|  | //===- VPlan.h - Represent A Vectorizer Plan --------------------*- C++ -*-===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | /// \file | 
|  | /// This file contains the declarations of the Vectorization Plan base classes: | 
|  | /// 1. VPBasicBlock and VPRegionBlock that inherit from a common pure virtual | 
|  | ///    VPBlockBase, together implementing a Hierarchical CFG; | 
|  | /// 2. Specializations of GraphTraits that allow VPBlockBase graphs to be | 
|  | ///    treated as proper graphs for generic algorithms; | 
|  | /// 3. Pure virtual VPRecipeBase serving as the base class for recipes contained | 
|  | ///    within VPBasicBlocks; | 
|  | /// 4. VPInstruction, a concrete Recipe and VPUser modeling a single planned | 
|  | ///    instruction; | 
|  | /// 5. The VPlan class holding a candidate for vectorization; | 
|  | /// 6. The VPlanPrinter class providing a way to print a plan in dot format; | 
|  | /// These are documented in docs/VectorizationPlan.rst. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #ifndef LLVM_TRANSFORMS_VECTORIZE_VPLAN_H | 
|  | #define LLVM_TRANSFORMS_VECTORIZE_VPLAN_H | 
|  |  | 
|  | #include "VPlanLoopInfo.h" | 
|  | #include "VPlanValue.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/DepthFirstIterator.h" | 
|  | #include "llvm/ADT/GraphTraits.h" | 
|  | #include "llvm/ADT/Optional.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Twine.h" | 
|  | #include "llvm/ADT/ilist.h" | 
|  | #include "llvm/ADT/ilist_node.h" | 
|  | #include "llvm/Analysis/VectorUtils.h" | 
|  | #include "llvm/IR/IRBuilder.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <cstddef> | 
|  | #include <map> | 
|  | #include <string> | 
|  |  | 
|  | namespace llvm { | 
|  |  | 
|  | class LoopVectorizationLegality; | 
|  | class LoopVectorizationCostModel; | 
|  | class BasicBlock; | 
|  | class DominatorTree; | 
|  | class InnerLoopVectorizer; | 
|  | template <class T> class InterleaveGroup; | 
|  | class LoopInfo; | 
|  | class raw_ostream; | 
|  | class Value; | 
|  | class VPBasicBlock; | 
|  | class VPRegionBlock; | 
|  | class VPlan; | 
|  | class VPlanSlp; | 
|  |  | 
|  | /// A range of powers-of-2 vectorization factors with fixed start and | 
|  | /// adjustable end. The range includes start and excludes end, e.g.,: | 
|  | /// [1, 9) = {1, 2, 4, 8} | 
|  | struct VFRange { | 
|  | // A power of 2. | 
|  | const unsigned Start; | 
|  |  | 
|  | // Need not be a power of 2. If End <= Start range is empty. | 
|  | unsigned End; | 
|  | }; | 
|  |  | 
|  | using VPlanPtr = std::unique_ptr<VPlan>; | 
|  |  | 
|  | /// In what follows, the term "input IR" refers to code that is fed into the | 
|  | /// vectorizer whereas the term "output IR" refers to code that is generated by | 
|  | /// the vectorizer. | 
|  |  | 
|  | /// VPIteration represents a single point in the iteration space of the output | 
|  | /// (vectorized and/or unrolled) IR loop. | 
|  | struct VPIteration { | 
|  | /// in [0..UF) | 
|  | unsigned Part; | 
|  |  | 
|  | /// in [0..VF) | 
|  | unsigned Lane; | 
|  | }; | 
|  |  | 
|  | /// This is a helper struct for maintaining vectorization state. It's used for | 
|  | /// mapping values from the original loop to their corresponding values in | 
|  | /// the new loop. Two mappings are maintained: one for vectorized values and | 
|  | /// one for scalarized values. Vectorized values are represented with UF | 
|  | /// vector values in the new loop, and scalarized values are represented with | 
|  | /// UF x VF scalar values in the new loop. UF and VF are the unroll and | 
|  | /// vectorization factors, respectively. | 
|  | /// | 
|  | /// Entries can be added to either map with setVectorValue and setScalarValue, | 
|  | /// which assert that an entry was not already added before. If an entry is to | 
|  | /// replace an existing one, call resetVectorValue and resetScalarValue. This is | 
|  | /// currently needed to modify the mapped values during "fix-up" operations that | 
|  | /// occur once the first phase of widening is complete. These operations include | 
|  | /// type truncation and the second phase of recurrence widening. | 
|  | /// | 
|  | /// Entries from either map can be retrieved using the getVectorValue and | 
|  | /// getScalarValue functions, which assert that the desired value exists. | 
|  | struct VectorizerValueMap { | 
|  | friend struct VPTransformState; | 
|  |  | 
|  | private: | 
|  | /// The unroll factor. Each entry in the vector map contains UF vector values. | 
|  | unsigned UF; | 
|  |  | 
|  | /// The vectorization factor. Each entry in the scalar map contains UF x VF | 
|  | /// scalar values. | 
|  | unsigned VF; | 
|  |  | 
|  | /// The vector and scalar map storage. We use std::map and not DenseMap | 
|  | /// because insertions to DenseMap invalidate its iterators. | 
|  | using VectorParts = SmallVector<Value *, 2>; | 
|  | using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; | 
|  | std::map<Value *, VectorParts> VectorMapStorage; | 
|  | std::map<Value *, ScalarParts> ScalarMapStorage; | 
|  |  | 
|  | public: | 
|  | /// Construct an empty map with the given unroll and vectorization factors. | 
|  | VectorizerValueMap(unsigned UF, unsigned VF) : UF(UF), VF(VF) {} | 
|  |  | 
|  | /// \return True if the map has any vector entry for \p Key. | 
|  | bool hasAnyVectorValue(Value *Key) const { | 
|  | return VectorMapStorage.count(Key); | 
|  | } | 
|  |  | 
|  | /// \return True if the map has a vector entry for \p Key and \p Part. | 
|  | bool hasVectorValue(Value *Key, unsigned Part) const { | 
|  | assert(Part < UF && "Queried Vector Part is too large."); | 
|  | if (!hasAnyVectorValue(Key)) | 
|  | return false; | 
|  | const VectorParts &Entry = VectorMapStorage.find(Key)->second; | 
|  | assert(Entry.size() == UF && "VectorParts has wrong dimensions."); | 
|  | return Entry[Part] != nullptr; | 
|  | } | 
|  |  | 
|  | /// \return True if the map has any scalar entry for \p Key. | 
|  | bool hasAnyScalarValue(Value *Key) const { | 
|  | return ScalarMapStorage.count(Key); | 
|  | } | 
|  |  | 
|  | /// \return True if the map has a scalar entry for \p Key and \p Instance. | 
|  | bool hasScalarValue(Value *Key, const VPIteration &Instance) const { | 
|  | assert(Instance.Part < UF && "Queried Scalar Part is too large."); | 
|  | assert(Instance.Lane < VF && "Queried Scalar Lane is too large."); | 
|  | if (!hasAnyScalarValue(Key)) | 
|  | return false; | 
|  | const ScalarParts &Entry = ScalarMapStorage.find(Key)->second; | 
|  | assert(Entry.size() == UF && "ScalarParts has wrong dimensions."); | 
|  | assert(Entry[Instance.Part].size() == VF && | 
|  | "ScalarParts has wrong dimensions."); | 
|  | return Entry[Instance.Part][Instance.Lane] != nullptr; | 
|  | } | 
|  |  | 
|  | /// Retrieve the existing vector value that corresponds to \p Key and | 
|  | /// \p Part. | 
|  | Value *getVectorValue(Value *Key, unsigned Part) { | 
|  | assert(hasVectorValue(Key, Part) && "Getting non-existent value."); | 
|  | return VectorMapStorage[Key][Part]; | 
|  | } | 
|  |  | 
|  | /// Retrieve the existing scalar value that corresponds to \p Key and | 
|  | /// \p Instance. | 
|  | Value *getScalarValue(Value *Key, const VPIteration &Instance) { | 
|  | assert(hasScalarValue(Key, Instance) && "Getting non-existent value."); | 
|  | return ScalarMapStorage[Key][Instance.Part][Instance.Lane]; | 
|  | } | 
|  |  | 
|  | /// Set a vector value associated with \p Key and \p Part. Assumes such a | 
|  | /// value is not already set. If it is, use resetVectorValue() instead. | 
|  | void setVectorValue(Value *Key, unsigned Part, Value *Vector) { | 
|  | assert(!hasVectorValue(Key, Part) && "Vector value already set for part"); | 
|  | if (!VectorMapStorage.count(Key)) { | 
|  | VectorParts Entry(UF); | 
|  | VectorMapStorage[Key] = Entry; | 
|  | } | 
|  | VectorMapStorage[Key][Part] = Vector; | 
|  | } | 
|  |  | 
|  | /// Set a scalar value associated with \p Key and \p Instance. Assumes such a | 
|  | /// value is not already set. | 
|  | void setScalarValue(Value *Key, const VPIteration &Instance, Value *Scalar) { | 
|  | assert(!hasScalarValue(Key, Instance) && "Scalar value already set"); | 
|  | if (!ScalarMapStorage.count(Key)) { | 
|  | ScalarParts Entry(UF); | 
|  | // TODO: Consider storing uniform values only per-part, as they occupy | 
|  | //       lane 0 only, keeping the other VF-1 redundant entries null. | 
|  | for (unsigned Part = 0; Part < UF; ++Part) | 
|  | Entry[Part].resize(VF, nullptr); | 
|  | ScalarMapStorage[Key] = Entry; | 
|  | } | 
|  | ScalarMapStorage[Key][Instance.Part][Instance.Lane] = Scalar; | 
|  | } | 
|  |  | 
|  | /// Reset the vector value associated with \p Key for the given \p Part. | 
|  | /// This function can be used to update values that have already been | 
|  | /// vectorized. This is the case for "fix-up" operations including type | 
|  | /// truncation and the second phase of recurrence vectorization. | 
|  | void resetVectorValue(Value *Key, unsigned Part, Value *Vector) { | 
|  | assert(hasVectorValue(Key, Part) && "Vector value not set for part"); | 
|  | VectorMapStorage[Key][Part] = Vector; | 
|  | } | 
|  |  | 
|  | /// Reset the scalar value associated with \p Key for \p Part and \p Lane. | 
|  | /// This function can be used to update values that have already been | 
|  | /// scalarized. This is the case for "fix-up" operations including scalar phi | 
|  | /// nodes for scalarized and predicated instructions. | 
|  | void resetScalarValue(Value *Key, const VPIteration &Instance, | 
|  | Value *Scalar) { | 
|  | assert(hasScalarValue(Key, Instance) && | 
|  | "Scalar value not set for part and lane"); | 
|  | ScalarMapStorage[Key][Instance.Part][Instance.Lane] = Scalar; | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// This class is used to enable the VPlan to invoke a method of ILV. This is | 
|  | /// needed until the method is refactored out of ILV and becomes reusable. | 
|  | struct VPCallback { | 
|  | virtual ~VPCallback() {} | 
|  | virtual Value *getOrCreateVectorValues(Value *V, unsigned Part) = 0; | 
|  | }; | 
|  |  | 
|  | /// VPTransformState holds information passed down when "executing" a VPlan, | 
|  | /// needed for generating the output IR. | 
|  | struct VPTransformState { | 
|  | VPTransformState(unsigned VF, unsigned UF, LoopInfo *LI, DominatorTree *DT, | 
|  | IRBuilder<> &Builder, VectorizerValueMap &ValueMap, | 
|  | InnerLoopVectorizer *ILV, VPCallback &Callback) | 
|  | : VF(VF), UF(UF), Instance(), LI(LI), DT(DT), Builder(Builder), | 
|  | ValueMap(ValueMap), ILV(ILV), Callback(Callback) {} | 
|  |  | 
|  | /// The chosen Vectorization and Unroll Factors of the loop being vectorized. | 
|  | unsigned VF; | 
|  | unsigned UF; | 
|  |  | 
|  | /// Hold the indices to generate specific scalar instructions. Null indicates | 
|  | /// that all instances are to be generated, using either scalar or vector | 
|  | /// instructions. | 
|  | Optional<VPIteration> Instance; | 
|  |  | 
|  | struct DataState { | 
|  | /// A type for vectorized values in the new loop. Each value from the | 
|  | /// original loop, when vectorized, is represented by UF vector values in | 
|  | /// the new unrolled loop, where UF is the unroll factor. | 
|  | typedef SmallVector<Value *, 2> PerPartValuesTy; | 
|  |  | 
|  | DenseMap<VPValue *, PerPartValuesTy> PerPartOutput; | 
|  | } Data; | 
|  |  | 
|  | /// Get the generated Value for a given VPValue and a given Part. Note that | 
|  | /// as some Defs are still created by ILV and managed in its ValueMap, this | 
|  | /// method will delegate the call to ILV in such cases in order to provide | 
|  | /// callers a consistent API. | 
|  | /// \see set. | 
|  | Value *get(VPValue *Def, unsigned Part) { | 
|  | // If Values have been set for this Def return the one relevant for \p Part. | 
|  | if (Data.PerPartOutput.count(Def)) | 
|  | return Data.PerPartOutput[Def][Part]; | 
|  | // Def is managed by ILV: bring the Values from ValueMap. | 
|  | return Callback.getOrCreateVectorValues(VPValue2Value[Def], Part); | 
|  | } | 
|  |  | 
|  | /// Set the generated Value for a given VPValue and a given Part. | 
|  | void set(VPValue *Def, Value *V, unsigned Part) { | 
|  | if (!Data.PerPartOutput.count(Def)) { | 
|  | DataState::PerPartValuesTy Entry(UF); | 
|  | Data.PerPartOutput[Def] = Entry; | 
|  | } | 
|  | Data.PerPartOutput[Def][Part] = V; | 
|  | } | 
|  |  | 
|  | /// Hold state information used when constructing the CFG of the output IR, | 
|  | /// traversing the VPBasicBlocks and generating corresponding IR BasicBlocks. | 
|  | struct CFGState { | 
|  | /// The previous VPBasicBlock visited. Initially set to null. | 
|  | VPBasicBlock *PrevVPBB = nullptr; | 
|  |  | 
|  | /// The previous IR BasicBlock created or used. Initially set to the new | 
|  | /// header BasicBlock. | 
|  | BasicBlock *PrevBB = nullptr; | 
|  |  | 
|  | /// The last IR BasicBlock in the output IR. Set to the new latch | 
|  | /// BasicBlock, used for placing the newly created BasicBlocks. | 
|  | BasicBlock *LastBB = nullptr; | 
|  |  | 
|  | /// A mapping of each VPBasicBlock to the corresponding BasicBlock. In case | 
|  | /// of replication, maps the BasicBlock of the last replica created. | 
|  | SmallDenseMap<VPBasicBlock *, BasicBlock *> VPBB2IRBB; | 
|  |  | 
|  | /// Vector of VPBasicBlocks whose terminator instruction needs to be fixed | 
|  | /// up at the end of vector code generation. | 
|  | SmallVector<VPBasicBlock *, 8> VPBBsToFix; | 
|  |  | 
|  | CFGState() = default; | 
|  | } CFG; | 
|  |  | 
|  | /// Hold a pointer to LoopInfo to register new basic blocks in the loop. | 
|  | LoopInfo *LI; | 
|  |  | 
|  | /// Hold a pointer to Dominator Tree to register new basic blocks in the loop. | 
|  | DominatorTree *DT; | 
|  |  | 
|  | /// Hold a reference to the IRBuilder used to generate output IR code. | 
|  | IRBuilder<> &Builder; | 
|  |  | 
|  | /// Hold a reference to the Value state information used when generating the | 
|  | /// Values of the output IR. | 
|  | VectorizerValueMap &ValueMap; | 
|  |  | 
|  | /// Hold a reference to a mapping between VPValues in VPlan and original | 
|  | /// Values they correspond to. | 
|  | VPValue2ValueTy VPValue2Value; | 
|  |  | 
|  | /// Hold the trip count of the scalar loop. | 
|  | Value *TripCount = nullptr; | 
|  |  | 
|  | /// Hold a pointer to InnerLoopVectorizer to reuse its IR generation methods. | 
|  | InnerLoopVectorizer *ILV; | 
|  |  | 
|  | VPCallback &Callback; | 
|  | }; | 
|  |  | 
|  | /// VPBlockBase is the building block of the Hierarchical Control-Flow Graph. | 
|  | /// A VPBlockBase can be either a VPBasicBlock or a VPRegionBlock. | 
|  | class VPBlockBase { | 
|  | friend class VPBlockUtils; | 
|  |  | 
|  | private: | 
|  | const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast). | 
|  |  | 
|  | /// An optional name for the block. | 
|  | std::string Name; | 
|  |  | 
|  | /// The immediate VPRegionBlock which this VPBlockBase belongs to, or null if | 
|  | /// it is a topmost VPBlockBase. | 
|  | VPRegionBlock *Parent = nullptr; | 
|  |  | 
|  | /// List of predecessor blocks. | 
|  | SmallVector<VPBlockBase *, 1> Predecessors; | 
|  |  | 
|  | /// List of successor blocks. | 
|  | SmallVector<VPBlockBase *, 1> Successors; | 
|  |  | 
|  | /// Successor selector, null for zero or single successor blocks. | 
|  | VPValue *CondBit = nullptr; | 
|  |  | 
|  | /// Current block predicate - null if the block does not need a predicate. | 
|  | VPValue *Predicate = nullptr; | 
|  |  | 
|  | /// Add \p Successor as the last successor to this block. | 
|  | void appendSuccessor(VPBlockBase *Successor) { | 
|  | assert(Successor && "Cannot add nullptr successor!"); | 
|  | Successors.push_back(Successor); | 
|  | } | 
|  |  | 
|  | /// Add \p Predecessor as the last predecessor to this block. | 
|  | void appendPredecessor(VPBlockBase *Predecessor) { | 
|  | assert(Predecessor && "Cannot add nullptr predecessor!"); | 
|  | Predecessors.push_back(Predecessor); | 
|  | } | 
|  |  | 
|  | /// Remove \p Predecessor from the predecessors of this block. | 
|  | void removePredecessor(VPBlockBase *Predecessor) { | 
|  | auto Pos = std::find(Predecessors.begin(), Predecessors.end(), Predecessor); | 
|  | assert(Pos && "Predecessor does not exist"); | 
|  | Predecessors.erase(Pos); | 
|  | } | 
|  |  | 
|  | /// Remove \p Successor from the successors of this block. | 
|  | void removeSuccessor(VPBlockBase *Successor) { | 
|  | auto Pos = std::find(Successors.begin(), Successors.end(), Successor); | 
|  | assert(Pos && "Successor does not exist"); | 
|  | Successors.erase(Pos); | 
|  | } | 
|  |  | 
|  | protected: | 
|  | VPBlockBase(const unsigned char SC, const std::string &N) | 
|  | : SubclassID(SC), Name(N) {} | 
|  |  | 
|  | public: | 
|  | /// An enumeration for keeping track of the concrete subclass of VPBlockBase | 
|  | /// that are actually instantiated. Values of this enumeration are kept in the | 
|  | /// SubclassID field of the VPBlockBase objects. They are used for concrete | 
|  | /// type identification. | 
|  | using VPBlockTy = enum { VPBasicBlockSC, VPRegionBlockSC }; | 
|  |  | 
|  | using VPBlocksTy = SmallVectorImpl<VPBlockBase *>; | 
|  |  | 
|  | virtual ~VPBlockBase() = default; | 
|  |  | 
|  | const std::string &getName() const { return Name; } | 
|  |  | 
|  | void setName(const Twine &newName) { Name = newName.str(); } | 
|  |  | 
|  | /// \return an ID for the concrete type of this object. | 
|  | /// This is used to implement the classof checks. This should not be used | 
|  | /// for any other purpose, as the values may change as LLVM evolves. | 
|  | unsigned getVPBlockID() const { return SubclassID; } | 
|  |  | 
|  | VPRegionBlock *getParent() { return Parent; } | 
|  | const VPRegionBlock *getParent() const { return Parent; } | 
|  |  | 
|  | void setParent(VPRegionBlock *P) { Parent = P; } | 
|  |  | 
|  | /// \return the VPBasicBlock that is the entry of this VPBlockBase, | 
|  | /// recursively, if the latter is a VPRegionBlock. Otherwise, if this | 
|  | /// VPBlockBase is a VPBasicBlock, it is returned. | 
|  | const VPBasicBlock *getEntryBasicBlock() const; | 
|  | VPBasicBlock *getEntryBasicBlock(); | 
|  |  | 
|  | /// \return the VPBasicBlock that is the exit of this VPBlockBase, | 
|  | /// recursively, if the latter is a VPRegionBlock. Otherwise, if this | 
|  | /// VPBlockBase is a VPBasicBlock, it is returned. | 
|  | const VPBasicBlock *getExitBasicBlock() const; | 
|  | VPBasicBlock *getExitBasicBlock(); | 
|  |  | 
|  | const VPBlocksTy &getSuccessors() const { return Successors; } | 
|  | VPBlocksTy &getSuccessors() { return Successors; } | 
|  |  | 
|  | const VPBlocksTy &getPredecessors() const { return Predecessors; } | 
|  | VPBlocksTy &getPredecessors() { return Predecessors; } | 
|  |  | 
|  | /// \return the successor of this VPBlockBase if it has a single successor. | 
|  | /// Otherwise return a null pointer. | 
|  | VPBlockBase *getSingleSuccessor() const { | 
|  | return (Successors.size() == 1 ? *Successors.begin() : nullptr); | 
|  | } | 
|  |  | 
|  | /// \return the predecessor of this VPBlockBase if it has a single | 
|  | /// predecessor. Otherwise return a null pointer. | 
|  | VPBlockBase *getSinglePredecessor() const { | 
|  | return (Predecessors.size() == 1 ? *Predecessors.begin() : nullptr); | 
|  | } | 
|  |  | 
|  | size_t getNumSuccessors() const { return Successors.size(); } | 
|  | size_t getNumPredecessors() const { return Predecessors.size(); } | 
|  |  | 
|  | /// An Enclosing Block of a block B is any block containing B, including B | 
|  | /// itself. \return the closest enclosing block starting from "this", which | 
|  | /// has successors. \return the root enclosing block if all enclosing blocks | 
|  | /// have no successors. | 
|  | VPBlockBase *getEnclosingBlockWithSuccessors(); | 
|  |  | 
|  | /// \return the closest enclosing block starting from "this", which has | 
|  | /// predecessors. \return the root enclosing block if all enclosing blocks | 
|  | /// have no predecessors. | 
|  | VPBlockBase *getEnclosingBlockWithPredecessors(); | 
|  |  | 
|  | /// \return the successors either attached directly to this VPBlockBase or, if | 
|  | /// this VPBlockBase is the exit block of a VPRegionBlock and has no | 
|  | /// successors of its own, search recursively for the first enclosing | 
|  | /// VPRegionBlock that has successors and return them. If no such | 
|  | /// VPRegionBlock exists, return the (empty) successors of the topmost | 
|  | /// VPBlockBase reached. | 
|  | const VPBlocksTy &getHierarchicalSuccessors() { | 
|  | return getEnclosingBlockWithSuccessors()->getSuccessors(); | 
|  | } | 
|  |  | 
|  | /// \return the hierarchical successor of this VPBlockBase if it has a single | 
|  | /// hierarchical successor. Otherwise return a null pointer. | 
|  | VPBlockBase *getSingleHierarchicalSuccessor() { | 
|  | return getEnclosingBlockWithSuccessors()->getSingleSuccessor(); | 
|  | } | 
|  |  | 
|  | /// \return the predecessors either attached directly to this VPBlockBase or, | 
|  | /// if this VPBlockBase is the entry block of a VPRegionBlock and has no | 
|  | /// predecessors of its own, search recursively for the first enclosing | 
|  | /// VPRegionBlock that has predecessors and return them. If no such | 
|  | /// VPRegionBlock exists, return the (empty) predecessors of the topmost | 
|  | /// VPBlockBase reached. | 
|  | const VPBlocksTy &getHierarchicalPredecessors() { | 
|  | return getEnclosingBlockWithPredecessors()->getPredecessors(); | 
|  | } | 
|  |  | 
|  | /// \return the hierarchical predecessor of this VPBlockBase if it has a | 
|  | /// single hierarchical predecessor. Otherwise return a null pointer. | 
|  | VPBlockBase *getSingleHierarchicalPredecessor() { | 
|  | return getEnclosingBlockWithPredecessors()->getSinglePredecessor(); | 
|  | } | 
|  |  | 
|  | /// \return the condition bit selecting the successor. | 
|  | VPValue *getCondBit() { return CondBit; } | 
|  |  | 
|  | const VPValue *getCondBit() const { return CondBit; } | 
|  |  | 
|  | void setCondBit(VPValue *CV) { CondBit = CV; } | 
|  |  | 
|  | VPValue *getPredicate() { return Predicate; } | 
|  |  | 
|  | const VPValue *getPredicate() const { return Predicate; } | 
|  |  | 
|  | void setPredicate(VPValue *Pred) { Predicate = Pred; } | 
|  |  | 
|  | /// Set a given VPBlockBase \p Successor as the single successor of this | 
|  | /// VPBlockBase. This VPBlockBase is not added as predecessor of \p Successor. | 
|  | /// This VPBlockBase must have no successors. | 
|  | void setOneSuccessor(VPBlockBase *Successor) { | 
|  | assert(Successors.empty() && "Setting one successor when others exist."); | 
|  | appendSuccessor(Successor); | 
|  | } | 
|  |  | 
|  | /// Set two given VPBlockBases \p IfTrue and \p IfFalse to be the two | 
|  | /// successors of this VPBlockBase. \p Condition is set as the successor | 
|  | /// selector. This VPBlockBase is not added as predecessor of \p IfTrue or \p | 
|  | /// IfFalse. This VPBlockBase must have no successors. | 
|  | void setTwoSuccessors(VPBlockBase *IfTrue, VPBlockBase *IfFalse, | 
|  | VPValue *Condition) { | 
|  | assert(Successors.empty() && "Setting two successors when others exist."); | 
|  | assert(Condition && "Setting two successors without condition!"); | 
|  | CondBit = Condition; | 
|  | appendSuccessor(IfTrue); | 
|  | appendSuccessor(IfFalse); | 
|  | } | 
|  |  | 
|  | /// Set each VPBasicBlock in \p NewPreds as predecessor of this VPBlockBase. | 
|  | /// This VPBlockBase must have no predecessors. This VPBlockBase is not added | 
|  | /// as successor of any VPBasicBlock in \p NewPreds. | 
|  | void setPredecessors(ArrayRef<VPBlockBase *> NewPreds) { | 
|  | assert(Predecessors.empty() && "Block predecessors already set."); | 
|  | for (auto *Pred : NewPreds) | 
|  | appendPredecessor(Pred); | 
|  | } | 
|  |  | 
|  | /// Remove all the predecessor of this block. | 
|  | void clearPredecessors() { Predecessors.clear(); } | 
|  |  | 
|  | /// Remove all the successors of this block and set to null its condition bit | 
|  | void clearSuccessors() { | 
|  | Successors.clear(); | 
|  | CondBit = nullptr; | 
|  | } | 
|  |  | 
|  | /// The method which generates the output IR that correspond to this | 
|  | /// VPBlockBase, thereby "executing" the VPlan. | 
|  | virtual void execute(struct VPTransformState *State) = 0; | 
|  |  | 
|  | /// Delete all blocks reachable from a given VPBlockBase, inclusive. | 
|  | static void deleteCFG(VPBlockBase *Entry); | 
|  |  | 
|  | void printAsOperand(raw_ostream &OS, bool PrintType) const { | 
|  | OS << getName(); | 
|  | } | 
|  |  | 
|  | void print(raw_ostream &OS) const { | 
|  | // TODO: Only printing VPBB name for now since we only have dot printing | 
|  | // support for VPInstructions/Recipes. | 
|  | printAsOperand(OS, false); | 
|  | } | 
|  |  | 
|  | /// Return true if it is legal to hoist instructions into this block. | 
|  | bool isLegalToHoistInto() { | 
|  | // There are currently no constraints that prevent an instruction to be | 
|  | // hoisted into a VPBlockBase. | 
|  | return true; | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// VPRecipeBase is a base class modeling a sequence of one or more output IR | 
|  | /// instructions. | 
|  | class VPRecipeBase : public ilist_node_with_parent<VPRecipeBase, VPBasicBlock> { | 
|  | friend VPBasicBlock; | 
|  |  | 
|  | private: | 
|  | const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast). | 
|  |  | 
|  | /// Each VPRecipe belongs to a single VPBasicBlock. | 
|  | VPBasicBlock *Parent = nullptr; | 
|  |  | 
|  | public: | 
|  | /// An enumeration for keeping track of the concrete subclass of VPRecipeBase | 
|  | /// that is actually instantiated. Values of this enumeration are kept in the | 
|  | /// SubclassID field of the VPRecipeBase objects. They are used for concrete | 
|  | /// type identification. | 
|  | using VPRecipeTy = enum { | 
|  | VPBlendSC, | 
|  | VPBranchOnMaskSC, | 
|  | VPInstructionSC, | 
|  | VPInterleaveSC, | 
|  | VPPredInstPHISC, | 
|  | VPReplicateSC, | 
|  | VPWidenIntOrFpInductionSC, | 
|  | VPWidenMemoryInstructionSC, | 
|  | VPWidenPHISC, | 
|  | VPWidenSC, | 
|  | }; | 
|  |  | 
|  | VPRecipeBase(const unsigned char SC) : SubclassID(SC) {} | 
|  | virtual ~VPRecipeBase() = default; | 
|  |  | 
|  | /// \return an ID for the concrete type of this object. | 
|  | /// This is used to implement the classof checks. This should not be used | 
|  | /// for any other purpose, as the values may change as LLVM evolves. | 
|  | unsigned getVPRecipeID() const { return SubclassID; } | 
|  |  | 
|  | /// \return the VPBasicBlock which this VPRecipe belongs to. | 
|  | VPBasicBlock *getParent() { return Parent; } | 
|  | const VPBasicBlock *getParent() const { return Parent; } | 
|  |  | 
|  | /// The method which generates the output IR instructions that correspond to | 
|  | /// this VPRecipe, thereby "executing" the VPlan. | 
|  | virtual void execute(struct VPTransformState &State) = 0; | 
|  |  | 
|  | /// Each recipe prints itself. | 
|  | virtual void print(raw_ostream &O, const Twine &Indent) const = 0; | 
|  |  | 
|  | /// Insert an unlinked recipe into a basic block immediately before | 
|  | /// the specified recipe. | 
|  | void insertBefore(VPRecipeBase *InsertPos); | 
|  |  | 
|  | /// This method unlinks 'this' from the containing basic block and deletes it. | 
|  | /// | 
|  | /// \returns an iterator pointing to the element after the erased one | 
|  | iplist<VPRecipeBase>::iterator eraseFromParent(); | 
|  | }; | 
|  |  | 
|  | /// This is a concrete Recipe that models a single VPlan-level instruction. | 
|  | /// While as any Recipe it may generate a sequence of IR instructions when | 
|  | /// executed, these instructions would always form a single-def expression as | 
|  | /// the VPInstruction is also a single def-use vertex. | 
|  | class VPInstruction : public VPUser, public VPRecipeBase { | 
|  | friend class VPlanHCFGTransforms; | 
|  | friend class VPlanSlp; | 
|  |  | 
|  | public: | 
|  | /// VPlan opcodes, extending LLVM IR with idiomatics instructions. | 
|  | enum { | 
|  | Not = Instruction::OtherOpsEnd + 1, | 
|  | ICmpULE, | 
|  | SLPLoad, | 
|  | SLPStore, | 
|  | }; | 
|  |  | 
|  | private: | 
|  | typedef unsigned char OpcodeTy; | 
|  | OpcodeTy Opcode; | 
|  |  | 
|  | /// Utility method serving execute(): generates a single instance of the | 
|  | /// modeled instruction. | 
|  | void generateInstruction(VPTransformState &State, unsigned Part); | 
|  |  | 
|  | protected: | 
|  | Instruction *getUnderlyingInstr() { | 
|  | return cast_or_null<Instruction>(getUnderlyingValue()); | 
|  | } | 
|  |  | 
|  | void setUnderlyingInstr(Instruction *I) { setUnderlyingValue(I); } | 
|  |  | 
|  | public: | 
|  | VPInstruction(unsigned Opcode, ArrayRef<VPValue *> Operands) | 
|  | : VPUser(VPValue::VPInstructionSC, Operands), | 
|  | VPRecipeBase(VPRecipeBase::VPInstructionSC), Opcode(Opcode) {} | 
|  |  | 
|  | VPInstruction(unsigned Opcode, std::initializer_list<VPValue *> Operands) | 
|  | : VPInstruction(Opcode, ArrayRef<VPValue *>(Operands)) {} | 
|  |  | 
|  | /// Method to support type inquiry through isa, cast, and dyn_cast. | 
|  | static inline bool classof(const VPValue *V) { | 
|  | return V->getVPValueID() == VPValue::VPInstructionSC; | 
|  | } | 
|  |  | 
|  | VPInstruction *clone() const { | 
|  | SmallVector<VPValue *, 2> Operands(operands()); | 
|  | return new VPInstruction(Opcode, Operands); | 
|  | } | 
|  |  | 
|  | /// Method to support type inquiry through isa, cast, and dyn_cast. | 
|  | static inline bool classof(const VPRecipeBase *R) { | 
|  | return R->getVPRecipeID() == VPRecipeBase::VPInstructionSC; | 
|  | } | 
|  |  | 
|  | unsigned getOpcode() const { return Opcode; } | 
|  |  | 
|  | /// Generate the instruction. | 
|  | /// TODO: We currently execute only per-part unless a specific instance is | 
|  | /// provided. | 
|  | void execute(VPTransformState &State) override; | 
|  |  | 
|  | /// Print the Recipe. | 
|  | void print(raw_ostream &O, const Twine &Indent) const override; | 
|  |  | 
|  | /// Print the VPInstruction. | 
|  | void print(raw_ostream &O) const; | 
|  |  | 
|  | /// Return true if this instruction may modify memory. | 
|  | bool mayWriteToMemory() const { | 
|  | // TODO: we can use attributes of the called function to rule out memory | 
|  | //       modifications. | 
|  | return Opcode == Instruction::Store || Opcode == Instruction::Call || | 
|  | Opcode == Instruction::Invoke || Opcode == SLPStore; | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// VPWidenRecipe is a recipe for producing a copy of vector type for each | 
|  | /// Instruction in its ingredients independently, in order. This recipe covers | 
|  | /// most of the traditional vectorization cases where each ingredient transforms | 
|  | /// into a vectorized version of itself. | 
|  | class VPWidenRecipe : public VPRecipeBase { | 
|  | private: | 
|  | /// Hold the ingredients by pointing to their original BasicBlock location. | 
|  | BasicBlock::iterator Begin; | 
|  | BasicBlock::iterator End; | 
|  |  | 
|  | public: | 
|  | VPWidenRecipe(Instruction *I) : VPRecipeBase(VPWidenSC) { | 
|  | End = I->getIterator(); | 
|  | Begin = End++; | 
|  | } | 
|  |  | 
|  | ~VPWidenRecipe() override = default; | 
|  |  | 
|  | /// Method to support type inquiry through isa, cast, and dyn_cast. | 
|  | static inline bool classof(const VPRecipeBase *V) { | 
|  | return V->getVPRecipeID() == VPRecipeBase::VPWidenSC; | 
|  | } | 
|  |  | 
|  | /// Produce widened copies of all Ingredients. | 
|  | void execute(VPTransformState &State) override; | 
|  |  | 
|  | /// Augment the recipe to include Instr, if it lies at its End. | 
|  | bool appendInstruction(Instruction *Instr) { | 
|  | if (End != Instr->getIterator()) | 
|  | return false; | 
|  | End++; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Print the recipe. | 
|  | void print(raw_ostream &O, const Twine &Indent) const override; | 
|  | }; | 
|  |  | 
|  | /// A recipe for handling phi nodes of integer and floating-point inductions, | 
|  | /// producing their vector and scalar values. | 
|  | class VPWidenIntOrFpInductionRecipe : public VPRecipeBase { | 
|  | private: | 
|  | PHINode *IV; | 
|  | TruncInst *Trunc; | 
|  |  | 
|  | public: | 
|  | VPWidenIntOrFpInductionRecipe(PHINode *IV, TruncInst *Trunc = nullptr) | 
|  | : VPRecipeBase(VPWidenIntOrFpInductionSC), IV(IV), Trunc(Trunc) {} | 
|  | ~VPWidenIntOrFpInductionRecipe() override = default; | 
|  |  | 
|  | /// Method to support type inquiry through isa, cast, and dyn_cast. | 
|  | static inline bool classof(const VPRecipeBase *V) { | 
|  | return V->getVPRecipeID() == VPRecipeBase::VPWidenIntOrFpInductionSC; | 
|  | } | 
|  |  | 
|  | /// Generate the vectorized and scalarized versions of the phi node as | 
|  | /// needed by their users. | 
|  | void execute(VPTransformState &State) override; | 
|  |  | 
|  | /// Print the recipe. | 
|  | void print(raw_ostream &O, const Twine &Indent) const override; | 
|  | }; | 
|  |  | 
|  | /// A recipe for handling all phi nodes except for integer and FP inductions. | 
|  | class VPWidenPHIRecipe : public VPRecipeBase { | 
|  | private: | 
|  | PHINode *Phi; | 
|  |  | 
|  | public: | 
|  | VPWidenPHIRecipe(PHINode *Phi) : VPRecipeBase(VPWidenPHISC), Phi(Phi) {} | 
|  | ~VPWidenPHIRecipe() override = default; | 
|  |  | 
|  | /// Method to support type inquiry through isa, cast, and dyn_cast. | 
|  | static inline bool classof(const VPRecipeBase *V) { | 
|  | return V->getVPRecipeID() == VPRecipeBase::VPWidenPHISC; | 
|  | } | 
|  |  | 
|  | /// Generate the phi/select nodes. | 
|  | void execute(VPTransformState &State) override; | 
|  |  | 
|  | /// Print the recipe. | 
|  | void print(raw_ostream &O, const Twine &Indent) const override; | 
|  | }; | 
|  |  | 
|  | /// A recipe for vectorizing a phi-node as a sequence of mask-based select | 
|  | /// instructions. | 
|  | class VPBlendRecipe : public VPRecipeBase { | 
|  | private: | 
|  | PHINode *Phi; | 
|  |  | 
|  | /// The blend operation is a User of a mask, if not null. | 
|  | std::unique_ptr<VPUser> User; | 
|  |  | 
|  | public: | 
|  | VPBlendRecipe(PHINode *Phi, ArrayRef<VPValue *> Masks) | 
|  | : VPRecipeBase(VPBlendSC), Phi(Phi) { | 
|  | assert((Phi->getNumIncomingValues() == 1 || | 
|  | Phi->getNumIncomingValues() == Masks.size()) && | 
|  | "Expected the same number of incoming values and masks"); | 
|  | if (!Masks.empty()) | 
|  | User.reset(new VPUser(Masks)); | 
|  | } | 
|  |  | 
|  | /// Method to support type inquiry through isa, cast, and dyn_cast. | 
|  | static inline bool classof(const VPRecipeBase *V) { | 
|  | return V->getVPRecipeID() == VPRecipeBase::VPBlendSC; | 
|  | } | 
|  |  | 
|  | /// Generate the phi/select nodes. | 
|  | void execute(VPTransformState &State) override; | 
|  |  | 
|  | /// Print the recipe. | 
|  | void print(raw_ostream &O, const Twine &Indent) const override; | 
|  | }; | 
|  |  | 
|  | /// VPInterleaveRecipe is a recipe for transforming an interleave group of load | 
|  | /// or stores into one wide load/store and shuffles. | 
|  | class VPInterleaveRecipe : public VPRecipeBase { | 
|  | private: | 
|  | const InterleaveGroup<Instruction> *IG; | 
|  | std::unique_ptr<VPUser> User; | 
|  |  | 
|  | public: | 
|  | VPInterleaveRecipe(const InterleaveGroup<Instruction> *IG, VPValue *Mask) | 
|  | : VPRecipeBase(VPInterleaveSC), IG(IG) { | 
|  | if (Mask) // Create a VPInstruction to register as a user of the mask. | 
|  | User.reset(new VPUser({Mask})); | 
|  | } | 
|  | ~VPInterleaveRecipe() override = default; | 
|  |  | 
|  | /// Method to support type inquiry through isa, cast, and dyn_cast. | 
|  | static inline bool classof(const VPRecipeBase *V) { | 
|  | return V->getVPRecipeID() == VPRecipeBase::VPInterleaveSC; | 
|  | } | 
|  |  | 
|  | /// Generate the wide load or store, and shuffles. | 
|  | void execute(VPTransformState &State) override; | 
|  |  | 
|  | /// Print the recipe. | 
|  | void print(raw_ostream &O, const Twine &Indent) const override; | 
|  |  | 
|  | const InterleaveGroup<Instruction> *getInterleaveGroup() { return IG; } | 
|  | }; | 
|  |  | 
|  | /// VPReplicateRecipe replicates a given instruction producing multiple scalar | 
|  | /// copies of the original scalar type, one per lane, instead of producing a | 
|  | /// single copy of widened type for all lanes. If the instruction is known to be | 
|  | /// uniform only one copy, per lane zero, will be generated. | 
|  | class VPReplicateRecipe : public VPRecipeBase { | 
|  | private: | 
|  | /// The instruction being replicated. | 
|  | Instruction *Ingredient; | 
|  |  | 
|  | /// Indicator if only a single replica per lane is needed. | 
|  | bool IsUniform; | 
|  |  | 
|  | /// Indicator if the replicas are also predicated. | 
|  | bool IsPredicated; | 
|  |  | 
|  | /// Indicator if the scalar values should also be packed into a vector. | 
|  | bool AlsoPack; | 
|  |  | 
|  | public: | 
|  | VPReplicateRecipe(Instruction *I, bool IsUniform, bool IsPredicated = false) | 
|  | : VPRecipeBase(VPReplicateSC), Ingredient(I), IsUniform(IsUniform), | 
|  | IsPredicated(IsPredicated) { | 
|  | // Retain the previous behavior of predicateInstructions(), where an | 
|  | // insert-element of a predicated instruction got hoisted into the | 
|  | // predicated basic block iff it was its only user. This is achieved by | 
|  | // having predicated instructions also pack their values into a vector by | 
|  | // default unless they have a replicated user which uses their scalar value. | 
|  | AlsoPack = IsPredicated && !I->use_empty(); | 
|  | } | 
|  |  | 
|  | ~VPReplicateRecipe() override = default; | 
|  |  | 
|  | /// Method to support type inquiry through isa, cast, and dyn_cast. | 
|  | static inline bool classof(const VPRecipeBase *V) { | 
|  | return V->getVPRecipeID() == VPRecipeBase::VPReplicateSC; | 
|  | } | 
|  |  | 
|  | /// Generate replicas of the desired Ingredient. Replicas will be generated | 
|  | /// for all parts and lanes unless a specific part and lane are specified in | 
|  | /// the \p State. | 
|  | void execute(VPTransformState &State) override; | 
|  |  | 
|  | void setAlsoPack(bool Pack) { AlsoPack = Pack; } | 
|  |  | 
|  | /// Print the recipe. | 
|  | void print(raw_ostream &O, const Twine &Indent) const override; | 
|  | }; | 
|  |  | 
|  | /// A recipe for generating conditional branches on the bits of a mask. | 
|  | class VPBranchOnMaskRecipe : public VPRecipeBase { | 
|  | private: | 
|  | std::unique_ptr<VPUser> User; | 
|  |  | 
|  | public: | 
|  | VPBranchOnMaskRecipe(VPValue *BlockInMask) : VPRecipeBase(VPBranchOnMaskSC) { | 
|  | if (BlockInMask) // nullptr means all-one mask. | 
|  | User.reset(new VPUser({BlockInMask})); | 
|  | } | 
|  |  | 
|  | /// Method to support type inquiry through isa, cast, and dyn_cast. | 
|  | static inline bool classof(const VPRecipeBase *V) { | 
|  | return V->getVPRecipeID() == VPRecipeBase::VPBranchOnMaskSC; | 
|  | } | 
|  |  | 
|  | /// Generate the extraction of the appropriate bit from the block mask and the | 
|  | /// conditional branch. | 
|  | void execute(VPTransformState &State) override; | 
|  |  | 
|  | /// Print the recipe. | 
|  | void print(raw_ostream &O, const Twine &Indent) const override { | 
|  | O << " +\n" << Indent << "\"BRANCH-ON-MASK "; | 
|  | if (User) | 
|  | O << *User->getOperand(0); | 
|  | else | 
|  | O << " All-One"; | 
|  | O << "\\l\""; | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// VPPredInstPHIRecipe is a recipe for generating the phi nodes needed when | 
|  | /// control converges back from a Branch-on-Mask. The phi nodes are needed in | 
|  | /// order to merge values that are set under such a branch and feed their uses. | 
|  | /// The phi nodes can be scalar or vector depending on the users of the value. | 
|  | /// This recipe works in concert with VPBranchOnMaskRecipe. | 
|  | class VPPredInstPHIRecipe : public VPRecipeBase { | 
|  | private: | 
|  | Instruction *PredInst; | 
|  |  | 
|  | public: | 
|  | /// Construct a VPPredInstPHIRecipe given \p PredInst whose value needs a phi | 
|  | /// nodes after merging back from a Branch-on-Mask. | 
|  | VPPredInstPHIRecipe(Instruction *PredInst) | 
|  | : VPRecipeBase(VPPredInstPHISC), PredInst(PredInst) {} | 
|  | ~VPPredInstPHIRecipe() override = default; | 
|  |  | 
|  | /// Method to support type inquiry through isa, cast, and dyn_cast. | 
|  | static inline bool classof(const VPRecipeBase *V) { | 
|  | return V->getVPRecipeID() == VPRecipeBase::VPPredInstPHISC; | 
|  | } | 
|  |  | 
|  | /// Generates phi nodes for live-outs as needed to retain SSA form. | 
|  | void execute(VPTransformState &State) override; | 
|  |  | 
|  | /// Print the recipe. | 
|  | void print(raw_ostream &O, const Twine &Indent) const override; | 
|  | }; | 
|  |  | 
|  | /// A Recipe for widening load/store operations. | 
|  | /// TODO: We currently execute only per-part unless a specific instance is | 
|  | /// provided. | 
|  | class VPWidenMemoryInstructionRecipe : public VPRecipeBase { | 
|  | private: | 
|  | Instruction &Instr; | 
|  | std::unique_ptr<VPUser> User; | 
|  |  | 
|  | public: | 
|  | VPWidenMemoryInstructionRecipe(Instruction &Instr, VPValue *Mask) | 
|  | : VPRecipeBase(VPWidenMemoryInstructionSC), Instr(Instr) { | 
|  | if (Mask) // Create a VPInstruction to register as a user of the mask. | 
|  | User.reset(new VPUser({Mask})); | 
|  | } | 
|  |  | 
|  | /// Method to support type inquiry through isa, cast, and dyn_cast. | 
|  | static inline bool classof(const VPRecipeBase *V) { | 
|  | return V->getVPRecipeID() == VPRecipeBase::VPWidenMemoryInstructionSC; | 
|  | } | 
|  |  | 
|  | /// Generate the wide load/store. | 
|  | void execute(VPTransformState &State) override; | 
|  |  | 
|  | /// Print the recipe. | 
|  | void print(raw_ostream &O, const Twine &Indent) const override; | 
|  | }; | 
|  |  | 
|  | /// VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph. It | 
|  | /// holds a sequence of zero or more VPRecipe's each representing a sequence of | 
|  | /// output IR instructions. | 
|  | class VPBasicBlock : public VPBlockBase { | 
|  | public: | 
|  | using RecipeListTy = iplist<VPRecipeBase>; | 
|  |  | 
|  | private: | 
|  | /// The VPRecipes held in the order of output instructions to generate. | 
|  | RecipeListTy Recipes; | 
|  |  | 
|  | public: | 
|  | VPBasicBlock(const Twine &Name = "", VPRecipeBase *Recipe = nullptr) | 
|  | : VPBlockBase(VPBasicBlockSC, Name.str()) { | 
|  | if (Recipe) | 
|  | appendRecipe(Recipe); | 
|  | } | 
|  |  | 
|  | ~VPBasicBlock() override { Recipes.clear(); } | 
|  |  | 
|  | /// Instruction iterators... | 
|  | using iterator = RecipeListTy::iterator; | 
|  | using const_iterator = RecipeListTy::const_iterator; | 
|  | using reverse_iterator = RecipeListTy::reverse_iterator; | 
|  | using const_reverse_iterator = RecipeListTy::const_reverse_iterator; | 
|  |  | 
|  | //===--------------------------------------------------------------------===// | 
|  | /// Recipe iterator methods | 
|  | /// | 
|  | inline iterator begin() { return Recipes.begin(); } | 
|  | inline const_iterator begin() const { return Recipes.begin(); } | 
|  | inline iterator end() { return Recipes.end(); } | 
|  | inline const_iterator end() const { return Recipes.end(); } | 
|  |  | 
|  | inline reverse_iterator rbegin() { return Recipes.rbegin(); } | 
|  | inline const_reverse_iterator rbegin() const { return Recipes.rbegin(); } | 
|  | inline reverse_iterator rend() { return Recipes.rend(); } | 
|  | inline const_reverse_iterator rend() const { return Recipes.rend(); } | 
|  |  | 
|  | inline size_t size() const { return Recipes.size(); } | 
|  | inline bool empty() const { return Recipes.empty(); } | 
|  | inline const VPRecipeBase &front() const { return Recipes.front(); } | 
|  | inline VPRecipeBase &front() { return Recipes.front(); } | 
|  | inline const VPRecipeBase &back() const { return Recipes.back(); } | 
|  | inline VPRecipeBase &back() { return Recipes.back(); } | 
|  |  | 
|  | /// Returns a reference to the list of recipes. | 
|  | RecipeListTy &getRecipeList() { return Recipes; } | 
|  |  | 
|  | /// Returns a pointer to a member of the recipe list. | 
|  | static RecipeListTy VPBasicBlock::*getSublistAccess(VPRecipeBase *) { | 
|  | return &VPBasicBlock::Recipes; | 
|  | } | 
|  |  | 
|  | /// Method to support type inquiry through isa, cast, and dyn_cast. | 
|  | static inline bool classof(const VPBlockBase *V) { | 
|  | return V->getVPBlockID() == VPBlockBase::VPBasicBlockSC; | 
|  | } | 
|  |  | 
|  | void insert(VPRecipeBase *Recipe, iterator InsertPt) { | 
|  | assert(Recipe && "No recipe to append."); | 
|  | assert(!Recipe->Parent && "Recipe already in VPlan"); | 
|  | Recipe->Parent = this; | 
|  | Recipes.insert(InsertPt, Recipe); | 
|  | } | 
|  |  | 
|  | /// Augment the existing recipes of a VPBasicBlock with an additional | 
|  | /// \p Recipe as the last recipe. | 
|  | void appendRecipe(VPRecipeBase *Recipe) { insert(Recipe, end()); } | 
|  |  | 
|  | /// The method which generates the output IR instructions that correspond to | 
|  | /// this VPBasicBlock, thereby "executing" the VPlan. | 
|  | void execute(struct VPTransformState *State) override; | 
|  |  | 
|  | private: | 
|  | /// Create an IR BasicBlock to hold the output instructions generated by this | 
|  | /// VPBasicBlock, and return it. Update the CFGState accordingly. | 
|  | BasicBlock *createEmptyBasicBlock(VPTransformState::CFGState &CFG); | 
|  | }; | 
|  |  | 
|  | /// VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks | 
|  | /// which form a Single-Entry-Single-Exit subgraph of the output IR CFG. | 
|  | /// A VPRegionBlock may indicate that its contents are to be replicated several | 
|  | /// times. This is designed to support predicated scalarization, in which a | 
|  | /// scalar if-then code structure needs to be generated VF * UF times. Having | 
|  | /// this replication indicator helps to keep a single model for multiple | 
|  | /// candidate VF's. The actual replication takes place only once the desired VF | 
|  | /// and UF have been determined. | 
|  | class VPRegionBlock : public VPBlockBase { | 
|  | private: | 
|  | /// Hold the Single Entry of the SESE region modelled by the VPRegionBlock. | 
|  | VPBlockBase *Entry; | 
|  |  | 
|  | /// Hold the Single Exit of the SESE region modelled by the VPRegionBlock. | 
|  | VPBlockBase *Exit; | 
|  |  | 
|  | /// An indicator whether this region is to generate multiple replicated | 
|  | /// instances of output IR corresponding to its VPBlockBases. | 
|  | bool IsReplicator; | 
|  |  | 
|  | public: | 
|  | VPRegionBlock(VPBlockBase *Entry, VPBlockBase *Exit, | 
|  | const std::string &Name = "", bool IsReplicator = false) | 
|  | : VPBlockBase(VPRegionBlockSC, Name), Entry(Entry), Exit(Exit), | 
|  | IsReplicator(IsReplicator) { | 
|  | assert(Entry->getPredecessors().empty() && "Entry block has predecessors."); | 
|  | assert(Exit->getSuccessors().empty() && "Exit block has successors."); | 
|  | Entry->setParent(this); | 
|  | Exit->setParent(this); | 
|  | } | 
|  | VPRegionBlock(const std::string &Name = "", bool IsReplicator = false) | 
|  | : VPBlockBase(VPRegionBlockSC, Name), Entry(nullptr), Exit(nullptr), | 
|  | IsReplicator(IsReplicator) {} | 
|  |  | 
|  | ~VPRegionBlock() override { | 
|  | if (Entry) | 
|  | deleteCFG(Entry); | 
|  | } | 
|  |  | 
|  | /// Method to support type inquiry through isa, cast, and dyn_cast. | 
|  | static inline bool classof(const VPBlockBase *V) { | 
|  | return V->getVPBlockID() == VPBlockBase::VPRegionBlockSC; | 
|  | } | 
|  |  | 
|  | const VPBlockBase *getEntry() const { return Entry; } | 
|  | VPBlockBase *getEntry() { return Entry; } | 
|  |  | 
|  | /// Set \p EntryBlock as the entry VPBlockBase of this VPRegionBlock. \p | 
|  | /// EntryBlock must have no predecessors. | 
|  | void setEntry(VPBlockBase *EntryBlock) { | 
|  | assert(EntryBlock->getPredecessors().empty() && | 
|  | "Entry block cannot have predecessors."); | 
|  | Entry = EntryBlock; | 
|  | EntryBlock->setParent(this); | 
|  | } | 
|  |  | 
|  | // FIXME: DominatorTreeBase is doing 'A->getParent()->front()'. 'front' is a | 
|  | // specific interface of llvm::Function, instead of using | 
|  | // GraphTraints::getEntryNode. We should add a new template parameter to | 
|  | // DominatorTreeBase representing the Graph type. | 
|  | VPBlockBase &front() const { return *Entry; } | 
|  |  | 
|  | const VPBlockBase *getExit() const { return Exit; } | 
|  | VPBlockBase *getExit() { return Exit; } | 
|  |  | 
|  | /// Set \p ExitBlock as the exit VPBlockBase of this VPRegionBlock. \p | 
|  | /// ExitBlock must have no successors. | 
|  | void setExit(VPBlockBase *ExitBlock) { | 
|  | assert(ExitBlock->getSuccessors().empty() && | 
|  | "Exit block cannot have successors."); | 
|  | Exit = ExitBlock; | 
|  | ExitBlock->setParent(this); | 
|  | } | 
|  |  | 
|  | /// An indicator whether this region is to generate multiple replicated | 
|  | /// instances of output IR corresponding to its VPBlockBases. | 
|  | bool isReplicator() const { return IsReplicator; } | 
|  |  | 
|  | /// The method which generates the output IR instructions that correspond to | 
|  | /// this VPRegionBlock, thereby "executing" the VPlan. | 
|  | void execute(struct VPTransformState *State) override; | 
|  | }; | 
|  |  | 
|  | /// VPlan models a candidate for vectorization, encoding various decisions take | 
|  | /// to produce efficient output IR, including which branches, basic-blocks and | 
|  | /// output IR instructions to generate, and their cost. VPlan holds a | 
|  | /// Hierarchical-CFG of VPBasicBlocks and VPRegionBlocks rooted at an Entry | 
|  | /// VPBlock. | 
|  | class VPlan { | 
|  | friend class VPlanPrinter; | 
|  |  | 
|  | private: | 
|  | /// Hold the single entry to the Hierarchical CFG of the VPlan. | 
|  | VPBlockBase *Entry; | 
|  |  | 
|  | /// Holds the VFs applicable to this VPlan. | 
|  | SmallSet<unsigned, 2> VFs; | 
|  |  | 
|  | /// Holds the name of the VPlan, for printing. | 
|  | std::string Name; | 
|  |  | 
|  | /// Holds all the external definitions created for this VPlan. | 
|  | // TODO: Introduce a specific representation for external definitions in | 
|  | // VPlan. External definitions must be immutable and hold a pointer to its | 
|  | // underlying IR that will be used to implement its structural comparison | 
|  | // (operators '==' and '<'). | 
|  | SmallPtrSet<VPValue *, 16> VPExternalDefs; | 
|  |  | 
|  | /// Represents the backedge taken count of the original loop, for folding | 
|  | /// the tail. | 
|  | VPValue *BackedgeTakenCount = nullptr; | 
|  |  | 
|  | /// Holds a mapping between Values and their corresponding VPValue inside | 
|  | /// VPlan. | 
|  | Value2VPValueTy Value2VPValue; | 
|  |  | 
|  | /// Holds the VPLoopInfo analysis for this VPlan. | 
|  | VPLoopInfo VPLInfo; | 
|  |  | 
|  | /// Holds the condition bit values built during VPInstruction to VPRecipe transformation. | 
|  | SmallVector<VPValue *, 4> VPCBVs; | 
|  |  | 
|  | public: | 
|  | VPlan(VPBlockBase *Entry = nullptr) : Entry(Entry) {} | 
|  |  | 
|  | ~VPlan() { | 
|  | if (Entry) | 
|  | VPBlockBase::deleteCFG(Entry); | 
|  | for (auto &MapEntry : Value2VPValue) | 
|  | if (MapEntry.second != BackedgeTakenCount) | 
|  | delete MapEntry.second; | 
|  | if (BackedgeTakenCount) | 
|  | delete BackedgeTakenCount; // Delete once, if in Value2VPValue or not. | 
|  | for (VPValue *Def : VPExternalDefs) | 
|  | delete Def; | 
|  | for (VPValue *CBV : VPCBVs) | 
|  | delete CBV; | 
|  | } | 
|  |  | 
|  | /// Generate the IR code for this VPlan. | 
|  | void execute(struct VPTransformState *State); | 
|  |  | 
|  | VPBlockBase *getEntry() { return Entry; } | 
|  | const VPBlockBase *getEntry() const { return Entry; } | 
|  |  | 
|  | VPBlockBase *setEntry(VPBlockBase *Block) { return Entry = Block; } | 
|  |  | 
|  | /// The backedge taken count of the original loop. | 
|  | VPValue *getOrCreateBackedgeTakenCount() { | 
|  | if (!BackedgeTakenCount) | 
|  | BackedgeTakenCount = new VPValue(); | 
|  | return BackedgeTakenCount; | 
|  | } | 
|  |  | 
|  | void addVF(unsigned VF) { VFs.insert(VF); } | 
|  |  | 
|  | bool hasVF(unsigned VF) { return VFs.count(VF); } | 
|  |  | 
|  | const std::string &getName() const { return Name; } | 
|  |  | 
|  | void setName(const Twine &newName) { Name = newName.str(); } | 
|  |  | 
|  | /// Add \p VPVal to the pool of external definitions if it's not already | 
|  | /// in the pool. | 
|  | void addExternalDef(VPValue *VPVal) { | 
|  | VPExternalDefs.insert(VPVal); | 
|  | } | 
|  |  | 
|  | /// Add \p CBV to the vector of condition bit values. | 
|  | void addCBV(VPValue *CBV) { | 
|  | VPCBVs.push_back(CBV); | 
|  | } | 
|  |  | 
|  | void addVPValue(Value *V) { | 
|  | assert(V && "Trying to add a null Value to VPlan"); | 
|  | assert(!Value2VPValue.count(V) && "Value already exists in VPlan"); | 
|  | Value2VPValue[V] = new VPValue(); | 
|  | } | 
|  |  | 
|  | VPValue *getVPValue(Value *V) { | 
|  | assert(V && "Trying to get the VPValue of a null Value"); | 
|  | assert(Value2VPValue.count(V) && "Value does not exist in VPlan"); | 
|  | return Value2VPValue[V]; | 
|  | } | 
|  |  | 
|  | /// Return the VPLoopInfo analysis for this VPlan. | 
|  | VPLoopInfo &getVPLoopInfo() { return VPLInfo; } | 
|  | const VPLoopInfo &getVPLoopInfo() const { return VPLInfo; } | 
|  |  | 
|  | private: | 
|  | /// Add to the given dominator tree the header block and every new basic block | 
|  | /// that was created between it and the latch block, inclusive. | 
|  | static void updateDominatorTree(DominatorTree *DT, | 
|  | BasicBlock *LoopPreHeaderBB, | 
|  | BasicBlock *LoopLatchBB); | 
|  | }; | 
|  |  | 
|  | /// VPlanPrinter prints a given VPlan to a given output stream. The printing is | 
|  | /// indented and follows the dot format. | 
|  | class VPlanPrinter { | 
|  | friend inline raw_ostream &operator<<(raw_ostream &OS, VPlan &Plan); | 
|  | friend inline raw_ostream &operator<<(raw_ostream &OS, | 
|  | const struct VPlanIngredient &I); | 
|  |  | 
|  | private: | 
|  | raw_ostream &OS; | 
|  | VPlan &Plan; | 
|  | unsigned Depth; | 
|  | unsigned TabWidth = 2; | 
|  | std::string Indent; | 
|  | unsigned BID = 0; | 
|  | SmallDenseMap<const VPBlockBase *, unsigned> BlockID; | 
|  |  | 
|  | VPlanPrinter(raw_ostream &O, VPlan &P) : OS(O), Plan(P) {} | 
|  |  | 
|  | /// Handle indentation. | 
|  | void bumpIndent(int b) { Indent = std::string((Depth += b) * TabWidth, ' '); } | 
|  |  | 
|  | /// Print a given \p Block of the Plan. | 
|  | void dumpBlock(const VPBlockBase *Block); | 
|  |  | 
|  | /// Print the information related to the CFG edges going out of a given | 
|  | /// \p Block, followed by printing the successor blocks themselves. | 
|  | void dumpEdges(const VPBlockBase *Block); | 
|  |  | 
|  | /// Print a given \p BasicBlock, including its VPRecipes, followed by printing | 
|  | /// its successor blocks. | 
|  | void dumpBasicBlock(const VPBasicBlock *BasicBlock); | 
|  |  | 
|  | /// Print a given \p Region of the Plan. | 
|  | void dumpRegion(const VPRegionBlock *Region); | 
|  |  | 
|  | unsigned getOrCreateBID(const VPBlockBase *Block) { | 
|  | return BlockID.count(Block) ? BlockID[Block] : BlockID[Block] = BID++; | 
|  | } | 
|  |  | 
|  | const Twine getOrCreateName(const VPBlockBase *Block); | 
|  |  | 
|  | const Twine getUID(const VPBlockBase *Block); | 
|  |  | 
|  | /// Print the information related to a CFG edge between two VPBlockBases. | 
|  | void drawEdge(const VPBlockBase *From, const VPBlockBase *To, bool Hidden, | 
|  | const Twine &Label); | 
|  |  | 
|  | void dump(); | 
|  |  | 
|  | static void printAsIngredient(raw_ostream &O, Value *V); | 
|  | }; | 
|  |  | 
|  | struct VPlanIngredient { | 
|  | Value *V; | 
|  |  | 
|  | VPlanIngredient(Value *V) : V(V) {} | 
|  | }; | 
|  |  | 
|  | inline raw_ostream &operator<<(raw_ostream &OS, const VPlanIngredient &I) { | 
|  | VPlanPrinter::printAsIngredient(OS, I.V); | 
|  | return OS; | 
|  | } | 
|  |  | 
|  | inline raw_ostream &operator<<(raw_ostream &OS, VPlan &Plan) { | 
|  | VPlanPrinter Printer(OS, Plan); | 
|  | Printer.dump(); | 
|  | return OS; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // GraphTraits specializations for VPlan Hierarchical Control-Flow Graphs     // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // The following set of template specializations implement GraphTraits to treat | 
|  | // any VPBlockBase as a node in a graph of VPBlockBases. It's important to note | 
|  | // that VPBlockBase traits don't recurse into VPRegioBlocks, i.e., if the | 
|  | // VPBlockBase is a VPRegionBlock, this specialization provides access to its | 
|  | // successors/predecessors but not to the blocks inside the region. | 
|  |  | 
|  | template <> struct GraphTraits<VPBlockBase *> { | 
|  | using NodeRef = VPBlockBase *; | 
|  | using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::iterator; | 
|  |  | 
|  | static NodeRef getEntryNode(NodeRef N) { return N; } | 
|  |  | 
|  | static inline ChildIteratorType child_begin(NodeRef N) { | 
|  | return N->getSuccessors().begin(); | 
|  | } | 
|  |  | 
|  | static inline ChildIteratorType child_end(NodeRef N) { | 
|  | return N->getSuccessors().end(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <> struct GraphTraits<const VPBlockBase *> { | 
|  | using NodeRef = const VPBlockBase *; | 
|  | using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::const_iterator; | 
|  |  | 
|  | static NodeRef getEntryNode(NodeRef N) { return N; } | 
|  |  | 
|  | static inline ChildIteratorType child_begin(NodeRef N) { | 
|  | return N->getSuccessors().begin(); | 
|  | } | 
|  |  | 
|  | static inline ChildIteratorType child_end(NodeRef N) { | 
|  | return N->getSuccessors().end(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | // Inverse order specialization for VPBasicBlocks. Predecessors are used instead | 
|  | // of successors for the inverse traversal. | 
|  | template <> struct GraphTraits<Inverse<VPBlockBase *>> { | 
|  | using NodeRef = VPBlockBase *; | 
|  | using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::iterator; | 
|  |  | 
|  | static NodeRef getEntryNode(Inverse<NodeRef> B) { return B.Graph; } | 
|  |  | 
|  | static inline ChildIteratorType child_begin(NodeRef N) { | 
|  | return N->getPredecessors().begin(); | 
|  | } | 
|  |  | 
|  | static inline ChildIteratorType child_end(NodeRef N) { | 
|  | return N->getPredecessors().end(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | // The following set of template specializations implement GraphTraits to | 
|  | // treat VPRegionBlock as a graph and recurse inside its nodes. It's important | 
|  | // to note that the blocks inside the VPRegionBlock are treated as VPBlockBases | 
|  | // (i.e., no dyn_cast is performed, VPBlockBases specialization is used), so | 
|  | // there won't be automatic recursion into other VPBlockBases that turn to be | 
|  | // VPRegionBlocks. | 
|  |  | 
|  | template <> | 
|  | struct GraphTraits<VPRegionBlock *> : public GraphTraits<VPBlockBase *> { | 
|  | using GraphRef = VPRegionBlock *; | 
|  | using nodes_iterator = df_iterator<NodeRef>; | 
|  |  | 
|  | static NodeRef getEntryNode(GraphRef N) { return N->getEntry(); } | 
|  |  | 
|  | static nodes_iterator nodes_begin(GraphRef N) { | 
|  | return nodes_iterator::begin(N->getEntry()); | 
|  | } | 
|  |  | 
|  | static nodes_iterator nodes_end(GraphRef N) { | 
|  | // df_iterator::end() returns an empty iterator so the node used doesn't | 
|  | // matter. | 
|  | return nodes_iterator::end(N); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <> | 
|  | struct GraphTraits<const VPRegionBlock *> | 
|  | : public GraphTraits<const VPBlockBase *> { | 
|  | using GraphRef = const VPRegionBlock *; | 
|  | using nodes_iterator = df_iterator<NodeRef>; | 
|  |  | 
|  | static NodeRef getEntryNode(GraphRef N) { return N->getEntry(); } | 
|  |  | 
|  | static nodes_iterator nodes_begin(GraphRef N) { | 
|  | return nodes_iterator::begin(N->getEntry()); | 
|  | } | 
|  |  | 
|  | static nodes_iterator nodes_end(GraphRef N) { | 
|  | // df_iterator::end() returns an empty iterator so the node used doesn't | 
|  | // matter. | 
|  | return nodes_iterator::end(N); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <> | 
|  | struct GraphTraits<Inverse<VPRegionBlock *>> | 
|  | : public GraphTraits<Inverse<VPBlockBase *>> { | 
|  | using GraphRef = VPRegionBlock *; | 
|  | using nodes_iterator = df_iterator<NodeRef>; | 
|  |  | 
|  | static NodeRef getEntryNode(Inverse<GraphRef> N) { | 
|  | return N.Graph->getExit(); | 
|  | } | 
|  |  | 
|  | static nodes_iterator nodes_begin(GraphRef N) { | 
|  | return nodes_iterator::begin(N->getExit()); | 
|  | } | 
|  |  | 
|  | static nodes_iterator nodes_end(GraphRef N) { | 
|  | // df_iterator::end() returns an empty iterator so the node used doesn't | 
|  | // matter. | 
|  | return nodes_iterator::end(N); | 
|  | } | 
|  | }; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // VPlan Utilities | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// Class that provides utilities for VPBlockBases in VPlan. | 
|  | class VPBlockUtils { | 
|  | public: | 
|  | VPBlockUtils() = delete; | 
|  |  | 
|  | /// Insert disconnected VPBlockBase \p NewBlock after \p BlockPtr. Add \p | 
|  | /// NewBlock as successor of \p BlockPtr and \p BlockPtr as predecessor of \p | 
|  | /// NewBlock, and propagate \p BlockPtr parent to \p NewBlock. If \p BlockPtr | 
|  | /// has more than one successor, its conditional bit is propagated to \p | 
|  | /// NewBlock. \p NewBlock must have neither successors nor predecessors. | 
|  | static void insertBlockAfter(VPBlockBase *NewBlock, VPBlockBase *BlockPtr) { | 
|  | assert(NewBlock->getSuccessors().empty() && | 
|  | "Can't insert new block with successors."); | 
|  | // TODO: move successors from BlockPtr to NewBlock when this functionality | 
|  | // is necessary. For now, setBlockSingleSuccessor will assert if BlockPtr | 
|  | // already has successors. | 
|  | BlockPtr->setOneSuccessor(NewBlock); | 
|  | NewBlock->setPredecessors({BlockPtr}); | 
|  | NewBlock->setParent(BlockPtr->getParent()); | 
|  | } | 
|  |  | 
|  | /// Insert disconnected VPBlockBases \p IfTrue and \p IfFalse after \p | 
|  | /// BlockPtr. Add \p IfTrue and \p IfFalse as succesors of \p BlockPtr and \p | 
|  | /// BlockPtr as predecessor of \p IfTrue and \p IfFalse. Propagate \p BlockPtr | 
|  | /// parent to \p IfTrue and \p IfFalse. \p Condition is set as the successor | 
|  | /// selector. \p BlockPtr must have no successors and \p IfTrue and \p IfFalse | 
|  | /// must have neither successors nor predecessors. | 
|  | static void insertTwoBlocksAfter(VPBlockBase *IfTrue, VPBlockBase *IfFalse, | 
|  | VPValue *Condition, VPBlockBase *BlockPtr) { | 
|  | assert(IfTrue->getSuccessors().empty() && | 
|  | "Can't insert IfTrue with successors."); | 
|  | assert(IfFalse->getSuccessors().empty() && | 
|  | "Can't insert IfFalse with successors."); | 
|  | BlockPtr->setTwoSuccessors(IfTrue, IfFalse, Condition); | 
|  | IfTrue->setPredecessors({BlockPtr}); | 
|  | IfFalse->setPredecessors({BlockPtr}); | 
|  | IfTrue->setParent(BlockPtr->getParent()); | 
|  | IfFalse->setParent(BlockPtr->getParent()); | 
|  | } | 
|  |  | 
|  | /// Connect VPBlockBases \p From and \p To bi-directionally. Append \p To to | 
|  | /// the successors of \p From and \p From to the predecessors of \p To. Both | 
|  | /// VPBlockBases must have the same parent, which can be null. Both | 
|  | /// VPBlockBases can be already connected to other VPBlockBases. | 
|  | static void connectBlocks(VPBlockBase *From, VPBlockBase *To) { | 
|  | assert((From->getParent() == To->getParent()) && | 
|  | "Can't connect two block with different parents"); | 
|  | assert(From->getNumSuccessors() < 2 && | 
|  | "Blocks can't have more than two successors."); | 
|  | From->appendSuccessor(To); | 
|  | To->appendPredecessor(From); | 
|  | } | 
|  |  | 
|  | /// Disconnect VPBlockBases \p From and \p To bi-directionally. Remove \p To | 
|  | /// from the successors of \p From and \p From from the predecessors of \p To. | 
|  | static void disconnectBlocks(VPBlockBase *From, VPBlockBase *To) { | 
|  | assert(To && "Successor to disconnect is null."); | 
|  | From->removeSuccessor(To); | 
|  | To->removePredecessor(From); | 
|  | } | 
|  |  | 
|  | /// Returns true if the edge \p FromBlock -> \p ToBlock is a back-edge. | 
|  | static bool isBackEdge(const VPBlockBase *FromBlock, | 
|  | const VPBlockBase *ToBlock, const VPLoopInfo *VPLI) { | 
|  | assert(FromBlock->getParent() == ToBlock->getParent() && | 
|  | FromBlock->getParent() && "Must be in same region"); | 
|  | const VPLoop *FromLoop = VPLI->getLoopFor(FromBlock); | 
|  | const VPLoop *ToLoop = VPLI->getLoopFor(ToBlock); | 
|  | if (!FromLoop || !ToLoop || FromLoop != ToLoop) | 
|  | return false; | 
|  |  | 
|  | // A back-edge is a branch from the loop latch to its header. | 
|  | return ToLoop->isLoopLatch(FromBlock) && ToBlock == ToLoop->getHeader(); | 
|  | } | 
|  |  | 
|  | /// Returns true if \p Block is a loop latch | 
|  | static bool blockIsLoopLatch(const VPBlockBase *Block, | 
|  | const VPLoopInfo *VPLInfo) { | 
|  | if (const VPLoop *ParentVPL = VPLInfo->getLoopFor(Block)) | 
|  | return ParentVPL->isLoopLatch(Block); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Count and return the number of succesors of \p PredBlock excluding any | 
|  | /// backedges. | 
|  | static unsigned countSuccessorsNoBE(VPBlockBase *PredBlock, | 
|  | VPLoopInfo *VPLI) { | 
|  | unsigned Count = 0; | 
|  | for (VPBlockBase *SuccBlock : PredBlock->getSuccessors()) { | 
|  | if (!VPBlockUtils::isBackEdge(PredBlock, SuccBlock, VPLI)) | 
|  | Count++; | 
|  | } | 
|  | return Count; | 
|  | } | 
|  | }; | 
|  |  | 
|  | class VPInterleavedAccessInfo { | 
|  | private: | 
|  | DenseMap<VPInstruction *, InterleaveGroup<VPInstruction> *> | 
|  | InterleaveGroupMap; | 
|  |  | 
|  | /// Type for mapping of instruction based interleave groups to VPInstruction | 
|  | /// interleave groups | 
|  | using Old2NewTy = DenseMap<InterleaveGroup<Instruction> *, | 
|  | InterleaveGroup<VPInstruction> *>; | 
|  |  | 
|  | /// Recursively \p Region and populate VPlan based interleave groups based on | 
|  | /// \p IAI. | 
|  | void visitRegion(VPRegionBlock *Region, Old2NewTy &Old2New, | 
|  | InterleavedAccessInfo &IAI); | 
|  | /// Recursively traverse \p Block and populate VPlan based interleave groups | 
|  | /// based on \p IAI. | 
|  | void visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, | 
|  | InterleavedAccessInfo &IAI); | 
|  |  | 
|  | public: | 
|  | VPInterleavedAccessInfo(VPlan &Plan, InterleavedAccessInfo &IAI); | 
|  |  | 
|  | ~VPInterleavedAccessInfo() { | 
|  | SmallPtrSet<InterleaveGroup<VPInstruction> *, 4> DelSet; | 
|  | // Avoid releasing a pointer twice. | 
|  | for (auto &I : InterleaveGroupMap) | 
|  | DelSet.insert(I.second); | 
|  | for (auto *Ptr : DelSet) | 
|  | delete Ptr; | 
|  | } | 
|  |  | 
|  | /// Get the interleave group that \p Instr belongs to. | 
|  | /// | 
|  | /// \returns nullptr if doesn't have such group. | 
|  | InterleaveGroup<VPInstruction> * | 
|  | getInterleaveGroup(VPInstruction *Instr) const { | 
|  | if (InterleaveGroupMap.count(Instr)) | 
|  | return InterleaveGroupMap.find(Instr)->second; | 
|  | return nullptr; | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// Class that maps (parts of) an existing VPlan to trees of combined | 
|  | /// VPInstructions. | 
|  | class VPlanSlp { | 
|  | private: | 
|  | enum class OpMode { Failed, Load, Opcode }; | 
|  |  | 
|  | /// A DenseMapInfo implementation for using SmallVector<VPValue *, 4> as | 
|  | /// DenseMap keys. | 
|  | struct BundleDenseMapInfo { | 
|  | static SmallVector<VPValue *, 4> getEmptyKey() { | 
|  | return {reinterpret_cast<VPValue *>(-1)}; | 
|  | } | 
|  |  | 
|  | static SmallVector<VPValue *, 4> getTombstoneKey() { | 
|  | return {reinterpret_cast<VPValue *>(-2)}; | 
|  | } | 
|  |  | 
|  | static unsigned getHashValue(const SmallVector<VPValue *, 4> &V) { | 
|  | return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); | 
|  | } | 
|  |  | 
|  | static bool isEqual(const SmallVector<VPValue *, 4> &LHS, | 
|  | const SmallVector<VPValue *, 4> &RHS) { | 
|  | return LHS == RHS; | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// Mapping of values in the original VPlan to a combined VPInstruction. | 
|  | DenseMap<SmallVector<VPValue *, 4>, VPInstruction *, BundleDenseMapInfo> | 
|  | BundleToCombined; | 
|  |  | 
|  | VPInterleavedAccessInfo &IAI; | 
|  |  | 
|  | /// Basic block to operate on. For now, only instructions in a single BB are | 
|  | /// considered. | 
|  | const VPBasicBlock &BB; | 
|  |  | 
|  | /// Indicates whether we managed to combine all visited instructions or not. | 
|  | bool CompletelySLP = true; | 
|  |  | 
|  | /// Width of the widest combined bundle in bits. | 
|  | unsigned WidestBundleBits = 0; | 
|  |  | 
|  | using MultiNodeOpTy = | 
|  | typename std::pair<VPInstruction *, SmallVector<VPValue *, 4>>; | 
|  |  | 
|  | // Input operand bundles for the current multi node. Each multi node operand | 
|  | // bundle contains values not matching the multi node's opcode. They will | 
|  | // be reordered in reorderMultiNodeOps, once we completed building a | 
|  | // multi node. | 
|  | SmallVector<MultiNodeOpTy, 4> MultiNodeOps; | 
|  |  | 
|  | /// Indicates whether we are building a multi node currently. | 
|  | bool MultiNodeActive = false; | 
|  |  | 
|  | /// Check if we can vectorize Operands together. | 
|  | bool areVectorizable(ArrayRef<VPValue *> Operands) const; | 
|  |  | 
|  | /// Add combined instruction \p New for the bundle \p Operands. | 
|  | void addCombined(ArrayRef<VPValue *> Operands, VPInstruction *New); | 
|  |  | 
|  | /// Indicate we hit a bundle we failed to combine. Returns nullptr for now. | 
|  | VPInstruction *markFailed(); | 
|  |  | 
|  | /// Reorder operands in the multi node to maximize sequential memory access | 
|  | /// and commutative operations. | 
|  | SmallVector<MultiNodeOpTy, 4> reorderMultiNodeOps(); | 
|  |  | 
|  | /// Choose the best candidate to use for the lane after \p Last. The set of | 
|  | /// candidates to choose from are values with an opcode matching \p Last's | 
|  | /// or loads consecutive to \p Last. | 
|  | std::pair<OpMode, VPValue *> getBest(OpMode Mode, VPValue *Last, | 
|  | SmallPtrSetImpl<VPValue *> &Candidates, | 
|  | VPInterleavedAccessInfo &IAI); | 
|  |  | 
|  | /// Print bundle \p Values to dbgs(). | 
|  | void dumpBundle(ArrayRef<VPValue *> Values); | 
|  |  | 
|  | public: | 
|  | VPlanSlp(VPInterleavedAccessInfo &IAI, VPBasicBlock &BB) : IAI(IAI), BB(BB) {} | 
|  |  | 
|  | ~VPlanSlp() { | 
|  | for (auto &KV : BundleToCombined) | 
|  | delete KV.second; | 
|  | } | 
|  |  | 
|  | /// Tries to build an SLP tree rooted at \p Operands and returns a | 
|  | /// VPInstruction combining \p Operands, if they can be combined. | 
|  | VPInstruction *buildGraph(ArrayRef<VPValue *> Operands); | 
|  |  | 
|  | /// Return the width of the widest combined bundle in bits. | 
|  | unsigned getWidestBundleBits() const { return WidestBundleBits; } | 
|  |  | 
|  | /// Return true if all visited instruction can be combined. | 
|  | bool isCompletelySLP() const { return CompletelySLP; } | 
|  | }; | 
|  | } // end namespace llvm | 
|  |  | 
|  | #endif // LLVM_TRANSFORMS_VECTORIZE_VPLAN_H |