicates. | 
|  | llvm::sort(Tags.begin(), Tags.end()); | 
|  | Tags.erase(std::unique(Tags.begin(), Tags.end()), Tags.end()); | 
|  |  | 
|  | D->addAttr(::new (S.Context) | 
|  | AbiTagAttr(AL.getRange(), S.Context, Tags.data(), Tags.size(), | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void handleARMInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | // Check the attribute arguments. | 
|  | if (AL.getNumArgs() > 1) { | 
|  | S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 1; | 
|  | return; | 
|  | } | 
|  |  | 
|  | StringRef Str; | 
|  | SourceLocation ArgLoc; | 
|  |  | 
|  | if (AL.getNumArgs() == 0) | 
|  | Str = ""; | 
|  | else if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc)) | 
|  | return; | 
|  |  | 
|  | ARMInterruptAttr::InterruptType Kind; | 
|  | if (!ARMInterruptAttr::ConvertStrToInterruptType(Str, Kind)) { | 
|  | S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << Str | 
|  | << ArgLoc; | 
|  | return; | 
|  | } | 
|  |  | 
|  | unsigned Index = AL.getAttributeSpellingListIndex(); | 
|  | D->addAttr(::new (S.Context) | 
|  | ARMInterruptAttr(AL.getLoc(), S.Context, Kind, Index)); | 
|  | } | 
|  |  | 
|  | static void handleMSP430InterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | if (!checkAttributeNumArgs(S, AL, 1)) | 
|  | return; | 
|  |  | 
|  | if (!AL.isArgExpr(0)) { | 
|  | S.Diag(AL.getLoc(), diag::err_attribute_argument_type) | 
|  | << AL << AANT_ArgumentIntegerConstant; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // FIXME: Check for decl - it should be void ()(void). | 
|  |  | 
|  | Expr *NumParamsExpr = static_cast<Expr *>(AL.getArgAsExpr(0)); | 
|  | llvm::APSInt NumParams(32); | 
|  | if (!NumParamsExpr->isIntegerConstantExpr(NumParams, S.Context)) { | 
|  | S.Diag(AL.getLoc(), diag::err_attribute_argument_type) | 
|  | << AL << AANT_ArgumentIntegerConstant | 
|  | << NumParamsExpr->getSourceRange(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | unsigned Num = NumParams.getLimitedValue(255); | 
|  | if ((Num & 1) || Num > 30) { | 
|  | S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds) | 
|  | << AL << (int)NumParams.getSExtValue() | 
|  | << NumParamsExpr->getSourceRange(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | D->addAttr(::new (S.Context) | 
|  | MSP430InterruptAttr(AL.getLoc(), S.Context, Num, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | D->addAttr(UsedAttr::CreateImplicit(S.Context)); | 
|  | } | 
|  |  | 
|  | static void handleMipsInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | // Only one optional argument permitted. | 
|  | if (AL.getNumArgs() > 1) { | 
|  | S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 1; | 
|  | return; | 
|  | } | 
|  |  | 
|  | StringRef Str; | 
|  | SourceLocation ArgLoc; | 
|  |  | 
|  | if (AL.getNumArgs() == 0) | 
|  | Str = ""; | 
|  | else if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc)) | 
|  | return; | 
|  |  | 
|  | // Semantic checks for a function with the 'interrupt' attribute for MIPS: | 
|  | // a) Must be a function. | 
|  | // b) Must have no parameters. | 
|  | // c) Must have the 'void' return type. | 
|  | // d) Cannot have the 'mips16' attribute, as that instruction set | 
|  | //    lacks the 'eret' instruction. | 
|  | // e) The attribute itself must either have no argument or one of the | 
|  | //    valid interrupt types, see [MipsInterruptDocs]. | 
|  |  | 
|  | if (!isFunctionOrMethod(D)) { | 
|  | S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type) | 
|  | << "'interrupt'" << ExpectedFunctionOrMethod; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (hasFunctionProto(D) && getFunctionOrMethodNumParams(D) != 0) { | 
|  | S.Diag(D->getLocation(), diag::warn_mips_interrupt_attribute) | 
|  | << 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!getFunctionOrMethodResultType(D)->isVoidType()) { | 
|  | S.Diag(D->getLocation(), diag::warn_mips_interrupt_attribute) | 
|  | << 1; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (checkAttrMutualExclusion<Mips16Attr>(S, D, AL)) | 
|  | return; | 
|  |  | 
|  | MipsInterruptAttr::InterruptType Kind; | 
|  | if (!MipsInterruptAttr::ConvertStrToInterruptType(Str, Kind)) { | 
|  | S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) | 
|  | << AL << "'" + std::string(Str) + "'"; | 
|  | return; | 
|  | } | 
|  |  | 
|  | D->addAttr(::new (S.Context) MipsInterruptAttr( | 
|  | AL.getLoc(), S.Context, Kind, AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void handleAnyX86InterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | // Semantic checks for a function with the 'interrupt' attribute. | 
|  | // a) Must be a function. | 
|  | // b) Must have the 'void' return type. | 
|  | // c) Must take 1 or 2 arguments. | 
|  | // d) The 1st argument must be a pointer. | 
|  | // e) The 2nd argument (if any) must be an unsigned integer. | 
|  | if (!isFunctionOrMethod(D) || !hasFunctionProto(D) || isInstanceMethod(D) || | 
|  | CXXMethodDecl::isStaticOverloadedOperator( | 
|  | cast<NamedDecl>(D)->getDeclName().getCXXOverloadedOperator())) { | 
|  | S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) | 
|  | << AL << ExpectedFunctionWithProtoType; | 
|  | return; | 
|  | } | 
|  | // Interrupt handler must have void return type. | 
|  | if (!getFunctionOrMethodResultType(D)->isVoidType()) { | 
|  | S.Diag(getFunctionOrMethodResultSourceRange(D).getBegin(), | 
|  | diag::err_anyx86_interrupt_attribute) | 
|  | << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86 | 
|  | ? 0 | 
|  | : 1) | 
|  | << 0; | 
|  | return; | 
|  | } | 
|  | // Interrupt handler must have 1 or 2 parameters. | 
|  | unsigned NumParams = getFunctionOrMethodNumParams(D); | 
|  | if (NumParams < 1 || NumParams > 2) { | 
|  | S.Diag(D->getBeginLoc(), diag::err_anyx86_interrupt_attribute) | 
|  | << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86 | 
|  | ? 0 | 
|  | : 1) | 
|  | << 1; | 
|  | return; | 
|  | } | 
|  | // The first argument must be a pointer. | 
|  | if (!getFunctionOrMethodParamType(D, 0)->isPointerType()) { | 
|  | S.Diag(getFunctionOrMethodParamRange(D, 0).getBegin(), | 
|  | diag::err_anyx86_interrupt_attribute) | 
|  | << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86 | 
|  | ? 0 | 
|  | : 1) | 
|  | << 2; | 
|  | return; | 
|  | } | 
|  | // The second argument, if present, must be an unsigned integer. | 
|  | unsigned TypeSize = | 
|  | S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86_64 | 
|  | ? 64 | 
|  | : 32; | 
|  | if (NumParams == 2 && | 
|  | (!getFunctionOrMethodParamType(D, 1)->isUnsignedIntegerType() || | 
|  | S.Context.getTypeSize(getFunctionOrMethodParamType(D, 1)) != TypeSize)) { | 
|  | S.Diag(getFunctionOrMethodParamRange(D, 1).getBegin(), | 
|  | diag::err_anyx86_interrupt_attribute) | 
|  | << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86 | 
|  | ? 0 | 
|  | : 1) | 
|  | << 3 << S.Context.getIntTypeForBitwidth(TypeSize, /*Signed=*/false); | 
|  | return; | 
|  | } | 
|  | D->addAttr(::new (S.Context) AnyX86InterruptAttr( | 
|  | AL.getLoc(), S.Context, AL.getAttributeSpellingListIndex())); | 
|  | D->addAttr(UsedAttr::CreateImplicit(S.Context)); | 
|  | } | 
|  |  | 
|  | static void handleAVRInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | if (!isFunctionOrMethod(D)) { | 
|  | S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type) | 
|  | << "'interrupt'" << ExpectedFunction; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!checkAttributeNumArgs(S, AL, 0)) | 
|  | return; | 
|  |  | 
|  | handleSimpleAttribute<AVRInterruptAttr>(S, D, AL); | 
|  | } | 
|  |  | 
|  | static void handleAVRSignalAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | if (!isFunctionOrMethod(D)) { | 
|  | S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type) | 
|  | << "'signal'" << ExpectedFunction; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!checkAttributeNumArgs(S, AL, 0)) | 
|  | return; | 
|  |  | 
|  | handleSimpleAttribute<AVRSignalAttr>(S, D, AL); | 
|  | } | 
|  |  | 
|  |  | 
|  | static void handleRISCVInterruptAttr(Sema &S, Decl *D, | 
|  | const ParsedAttr &AL) { | 
|  | // Warn about repeated attributes. | 
|  | if (const auto *A = D->getAttr<RISCVInterruptAttr>()) { | 
|  | S.Diag(AL.getRange().getBegin(), | 
|  | diag::warn_riscv_repeated_interrupt_attribute); | 
|  | S.Diag(A->getLocation(), diag::note_riscv_repeated_interrupt_attribute); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Check the attribute argument. Argument is optional. | 
|  | if (!checkAttributeAtMostNumArgs(S, AL, 1)) | 
|  | return; | 
|  |  | 
|  | StringRef Str; | 
|  | SourceLocation ArgLoc; | 
|  |  | 
|  | // 'machine'is the default interrupt mode. | 
|  | if (AL.getNumArgs() == 0) | 
|  | Str = "machine"; | 
|  | else if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc)) | 
|  | return; | 
|  |  | 
|  | // Semantic checks for a function with the 'interrupt' attribute: | 
|  | // - Must be a function. | 
|  | // - Must have no parameters. | 
|  | // - Must have the 'void' return type. | 
|  | // - The attribute itself must either have no argument or one of the | 
|  | //   valid interrupt types, see [RISCVInterruptDocs]. | 
|  |  | 
|  | if (D->getFunctionType() == nullptr) { | 
|  | S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type) | 
|  | << "'interrupt'" << ExpectedFunction; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (hasFunctionProto(D) && getFunctionOrMethodNumParams(D) != 0) { | 
|  | S.Diag(D->getLocation(), diag::warn_riscv_interrupt_attribute) << 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!getFunctionOrMethodResultType(D)->isVoidType()) { | 
|  | S.Diag(D->getLocation(), diag::warn_riscv_interrupt_attribute) << 1; | 
|  | return; | 
|  | } | 
|  |  | 
|  | RISCVInterruptAttr::InterruptType Kind; | 
|  | if (!RISCVInterruptAttr::ConvertStrToInterruptType(Str, Kind)) { | 
|  | S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << Str | 
|  | << ArgLoc; | 
|  | return; | 
|  | } | 
|  |  | 
|  | D->addAttr(::new (S.Context) RISCVInterruptAttr( | 
|  | AL.getLoc(), S.Context, Kind, AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void handleInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | // Dispatch the interrupt attribute based on the current target. | 
|  | switch (S.Context.getTargetInfo().getTriple().getArch()) { | 
|  | case llvm::Triple::msp430: | 
|  | handleMSP430InterruptAttr(S, D, AL); | 
|  | break; | 
|  | case llvm::Triple::mipsel: | 
|  | case llvm::Triple::mips: | 
|  | handleMipsInterruptAttr(S, D, AL); | 
|  | break; | 
|  | case llvm::Triple::x86: | 
|  | case llvm::Triple::x86_64: | 
|  | handleAnyX86InterruptAttr(S, D, AL); | 
|  | break; | 
|  | case llvm::Triple::avr: | 
|  | handleAVRInterruptAttr(S, D, AL); | 
|  | break; | 
|  | case llvm::Triple::riscv32: | 
|  | case llvm::Triple::riscv64: | 
|  | handleRISCVInterruptAttr(S, D, AL); | 
|  | break; | 
|  | default: | 
|  | handleARMInterruptAttr(S, D, AL); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void handleAMDGPUFlatWorkGroupSizeAttr(Sema &S, Decl *D, | 
|  | const ParsedAttr &AL) { | 
|  | uint32_t Min = 0; | 
|  | Expr *MinExpr = AL.getArgAsExpr(0); | 
|  | if (!checkUInt32Argument(S, AL, MinExpr, Min)) | 
|  | return; | 
|  |  | 
|  | uint32_t Max = 0; | 
|  | Expr *MaxExpr = AL.getArgAsExpr(1); | 
|  | if (!checkUInt32Argument(S, AL, MaxExpr, Max)) | 
|  | return; | 
|  |  | 
|  | if (Min == 0 && Max != 0) { | 
|  | S.Diag(AL.getLoc(), diag::err_attribute_argument_invalid) << AL << 0; | 
|  | return; | 
|  | } | 
|  | if (Min > Max) { | 
|  | S.Diag(AL.getLoc(), diag::err_attribute_argument_invalid) << AL << 1; | 
|  | return; | 
|  | } | 
|  |  | 
|  | D->addAttr(::new (S.Context) | 
|  | AMDGPUFlatWorkGroupSizeAttr(AL.getLoc(), S.Context, Min, Max, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void handleAMDGPUWavesPerEUAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | uint32_t Min = 0; | 
|  | Expr *MinExpr = AL.getArgAsExpr(0); | 
|  | if (!checkUInt32Argument(S, AL, MinExpr, Min)) | 
|  | return; | 
|  |  | 
|  | uint32_t Max = 0; | 
|  | if (AL.getNumArgs() == 2) { | 
|  | Expr *MaxExpr = AL.getArgAsExpr(1); | 
|  | if (!checkUInt32Argument(S, AL, MaxExpr, Max)) | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (Min == 0 && Max != 0) { | 
|  | S.Diag(AL.getLoc(), diag::err_attribute_argument_invalid) << AL << 0; | 
|  | return; | 
|  | } | 
|  | if (Max != 0 && Min > Max) { | 
|  | S.Diag(AL.getLoc(), diag::err_attribute_argument_invalid) << AL << 1; | 
|  | return; | 
|  | } | 
|  |  | 
|  | D->addAttr(::new (S.Context) | 
|  | AMDGPUWavesPerEUAttr(AL.getLoc(), S.Context, Min, Max, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void handleAMDGPUNumSGPRAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | uint32_t NumSGPR = 0; | 
|  | Expr *NumSGPRExpr = AL.getArgAsExpr(0); | 
|  | if (!checkUInt32Argument(S, AL, NumSGPRExpr, NumSGPR)) | 
|  | return; | 
|  |  | 
|  | D->addAttr(::new (S.Context) | 
|  | AMDGPUNumSGPRAttr(AL.getLoc(), S.Context, NumSGPR, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void handleAMDGPUNumVGPRAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | uint32_t NumVGPR = 0; | 
|  | Expr *NumVGPRExpr = AL.getArgAsExpr(0); | 
|  | if (!checkUInt32Argument(S, AL, NumVGPRExpr, NumVGPR)) | 
|  | return; | 
|  |  | 
|  | D->addAttr(::new (S.Context) | 
|  | AMDGPUNumVGPRAttr(AL.getLoc(), S.Context, NumVGPR, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void handleX86ForceAlignArgPointerAttr(Sema &S, Decl *D, | 
|  | const ParsedAttr &AL) { | 
|  | // If we try to apply it to a function pointer, don't warn, but don't | 
|  | // do anything, either. It doesn't matter anyway, because there's nothing | 
|  | // special about calling a force_align_arg_pointer function. | 
|  | const auto *VD = dyn_cast<ValueDecl>(D); | 
|  | if (VD && VD->getType()->isFunctionPointerType()) | 
|  | return; | 
|  | // Also don't warn on function pointer typedefs. | 
|  | const auto *TD = dyn_cast<TypedefNameDecl>(D); | 
|  | if (TD && (TD->getUnderlyingType()->isFunctionPointerType() || | 
|  | TD->getUnderlyingType()->isFunctionType())) | 
|  | return; | 
|  | // Attribute can only be applied to function types. | 
|  | if (!isa<FunctionDecl>(D)) { | 
|  | S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) | 
|  | << AL << ExpectedFunction; | 
|  | return; | 
|  | } | 
|  |  | 
|  | D->addAttr(::new (S.Context) | 
|  | X86ForceAlignArgPointerAttr(AL.getRange(), S.Context, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void handleLayoutVersion(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | uint32_t Version; | 
|  | Expr *VersionExpr = static_cast<Expr *>(AL.getArgAsExpr(0)); | 
|  | if (!checkUInt32Argument(S, AL, AL.getArgAsExpr(0), Version)) | 
|  | return; | 
|  |  | 
|  | // TODO: Investigate what happens with the next major version of MSVC. | 
|  | if (Version != LangOptions::MSVC2015) { | 
|  | S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds) | 
|  | << AL << Version << VersionExpr->getSourceRange(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | D->addAttr(::new (S.Context) | 
|  | LayoutVersionAttr(AL.getRange(), S.Context, Version, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | DLLImportAttr *Sema::mergeDLLImportAttr(Decl *D, SourceRange Range, | 
|  | unsigned AttrSpellingListIndex) { | 
|  | if (D->hasAttr<DLLExportAttr>()) { | 
|  | Diag(Range.getBegin(), diag::warn_attribute_ignored) << "'dllimport'"; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | if (D->hasAttr<DLLImportAttr>()) | 
|  | return nullptr; | 
|  |  | 
|  | return ::new (Context) DLLImportAttr(Range, Context, AttrSpellingListIndex); | 
|  | } | 
|  |  | 
|  | DLLExportAttr *Sema::mergeDLLExportAttr(Decl *D, SourceRange Range, | 
|  | unsigned AttrSpellingListIndex) { | 
|  | if (DLLImportAttr *Import = D->getAttr<DLLImportAttr>()) { | 
|  | Diag(Import->getLocation(), diag::warn_attribute_ignored) << Import; | 
|  | D->dropAttr<DLLImportAttr>(); | 
|  | } | 
|  |  | 
|  | if (D->hasAttr<DLLExportAttr>()) | 
|  | return nullptr; | 
|  |  | 
|  | return ::new (Context) DLLExportAttr(Range, Context, AttrSpellingListIndex); | 
|  | } | 
|  |  | 
|  | static void handleDLLAttr(Sema &S, Decl *D, const ParsedAttr &A) { | 
|  | if (isa<ClassTemplatePartialSpecializationDecl>(D) && | 
|  | S.Context.getTargetInfo().getCXXABI().isMicrosoft()) { | 
|  | S.Diag(A.getRange().getBegin(), diag::warn_attribute_ignored) << A; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (const auto *FD = dyn_cast<FunctionDecl>(D)) { | 
|  | if (FD->isInlined() && A.getKind() == ParsedAttr::AT_DLLImport && | 
|  | !S.Context.getTargetInfo().getCXXABI().isMicrosoft()) { | 
|  | // MinGW doesn't allow dllimport on inline functions. | 
|  | S.Diag(A.getRange().getBegin(), diag::warn_attribute_ignored_on_inline) | 
|  | << A; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) { | 
|  | if (S.Context.getTargetInfo().getCXXABI().isMicrosoft() && | 
|  | MD->getParent()->isLambda()) { | 
|  | S.Diag(A.getRange().getBegin(), diag::err_attribute_dll_lambda) << A; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned Index = A.getAttributeSpellingListIndex(); | 
|  | Attr *NewAttr = A.getKind() == ParsedAttr::AT_DLLExport | 
|  | ? (Attr *)S.mergeDLLExportAttr(D, A.getRange(), Index) | 
|  | : (Attr *)S.mergeDLLImportAttr(D, A.getRange(), Index); | 
|  | if (NewAttr) | 
|  | D->addAttr(NewAttr); | 
|  | } | 
|  |  | 
|  | MSInheritanceAttr * | 
|  | Sema::mergeMSInheritanceAttr(Decl *D, SourceRange Range, bool BestCase, | 
|  | unsigned AttrSpellingListIndex, | 
|  | MSInheritanceAttr::Spelling SemanticSpelling) { | 
|  | if (MSInheritanceAttr *IA = D->getAttr<MSInheritanceAttr>()) { | 
|  | if (IA->getSemanticSpelling() == SemanticSpelling) | 
|  | return nullptr; | 
|  | Diag(IA->getLocation(), diag::err_mismatched_ms_inheritance) | 
|  | << 1 /*previous declaration*/; | 
|  | Diag(Range.getBegin(), diag::note_previous_ms_inheritance); | 
|  | D->dropAttr<MSInheritanceAttr>(); | 
|  | } | 
|  |  | 
|  | auto *RD = cast<CXXRecordDecl>(D); | 
|  | if (RD->hasDefinition()) { | 
|  | if (checkMSInheritanceAttrOnDefinition(RD, Range, BestCase, | 
|  | SemanticSpelling)) { | 
|  | return nullptr; | 
|  | } | 
|  | } else { | 
|  | if (isa<ClassTemplatePartialSpecializationDecl>(RD)) { | 
|  | Diag(Range.getBegin(), diag::warn_ignored_ms_inheritance) | 
|  | << 1 /*partial specialization*/; | 
|  | return nullptr; | 
|  | } | 
|  | if (RD->getDescribedClassTemplate()) { | 
|  | Diag(Range.getBegin(), diag::warn_ignored_ms_inheritance) | 
|  | << 0 /*primary template*/; | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | return ::new (Context) | 
|  | MSInheritanceAttr(Range, Context, BestCase, AttrSpellingListIndex); | 
|  | } | 
|  |  | 
|  | static void handleCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | // The capability attributes take a single string parameter for the name of | 
|  | // the capability they represent. The lockable attribute does not take any | 
|  | // parameters. However, semantically, both attributes represent the same | 
|  | // concept, and so they use the same semantic attribute. Eventually, the | 
|  | // lockable attribute will be removed. | 
|  | // | 
|  | // For backward compatibility, any capability which has no specified string | 
|  | // literal will be considered a "mutex." | 
|  | StringRef N("mutex"); | 
|  | SourceLocation LiteralLoc; | 
|  | if (AL.getKind() == ParsedAttr::AT_Capability && | 
|  | !S.checkStringLiteralArgumentAttr(AL, 0, N, &LiteralLoc)) | 
|  | return; | 
|  |  | 
|  | // Currently, there are only two names allowed for a capability: role and | 
|  | // mutex (case insensitive). Diagnose other capability names. | 
|  | if (!N.equals_lower("mutex") && !N.equals_lower("role")) | 
|  | S.Diag(LiteralLoc, diag::warn_invalid_capability_name) << N; | 
|  |  | 
|  | D->addAttr(::new (S.Context) CapabilityAttr(AL.getRange(), S.Context, N, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void handleAssertCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | SmallVector<Expr*, 1> Args; | 
|  | if (!checkLockFunAttrCommon(S, D, AL, Args)) | 
|  | return; | 
|  |  | 
|  | D->addAttr(::new (S.Context) AssertCapabilityAttr(AL.getRange(), S.Context, | 
|  | Args.data(), Args.size(), | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void handleAcquireCapabilityAttr(Sema &S, Decl *D, | 
|  | const ParsedAttr &AL) { | 
|  | SmallVector<Expr*, 1> Args; | 
|  | if (!checkLockFunAttrCommon(S, D, AL, Args)) | 
|  | return; | 
|  |  | 
|  | D->addAttr(::new (S.Context) AcquireCapabilityAttr(AL.getRange(), | 
|  | S.Context, | 
|  | Args.data(), Args.size(), | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void handleTryAcquireCapabilityAttr(Sema &S, Decl *D, | 
|  | const ParsedAttr &AL) { | 
|  | SmallVector<Expr*, 2> Args; | 
|  | if (!checkTryLockFunAttrCommon(S, D, AL, Args)) | 
|  | return; | 
|  |  | 
|  | D->addAttr(::new (S.Context) TryAcquireCapabilityAttr(AL.getRange(), | 
|  | S.Context, | 
|  | AL.getArgAsExpr(0), | 
|  | Args.data(), | 
|  | Args.size(), | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void handleReleaseCapabilityAttr(Sema &S, Decl *D, | 
|  | const ParsedAttr &AL) { | 
|  | // Check that all arguments are lockable objects. | 
|  | SmallVector<Expr *, 1> Args; | 
|  | checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 0, true); | 
|  |  | 
|  | D->addAttr(::new (S.Context) ReleaseCapabilityAttr( | 
|  | AL.getRange(), S.Context, Args.data(), Args.size(), | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void handleRequiresCapabilityAttr(Sema &S, Decl *D, | 
|  | const ParsedAttr &AL) { | 
|  | if (!checkAttributeAtLeastNumArgs(S, AL, 1)) | 
|  | return; | 
|  |  | 
|  | // check that all arguments are lockable objects | 
|  | SmallVector<Expr*, 1> Args; | 
|  | checkAttrArgsAreCapabilityObjs(S, D, AL, Args); | 
|  | if (Args.empty()) | 
|  | return; | 
|  |  | 
|  | RequiresCapabilityAttr *RCA = ::new (S.Context) | 
|  | RequiresCapabilityAttr(AL.getRange(), S.Context, Args.data(), | 
|  | Args.size(), AL.getAttributeSpellingListIndex()); | 
|  |  | 
|  | D->addAttr(RCA); | 
|  | } | 
|  |  | 
|  | static void handleDeprecatedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | if (const auto *NSD = dyn_cast<NamespaceDecl>(D)) { | 
|  | if (NSD->isAnonymousNamespace()) { | 
|  | S.Diag(AL.getLoc(), diag::warn_deprecated_anonymous_namespace); | 
|  | // Do not want to attach the attribute to the namespace because that will | 
|  | // cause confusing diagnostic reports for uses of declarations within the | 
|  | // namespace. | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Handle the cases where the attribute has a text message. | 
|  | StringRef Str, Replacement; | 
|  | if (AL.isArgExpr(0) && AL.getArgAsExpr(0) && | 
|  | !S.checkStringLiteralArgumentAttr(AL, 0, Str)) | 
|  | return; | 
|  |  | 
|  | // Only support a single optional message for Declspec and CXX11. | 
|  | if (AL.isDeclspecAttribute() || AL.isCXX11Attribute()) | 
|  | checkAttributeAtMostNumArgs(S, AL, 1); | 
|  | else if (AL.isArgExpr(1) && AL.getArgAsExpr(1) && | 
|  | !S.checkStringLiteralArgumentAttr(AL, 1, Replacement)) | 
|  | return; | 
|  |  | 
|  | if (!S.getLangOpts().CPlusPlus14) | 
|  | if (AL.isCXX11Attribute() && | 
|  | !(AL.hasScope() && AL.getScopeName()->isStr("gnu"))) | 
|  | S.Diag(AL.getLoc(), diag::ext_cxx14_attr) << AL; | 
|  |  | 
|  | D->addAttr(::new (S.Context) | 
|  | DeprecatedAttr(AL.getRange(), S.Context, Str, Replacement, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static bool isGlobalVar(const Decl *D) { | 
|  | if (const auto *S = dyn_cast<VarDecl>(D)) | 
|  | return S->hasGlobalStorage(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void handleNoSanitizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | if (!checkAttributeAtLeastNumArgs(S, AL, 1)) | 
|  | return; | 
|  |  | 
|  | std::vector<StringRef> Sanitizers; | 
|  |  | 
|  | for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) { | 
|  | StringRef SanitizerName; | 
|  | SourceLocation LiteralLoc; | 
|  |  | 
|  | if (!S.checkStringLiteralArgumentAttr(AL, I, SanitizerName, &LiteralLoc)) | 
|  | return; | 
|  |  | 
|  | if (parseSanitizerValue(SanitizerName, /*AllowGroups=*/true) == 0) | 
|  | S.Diag(LiteralLoc, diag::warn_unknown_sanitizer_ignored) << SanitizerName; | 
|  | else if (isGlobalVar(D) && SanitizerName != "address") | 
|  | S.Diag(D->getLocation(), diag::err_attribute_wrong_decl_type) | 
|  | << AL << ExpectedFunctionOrMethod; | 
|  | Sanitizers.push_back(SanitizerName); | 
|  | } | 
|  |  | 
|  | D->addAttr(::new (S.Context) NoSanitizeAttr( | 
|  | AL.getRange(), S.Context, Sanitizers.data(), Sanitizers.size(), | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void handleNoSanitizeSpecificAttr(Sema &S, Decl *D, | 
|  | const ParsedAttr &AL) { | 
|  | StringRef AttrName = AL.getName()->getName(); | 
|  | normalizeName(AttrName); | 
|  | StringRef SanitizerName = llvm::StringSwitch<StringRef>(AttrName) | 
|  | .Case("no_address_safety_analysis", "address") | 
|  | .Case("no_sanitize_address", "address") | 
|  | .Case("no_sanitize_thread", "thread") | 
|  | .Case("no_sanitize_memory", "memory"); | 
|  | if (isGlobalVar(D) && SanitizerName != "address") | 
|  | S.Diag(D->getLocation(), diag::err_attribute_wrong_decl_type) | 
|  | << AL << ExpectedFunction; | 
|  | D->addAttr(::new (S.Context) | 
|  | NoSanitizeAttr(AL.getRange(), S.Context, &SanitizerName, 1, | 
|  | AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void handleInternalLinkageAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | if (InternalLinkageAttr *Internal = S.mergeInternalLinkageAttr(D, AL)) | 
|  | D->addAttr(Internal); | 
|  | } | 
|  |  | 
|  | static void handleOpenCLNoSVMAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | if (S.LangOpts.OpenCLVersion != 200) | 
|  | S.Diag(AL.getLoc(), diag::err_attribute_requires_opencl_version) | 
|  | << AL << "2.0" << 0; | 
|  | else | 
|  | S.Diag(AL.getLoc(), diag::warn_opencl_attr_deprecated_ignored) << AL | 
|  | << "2.0"; | 
|  | } | 
|  |  | 
|  | /// Handles semantic checking for features that are common to all attributes, | 
|  | /// such as checking whether a parameter was properly specified, or the correct | 
|  | /// number of arguments were passed, etc. | 
|  | static bool handleCommonAttributeFeatures(Sema &S, Decl *D, | 
|  | const ParsedAttr &AL) { | 
|  | // Several attributes carry different semantics than the parsing requires, so | 
|  | // those are opted out of the common argument checks. | 
|  | // | 
|  | // We also bail on unknown and ignored attributes because those are handled | 
|  | // as part of the target-specific handling logic. | 
|  | if (AL.getKind() == ParsedAttr::UnknownAttribute) | 
|  | return false; | 
|  | // Check whether the attribute requires specific language extensions to be | 
|  | // enabled. | 
|  | if (!AL.diagnoseLangOpts(S)) | 
|  | return true; | 
|  | // Check whether the attribute appertains to the given subject. | 
|  | if (!AL.diagnoseAppertainsTo(S, D)) | 
|  | return true; | 
|  | if (AL.hasCustomParsing()) | 
|  | return false; | 
|  |  | 
|  | if (AL.getMinArgs() == AL.getMaxArgs()) { | 
|  | // If there are no optional arguments, then checking for the argument count | 
|  | // is trivial. | 
|  | if (!checkAttributeNumArgs(S, AL, AL.getMinArgs())) | 
|  | return true; | 
|  | } else { | 
|  | // There are optional arguments, so checking is slightly more involved. | 
|  | if (AL.getMinArgs() && | 
|  | !checkAttributeAtLeastNumArgs(S, AL, AL.getMinArgs())) | 
|  | return true; | 
|  | else if (!AL.hasVariadicArg() && AL.getMaxArgs() && | 
|  | !checkAttributeAtMostNumArgs(S, AL, AL.getMaxArgs())) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (S.CheckAttrTarget(AL)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void handleOpenCLAccessAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
|  | if (D->isInvalidDecl()) | 
|  | return; | 
|  |  | 
|  | // Check if there is only one access qualifier. | 
|  | if (D->hasAttr<OpenCLAccessAttr>()) { | 
|  | if (D->getAttr<OpenCLAccessAttr>()->getSemanticSpelling() == | 
|  | AL.getSemanticSpelling()) { | 
|  | S.Diag(AL.getLoc(), diag::warn_duplicate_declspec) | 
|  | << AL.getName()->getName() << AL.getRange(); | 
|  | } else { | 
|  | S.Diag(AL.getLoc(), diag::err_opencl_multiple_access_qualifiers) | 
|  | << D->getSourceRange(); | 
|  | D->setInvalidDecl(true); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // OpenCL v2.0 s6.6 - read_write can be used for image types to specify that an | 
|  | // image object can be read and written. | 
|  | // OpenCL v2.0 s6.13.6 - A kernel cannot read from and write to the same pipe | 
|  | // object. Using the read_write (or __read_write) qualifier with the pipe | 
|  | // qualifier is a compilation error. | 
|  | if (const auto *PDecl = dyn_cast<ParmVarDecl>(D)) { | 
|  | const Type *DeclTy = PDecl->getType().getCanonicalType().getTypePtr(); | 
|  | if (AL.getName()->getName().find("read_write") != StringRef::npos) { | 
|  | if (S.getLangOpts().OpenCLVersion < 200 || DeclTy->isPipeType()) { | 
|  | S.Diag(AL.getLoc(), diag::err_opencl_invalid_read_write) | 
|  | << AL << PDecl->getType() << DeclTy->isImageType(); | 
|  | D->setInvalidDecl(true); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | D->addAttr(::new (S.Context) OpenCLAccessAttr( | 
|  | AL.getRange(), S.Context, AL.getAttributeSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void handleDestroyAttr(Sema &S, Decl *D, const ParsedAttr &A) { | 
|  | if (!cast<VarDecl>(D)->hasGlobalStorage()) { | 
|  | S.Diag(D->getLocation(), diag::err_destroy_attr_on_non_static_var) | 
|  | << (A.getKind() == ParsedAttr::AT_AlwaysDestroy); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (A.getKind() == ParsedAttr::AT_AlwaysDestroy) | 
|  | handleSimpleAttributeWithExclusions<AlwaysDestroyAttr, NoDestroyAttr>(S, D, A); | 
|  | else | 
|  | handleSimpleAttributeWithExclusions<NoDestroyAttr, AlwaysDestroyAttr>(S, D, A); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Top Level Sema Entry Points | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// ProcessDeclAttribute - Apply the specific attribute to the specified decl if | 
|  | /// the attribute applies to decls.  If the attribute is a type attribute, just | 
|  | /// silently ignore it if a GNU attribute. | 
|  | static void ProcessDeclAttribute(Sema &S, Scope *scope, Decl *D, | 
|  | const ParsedAttr &AL, | 
|  | bool IncludeCXX11Attributes) { | 
|  | if (AL.isInvalid() || AL.getKind() == ParsedAttr::IgnoredAttribute) | 
|  | return; | 
|  |  | 
|  | // Ignore C++11 attributes on declarator chunks: they appertain to the type | 
|  | // instead. | 
|  | if (AL.isCXX11Attribute() && !IncludeCXX11Attributes) | 
|  | return; | 
|  |  | 
|  | // Unknown attributes are automatically warned on. Target-specific attributes | 
|  | // which do not apply to the current target architecture are treated as | 
|  | // though they were unknown attributes. | 
|  | if (AL.getKind() == ParsedAttr::UnknownAttribute || | 
|  | !AL.existsInTarget(S.Context.getTargetInfo())) { | 
|  | S.Diag(AL.getLoc(), AL.isDeclspecAttribute() | 
|  | ? diag::warn_unhandled_ms_attribute_ignored | 
|  | : diag::warn_unknown_attribute_ignored) | 
|  | << AL; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (handleCommonAttributeFeatures(S, D, AL)) | 
|  | return; | 
|  |  | 
|  | switch (AL.getKind()) { | 
|  | default: | 
|  | if (!AL.isStmtAttr()) { | 
|  | // Type attributes are handled elsewhere; silently move on. | 
|  | assert(AL.isTypeAttr() && "Non-type attribute not handled"); | 
|  | break; | 
|  | } | 
|  | S.Diag(AL.getLoc(), diag::err_stmt_attribute_invalid_on_decl) | 
|  | << AL << D->getLocation(); | 
|  | break; | 
|  | case ParsedAttr::AT_Interrupt: | 
|  | handleInterruptAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_X86ForceAlignArgPointer: | 
|  | handleX86ForceAlignArgPointerAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_DLLExport: | 
|  | case ParsedAttr::AT_DLLImport: | 
|  | handleDLLAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_Mips16: | 
|  | handleSimpleAttributeWithExclusions<Mips16Attr, MicroMipsAttr, | 
|  | MipsInterruptAttr>(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_NoMips16: | 
|  | handleSimpleAttribute<NoMips16Attr>(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_MicroMips: | 
|  | handleSimpleAttributeWithExclusions<MicroMipsAttr, Mips16Attr>(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_NoMicroMips: | 
|  | handleSimpleAttribute<NoMicroMipsAttr>(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_MipsLongCall: | 
|  | handleSimpleAttributeWithExclusions<MipsLongCallAttr, MipsShortCallAttr>( | 
|  | S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_MipsShortCall: | 
|  | handleSimpleAttributeWithExclusions<MipsShortCallAttr, MipsLongCallAttr>( | 
|  | S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_AMDGPUFlatWorkGroupSize: | 
|  | handleAMDGPUFlatWorkGroupSizeAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_AMDGPUWavesPerEU: | 
|  | handleAMDGPUWavesPerEUAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_AMDGPUNumSGPR: | 
|  | handleAMDGPUNumSGPRAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_AMDGPUNumVGPR: | 
|  | handleAMDGPUNumVGPRAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_AVRSignal: | 
|  | handleAVRSignalAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_IBAction: | 
|  | handleSimpleAttribute<IBActionAttr>(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_IBOutlet: | 
|  | handleIBOutlet(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_IBOutletCollection: | 
|  | handleIBOutletCollection(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_IFunc: | 
|  | handleIFuncAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_Alias: | 
|  | handleAliasAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_Aligned: | 
|  | handleAlignedAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_AlignValue: | 
|  | handleAlignValueAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_AllocSize: | 
|  | handleAllocSizeAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_AlwaysInline: | 
|  | handleAlwaysInlineAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_Artificial: | 
|  | handleSimpleAttribute<ArtificialAttr>(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_AnalyzerNoReturn: | 
|  | handleAnalyzerNoReturnAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_TLSModel: | 
|  | handleTLSModelAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_Annotate: | 
|  | handleAnnotateAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_Availability: | 
|  | handleAvailabilityAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_CarriesDependency: | 
|  | handleDependencyAttr(S, scope, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_CPUDispatch: | 
|  | case ParsedAttr::AT_CPUSpecific: | 
|  | handleCPUSpecificAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_Common: | 
|  | handleCommonAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_CUDAConstant: | 
|  | handleConstantAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_PassObjectSize: | 
|  | handlePassObjectSizeAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_Constructor: | 
|  | handleConstructorAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_CXX11NoReturn: | 
|  | handleSimpleAttribute<CXX11NoReturnAttr>(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_Deprecated: | 
|  | handleDeprecatedAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_Destructor: | 
|  | handleDestructorAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_EnableIf: | 
|  | handleEnableIfAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_DiagnoseIf: | 
|  | handleDiagnoseIfAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_ExtVectorType: | 
|  | handleExtVectorTypeAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_ExternalSourceSymbol: | 
|  | handleExternalSourceSymbolAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_MinSize: | 
|  | handleMinSizeAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_OptimizeNone: | 
|  | handleOptimizeNoneAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_FlagEnum: | 
|  | handleSimpleAttribute<FlagEnumAttr>(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_EnumExtensibility: | 
|  | handleEnumExtensibilityAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_Flatten: | 
|  | handleSimpleAttribute<FlattenAttr>(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_Format: | 
|  | handleFormatAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_FormatArg: | 
|  | handleFormatArgAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_CUDAGlobal: | 
|  | handleGlobalAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_CUDADevice: | 
|  | handleSimpleAttributeWithExclusions<CUDADeviceAttr, CUDAGlobalAttr>(S, D, | 
|  | AL); | 
|  | break; | 
|  | case ParsedAttr::AT_CUDAHost: | 
|  | handleSimpleAttributeWithExclusions<CUDAHostAttr, CUDAGlobalAttr>(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_GNUInline: | 
|  | handleGNUInlineAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_CUDALaunchBounds: | 
|  | handleLaunchBoundsAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_Restrict: | 
|  | handleRestrictAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_LifetimeBound: | 
|  | handleSimpleAttribute<LifetimeBoundAttr>(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_MayAlias: | 
|  | handleSimpleAttribute<MayAliasAttr>(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_Mode: | 
|  | handleModeAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_NoAlias: | 
|  | handleSimpleAttribute<NoAliasAttr>(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_NoCommon: | 
|  | handleSimpleAttribute<NoCommonAttr>(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_NoSplitStack: | 
|  | handleSimpleAttribute<NoSplitStackAttr>(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_NonNull: | 
|  | if (auto *PVD = dyn_cast<ParmVarDecl>(D)) | 
|  | handleNonNullAttrParameter(S, PVD, AL); | 
|  | else | 
|  | handleNonNullAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_ReturnsNonNull: | 
|  | handleReturnsNonNullAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_NoEscape: | 
|  | handleNoEscapeAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_AssumeAligned: | 
|  | handleAssumeAlignedAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_AllocAlign: | 
|  | handleAllocAlignAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_Overloadable: | 
|  | handleSimpleAttribute<OverloadableAttr>(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_Ownership: | 
|  | handleOwnershipAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_Cold: | 
|  | handleSimpleAttributeWithExclusions<ColdAttr, HotAttr>(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_Hot: | 
|  | handleSimpleAttributeWithExclusions<HotAttr, ColdAttr>(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_Naked: | 
|  | handleNakedAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_NoReturn: | 
|  | handleNoReturnAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_AnyX86NoCfCheck: | 
|  | handleNoCfCheckAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_NoThrow: | 
|  | handleSimpleAttribute<NoThrowAttr>(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_CUDAShared: | 
|  | handleSharedAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_VecReturn: | 
|  | handleVecReturnAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_ObjCOwnership: | 
|  | handleObjCOwnershipAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_ObjCPreciseLifetime: | 
|  | handleObjCPreciseLifetimeAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_ObjCReturnsInnerPointer: | 
|  | handleObjCReturnsInnerPointerAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_ObjCRequiresSuper: | 
|  | handleObjCRequiresSuperAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_ObjCBridge: | 
|  | handleObjCBridgeAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_ObjCBridgeMutable: | 
|  | handleObjCBridgeMutableAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_ObjCBridgeRelated: | 
|  | handleObjCBridgeRelatedAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_ObjCDesignatedInitializer: | 
|  | handleObjCDesignatedInitializer(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_ObjCRuntimeName: | 
|  | handleObjCRuntimeName(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_ObjCRuntimeVisible: | 
|  | handleSimpleAttribute<ObjCRuntimeVisibleAttr>(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_ObjCBoxable: | 
|  | handleObjCBoxable(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_CFAuditedTransfer: | 
|  | handleSimpleAttributeWithExclusions<CFAuditedTransferAttr, | 
|  | CFUnknownTransferAttr>(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_CFUnknownTransfer: | 
|  | handleSimpleAttributeWithExclusions<CFUnknownTransferAttr, | 
|  | CFAuditedTransferAttr>(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_CFConsumed: | 
|  | case ParsedAttr::AT_NSConsumed: | 
|  | handleNSConsumedAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_NSConsumesSelf: | 
|  | handleSimpleAttribute<NSConsumesSelfAttr>(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_NSReturnsAutoreleased: | 
|  | case ParsedAttr::AT_NSReturnsNotRetained: | 
|  | case ParsedAttr::AT_CFReturnsNotRetained: | 
|  | case ParsedAttr::AT_NSReturnsRetained: | 
|  | case ParsedAttr::AT_CFReturnsRetained: | 
|  | handleNSReturnsRetainedAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_WorkGroupSizeHint: | 
|  | handleWorkGroupSize<WorkGroupSizeHintAttr>(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_ReqdWorkGroupSize: | 
|  | handleWorkGroupSize<ReqdWorkGroupSizeAttr>(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_OpenCLIntelReqdSubGroupSize: | 
|  | handleSubGroupSize(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_VecTypeHint: | 
|  | handleVecTypeHint(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_RequireConstantInit: | 
|  | handleSimpleAttribute<RequireConstantInitAttr>(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_InitPriority: | 
|  | handleInitPriorityAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_Packed: | 
|  | handlePackedAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_Section: | 
|  | handleSectionAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_CodeSeg: | 
|  | handleCodeSegAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_Target: | 
|  | handleTargetAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_MinVectorWidth: | 
|  | handleMinVectorWidthAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_Unavailable: | 
|  | handleAttrWithMessage<UnavailableAttr>(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_ArcWeakrefUnavailable: | 
|  | handleSimpleAttribute<ArcWeakrefUnavailableAttr>(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_ObjCRootClass: | 
|  | handleSimpleAttribute<ObjCRootClassAttr>(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_ObjCSubclassingRestricted: | 
|  | handleSimpleAttribute<ObjCSubclassingRestrictedAttr>(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_ObjCExplicitProtocolImpl: | 
|  | handleObjCSuppresProtocolAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_ObjCRequiresPropertyDefs: | 
|  | handleSimpleAttribute<ObjCRequiresPropertyDefsAttr>(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_Unused: | 
|  | handleUnusedAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_ReturnsTwice: | 
|  | handleSimpleAttribute<ReturnsTwiceAttr>(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_NotTailCalled: | 
|  | handleSimpleAttributeWithExclusions<NotTailCalledAttr, AlwaysInlineAttr>( | 
|  | S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_DisableTailCalls: | 
|  | handleSimpleAttributeWithExclusions<DisableTailCallsAttr, NakedAttr>(S, D, | 
|  | AL); | 
|  | break; | 
|  | case ParsedAttr::AT_Used: | 
|  | handleSimpleAttribute<UsedAttr>(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_Visibility: | 
|  | handleVisibilityAttr(S, D, AL, false); | 
|  | break; | 
|  | case ParsedAttr::AT_TypeVisibility: | 
|  | handleVisibilityAttr(S, D, AL, true); | 
|  | break; | 
|  | case ParsedAttr::AT_WarnUnused: | 
|  | handleSimpleAttribute<WarnUnusedAttr>(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_WarnUnusedResult: | 
|  | handleWarnUnusedResult(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_Weak: | 
|  | handleSimpleAttribute<WeakAttr>(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_WeakRef: | 
|  | handleWeakRefAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_WeakImport: | 
|  | handleWeakImportAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_TransparentUnion: | 
|  | handleTransparentUnionAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_ObjCException: | 
|  | handleSimpleAttribute<ObjCExceptionAttr>(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_ObjCMethodFamily: | 
|  | handleObjCMethodFamilyAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_ObjCNSObject: | 
|  | handleObjCNSObject(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_ObjCIndependentClass: | 
|  | handleObjCIndependentClass(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_Blocks: | 
|  | handleBlocksAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_Sentinel: | 
|  | handleSentinelAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_Const: | 
|  | handleSimpleAttribute<ConstAttr>(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_Pure: | 
|  | handleSimpleAttribute<PureAttr>(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_Cleanup: | 
|  | handleCleanupAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_NoDebug: | 
|  | handleNoDebugAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_NoDuplicate: | 
|  | handleSimpleAttribute<NoDuplicateAttr>(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_Convergent: | 
|  | handleSimpleAttribute<ConvergentAttr>(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_NoInline: | 
|  | handleSimpleAttribute<NoInlineAttr>(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_NoInstrumentFunction: // Interacts with -pg. | 
|  | handleSimpleAttribute<NoInstrumentFunctionAttr>(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_NoStackProtector: | 
|  | // Interacts with -fstack-protector options. | 
|  | handleSimpleAttribute<NoStackProtectorAttr>(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_StdCall: | 
|  | case ParsedAttr::AT_CDecl: | 
|  | case ParsedAttr::AT_FastCall: | 
|  | case ParsedAttr::AT_ThisCall: | 
|  | case ParsedAttr::AT_Pascal: | 
|  | case ParsedAttr::AT_RegCall: | 
|  | case ParsedAttr::AT_SwiftCall: | 
|  | case ParsedAttr::AT_VectorCall: | 
|  | case ParsedAttr::AT_MSABI: | 
|  | case ParsedAttr::AT_SysVABI: | 
|  | case ParsedAttr::AT_Pcs: | 
|  | case ParsedAttr::AT_IntelOclBicc: | 
|  | case ParsedAttr::AT_PreserveMost: | 
|  | case ParsedAttr::AT_PreserveAll: | 
|  | handleCallConvAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_Suppress: | 
|  | handleSuppressAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_OpenCLKernel: | 
|  | handleSimpleAttribute<OpenCLKernelAttr>(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_OpenCLAccess: | 
|  | handleOpenCLAccessAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_OpenCLNoSVM: | 
|  | handleOpenCLNoSVMAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_SwiftContext: | 
|  | handleParameterABIAttr(S, D, AL, ParameterABI::SwiftContext); | 
|  | break; | 
|  | case ParsedAttr::AT_SwiftErrorResult: | 
|  | handleParameterABIAttr(S, D, AL, ParameterABI::SwiftErrorResult); | 
|  | break; | 
|  | case ParsedAttr::AT_SwiftIndirectResult: | 
|  | handleParameterABIAttr(S, D, AL, ParameterABI::SwiftIndirectResult); | 
|  | break; | 
|  | case ParsedAttr::AT_InternalLinkage: | 
|  | handleInternalLinkageAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_LTOVisibilityPublic: | 
|  | handleSimpleAttribute<LTOVisibilityPublicAttr>(S, D, AL); | 
|  | break; | 
|  |  | 
|  | // Microsoft attributes: | 
|  | case ParsedAttr::AT_EmptyBases: | 
|  | handleSimpleAttribute<EmptyBasesAttr>(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_LayoutVersion: | 
|  | handleLayoutVersion(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_TrivialABI: | 
|  | handleSimpleAttribute<TrivialABIAttr>(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_MSNoVTable: | 
|  | handleSimpleAttribute<MSNoVTableAttr>(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_MSStruct: | 
|  | handleSimpleAttribute<MSStructAttr>(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_Uuid: | 
|  | handleUuidAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_MSInheritance: | 
|  | handleMSInheritanceAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_SelectAny: | 
|  | handleSimpleAttribute<SelectAnyAttr>(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_Thread: | 
|  | handleDeclspecThreadAttr(S, D, AL); | 
|  | break; | 
|  |  | 
|  | case ParsedAttr::AT_AbiTag: | 
|  | handleAbiTagAttr(S, D, AL); | 
|  | break; | 
|  |  | 
|  | // Thread safety attributes: | 
|  | case ParsedAttr::AT_AssertExclusiveLock: | 
|  | handleAssertExclusiveLockAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_AssertSharedLock: | 
|  | handleAssertSharedLockAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_GuardedVar: | 
|  | handleSimpleAttribute<GuardedVarAttr>(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_PtGuardedVar: | 
|  | handlePtGuardedVarAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_ScopedLockable: | 
|  | handleSimpleAttribute<ScopedLockableAttr>(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_NoSanitize: | 
|  | handleNoSanitizeAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_NoSanitizeSpecific: | 
|  | handleNoSanitizeSpecificAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_NoThreadSafetyAnalysis: | 
|  | handleSimpleAttribute<NoThreadSafetyAnalysisAttr>(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_GuardedBy: | 
|  | handleGuardedByAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_PtGuardedBy: | 
|  | handlePtGuardedByAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_ExclusiveTrylockFunction: | 
|  | handleExclusiveTrylockFunctionAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_LockReturned: | 
|  | handleLockReturnedAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_LocksExcluded: | 
|  | handleLocksExcludedAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_SharedTrylockFunction: | 
|  | handleSharedTrylockFunctionAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_AcquiredBefore: | 
|  | handleAcquiredBeforeAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_AcquiredAfter: | 
|  | handleAcquiredAfterAttr(S, D, AL); | 
|  | break; | 
|  |  | 
|  | // Capability analysis attributes. | 
|  | case ParsedAttr::AT_Capability: | 
|  | case ParsedAttr::AT_Lockable: | 
|  | handleCapabilityAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_RequiresCapability: | 
|  | handleRequiresCapabilityAttr(S, D, AL); | 
|  | break; | 
|  |  | 
|  | case ParsedAttr::AT_AssertCapability: | 
|  | handleAssertCapabilityAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_AcquireCapability: | 
|  | handleAcquireCapabilityAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_ReleaseCapability: | 
|  | handleReleaseCapabilityAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_TryAcquireCapability: | 
|  | handleTryAcquireCapabilityAttr(S, D, AL); | 
|  | break; | 
|  |  | 
|  | // Consumed analysis attributes. | 
|  | case ParsedAttr::AT_Consumable: | 
|  | handleConsumableAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_ConsumableAutoCast: | 
|  | handleSimpleAttribute<ConsumableAutoCastAttr>(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_ConsumableSetOnRead: | 
|  | handleSimpleAttribute<ConsumableSetOnReadAttr>(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_CallableWhen: | 
|  | handleCallableWhenAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_ParamTypestate: | 
|  | handleParamTypestateAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_ReturnTypestate: | 
|  | handleReturnTypestateAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_SetTypestate: | 
|  | handleSetTypestateAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_TestTypestate: | 
|  | handleTestTypestateAttr(S, D, AL); | 
|  | break; | 
|  |  | 
|  | // Type safety attributes. | 
|  | case ParsedAttr::AT_ArgumentWithTypeTag: | 
|  | handleArgumentWithTypeTagAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_TypeTagForDatatype: | 
|  | handleTypeTagForDatatypeAttr(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_AnyX86NoCallerSavedRegisters: | 
|  | handleSimpleAttribute<AnyX86NoCallerSavedRegistersAttr>(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_RenderScriptKernel: | 
|  | handleSimpleAttribute<RenderScriptKernelAttr>(S, D, AL); | 
|  | break; | 
|  | // XRay attributes. | 
|  | case ParsedAttr::AT_XRayInstrument: | 
|  | handleSimpleAttribute<XRayInstrumentAttr>(S, D, AL); | 
|  | break; | 
|  | case ParsedAttr::AT_XRayLogArgs: | 
|  | handleXRayLogArgsAttr(S, D, AL); | 
|  | break; | 
|  |  | 
|  | // Move semantics attribute. | 
|  | case ParsedAttr::AT_Reinitializes: | 
|  | handleSimpleAttribute<ReinitializesAttr>(S, D, AL); | 
|  | break; | 
|  |  | 
|  | case ParsedAttr::AT_AlwaysDestroy: | 
|  | case ParsedAttr::AT_NoDestroy: | 
|  | handleDestroyAttr(S, D, AL); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// ProcessDeclAttributeList - Apply all the decl attributes in the specified | 
|  | /// attribute list to the specified decl, ignoring any type attributes. | 
|  | void Sema::ProcessDeclAttributeList(Scope *S, Decl *D, | 
|  | const ParsedAttributesView &AttrList, | 
|  | bool IncludeCXX11Attributes) { | 
|  | if (AttrList.empty()) | 
|  | return; | 
|  |  | 
|  | for (const ParsedAttr &AL : AttrList) | 
|  | ProcessDeclAttribute(*this, S, D, AL, IncludeCXX11Attributes); | 
|  |  | 
|  | // FIXME: We should be able to handle these cases in TableGen. | 
|  | // GCC accepts | 
|  | // static int a9 __attribute__((weakref)); | 
|  | // but that looks really pointless. We reject it. | 
|  | if (D->hasAttr<WeakRefAttr>() && !D->hasAttr<AliasAttr>()) { | 
|  | Diag(AttrList.begin()->getLoc(), diag::err_attribute_weakref_without_alias) | 
|  | << cast<NamedDecl>(D); | 
|  | D->dropAttr<WeakRefAttr>(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // FIXME: We should be able to handle this in TableGen as well. It would be | 
|  | // good to have a way to specify "these attributes must appear as a group", | 
|  | // for these. Additionally, it would be good to have a way to specify "these | 
|  | // attribute must never appear as a group" for attributes like cold and hot. | 
|  | if (!D->hasAttr<OpenCLKernelAttr>()) { | 
|  | // These attributes cannot be applied to a non-kernel function. | 
|  | if (const auto *A = D->getAttr<ReqdWorkGroupSizeAttr>()) { | 
|  | // FIXME: This emits a different error message than | 
|  | // diag::err_attribute_wrong_decl_type + ExpectedKernelFunction. | 
|  | Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A; | 
|  | D->setInvalidDecl(); | 
|  | } else if (const auto *A = D->getAttr<WorkGroupSizeHintAttr>()) { | 
|  | Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A; | 
|  | D->setInvalidDecl(); | 
|  | } else if (const auto *A = D->getAttr<VecTypeHintAttr>()) { | 
|  | Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A; | 
|  | D->setInvalidDecl(); | 
|  | } else if (const auto *A = D->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { | 
|  | Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A; | 
|  | D->setInvalidDecl(); | 
|  | } else if (!D->hasAttr<CUDAGlobalAttr>()) { | 
|  | if (const auto *A = D->getAttr<AMDGPUFlatWorkGroupSizeAttr>()) { | 
|  | Diag(D->getLocation(), diag::err_attribute_wrong_decl_type) | 
|  | << A << ExpectedKernelFunction; | 
|  | D->setInvalidDecl(); | 
|  | } else if (const auto *A = D->getAttr<AMDGPUWavesPerEUAttr>()) { | 
|  | Diag(D->getLocation(), diag::err_attribute_wrong_decl_type) | 
|  | << A << ExpectedKernelFunction; | 
|  | D->setInvalidDecl(); | 
|  | } else if (const auto *A = D->getAttr<AMDGPUNumSGPRAttr>()) { | 
|  | Diag(D->getLocation(), diag::err_attribute_wrong_decl_type) | 
|  | << A << ExpectedKernelFunction; | 
|  | D->setInvalidDecl(); | 
|  | } else if (const auto *A = D->getAttr<AMDGPUNumVGPRAttr>()) { | 
|  | Diag(D->getLocation(), diag::err_attribute_wrong_decl_type) | 
|  | << A << ExpectedKernelFunction; | 
|  | D->setInvalidDecl(); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Helper for delayed processing TransparentUnion attribute. | 
|  | void Sema::ProcessDeclAttributeDelayed(Decl *D, | 
|  | const ParsedAttributesView &AttrList) { | 
|  | for (const ParsedAttr &AL : AttrList) | 
|  | if (AL.getKind() == ParsedAttr::AT_TransparentUnion) { | 
|  | handleTransparentUnionAttr(*this, D, AL); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Annotation attributes are the only attributes allowed after an access | 
|  | // specifier. | 
|  | bool Sema::ProcessAccessDeclAttributeList( | 
|  | AccessSpecDecl *ASDecl, const ParsedAttributesView &AttrList) { | 
|  | for (const ParsedAttr &AL : AttrList) { | 
|  | if (AL.getKind() == ParsedAttr::AT_Annotate) { | 
|  | ProcessDeclAttribute(*this, nullptr, ASDecl, AL, AL.isCXX11Attribute()); | 
|  | } else { | 
|  | Diag(AL.getLoc(), diag::err_only_annotate_after_access_spec); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// checkUnusedDeclAttributes - Check a list of attributes to see if it | 
|  | /// contains any decl attributes that we should warn about. | 
|  | static void checkUnusedDeclAttributes(Sema &S, const ParsedAttributesView &A) { | 
|  | for (const ParsedAttr &AL : A) { | 
|  | // Only warn if the attribute is an unignored, non-type attribute. | 
|  | if (AL.isUsedAsTypeAttr() || AL.isInvalid()) | 
|  | continue; | 
|  | if (AL.getKind() == ParsedAttr::IgnoredAttribute) | 
|  | continue; | 
|  |  | 
|  | if (AL.getKind() == ParsedAttr::UnknownAttribute) { | 
|  | S.Diag(AL.getLoc(), diag::warn_unknown_attribute_ignored) | 
|  | << AL << AL.getRange(); | 
|  | } else { | 
|  | S.Diag(AL.getLoc(), diag::warn_attribute_not_on_decl) << AL | 
|  | << AL.getRange(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// checkUnusedDeclAttributes - Given a declarator which is not being | 
|  | /// used to build a declaration, complain about any decl attributes | 
|  | /// which might be lying around on it. | 
|  | void Sema::checkUnusedDeclAttributes(Declarator &D) { | 
|  | ::checkUnusedDeclAttributes(*this, D.getDeclSpec().getAttributes()); | 
|  | ::checkUnusedDeclAttributes(*this, D.getAttributes()); | 
|  | for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) | 
|  | ::checkUnusedDeclAttributes(*this, D.getTypeObject(i).getAttrs()); | 
|  | } | 
|  |  | 
|  | /// DeclClonePragmaWeak - clone existing decl (maybe definition), | 
|  | /// \#pragma weak needs a non-definition decl and source may not have one. | 
|  | NamedDecl * Sema::DeclClonePragmaWeak(NamedDecl *ND, IdentifierInfo *II, | 
|  | SourceLocation Loc) { | 
|  | assert(isa<FunctionDecl>(ND) || isa<VarDecl>(ND)); | 
|  | NamedDecl *NewD = nullptr; | 
|  | if (auto *FD = dyn_cast<FunctionDecl>(ND)) { | 
|  | FunctionDecl *NewFD; | 
|  | // FIXME: Missing call to CheckFunctionDeclaration(). | 
|  | // FIXME: Mangling? | 
|  | // FIXME: Is the qualifier info correct? | 
|  | // FIXME: Is the DeclContext correct? | 
|  | NewFD = FunctionDecl::Create(FD->getASTContext(), FD->getDeclContext(), | 
|  | Loc, Loc, DeclarationName(II), | 
|  | FD->getType(), FD->getTypeSourceInfo(), | 
|  | SC_None, false/*isInlineSpecified*/, | 
|  | FD->hasPrototype(), | 
|  | false/*isConstexprSpecified*/); | 
|  | NewD = NewFD; | 
|  |  | 
|  | if (FD->getQualifier()) | 
|  | NewFD->setQualifierInfo(FD->getQualifierLoc()); | 
|  |  | 
|  | // Fake up parameter variables; they are declared as if this were | 
|  | // a typedef. | 
|  | QualType FDTy = FD->getType(); | 
|  | if (const auto *FT = FDTy->getAs<FunctionProtoType>()) { | 
|  | SmallVector<ParmVarDecl*, 16> Params; | 
|  | for (const auto &AI : FT->param_types()) { | 
|  | ParmVarDecl *Param = BuildParmVarDeclForTypedef(NewFD, Loc, AI); | 
|  | Param->setScopeInfo(0, Params.size()); | 
|  | Params.push_back(Param); | 
|  | } | 
|  | NewFD->setParams(Params); | 
|  | } | 
|  | } else if (auto *VD = dyn_cast<VarDecl>(ND)) { | 
|  | NewD = VarDecl::Create(VD->getASTContext(), VD->getDeclContext(), | 
|  | VD->getInnerLocStart(), VD->getLocation(), II, | 
|  | VD->getType(), VD->getTypeSourceInfo(), | 
|  | VD->getStorageClass()); | 
|  | if (VD->getQualifier()) | 
|  | cast<VarDecl>(NewD)->setQualifierInfo(VD->getQualifierLoc()); | 
|  | } | 
|  | return NewD; | 
|  | } | 
|  |  | 
|  | /// DeclApplyPragmaWeak - A declaration (maybe definition) needs \#pragma weak | 
|  | /// applied to it, possibly with an alias. | 
|  | void Sema::DeclApplyPragmaWeak(Scope *S, NamedDecl *ND, WeakInfo &W) { | 
|  | if (W.getUsed()) return; // only do this once | 
|  | W.setUsed(true); | 
|  | if (W.getAlias()) { // clone decl, impersonate __attribute(weak,alias(...)) | 
|  | IdentifierInfo *NDId = ND->getIdentifier(); | 
|  | NamedDecl *NewD = DeclClonePragmaWeak(ND, W.getAlias(), W.getLocation()); | 
|  | NewD->addAttr(AliasAttr::CreateImplicit(Context, NDId->getName(), | 
|  | W.getLocation())); | 
|  | NewD->addAttr(WeakAttr::CreateImplicit(Context, W.getLocation())); | 
|  | WeakTopLevelDecl.push_back(NewD); | 
|  | // FIXME: "hideous" code from Sema::LazilyCreateBuiltin | 
|  | // to insert Decl at TU scope, sorry. | 
|  | DeclContext *SavedContext = CurContext; | 
|  | CurContext = Context.getTranslationUnitDecl(); | 
|  | NewD->setDeclContext(CurContext); | 
|  | NewD->setLexicalDeclContext(CurContext); | 
|  | PushOnScopeChains(NewD, S); | 
|  | CurContext = SavedContext; | 
|  | } else { // just add weak to existing | 
|  | ND->addAttr(WeakAttr::CreateImplicit(Context, W.getLocation())); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Sema::ProcessPragmaWeak(Scope *S, Decl *D) { | 
|  | // It's valid to "forward-declare" #pragma weak, in which case we | 
|  | // have to do this. | 
|  | LoadExternalWeakUndeclaredIdentifiers(); | 
|  | if (!WeakUndeclaredIdentifiers.empty()) { | 
|  | NamedDecl *ND = nullptr; | 
|  | if (auto *VD = dyn_cast<VarDecl>(D)) | 
|  | if (VD->isExternC()) | 
|  | ND = VD; | 
|  | if (auto *FD = dyn_cast<FunctionDecl>(D)) | 
|  | if (FD->isExternC()) | 
|  | ND = FD; | 
|  | if (ND) { | 
|  | if (IdentifierInfo *Id = ND->getIdentifier()) { | 
|  | auto I = WeakUndeclaredIdentifiers.find(Id); | 
|  | if (I != WeakUndeclaredIdentifiers.end()) { | 
|  | WeakInfo W = I->second; | 
|  | DeclApplyPragmaWeak(S, ND, W); | 
|  | WeakUndeclaredIdentifiers[Id] = W; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// ProcessDeclAttributes - Given a declarator (PD) with attributes indicated in | 
|  | /// it, apply them to D.  This is a bit tricky because PD can have attributes | 
|  | /// specified in many different places, and we need to find and apply them all. | 
|  | void Sema::ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD) { | 
|  | // Apply decl attributes from the DeclSpec if present. | 
|  | if (!PD.getDeclSpec().getAttributes().empty()) | 
|  | ProcessDeclAttributeList(S, D, PD.getDeclSpec().getAttributes()); | 
|  |  | 
|  | // Walk the declarator structure, applying decl attributes that were in a type | 
|  | // position to the decl itself.  This handles cases like: | 
|  | //   int *__attr__(x)** D; | 
|  | // when X is a decl attribute. | 
|  | for (unsigned i = 0, e = PD.getNumTypeObjects(); i != e; ++i) | 
|  | ProcessDeclAttributeList(S, D, PD.getTypeObject(i).getAttrs(), | 
|  | /*IncludeCXX11Attributes=*/false); | 
|  |  | 
|  | // Finally, apply any attributes on the decl itself. | 
|  | ProcessDeclAttributeList(S, D, PD.getAttributes()); | 
|  |  | 
|  | // Apply additional attributes specified by '#pragma clang attribute'. | 
|  | AddPragmaAttributes(S, D); | 
|  | } | 
|  |  | 
|  | /// Is the given declaration allowed to use a forbidden type? | 
|  | /// If so, it'll still be annotated with an attribute that makes it | 
|  | /// illegal to actually use. | 
|  | static bool isForbiddenTypeAllowed(Sema &S, Decl *D, | 
|  | const DelayedDiagnostic &diag, | 
|  | UnavailableAttr::ImplicitReason &reason) { | 
|  | // Private ivars are always okay.  Unfortunately, people don't | 
|  | // always properly make their ivars private, even in system headers. | 
|  | // Plus we need to make fields okay, too. | 
|  | if (!isa<FieldDecl>(D) && !isa<ObjCPropertyDecl>(D) && | 
|  | !isa<FunctionDecl>(D)) | 
|  | return false; | 
|  |  | 
|  | // Silently accept unsupported uses of __weak in both user and system | 
|  | // declarations when it's been disabled, for ease of integration with | 
|  | // -fno-objc-arc files.  We do have to take some care against attempts | 
|  | // to define such things;  for now, we've only done that for ivars | 
|  | // and properties. | 
|  | if ((isa<ObjCIvarDecl>(D) || isa<ObjCPropertyDecl>(D))) { | 
|  | if (diag.getForbiddenTypeDiagnostic() == diag::err_arc_weak_disabled || | 
|  | diag.getForbiddenTypeDiagnostic() == diag::err_arc_weak_no_runtime) { | 
|  | reason = UnavailableAttr::IR_ForbiddenWeak; | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Allow all sorts of things in system headers. | 
|  | if (S.Context.getSourceManager().isInSystemHeader(D->getLocation())) { | 
|  | // Currently, all the failures dealt with this way are due to ARC | 
|  | // restrictions. | 
|  | reason = UnavailableAttr::IR_ARCForbiddenType; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Handle a delayed forbidden-type diagnostic. | 
|  | static void handleDelayedForbiddenType(Sema &S, DelayedDiagnostic &DD, | 
|  | Decl *D) { | 
|  | auto Reason = UnavailableAttr::IR_None; | 
|  | if (D && isForbiddenTypeAllowed(S, D, DD, Reason)) { | 
|  | assert(Reason && "didn't set reason?"); | 
|  | D->addAttr(UnavailableAttr::CreateImplicit(S.Context, "", Reason, DD.Loc)); | 
|  | return; | 
|  | } | 
|  | if (S.getLangOpts().ObjCAutoRefCount) | 
|  | if (const auto *FD = dyn_cast<FunctionDecl>(D)) { | 
|  | // FIXME: we may want to suppress diagnostics for all | 
|  | // kind of forbidden type messages on unavailable functions. | 
|  | if (FD->hasAttr<UnavailableAttr>() && | 
|  | DD.getForbiddenTypeDiagnostic() == | 
|  | diag::err_arc_array_param_no_ownership) { | 
|  | DD.Triggered = true; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | S.Diag(DD.Loc, DD.getForbiddenTypeDiagnostic()) | 
|  | << DD.getForbiddenTypeOperand() << DD.getForbiddenTypeArgument(); | 
|  | DD.Triggered = true; | 
|  | } | 
|  |  | 
|  | static const AvailabilityAttr *getAttrForPlatform(ASTContext &Context, | 
|  | const Decl *D) { | 
|  | // Check each AvailabilityAttr to find the one for this platform. | 
|  | for (const auto *A : D->attrs()) { | 
|  | if (const auto *Avail = dyn_cast<AvailabilityAttr>(A)) { | 
|  | // FIXME: this is copied from CheckAvailability. We should try to | 
|  | // de-duplicate. | 
|  |  | 
|  | // Check if this is an App Extension "platform", and if so chop off | 
|  | // the suffix for matching with the actual platform. | 
|  | StringRef ActualPlatform = Avail->getPlatform()->getName(); | 
|  | StringRef RealizedPlatform = ActualPlatform; | 
|  | if (Context.getLangOpts().AppExt) { | 
|  | size_t suffix = RealizedPlatform.rfind("_app_extension"); | 
|  | if (suffix != StringRef::npos) | 
|  | RealizedPlatform = RealizedPlatform.slice(0, suffix); | 
|  | } | 
|  |  | 
|  | StringRef TargetPlatform = Context.getTargetInfo().getPlatformName(); | 
|  |  | 
|  | // Match the platform name. | 
|  | if (RealizedPlatform == TargetPlatform) | 
|  | return Avail; | 
|  | } | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// The diagnostic we should emit for \c D, and the declaration that | 
|  | /// originated it, or \c AR_Available. | 
|  | /// | 
|  | /// \param D The declaration to check. | 
|  | /// \param Message If non-null, this will be populated with the message from | 
|  | /// the availability attribute that is selected. | 
|  | /// \param ClassReceiver If we're checking the the method of a class message | 
|  | /// send, the class. Otherwise nullptr. | 
|  | static std::pair<AvailabilityResult, const NamedDecl *> | 
|  | ShouldDiagnoseAvailabilityOfDecl(Sema &S, const NamedDecl *D, | 
|  | std::string *Message, | 
|  | ObjCInterfaceDecl *ClassReceiver) { | 
|  | AvailabilityResult Result = D->getAvailability(Message); | 
|  |  | 
|  | // For typedefs, if the typedef declaration appears available look | 
|  | // to the underlying type to see if it is more restrictive. | 
|  | while (const auto *TD = dyn_cast<TypedefNameDecl>(D)) { | 
|  | if (Result == AR_Available) { | 
|  | if (const auto *TT = TD->getUnderlyingType()->getAs<TagType>()) { | 
|  | D = TT->getDecl(); | 
|  | Result = D->getAvailability(Message); | 
|  | continue; | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Forward class declarations get their attributes from their definition. | 
|  | if (const auto *IDecl = dyn_cast<ObjCInterfaceDecl>(D)) { | 
|  | if (IDecl->getDefinition()) { | 
|  | D = IDecl->getDefinition(); | 
|  | Result = D->getAvailability(Message); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (const auto *ECD = dyn_cast<EnumConstantDecl>(D)) | 
|  | if (Result == AR_Available) { | 
|  | const DeclContext *DC = ECD->getDeclContext(); | 
|  | if (const auto *TheEnumDecl = dyn_cast<EnumDecl>(DC)) { | 
|  | Result = TheEnumDecl->getAvailability(Message); | 
|  | D = TheEnumDecl; | 
|  | } | 
|  | } | 
|  |  | 
|  | // For +new, infer availability from -init. | 
|  | if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) { | 
|  | if (S.NSAPIObj && ClassReceiver) { | 
|  | ObjCMethodDecl *Init = ClassReceiver->lookupInstanceMethod( | 
|  | S.NSAPIObj->getInitSelector()); | 
|  | if (Init && Result == AR_Available && MD->isClassMethod() && | 
|  | MD->getSelector() == S.NSAPIObj->getNewSelector() && | 
|  | MD->definedInNSObject(S.getASTContext())) { | 
|  | Result = Init->getAvailability(Message); | 
|  | D = Init; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return {Result, D}; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// whether we should emit a diagnostic for \c K and \c DeclVersion in | 
|  | /// the context of \c Ctx. For example, we should emit an unavailable diagnostic | 
|  | /// in a deprecated context, but not the other way around. | 
|  | static bool ShouldDiagnoseAvailabilityInContext(Sema &S, AvailabilityResult K, | 
|  | VersionTuple DeclVersion, | 
|  | Decl *Ctx) { | 
|  | assert(K != AR_Available && "Expected an unavailable declaration here!"); | 
|  |  | 
|  | // Checks if we should emit the availability diagnostic in the context of C. | 
|  | auto CheckContext = [&](const Decl *C) { | 
|  | if (K == AR_NotYetIntroduced) { | 
|  | if (const AvailabilityAttr *AA = getAttrForPlatform(S.Context, C)) | 
|  | if (AA->getIntroduced() >= DeclVersion) | 
|  | return true; | 
|  | } else if (K == AR_Deprecated) | 
|  | if (C->isDeprecated()) | 
|  | return true; | 
|  |  | 
|  | if (C->isUnavailable()) | 
|  | return true; | 
|  | return false; | 
|  | }; | 
|  |  | 
|  | do { | 
|  | if (CheckContext(Ctx)) | 
|  | return false; | 
|  |  | 
|  | // An implementation implicitly has the availability of the interface. | 
|  | // Unless it is "+load" method. | 
|  | if (const auto *MethodD = dyn_cast<ObjCMethodDecl>(Ctx)) | 
|  | if (MethodD->isClassMethod() && | 
|  | MethodD->getSelector().getAsString() == "load") | 
|  | return true; | 
|  |  | 
|  | if (const auto *CatOrImpl = dyn_cast<ObjCImplDecl>(Ctx)) { | 
|  | if (const ObjCInterfaceDecl *Interface = CatOrImpl->getClassInterface()) | 
|  | if (CheckContext(Interface)) | 
|  | return false; | 
|  | } | 
|  | // A category implicitly has the availability of the interface. | 
|  | else if (const auto *CatD = dyn_cast<ObjCCategoryDecl>(Ctx)) | 
|  | if (const ObjCInterfaceDecl *Interface = CatD->getClassInterface()) | 
|  | if (CheckContext(Interface)) | 
|  | return false; | 
|  | } while ((Ctx = cast_or_null<Decl>(Ctx->getDeclContext()))); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | shouldDiagnoseAvailabilityByDefault(const ASTContext &Context, | 
|  | const VersionTuple &DeploymentVersion, | 
|  | const VersionTuple &DeclVersion) { | 
|  | const auto &Triple = Context.getTargetInfo().getTriple(); | 
|  | VersionTuple ForceAvailabilityFromVersion; | 
|  | switch (Triple.getOS()) { | 
|  | case llvm::Triple::IOS: | 
|  | case llvm::Triple::TvOS: | 
|  | ForceAvailabilityFromVersion = VersionTuple(/*Major=*/11); | 
|  | break; | 
|  | case llvm::Triple::WatchOS: | 
|  | ForceAvailabilityFromVersion = VersionTuple(/*Major=*/4); | 
|  | break; | 
|  | case llvm::Triple::Darwin: | 
|  | case llvm::Triple::MacOSX: | 
|  | ForceAvailabilityFromVersion = VersionTuple(/*Major=*/10, /*Minor=*/13); | 
|  | break; | 
|  | default: | 
|  | // New targets should always warn about availability. | 
|  | return Triple.getVendor() == llvm::Triple::Apple; | 
|  | } | 
|  | return DeploymentVersion >= ForceAvailabilityFromVersion || | 
|  | DeclVersion >= ForceAvailabilityFromVersion; | 
|  | } | 
|  |  | 
|  | static NamedDecl *findEnclosingDeclToAnnotate(Decl *OrigCtx) { | 
|  | for (Decl *Ctx = OrigCtx; Ctx; | 
|  | Ctx = cast_or_null<Decl>(Ctx->getDeclContext())) { | 
|  | if (isa<TagDecl>(Ctx) || isa<FunctionDecl>(Ctx) || isa<ObjCMethodDecl>(Ctx)) | 
|  | return cast<NamedDecl>(Ctx); | 
|  | if (auto *CD = dyn_cast<ObjCContainerDecl>(Ctx)) { | 
|  | if (auto *Imp = dyn_cast<ObjCImplDecl>(Ctx)) | 
|  | return Imp->getClassInterface(); | 
|  | return CD; | 
|  | } | 
|  | } | 
|  |  | 
|  | return dyn_cast<NamedDecl>(OrigCtx); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | struct AttributeInsertion { | 
|  | StringRef Prefix; | 
|  | SourceLocation Loc; | 
|  | StringRef Suffix; | 
|  |  | 
|  | static AttributeInsertion createInsertionAfter(const NamedDecl *D) { | 
|  | return {" ", D->getEndLoc(), ""}; | 
|  | } | 
|  | static AttributeInsertion createInsertionAfter(SourceLocation Loc) { | 
|  | return {" ", Loc, ""}; | 
|  | } | 
|  | static AttributeInsertion createInsertionBefore(const NamedDecl *D) { | 
|  | return {"", D->getBeginLoc(), "\n"}; | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | /// Tries to parse a string as ObjC method name. | 
|  | /// | 
|  | /// \param Name The string to parse. Expected to originate from availability | 
|  | /// attribute argument. | 
|  | /// \param SlotNames The vector that will be populated with slot names. In case | 
|  | /// of unsuccessful parsing can contain invalid data. | 
|  | /// \returns A number of method parameters if parsing was successful, None | 
|  | /// otherwise. | 
|  | static Optional<unsigned> | 
|  | tryParseObjCMethodName(StringRef Name, SmallVectorImpl<StringRef> &SlotNames, | 
|  | const LangOptions &LangOpts) { | 
|  | // Accept replacements starting with - or + as valid ObjC method names. | 
|  | if (!Name.empty() && (Name.front() == '-' || Name.front() == '+')) | 
|  | Name = Name.drop_front(1); | 
|  | if (Name.empty()) | 
|  | return None; | 
|  | Name.split(SlotNames, ':'); | 
|  | unsigned NumParams; | 
|  | if (Name.back() == ':') { | 
|  | // Remove an empty string at the end that doesn't represent any slot. | 
|  | SlotNames.pop_back(); | 
|  | NumParams = SlotNames.size(); | 
|  | } else { | 
|  | if (SlotNames.size() != 1) | 
|  | // Not a valid method name, just a colon-separated string. | 
|  | return None; | 
|  | NumParams = 0; | 
|  | } | 
|  | // Verify all slot names are valid. | 
|  | bool AllowDollar = LangOpts.DollarIdents; | 
|  | for (StringRef S : SlotNames) { | 
|  | if (S.empty()) | 
|  | continue; | 
|  | if (!isValidIdentifier(S, AllowDollar)) | 
|  | return None; | 
|  | } | 
|  | return NumParams; | 
|  | } | 
|  |  | 
|  | /// Returns a source location in which it's appropriate to insert a new | 
|  | /// attribute for the given declaration \D. | 
|  | static Optional<AttributeInsertion> | 
|  | createAttributeInsertion(const NamedDecl *D, const SourceManager &SM, | 
|  | const LangOptions &LangOpts) { | 
|  | if (isa<ObjCPropertyDecl>(D)) | 
|  | return AttributeInsertion::createInsertionAfter(D); | 
|  | if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) { | 
|  | if (MD->hasBody()) | 
|  | return None; | 
|  | return AttributeInsertion::createInsertionAfter(D); | 
|  | } | 
|  | if (const auto *TD = dyn_cast<TagDecl>(D)) { | 
|  | SourceLocation Loc = | 
|  | Lexer::getLocForEndOfToken(TD->getInnerLocStart(), 0, SM, LangOpts); | 
|  | if (Loc.isInvalid()) | 
|  | return None; | 
|  | // Insert after the 'struct'/whatever keyword. | 
|  | return AttributeInsertion::createInsertionAfter(Loc); | 
|  | } | 
|  | return AttributeInsertion::createInsertionBefore(D); | 
|  | } | 
|  |  | 
|  | /// Actually emit an availability diagnostic for a reference to an unavailable | 
|  | /// decl. | 
|  | /// | 
|  | /// \param Ctx The context that the reference occurred in | 
|  | /// \param ReferringDecl The exact declaration that was referenced. | 
|  | /// \param OffendingDecl A related decl to \c ReferringDecl that has an | 
|  | /// availability attribute corresponding to \c K attached to it. Note that this | 
|  | /// may not be the same as ReferringDecl, i.e. if an EnumDecl is annotated and | 
|  | /// we refer to a member EnumConstantDecl, ReferringDecl is the EnumConstantDecl | 
|  | /// and OffendingDecl is the EnumDecl. | 
|  | static void DoEmitAvailabilityWarning(Sema &S, AvailabilityResult K, | 
|  | Decl *Ctx, const NamedDecl *ReferringDecl, | 
|  | const NamedDecl *OffendingDecl, | 
|  | StringRef Message, | 
|  | ArrayRef<SourceLocation> Locs, | 
|  | const ObjCInterfaceDecl *UnknownObjCClass, | 
|  | const ObjCPropertyDecl *ObjCProperty, | 
|  | bool ObjCPropertyAccess) { | 
|  | // Diagnostics for deprecated or unavailable. | 
|  | unsigned diag, diag_message, diag_fwdclass_message; | 
|  | unsigned diag_available_here = diag::note_availability_specified_here; | 
|  | SourceLocation NoteLocation = OffendingDecl->getLocation(); | 
|  |  | 
|  | // Matches 'diag::note_property_attribute' options. | 
|  | unsigned property_note_select; | 
|  |  | 
|  | // Matches diag::note_availability_specified_here. | 
|  | unsigned available_here_select_kind; | 
|  |  | 
|  | VersionTuple DeclVersion; | 
|  | if (const AvailabilityAttr *AA = getAttrForPlatform(S.Context, OffendingDecl)) | 
|  | DeclVersion = AA->getIntroduced(); | 
|  |  | 
|  | if (!ShouldDiagnoseAvailabilityInContext(S, K, DeclVersion, Ctx)) | 
|  | return; | 
|  |  | 
|  | SourceLocation Loc = Locs.front(); | 
|  |  | 
|  | // The declaration can have multiple availability attributes, we are looking | 
|  | // at one of them. | 
|  | const AvailabilityAttr *A = getAttrForPlatform(S.Context, OffendingDecl); | 
|  | if (A && A->isInherited()) { | 
|  | for (const Decl *Redecl = OffendingDecl->getMostRecentDecl(); Redecl; | 
|  | Redecl = Redecl->getPreviousDecl()) { | 
|  | const AvailabilityAttr *AForRedecl = | 
|  | getAttrForPlatform(S.Context, Redecl); | 
|  | if (AForRedecl && !AForRedecl->isInherited()) { | 
|  | // If D is a declaration with inherited attributes, the note should | 
|  | // point to the declaration with actual attributes. | 
|  | NoteLocation = Redecl->getLocation(); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | switch (K) { | 
|  | case AR_NotYetIntroduced: { | 
|  | // We would like to emit the diagnostic even if -Wunguarded-availability is | 
|  | // not specified for deployment targets >= to iOS 11 or equivalent or | 
|  | // for declarations that were introduced in iOS 11 (macOS 10.13, ...) or | 
|  | // later. | 
|  | const AvailabilityAttr *AA = | 
|  | getAttrForPlatform(S.getASTContext(), OffendingDecl); | 
|  | VersionTuple Introduced = AA->getIntroduced(); | 
|  |  | 
|  | bool UseNewWarning = shouldDiagnoseAvailabilityByDefault( | 
|  | S.Context, S.Context.getTargetInfo().getPlatformMinVersion(), | 
|  | Introduced); | 
|  | unsigned Warning = UseNewWarning ? diag::warn_unguarded_availability_new | 
|  | : diag::warn_unguarded_availability; | 
|  |  | 
|  | S.Diag(Loc, Warning) | 
|  | << OffendingDecl | 
|  | << AvailabilityAttr::getPrettyPlatformName( | 
|  | S.getASTContext().getTargetInfo().getPlatformName()) | 
|  | << Introduced.getAsString(); | 
|  |  | 
|  | S.Diag(OffendingDecl->getLocation(), diag::note_availability_specified_here) | 
|  | << OffendingDecl << /* partial */ 3; | 
|  |  | 
|  | if (const auto *Enclosing = findEnclosingDeclToAnnotate(Ctx)) { | 
|  | if (const auto *TD = dyn_cast<TagDecl>(Enclosing)) | 
|  | if (TD->getDeclName().isEmpty()) { | 
|  | S.Diag(TD->getLocation(), | 
|  | diag::note_decl_unguarded_availability_silence) | 
|  | << /*Anonymous*/ 1 << TD->getKindName(); | 
|  | return; | 
|  | } | 
|  | auto FixitNoteDiag = | 
|  | S.Diag(Enclosing->getLocation(), | 
|  | diag::note_decl_unguarded_availability_silence) | 
|  | << /*Named*/ 0 << Enclosing; | 
|  | // Don't offer a fixit for declarations with availability attributes. | 
|  | if (Enclosing->hasAttr<AvailabilityAttr>()) | 
|  | return; | 
|  | if (!S.getPreprocessor().isMacroDefined("API_AVAILABLE")) | 
|  | return; | 
|  | Optional<AttributeInsertion> Insertion = createAttributeInsertion( | 
|  | Enclosing, S.getSourceManager(), S.getLangOpts()); | 
|  | if (!Insertion) | 
|  | return; | 
|  | std::string PlatformName = | 
|  | AvailabilityAttr::getPlatformNameSourceSpelling( | 
|  | S.getASTContext().getTargetInfo().getPlatformName()) | 
|  | .lower(); | 
|  | std::string Introduced = | 
|  | OffendingDecl->getVersionIntroduced().getAsString(); | 
|  | FixitNoteDiag << FixItHint::CreateInsertion( | 
|  | Insertion->Loc, | 
|  | (llvm::Twine(Insertion->Prefix) + "API_AVAILABLE(" + PlatformName + | 
|  | "(" + Introduced + "))" + Insertion->Suffix) | 
|  | .str()); | 
|  | } | 
|  | return; | 
|  | } | 
|  | case AR_Deprecated: | 
|  | diag = !ObjCPropertyAccess ? diag::warn_deprecated | 
|  | : diag::warn_property_method_deprecated; | 
|  | diag_message = diag::warn_deprecated_message; | 
|  | diag_fwdclass_message = diag::warn_deprecated_fwdclass_message; | 
|  | property_note_select = /* deprecated */ 0; | 
|  | available_here_select_kind = /* deprecated */ 2; | 
|  | if (const auto *AL = OffendingDecl->getAttr<DeprecatedAttr>()) | 
|  | NoteLocation = AL->getLocation(); | 
|  | break; | 
|  |  | 
|  | case AR_Unavailable: | 
|  | diag = !ObjCPropertyAccess ? diag::err_unavailable | 
|  | : diag::err_property_method_unavailable; | 
|  | diag_message = diag::err_unavailable_message; | 
|  | diag_fwdclass_message = diag::warn_unavailable_fwdclass_message; | 
|  | property_note_select = /* unavailable */ 1; | 
|  | available_here_select_kind = /* unavailable */ 0; | 
|  |  | 
|  | if (auto AL = OffendingDecl->getAttr<UnavailableAttr>()) { | 
|  | if (AL->isImplicit() && AL->getImplicitReason()) { | 
|  | // Most of these failures are due to extra restrictions in ARC; | 
|  | // reflect that in the primary diagnostic when applicable. | 
|  | auto flagARCError = [&] { | 
|  | if (S.getLangOpts().ObjCAutoRefCount && | 
|  | S.getSourceManager().isInSystemHeader( | 
|  | OffendingDecl->getLocation())) | 
|  | diag = diag::err_unavailable_in_arc; | 
|  | }; | 
|  |  | 
|  | switch (AL->getImplicitReason()) { | 
|  | case UnavailableAttr::IR_None: break; | 
|  |  | 
|  | case UnavailableAttr::IR_ARCForbiddenType: | 
|  | flagARCError(); | 
|  | diag_available_here = diag::note_arc_forbidden_type; | 
|  | break; | 
|  |  | 
|  | case UnavailableAttr::IR_ForbiddenWeak: | 
|  | if (S.getLangOpts().ObjCWeakRuntime) | 
|  | diag_available_here = diag::note_arc_weak_disabled; | 
|  | else | 
|  | diag_available_here = diag::note_arc_weak_no_runtime; | 
|  | break; | 
|  |  | 
|  | case UnavailableAttr::IR_ARCForbiddenConversion: | 
|  | flagARCError(); | 
|  | diag_available_here = diag::note_performs_forbidden_arc_conversion; | 
|  | break; | 
|  |  | 
|  | case UnavailableAttr::IR_ARCInitReturnsUnrelated: | 
|  | flagARCError(); | 
|  | diag_available_here = diag::note_arc_init_returns_unrelated; | 
|  | break; | 
|  |  | 
|  | case UnavailableAttr::IR_ARCFieldWithOwnership: | 
|  | flagARCError(); | 
|  | diag_available_here = diag::note_arc_field_with_ownership; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case AR_Available: | 
|  | llvm_unreachable("Warning for availability of available declaration?"); | 
|  | } | 
|  |  | 
|  | SmallVector<FixItHint, 12> FixIts; | 
|  | if (K == AR_Deprecated) { | 
|  | StringRef Replacement; | 
|  | if (auto AL = OffendingDecl->getAttr<DeprecatedAttr>()) | 
|  | Replacement = AL->getReplacement(); | 
|  | if (auto AL = getAttrForPlatform(S.Context, OffendingDecl)) | 
|  | Replacement = AL->getReplacement(); | 
|  |  | 
|  | CharSourceRange UseRange; | 
|  | if (!Replacement.empty()) | 
|  | UseRange = | 
|  | CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc)); | 
|  | if (UseRange.isValid()) { | 
|  | if (const auto *MethodDecl = dyn_cast<ObjCMethodDecl>(ReferringDecl)) { | 
|  | Selector Sel = MethodDecl->getSelector(); | 
|  | SmallVector<StringRef, 12> SelectorSlotNames; | 
|  | Optional<unsigned> NumParams = tryParseObjCMethodName( | 
|  | Replacement, SelectorSlotNames, S.getLangOpts()); | 
|  | if (NumParams && NumParams.getValue() == Sel.getNumArgs()) { | 
|  | assert(SelectorSlotNames.size() == Locs.size()); | 
|  | for (unsigned I = 0; I < Locs.size(); ++I) { | 
|  | if (!Sel.getNameForSlot(I).empty()) { | 
|  | CharSourceRange NameRange = CharSourceRange::getCharRange( | 
|  | Locs[I], S.getLocForEndOfToken(Locs[I])); | 
|  | FixIts.push_back(FixItHint::CreateReplacement( | 
|  | NameRange, SelectorSlotNames[I])); | 
|  | } else | 
|  | FixIts.push_back( | 
|  | FixItHint::CreateInsertion(Locs[I], SelectorSlotNames[I])); | 
|  | } | 
|  | } else | 
|  | FixIts.push_back(FixItHint::CreateReplacement(UseRange, Replacement)); | 
|  | } else | 
|  | FixIts.push_back(FixItHint::CreateReplacement(UseRange, Replacement)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!Message.empty()) { | 
|  | S.Diag(Loc, diag_message) << ReferringDecl << Message << FixIts; | 
|  | if (ObjCProperty) | 
|  | S.Diag(ObjCProperty->getLocation(), diag::note_property_attribute) | 
|  | << ObjCProperty->getDeclName() << property_note_select; | 
|  | } else if (!UnknownObjCClass) { | 
|  | S.Diag(Loc, diag) << ReferringDecl << FixIts; | 
|  | if (ObjCProperty) | 
|  | S.Diag(ObjCProperty->getLocation(), diag::note_property_attribute) | 
|  | << ObjCProperty->getDeclName() << property_note_select; | 
|  | } else { | 
|  | S.Diag(Loc, diag_fwdclass_message) << ReferringDecl << FixIts; | 
|  | S.Diag(UnknownObjCClass->getLocation(), diag::note_forward_class); | 
|  | } | 
|  |  | 
|  | S.Diag(NoteLocation, diag_available_here) | 
|  | << OffendingDecl << available_here_select_kind; | 
|  | } | 
|  |  | 
|  | static void handleDelayedAvailabilityCheck(Sema &S, DelayedDiagnostic &DD, | 
|  | Decl *Ctx) { | 
|  | assert(DD.Kind == DelayedDiagnostic::Availability && | 
|  | "Expected an availability diagnostic here"); | 
|  |  | 
|  | DD.Triggered = true; | 
|  | DoEmitAvailabilityWarning( | 
|  | S, DD.getAvailabilityResult(), Ctx, DD.getAvailabilityReferringDecl(), | 
|  | DD.getAvailabilityOffendingDecl(), DD.getAvailabilityMessage(), | 
|  | DD.getAvailabilitySelectorLocs(), DD.getUnknownObjCClass(), | 
|  | DD.getObjCProperty(), false); | 
|  | } | 
|  |  | 
|  | void Sema::PopParsingDeclaration(ParsingDeclState state, Decl *decl) { | 
|  | assert(DelayedDiagnostics.getCurrentPool()); | 
|  | DelayedDiagnosticPool &poppedPool = *DelayedDiagnostics.getCurrentPool(); | 
|  | DelayedDiagnostics.popWithoutEmitting(state); | 
|  |  | 
|  | // When delaying diagnostics to run in the context of a parsed | 
|  | // declaration, we only want to actually emit anything if parsing | 
|  | // succeeds. | 
|  | if (!decl) return; | 
|  |  | 
|  | // We emit all the active diagnostics in this pool or any of its | 
|  | // parents.  In general, we'll get one pool for the decl spec | 
|  | // and a child pool for each declarator; in a decl group like: | 
|  | //   deprecated_typedef foo, *bar, baz(); | 
|  | // only the declarator pops will be passed decls.  This is correct; | 
|  | // we really do need to consider delayed diagnostics from the decl spec | 
|  | // for each of the different declarations. | 
|  | const DelayedDiagnosticPool *pool = &poppedPool; | 
|  | do { | 
|  | bool AnyAccessFailures = false; | 
|  | for (DelayedDiagnosticPool::pool_iterator | 
|  | i = pool->pool_begin(), e = pool->pool_end(); i != e; ++i) { | 
|  | // This const_cast is a bit lame.  Really, Triggered should be mutable. | 
|  | DelayedDiagnostic &diag = const_cast<DelayedDiagnostic&>(*i); | 
|  | if (diag.Triggered) | 
|  | continue; | 
|  |  | 
|  | switch (diag.Kind) { | 
|  | case DelayedDiagnostic::Availability: | 
|  | // Don't bother giving deprecation/unavailable diagnostics if | 
|  | // the decl is invalid. | 
|  | if (!decl->isInvalidDecl()) | 
|  | handleDelayedAvailabilityCheck(*this, diag, decl); | 
|  | break; | 
|  |  | 
|  | case DelayedDiagnostic::Access: | 
|  | // Only produce one access control diagnostic for a structured binding | 
|  | // declaration: we don't need to tell the user that all the fields are | 
|  | // inaccessible one at a time. | 
|  | if (AnyAccessFailures && isa<DecompositionDecl>(decl)) | 
|  | continue; | 
|  | HandleDelayedAccessCheck(diag, decl); | 
|  | if (diag.Triggered) | 
|  | AnyAccessFailures = true; | 
|  | break; | 
|  |  | 
|  | case DelayedDiagnostic::ForbiddenType: | 
|  | handleDelayedForbiddenType(*this, diag, decl); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } while ((pool = pool->getParent())); | 
|  | } | 
|  |  | 
|  | /// Given a set of delayed diagnostics, re-emit them as if they had | 
|  | /// been delayed in the current context instead of in the given pool. | 
|  | /// Essentially, this just moves them to the current pool. | 
|  | void Sema::redelayDiagnostics(DelayedDiagnosticPool &pool) { | 
|  | DelayedDiagnosticPool *curPool = DelayedDiagnostics.getCurrentPool(); | 
|  | assert(curPool && "re-emitting in undelayed context not supported"); | 
|  | curPool->steal(pool); | 
|  | } | 
|  |  | 
|  | static void EmitAvailabilityWarning(Sema &S, AvailabilityResult AR, | 
|  | const NamedDecl *ReferringDecl, | 
|  | const NamedDecl *OffendingDecl, | 
|  | StringRef Message, | 
|  | ArrayRef<SourceLocation> Locs, | 
|  | const ObjCInterfaceDecl *UnknownObjCClass, | 
|  | const ObjCPropertyDecl *ObjCProperty, | 
|  | bool ObjCPropertyAccess) { | 
|  | // Delay if we're currently parsing a declaration. | 
|  | if (S.DelayedDiagnostics.shouldDelayDiagnostics()) { | 
|  | S.DelayedDiagnostics.add( | 
|  | DelayedDiagnostic::makeAvailability( | 
|  | AR, Locs, ReferringDecl, OffendingDecl, UnknownObjCClass, | 
|  | ObjCProperty, Message, ObjCPropertyAccess)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | Decl *Ctx = cast<Decl>(S.getCurLexicalContext()); | 
|  | DoEmitAvailabilityWarning(S, AR, Ctx, ReferringDecl, OffendingDecl, | 
|  | Message, Locs, UnknownObjCClass, ObjCProperty, | 
|  | ObjCPropertyAccess); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// Returns true if the given statement can be a body-like child of \p Parent. | 
|  | bool isBodyLikeChildStmt(const Stmt *S, const Stmt *Parent) { | 
|  | switch (Parent->getStmtClass()) { | 
|  | case Stmt::IfStmtClass: | 
|  | return cast<IfStmt>(Parent)->getThen() == S || | 
|  | cast<IfStmt>(Parent)->getElse() == S; | 
|  | case Stmt::WhileStmtClass: | 
|  | return cast<WhileStmt>(Parent)->getBody() == S; | 
|  | case Stmt::DoStmtClass: | 
|  | return cast<DoStmt>(Parent)->getBody() == S; | 
|  | case Stmt::ForStmtClass: | 
|  | return cast<ForStmt>(Parent)->getBody() == S; | 
|  | case Stmt::CXXForRangeStmtClass: | 
|  | return cast<CXXForRangeStmt>(Parent)->getBody() == S; | 
|  | case Stmt::ObjCForCollectionStmtClass: | 
|  | return cast<ObjCForCollectionStmt>(Parent)->getBody() == S; | 
|  | case Stmt::CaseStmtClass: | 
|  | case Stmt::DefaultStmtClass: | 
|  | return cast<SwitchCase>(Parent)->getSubStmt() == S; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | class StmtUSEFinder : public RecursiveASTVisitor<StmtUSEFinder> { | 
|  | const Stmt *Target; | 
|  |  | 
|  | public: | 
|  | bool VisitStmt(Stmt *S) { return S != Target; } | 
|  |  | 
|  | /// Returns true if the given statement is present in the given declaration. | 
|  | static bool isContained(const Stmt *Target, const Decl *D) { | 
|  | StmtUSEFinder Visitor; | 
|  | Visitor.Target = Target; | 
|  | return !Visitor.TraverseDecl(const_cast<Decl *>(D)); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// Traverses the AST and finds the last statement that used a given | 
|  | /// declaration. | 
|  | class LastDeclUSEFinder : public RecursiveASTVisitor<LastDeclUSEFinder> { | 
|  | const Decl *D; | 
|  |  | 
|  | public: | 
|  | bool VisitDeclRefExpr(DeclRefExpr *DRE) { | 
|  | if (DRE->getDecl() == D) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static const Stmt *findLastStmtThatUsesDecl(const Decl *D, | 
|  | const CompoundStmt *Scope) { | 
|  | LastDeclUSEFinder Visitor; | 
|  | Visitor.D = D; | 
|  | for (auto I = Scope->body_rbegin(), E = Scope->body_rend(); I != E; ++I) { | 
|  | const Stmt *S = *I; | 
|  | if (!Visitor.TraverseStmt(const_cast<Stmt *>(S))) | 
|  | return S; | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// This class implements -Wunguarded-availability. | 
|  | /// | 
|  | /// This is done with a traversal of the AST of a function that makes reference | 
|  | /// to a partially available declaration. Whenever we encounter an \c if of the | 
|  | /// form: \c if(@available(...)), we use the version from the condition to visit | 
|  | /// the then statement. | 
|  | class DiagnoseUnguardedAvailability | 
|  | : public RecursiveASTVisitor<DiagnoseUnguardedAvailability> { | 
|  | typedef RecursiveASTVisitor<DiagnoseUnguardedAvailability> Base; | 
|  |  | 
|  | Sema &SemaRef; | 
|  | Decl *Ctx; | 
|  |  | 
|  | /// Stack of potentially nested 'if (@available(...))'s. | 
|  | SmallVector<VersionTuple, 8> AvailabilityStack; | 
|  | SmallVector<const Stmt *, 16> StmtStack; | 
|  |  | 
|  | void DiagnoseDeclAvailability(NamedDecl *D, SourceRange Range, | 
|  | ObjCInterfaceDecl *ClassReceiver = nullptr); | 
|  |  | 
|  | public: | 
|  | DiagnoseUnguardedAvailability(Sema &SemaRef, Decl *Ctx) | 
|  | : SemaRef(SemaRef), Ctx(Ctx) { | 
|  | AvailabilityStack.push_back( | 
|  | SemaRef.Context.getTargetInfo().getPlatformMinVersion()); | 
|  | } | 
|  |  | 
|  | bool TraverseDecl(Decl *D) { | 
|  | // Avoid visiting nested functions to prevent duplicate warnings. | 
|  | if (!D || isa<FunctionDecl>(D)) | 
|  | return true; | 
|  | return Base::TraverseDecl(D); | 
|  | } | 
|  |  | 
|  | bool TraverseStmt(Stmt *S) { | 
|  | if (!S) | 
|  | return true; | 
|  | StmtStack.push_back(S); | 
|  | bool Result = Base::TraverseStmt(S); | 
|  | StmtStack.pop_back(); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | void IssueDiagnostics(Stmt *S) { TraverseStmt(S); } | 
|  |  | 
|  | bool TraverseIfStmt(IfStmt *If); | 
|  |  | 
|  | bool TraverseLambdaExpr(LambdaExpr *E) { return true; } | 
|  |  | 
|  | // for 'case X:' statements, don't bother looking at the 'X'; it can't lead | 
|  | // to any useful diagnostics. | 
|  | bool TraverseCaseStmt(CaseStmt *CS) { return TraverseStmt(CS->getSubStmt()); } | 
|  |  | 
|  | bool VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *PRE) { | 
|  | if (PRE->isClassReceiver()) | 
|  | DiagnoseDeclAvailability(PRE->getClassReceiver(), PRE->getReceiverLocation()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool VisitObjCMessageExpr(ObjCMessageExpr *Msg) { | 
|  | if (ObjCMethodDecl *D = Msg->getMethodDecl()) { | 
|  | ObjCInterfaceDecl *ID = nullptr; | 
|  | QualType ReceiverTy = Msg->getClassReceiver(); | 
|  | if (!ReceiverTy.isNull() && ReceiverTy->getAsObjCInterfaceType()) | 
|  | ID = ReceiverTy->getAsObjCInterfaceType()->getInterface(); | 
|  |  | 
|  | DiagnoseDeclAvailability( | 
|  | D, SourceRange(Msg->getSelectorStartLoc(), Msg->getEndLoc()), ID); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool VisitDeclRefExpr(DeclRefExpr *DRE) { | 
|  | DiagnoseDeclAvailability(DRE->getDecl(), | 
|  | SourceRange(DRE->getBeginLoc(), DRE->getEndLoc())); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool VisitMemberExpr(MemberExpr *ME) { | 
|  | DiagnoseDeclAvailability(ME->getMemberDecl(), | 
|  | SourceRange(ME->getBeginLoc(), ME->getEndLoc())); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) { | 
|  | SemaRef.Diag(E->getBeginLoc(), diag::warn_at_available_unchecked_use) | 
|  | << (!SemaRef.getLangOpts().ObjC1); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool VisitTypeLoc(TypeLoc Ty); | 
|  | }; | 
|  |  | 
|  | void DiagnoseUnguardedAvailability::DiagnoseDeclAvailability( | 
|  | NamedDecl *D, SourceRange Range, ObjCInterfaceDecl *ReceiverClass) { | 
|  | AvailabilityResult Result; | 
|  | const NamedDecl *OffendingDecl; | 
|  | std::tie(Result, OffendingDecl) = | 
|  | ShouldDiagnoseAvailabilityOfDecl(SemaRef, D, nullptr, ReceiverClass); | 
|  | if (Result != AR_Available) { | 
|  | // All other diagnostic kinds have already been handled in | 
|  | // DiagnoseAvailabilityOfDecl. | 
|  | if (Result != AR_NotYetIntroduced) | 
|  | return; | 
|  |  | 
|  | const AvailabilityAttr *AA = | 
|  | getAttrForPlatform(SemaRef.getASTContext(), OffendingDecl); | 
|  | VersionTuple Introduced = AA->getIntroduced(); | 
|  |  | 
|  | if (AvailabilityStack.back() >= Introduced) | 
|  | return; | 
|  |  | 
|  | // If the context of this function is less available than D, we should not | 
|  | // emit a diagnostic. | 
|  | if (!ShouldDiagnoseAvailabilityInContext(SemaRef, Result, Introduced, Ctx)) | 
|  | return; | 
|  |  | 
|  | // We would like to emit the diagnostic even if -Wunguarded-availability is | 
|  | // not specified for deployment targets >= to iOS 11 or equivalent or | 
|  | // for declarations that were introduced in iOS 11 (macOS 10.13, ...) or | 
|  | // later. | 
|  | unsigned DiagKind = | 
|  | shouldDiagnoseAvailabilityByDefault( | 
|  | SemaRef.Context, | 
|  | SemaRef.Context.getTargetInfo().getPlatformMinVersion(), Introduced) | 
|  | ? diag::warn_unguarded_availability_new | 
|  | : diag::warn_unguarded_availability; | 
|  |  | 
|  | SemaRef.Diag(Range.getBegin(), DiagKind) | 
|  | << Range << D | 
|  | << AvailabilityAttr::getPrettyPlatformName( | 
|  | SemaRef.getASTContext().getTargetInfo().getPlatformName()) | 
|  | << Introduced.getAsString(); | 
|  |  | 
|  | SemaRef.Diag(OffendingDecl->getLocation(), | 
|  | diag::note_availability_specified_here) | 
|  | << OffendingDecl << /* partial */ 3; | 
|  |  | 
|  | auto FixitDiag = | 
|  | SemaRef.Diag(Range.getBegin(), diag::note_unguarded_available_silence) | 
|  | << Range << D | 
|  | << (SemaRef.getLangOpts().ObjC1 ? /*@available*/ 0 | 
|  | : /*__builtin_available*/ 1); | 
|  |  | 
|  | // Find the statement which should be enclosed in the if @available check. | 
|  | if (StmtStack.empty()) | 
|  | return; | 
|  | const Stmt *StmtOfUse = StmtStack.back(); | 
|  | const CompoundStmt *Scope = nullptr; | 
|  | for (const Stmt *S : llvm::reverse(StmtStack)) { | 
|  | if (const auto *CS = dyn_cast<CompoundStmt>(S)) { | 
|  | Scope = CS; | 
|  | break; | 
|  | } | 
|  | if (isBodyLikeChildStmt(StmtOfUse, S)) { | 
|  | // The declaration won't be seen outside of the statement, so we don't | 
|  | // have to wrap the uses of any declared variables in if (@available). | 
|  | // Therefore we can avoid setting Scope here. | 
|  | break; | 
|  | } | 
|  | StmtOfUse = S; | 
|  | } | 
|  | const Stmt *LastStmtOfUse = nullptr; | 
|  | if (isa<DeclStmt>(StmtOfUse) && Scope) { | 
|  | for (const Decl *D : cast<DeclStmt>(StmtOfUse)->decls()) { | 
|  | if (StmtUSEFinder::isContained(StmtStack.back(), D)) { | 
|  | LastStmtOfUse = LastDeclUSEFinder::findLastStmtThatUsesDecl(D, Scope); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | const SourceManager &SM = SemaRef.getSourceManager(); | 
|  | SourceLocation IfInsertionLoc = | 
|  | SM.getExpansionLoc(StmtOfUse->getBeginLoc()); | 
|  | SourceLocation StmtEndLoc = | 
|  | SM.getExpansionRange( | 
|  | (LastStmtOfUse ? LastStmtOfUse : StmtOfUse)->getEndLoc()) | 
|  | .getEnd(); | 
|  | if (SM.getFileID(IfInsertionLoc) != SM.getFileID(StmtEndLoc)) | 
|  | return; | 
|  |  | 
|  | StringRef Indentation = Lexer::getIndentationForLine(IfInsertionLoc, SM); | 
|  | const char *ExtraIndentation = "    "; | 
|  | std::string FixItString; | 
|  | llvm::raw_string_ostream FixItOS(FixItString); | 
|  | FixItOS << "if (" << (SemaRef.getLangOpts().ObjC1 ? "@available" | 
|  | : "__builtin_available") | 
|  | << "(" | 
|  | << AvailabilityAttr::getPlatformNameSourceSpelling( | 
|  | SemaRef.getASTContext().getTargetInfo().getPlatformName()) | 
|  | << " " << Introduced.getAsString() << ", *)) {\n" | 
|  | << Indentation << ExtraIndentation; | 
|  | FixitDiag << FixItHint::CreateInsertion(IfInsertionLoc, FixItOS.str()); | 
|  | SourceLocation ElseInsertionLoc = Lexer::findLocationAfterToken( | 
|  | StmtEndLoc, tok::semi, SM, SemaRef.getLangOpts(), | 
|  | /*SkipTrailingWhitespaceAndNewLine=*/false); | 
|  | if (ElseInsertionLoc.isInvalid()) | 
|  | ElseInsertionLoc = | 
|  | Lexer::getLocForEndOfToken(StmtEndLoc, 0, SM, SemaRef.getLangOpts()); | 
|  | FixItOS.str().clear(); | 
|  | FixItOS << "\n" | 
|  | << Indentation << "} else {\n" | 
|  | << Indentation << ExtraIndentation | 
|  | << "// Fallback on earlier versions\n" | 
|  | << Indentation << "}"; | 
|  | FixitDiag << FixItHint::CreateInsertion(ElseInsertionLoc, FixItOS.str()); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool DiagnoseUnguardedAvailability::VisitTypeLoc(TypeLoc Ty) { | 
|  | const Type *TyPtr = Ty.getTypePtr(); | 
|  | SourceRange Range{Ty.getBeginLoc(), Ty.getEndLoc()}; | 
|  |  | 
|  | if (Range.isInvalid()) | 
|  | return true; | 
|  |  | 
|  | if (const auto *TT = dyn_cast<TagType>(TyPtr)) { | 
|  | TagDecl *TD = TT->getDecl(); | 
|  | DiagnoseDeclAvailability(TD, Range); | 
|  |  | 
|  | } else if (const auto *TD = dyn_cast<TypedefType>(TyPtr)) { | 
|  | TypedefNameDecl *D = TD->getDecl(); | 
|  | DiagnoseDeclAvailability(D, Range); | 
|  |  | 
|  | } else if (const auto *ObjCO = dyn_cast<ObjCObjectType>(TyPtr)) { | 
|  | if (NamedDecl *D = ObjCO->getInterface()) | 
|  | DiagnoseDeclAvailability(D, Range); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool DiagnoseUnguardedAvailability::TraverseIfStmt(IfStmt *If) { | 
|  | VersionTuple CondVersion; | 
|  | if (auto *E = dyn_cast<ObjCAvailabilityCheckExpr>(If->getCond())) { | 
|  | CondVersion = E->getVersion(); | 
|  |  | 
|  | // If we're using the '*' case here or if this check is redundant, then we | 
|  | // use the enclosing version to check both branches. | 
|  | if (CondVersion.empty() || CondVersion <= AvailabilityStack.back()) | 
|  | return TraverseStmt(If->getThen()) && TraverseStmt(If->getElse()); | 
|  | } else { | 
|  | // This isn't an availability checking 'if', we can just continue. | 
|  | return Base::TraverseIfStmt(If); | 
|  | } | 
|  |  | 
|  | AvailabilityStack.push_back(CondVersion); | 
|  | bool ShouldContinue = TraverseStmt(If->getThen()); | 
|  | AvailabilityStack.pop_back(); | 
|  |  | 
|  | return ShouldContinue && TraverseStmt(If->getElse()); | 
|  | } | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | void Sema::DiagnoseUnguardedAvailabilityViolations(Decl *D) { | 
|  | Stmt *Body = nullptr; | 
|  |  | 
|  | if (auto *FD = D->getAsFunction()) { | 
|  | // FIXME: We only examine the pattern decl for availability violations now, | 
|  | // but we should also examine instantiated templates. | 
|  | if (FD->isTemplateInstantiation()) | 
|  | return; | 
|  |  | 
|  | Body = FD->getBody(); | 
|  | } else if (auto *MD = dyn_cast<ObjCMethodDecl>(D)) | 
|  | Body = MD->getBody(); | 
|  | else if (auto *BD = dyn_cast<BlockDecl>(D)) | 
|  | Body = BD->getBody(); | 
|  |  | 
|  | assert(Body && "Need a body here!"); | 
|  |  | 
|  | DiagnoseUnguardedAvailability(*this, D).IssueDiagnostics(Body); | 
|  | } | 
|  |  | 
|  | void Sema::DiagnoseAvailabilityOfDecl(NamedDecl *D, | 
|  | ArrayRef<SourceLocation> Locs, | 
|  | const ObjCInterfaceDecl *UnknownObjCClass, | 
|  | bool ObjCPropertyAccess, | 
|  | bool AvoidPartialAvailabilityChecks, | 
|  | ObjCInterfaceDecl *ClassReceiver) { | 
|  | std::string Message; | 
|  | AvailabilityResult Result; | 
|  | const NamedDecl* OffendingDecl; | 
|  | // See if this declaration is unavailable, deprecated, or partial. | 
|  | std::tie(Result, OffendingDecl) = | 
|  | ShouldDiagnoseAvailabilityOfDecl(*this, D, &Message, ClassReceiver); | 
|  | if (Result == AR_Available) | 
|  | return; | 
|  |  | 
|  | if (Result == AR_NotYetIntroduced) { | 
|  | if (AvoidPartialAvailabilityChecks) | 
|  | return; | 
|  |  | 
|  | // We need to know the @available context in the current function to | 
|  | // diagnose this use, let DiagnoseUnguardedAvailabilityViolations do that | 
|  | // when we're done parsing the current function. | 
|  | if (getCurFunctionOrMethodDecl()) { | 
|  | getEnclosingFunction()->HasPotentialAvailabilityViolations = true; | 
|  | return; | 
|  | } else if (getCurBlock() || getCurLambda()) { | 
|  | getCurFunction()->HasPotentialAvailabilityViolations = true; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | const ObjCPropertyDecl *ObjCPDecl = nullptr; | 
|  | if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) { | 
|  | if (const ObjCPropertyDecl *PD = MD->findPropertyDecl()) { | 
|  | AvailabilityResult PDeclResult = PD->getAvailability(nullptr); | 
|  | if (PDeclResult == Result) | 
|  | ObjCPDecl = PD; | 
|  | } | 
|  | } | 
|  |  | 
|  | EmitAvailabilityWarning(*this, Result, D, OffendingDecl, Message, Locs, | 
|  | UnknownObjCClass, ObjCPDecl, ObjCPropertyAccess); | 
|  | } |