|  | <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" | 
|  | "http://www.w3.org/TR/html4/strict.dtd"> | 
|  | <html> | 
|  | <head> | 
|  | <title>LLVM Assembly Language Reference Manual</title> | 
|  | <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> | 
|  | <meta name="author" content="Chris Lattner"> | 
|  | <meta name="description" | 
|  | content="LLVM Assembly Language Reference Manual."> | 
|  | <link rel="stylesheet" href="llvm.css" type="text/css"> | 
|  | </head> | 
|  |  | 
|  | <body> | 
|  |  | 
|  | <h1>LLVM Language Reference Manual</h1> | 
|  | <ol> | 
|  | <li><a href="#abstract">Abstract</a></li> | 
|  | <li><a href="#introduction">Introduction</a></li> | 
|  | <li><a href="#identifiers">Identifiers</a></li> | 
|  | <li><a href="#highlevel">High Level Structure</a> | 
|  | <ol> | 
|  | <li><a href="#modulestructure">Module Structure</a></li> | 
|  | <li><a href="#linkage">Linkage Types</a> | 
|  | <ol> | 
|  | <li><a href="#linkage_private">'<tt>private</tt>' Linkage</a></li> | 
|  | <li><a href="#linkage_linker_private">'<tt>linker_private</tt>' Linkage</a></li> | 
|  | <li><a href="#linkage_linker_private_weak">'<tt>linker_private_weak</tt>' Linkage</a></li> | 
|  | <li><a href="#linkage_linker_private_weak_def_auto">'<tt>linker_private_weak_def_auto</tt>' Linkage</a></li> | 
|  | <li><a href="#linkage_internal">'<tt>internal</tt>' Linkage</a></li> | 
|  | <li><a href="#linkage_available_externally">'<tt>available_externally</tt>' Linkage</a></li> | 
|  | <li><a href="#linkage_linkonce">'<tt>linkonce</tt>' Linkage</a></li> | 
|  | <li><a href="#linkage_common">'<tt>common</tt>' Linkage</a></li> | 
|  | <li><a href="#linkage_weak">'<tt>weak</tt>' Linkage</a></li> | 
|  | <li><a href="#linkage_appending">'<tt>appending</tt>' Linkage</a></li> | 
|  | <li><a href="#linkage_externweak">'<tt>extern_weak</tt>' Linkage</a></li> | 
|  | <li><a href="#linkage_linkonce_odr">'<tt>linkonce_odr</tt>' Linkage</a></li> | 
|  | <li><a href="#linkage_weak">'<tt>weak_odr</tt>' Linkage</a></li> | 
|  | <li><a href="#linkage_external">'<tt>external</tt>' Linkage</a></li> | 
|  | <li><a href="#linkage_dllimport">'<tt>dllimport</tt>' Linkage</a></li> | 
|  | <li><a href="#linkage_dllexport">'<tt>dllexport</tt>' Linkage</a></li> | 
|  | </ol> | 
|  | </li> | 
|  | <li><a href="#callingconv">Calling Conventions</a></li> | 
|  | <li><a href="#namedtypes">Named Types</a></li> | 
|  | <li><a href="#globalvars">Global Variables</a></li> | 
|  | <li><a href="#functionstructure">Functions</a></li> | 
|  | <li><a href="#aliasstructure">Aliases</a></li> | 
|  | <li><a href="#namedmetadatastructure">Named Metadata</a></li> | 
|  | <li><a href="#paramattrs">Parameter Attributes</a></li> | 
|  | <li><a href="#fnattrs">Function Attributes</a></li> | 
|  | <li><a href="#gc">Garbage Collector Names</a></li> | 
|  | <li><a href="#moduleasm">Module-Level Inline Assembly</a></li> | 
|  | <li><a href="#datalayout">Data Layout</a></li> | 
|  | <li><a href="#pointeraliasing">Pointer Aliasing Rules</a></li> | 
|  | <li><a href="#volatile">Volatile Memory Accesses</a></li> | 
|  | <li><a href="#memmodel">Memory Model for Concurrent Operations</a></li> | 
|  | <li><a href="#ordering">Atomic Memory Ordering Constraints</a></li> | 
|  | </ol> | 
|  | </li> | 
|  | <li><a href="#typesystem">Type System</a> | 
|  | <ol> | 
|  | <li><a href="#t_classifications">Type Classifications</a></li> | 
|  | <li><a href="#t_primitive">Primitive Types</a> | 
|  | <ol> | 
|  | <li><a href="#t_integer">Integer Type</a></li> | 
|  | <li><a href="#t_floating">Floating Point Types</a></li> | 
|  | <li><a href="#t_x86mmx">X86mmx Type</a></li> | 
|  | <li><a href="#t_void">Void Type</a></li> | 
|  | <li><a href="#t_label">Label Type</a></li> | 
|  | <li><a href="#t_metadata">Metadata Type</a></li> | 
|  | </ol> | 
|  | </li> | 
|  | <li><a href="#t_derived">Derived Types</a> | 
|  | <ol> | 
|  | <li><a href="#t_aggregate">Aggregate Types</a> | 
|  | <ol> | 
|  | <li><a href="#t_array">Array Type</a></li> | 
|  | <li><a href="#t_struct">Structure Type</a></li> | 
|  | <li><a href="#t_opaque">Opaque Structure Types</a></li> | 
|  | <li><a href="#t_vector">Vector Type</a></li> | 
|  | </ol> | 
|  | </li> | 
|  | <li><a href="#t_function">Function Type</a></li> | 
|  | <li><a href="#t_pointer">Pointer Type</a></li> | 
|  | </ol> | 
|  | </li> | 
|  | </ol> | 
|  | </li> | 
|  | <li><a href="#constants">Constants</a> | 
|  | <ol> | 
|  | <li><a href="#simpleconstants">Simple Constants</a></li> | 
|  | <li><a href="#complexconstants">Complex Constants</a></li> | 
|  | <li><a href="#globalconstants">Global Variable and Function Addresses</a></li> | 
|  | <li><a href="#undefvalues">Undefined Values</a></li> | 
|  | <li><a href="#poisonvalues">Poison Values</a></li> | 
|  | <li><a href="#blockaddress">Addresses of Basic Blocks</a></li> | 
|  | <li><a href="#constantexprs">Constant Expressions</a></li> | 
|  | </ol> | 
|  | </li> | 
|  | <li><a href="#othervalues">Other Values</a> | 
|  | <ol> | 
|  | <li><a href="#inlineasm">Inline Assembler Expressions</a></li> | 
|  | <li><a href="#metadata">Metadata Nodes and Metadata Strings</a> | 
|  | <ol> | 
|  | <li><a href="#tbaa">'<tt>tbaa</tt>' Metadata</a></li> | 
|  | <li><a href="#fpaccuracy">'<tt>fpaccuracy</tt>' Metadata</a></li> | 
|  | </ol> | 
|  | </li> | 
|  | </ol> | 
|  | </li> | 
|  | <li><a href="#intrinsic_globals">Intrinsic Global Variables</a> | 
|  | <ol> | 
|  | <li><a href="#intg_used">The '<tt>llvm.used</tt>' Global Variable</a></li> | 
|  | <li><a href="#intg_compiler_used">The '<tt>llvm.compiler.used</tt>' | 
|  | Global Variable</a></li> | 
|  | <li><a href="#intg_global_ctors">The '<tt>llvm.global_ctors</tt>' | 
|  | Global Variable</a></li> | 
|  | <li><a href="#intg_global_dtors">The '<tt>llvm.global_dtors</tt>' | 
|  | Global Variable</a></li> | 
|  | </ol> | 
|  | </li> | 
|  | <li><a href="#instref">Instruction Reference</a> | 
|  | <ol> | 
|  | <li><a href="#terminators">Terminator Instructions</a> | 
|  | <ol> | 
|  | <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li> | 
|  | <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li> | 
|  | <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li> | 
|  | <li><a href="#i_indirectbr">'<tt>indirectbr</tt>' Instruction</a></li> | 
|  | <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li> | 
|  | <li><a href="#i_unwind">'<tt>unwind</tt>'  Instruction</a></li> | 
|  | <li><a href="#i_resume">'<tt>resume</tt>'  Instruction</a></li> | 
|  | <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li> | 
|  | </ol> | 
|  | </li> | 
|  | <li><a href="#binaryops">Binary Operations</a> | 
|  | <ol> | 
|  | <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li> | 
|  | <li><a href="#i_fadd">'<tt>fadd</tt>' Instruction</a></li> | 
|  | <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li> | 
|  | <li><a href="#i_fsub">'<tt>fsub</tt>' Instruction</a></li> | 
|  | <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li> | 
|  | <li><a href="#i_fmul">'<tt>fmul</tt>' Instruction</a></li> | 
|  | <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li> | 
|  | <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li> | 
|  | <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li> | 
|  | <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li> | 
|  | <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li> | 
|  | <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li> | 
|  | </ol> | 
|  | </li> | 
|  | <li><a href="#bitwiseops">Bitwise Binary Operations</a> | 
|  | <ol> | 
|  | <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li> | 
|  | <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li> | 
|  | <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li> | 
|  | <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li> | 
|  | <li><a href="#i_or">'<tt>or</tt>'  Instruction</a></li> | 
|  | <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li> | 
|  | </ol> | 
|  | </li> | 
|  | <li><a href="#vectorops">Vector Operations</a> | 
|  | <ol> | 
|  | <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li> | 
|  | <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li> | 
|  | <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li> | 
|  | </ol> | 
|  | </li> | 
|  | <li><a href="#aggregateops">Aggregate Operations</a> | 
|  | <ol> | 
|  | <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li> | 
|  | <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li> | 
|  | </ol> | 
|  | </li> | 
|  | <li><a href="#memoryops">Memory Access and Addressing Operations</a> | 
|  | <ol> | 
|  | <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li> | 
|  | <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li> | 
|  | <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li> | 
|  | <li><a href="#i_fence">'<tt>fence</tt>' Instruction</a></li> | 
|  | <li><a href="#i_cmpxchg">'<tt>cmpxchg</tt>' Instruction</a></li> | 
|  | <li><a href="#i_atomicrmw">'<tt>atomicrmw</tt>' Instruction</a></li> | 
|  | <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li> | 
|  | </ol> | 
|  | </li> | 
|  | <li><a href="#convertops">Conversion Operations</a> | 
|  | <ol> | 
|  | <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li> | 
|  | <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li> | 
|  | <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li> | 
|  | <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li> | 
|  | <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li> | 
|  | <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li> | 
|  | <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li> | 
|  | <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li> | 
|  | <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li> | 
|  | <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li> | 
|  | <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li> | 
|  | <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li> | 
|  | </ol> | 
|  | </li> | 
|  | <li><a href="#otherops">Other Operations</a> | 
|  | <ol> | 
|  | <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li> | 
|  | <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li> | 
|  | <li><a href="#i_phi">'<tt>phi</tt>'   Instruction</a></li> | 
|  | <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li> | 
|  | <li><a href="#i_call">'<tt>call</tt>'  Instruction</a></li> | 
|  | <li><a href="#i_va_arg">'<tt>va_arg</tt>'  Instruction</a></li> | 
|  | <li><a href="#i_landingpad">'<tt>landingpad</tt>' Instruction</a></li> | 
|  | </ol> | 
|  | </li> | 
|  | </ol> | 
|  | </li> | 
|  | <li><a href="#intrinsics">Intrinsic Functions</a> | 
|  | <ol> | 
|  | <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a> | 
|  | <ol> | 
|  | <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li> | 
|  | <li><a href="#int_va_end">'<tt>llvm.va_end</tt>'   Intrinsic</a></li> | 
|  | <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>'  Intrinsic</a></li> | 
|  | </ol> | 
|  | </li> | 
|  | <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a> | 
|  | <ol> | 
|  | <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li> | 
|  | <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li> | 
|  | <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li> | 
|  | </ol> | 
|  | </li> | 
|  | <li><a href="#int_codegen">Code Generator Intrinsics</a> | 
|  | <ol> | 
|  | <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li> | 
|  | <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>'   Intrinsic</a></li> | 
|  | <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li> | 
|  | <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li> | 
|  | <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li> | 
|  | <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li> | 
|  | <li><a href="#int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a></li> | 
|  | </ol> | 
|  | </li> | 
|  | <li><a href="#int_libc">Standard C Library Intrinsics</a> | 
|  | <ol> | 
|  | <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li> | 
|  | <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li> | 
|  | <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li> | 
|  | <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li> | 
|  | <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li> | 
|  | <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li> | 
|  | <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li> | 
|  | <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li> | 
|  | <li><a href="#int_exp">'<tt>llvm.exp.*</tt>' Intrinsic</a></li> | 
|  | <li><a href="#int_log">'<tt>llvm.log.*</tt>' Intrinsic</a></li> | 
|  | <li><a href="#int_fma">'<tt>llvm.fma.*</tt>' Intrinsic</a></li> | 
|  | </ol> | 
|  | </li> | 
|  | <li><a href="#int_manip">Bit Manipulation Intrinsics</a> | 
|  | <ol> | 
|  | <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li> | 
|  | <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li> | 
|  | <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li> | 
|  | <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li> | 
|  | </ol> | 
|  | </li> | 
|  | <li><a href="#int_overflow">Arithmetic with Overflow Intrinsics</a> | 
|  | <ol> | 
|  | <li><a href="#int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt> Intrinsics</a></li> | 
|  | <li><a href="#int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt> Intrinsics</a></li> | 
|  | <li><a href="#int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt> Intrinsics</a></li> | 
|  | <li><a href="#int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt> Intrinsics</a></li> | 
|  | <li><a href="#int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt> Intrinsics</a></li> | 
|  | <li><a href="#int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt> Intrinsics</a></li> | 
|  | </ol> | 
|  | </li> | 
|  | <li><a href="#int_fp16">Half Precision Floating Point Intrinsics</a> | 
|  | <ol> | 
|  | <li><a href="#int_convert_to_fp16">'<tt>llvm.convert.to.fp16</tt>' Intrinsic</a></li> | 
|  | <li><a href="#int_convert_from_fp16">'<tt>llvm.convert.from.fp16</tt>' Intrinsic</a></li> | 
|  | </ol> | 
|  | </li> | 
|  | <li><a href="#int_debugger">Debugger intrinsics</a></li> | 
|  | <li><a href="#int_eh">Exception Handling intrinsics</a></li> | 
|  | <li><a href="#int_trampoline">Trampoline Intrinsics</a> | 
|  | <ol> | 
|  | <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li> | 
|  | <li><a href="#int_at">'<tt>llvm.adjust.trampoline</tt>' Intrinsic</a></li> | 
|  | </ol> | 
|  | </li> | 
|  | <li><a href="#int_memorymarkers">Memory Use Markers</a> | 
|  | <ol> | 
|  | <li><a href="#int_lifetime_start">'<tt>llvm.lifetime.start</tt>' Intrinsic</a></li> | 
|  | <li><a href="#int_lifetime_end">'<tt>llvm.lifetime.end</tt>' Intrinsic</a></li> | 
|  | <li><a href="#int_invariant_start">'<tt>llvm.invariant.start</tt>' Intrinsic</a></li> | 
|  | <li><a href="#int_invariant_end">'<tt>llvm.invariant.end</tt>' Intrinsic</a></li> | 
|  | </ol> | 
|  | </li> | 
|  | <li><a href="#int_general">General intrinsics</a> | 
|  | <ol> | 
|  | <li><a href="#int_var_annotation"> | 
|  | '<tt>llvm.var.annotation</tt>' Intrinsic</a></li> | 
|  | <li><a href="#int_annotation"> | 
|  | '<tt>llvm.annotation.*</tt>' Intrinsic</a></li> | 
|  | <li><a href="#int_trap"> | 
|  | '<tt>llvm.trap</tt>' Intrinsic</a></li> | 
|  | <li><a href="#int_stackprotector"> | 
|  | '<tt>llvm.stackprotector</tt>' Intrinsic</a></li> | 
|  | <li><a href="#int_objectsize"> | 
|  | '<tt>llvm.objectsize</tt>' Intrinsic</a></li> | 
|  | <li><a href="#int_expect"> | 
|  | '<tt>llvm.expect</tt>' Intrinsic</a></li> | 
|  | </ol> | 
|  | </li> | 
|  | </ol> | 
|  | </li> | 
|  | </ol> | 
|  |  | 
|  | <div class="doc_author"> | 
|  | <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a> | 
|  | and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p> | 
|  | </div> | 
|  |  | 
|  | <!-- *********************************************************************** --> | 
|  | <h2><a name="abstract">Abstract</a></h2> | 
|  | <!-- *********************************************************************** --> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>This document is a reference manual for the LLVM assembly language. LLVM is | 
|  | a Static Single Assignment (SSA) based representation that provides type | 
|  | safety, low-level operations, flexibility, and the capability of representing | 
|  | 'all' high-level languages cleanly.  It is the common code representation | 
|  | used throughout all phases of the LLVM compilation strategy.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- *********************************************************************** --> | 
|  | <h2><a name="introduction">Introduction</a></h2> | 
|  | <!-- *********************************************************************** --> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>The LLVM code representation is designed to be used in three different forms: | 
|  | as an in-memory compiler IR, as an on-disk bitcode representation (suitable | 
|  | for fast loading by a Just-In-Time compiler), and as a human readable | 
|  | assembly language representation.  This allows LLVM to provide a powerful | 
|  | intermediate representation for efficient compiler transformations and | 
|  | analysis, while providing a natural means to debug and visualize the | 
|  | transformations.  The three different forms of LLVM are all equivalent.  This | 
|  | document describes the human readable representation and notation.</p> | 
|  |  | 
|  | <p>The LLVM representation aims to be light-weight and low-level while being | 
|  | expressive, typed, and extensible at the same time.  It aims to be a | 
|  | "universal IR" of sorts, by being at a low enough level that high-level ideas | 
|  | may be cleanly mapped to it (similar to how microprocessors are "universal | 
|  | IR's", allowing many source languages to be mapped to them).  By providing | 
|  | type information, LLVM can be used as the target of optimizations: for | 
|  | example, through pointer analysis, it can be proven that a C automatic | 
|  | variable is never accessed outside of the current function, allowing it to | 
|  | be promoted to a simple SSA value instead of a memory location.</p> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="wellformed">Well-Formedness</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>It is important to note that this document describes 'well formed' LLVM | 
|  | assembly language.  There is a difference between what the parser accepts and | 
|  | what is considered 'well formed'.  For example, the following instruction is | 
|  | syntactically okay, but not well formed:</p> | 
|  |  | 
|  | <pre class="doc_code"> | 
|  | %x = <a href="#i_add">add</a> i32 1, %x | 
|  | </pre> | 
|  |  | 
|  | <p>because the definition of <tt>%x</tt> does not dominate all of its uses. The | 
|  | LLVM infrastructure provides a verification pass that may be used to verify | 
|  | that an LLVM module is well formed.  This pass is automatically run by the | 
|  | parser after parsing input assembly and by the optimizer before it outputs | 
|  | bitcode.  The violations pointed out by the verifier pass indicate bugs in | 
|  | transformation passes or input to the parser.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- Describe the typesetting conventions here. --> | 
|  |  | 
|  | <!-- *********************************************************************** --> | 
|  | <h2><a name="identifiers">Identifiers</a></h2> | 
|  | <!-- *********************************************************************** --> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>LLVM identifiers come in two basic types: global and local. Global | 
|  | identifiers (functions, global variables) begin with the <tt>'@'</tt> | 
|  | character. Local identifiers (register names, types) begin with | 
|  | the <tt>'%'</tt> character. Additionally, there are three different formats | 
|  | for identifiers, for different purposes:</p> | 
|  |  | 
|  | <ol> | 
|  | <li>Named values are represented as a string of characters with their prefix. | 
|  | For example, <tt>%foo</tt>, <tt>@DivisionByZero</tt>, | 
|  | <tt>%a.really.long.identifier</tt>. The actual regular expression used is | 
|  | '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.  Identifiers which require | 
|  | other characters in their names can be surrounded with quotes. Special | 
|  | characters may be escaped using <tt>"\xx"</tt> where <tt>xx</tt> is the | 
|  | ASCII code for the character in hexadecimal.  In this way, any character | 
|  | can be used in a name value, even quotes themselves.</li> | 
|  |  | 
|  | <li>Unnamed values are represented as an unsigned numeric value with their | 
|  | prefix.  For example, <tt>%12</tt>, <tt>@2</tt>, <tt>%44</tt>.</li> | 
|  |  | 
|  | <li>Constants, which are described in a <a href="#constants">section about | 
|  | constants</a>, below.</li> | 
|  | </ol> | 
|  |  | 
|  | <p>LLVM requires that values start with a prefix for two reasons: Compilers | 
|  | don't need to worry about name clashes with reserved words, and the set of | 
|  | reserved words may be expanded in the future without penalty.  Additionally, | 
|  | unnamed identifiers allow a compiler to quickly come up with a temporary | 
|  | variable without having to avoid symbol table conflicts.</p> | 
|  |  | 
|  | <p>Reserved words in LLVM are very similar to reserved words in other | 
|  | languages. There are keywords for different opcodes | 
|  | ('<tt><a href="#i_add">add</a></tt>', | 
|  | '<tt><a href="#i_bitcast">bitcast</a></tt>', | 
|  | '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names | 
|  | ('<tt><a href="#t_void">void</a></tt>', | 
|  | '<tt><a href="#t_primitive">i32</a></tt>', etc...), and others.  These | 
|  | reserved words cannot conflict with variable names, because none of them | 
|  | start with a prefix character (<tt>'%'</tt> or <tt>'@'</tt>).</p> | 
|  |  | 
|  | <p>Here is an example of LLVM code to multiply the integer variable | 
|  | '<tt>%X</tt>' by 8:</p> | 
|  |  | 
|  | <p>The easy way:</p> | 
|  |  | 
|  | <pre class="doc_code"> | 
|  | %result = <a href="#i_mul">mul</a> i32 %X, 8 | 
|  | </pre> | 
|  |  | 
|  | <p>After strength reduction:</p> | 
|  |  | 
|  | <pre class="doc_code"> | 
|  | %result = <a href="#i_shl">shl</a> i32 %X, i8 3 | 
|  | </pre> | 
|  |  | 
|  | <p>And the hard way:</p> | 
|  |  | 
|  | <pre class="doc_code"> | 
|  | %0 = <a href="#i_add">add</a> i32 %X, %X           <i>; yields {i32}:%0</i> | 
|  | %1 = <a href="#i_add">add</a> i32 %0, %0           <i>; yields {i32}:%1</i> | 
|  | %result = <a href="#i_add">add</a> i32 %1, %1 | 
|  | </pre> | 
|  |  | 
|  | <p>This last way of multiplying <tt>%X</tt> by 8 illustrates several important | 
|  | lexical features of LLVM:</p> | 
|  |  | 
|  | <ol> | 
|  | <li>Comments are delimited with a '<tt>;</tt>' and go until the end of | 
|  | line.</li> | 
|  |  | 
|  | <li>Unnamed temporaries are created when the result of a computation is not | 
|  | assigned to a named value.</li> | 
|  |  | 
|  | <li>Unnamed temporaries are numbered sequentially</li> | 
|  | </ol> | 
|  |  | 
|  | <p>It also shows a convention that we follow in this document.  When | 
|  | demonstrating instructions, we will follow an instruction with a comment that | 
|  | defines the type and name of value produced.  Comments are shown in italic | 
|  | text.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- *********************************************************************** --> | 
|  | <h2><a name="highlevel">High Level Structure</a></h2> | 
|  | <!-- *********************************************************************** --> | 
|  | <div> | 
|  | <!-- ======================================================================= --> | 
|  | <h3> | 
|  | <a name="modulestructure">Module Structure</a> | 
|  | </h3> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>LLVM programs are composed of "Module"s, each of which is a translation unit | 
|  | of the input programs.  Each module consists of functions, global variables, | 
|  | and symbol table entries.  Modules may be combined together with the LLVM | 
|  | linker, which merges function (and global variable) definitions, resolves | 
|  | forward declarations, and merges symbol table entries. Here is an example of | 
|  | the "hello world" module:</p> | 
|  |  | 
|  | <pre class="doc_code"> | 
|  | <i>; Declare the string constant as a global constant.</i>  | 
|  | <a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00"      <i>; [13 x i8]*</i>  | 
|  |  | 
|  | <i>; External declaration of the puts function</i>  | 
|  | <a href="#functionstructure">declare</a> i32 @puts(i8*)                                      <i>; i32 (i8*)* </i>  | 
|  |  | 
|  | <i>; Definition of main function</i> | 
|  | define i32 @main() {   <i>; i32()* </i>  | 
|  | <i>; Convert [13 x i8]* to i8  *...</i>  | 
|  | %cast210 = <a href="#i_getelementptr">getelementptr</a> [13 x i8]* @.LC0, i64 0, i64 0   <i>; i8*</i>  | 
|  |  | 
|  | <i>; Call puts function to write out the string to stdout.</i>  | 
|  | <a href="#i_call">call</a> i32 @puts(i8* %cast210)           <i>; i32</i>  | 
|  | <a href="#i_ret">ret</a> i32 0  | 
|  | } | 
|  |  | 
|  | <i>; Named metadata</i> | 
|  | !1 = metadata !{i32 41} | 
|  | !foo = !{!1, null} | 
|  | </pre> | 
|  |  | 
|  | <p>This example is made up of a <a href="#globalvars">global variable</a> named | 
|  | "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>" function, | 
|  | a <a href="#functionstructure">function definition</a> for | 
|  | "<tt>main</tt>" and <a href="#namedmetadatastructure">named metadata</a> | 
|  | "<tt>foo"</tt>.</p> | 
|  |  | 
|  | <p>In general, a module is made up of a list of global values, where both | 
|  | functions and global variables are global values.  Global values are | 
|  | represented by a pointer to a memory location (in this case, a pointer to an | 
|  | array of char, and a pointer to a function), and have one of the | 
|  | following <a href="#linkage">linkage types</a>.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <h3> | 
|  | <a name="linkage">Linkage Types</a> | 
|  | </h3> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>All Global Variables and Functions have one of the following types of | 
|  | linkage:</p> | 
|  |  | 
|  | <dl> | 
|  | <dt><tt><b><a name="linkage_private">private</a></b></tt></dt> | 
|  | <dd>Global values with "<tt>private</tt>" linkage are only directly accessible | 
|  | by objects in the current module. In particular, linking code into a | 
|  | module with an private global value may cause the private to be renamed as | 
|  | necessary to avoid collisions.  Because the symbol is private to the | 
|  | module, all references can be updated. This doesn't show up in any symbol | 
|  | table in the object file.</dd> | 
|  |  | 
|  | <dt><tt><b><a name="linkage_linker_private">linker_private</a></b></tt></dt> | 
|  | <dd>Similar to <tt>private</tt>, but the symbol is passed through the | 
|  | assembler and evaluated by the linker. Unlike normal strong symbols, they | 
|  | are removed by the linker from the final linked image (executable or | 
|  | dynamic library).</dd> | 
|  |  | 
|  | <dt><tt><b><a name="linkage_linker_private_weak">linker_private_weak</a></b></tt></dt> | 
|  | <dd>Similar to "<tt>linker_private</tt>", but the symbol is weak. Note that | 
|  | <tt>linker_private_weak</tt> symbols are subject to coalescing by the | 
|  | linker. The symbols are removed by the linker from the final linked image | 
|  | (executable or dynamic library).</dd> | 
|  |  | 
|  | <dt><tt><b><a name="linkage_linker_private_weak_def_auto">linker_private_weak_def_auto</a></b></tt></dt> | 
|  | <dd>Similar to "<tt>linker_private_weak</tt>", but it's known that the address | 
|  | of the object is not taken. For instance, functions that had an inline | 
|  | definition, but the compiler decided not to inline it. Note, | 
|  | unlike <tt>linker_private</tt> and <tt>linker_private_weak</tt>, | 
|  | <tt>linker_private_weak_def_auto</tt> may have only <tt>default</tt> | 
|  | visibility.  The symbols are removed by the linker from the final linked | 
|  | image (executable or dynamic library).</dd> | 
|  |  | 
|  | <dt><tt><b><a name="linkage_internal">internal</a></b></tt></dt> | 
|  | <dd>Similar to private, but the value shows as a local symbol | 
|  | (<tt>STB_LOCAL</tt> in the case of ELF) in the object file. This | 
|  | corresponds to the notion of the '<tt>static</tt>' keyword in C.</dd> | 
|  |  | 
|  | <dt><tt><b><a name="linkage_available_externally">available_externally</a></b></tt></dt> | 
|  | <dd>Globals with "<tt>available_externally</tt>" linkage are never emitted | 
|  | into the object file corresponding to the LLVM module.  They exist to | 
|  | allow inlining and other optimizations to take place given knowledge of | 
|  | the definition of the global, which is known to be somewhere outside the | 
|  | module.  Globals with <tt>available_externally</tt> linkage are allowed to | 
|  | be discarded at will, and are otherwise the same as <tt>linkonce_odr</tt>. | 
|  | This linkage type is only allowed on definitions, not declarations.</dd> | 
|  |  | 
|  | <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt></dt> | 
|  | <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of | 
|  | the same name when linkage occurs.  This can be used to implement | 
|  | some forms of inline functions, templates, or other code which must be | 
|  | generated in each translation unit that uses it, but where the body may | 
|  | be overridden with a more definitive definition later.  Unreferenced | 
|  | <tt>linkonce</tt> globals are allowed to be discarded.  Note that | 
|  | <tt>linkonce</tt> linkage does not actually allow the optimizer to | 
|  | inline the body of this function into callers because it doesn't know if | 
|  | this definition of the function is the definitive definition within the | 
|  | program or whether it will be overridden by a stronger definition. | 
|  | To enable inlining and other optimizations, use "<tt>linkonce_odr</tt>" | 
|  | linkage.</dd> | 
|  |  | 
|  | <dt><tt><b><a name="linkage_weak">weak</a></b></tt></dt> | 
|  | <dd>"<tt>weak</tt>" linkage has the same merging semantics as | 
|  | <tt>linkonce</tt> linkage, except that unreferenced globals with | 
|  | <tt>weak</tt> linkage may not be discarded.  This is used for globals that | 
|  | are declared "weak" in C source code.</dd> | 
|  |  | 
|  | <dt><tt><b><a name="linkage_common">common</a></b></tt></dt> | 
|  | <dd>"<tt>common</tt>" linkage is most similar to "<tt>weak</tt>" linkage, but | 
|  | they are used for tentative definitions in C, such as "<tt>int X;</tt>" at | 
|  | global scope. | 
|  | Symbols with "<tt>common</tt>" linkage are merged in the same way as | 
|  | <tt>weak symbols</tt>, and they may not be deleted if unreferenced. | 
|  | <tt>common</tt> symbols may not have an explicit section, | 
|  | must have a zero initializer, and may not be marked '<a | 
|  | href="#globalvars"><tt>constant</tt></a>'.  Functions and aliases may not | 
|  | have common linkage.</dd> | 
|  |  | 
|  |  | 
|  | <dt><tt><b><a name="linkage_appending">appending</a></b></tt></dt> | 
|  | <dd>"<tt>appending</tt>" linkage may only be applied to global variables of | 
|  | pointer to array type.  When two global variables with appending linkage | 
|  | are linked together, the two global arrays are appended together.  This is | 
|  | the LLVM, typesafe, equivalent of having the system linker append together | 
|  | "sections" with identical names when .o files are linked.</dd> | 
|  |  | 
|  | <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt></dt> | 
|  | <dd>The semantics of this linkage follow the ELF object file model: the symbol | 
|  | is weak until linked, if not linked, the symbol becomes null instead of | 
|  | being an undefined reference.</dd> | 
|  |  | 
|  | <dt><tt><b><a name="linkage_linkonce_odr">linkonce_odr</a></b></tt></dt> | 
|  | <dt><tt><b><a name="linkage_weak_odr">weak_odr</a></b></tt></dt> | 
|  | <dd>Some languages allow differing globals to be merged, such as two functions | 
|  | with different semantics.  Other languages, such as <tt>C++</tt>, ensure | 
|  | that only equivalent globals are ever merged (the "one definition rule" | 
|  | — "ODR").  Such languages can use the <tt>linkonce_odr</tt> | 
|  | and <tt>weak_odr</tt> linkage types to indicate that the global will only | 
|  | be merged with equivalent globals.  These linkage types are otherwise the | 
|  | same as their non-<tt>odr</tt> versions.</dd> | 
|  |  | 
|  | <dt><tt><b><a name="linkage_external">external</a></b></tt></dt> | 
|  | <dd>If none of the above identifiers are used, the global is externally | 
|  | visible, meaning that it participates in linkage and can be used to | 
|  | resolve external symbol references.</dd> | 
|  | </dl> | 
|  |  | 
|  | <p>The next two types of linkage are targeted for Microsoft Windows platform | 
|  | only. They are designed to support importing (exporting) symbols from (to) | 
|  | DLLs (Dynamic Link Libraries).</p> | 
|  |  | 
|  | <dl> | 
|  | <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt></dt> | 
|  | <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function | 
|  | or variable via a global pointer to a pointer that is set up by the DLL | 
|  | exporting the symbol. On Microsoft Windows targets, the pointer name is | 
|  | formed by combining <code>__imp_</code> and the function or variable | 
|  | name.</dd> | 
|  |  | 
|  | <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt></dt> | 
|  | <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global | 
|  | pointer to a pointer in a DLL, so that it can be referenced with the | 
|  | <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer | 
|  | name is formed by combining <code>__imp_</code> and the function or | 
|  | variable name.</dd> | 
|  | </dl> | 
|  |  | 
|  | <p>For example, since the "<tt>.LC0</tt>" variable is defined to be internal, if | 
|  | another module defined a "<tt>.LC0</tt>" variable and was linked with this | 
|  | one, one of the two would be renamed, preventing a collision.  Since | 
|  | "<tt>main</tt>" and "<tt>puts</tt>" are external (i.e., lacking any linkage | 
|  | declarations), they are accessible outside of the current module.</p> | 
|  |  | 
|  | <p>It is illegal for a function <i>declaration</i> to have any linkage type | 
|  | other than <tt>external</tt>, <tt>dllimport</tt> | 
|  | or <tt>extern_weak</tt>.</p> | 
|  |  | 
|  | <p>Aliases can have only <tt>external</tt>, <tt>internal</tt>, <tt>weak</tt> | 
|  | or <tt>weak_odr</tt> linkages.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <h3> | 
|  | <a name="callingconv">Calling Conventions</a> | 
|  | </h3> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a> | 
|  | and <a href="#i_invoke">invokes</a> can all have an optional calling | 
|  | convention specified for the call.  The calling convention of any pair of | 
|  | dynamic caller/callee must match, or the behavior of the program is | 
|  | undefined.  The following calling conventions are supported by LLVM, and more | 
|  | may be added in the future:</p> | 
|  |  | 
|  | <dl> | 
|  | <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt> | 
|  | <dd>This calling convention (the default if no other calling convention is | 
|  | specified) matches the target C calling conventions.  This calling | 
|  | convention supports varargs function calls and tolerates some mismatch in | 
|  | the declared prototype and implemented declaration of the function (as | 
|  | does normal C).</dd> | 
|  |  | 
|  | <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt> | 
|  | <dd>This calling convention attempts to make calls as fast as possible | 
|  | (e.g. by passing things in registers).  This calling convention allows the | 
|  | target to use whatever tricks it wants to produce fast code for the | 
|  | target, without having to conform to an externally specified ABI | 
|  | (Application Binary Interface). | 
|  | <a href="CodeGenerator.html#tailcallopt">Tail calls can only be optimized | 
|  | when this or the GHC convention is used.</a>  This calling convention | 
|  | does not support varargs and requires the prototype of all callees to | 
|  | exactly match the prototype of the function definition.</dd> | 
|  |  | 
|  | <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt> | 
|  | <dd>This calling convention attempts to make code in the caller as efficient | 
|  | as possible under the assumption that the call is not commonly executed. | 
|  | As such, these calls often preserve all registers so that the call does | 
|  | not break any live ranges in the caller side.  This calling convention | 
|  | does not support varargs and requires the prototype of all callees to | 
|  | exactly match the prototype of the function definition.</dd> | 
|  |  | 
|  | <dt><b>"<tt>cc <em>10</em></tt>" - GHC convention</b>:</dt> | 
|  | <dd>This calling convention has been implemented specifically for use by the | 
|  | <a href="http://www.haskell.org/ghc">Glasgow Haskell Compiler (GHC)</a>. | 
|  | It passes everything in registers, going to extremes to achieve this by | 
|  | disabling callee save registers. This calling convention should not be | 
|  | used lightly but only for specific situations such as an alternative to | 
|  | the <em>register pinning</em> performance technique often used when | 
|  | implementing functional programming languages.At the moment only X86 | 
|  | supports this convention and it has the following limitations: | 
|  | <ul> | 
|  | <li>On <em>X86-32</em> only supports up to 4 bit type parameters. No | 
|  | floating point types are supported.</li> | 
|  | <li>On <em>X86-64</em> only supports up to 10 bit type parameters and | 
|  | 6 floating point parameters.</li> | 
|  | </ul> | 
|  | This calling convention supports | 
|  | <a href="CodeGenerator.html#tailcallopt">tail call optimization</a> but | 
|  | requires both the caller and callee are using it. | 
|  | </dd> | 
|  |  | 
|  | <dt><b>"<tt>cc <<em>n</em>></tt>" - Numbered convention</b>:</dt> | 
|  | <dd>Any calling convention may be specified by number, allowing | 
|  | target-specific calling conventions to be used.  Target specific calling | 
|  | conventions start at 64.</dd> | 
|  | </dl> | 
|  |  | 
|  | <p>More calling conventions can be added/defined on an as-needed basis, to | 
|  | support Pascal conventions or any other well-known target-independent | 
|  | convention.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <h3> | 
|  | <a name="visibility">Visibility Styles</a> | 
|  | </h3> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>All Global Variables and Functions have one of the following visibility | 
|  | styles:</p> | 
|  |  | 
|  | <dl> | 
|  | <dt><b>"<tt>default</tt>" - Default style</b>:</dt> | 
|  | <dd>On targets that use the ELF object file format, default visibility means | 
|  | that the declaration is visible to other modules and, in shared libraries, | 
|  | means that the declared entity may be overridden. On Darwin, default | 
|  | visibility means that the declaration is visible to other modules. Default | 
|  | visibility corresponds to "external linkage" in the language.</dd> | 
|  |  | 
|  | <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt> | 
|  | <dd>Two declarations of an object with hidden visibility refer to the same | 
|  | object if they are in the same shared object. Usually, hidden visibility | 
|  | indicates that the symbol will not be placed into the dynamic symbol | 
|  | table, so no other module (executable or shared library) can reference it | 
|  | directly.</dd> | 
|  |  | 
|  | <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt> | 
|  | <dd>On ELF, protected visibility indicates that the symbol will be placed in | 
|  | the dynamic symbol table, but that references within the defining module | 
|  | will bind to the local symbol. That is, the symbol cannot be overridden by | 
|  | another module.</dd> | 
|  | </dl> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <h3> | 
|  | <a name="namedtypes">Named Types</a> | 
|  | </h3> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>LLVM IR allows you to specify name aliases for certain types.  This can make | 
|  | it easier to read the IR and make the IR more condensed (particularly when | 
|  | recursive types are involved).  An example of a name specification is:</p> | 
|  |  | 
|  | <pre class="doc_code"> | 
|  | %mytype = type { %mytype*, i32 } | 
|  | </pre> | 
|  |  | 
|  | <p>You may give a name to any <a href="#typesystem">type</a> except | 
|  | "<a href="#t_void">void</a>".  Type name aliases may be used anywhere a type | 
|  | is expected with the syntax "%mytype".</p> | 
|  |  | 
|  | <p>Note that type names are aliases for the structural type that they indicate, | 
|  | and that you can therefore specify multiple names for the same type.  This | 
|  | often leads to confusing behavior when dumping out a .ll file.  Since LLVM IR | 
|  | uses structural typing, the name is not part of the type.  When printing out | 
|  | LLVM IR, the printer will pick <em>one name</em> to render all types of a | 
|  | particular shape.  This means that if you have code where two different | 
|  | source types end up having the same LLVM type, that the dumper will sometimes | 
|  | print the "wrong" or unexpected type.  This is an important design point and | 
|  | isn't going to change.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <h3> | 
|  | <a name="globalvars">Global Variables</a> | 
|  | </h3> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>Global variables define regions of memory allocated at compilation time | 
|  | instead of run-time.  Global variables may optionally be initialized, may | 
|  | have an explicit section to be placed in, and may have an optional explicit | 
|  | alignment specified.  A variable may be defined as "thread_local", which | 
|  | means that it will not be shared by threads (each thread will have a | 
|  | separated copy of the variable).  A variable may be defined as a global | 
|  | "constant," which indicates that the contents of the variable | 
|  | will <b>never</b> be modified (enabling better optimization, allowing the | 
|  | global data to be placed in the read-only section of an executable, etc). | 
|  | Note that variables that need runtime initialization cannot be marked | 
|  | "constant" as there is a store to the variable.</p> | 
|  |  | 
|  | <p>LLVM explicitly allows <em>declarations</em> of global variables to be marked | 
|  | constant, even if the final definition of the global is not.  This capability | 
|  | can be used to enable slightly better optimization of the program, but | 
|  | requires the language definition to guarantee that optimizations based on the | 
|  | 'constantness' are valid for the translation units that do not include the | 
|  | definition.</p> | 
|  |  | 
|  | <p>As SSA values, global variables define pointer values that are in scope | 
|  | (i.e. they dominate) all basic blocks in the program.  Global variables | 
|  | always define a pointer to their "content" type because they describe a | 
|  | region of memory, and all memory objects in LLVM are accessed through | 
|  | pointers.</p> | 
|  |  | 
|  | <p>Global variables can be marked with <tt>unnamed_addr</tt> which indicates | 
|  | that the address is not significant, only the content. Constants marked | 
|  | like this can be merged with other constants if they have the same | 
|  | initializer. Note that a constant with significant address <em>can</em> | 
|  | be merged with a <tt>unnamed_addr</tt> constant, the result being a | 
|  | constant whose address is significant.</p> | 
|  |  | 
|  | <p>A global variable may be declared to reside in a target-specific numbered | 
|  | address space. For targets that support them, address spaces may affect how | 
|  | optimizations are performed and/or what target instructions are used to | 
|  | access the variable. The default address space is zero. The address space | 
|  | qualifier must precede any other attributes.</p> | 
|  |  | 
|  | <p>LLVM allows an explicit section to be specified for globals.  If the target | 
|  | supports it, it will emit globals to the section specified.</p> | 
|  |  | 
|  | <p>An explicit alignment may be specified for a global, which must be a power | 
|  | of 2.  If not present, or if the alignment is set to zero, the alignment of | 
|  | the global is set by the target to whatever it feels convenient.  If an | 
|  | explicit alignment is specified, the global is forced to have exactly that | 
|  | alignment.  Targets and optimizers are not allowed to over-align the global | 
|  | if the global has an assigned section.  In this case, the extra alignment | 
|  | could be observable: for example, code could assume that the globals are | 
|  | densely packed in their section and try to iterate over them as an array, | 
|  | alignment padding would break this iteration.</p> | 
|  |  | 
|  | <p>For example, the following defines a global in a numbered address space with | 
|  | an initializer, section, and alignment:</p> | 
|  |  | 
|  | <pre class="doc_code"> | 
|  | @G = addrspace(5) constant float 1.0, section "foo", align 4 | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  |  | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <h3> | 
|  | <a name="functionstructure">Functions</a> | 
|  | </h3> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>LLVM function definitions consist of the "<tt>define</tt>" keyword, an | 
|  | optional <a href="#linkage">linkage type</a>, an optional | 
|  | <a href="#visibility">visibility style</a>, an optional | 
|  | <a href="#callingconv">calling convention</a>, | 
|  | an optional <tt>unnamed_addr</tt> attribute, a return type, an optional | 
|  | <a href="#paramattrs">parameter attribute</a> for the return type, a function | 
|  | name, a (possibly empty) argument list (each with optional | 
|  | <a href="#paramattrs">parameter attributes</a>), optional | 
|  | <a href="#fnattrs">function attributes</a>, an optional section, an optional | 
|  | alignment, an optional <a href="#gc">garbage collector name</a>, an opening | 
|  | curly brace, a list of basic blocks, and a closing curly brace.</p> | 
|  |  | 
|  | <p>LLVM function declarations consist of the "<tt>declare</tt>" keyword, an | 
|  | optional <a href="#linkage">linkage type</a>, an optional | 
|  | <a href="#visibility">visibility style</a>, an optional | 
|  | <a href="#callingconv">calling convention</a>, | 
|  | an optional <tt>unnamed_addr</tt> attribute, a return type, an optional | 
|  | <a href="#paramattrs">parameter attribute</a> for the return type, a function | 
|  | name, a possibly empty list of arguments, an optional alignment, and an | 
|  | optional <a href="#gc">garbage collector name</a>.</p> | 
|  |  | 
|  | <p>A function definition contains a list of basic blocks, forming the CFG | 
|  | (Control Flow Graph) for the function.  Each basic block may optionally start | 
|  | with a label (giving the basic block a symbol table entry), contains a list | 
|  | of instructions, and ends with a <a href="#terminators">terminator</a> | 
|  | instruction (such as a branch or function return).</p> | 
|  |  | 
|  | <p>The first basic block in a function is special in two ways: it is immediately | 
|  | executed on entrance to the function, and it is not allowed to have | 
|  | predecessor basic blocks (i.e. there can not be any branches to the entry | 
|  | block of a function).  Because the block can have no predecessors, it also | 
|  | cannot have any <a href="#i_phi">PHI nodes</a>.</p> | 
|  |  | 
|  | <p>LLVM allows an explicit section to be specified for functions.  If the target | 
|  | supports it, it will emit functions to the section specified.</p> | 
|  |  | 
|  | <p>An explicit alignment may be specified for a function.  If not present, or if | 
|  | the alignment is set to zero, the alignment of the function is set by the | 
|  | target to whatever it feels convenient.  If an explicit alignment is | 
|  | specified, the function is forced to have at least that much alignment.  All | 
|  | alignments must be a power of 2.</p> | 
|  |  | 
|  | <p>If the <tt>unnamed_addr</tt> attribute is given, the address is know to not | 
|  | be significant and two identical functions can be merged.</p> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre class="doc_code"> | 
|  | define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>] | 
|  | [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] | 
|  | <ResultType> @<FunctionName> ([argument list]) | 
|  | [<a href="#fnattrs">fn Attrs</a>] [section "name"] [align N] | 
|  | [<a href="#gc">gc</a>] { ... } | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <h3> | 
|  | <a name="aliasstructure">Aliases</a> | 
|  | </h3> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>Aliases act as "second name" for the aliasee value (which can be either | 
|  | function, global variable, another alias or bitcast of global value). Aliases | 
|  | may have an optional <a href="#linkage">linkage type</a>, and an | 
|  | optional <a href="#visibility">visibility style</a>.</p> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre class="doc_code"> | 
|  | @<Name> = alias [Linkage] [Visibility] <AliaseeTy> @<Aliasee> | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <h3> | 
|  | <a name="namedmetadatastructure">Named Metadata</a> | 
|  | </h3> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>Named metadata is a collection of metadata. <a href="#metadata">Metadata | 
|  | nodes</a> (but not metadata strings) are the only valid operands for | 
|  | a named metadata.</p> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre class="doc_code"> | 
|  | ; Some unnamed metadata nodes, which are referenced by the named metadata. | 
|  | !0 = metadata !{metadata !"zero"} | 
|  | !1 = metadata !{metadata !"one"} | 
|  | !2 = metadata !{metadata !"two"} | 
|  | ; A named metadata. | 
|  | !name = !{!0, !1, !2} | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <h3> | 
|  | <a name="paramattrs">Parameter Attributes</a> | 
|  | </h3> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>The return type and each parameter of a function type may have a set of | 
|  | <i>parameter attributes</i> associated with them. Parameter attributes are | 
|  | used to communicate additional information about the result or parameters of | 
|  | a function. Parameter attributes are considered to be part of the function, | 
|  | not of the function type, so functions with different parameter attributes | 
|  | can have the same function type.</p> | 
|  |  | 
|  | <p>Parameter attributes are simple keywords that follow the type specified. If | 
|  | multiple parameter attributes are needed, they are space separated. For | 
|  | example:</p> | 
|  |  | 
|  | <pre class="doc_code"> | 
|  | declare i32 @printf(i8* noalias nocapture, ...) | 
|  | declare i32 @atoi(i8 zeroext) | 
|  | declare signext i8 @returns_signed_char() | 
|  | </pre> | 
|  |  | 
|  | <p>Note that any attributes for the function result (<tt>nounwind</tt>, | 
|  | <tt>readonly</tt>) come immediately after the argument list.</p> | 
|  |  | 
|  | <p>Currently, only the following parameter attributes are defined:</p> | 
|  |  | 
|  | <dl> | 
|  | <dt><tt><b>zeroext</b></tt></dt> | 
|  | <dd>This indicates to the code generator that the parameter or return value | 
|  | should be zero-extended to the extent required by the target's ABI (which | 
|  | is usually 32-bits, but is 8-bits for a i1 on x86-64) by the caller (for a | 
|  | parameter) or the callee (for a return value).</dd> | 
|  |  | 
|  | <dt><tt><b>signext</b></tt></dt> | 
|  | <dd>This indicates to the code generator that the parameter or return value | 
|  | should be sign-extended to the extent required by the target's ABI (which | 
|  | is usually 32-bits) by the caller (for a parameter) or the callee (for a | 
|  | return value).</dd> | 
|  |  | 
|  | <dt><tt><b>inreg</b></tt></dt> | 
|  | <dd>This indicates that this parameter or return value should be treated in a | 
|  | special target-dependent fashion during while emitting code for a function | 
|  | call or return (usually, by putting it in a register as opposed to memory, | 
|  | though some targets use it to distinguish between two different kinds of | 
|  | registers).  Use of this attribute is target-specific.</dd> | 
|  |  | 
|  | <dt><tt><b><a name="byval">byval</a></b></tt></dt> | 
|  | <dd><p>This indicates that the pointer parameter should really be passed by | 
|  | value to the function.  The attribute implies that a hidden copy of the | 
|  | pointee | 
|  | is made between the caller and the callee, so the callee is unable to | 
|  | modify the value in the callee.  This attribute is only valid on LLVM | 
|  | pointer arguments.  It is generally used to pass structs and arrays by | 
|  | value, but is also valid on pointers to scalars.  The copy is considered | 
|  | to belong to the caller not the callee (for example, | 
|  | <tt><a href="#readonly">readonly</a></tt> functions should not write to | 
|  | <tt>byval</tt> parameters). This is not a valid attribute for return | 
|  | values.</p> | 
|  |  | 
|  | <p>The byval attribute also supports specifying an alignment with | 
|  | the align attribute.  It indicates the alignment of the stack slot to | 
|  | form and the known alignment of the pointer specified to the call site. If | 
|  | the alignment is not specified, then the code generator makes a | 
|  | target-specific assumption.</p></dd> | 
|  |  | 
|  | <dt><tt><b><a name="sret">sret</a></b></tt></dt> | 
|  | <dd>This indicates that the pointer parameter specifies the address of a | 
|  | structure that is the return value of the function in the source program. | 
|  | This pointer must be guaranteed by the caller to be valid: loads and | 
|  | stores to the structure may be assumed by the callee to not to trap.  This | 
|  | may only be applied to the first parameter. This is not a valid attribute | 
|  | for return values. </dd> | 
|  |  | 
|  | <dt><tt><b><a name="noalias">noalias</a></b></tt></dt> | 
|  | <dd>This indicates that pointer values | 
|  | <a href="#pointeraliasing"><i>based</i></a> on the argument or return | 
|  | value do not alias pointer values which are not <i>based</i> on it, | 
|  | ignoring certain "irrelevant" dependencies. | 
|  | For a call to the parent function, dependencies between memory | 
|  | references from before or after the call and from those during the call | 
|  | are "irrelevant" to the <tt>noalias</tt> keyword for the arguments and | 
|  | return value used in that call. | 
|  | The caller shares the responsibility with the callee for ensuring that | 
|  | these requirements are met. | 
|  | For further details, please see the discussion of the NoAlias response in | 
|  | <a href="AliasAnalysis.html#MustMayNo">alias analysis</a>.<br> | 
|  | <br> | 
|  | Note that this definition of <tt>noalias</tt> is intentionally | 
|  | similar to the definition of <tt>restrict</tt> in C99 for function | 
|  | arguments, though it is slightly weaker. | 
|  | <br> | 
|  | For function return values, C99's <tt>restrict</tt> is not meaningful, | 
|  | while LLVM's <tt>noalias</tt> is. | 
|  | </dd> | 
|  |  | 
|  | <dt><tt><b><a name="nocapture">nocapture</a></b></tt></dt> | 
|  | <dd>This indicates that the callee does not make any copies of the pointer | 
|  | that outlive the callee itself. This is not a valid attribute for return | 
|  | values.</dd> | 
|  |  | 
|  | <dt><tt><b><a name="nest">nest</a></b></tt></dt> | 
|  | <dd>This indicates that the pointer parameter can be excised using the | 
|  | <a href="#int_trampoline">trampoline intrinsics</a>. This is not a valid | 
|  | attribute for return values.</dd> | 
|  | </dl> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <h3> | 
|  | <a name="gc">Garbage Collector Names</a> | 
|  | </h3> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>Each function may specify a garbage collector name, which is simply a | 
|  | string:</p> | 
|  |  | 
|  | <pre class="doc_code"> | 
|  | define void @f() gc "name" { ... } | 
|  | </pre> | 
|  |  | 
|  | <p>The compiler declares the supported values of <i>name</i>. Specifying a | 
|  | collector which will cause the compiler to alter its output in order to | 
|  | support the named garbage collection algorithm.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <h3> | 
|  | <a name="fnattrs">Function Attributes</a> | 
|  | </h3> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>Function attributes are set to communicate additional information about a | 
|  | function. Function attributes are considered to be part of the function, not | 
|  | of the function type, so functions with different parameter attributes can | 
|  | have the same function type.</p> | 
|  |  | 
|  | <p>Function attributes are simple keywords that follow the type specified. If | 
|  | multiple attributes are needed, they are space separated. For example:</p> | 
|  |  | 
|  | <pre class="doc_code"> | 
|  | define void @f() noinline { ... } | 
|  | define void @f() alwaysinline { ... } | 
|  | define void @f() alwaysinline optsize { ... } | 
|  | define void @f() optsize { ... } | 
|  | </pre> | 
|  |  | 
|  | <dl> | 
|  | <dt><tt><b>alignstack(<<em>n</em>>)</b></tt></dt> | 
|  | <dd>This attribute indicates that, when emitting the prologue and epilogue, | 
|  | the backend should forcibly align the stack pointer. Specify the | 
|  | desired alignment, which must be a power of two, in parentheses. | 
|  |  | 
|  | <dt><tt><b>alwaysinline</b></tt></dt> | 
|  | <dd>This attribute indicates that the inliner should attempt to inline this | 
|  | function into callers whenever possible, ignoring any active inlining size | 
|  | threshold for this caller.</dd> | 
|  |  | 
|  | <dt><tt><b>nonlazybind</b></tt></dt> | 
|  | <dd>This attribute suppresses lazy symbol binding for the function. This | 
|  | may make calls to the function faster, at the cost of extra program | 
|  | startup time if the function is not called during program startup.</dd> | 
|  |  | 
|  | <dt><tt><b>inlinehint</b></tt></dt> | 
|  | <dd>This attribute indicates that the source code contained a hint that inlining | 
|  | this function is desirable (such as the "inline" keyword in C/C++).  It | 
|  | is just a hint; it imposes no requirements on the inliner.</dd> | 
|  |  | 
|  | <dt><tt><b>naked</b></tt></dt> | 
|  | <dd>This attribute disables prologue / epilogue emission for the function. | 
|  | This can have very system-specific consequences.</dd> | 
|  |  | 
|  | <dt><tt><b>noimplicitfloat</b></tt></dt> | 
|  | <dd>This attributes disables implicit floating point instructions.</dd> | 
|  |  | 
|  | <dt><tt><b>noinline</b></tt></dt> | 
|  | <dd>This attribute indicates that the inliner should never inline this | 
|  | function in any situation. This attribute may not be used together with | 
|  | the <tt>alwaysinline</tt> attribute.</dd> | 
|  |  | 
|  | <dt><tt><b>noredzone</b></tt></dt> | 
|  | <dd>This attribute indicates that the code generator should not use a red | 
|  | zone, even if the target-specific ABI normally permits it.</dd> | 
|  |  | 
|  | <dt><tt><b>noreturn</b></tt></dt> | 
|  | <dd>This function attribute indicates that the function never returns | 
|  | normally.  This produces undefined behavior at runtime if the function | 
|  | ever does dynamically return.</dd> | 
|  |  | 
|  | <dt><tt><b>nounwind</b></tt></dt> | 
|  | <dd>This function attribute indicates that the function never returns with an | 
|  | unwind or exceptional control flow.  If the function does unwind, its | 
|  | runtime behavior is undefined.</dd> | 
|  |  | 
|  | <dt><tt><b>optsize</b></tt></dt> | 
|  | <dd>This attribute suggests that optimization passes and code generator passes | 
|  | make choices that keep the code size of this function low, and otherwise | 
|  | do optimizations specifically to reduce code size.</dd> | 
|  |  | 
|  | <dt><tt><b>readnone</b></tt></dt> | 
|  | <dd>This attribute indicates that the function computes its result (or decides | 
|  | to unwind an exception) based strictly on its arguments, without | 
|  | dereferencing any pointer arguments or otherwise accessing any mutable | 
|  | state (e.g. memory, control registers, etc) visible to caller functions. | 
|  | It does not write through any pointer arguments | 
|  | (including <tt><a href="#byval">byval</a></tt> arguments) and never | 
|  | changes any state visible to callers.  This means that it cannot unwind | 
|  | exceptions by calling the <tt>C++</tt> exception throwing methods, but | 
|  | could use the <tt>unwind</tt> instruction.</dd> | 
|  |  | 
|  | <dt><tt><b><a name="readonly">readonly</a></b></tt></dt> | 
|  | <dd>This attribute indicates that the function does not write through any | 
|  | pointer arguments (including <tt><a href="#byval">byval</a></tt> | 
|  | arguments) or otherwise modify any state (e.g. memory, control registers, | 
|  | etc) visible to caller functions.  It may dereference pointer arguments | 
|  | and read state that may be set in the caller.  A readonly function always | 
|  | returns the same value (or unwinds an exception identically) when called | 
|  | with the same set of arguments and global state.  It cannot unwind an | 
|  | exception by calling the <tt>C++</tt> exception throwing methods, but may | 
|  | use the <tt>unwind</tt> instruction.</dd> | 
|  |  | 
|  | <dt><tt><b><a name="returns_twice">returns_twice</a></b></tt></dt> | 
|  | <dd>This attribute indicates that this function can return twice. The | 
|  | C <code>setjmp</code> is an example of such a function.  The compiler | 
|  | disables some optimizations (like tail calls) in the caller of these | 
|  | functions.</dd> | 
|  |  | 
|  | <dt><tt><b><a name="ssp">ssp</a></b></tt></dt> | 
|  | <dd>This attribute indicates that the function should emit a stack smashing | 
|  | protector. It is in the form of a "canary"—a random value placed on | 
|  | the stack before the local variables that's checked upon return from the | 
|  | function to see if it has been overwritten. A heuristic is used to | 
|  | determine if a function needs stack protectors or not.<br> | 
|  | <br> | 
|  | If a function that has an <tt>ssp</tt> attribute is inlined into a | 
|  | function that doesn't have an <tt>ssp</tt> attribute, then the resulting | 
|  | function will have an <tt>ssp</tt> attribute.</dd> | 
|  |  | 
|  | <dt><tt><b>sspreq</b></tt></dt> | 
|  | <dd>This attribute indicates that the function should <em>always</em> emit a | 
|  | stack smashing protector. This overrides | 
|  | the <tt><a href="#ssp">ssp</a></tt> function attribute.<br> | 
|  | <br> | 
|  | If a function that has an <tt>sspreq</tt> attribute is inlined into a | 
|  | function that doesn't have an <tt>sspreq</tt> attribute or which has | 
|  | an <tt>ssp</tt> attribute, then the resulting function will have | 
|  | an <tt>sspreq</tt> attribute.</dd> | 
|  |  | 
|  | <dt><tt><b><a name="uwtable">uwtable</a></b></tt></dt> | 
|  | <dd>This attribute indicates that the ABI being targeted requires that | 
|  | an unwind table entry be produce for this function even if we can | 
|  | show that no exceptions passes by it. This is normally the case for | 
|  | the ELF x86-64 abi, but it can be disabled for some compilation | 
|  | units.</dd> | 
|  | </dl> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <h3> | 
|  | <a name="moduleasm">Module-Level Inline Assembly</a> | 
|  | </h3> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>Modules may contain "module-level inline asm" blocks, which corresponds to | 
|  | the GCC "file scope inline asm" blocks.  These blocks are internally | 
|  | concatenated by LLVM and treated as a single unit, but may be separated in | 
|  | the <tt>.ll</tt> file if desired.  The syntax is very simple:</p> | 
|  |  | 
|  | <pre class="doc_code"> | 
|  | module asm "inline asm code goes here" | 
|  | module asm "more can go here" | 
|  | </pre> | 
|  |  | 
|  | <p>The strings can contain any character by escaping non-printable characters. | 
|  | The escape sequence used is simply "\xx" where "xx" is the two digit hex code | 
|  | for the number.</p> | 
|  |  | 
|  | <p>The inline asm code is simply printed to the machine code .s file when | 
|  | assembly code is generated.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <h3> | 
|  | <a name="datalayout">Data Layout</a> | 
|  | </h3> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>A module may specify a target specific data layout string that specifies how | 
|  | data is to be laid out in memory. The syntax for the data layout is | 
|  | simply:</p> | 
|  |  | 
|  | <pre class="doc_code"> | 
|  | target datalayout = "<i>layout specification</i>" | 
|  | </pre> | 
|  |  | 
|  | <p>The <i>layout specification</i> consists of a list of specifications | 
|  | separated by the minus sign character ('-').  Each specification starts with | 
|  | a letter and may include other information after the letter to define some | 
|  | aspect of the data layout.  The specifications accepted are as follows:</p> | 
|  |  | 
|  | <dl> | 
|  | <dt><tt>E</tt></dt> | 
|  | <dd>Specifies that the target lays out data in big-endian form. That is, the | 
|  | bits with the most significance have the lowest address location.</dd> | 
|  |  | 
|  | <dt><tt>e</tt></dt> | 
|  | <dd>Specifies that the target lays out data in little-endian form. That is, | 
|  | the bits with the least significance have the lowest address | 
|  | location.</dd> | 
|  |  | 
|  | <dt><tt>S<i>size</i></tt></dt> | 
|  | <dd>Specifies the natural alignment of the stack in bits. Alignment promotion | 
|  | of stack variables is limited to the natural stack alignment to avoid | 
|  | dynamic stack realignment. The stack alignment must be a multiple of | 
|  | 8-bits. If omitted, the natural stack alignment defaults to "unspecified", | 
|  | which does not prevent any alignment promotions.</dd> | 
|  |  | 
|  | <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt> | 
|  | <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and | 
|  | <i>preferred</i> alignments. All sizes are in bits. Specifying | 
|  | the <i>pref</i> alignment is optional. If omitted, the | 
|  | preceding <tt>:</tt> should be omitted too.</dd> | 
|  |  | 
|  | <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt> | 
|  | <dd>This specifies the alignment for an integer type of a given bit | 
|  | <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd> | 
|  |  | 
|  | <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt> | 
|  | <dd>This specifies the alignment for a vector type of a given bit | 
|  | <i>size</i>.</dd> | 
|  |  | 
|  | <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt> | 
|  | <dd>This specifies the alignment for a floating point type of a given bit | 
|  | <i>size</i>. Only values of <i>size</i> that are supported by the target | 
|  | will work.  32 (float) and 64 (double) are supported on all targets; | 
|  | 80 or 128 (different flavors of long double) are also supported on some | 
|  | targets. | 
|  |  | 
|  | <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt> | 
|  | <dd>This specifies the alignment for an aggregate type of a given bit | 
|  | <i>size</i>.</dd> | 
|  |  | 
|  | <dt><tt>s<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt> | 
|  | <dd>This specifies the alignment for a stack object of a given bit | 
|  | <i>size</i>.</dd> | 
|  |  | 
|  | <dt><tt>n<i>size1</i>:<i>size2</i>:<i>size3</i>...</tt></dt> | 
|  | <dd>This specifies a set of native integer widths for the target CPU | 
|  | in bits.  For example, it might contain "n32" for 32-bit PowerPC, | 
|  | "n32:64" for PowerPC 64, or "n8:16:32:64" for X86-64.  Elements of | 
|  | this set are considered to support most general arithmetic | 
|  | operations efficiently.</dd> | 
|  | </dl> | 
|  |  | 
|  | <p>When constructing the data layout for a given target, LLVM starts with a | 
|  | default set of specifications which are then (possibly) overridden by the | 
|  | specifications in the <tt>datalayout</tt> keyword. The default specifications | 
|  | are given in this list:</p> | 
|  |  | 
|  | <ul> | 
|  | <li><tt>E</tt> - big endian</li> | 
|  | <li><tt>p:64:64:64</tt> - 64-bit pointers with 64-bit alignment</li> | 
|  | <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li> | 
|  | <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li> | 
|  | <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li> | 
|  | <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li> | 
|  | <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred | 
|  | alignment of 64-bits</li> | 
|  | <li><tt>f32:32:32</tt> - float is 32-bit aligned</li> | 
|  | <li><tt>f64:64:64</tt> - double is 64-bit aligned</li> | 
|  | <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li> | 
|  | <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li> | 
|  | <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li> | 
|  | <li><tt>s0:64:64</tt> - stack objects are 64-bit aligned</li> | 
|  | </ul> | 
|  |  | 
|  | <p>When LLVM is determining the alignment for a given type, it uses the | 
|  | following rules:</p> | 
|  |  | 
|  | <ol> | 
|  | <li>If the type sought is an exact match for one of the specifications, that | 
|  | specification is used.</li> | 
|  |  | 
|  | <li>If no match is found, and the type sought is an integer type, then the | 
|  | smallest integer type that is larger than the bitwidth of the sought type | 
|  | is used. If none of the specifications are larger than the bitwidth then | 
|  | the the largest integer type is used. For example, given the default | 
|  | specifications above, the i7 type will use the alignment of i8 (next | 
|  | largest) while both i65 and i256 will use the alignment of i64 (largest | 
|  | specified).</li> | 
|  |  | 
|  | <li>If no match is found, and the type sought is a vector type, then the | 
|  | largest vector type that is smaller than the sought vector type will be | 
|  | used as a fall back.  This happens because <128 x double> can be | 
|  | implemented in terms of 64 <2 x double>, for example.</li> | 
|  | </ol> | 
|  |  | 
|  | <p>The function of the data layout string may not be what you expect.  Notably, | 
|  | this is not a specification from the frontend of what alignment the code | 
|  | generator should use.</p> | 
|  |  | 
|  | <p>Instead, if specified, the target data layout is required to match what the | 
|  | ultimate <em>code generator</em> expects.  This string is used by the | 
|  | mid-level optimizers to | 
|  | improve code, and this only works if it matches what the ultimate code | 
|  | generator uses.  If you would like to generate IR that does not embed this | 
|  | target-specific detail into the IR, then you don't have to specify the | 
|  | string.  This will disable some optimizations that require precise layout | 
|  | information, but this also prevents those optimizations from introducing | 
|  | target specificity into the IR.</p> | 
|  |  | 
|  |  | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <h3> | 
|  | <a name="pointeraliasing">Pointer Aliasing Rules</a> | 
|  | </h3> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>Any memory access must be done through a pointer value associated | 
|  | with an address range of the memory access, otherwise the behavior | 
|  | is undefined. Pointer values are associated with address ranges | 
|  | according to the following rules:</p> | 
|  |  | 
|  | <ul> | 
|  | <li>A pointer value is associated with the addresses associated with | 
|  | any value it is <i>based</i> on. | 
|  | <li>An address of a global variable is associated with the address | 
|  | range of the variable's storage.</li> | 
|  | <li>The result value of an allocation instruction is associated with | 
|  | the address range of the allocated storage.</li> | 
|  | <li>A null pointer in the default address-space is associated with | 
|  | no address.</li> | 
|  | <li>An integer constant other than zero or a pointer value returned | 
|  | from a function not defined within LLVM may be associated with address | 
|  | ranges allocated through mechanisms other than those provided by | 
|  | LLVM. Such ranges shall not overlap with any ranges of addresses | 
|  | allocated by mechanisms provided by LLVM.</li> | 
|  | </ul> | 
|  |  | 
|  | <p>A pointer value is <i>based</i> on another pointer value according | 
|  | to the following rules:</p> | 
|  |  | 
|  | <ul> | 
|  | <li>A pointer value formed from a | 
|  | <tt><a href="#i_getelementptr">getelementptr</a></tt> operation | 
|  | is <i>based</i> on the first operand of the <tt>getelementptr</tt>.</li> | 
|  | <li>The result value of a | 
|  | <tt><a href="#i_bitcast">bitcast</a></tt> is <i>based</i> on the operand | 
|  | of the <tt>bitcast</tt>.</li> | 
|  | <li>A pointer value formed by an | 
|  | <tt><a href="#i_inttoptr">inttoptr</a></tt> is <i>based</i> on all | 
|  | pointer values that contribute (directly or indirectly) to the | 
|  | computation of the pointer's value.</li> | 
|  | <li>The "<i>based</i> on" relationship is transitive.</li> | 
|  | </ul> | 
|  |  | 
|  | <p>Note that this definition of <i>"based"</i> is intentionally | 
|  | similar to the definition of <i>"based"</i> in C99, though it is | 
|  | slightly weaker.</p> | 
|  |  | 
|  | <p>LLVM IR does not associate types with memory. The result type of a | 
|  | <tt><a href="#i_load">load</a></tt> merely indicates the size and | 
|  | alignment of the memory from which to load, as well as the | 
|  | interpretation of the value. The first operand type of a | 
|  | <tt><a href="#i_store">store</a></tt> similarly only indicates the size | 
|  | and alignment of the store.</p> | 
|  |  | 
|  | <p>Consequently, type-based alias analysis, aka TBAA, aka | 
|  | <tt>-fstrict-aliasing</tt>, is not applicable to general unadorned | 
|  | LLVM IR. <a href="#metadata">Metadata</a> may be used to encode | 
|  | additional information which specialized optimization passes may use | 
|  | to implement type-based alias analysis.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <h3> | 
|  | <a name="volatile">Volatile Memory Accesses</a> | 
|  | </h3> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>Certain memory accesses, such as <a href="#i_load"><tt>load</tt></a>s, <a | 
|  | href="#i_store"><tt>store</tt></a>s, and <a | 
|  | href="#int_memcpy"><tt>llvm.memcpy</tt></a>s may be marked <tt>volatile</tt>. | 
|  | The optimizers must not change the number of volatile operations or change their | 
|  | order of execution relative to other volatile operations.  The optimizers | 
|  | <i>may</i> change the order of volatile operations relative to non-volatile | 
|  | operations.  This is not Java's "volatile" and has no cross-thread | 
|  | synchronization behavior.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <h3> | 
|  | <a name="memmodel">Memory Model for Concurrent Operations</a> | 
|  | </h3> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>The LLVM IR does not define any way to start parallel threads of execution | 
|  | or to register signal handlers. Nonetheless, there are platform-specific | 
|  | ways to create them, and we define LLVM IR's behavior in their presence. This | 
|  | model is inspired by the C++0x memory model.</p> | 
|  |  | 
|  | <p>For a more informal introduction to this model, see the | 
|  | <a href="Atomics.html">LLVM Atomic Instructions and Concurrency Guide</a>. | 
|  |  | 
|  | <p>We define a <i>happens-before</i> partial order as the least partial order | 
|  | that</p> | 
|  | <ul> | 
|  | <li>Is a superset of single-thread program order, and</li> | 
|  | <li>When a <i>synchronizes-with</i> <tt>b</tt>, includes an edge from | 
|  | <tt>a</tt> to <tt>b</tt>. <i>Synchronizes-with</i> pairs are introduced | 
|  | by platform-specific techniques, like pthread locks, thread | 
|  | creation, thread joining, etc., and by atomic instructions. | 
|  | (See also <a href="#ordering">Atomic Memory Ordering Constraints</a>). | 
|  | </li> | 
|  | </ul> | 
|  |  | 
|  | <p>Note that program order does not introduce <i>happens-before</i> edges | 
|  | between a thread and signals executing inside that thread.</p> | 
|  |  | 
|  | <p>Every (defined) read operation (load instructions, memcpy, atomic | 
|  | loads/read-modify-writes, etc.) <var>R</var> reads a series of bytes written by | 
|  | (defined) write operations (store instructions, atomic | 
|  | stores/read-modify-writes, memcpy, etc.). For the purposes of this section, | 
|  | initialized globals are considered to have a write of the initializer which is | 
|  | atomic and happens before any other read or write of the memory in question. | 
|  | For each byte of a read <var>R</var>, <var>R<sub>byte</sub></var> may see | 
|  | any write to the same byte, except:</p> | 
|  |  | 
|  | <ul> | 
|  | <li>If <var>write<sub>1</sub></var> happens before | 
|  | <var>write<sub>2</sub></var>, and <var>write<sub>2</sub></var> happens | 
|  | before <var>R<sub>byte</sub></var>, then <var>R<sub>byte</sub></var> | 
|  | does not see <var>write<sub>1</sub></var>. | 
|  | <li>If <var>R<sub>byte</sub></var> happens before | 
|  | <var>write<sub>3</sub></var>, then <var>R<sub>byte</sub></var> does not | 
|  | see <var>write<sub>3</sub></var>. | 
|  | </ul> | 
|  |  | 
|  | <p>Given that definition, <var>R<sub>byte</sub></var> is defined as follows: | 
|  | <ul> | 
|  | <li>If <var>R</var> is volatile, the result is target-dependent. (Volatile | 
|  | is supposed to give guarantees which can support | 
|  | <code>sig_atomic_t</code> in C/C++, and may be used for accesses to | 
|  | addresses which do not behave like normal memory.  It does not generally | 
|  | provide cross-thread synchronization.) | 
|  | <li>Otherwise, if there is no write to the same byte that happens before | 
|  | <var>R<sub>byte</sub></var>, <var>R<sub>byte</sub></var> returns | 
|  | <tt>undef</tt> for that byte. | 
|  | <li>Otherwise, if <var>R<sub>byte</sub></var> may see exactly one write, | 
|  | <var>R<sub>byte</sub></var> returns the value written by that | 
|  | write.</li> | 
|  | <li>Otherwise, if <var>R</var> is atomic, and all the writes | 
|  | <var>R<sub>byte</sub></var> may see are atomic, it chooses one of the | 
|  | values written.  See the <a href="#ordering">Atomic Memory Ordering | 
|  | Constraints</a> section for additional constraints on how the choice | 
|  | is made. | 
|  | <li>Otherwise <var>R<sub>byte</sub></var> returns <tt>undef</tt>.</li> | 
|  | </ul> | 
|  |  | 
|  | <p><var>R</var> returns the value composed of the series of bytes it read. | 
|  | This implies that some bytes within the value may be <tt>undef</tt> | 
|  | <b>without</b> the entire value being <tt>undef</tt>. Note that this only | 
|  | defines the semantics of the operation; it doesn't mean that targets will | 
|  | emit more than one instruction to read the series of bytes.</p> | 
|  |  | 
|  | <p>Note that in cases where none of the atomic intrinsics are used, this model | 
|  | places only one restriction on IR transformations on top of what is required | 
|  | for single-threaded execution: introducing a store to a byte which might not | 
|  | otherwise be stored is not allowed in general.  (Specifically, in the case | 
|  | where another thread might write to and read from an address, introducing a | 
|  | store can change a load that may see exactly one write into a load that may | 
|  | see multiple writes.)</p> | 
|  |  | 
|  | <!-- FIXME: This model assumes all targets where concurrency is relevant have | 
|  | a byte-size store which doesn't affect adjacent bytes.  As far as I can tell, | 
|  | none of the backends currently in the tree fall into this category; however, | 
|  | there might be targets which care.  If there are, we want a paragraph | 
|  | like the following: | 
|  |  | 
|  | Targets may specify that stores narrower than a certain width are not | 
|  | available; on such a target, for the purposes of this model, treat any | 
|  | non-atomic write with an alignment or width less than the minimum width | 
|  | as if it writes to the relevant surrounding bytes. | 
|  | --> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <h3> | 
|  | <a name="ordering">Atomic Memory Ordering Constraints</a> | 
|  | </h3> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>Atomic instructions (<a href="#i_cmpxchg"><code>cmpxchg</code></a>, | 
|  | <a href="#i_atomicrmw"><code>atomicrmw</code></a>, | 
|  | <a href="#i_fence"><code>fence</code></a>, | 
|  | <a href="#i_load"><code>atomic load</code></a>, and | 
|  | <a href="#i_store"><code>atomic store</code></a>) take an ordering parameter | 
|  | that determines which other atomic instructions on the same address they | 
|  | <i>synchronize with</i>.  These semantics are borrowed from Java and C++0x, | 
|  | but are somewhat more colloquial. If these descriptions aren't precise enough, | 
|  | check those specs (see spec references in the | 
|  | <a href="Atomic.html#introduction">atomics guide</a>). | 
|  | <a href="#i_fence"><code>fence</code></a> instructions | 
|  | treat these orderings somewhat differently since they don't take an address. | 
|  | See that instruction's documentation for details.</p> | 
|  |  | 
|  | <p>For a simpler introduction to the ordering constraints, see the | 
|  | <a href="Atomics.html">LLVM Atomic Instructions and Concurrency Guide</a>.</p> | 
|  |  | 
|  | <dl> | 
|  | <dt><code>unordered</code></dt> | 
|  | <dd>The set of values that can be read is governed by the happens-before | 
|  | partial order. A value cannot be read unless some operation wrote it. | 
|  | This is intended to provide a guarantee strong enough to model Java's | 
|  | non-volatile shared variables.  This ordering cannot be specified for | 
|  | read-modify-write operations; it is not strong enough to make them atomic | 
|  | in any interesting way.</dd> | 
|  | <dt><code>monotonic</code></dt> | 
|  | <dd>In addition to the guarantees of <code>unordered</code>, there is a single | 
|  | total order for modifications by <code>monotonic</code> operations on each | 
|  | address. All modification orders must be compatible with the happens-before | 
|  | order. There is no guarantee that the modification orders can be combined to | 
|  | a global total order for the whole program (and this often will not be | 
|  | possible). The read in an atomic read-modify-write operation | 
|  | (<a href="#i_cmpxchg"><code>cmpxchg</code></a> and | 
|  | <a href="#i_atomicrmw"><code>atomicrmw</code></a>) | 
|  | reads the value in the modification order immediately before the value it | 
|  | writes. If one atomic read happens before another atomic read of the same | 
|  | address, the later read must see the same value or a later value in the | 
|  | address's modification order. This disallows reordering of | 
|  | <code>monotonic</code> (or stronger) operations on the same address. If an | 
|  | address is written <code>monotonic</code>ally by one thread, and other threads | 
|  | <code>monotonic</code>ally read that address repeatedly, the other threads must | 
|  | eventually see the write. This corresponds to the C++0x/C1x | 
|  | <code>memory_order_relaxed</code>.</dd> | 
|  | <dt><code>acquire</code></dt> | 
|  | <dd>In addition to the guarantees of <code>monotonic</code>, | 
|  | a <i>synchronizes-with</i> edge may be formed with a <code>release</code> | 
|  | operation. This is intended to model C++'s <code>memory_order_acquire</code>.</dd> | 
|  | <dt><code>release</code></dt> | 
|  | <dd>In addition to the guarantees of <code>monotonic</code>, if this operation | 
|  | writes a value which is subsequently read by an <code>acquire</code> operation, | 
|  | it <i>synchronizes-with</i> that operation.  (This isn't a complete | 
|  | description; see the C++0x definition of a release sequence.) This corresponds | 
|  | to the C++0x/C1x <code>memory_order_release</code>.</dd> | 
|  | <dt><code>acq_rel</code> (acquire+release)</dt><dd>Acts as both an | 
|  | <code>acquire</code> and <code>release</code> operation on its address. | 
|  | This corresponds to the C++0x/C1x <code>memory_order_acq_rel</code>.</dd> | 
|  | <dt><code>seq_cst</code> (sequentially consistent)</dt><dd> | 
|  | <dd>In addition to the guarantees of <code>acq_rel</code> | 
|  | (<code>acquire</code> for an operation which only reads, <code>release</code> | 
|  | for an operation which only writes), there is a global total order on all | 
|  | sequentially-consistent operations on all addresses, which is consistent with | 
|  | the <i>happens-before</i> partial order and with the modification orders of | 
|  | all the affected addresses. Each sequentially-consistent read sees the last | 
|  | preceding write to the same address in this global order. This corresponds | 
|  | to the C++0x/C1x <code>memory_order_seq_cst</code> and Java volatile.</dd> | 
|  | </dl> | 
|  |  | 
|  | <p id="singlethread">If an atomic operation is marked <code>singlethread</code>, | 
|  | it only <i>synchronizes with</i> or participates in modification and seq_cst | 
|  | total orderings with other operations running in the same thread (for example, | 
|  | in signal handlers).</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- *********************************************************************** --> | 
|  | <h2><a name="typesystem">Type System</a></h2> | 
|  | <!-- *********************************************************************** --> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>The LLVM type system is one of the most important features of the | 
|  | intermediate representation.  Being typed enables a number of optimizations | 
|  | to be performed on the intermediate representation directly, without having | 
|  | to do extra analyses on the side before the transformation.  A strong type | 
|  | system makes it easier to read the generated code and enables novel analyses | 
|  | and transformations that are not feasible to perform on normal three address | 
|  | code representations.</p> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <h3> | 
|  | <a name="t_classifications">Type Classifications</a> | 
|  | </h3> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>The types fall into a few useful classifications:</p> | 
|  |  | 
|  | <table border="1" cellspacing="0" cellpadding="4"> | 
|  | <tbody> | 
|  | <tr><th>Classification</th><th>Types</th></tr> | 
|  | <tr> | 
|  | <td><a href="#t_integer">integer</a></td> | 
|  | <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td> | 
|  | </tr> | 
|  | <tr> | 
|  | <td><a href="#t_floating">floating point</a></td> | 
|  | <td><tt>half, float, double, x86_fp80, fp128, ppc_fp128</tt></td> | 
|  | </tr> | 
|  | <tr> | 
|  | <td><a name="t_firstclass">first class</a></td> | 
|  | <td><a href="#t_integer">integer</a>, | 
|  | <a href="#t_floating">floating point</a>, | 
|  | <a href="#t_pointer">pointer</a>, | 
|  | <a href="#t_vector">vector</a>, | 
|  | <a href="#t_struct">structure</a>, | 
|  | <a href="#t_array">array</a>, | 
|  | <a href="#t_label">label</a>, | 
|  | <a href="#t_metadata">metadata</a>. | 
|  | </td> | 
|  | </tr> | 
|  | <tr> | 
|  | <td><a href="#t_primitive">primitive</a></td> | 
|  | <td><a href="#t_label">label</a>, | 
|  | <a href="#t_void">void</a>, | 
|  | <a href="#t_integer">integer</a>, | 
|  | <a href="#t_floating">floating point</a>, | 
|  | <a href="#t_x86mmx">x86mmx</a>, | 
|  | <a href="#t_metadata">metadata</a>.</td> | 
|  | </tr> | 
|  | <tr> | 
|  | <td><a href="#t_derived">derived</a></td> | 
|  | <td><a href="#t_array">array</a>, | 
|  | <a href="#t_function">function</a>, | 
|  | <a href="#t_pointer">pointer</a>, | 
|  | <a href="#t_struct">structure</a>, | 
|  | <a href="#t_vector">vector</a>, | 
|  | <a href="#t_opaque">opaque</a>. | 
|  | </td> | 
|  | </tr> | 
|  | </tbody> | 
|  | </table> | 
|  |  | 
|  | <p>The <a href="#t_firstclass">first class</a> types are perhaps the most | 
|  | important.  Values of these types are the only ones which can be produced by | 
|  | instructions.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <h3> | 
|  | <a name="t_primitive">Primitive Types</a> | 
|  | </h3> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>The primitive types are the fundamental building blocks of the LLVM | 
|  | system.</p> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="t_integer">Integer Type</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The integer type is a very simple type that simply specifies an arbitrary | 
|  | bit width for the integer type desired. Any bit width from 1 bit to | 
|  | 2<sup>23</sup>-1 (about 8 million) can be specified.</p> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | iN | 
|  | </pre> | 
|  |  | 
|  | <p>The number of bits the integer will occupy is specified by the <tt>N</tt> | 
|  | value.</p> | 
|  |  | 
|  | <h5>Examples:</h5> | 
|  | <table class="layout"> | 
|  | <tr class="layout"> | 
|  | <td class="left"><tt>i1</tt></td> | 
|  | <td class="left">a single-bit integer.</td> | 
|  | </tr> | 
|  | <tr class="layout"> | 
|  | <td class="left"><tt>i32</tt></td> | 
|  | <td class="left">a 32-bit integer.</td> | 
|  | </tr> | 
|  | <tr class="layout"> | 
|  | <td class="left"><tt>i1942652</tt></td> | 
|  | <td class="left">a really big integer of over 1 million bits.</td> | 
|  | </tr> | 
|  | </table> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="t_floating">Floating Point Types</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <table> | 
|  | <tbody> | 
|  | <tr><th>Type</th><th>Description</th></tr> | 
|  | <tr><td><tt>half</tt></td><td>16-bit floating point value</td></tr> | 
|  | <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr> | 
|  | <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr> | 
|  | <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr> | 
|  | <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr> | 
|  | <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr> | 
|  | </tbody> | 
|  | </table> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="t_x86mmx">X86mmx Type</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The x86mmx type represents a value held in an MMX register on an x86 machine.  The operations allowed on it are quite limited:  parameters and return values, load and store, and bitcast.  User-specified MMX instructions are represented as intrinsic or asm calls with arguments and/or results of this type.  There are no arrays, vectors or constants of this type.</p> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | x86mmx | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="t_void">Void Type</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The void type does not represent any value and has no size.</p> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | void | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="t_label">Label Type</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The label type represents code labels.</p> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | label | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="t_metadata">Metadata Type</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The metadata type represents embedded metadata. No derived types may be | 
|  | created from metadata except for <a href="#t_function">function</a> | 
|  | arguments. | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | metadata | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <h3> | 
|  | <a name="t_derived">Derived Types</a> | 
|  | </h3> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>The real power in LLVM comes from the derived types in the system.  This is | 
|  | what allows a programmer to represent arrays, functions, pointers, and other | 
|  | useful types.  Each of these types contain one or more element types which | 
|  | may be a primitive type, or another derived type.  For example, it is | 
|  | possible to have a two dimensional array, using an array as the element type | 
|  | of another array.</p> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="t_aggregate">Aggregate Types</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>Aggregate Types are a subset of derived types that can contain multiple | 
|  | member types. <a href="#t_array">Arrays</a> and | 
|  | <a href="#t_struct">structs</a> are aggregate types. | 
|  | <a href="#t_vector">Vectors</a> are not considered to be aggregate types.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="t_array">Array Type</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The array type is a very simple derived type that arranges elements | 
|  | sequentially in memory.  The array type requires a size (number of elements) | 
|  | and an underlying data type.</p> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | [<# elements> x <elementtype>] | 
|  | </pre> | 
|  |  | 
|  | <p>The number of elements is a constant integer value; <tt>elementtype</tt> may | 
|  | be any type with a size.</p> | 
|  |  | 
|  | <h5>Examples:</h5> | 
|  | <table class="layout"> | 
|  | <tr class="layout"> | 
|  | <td class="left"><tt>[40 x i32]</tt></td> | 
|  | <td class="left">Array of 40 32-bit integer values.</td> | 
|  | </tr> | 
|  | <tr class="layout"> | 
|  | <td class="left"><tt>[41 x i32]</tt></td> | 
|  | <td class="left">Array of 41 32-bit integer values.</td> | 
|  | </tr> | 
|  | <tr class="layout"> | 
|  | <td class="left"><tt>[4 x i8]</tt></td> | 
|  | <td class="left">Array of 4 8-bit integer values.</td> | 
|  | </tr> | 
|  | </table> | 
|  | <p>Here are some examples of multidimensional arrays:</p> | 
|  | <table class="layout"> | 
|  | <tr class="layout"> | 
|  | <td class="left"><tt>[3 x [4 x i32]]</tt></td> | 
|  | <td class="left">3x4 array of 32-bit integer values.</td> | 
|  | </tr> | 
|  | <tr class="layout"> | 
|  | <td class="left"><tt>[12 x [10 x float]]</tt></td> | 
|  | <td class="left">12x10 array of single precision floating point values.</td> | 
|  | </tr> | 
|  | <tr class="layout"> | 
|  | <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td> | 
|  | <td class="left">2x3x4 array of 16-bit integer  values.</td> | 
|  | </tr> | 
|  | </table> | 
|  |  | 
|  | <p>There is no restriction on indexing beyond the end of the array implied by | 
|  | a static type (though there are restrictions on indexing beyond the bounds | 
|  | of an allocated object in some cases). This means that single-dimension | 
|  | 'variable sized array' addressing can be implemented in LLVM with a zero | 
|  | length array type. An implementation of 'pascal style arrays' in LLVM could | 
|  | use the type "<tt>{ i32, [0 x float]}</tt>", for example.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="t_function">Function Type</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The function type can be thought of as a function signature.  It consists of | 
|  | a return type and a list of formal parameter types. The return type of a | 
|  | function type is a first class type or a void type.</p> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | <returntype> (<parameter list>) | 
|  | </pre> | 
|  |  | 
|  | <p>...where '<tt><parameter list></tt>' is a comma-separated list of type | 
|  | specifiers.  Optionally, the parameter list may include a type <tt>...</tt>, | 
|  | which indicates that the function takes a variable number of arguments. | 
|  | Variable argument functions can access their arguments with | 
|  | the <a href="#int_varargs">variable argument handling intrinsic</a> | 
|  | functions.  '<tt><returntype></tt>' is any type except | 
|  | <a href="#t_label">label</a>.</p> | 
|  |  | 
|  | <h5>Examples:</h5> | 
|  | <table class="layout"> | 
|  | <tr class="layout"> | 
|  | <td class="left"><tt>i32 (i32)</tt></td> | 
|  | <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt> | 
|  | </td> | 
|  | </tr><tr class="layout"> | 
|  | <td class="left"><tt>float (i16, i32 *) * | 
|  | </tt></td> | 
|  | <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes | 
|  | an <tt>i16</tt> and a <a href="#t_pointer">pointer</a> to <tt>i32</tt>, | 
|  | returning <tt>float</tt>. | 
|  | </td> | 
|  | </tr><tr class="layout"> | 
|  | <td class="left"><tt>i32 (i8*, ...)</tt></td> | 
|  | <td class="left">A vararg function that takes at least one | 
|  | <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C), | 
|  | which returns an integer.  This is the signature for <tt>printf</tt> in | 
|  | LLVM. | 
|  | </td> | 
|  | </tr><tr class="layout"> | 
|  | <td class="left"><tt>{i32, i32} (i32)</tt></td> | 
|  | <td class="left">A function taking an <tt>i32</tt>, returning a | 
|  | <a href="#t_struct">structure</a> containing two <tt>i32</tt> values | 
|  | </td> | 
|  | </tr> | 
|  | </table> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="t_struct">Structure Type</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The structure type is used to represent a collection of data members together | 
|  | in memory.  The elements of a structure may be any type that has a size.</p> | 
|  |  | 
|  | <p>Structures in memory are accessed using '<tt><a href="#i_load">load</a></tt>' | 
|  | and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a field | 
|  | with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction. | 
|  | Structures in registers are accessed using the | 
|  | '<tt><a href="#i_extractvalue">extractvalue</a></tt>' and | 
|  | '<tt><a href="#i_insertvalue">insertvalue</a></tt>' instructions.</p> | 
|  |  | 
|  | <p>Structures may optionally be "packed" structures, which indicate that the | 
|  | alignment of the struct is one byte, and that there is no padding between | 
|  | the elements.  In non-packed structs, padding between field types is inserted | 
|  | as defined by the TargetData string in the module, which is required to match | 
|  | what the underlying code generator expects.</p> | 
|  |  | 
|  | <p>Structures can either be "literal" or "identified".  A literal structure is | 
|  | defined inline with other types (e.g. <tt>{i32, i32}*</tt>) whereas identified | 
|  | types are always defined at the top level with a name.  Literal types are | 
|  | uniqued by their contents and can never be recursive or opaque since there is | 
|  | no way to write one.  Identified types can be recursive, can be opaqued, and are | 
|  | never uniqued. | 
|  | </p> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | %T1 = type { <type list> }     <i>; Identified normal struct type</i> | 
|  | %T2 = type <{ <type list> }>   <i>; Identified packed struct type</i> | 
|  | </pre> | 
|  |  | 
|  | <h5>Examples:</h5> | 
|  | <table class="layout"> | 
|  | <tr class="layout"> | 
|  | <td class="left"><tt>{ i32, i32, i32 }</tt></td> | 
|  | <td class="left">A triple of three <tt>i32</tt> values</td> | 
|  | </tr> | 
|  | <tr class="layout"> | 
|  | <td class="left"><tt>{ float, i32 (i32) * }</tt></td> | 
|  | <td class="left">A pair, where the first element is a <tt>float</tt> and the | 
|  | second element is a <a href="#t_pointer">pointer</a> to a | 
|  | <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning | 
|  | an <tt>i32</tt>.</td> | 
|  | </tr> | 
|  | <tr class="layout"> | 
|  | <td class="left"><tt><{ i8, i32 }></tt></td> | 
|  | <td class="left">A packed struct known to be 5 bytes in size.</td> | 
|  | </tr> | 
|  | </table> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="t_opaque">Opaque Structure Types</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>Opaque structure types are used to represent named structure types that do | 
|  | not have a body specified.  This corresponds (for example) to the C notion of | 
|  | a forward declared structure.</p> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | %X = type opaque | 
|  | %52 = type opaque | 
|  | </pre> | 
|  |  | 
|  | <h5>Examples:</h5> | 
|  | <table class="layout"> | 
|  | <tr class="layout"> | 
|  | <td class="left"><tt>opaque</tt></td> | 
|  | <td class="left">An opaque type.</td> | 
|  | </tr> | 
|  | </table> | 
|  |  | 
|  | </div> | 
|  |  | 
|  |  | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="t_pointer">Pointer Type</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The pointer type is used to specify memory locations. | 
|  | Pointers are commonly used to reference objects in memory.</p> | 
|  |  | 
|  | <p>Pointer types may have an optional address space attribute defining the | 
|  | numbered address space where the pointed-to object resides. The default | 
|  | address space is number zero. The semantics of non-zero address | 
|  | spaces are target-specific.</p> | 
|  |  | 
|  | <p>Note that LLVM does not permit pointers to void (<tt>void*</tt>) nor does it | 
|  | permit pointers to labels (<tt>label*</tt>).  Use <tt>i8*</tt> instead.</p> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | <type> * | 
|  | </pre> | 
|  |  | 
|  | <h5>Examples:</h5> | 
|  | <table class="layout"> | 
|  | <tr class="layout"> | 
|  | <td class="left"><tt>[4 x i32]*</tt></td> | 
|  | <td class="left">A <a href="#t_pointer">pointer</a> to <a | 
|  | href="#t_array">array</a> of four <tt>i32</tt> values.</td> | 
|  | </tr> | 
|  | <tr class="layout"> | 
|  | <td class="left"><tt>i32 (i32*) *</tt></td> | 
|  | <td class="left"> A <a href="#t_pointer">pointer</a> to a <a | 
|  | href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an | 
|  | <tt>i32</tt>.</td> | 
|  | </tr> | 
|  | <tr class="layout"> | 
|  | <td class="left"><tt>i32 addrspace(5)*</tt></td> | 
|  | <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value | 
|  | that resides in address space #5.</td> | 
|  | </tr> | 
|  | </table> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="t_vector">Vector Type</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>A vector type is a simple derived type that represents a vector of elements. | 
|  | Vector types are used when multiple primitive data are operated in parallel | 
|  | using a single instruction (SIMD).  A vector type requires a size (number of | 
|  | elements) and an underlying primitive data type.  Vector types are considered | 
|  | <a href="#t_firstclass">first class</a>.</p> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | < <# elements> x <elementtype> > | 
|  | </pre> | 
|  |  | 
|  | <p>The number of elements is a constant integer value larger than 0; elementtype | 
|  | may be any integer or floating point type, or a pointer to these types. | 
|  | Vectors of size zero are not allowed. </p> | 
|  |  | 
|  | <h5>Examples:</h5> | 
|  | <table class="layout"> | 
|  | <tr class="layout"> | 
|  | <td class="left"><tt><4 x i32></tt></td> | 
|  | <td class="left">Vector of 4 32-bit integer values.</td> | 
|  | </tr> | 
|  | <tr class="layout"> | 
|  | <td class="left"><tt><8 x float></tt></td> | 
|  | <td class="left">Vector of 8 32-bit floating-point values.</td> | 
|  | </tr> | 
|  | <tr class="layout"> | 
|  | <td class="left"><tt><2 x i64></tt></td> | 
|  | <td class="left">Vector of 2 64-bit integer values.</td> | 
|  | </tr> | 
|  | <tr class="layout"> | 
|  | <td class="left"><tt><4 x i64*></tt></td> | 
|  | <td class="left">Vector of 4 pointers to 64-bit integer values.</td> | 
|  | </tr> | 
|  | </table> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- *********************************************************************** --> | 
|  | <h2><a name="constants">Constants</a></h2> | 
|  | <!-- *********************************************************************** --> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>LLVM has several different basic types of constants.  This section describes | 
|  | them all and their syntax.</p> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <h3> | 
|  | <a name="simpleconstants">Simple Constants</a> | 
|  | </h3> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <dl> | 
|  | <dt><b>Boolean constants</b></dt> | 
|  | <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid | 
|  | constants of the <tt><a href="#t_integer">i1</a></tt> type.</dd> | 
|  |  | 
|  | <dt><b>Integer constants</b></dt> | 
|  | <dd>Standard integers (such as '4') are constants of | 
|  | the <a href="#t_integer">integer</a> type.  Negative numbers may be used | 
|  | with integer types.</dd> | 
|  |  | 
|  | <dt><b>Floating point constants</b></dt> | 
|  | <dd>Floating point constants use standard decimal notation (e.g. 123.421), | 
|  | exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal | 
|  | notation (see below).  The assembler requires the exact decimal value of a | 
|  | floating-point constant.  For example, the assembler accepts 1.25 but | 
|  | rejects 1.3 because 1.3 is a repeating decimal in binary.  Floating point | 
|  | constants must have a <a href="#t_floating">floating point</a> type. </dd> | 
|  |  | 
|  | <dt><b>Null pointer constants</b></dt> | 
|  | <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant | 
|  | and must be of <a href="#t_pointer">pointer type</a>.</dd> | 
|  | </dl> | 
|  |  | 
|  | <p>The one non-intuitive notation for constants is the hexadecimal form of | 
|  | floating point constants.  For example, the form '<tt>double | 
|  | 0x432ff973cafa8000</tt>' is equivalent to (but harder to read than) | 
|  | '<tt>double 4.5e+15</tt>'.  The only time hexadecimal floating point | 
|  | constants are required (and the only time that they are generated by the | 
|  | disassembler) is when a floating point constant must be emitted but it cannot | 
|  | be represented as a decimal floating point number in a reasonable number of | 
|  | digits.  For example, NaN's, infinities, and other special values are | 
|  | represented in their IEEE hexadecimal format so that assembly and disassembly | 
|  | do not cause any bits to change in the constants.</p> | 
|  |  | 
|  | <p>When using the hexadecimal form, constants of types half, float, and double are | 
|  | represented using the 16-digit form shown above (which matches the IEEE754 | 
|  | representation for double); half and float values must, however, be exactly | 
|  | representable as IEE754 half and single precision, respectively. | 
|  | Hexadecimal format is always used | 
|  | for long double, and there are three forms of long double.  The 80-bit format | 
|  | used by x86 is represented as <tt>0xK</tt> followed by 20 hexadecimal digits. | 
|  | The 128-bit format used by PowerPC (two adjacent doubles) is represented | 
|  | by <tt>0xM</tt> followed by 32 hexadecimal digits.  The IEEE 128-bit format | 
|  | is represented by <tt>0xL</tt> followed by 32 hexadecimal digits; no | 
|  | currently supported target uses this format.  Long doubles will only work if | 
|  | they match the long double format on your target.  All hexadecimal formats | 
|  | are big-endian (sign bit at the left).</p> | 
|  |  | 
|  | <p>There are no constants of type x86mmx.</p> | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <h3> | 
|  | <a name="aggregateconstants"></a> <!-- old anchor --> | 
|  | <a name="complexconstants">Complex Constants</a> | 
|  | </h3> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>Complex constants are a (potentially recursive) combination of simple | 
|  | constants and smaller complex constants.</p> | 
|  |  | 
|  | <dl> | 
|  | <dt><b>Structure constants</b></dt> | 
|  | <dd>Structure constants are represented with notation similar to structure | 
|  | type definitions (a comma separated list of elements, surrounded by braces | 
|  | (<tt>{}</tt>)).  For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>", | 
|  | where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>". | 
|  | Structure constants must have <a href="#t_struct">structure type</a>, and | 
|  | the number and types of elements must match those specified by the | 
|  | type.</dd> | 
|  |  | 
|  | <dt><b>Array constants</b></dt> | 
|  | <dd>Array constants are represented with notation similar to array type | 
|  | definitions (a comma separated list of elements, surrounded by square | 
|  | brackets (<tt>[]</tt>)).  For example: "<tt>[ i32 42, i32 11, i32 74 | 
|  | ]</tt>".  Array constants must have <a href="#t_array">array type</a>, and | 
|  | the number and types of elements must match those specified by the | 
|  | type.</dd> | 
|  |  | 
|  | <dt><b>Vector constants</b></dt> | 
|  | <dd>Vector constants are represented with notation similar to vector type | 
|  | definitions (a comma separated list of elements, surrounded by | 
|  | less-than/greater-than's (<tt><></tt>)).  For example: "<tt>< i32 | 
|  | 42, i32 11, i32 74, i32 100 ></tt>".  Vector constants must | 
|  | have <a href="#t_vector">vector type</a>, and the number and types of | 
|  | elements must match those specified by the type.</dd> | 
|  |  | 
|  | <dt><b>Zero initialization</b></dt> | 
|  | <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a | 
|  | value to zero of <em>any</em> type, including scalar and | 
|  | <a href="#t_aggregate">aggregate</a> types. | 
|  | This is often used to avoid having to print large zero initializers | 
|  | (e.g. for large arrays) and is always exactly equivalent to using explicit | 
|  | zero initializers.</dd> | 
|  |  | 
|  | <dt><b>Metadata node</b></dt> | 
|  | <dd>A metadata node is a structure-like constant with | 
|  | <a href="#t_metadata">metadata type</a>.  For example: "<tt>metadata !{ | 
|  | i32 0, metadata !"test" }</tt>".  Unlike other constants that are meant to | 
|  | be interpreted as part of the instruction stream, metadata is a place to | 
|  | attach additional information such as debug info.</dd> | 
|  | </dl> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <h3> | 
|  | <a name="globalconstants">Global Variable and Function Addresses</a> | 
|  | </h3> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>The addresses of <a href="#globalvars">global variables</a> | 
|  | and <a href="#functionstructure">functions</a> are always implicitly valid | 
|  | (link-time) constants.  These constants are explicitly referenced when | 
|  | the <a href="#identifiers">identifier for the global</a> is used and always | 
|  | have <a href="#t_pointer">pointer</a> type. For example, the following is a | 
|  | legal LLVM file:</p> | 
|  |  | 
|  | <pre class="doc_code"> | 
|  | @X = global i32 17 | 
|  | @Y = global i32 42 | 
|  | @Z = global [2 x i32*] [ i32* @X, i32* @Y ] | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <h3> | 
|  | <a name="undefvalues">Undefined Values</a> | 
|  | </h3> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>The string '<tt>undef</tt>' can be used anywhere a constant is expected, and | 
|  | indicates that the user of the value may receive an unspecified bit-pattern. | 
|  | Undefined values may be of any type (other than '<tt>label</tt>' | 
|  | or '<tt>void</tt>') and be used anywhere a constant is permitted.</p> | 
|  |  | 
|  | <p>Undefined values are useful because they indicate to the compiler that the | 
|  | program is well defined no matter what value is used.  This gives the | 
|  | compiler more freedom to optimize.  Here are some examples of (potentially | 
|  | surprising) transformations that are valid (in pseudo IR):</p> | 
|  |  | 
|  |  | 
|  | <pre class="doc_code"> | 
|  | %A = add %X, undef | 
|  | %B = sub %X, undef | 
|  | %C = xor %X, undef | 
|  | Safe: | 
|  | %A = undef | 
|  | %B = undef | 
|  | %C = undef | 
|  | </pre> | 
|  |  | 
|  | <p>This is safe because all of the output bits are affected by the undef bits. | 
|  | Any output bit can have a zero or one depending on the input bits.</p> | 
|  |  | 
|  | <pre class="doc_code"> | 
|  | %A = or %X, undef | 
|  | %B = and %X, undef | 
|  | Safe: | 
|  | %A = -1 | 
|  | %B = 0 | 
|  | Unsafe: | 
|  | %A = undef | 
|  | %B = undef | 
|  | </pre> | 
|  |  | 
|  | <p>These logical operations have bits that are not always affected by the input. | 
|  | For example, if <tt>%X</tt> has a zero bit, then the output of the | 
|  | '<tt>and</tt>' operation will always be a zero for that bit, no matter what | 
|  | the corresponding bit from the '<tt>undef</tt>' is. As such, it is unsafe to | 
|  | optimize or assume that the result of the '<tt>and</tt>' is '<tt>undef</tt>'. | 
|  | However, it is safe to assume that all bits of the '<tt>undef</tt>' could be | 
|  | 0, and optimize the '<tt>and</tt>' to 0. Likewise, it is safe to assume that | 
|  | all the bits of the '<tt>undef</tt>' operand to the '<tt>or</tt>' could be | 
|  | set, allowing the '<tt>or</tt>' to be folded to -1.</p> | 
|  |  | 
|  | <pre class="doc_code"> | 
|  | %A = select undef, %X, %Y | 
|  | %B = select undef, 42, %Y | 
|  | %C = select %X, %Y, undef | 
|  | Safe: | 
|  | %A = %X     (or %Y) | 
|  | %B = 42     (or %Y) | 
|  | %C = %Y | 
|  | Unsafe: | 
|  | %A = undef | 
|  | %B = undef | 
|  | %C = undef | 
|  | </pre> | 
|  |  | 
|  | <p>This set of examples shows that undefined '<tt>select</tt>' (and conditional | 
|  | branch) conditions can go <em>either way</em>, but they have to come from one | 
|  | of the two operands.  In the <tt>%A</tt> example, if <tt>%X</tt> and | 
|  | <tt>%Y</tt> were both known to have a clear low bit, then <tt>%A</tt> would | 
|  | have to have a cleared low bit. However, in the <tt>%C</tt> example, the | 
|  | optimizer is allowed to assume that the '<tt>undef</tt>' operand could be the | 
|  | same as <tt>%Y</tt>, allowing the whole '<tt>select</tt>' to be | 
|  | eliminated.</p> | 
|  |  | 
|  | <pre class="doc_code"> | 
|  | %A = xor undef, undef | 
|  |  | 
|  | %B = undef | 
|  | %C = xor %B, %B | 
|  |  | 
|  | %D = undef | 
|  | %E = icmp lt %D, 4 | 
|  | %F = icmp gte %D, 4 | 
|  |  | 
|  | Safe: | 
|  | %A = undef | 
|  | %B = undef | 
|  | %C = undef | 
|  | %D = undef | 
|  | %E = undef | 
|  | %F = undef | 
|  | </pre> | 
|  |  | 
|  | <p>This example points out that two '<tt>undef</tt>' operands are not | 
|  | necessarily the same. This can be surprising to people (and also matches C | 
|  | semantics) where they assume that "<tt>X^X</tt>" is always zero, even | 
|  | if <tt>X</tt> is undefined. This isn't true for a number of reasons, but the | 
|  | short answer is that an '<tt>undef</tt>' "variable" can arbitrarily change | 
|  | its value over its "live range".  This is true because the variable doesn't | 
|  | actually <em>have a live range</em>. Instead, the value is logically read | 
|  | from arbitrary registers that happen to be around when needed, so the value | 
|  | is not necessarily consistent over time. In fact, <tt>%A</tt> and <tt>%C</tt> | 
|  | need to have the same semantics or the core LLVM "replace all uses with" | 
|  | concept would not hold.</p> | 
|  |  | 
|  | <pre class="doc_code"> | 
|  | %A = fdiv undef, %X | 
|  | %B = fdiv %X, undef | 
|  | Safe: | 
|  | %A = undef | 
|  | b: unreachable | 
|  | </pre> | 
|  |  | 
|  | <p>These examples show the crucial difference between an <em>undefined | 
|  | value</em> and <em>undefined behavior</em>. An undefined value (like | 
|  | '<tt>undef</tt>') is allowed to have an arbitrary bit-pattern. This means that | 
|  | the <tt>%A</tt> operation can be constant folded to '<tt>undef</tt>', because | 
|  | the '<tt>undef</tt>' could be an SNaN, and <tt>fdiv</tt> is not (currently) | 
|  | defined on SNaN's. However, in the second example, we can make a more | 
|  | aggressive assumption: because the <tt>undef</tt> is allowed to be an | 
|  | arbitrary value, we are allowed to assume that it could be zero. Since a | 
|  | divide by zero has <em>undefined behavior</em>, we are allowed to assume that | 
|  | the operation does not execute at all. This allows us to delete the divide and | 
|  | all code after it. Because the undefined operation "can't happen", the | 
|  | optimizer can assume that it occurs in dead code.</p> | 
|  |  | 
|  | <pre class="doc_code"> | 
|  | a:  store undef -> %X | 
|  | b:  store %X -> undef | 
|  | Safe: | 
|  | a: <deleted> | 
|  | b: unreachable | 
|  | </pre> | 
|  |  | 
|  | <p>These examples reiterate the <tt>fdiv</tt> example: a store <em>of</em> an | 
|  | undefined value can be assumed to not have any effect; we can assume that the | 
|  | value is overwritten with bits that happen to match what was already there. | 
|  | However, a store <em>to</em> an undefined location could clobber arbitrary | 
|  | memory, therefore, it has undefined behavior.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <h3> | 
|  | <a name="poisonvalues">Poison Values</a> | 
|  | </h3> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>Poison values are similar to <a href="#undefvalues">undef values</a>, however | 
|  | they also represent the fact that an instruction or constant expression which | 
|  | cannot evoke side effects has nevertheless detected a condition which results | 
|  | in undefined behavior.</p> | 
|  |  | 
|  | <p>There is currently no way of representing a poison value in the IR; they | 
|  | only exist when produced by operations such as | 
|  | <a href="#i_add"><tt>add</tt></a> with the <tt>nsw</tt> flag.</p> | 
|  |  | 
|  | <p>Poison value behavior is defined in terms of value <i>dependence</i>:</p> | 
|  |  | 
|  | <ul> | 
|  | <li>Values other than <a href="#i_phi"><tt>phi</tt></a> nodes depend on | 
|  | their operands.</li> | 
|  |  | 
|  | <li><a href="#i_phi"><tt>Phi</tt></a> nodes depend on the operand corresponding | 
|  | to their dynamic predecessor basic block.</li> | 
|  |  | 
|  | <li>Function arguments depend on the corresponding actual argument values in | 
|  | the dynamic callers of their functions.</li> | 
|  |  | 
|  | <li><a href="#i_call"><tt>Call</tt></a> instructions depend on the | 
|  | <a href="#i_ret"><tt>ret</tt></a> instructions that dynamically transfer | 
|  | control back to them.</li> | 
|  |  | 
|  | <li><a href="#i_invoke"><tt>Invoke</tt></a> instructions depend on the | 
|  | <a href="#i_ret"><tt>ret</tt></a>, <a href="#i_unwind"><tt>unwind</tt></a>, | 
|  | or exception-throwing call instructions that dynamically transfer control | 
|  | back to them.</li> | 
|  |  | 
|  | <li>Non-volatile loads and stores depend on the most recent stores to all of the | 
|  | referenced memory addresses, following the order in the IR | 
|  | (including loads and stores implied by intrinsics such as | 
|  | <a href="#int_memcpy"><tt>@llvm.memcpy</tt></a>.)</li> | 
|  |  | 
|  | <!-- TODO: In the case of multiple threads, this only applies if the store | 
|  | "happens-before" the load or store. --> | 
|  |  | 
|  | <!-- TODO: floating-point exception state --> | 
|  |  | 
|  | <li>An instruction with externally visible side effects depends on the most | 
|  | recent preceding instruction with externally visible side effects, following | 
|  | the order in the IR. (This includes | 
|  | <a href="#volatile">volatile operations</a>.)</li> | 
|  |  | 
|  | <li>An instruction <i>control-depends</i> on a | 
|  | <a href="#terminators">terminator instruction</a> | 
|  | if the terminator instruction has multiple successors and the instruction | 
|  | is always executed when control transfers to one of the successors, and | 
|  | may not be executed when control is transferred to another.</li> | 
|  |  | 
|  | <li>Additionally, an instruction also <i>control-depends</i> on a terminator | 
|  | instruction if the set of instructions it otherwise depends on would be | 
|  | different if the terminator had transferred control to a different | 
|  | successor.</li> | 
|  |  | 
|  | <li>Dependence is transitive.</li> | 
|  |  | 
|  | </ul> | 
|  |  | 
|  | <p>Poison Values have the same behavior as <a href="#undefvalues">undef values</a>, | 
|  | with the additional affect that any instruction which has a <i>dependence</i> | 
|  | on a poison value has undefined behavior.</p> | 
|  |  | 
|  | <p>Here are some examples:</p> | 
|  |  | 
|  | <pre class="doc_code"> | 
|  | entry: | 
|  | %poison = sub nuw i32 0, 1           ; Results in a poison value. | 
|  | %still_poison = and i32 %poison, 0   ; 0, but also poison. | 
|  | %poison_yet_again = getelementptr i32* @h, i32 %still_poison | 
|  | store i32 0, i32* %poison_yet_again  ; memory at @h[0] is poisoned | 
|  |  | 
|  | store i32 %poison, i32* @g           ; Poison value stored to memory. | 
|  | %poison2 = load i32* @g              ; Poison value loaded back from memory. | 
|  |  | 
|  | store volatile i32 %poison, i32* @g  ; External observation; undefined behavior. | 
|  |  | 
|  | %narrowaddr = bitcast i32* @g to i16* | 
|  | %wideaddr = bitcast i32* @g to i64* | 
|  | %poison3 = load i16* %narrowaddr     ; Returns a poison value. | 
|  | %poison4 = load i64* %wideaddr       ; Returns a poison value. | 
|  |  | 
|  | %cmp = icmp slt i32 %poison, 0       ; Returns a poison value. | 
|  | br i1 %cmp, label %true, label %end  ; Branch to either destination. | 
|  |  | 
|  | true: | 
|  | store volatile i32 0, i32* @g        ; This is control-dependent on %cmp, so | 
|  | ; it has undefined behavior. | 
|  | br label %end | 
|  |  | 
|  | end: | 
|  | %p = phi i32 [ 0, %entry ], [ 1, %true ] | 
|  | ; Both edges into this PHI are | 
|  | ; control-dependent on %cmp, so this | 
|  | ; always results in a poison value. | 
|  |  | 
|  | store volatile i32 0, i32* @g        ; This would depend on the store in %true | 
|  | ; if %cmp is true, or the store in %entry | 
|  | ; otherwise, so this is undefined behavior. | 
|  |  | 
|  | br i1 %cmp, label %second_true, label %second_end | 
|  | ; The same branch again, but this time the | 
|  | ; true block doesn't have side effects. | 
|  |  | 
|  | second_true: | 
|  | ; No side effects! | 
|  | ret void | 
|  |  | 
|  | second_end: | 
|  | store volatile i32 0, i32* @g        ; This time, the instruction always depends | 
|  | ; on the store in %end. Also, it is | 
|  | ; control-equivalent to %end, so this is | 
|  | ; well-defined (ignoring earlier undefined | 
|  | ; behavior in this example). | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <h3> | 
|  | <a name="blockaddress">Addresses of Basic Blocks</a> | 
|  | </h3> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p><b><tt>blockaddress(@function, %block)</tt></b></p> | 
|  |  | 
|  | <p>The '<tt>blockaddress</tt>' constant computes the address of the specified | 
|  | basic block in the specified function, and always has an i8* type.  Taking | 
|  | the address of the entry block is illegal.</p> | 
|  |  | 
|  | <p>This value only has defined behavior when used as an operand to the | 
|  | '<a href="#i_indirectbr"><tt>indirectbr</tt></a>' instruction, or for | 
|  | comparisons against null. Pointer equality tests between labels addresses | 
|  | results in undefined behavior — though, again, comparison against null | 
|  | is ok, and no label is equal to the null pointer. This may be passed around | 
|  | as an opaque pointer sized value as long as the bits are not inspected. This | 
|  | allows <tt>ptrtoint</tt> and arithmetic to be performed on these values so | 
|  | long as the original value is reconstituted before the <tt>indirectbr</tt> | 
|  | instruction.</p> | 
|  |  | 
|  | <p>Finally, some targets may provide defined semantics when using the value as | 
|  | the operand to an inline assembly, but that is target specific.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <h3> | 
|  | <a name="constantexprs">Constant Expressions</a> | 
|  | </h3> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>Constant expressions are used to allow expressions involving other constants | 
|  | to be used as constants.  Constant expressions may be of | 
|  | any <a href="#t_firstclass">first class</a> type and may involve any LLVM | 
|  | operation that does not have side effects (e.g. load and call are not | 
|  | supported). The following is the syntax for constant expressions:</p> | 
|  |  | 
|  | <dl> | 
|  | <dt><b><tt>trunc (CST to TYPE)</tt></b></dt> | 
|  | <dd>Truncate a constant to another type. The bit size of CST must be larger | 
|  | than the bit size of TYPE. Both types must be integers.</dd> | 
|  |  | 
|  | <dt><b><tt>zext (CST to TYPE)</tt></b></dt> | 
|  | <dd>Zero extend a constant to another type. The bit size of CST must be | 
|  | smaller than the bit size of TYPE.  Both types must be integers.</dd> | 
|  |  | 
|  | <dt><b><tt>sext (CST to TYPE)</tt></b></dt> | 
|  | <dd>Sign extend a constant to another type. The bit size of CST must be | 
|  | smaller than the bit size of TYPE.  Both types must be integers.</dd> | 
|  |  | 
|  | <dt><b><tt>fptrunc (CST to TYPE)</tt></b></dt> | 
|  | <dd>Truncate a floating point constant to another floating point type. The | 
|  | size of CST must be larger than the size of TYPE. Both types must be | 
|  | floating point.</dd> | 
|  |  | 
|  | <dt><b><tt>fpext (CST to TYPE)</tt></b></dt> | 
|  | <dd>Floating point extend a constant to another type. The size of CST must be | 
|  | smaller or equal to the size of TYPE. Both types must be floating | 
|  | point.</dd> | 
|  |  | 
|  | <dt><b><tt>fptoui (CST to TYPE)</tt></b></dt> | 
|  | <dd>Convert a floating point constant to the corresponding unsigned integer | 
|  | constant. TYPE must be a scalar or vector integer type. CST must be of | 
|  | scalar or vector floating point type. Both CST and TYPE must be scalars, | 
|  | or vectors of the same number of elements. If the value won't fit in the | 
|  | integer type, the results are undefined.</dd> | 
|  |  | 
|  | <dt><b><tt>fptosi (CST to TYPE)</tt></b></dt> | 
|  | <dd>Convert a floating point constant to the corresponding signed integer | 
|  | constant.  TYPE must be a scalar or vector integer type. CST must be of | 
|  | scalar or vector floating point type. Both CST and TYPE must be scalars, | 
|  | or vectors of the same number of elements. If the value won't fit in the | 
|  | integer type, the results are undefined.</dd> | 
|  |  | 
|  | <dt><b><tt>uitofp (CST to TYPE)</tt></b></dt> | 
|  | <dd>Convert an unsigned integer constant to the corresponding floating point | 
|  | constant. TYPE must be a scalar or vector floating point type. CST must be | 
|  | of scalar or vector integer type. Both CST and TYPE must be scalars, or | 
|  | vectors of the same number of elements. If the value won't fit in the | 
|  | floating point type, the results are undefined.</dd> | 
|  |  | 
|  | <dt><b><tt>sitofp (CST to TYPE)</tt></b></dt> | 
|  | <dd>Convert a signed integer constant to the corresponding floating point | 
|  | constant. TYPE must be a scalar or vector floating point type. CST must be | 
|  | of scalar or vector integer type. Both CST and TYPE must be scalars, or | 
|  | vectors of the same number of elements. If the value won't fit in the | 
|  | floating point type, the results are undefined.</dd> | 
|  |  | 
|  | <dt><b><tt>ptrtoint (CST to TYPE)</tt></b></dt> | 
|  | <dd>Convert a pointer typed constant to the corresponding integer constant | 
|  | <tt>TYPE</tt> must be an integer type. <tt>CST</tt> must be of pointer | 
|  | type. The <tt>CST</tt> value is zero extended, truncated, or unchanged to | 
|  | make it fit in <tt>TYPE</tt>.</dd> | 
|  |  | 
|  | <dt><b><tt>inttoptr (CST to TYPE)</tt></b></dt> | 
|  | <dd>Convert a integer constant to a pointer constant.  TYPE must be a pointer | 
|  | type.  CST must be of integer type. The CST value is zero extended, | 
|  | truncated, or unchanged to make it fit in a pointer size. This one is | 
|  | <i>really</i> dangerous!</dd> | 
|  |  | 
|  | <dt><b><tt>bitcast (CST to TYPE)</tt></b></dt> | 
|  | <dd>Convert a constant, CST, to another TYPE. The constraints of the operands | 
|  | are the same as those for the <a href="#i_bitcast">bitcast | 
|  | instruction</a>.</dd> | 
|  |  | 
|  | <dt><b><tt>getelementptr (CSTPTR, IDX0, IDX1, ...)</tt></b></dt> | 
|  | <dt><b><tt>getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)</tt></b></dt> | 
|  | <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on | 
|  | constants.  As with the <a href="#i_getelementptr">getelementptr</a> | 
|  | instruction, the index list may have zero or more indexes, which are | 
|  | required to make sense for the type of "CSTPTR".</dd> | 
|  |  | 
|  | <dt><b><tt>select (COND, VAL1, VAL2)</tt></b></dt> | 
|  | <dd>Perform the <a href="#i_select">select operation</a> on constants.</dd> | 
|  |  | 
|  | <dt><b><tt>icmp COND (VAL1, VAL2)</tt></b></dt> | 
|  | <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd> | 
|  |  | 
|  | <dt><b><tt>fcmp COND (VAL1, VAL2)</tt></b></dt> | 
|  | <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd> | 
|  |  | 
|  | <dt><b><tt>extractelement (VAL, IDX)</tt></b></dt> | 
|  | <dd>Perform the <a href="#i_extractelement">extractelement operation</a> on | 
|  | constants.</dd> | 
|  |  | 
|  | <dt><b><tt>insertelement (VAL, ELT, IDX)</tt></b></dt> | 
|  | <dd>Perform the <a href="#i_insertelement">insertelement operation</a> on | 
|  | constants.</dd> | 
|  |  | 
|  | <dt><b><tt>shufflevector (VEC1, VEC2, IDXMASK)</tt></b></dt> | 
|  | <dd>Perform the <a href="#i_shufflevector">shufflevector operation</a> on | 
|  | constants.</dd> | 
|  |  | 
|  | <dt><b><tt>extractvalue (VAL, IDX0, IDX1, ...)</tt></b></dt> | 
|  | <dd>Perform the <a href="#i_extractvalue">extractvalue operation</a> on | 
|  | constants. The index list is interpreted in a similar manner as indices in | 
|  | a '<a href="#i_getelementptr">getelementptr</a>' operation. At least one | 
|  | index value must be specified.</dd> | 
|  |  | 
|  | <dt><b><tt>insertvalue (VAL, ELT, IDX0, IDX1, ...)</tt></b></dt> | 
|  | <dd>Perform the <a href="#i_insertvalue">insertvalue operation</a> on | 
|  | constants. The index list is interpreted in a similar manner as indices in | 
|  | a '<a href="#i_getelementptr">getelementptr</a>' operation. At least one | 
|  | index value must be specified.</dd> | 
|  |  | 
|  | <dt><b><tt>OPCODE (LHS, RHS)</tt></b></dt> | 
|  | <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may | 
|  | be any of the <a href="#binaryops">binary</a> | 
|  | or <a href="#bitwiseops">bitwise binary</a> operations.  The constraints | 
|  | on operands are the same as those for the corresponding instruction | 
|  | (e.g. no bitwise operations on floating point values are allowed).</dd> | 
|  | </dl> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- *********************************************************************** --> | 
|  | <h2><a name="othervalues">Other Values</a></h2> | 
|  | <!-- *********************************************************************** --> | 
|  | <div> | 
|  | <!-- ======================================================================= --> | 
|  | <h3> | 
|  | <a name="inlineasm">Inline Assembler Expressions</a> | 
|  | </h3> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>LLVM supports inline assembler expressions (as opposed | 
|  | to <a href="#moduleasm">Module-Level Inline Assembly</a>) through the use of | 
|  | a special value.  This value represents the inline assembler as a string | 
|  | (containing the instructions to emit), a list of operand constraints (stored | 
|  | as a string), a flag that indicates whether or not the inline asm | 
|  | expression has side effects, and a flag indicating whether the function | 
|  | containing the asm needs to align its stack conservatively.  An example | 
|  | inline assembler expression is:</p> | 
|  |  | 
|  | <pre class="doc_code"> | 
|  | i32 (i32) asm "bswap $0", "=r,r" | 
|  | </pre> | 
|  |  | 
|  | <p>Inline assembler expressions may <b>only</b> be used as the callee operand of | 
|  | a <a href="#i_call"><tt>call</tt> instruction</a>.  Thus, typically we | 
|  | have:</p> | 
|  |  | 
|  | <pre class="doc_code"> | 
|  | %X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y) | 
|  | </pre> | 
|  |  | 
|  | <p>Inline asms with side effects not visible in the constraint list must be | 
|  | marked as having side effects.  This is done through the use of the | 
|  | '<tt>sideeffect</tt>' keyword, like so:</p> | 
|  |  | 
|  | <pre class="doc_code"> | 
|  | call void asm sideeffect "eieio", ""() | 
|  | </pre> | 
|  |  | 
|  | <p>In some cases inline asms will contain code that will not work unless the | 
|  | stack is aligned in some way, such as calls or SSE instructions on x86, | 
|  | yet will not contain code that does that alignment within the asm. | 
|  | The compiler should make conservative assumptions about what the asm might | 
|  | contain and should generate its usual stack alignment code in the prologue | 
|  | if the '<tt>alignstack</tt>' keyword is present:</p> | 
|  |  | 
|  | <pre class="doc_code"> | 
|  | call void asm alignstack "eieio", ""() | 
|  | </pre> | 
|  |  | 
|  | <p>If both keywords appear the '<tt>sideeffect</tt>' keyword must come | 
|  | first.</p> | 
|  |  | 
|  | <!-- | 
|  | <p>TODO: The format of the asm and constraints string still need to be | 
|  | documented here.  Constraints on what can be done (e.g. duplication, moving, | 
|  | etc need to be documented).  This is probably best done by reference to | 
|  | another document that covers inline asm from a holistic perspective.</p> | 
|  | --> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="inlineasm_md">Inline Asm Metadata</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>The call instructions that wrap inline asm nodes may have a | 
|  | "<tt>!srcloc</tt>" MDNode attached to it that contains a list of constant | 
|  | integers.  If present, the code generator will use the integer as the | 
|  | location cookie value when report errors through the <tt>LLVMContext</tt> | 
|  | error reporting mechanisms.  This allows a front-end to correlate backend | 
|  | errors that occur with inline asm back to the source code that produced it. | 
|  | For example:</p> | 
|  |  | 
|  | <pre class="doc_code"> | 
|  | call void asm sideeffect "something bad", ""()<b>, !srcloc !42</b> | 
|  | ... | 
|  | !42 = !{ i32 1234567 } | 
|  | </pre> | 
|  |  | 
|  | <p>It is up to the front-end to make sense of the magic numbers it places in the | 
|  | IR. If the MDNode contains multiple constants, the code generator will use | 
|  | the one that corresponds to the line of the asm that the error occurs on.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <h3> | 
|  | <a name="metadata">Metadata Nodes and Metadata Strings</a> | 
|  | </h3> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>LLVM IR allows metadata to be attached to instructions in the program that | 
|  | can convey extra information about the code to the optimizers and code | 
|  | generator.  One example application of metadata is source-level debug | 
|  | information.  There are two metadata primitives: strings and nodes. All | 
|  | metadata has the <tt>metadata</tt> type and is identified in syntax by a | 
|  | preceding exclamation point ('<tt>!</tt>').</p> | 
|  |  | 
|  | <p>A metadata string is a string surrounded by double quotes.  It can contain | 
|  | any character by escaping non-printable characters with "<tt>\xx</tt>" where | 
|  | "<tt>xx</tt>" is the two digit hex code.  For example: | 
|  | "<tt>!"test\00"</tt>".</p> | 
|  |  | 
|  | <p>Metadata nodes are represented with notation similar to structure constants | 
|  | (a comma separated list of elements, surrounded by braces and preceded by an | 
|  | exclamation point). Metadata nodes can have any values as their operand. For | 
|  | example:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | !{ metadata !"test\00", i32 10} | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>A <a href="#namedmetadatastructure">named metadata</a> is a collection of | 
|  | metadata nodes, which can be looked up in the module symbol table. For | 
|  | example:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | !foo =  metadata !{!4, !3} | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>Metadata can be used as function arguments. Here <tt>llvm.dbg.value</tt> | 
|  | function is using two metadata arguments:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | call void @llvm.dbg.value(metadata !24, i64 0, metadata !25) | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>Metadata can be attached with an instruction. Here metadata <tt>!21</tt> is | 
|  | attached to the <tt>add</tt> instruction using the <tt>!dbg</tt> | 
|  | identifier:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | %indvar.next = add i64 %indvar, 1, !dbg !21 | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>More information about specific metadata nodes recognized by the optimizers | 
|  | and code generator is found below.</p> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="tbaa">'<tt>tbaa</tt>' Metadata</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>In LLVM IR, memory does not have types, so LLVM's own type system is not | 
|  | suitable for doing TBAA. Instead, metadata is added to the IR to describe | 
|  | a type system of a higher level language. This can be used to implement | 
|  | typical C/C++ TBAA, but it can also be used to implement custom alias | 
|  | analysis behavior for other languages.</p> | 
|  |  | 
|  | <p>The current metadata format is very simple. TBAA metadata nodes have up to | 
|  | three fields, e.g.:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | !0 = metadata !{ metadata !"an example type tree" } | 
|  | !1 = metadata !{ metadata !"int", metadata !0 } | 
|  | !2 = metadata !{ metadata !"float", metadata !0 } | 
|  | !3 = metadata !{ metadata !"const float", metadata !2, i64 1 } | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>The first field is an identity field. It can be any value, usually | 
|  | a metadata string, which uniquely identifies the type. The most important | 
|  | name in the tree is the name of the root node. Two trees with | 
|  | different root node names are entirely disjoint, even if they | 
|  | have leaves with common names.</p> | 
|  |  | 
|  | <p>The second field identifies the type's parent node in the tree, or | 
|  | is null or omitted for a root node. A type is considered to alias | 
|  | all of its descendants and all of its ancestors in the tree. Also, | 
|  | a type is considered to alias all types in other trees, so that | 
|  | bitcode produced from multiple front-ends is handled conservatively.</p> | 
|  |  | 
|  | <p>If the third field is present, it's an integer which if equal to 1 | 
|  | indicates that the type is "constant" (meaning | 
|  | <tt>pointsToConstantMemory</tt> should return true; see | 
|  | <a href="AliasAnalysis.html#OtherItfs">other useful | 
|  | <tt>AliasAnalysis</tt> methods</a>).</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="fpaccuracy">'<tt>fpaccuracy</tt>' Metadata</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p><tt>fpaccuracy</tt> metadata may be attached to any instruction of floating | 
|  | point type.  It expresses the maximum relative error of the result of | 
|  | that instruction, in ULPs. ULP is defined as follows:</p> | 
|  |  | 
|  | <blockquote> | 
|  |  | 
|  | <p>If <tt>x</tt> is a real number that lies between two finite consecutive | 
|  | floating-point numbers <tt>a</tt> and <tt>b</tt>, without being equal to one | 
|  | of them, then <tt>ulp(x) = |b - a|</tt>, otherwise <tt>ulp(x)</tt> is the | 
|  | distance between the two non-equal finite floating-point numbers nearest | 
|  | <tt>x</tt>. Moreover, <tt>ulp(NaN)</tt> is <tt>NaN</tt>.</p> | 
|  |  | 
|  | </blockquote> | 
|  |  | 
|  | <p>The maximum relative error may be any rational number.  The metadata node | 
|  | shall consist of a pair of unsigned integers respectively representing | 
|  | the numerator and denominator.  For example, 2.5 ULP:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | !0 = metadata !{ i32 5, i32 2 } | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- *********************************************************************** --> | 
|  | <h2> | 
|  | <a name="intrinsic_globals">Intrinsic Global Variables</a> | 
|  | </h2> | 
|  | <!-- *********************************************************************** --> | 
|  | <div> | 
|  | <p>LLVM has a number of "magic" global variables that contain data that affect | 
|  | code generation or other IR semantics.  These are documented here.  All globals | 
|  | of this sort should have a section specified as "<tt>llvm.metadata</tt>".  This | 
|  | section and all globals that start with "<tt>llvm.</tt>" are reserved for use | 
|  | by LLVM.</p> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <h3> | 
|  | <a name="intg_used">The '<tt>llvm.used</tt>' Global Variable</a> | 
|  | </h3> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>The <tt>@llvm.used</tt> global is an array with i8* element type which has <a | 
|  | href="#linkage_appending">appending linkage</a>.  This array contains a list of | 
|  | pointers to global variables and functions which may optionally have a pointer | 
|  | cast formed of bitcast or getelementptr.  For example, a legal use of it is:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | @X = global i8 4 | 
|  | @Y = global i32 123 | 
|  |  | 
|  | @llvm.used = appending global [2 x i8*] [ | 
|  | i8* @X, | 
|  | i8* bitcast (i32* @Y to i8*) | 
|  | ], section "llvm.metadata" | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>If a global variable appears in the <tt>@llvm.used</tt> list, then the | 
|  | compiler, assembler, and linker are required to treat the symbol as if there | 
|  | is a reference to the global that it cannot see.  For example, if a variable | 
|  | has internal linkage and no references other than that from | 
|  | the <tt>@llvm.used</tt> list, it cannot be deleted.  This is commonly used to | 
|  | represent references from inline asms and other things the compiler cannot | 
|  | "see", and corresponds to "<tt>attribute((used))</tt>" in GNU C.</p> | 
|  |  | 
|  | <p>On some targets, the code generator must emit a directive to the assembler or | 
|  | object file to prevent the assembler and linker from molesting the | 
|  | symbol.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <h3> | 
|  | <a name="intg_compiler_used"> | 
|  | The '<tt>llvm.compiler.used</tt>' Global Variable | 
|  | </a> | 
|  | </h3> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>The <tt>@llvm.compiler.used</tt> directive is the same as the | 
|  | <tt>@llvm.used</tt> directive, except that it only prevents the compiler from | 
|  | touching the symbol.  On targets that support it, this allows an intelligent | 
|  | linker to optimize references to the symbol without being impeded as it would | 
|  | be by <tt>@llvm.used</tt>.</p> | 
|  |  | 
|  | <p>This is a rare construct that should only be used in rare circumstances, and | 
|  | should not be exposed to source languages.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <h3> | 
|  | <a name="intg_global_ctors">The '<tt>llvm.global_ctors</tt>' Global Variable</a> | 
|  | </h3> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | %0 = type { i32, void ()* } | 
|  | @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }] | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>The <tt>@llvm.global_ctors</tt> array contains a list of constructor | 
|  | functions and associated priorities.  The functions referenced by this array | 
|  | will be called in ascending order of priority (i.e. lowest first) when the | 
|  | module is loaded.  The order of functions with the same priority is not | 
|  | defined.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <h3> | 
|  | <a name="intg_global_dtors">The '<tt>llvm.global_dtors</tt>' Global Variable</a> | 
|  | </h3> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | %0 = type { i32, void ()* } | 
|  | @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }] | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>The <tt>@llvm.global_dtors</tt> array contains a list of destructor functions | 
|  | and associated priorities.  The functions referenced by this array will be | 
|  | called in descending order of priority (i.e. highest first) when the module | 
|  | is loaded.  The order of functions with the same priority is not defined.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- *********************************************************************** --> | 
|  | <h2><a name="instref">Instruction Reference</a></h2> | 
|  | <!-- *********************************************************************** --> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>The LLVM instruction set consists of several different classifications of | 
|  | instructions: <a href="#terminators">terminator | 
|  | instructions</a>, <a href="#binaryops">binary instructions</a>, | 
|  | <a href="#bitwiseops">bitwise binary instructions</a>, | 
|  | <a href="#memoryops">memory instructions</a>, and | 
|  | <a href="#otherops">other instructions</a>.</p> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <h3> | 
|  | <a name="terminators">Terminator Instructions</a> | 
|  | </h3> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>As mentioned <a href="#functionstructure">previously</a>, every basic block | 
|  | in a program ends with a "Terminator" instruction, which indicates which | 
|  | block should be executed after the current block is finished. These | 
|  | terminator instructions typically yield a '<tt>void</tt>' value: they produce | 
|  | control flow, not values (the one exception being the | 
|  | '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p> | 
|  |  | 
|  | <p>The terminator instructions are: | 
|  | '<a href="#i_ret"><tt>ret</tt></a>', | 
|  | '<a href="#i_br"><tt>br</tt></a>', | 
|  | '<a href="#i_switch"><tt>switch</tt></a>', | 
|  | '<a href="#i_indirectbr"><tt>indirectbr</tt></a>', | 
|  | '<a href="#i_invoke"><tt>invoke</tt></a>', | 
|  | '<a href="#i_unwind"><tt>unwind</tt></a>', | 
|  | '<a href="#i_resume"><tt>resume</tt></a>', and | 
|  | '<a href="#i_unreachable"><tt>unreachable</tt></a>'.</p> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="i_ret">'<tt>ret</tt>' Instruction</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | ret <type> <value>       <i>; Return a value from a non-void function</i> | 
|  | ret void                 <i>; Return from void function</i> | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>ret</tt>' instruction is used to return control flow (and optionally | 
|  | a value) from a function back to the caller.</p> | 
|  |  | 
|  | <p>There are two forms of the '<tt>ret</tt>' instruction: one that returns a | 
|  | value and then causes control flow, and one that just causes control flow to | 
|  | occur.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The '<tt>ret</tt>' instruction optionally accepts a single argument, the | 
|  | return value. The type of the return value must be a | 
|  | '<a href="#t_firstclass">first class</a>' type.</p> | 
|  |  | 
|  | <p>A function is not <a href="#wellformed">well formed</a> if it it has a | 
|  | non-void return type and contains a '<tt>ret</tt>' instruction with no return | 
|  | value or a return value with a type that does not match its type, or if it | 
|  | has a void return type and contains a '<tt>ret</tt>' instruction with a | 
|  | return value.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>When the '<tt>ret</tt>' instruction is executed, control flow returns back to | 
|  | the calling function's context.  If the caller is a | 
|  | "<a href="#i_call"><tt>call</tt></a>" instruction, execution continues at the | 
|  | instruction after the call.  If the caller was an | 
|  | "<a href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues at | 
|  | the beginning of the "normal" destination block.  If the instruction returns | 
|  | a value, that value shall set the call or invoke instruction's return | 
|  | value.</p> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  | <pre> | 
|  | ret i32 5                       <i>; Return an integer value of 5</i> | 
|  | ret void                        <i>; Return from a void function</i> | 
|  | ret { i32, i8 } { i32 4, i8 2 } <i>; Return a struct of values 4 and 2</i> | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="i_br">'<tt>br</tt>' Instruction</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | br i1 <cond>, label <iftrue>, label <iffalse> | 
|  | br label <dest>          <i>; Unconditional branch</i> | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>br</tt>' instruction is used to cause control flow to transfer to a | 
|  | different basic block in the current function.  There are two forms of this | 
|  | instruction, corresponding to a conditional branch and an unconditional | 
|  | branch.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The conditional branch form of the '<tt>br</tt>' instruction takes a single | 
|  | '<tt>i1</tt>' value and two '<tt>label</tt>' values.  The unconditional form | 
|  | of the '<tt>br</tt>' instruction takes a single '<tt>label</tt>' value as a | 
|  | target.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>' | 
|  | argument is evaluated.  If the value is <tt>true</tt>, control flows to the | 
|  | '<tt>iftrue</tt>' <tt>label</tt> argument.  If "cond" is <tt>false</tt>, | 
|  | control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  | <pre> | 
|  | Test: | 
|  | %cond = <a href="#i_icmp">icmp</a> eq i32 %a, %b | 
|  | br i1 %cond, label %IfEqual, label %IfUnequal | 
|  | IfEqual: | 
|  | <a href="#i_ret">ret</a> i32 1 | 
|  | IfUnequal: | 
|  | <a href="#i_ret">ret</a> i32 0 | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="i_switch">'<tt>switch</tt>' Instruction</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ] | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of | 
|  | several different places.  It is a generalization of the '<tt>br</tt>' | 
|  | instruction, allowing a branch to occur to one of many possible | 
|  | destinations.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The '<tt>switch</tt>' instruction uses three parameters: an integer | 
|  | comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, | 
|  | and an array of pairs of comparison value constants and '<tt>label</tt>'s. | 
|  | The table is not allowed to contain duplicate constant entries.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The <tt>switch</tt> instruction specifies a table of values and | 
|  | destinations. When the '<tt>switch</tt>' instruction is executed, this table | 
|  | is searched for the given value.  If the value is found, control flow is | 
|  | transferred to the corresponding destination; otherwise, control flow is | 
|  | transferred to the default destination.</p> | 
|  |  | 
|  | <h5>Implementation:</h5> | 
|  | <p>Depending on properties of the target machine and the particular | 
|  | <tt>switch</tt> instruction, this instruction may be code generated in | 
|  | different ways.  For example, it could be generated as a series of chained | 
|  | conditional branches or with a lookup table.</p> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  | <pre> | 
|  | <i>; Emulate a conditional br instruction</i> | 
|  | %Val = <a href="#i_zext">zext</a> i1 %value to i32 | 
|  | switch i32 %Val, label %truedest [ i32 0, label %falsedest ] | 
|  |  | 
|  | <i>; Emulate an unconditional br instruction</i> | 
|  | switch i32 0, label %dest [ ] | 
|  |  | 
|  | <i>; Implement a jump table:</i> | 
|  | switch i32 %val, label %otherwise [ i32 0, label %onzero | 
|  | i32 1, label %onone | 
|  | i32 2, label %ontwo ] | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  |  | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="i_indirectbr">'<tt>indirectbr</tt>' Instruction</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ] | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  |  | 
|  | <p>The '<tt>indirectbr</tt>' instruction implements an indirect branch to a label | 
|  | within the current function, whose address is specified by | 
|  | "<tt>address</tt>".  Address must be derived from a <a | 
|  | href="#blockaddress">blockaddress</a> constant.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  |  | 
|  | <p>The '<tt>address</tt>' argument is the address of the label to jump to.  The | 
|  | rest of the arguments indicate the full set of possible destinations that the | 
|  | address may point to.  Blocks are allowed to occur multiple times in the | 
|  | destination list, though this isn't particularly useful.</p> | 
|  |  | 
|  | <p>This destination list is required so that dataflow analysis has an accurate | 
|  | understanding of the CFG.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  |  | 
|  | <p>Control transfers to the block specified in the address argument.  All | 
|  | possible destination blocks must be listed in the label list, otherwise this | 
|  | instruction has undefined behavior.  This implies that jumps to labels | 
|  | defined in other functions have undefined behavior as well.</p> | 
|  |  | 
|  | <h5>Implementation:</h5> | 
|  |  | 
|  | <p>This is typically implemented with a jump through a register.</p> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  | <pre> | 
|  | indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ] | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  |  | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="i_invoke">'<tt>invoke</tt>' Instruction</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | <result> = invoke [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] <ptr to function ty> <function ptr val>(<function args>) [<a href="#fnattrs">fn attrs</a>] | 
|  | to label <normal label> unwind label <exception label> | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified | 
|  | function, with the possibility of control flow transfer to either the | 
|  | '<tt>normal</tt>' label or the '<tt>exception</tt>' label.  If the callee | 
|  | function returns with the "<tt><a href="#i_ret">ret</a></tt>" instruction, | 
|  | control flow will return to the "normal" label.  If the callee (or any | 
|  | indirect callees) returns with the "<a href="#i_unwind"><tt>unwind</tt></a>" | 
|  | instruction, control is interrupted and continued at the dynamically nearest | 
|  | "exception" label.</p> | 
|  |  | 
|  | <p>The '<tt>exception</tt>' label is a | 
|  | <i><a href="ExceptionHandling.html#overview">landing pad</a></i> for the | 
|  | exception. As such, '<tt>exception</tt>' label is required to have the | 
|  | "<a href="#i_landingpad"><tt>landingpad</tt></a>" instruction, which contains | 
|  | the information about the behavior of the program after unwinding | 
|  | happens, as its first non-PHI instruction. The restrictions on the | 
|  | "<tt>landingpad</tt>" instruction's tightly couples it to the | 
|  | "<tt>invoke</tt>" instruction, so that the important information contained | 
|  | within the "<tt>landingpad</tt>" instruction can't be lost through normal | 
|  | code motion.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>This instruction requires several arguments:</p> | 
|  |  | 
|  | <ol> | 
|  | <li>The optional "cconv" marker indicates which <a href="#callingconv">calling | 
|  | convention</a> the call should use.  If none is specified, the call | 
|  | defaults to using C calling conventions.</li> | 
|  |  | 
|  | <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for | 
|  | return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and | 
|  | '<tt>inreg</tt>' attributes are valid here.</li> | 
|  |  | 
|  | <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to | 
|  | function value being invoked.  In most cases, this is a direct function | 
|  | invocation, but indirect <tt>invoke</tt>s are just as possible, branching | 
|  | off an arbitrary pointer to function value.</li> | 
|  |  | 
|  | <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a | 
|  | function to be invoked. </li> | 
|  |  | 
|  | <li>'<tt>function args</tt>': argument list whose types match the function | 
|  | signature argument types and parameter attributes. All arguments must be | 
|  | of <a href="#t_firstclass">first class</a> type. If the function | 
|  | signature indicates the function accepts a variable number of arguments, | 
|  | the extra arguments can be specified.</li> | 
|  |  | 
|  | <li>'<tt>normal label</tt>': the label reached when the called function | 
|  | executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li> | 
|  |  | 
|  | <li>'<tt>exception label</tt>': the label reached when a callee returns with | 
|  | the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li> | 
|  |  | 
|  | <li>The optional <a href="#fnattrs">function attributes</a> list. Only | 
|  | '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and | 
|  | '<tt>readnone</tt>' attributes are valid here.</li> | 
|  | </ol> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>This instruction is designed to operate as a standard | 
|  | '<tt><a href="#i_call">call</a></tt>' instruction in most regards.  The | 
|  | primary difference is that it establishes an association with a label, which | 
|  | is used by the runtime library to unwind the stack.</p> | 
|  |  | 
|  | <p>This instruction is used in languages with destructors to ensure that proper | 
|  | cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown | 
|  | exception.  Additionally, this is important for implementation of | 
|  | '<tt>catch</tt>' clauses in high-level languages that support them.</p> | 
|  |  | 
|  | <p>For the purposes of the SSA form, the definition of the value returned by the | 
|  | '<tt>invoke</tt>' instruction is deemed to occur on the edge from the current | 
|  | block to the "normal" label. If the callee unwinds then no return value is | 
|  | available.</p> | 
|  |  | 
|  | <p>Note that the code generator does not yet completely support unwind, and | 
|  | that the invoke/unwind semantics are likely to change in future versions.</p> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  | <pre> | 
|  | %retval = invoke i32 @Test(i32 15) to label %Continue | 
|  | unwind label %TestCleanup              <i>; {i32}:retval set</i> | 
|  | %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue | 
|  | unwind label %TestCleanup              <i>; {i32}:retval set</i> | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  |  | 
|  | <h4> | 
|  | <a name="i_unwind">'<tt>unwind</tt>' Instruction</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | unwind | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow | 
|  | at the first callee in the dynamic call stack which used | 
|  | an <a href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call. | 
|  | This is primarily used to implement exception handling.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The '<tt>unwind</tt>' instruction causes execution of the current function to | 
|  | immediately halt.  The dynamic call stack is then searched for the | 
|  | first <a href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack. | 
|  | Once found, execution continues at the "exceptional" destination block | 
|  | specified by the <tt>invoke</tt> instruction.  If there is no <tt>invoke</tt> | 
|  | instruction in the dynamic call chain, undefined behavior results.</p> | 
|  |  | 
|  | <p>Note that the code generator does not yet completely support unwind, and | 
|  | that the invoke/unwind semantics are likely to change in future versions.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  |  | 
|  | <h4> | 
|  | <a name="i_resume">'<tt>resume</tt>' Instruction</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | resume <type> <value> | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>resume</tt>' instruction is a terminator instruction that has no | 
|  | successors.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The '<tt>resume</tt>' instruction requires one argument, which must have the | 
|  | same type as the result of any '<tt>landingpad</tt>' instruction in the same | 
|  | function.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The '<tt>resume</tt>' instruction resumes propagation of an existing | 
|  | (in-flight) exception whose unwinding was interrupted with | 
|  | a <a href="#i_landingpad"><tt>landingpad</tt></a> instruction.</p> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  | <pre> | 
|  | resume { i8*, i32 } %exn | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  |  | 
|  | <h4> | 
|  | <a name="i_unreachable">'<tt>unreachable</tt>' Instruction</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | unreachable | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>unreachable</tt>' instruction has no defined semantics.  This | 
|  | instruction is used to inform the optimizer that a particular portion of the | 
|  | code is not reachable.  This can be used to indicate that the code after a | 
|  | no-return function cannot be reached, and other facts.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <h3> | 
|  | <a name="binaryops">Binary Operations</a> | 
|  | </h3> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>Binary operators are used to do most of the computation in a program.  They | 
|  | require two operands of the same type, execute an operation on them, and | 
|  | produce a single value.  The operands might represent multiple data, as is | 
|  | the case with the <a href="#t_vector">vector</a> data type.  The result value | 
|  | has the same type as its operands.</p> | 
|  |  | 
|  | <p>There are several different binary operators:</p> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="i_add">'<tt>add</tt>' Instruction</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | <result> = add <ty> <op1>, <op2>          <i>; yields {ty}:result</i> | 
|  | <result> = add nuw <ty> <op1>, <op2>      <i>; yields {ty}:result</i> | 
|  | <result> = add nsw <ty> <op1>, <op2>      <i>; yields {ty}:result</i> | 
|  | <result> = add nuw nsw <ty> <op1>, <op2>  <i>; yields {ty}:result</i> | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The two arguments to the '<tt>add</tt>' instruction must | 
|  | be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of | 
|  | integer values. Both arguments must have identical types.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The value produced is the integer sum of the two operands.</p> | 
|  |  | 
|  | <p>If the sum has unsigned overflow, the result returned is the mathematical | 
|  | result modulo 2<sup>n</sup>, where n is the bit width of the result.</p> | 
|  |  | 
|  | <p>Because LLVM integers use a two's complement representation, this instruction | 
|  | is appropriate for both signed and unsigned integers.</p> | 
|  |  | 
|  | <p><tt>nuw</tt> and <tt>nsw</tt> stand for "No Unsigned Wrap" | 
|  | and "No Signed Wrap", respectively. If the <tt>nuw</tt> and/or | 
|  | <tt>nsw</tt> keywords are present, the result value of the <tt>add</tt> | 
|  | is a <a href="#poisonvalues">poison value</a> if unsigned and/or signed overflow, | 
|  | respectively, occurs.</p> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  | <pre> | 
|  | <result> = add i32 4, %var          <i>; yields {i32}:result = 4 + %var</i> | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="i_fadd">'<tt>fadd</tt>' Instruction</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | <result> = fadd <ty> <op1>, <op2>   <i>; yields {ty}:result</i> | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>fadd</tt>' instruction returns the sum of its two operands.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The two arguments to the '<tt>fadd</tt>' instruction must be | 
|  | <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of | 
|  | floating point values. Both arguments must have identical types.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The value produced is the floating point sum of the two operands.</p> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  | <pre> | 
|  | <result> = fadd float 4.0, %var          <i>; yields {float}:result = 4.0 + %var</i> | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="i_sub">'<tt>sub</tt>' Instruction</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | <result> = sub <ty> <op1>, <op2>          <i>; yields {ty}:result</i> | 
|  | <result> = sub nuw <ty> <op1>, <op2>      <i>; yields {ty}:result</i> | 
|  | <result> = sub nsw <ty> <op1>, <op2>      <i>; yields {ty}:result</i> | 
|  | <result> = sub nuw nsw <ty> <op1>, <op2>  <i>; yields {ty}:result</i> | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>sub</tt>' instruction returns the difference of its two | 
|  | operands.</p> | 
|  |  | 
|  | <p>Note that the '<tt>sub</tt>' instruction is used to represent the | 
|  | '<tt>neg</tt>' instruction present in most other intermediate | 
|  | representations.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The two arguments to the '<tt>sub</tt>' instruction must | 
|  | be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of | 
|  | integer values.  Both arguments must have identical types.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The value produced is the integer difference of the two operands.</p> | 
|  |  | 
|  | <p>If the difference has unsigned overflow, the result returned is the | 
|  | mathematical result modulo 2<sup>n</sup>, where n is the bit width of the | 
|  | result.</p> | 
|  |  | 
|  | <p>Because LLVM integers use a two's complement representation, this instruction | 
|  | is appropriate for both signed and unsigned integers.</p> | 
|  |  | 
|  | <p><tt>nuw</tt> and <tt>nsw</tt> stand for "No Unsigned Wrap" | 
|  | and "No Signed Wrap", respectively. If the <tt>nuw</tt> and/or | 
|  | <tt>nsw</tt> keywords are present, the result value of the <tt>sub</tt> | 
|  | is a <a href="#poisonvalues">poison value</a> if unsigned and/or signed overflow, | 
|  | respectively, occurs.</p> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  | <pre> | 
|  | <result> = sub i32 4, %var          <i>; yields {i32}:result = 4 - %var</i> | 
|  | <result> = sub i32 0, %val          <i>; yields {i32}:result = -%var</i> | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="i_fsub">'<tt>fsub</tt>' Instruction</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | <result> = fsub <ty> <op1>, <op2>   <i>; yields {ty}:result</i> | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>fsub</tt>' instruction returns the difference of its two | 
|  | operands.</p> | 
|  |  | 
|  | <p>Note that the '<tt>fsub</tt>' instruction is used to represent the | 
|  | '<tt>fneg</tt>' instruction present in most other intermediate | 
|  | representations.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The two arguments to the '<tt>fsub</tt>' instruction must be | 
|  | <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of | 
|  | floating point values.  Both arguments must have identical types.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The value produced is the floating point difference of the two operands.</p> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  | <pre> | 
|  | <result> = fsub float 4.0, %var           <i>; yields {float}:result = 4.0 - %var</i> | 
|  | <result> = fsub float -0.0, %val          <i>; yields {float}:result = -%var</i> | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="i_mul">'<tt>mul</tt>' Instruction</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | <result> = mul <ty> <op1>, <op2>          <i>; yields {ty}:result</i> | 
|  | <result> = mul nuw <ty> <op1>, <op2>      <i>; yields {ty}:result</i> | 
|  | <result> = mul nsw <ty> <op1>, <op2>      <i>; yields {ty}:result</i> | 
|  | <result> = mul nuw nsw <ty> <op1>, <op2>  <i>; yields {ty}:result</i> | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>mul</tt>' instruction returns the product of its two operands.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The two arguments to the '<tt>mul</tt>' instruction must | 
|  | be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of | 
|  | integer values.  Both arguments must have identical types.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The value produced is the integer product of the two operands.</p> | 
|  |  | 
|  | <p>If the result of the multiplication has unsigned overflow, the result | 
|  | returned is the mathematical result modulo 2<sup>n</sup>, where n is the bit | 
|  | width of the result.</p> | 
|  |  | 
|  | <p>Because LLVM integers use a two's complement representation, and the result | 
|  | is the same width as the operands, this instruction returns the correct | 
|  | result for both signed and unsigned integers.  If a full product | 
|  | (e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands should | 
|  | be sign-extended or zero-extended as appropriate to the width of the full | 
|  | product.</p> | 
|  |  | 
|  | <p><tt>nuw</tt> and <tt>nsw</tt> stand for "No Unsigned Wrap" | 
|  | and "No Signed Wrap", respectively. If the <tt>nuw</tt> and/or | 
|  | <tt>nsw</tt> keywords are present, the result value of the <tt>mul</tt> | 
|  | is a <a href="#poisonvalues">poison value</a> if unsigned and/or signed overflow, | 
|  | respectively, occurs.</p> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  | <pre> | 
|  | <result> = mul i32 4, %var          <i>; yields {i32}:result = 4 * %var</i> | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="i_fmul">'<tt>fmul</tt>' Instruction</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | <result> = fmul <ty> <op1>, <op2>   <i>; yields {ty}:result</i> | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>fmul</tt>' instruction returns the product of its two operands.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The two arguments to the '<tt>fmul</tt>' instruction must be | 
|  | <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of | 
|  | floating point values.  Both arguments must have identical types.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The value produced is the floating point product of the two operands.</p> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  | <pre> | 
|  | <result> = fmul float 4.0, %var          <i>; yields {float}:result = 4.0 * %var</i> | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="i_udiv">'<tt>udiv</tt>' Instruction</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | <result> = udiv <ty> <op1>, <op2>         <i>; yields {ty}:result</i> | 
|  | <result> = udiv exact <ty> <op1>, <op2>   <i>; yields {ty}:result</i> | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>udiv</tt>' instruction returns the quotient of its two operands.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The two arguments to the '<tt>udiv</tt>' instruction must be | 
|  | <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer | 
|  | values.  Both arguments must have identical types.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The value produced is the unsigned integer quotient of the two operands.</p> | 
|  |  | 
|  | <p>Note that unsigned integer division and signed integer division are distinct | 
|  | operations; for signed integer division, use '<tt>sdiv</tt>'.</p> | 
|  |  | 
|  | <p>Division by zero leads to undefined behavior.</p> | 
|  |  | 
|  | <p>If the <tt>exact</tt> keyword is present, the result value of the | 
|  | <tt>udiv</tt> is a <a href="#poisonvalues">poison value</a> if %op1 is not a | 
|  | multiple of %op2 (as such, "((a udiv exact b) mul b) == a").</p> | 
|  |  | 
|  |  | 
|  | <h5>Example:</h5> | 
|  | <pre> | 
|  | <result> = udiv i32 4, %var          <i>; yields {i32}:result = 4 / %var</i> | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="i_sdiv">'<tt>sdiv</tt>' Instruction</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | <result> = sdiv <ty> <op1>, <op2>         <i>; yields {ty}:result</i> | 
|  | <result> = sdiv exact <ty> <op1>, <op2>   <i>; yields {ty}:result</i> | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>sdiv</tt>' instruction returns the quotient of its two operands.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The two arguments to the '<tt>sdiv</tt>' instruction must be | 
|  | <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer | 
|  | values.  Both arguments must have identical types.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The value produced is the signed integer quotient of the two operands rounded | 
|  | towards zero.</p> | 
|  |  | 
|  | <p>Note that signed integer division and unsigned integer division are distinct | 
|  | operations; for unsigned integer division, use '<tt>udiv</tt>'.</p> | 
|  |  | 
|  | <p>Division by zero leads to undefined behavior. Overflow also leads to | 
|  | undefined behavior; this is a rare case, but can occur, for example, by doing | 
|  | a 32-bit division of -2147483648 by -1.</p> | 
|  |  | 
|  | <p>If the <tt>exact</tt> keyword is present, the result value of the | 
|  | <tt>sdiv</tt> is a <a href="#poisonvalues">poison value</a> if the result would | 
|  | be rounded.</p> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  | <pre> | 
|  | <result> = sdiv i32 4, %var          <i>; yields {i32}:result = 4 / %var</i> | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="i_fdiv">'<tt>fdiv</tt>' Instruction</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | <result> = fdiv <ty> <op1>, <op2>   <i>; yields {ty}:result</i> | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>fdiv</tt>' instruction returns the quotient of its two operands.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The two arguments to the '<tt>fdiv</tt>' instruction must be | 
|  | <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of | 
|  | floating point values.  Both arguments must have identical types.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The value produced is the floating point quotient of the two operands.</p> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  | <pre> | 
|  | <result> = fdiv float 4.0, %var          <i>; yields {float}:result = 4.0 / %var</i> | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="i_urem">'<tt>urem</tt>' Instruction</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | <result> = urem <ty> <op1>, <op2>   <i>; yields {ty}:result</i> | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>urem</tt>' instruction returns the remainder from the unsigned | 
|  | division of its two arguments.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The two arguments to the '<tt>urem</tt>' instruction must be | 
|  | <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer | 
|  | values.  Both arguments must have identical types.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>This instruction returns the unsigned integer <i>remainder</i> of a division. | 
|  | This instruction always performs an unsigned division to get the | 
|  | remainder.</p> | 
|  |  | 
|  | <p>Note that unsigned integer remainder and signed integer remainder are | 
|  | distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p> | 
|  |  | 
|  | <p>Taking the remainder of a division by zero leads to undefined behavior.</p> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  | <pre> | 
|  | <result> = urem i32 4, %var          <i>; yields {i32}:result = 4 % %var</i> | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="i_srem">'<tt>srem</tt>' Instruction</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | <result> = srem <ty> <op1>, <op2>   <i>; yields {ty}:result</i> | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>srem</tt>' instruction returns the remainder from the signed | 
|  | division of its two operands. This instruction can also take | 
|  | <a href="#t_vector">vector</a> versions of the values in which case the | 
|  | elements must be integers.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The two arguments to the '<tt>srem</tt>' instruction must be | 
|  | <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer | 
|  | values.  Both arguments must have identical types.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>This instruction returns the <i>remainder</i> of a division (where the result | 
|  | is either zero or has the same sign as the dividend, <tt>op1</tt>), not the | 
|  | <i>modulo</i> operator (where the result is either zero or has the same sign | 
|  | as the divisor, <tt>op2</tt>) of a value. | 
|  | For more information about the difference, | 
|  | see <a href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The | 
|  | Math Forum</a>. For a table of how this is implemented in various languages, | 
|  | please see <a href="http://en.wikipedia.org/wiki/Modulo_operation"> | 
|  | Wikipedia: modulo operation</a>.</p> | 
|  |  | 
|  | <p>Note that signed integer remainder and unsigned integer remainder are | 
|  | distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p> | 
|  |  | 
|  | <p>Taking the remainder of a division by zero leads to undefined behavior. | 
|  | Overflow also leads to undefined behavior; this is a rare case, but can | 
|  | occur, for example, by taking the remainder of a 32-bit division of | 
|  | -2147483648 by -1.  (The remainder doesn't actually overflow, but this rule | 
|  | lets srem be implemented using instructions that return both the result of | 
|  | the division and the remainder.)</p> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  | <pre> | 
|  | <result> = srem i32 4, %var          <i>; yields {i32}:result = 4 % %var</i> | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="i_frem">'<tt>frem</tt>' Instruction</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | <result> = frem <ty> <op1>, <op2>   <i>; yields {ty}:result</i> | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>frem</tt>' instruction returns the remainder from the division of | 
|  | its two operands.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The two arguments to the '<tt>frem</tt>' instruction must be | 
|  | <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of | 
|  | floating point values.  Both arguments must have identical types.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>This instruction returns the <i>remainder</i> of a division.  The remainder | 
|  | has the same sign as the dividend.</p> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  | <pre> | 
|  | <result> = frem float 4.0, %var          <i>; yields {float}:result = 4.0 % %var</i> | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <h3> | 
|  | <a name="bitwiseops">Bitwise Binary Operations</a> | 
|  | </h3> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>Bitwise binary operators are used to do various forms of bit-twiddling in a | 
|  | program.  They are generally very efficient instructions and can commonly be | 
|  | strength reduced from other instructions.  They require two operands of the | 
|  | same type, execute an operation on them, and produce a single value.  The | 
|  | resulting value is the same type as its operands.</p> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="i_shl">'<tt>shl</tt>' Instruction</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | <result> = shl <ty> <op1>, <op2>           <i>; yields {ty}:result</i> | 
|  | <result> = shl nuw <ty> <op1>, <op2>       <i>; yields {ty}:result</i> | 
|  | <result> = shl nsw <ty> <op1>, <op2>       <i>; yields {ty}:result</i> | 
|  | <result> = shl nuw nsw <ty> <op1>, <op2>   <i>; yields {ty}:result</i> | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>shl</tt>' instruction returns the first operand shifted to the left | 
|  | a specified number of bits.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>Both arguments to the '<tt>shl</tt>' instruction must be the | 
|  | same <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of | 
|  | integer type.  '<tt>op2</tt>' is treated as an unsigned value.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod | 
|  | 2<sup>n</sup>, where <tt>n</tt> is the width of the result.  If <tt>op2</tt> | 
|  | is (statically or dynamically) negative or equal to or larger than the number | 
|  | of bits in <tt>op1</tt>, the result is undefined.  If the arguments are | 
|  | vectors, each vector element of <tt>op1</tt> is shifted by the corresponding | 
|  | shift amount in <tt>op2</tt>.</p> | 
|  |  | 
|  | <p>If the <tt>nuw</tt> keyword is present, then the shift produces a | 
|  | <a href="#poisonvalues">poison value</a> if it shifts out any non-zero bits.  If | 
|  | the <tt>nsw</tt> keyword is present, then the shift produces a | 
|  | <a href="#poisonvalues">poison value</a> if it shifts out any bits that disagree | 
|  | with the resultant sign bit.  As such, NUW/NSW have the same semantics as | 
|  | they would if the shift were expressed as a mul instruction with the same | 
|  | nsw/nuw bits in (mul %op1, (shl 1, %op2)).</p> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  | <pre> | 
|  | <result> = shl i32 4, %var   <i>; yields {i32}: 4 << %var</i> | 
|  | <result> = shl i32 4, 2      <i>; yields {i32}: 16</i> | 
|  | <result> = shl i32 1, 10     <i>; yields {i32}: 1024</i> | 
|  | <result> = shl i32 1, 32     <i>; undefined</i> | 
|  | <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2>   <i>; yields: result=<2 x i32> < i32 2, i32 4></i> | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="i_lshr">'<tt>lshr</tt>' Instruction</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | <result> = lshr <ty> <op1>, <op2>         <i>; yields {ty}:result</i> | 
|  | <result> = lshr exact <ty> <op1>, <op2>   <i>; yields {ty}:result</i> | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first | 
|  | operand shifted to the right a specified number of bits with zero fill.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>Both arguments to the '<tt>lshr</tt>' instruction must be the same | 
|  | <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer | 
|  | type. '<tt>op2</tt>' is treated as an unsigned value.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>This instruction always performs a logical shift right operation. The most | 
|  | significant bits of the result will be filled with zero bits after the shift. | 
|  | If <tt>op2</tt> is (statically or dynamically) equal to or larger than the | 
|  | number of bits in <tt>op1</tt>, the result is undefined. If the arguments are | 
|  | vectors, each vector element of <tt>op1</tt> is shifted by the corresponding | 
|  | shift amount in <tt>op2</tt>.</p> | 
|  |  | 
|  | <p>If the <tt>exact</tt> keyword is present, the result value of the | 
|  | <tt>lshr</tt> is a <a href="#poisonvalues">poison value</a> if any of the bits | 
|  | shifted out are non-zero.</p> | 
|  |  | 
|  |  | 
|  | <h5>Example:</h5> | 
|  | <pre> | 
|  | <result> = lshr i32 4, 1   <i>; yields {i32}:result = 2</i> | 
|  | <result> = lshr i32 4, 2   <i>; yields {i32}:result = 1</i> | 
|  | <result> = lshr i8  4, 3   <i>; yields {i8}:result = 0</i> | 
|  | <result> = lshr i8 -2, 1   <i>; yields {i8}:result = 0x7FFFFFFF </i> | 
|  | <result> = lshr i32 1, 32  <i>; undefined</i> | 
|  | <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2>   <i>; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1></i> | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="i_ashr">'<tt>ashr</tt>' Instruction</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | <result> = ashr <ty> <op1>, <op2>         <i>; yields {ty}:result</i> | 
|  | <result> = ashr exact <ty> <op1>, <op2>   <i>; yields {ty}:result</i> | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first | 
|  | operand shifted to the right a specified number of bits with sign | 
|  | extension.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>Both arguments to the '<tt>ashr</tt>' instruction must be the same | 
|  | <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer | 
|  | type.  '<tt>op2</tt>' is treated as an unsigned value.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>This instruction always performs an arithmetic shift right operation, The | 
|  | most significant bits of the result will be filled with the sign bit | 
|  | of <tt>op1</tt>.  If <tt>op2</tt> is (statically or dynamically) equal to or | 
|  | larger than the number of bits in <tt>op1</tt>, the result is undefined. If | 
|  | the arguments are vectors, each vector element of <tt>op1</tt> is shifted by | 
|  | the corresponding shift amount in <tt>op2</tt>.</p> | 
|  |  | 
|  | <p>If the <tt>exact</tt> keyword is present, the result value of the | 
|  | <tt>ashr</tt> is a <a href="#poisonvalues">poison value</a> if any of the bits | 
|  | shifted out are non-zero.</p> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  | <pre> | 
|  | <result> = ashr i32 4, 1   <i>; yields {i32}:result = 2</i> | 
|  | <result> = ashr i32 4, 2   <i>; yields {i32}:result = 1</i> | 
|  | <result> = ashr i8  4, 3   <i>; yields {i8}:result = 0</i> | 
|  | <result> = ashr i8 -2, 1   <i>; yields {i8}:result = -1</i> | 
|  | <result> = ashr i32 1, 32  <i>; undefined</i> | 
|  | <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3>   <i>; yields: result=<2 x i32> < i32 -1, i32 0></i> | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="i_and">'<tt>and</tt>' Instruction</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | <result> = and <ty> <op1>, <op2>   <i>; yields {ty}:result</i> | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>and</tt>' instruction returns the bitwise logical and of its two | 
|  | operands.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The two arguments to the '<tt>and</tt>' instruction must be | 
|  | <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer | 
|  | values.  Both arguments must have identical types.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The truth table used for the '<tt>and</tt>' instruction is:</p> | 
|  |  | 
|  | <table border="1" cellspacing="0" cellpadding="4"> | 
|  | <tbody> | 
|  | <tr> | 
|  | <th>In0</th> | 
|  | <th>In1</th> | 
|  | <th>Out</th> | 
|  | </tr> | 
|  | <tr> | 
|  | <td>0</td> | 
|  | <td>0</td> | 
|  | <td>0</td> | 
|  | </tr> | 
|  | <tr> | 
|  | <td>0</td> | 
|  | <td>1</td> | 
|  | <td>0</td> | 
|  | </tr> | 
|  | <tr> | 
|  | <td>1</td> | 
|  | <td>0</td> | 
|  | <td>0</td> | 
|  | </tr> | 
|  | <tr> | 
|  | <td>1</td> | 
|  | <td>1</td> | 
|  | <td>1</td> | 
|  | </tr> | 
|  | </tbody> | 
|  | </table> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  | <pre> | 
|  | <result> = and i32 4, %var         <i>; yields {i32}:result = 4 & %var</i> | 
|  | <result> = and i32 15, 40          <i>; yields {i32}:result = 8</i> | 
|  | <result> = and i32 4, 8            <i>; yields {i32}:result = 0</i> | 
|  | </pre> | 
|  | </div> | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="i_or">'<tt>or</tt>' Instruction</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | <result> = or <ty> <op1>, <op2>   <i>; yields {ty}:result</i> | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive or of its | 
|  | two operands.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The two arguments to the '<tt>or</tt>' instruction must be | 
|  | <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer | 
|  | values.  Both arguments must have identical types.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The truth table used for the '<tt>or</tt>' instruction is:</p> | 
|  |  | 
|  | <table border="1" cellspacing="0" cellpadding="4"> | 
|  | <tbody> | 
|  | <tr> | 
|  | <th>In0</th> | 
|  | <th>In1</th> | 
|  | <th>Out</th> | 
|  | </tr> | 
|  | <tr> | 
|  | <td>0</td> | 
|  | <td>0</td> | 
|  | <td>0</td> | 
|  | </tr> | 
|  | <tr> | 
|  | <td>0</td> | 
|  | <td>1</td> | 
|  | <td>1</td> | 
|  | </tr> | 
|  | <tr> | 
|  | <td>1</td> | 
|  | <td>0</td> | 
|  | <td>1</td> | 
|  | </tr> | 
|  | <tr> | 
|  | <td>1</td> | 
|  | <td>1</td> | 
|  | <td>1</td> | 
|  | </tr> | 
|  | </tbody> | 
|  | </table> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  | <pre> | 
|  | <result> = or i32 4, %var         <i>; yields {i32}:result = 4 | %var</i> | 
|  | <result> = or i32 15, 40          <i>; yields {i32}:result = 47</i> | 
|  | <result> = or i32 4, 8            <i>; yields {i32}:result = 12</i> | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="i_xor">'<tt>xor</tt>' Instruction</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | <result> = xor <ty> <op1>, <op2>   <i>; yields {ty}:result</i> | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive or of | 
|  | its two operands.  The <tt>xor</tt> is used to implement the "one's | 
|  | complement" operation, which is the "~" operator in C.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The two arguments to the '<tt>xor</tt>' instruction must be | 
|  | <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer | 
|  | values.  Both arguments must have identical types.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The truth table used for the '<tt>xor</tt>' instruction is:</p> | 
|  |  | 
|  | <table border="1" cellspacing="0" cellpadding="4"> | 
|  | <tbody> | 
|  | <tr> | 
|  | <th>In0</th> | 
|  | <th>In1</th> | 
|  | <th>Out</th> | 
|  | </tr> | 
|  | <tr> | 
|  | <td>0</td> | 
|  | <td>0</td> | 
|  | <td>0</td> | 
|  | </tr> | 
|  | <tr> | 
|  | <td>0</td> | 
|  | <td>1</td> | 
|  | <td>1</td> | 
|  | </tr> | 
|  | <tr> | 
|  | <td>1</td> | 
|  | <td>0</td> | 
|  | <td>1</td> | 
|  | </tr> | 
|  | <tr> | 
|  | <td>1</td> | 
|  | <td>1</td> | 
|  | <td>0</td> | 
|  | </tr> | 
|  | </tbody> | 
|  | </table> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  | <pre> | 
|  | <result> = xor i32 4, %var         <i>; yields {i32}:result = 4 ^ %var</i> | 
|  | <result> = xor i32 15, 40          <i>; yields {i32}:result = 39</i> | 
|  | <result> = xor i32 4, 8            <i>; yields {i32}:result = 12</i> | 
|  | <result> = xor i32 %V, -1          <i>; yields {i32}:result = ~%V</i> | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <h3> | 
|  | <a name="vectorops">Vector Operations</a> | 
|  | </h3> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>LLVM supports several instructions to represent vector operations in a | 
|  | target-independent manner.  These instructions cover the element-access and | 
|  | vector-specific operations needed to process vectors effectively.  While LLVM | 
|  | does directly support these vector operations, many sophisticated algorithms | 
|  | will want to use target-specific intrinsics to take full advantage of a | 
|  | specific target.</p> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | <result> = extractelement <n x <ty>> <val>, i32 <idx>    <i>; yields <ty></i> | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>extractelement</tt>' instruction extracts a single scalar element | 
|  | from a vector at a specified index.</p> | 
|  |  | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The first operand of an '<tt>extractelement</tt>' instruction is a value | 
|  | of <a href="#t_vector">vector</a> type.  The second operand is an index | 
|  | indicating the position from which to extract the element.  The index may be | 
|  | a variable.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The result is a scalar of the same type as the element type of | 
|  | <tt>val</tt>.  Its value is the value at position <tt>idx</tt> of | 
|  | <tt>val</tt>.  If <tt>idx</tt> exceeds the length of <tt>val</tt>, the | 
|  | results are undefined.</p> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  | <pre> | 
|  | <result> = extractelement <4 x i32> %vec, i32 0    <i>; yields i32</i> | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | <result> = insertelement <n x <ty>> <val>, <ty> <elt>, i32 <idx>    <i>; yields <n x <ty>></i> | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>insertelement</tt>' instruction inserts a scalar element into a | 
|  | vector at a specified index.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The first operand of an '<tt>insertelement</tt>' instruction is a value | 
|  | of <a href="#t_vector">vector</a> type.  The second operand is a scalar value | 
|  | whose type must equal the element type of the first operand.  The third | 
|  | operand is an index indicating the position at which to insert the value. | 
|  | The index may be a variable.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The result is a vector of the same type as <tt>val</tt>.  Its element values | 
|  | are those of <tt>val</tt> except at position <tt>idx</tt>, where it gets the | 
|  | value <tt>elt</tt>.  If <tt>idx</tt> exceeds the length of <tt>val</tt>, the | 
|  | results are undefined.</p> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  | <pre> | 
|  | <result> = insertelement <4 x i32> %vec, i32 1, i32 0    <i>; yields <4 x i32></i> | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask>    <i>; yields <m x <ty>></i> | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>shufflevector</tt>' instruction constructs a permutation of elements | 
|  | from two input vectors, returning a vector with the same element type as the | 
|  | input and length that is the same as the shuffle mask.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The first two operands of a '<tt>shufflevector</tt>' instruction are vectors | 
|  | with types that match each other. The third argument is a shuffle mask whose | 
|  | element type is always 'i32'.  The result of the instruction is a vector | 
|  | whose length is the same as the shuffle mask and whose element type is the | 
|  | same as the element type of the first two operands.</p> | 
|  |  | 
|  | <p>The shuffle mask operand is required to be a constant vector with either | 
|  | constant integer or undef values.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The elements of the two input vectors are numbered from left to right across | 
|  | both of the vectors.  The shuffle mask operand specifies, for each element of | 
|  | the result vector, which element of the two input vectors the result element | 
|  | gets.  The element selector may be undef (meaning "don't care") and the | 
|  | second operand may be undef if performing a shuffle from only one vector.</p> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  | <pre> | 
|  | <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2, | 
|  | <4 x i32> <i32 0, i32 4, i32 1, i32 5>  <i>; yields <4 x i32></i> | 
|  | <result> = shufflevector <4 x i32> %v1, <4 x i32> undef, | 
|  | <4 x i32> <i32 0, i32 1, i32 2, i32 3>  <i>; yields <4 x i32></i> - Identity shuffle. | 
|  | <result> = shufflevector <8 x i32> %v1, <8 x i32> undef, | 
|  | <4 x i32> <i32 0, i32 1, i32 2, i32 3>  <i>; yields <4 x i32></i> | 
|  | <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2, | 
|  | <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 >  <i>; yields <8 x i32></i> | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <h3> | 
|  | <a name="aggregateops">Aggregate Operations</a> | 
|  | </h3> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>LLVM supports several instructions for working with | 
|  | <a href="#t_aggregate">aggregate</a> values.</p> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}* | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>extractvalue</tt>' instruction extracts the value of a member field | 
|  | from an <a href="#t_aggregate">aggregate</a> value.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The first operand of an '<tt>extractvalue</tt>' instruction is a value | 
|  | of <a href="#t_struct">struct</a> or | 
|  | <a href="#t_array">array</a> type.  The operands are constant indices to | 
|  | specify which value to extract in a similar manner as indices in a | 
|  | '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p> | 
|  | <p>The major differences to <tt>getelementptr</tt> indexing are:</p> | 
|  | <ul> | 
|  | <li>Since the value being indexed is not a pointer, the first index is | 
|  | omitted and assumed to be zero.</li> | 
|  | <li>At least one index must be specified.</li> | 
|  | <li>Not only struct indices but also array indices must be in | 
|  | bounds.</li> | 
|  | </ul> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The result is the value at the position in the aggregate specified by the | 
|  | index operands.</p> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  | <pre> | 
|  | <result> = extractvalue {i32, float} %agg, 0    <i>; yields i32</i> | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}*    <i>; yields <aggregate type></i> | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>insertvalue</tt>' instruction inserts a value into a member field | 
|  | in an <a href="#t_aggregate">aggregate</a> value.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The first operand of an '<tt>insertvalue</tt>' instruction is a value | 
|  | of <a href="#t_struct">struct</a> or | 
|  | <a href="#t_array">array</a> type.  The second operand is a first-class | 
|  | value to insert.  The following operands are constant indices indicating | 
|  | the position at which to insert the value in a similar manner as indices in a | 
|  | '<tt><a href="#i_extractvalue">extractvalue</a></tt>' instruction.  The | 
|  | value to insert must have the same type as the value identified by the | 
|  | indices.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The result is an aggregate of the same type as <tt>val</tt>.  Its value is | 
|  | that of <tt>val</tt> except that the value at the position specified by the | 
|  | indices is that of <tt>elt</tt>.</p> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  | <pre> | 
|  | %agg1 = insertvalue {i32, float} undef, i32 1, 0              <i>; yields {i32 1, float undef}</i> | 
|  | %agg2 = insertvalue {i32, float} %agg1, float %val, 1         <i>; yields {i32 1, float %val}</i> | 
|  | %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0    <i>; yields {i32 1, float %val}</i> | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <h3> | 
|  | <a name="memoryops">Memory Access and Addressing Operations</a> | 
|  | </h3> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>A key design point of an SSA-based representation is how it represents | 
|  | memory.  In LLVM, no memory locations are in SSA form, which makes things | 
|  | very simple.  This section describes how to read, write, and allocate | 
|  | memory in LLVM.</p> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="i_alloca">'<tt>alloca</tt>' Instruction</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | <result> = alloca <type>[, <ty> <NumElements>][, align <alignment>]     <i>; yields {type*}:result</i> | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the | 
|  | currently executing function, to be automatically released when this function | 
|  | returns to its caller. The object is always allocated in the generic address | 
|  | space (address space zero).</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The '<tt>alloca</tt>' instruction | 
|  | allocates <tt>sizeof(<type>)*NumElements</tt> bytes of memory on the | 
|  | runtime stack, returning a pointer of the appropriate type to the program. | 
|  | If "NumElements" is specified, it is the number of elements allocated, | 
|  | otherwise "NumElements" is defaulted to be one.  If a constant alignment is | 
|  | specified, the value result of the allocation is guaranteed to be aligned to | 
|  | at least that boundary.  If not specified, or if zero, the target can choose | 
|  | to align the allocation on any convenient boundary compatible with the | 
|  | type.</p> | 
|  |  | 
|  | <p>'<tt>type</tt>' may be any sized type.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>Memory is allocated; a pointer is returned.  The operation is undefined if | 
|  | there is insufficient stack space for the allocation.  '<tt>alloca</tt>'d | 
|  | memory is automatically released when the function returns.  The | 
|  | '<tt>alloca</tt>' instruction is commonly used to represent automatic | 
|  | variables that must have an address available.  When the function returns | 
|  | (either with the <tt><a href="#i_ret">ret</a></tt> | 
|  | or <tt><a href="#i_unwind">unwind</a></tt> instructions), the memory is | 
|  | reclaimed.  Allocating zero bytes is legal, but the result is undefined.</p> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  | <pre> | 
|  | %ptr = alloca i32                             <i>; yields {i32*}:ptr</i> | 
|  | %ptr = alloca i32, i32 4                      <i>; yields {i32*}:ptr</i> | 
|  | %ptr = alloca i32, i32 4, align 1024          <i>; yields {i32*}:ptr</i> | 
|  | %ptr = alloca i32, align 1024                 <i>; yields {i32*}:ptr</i> | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="i_load">'<tt>load</tt>' Instruction</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] | 
|  | <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment> | 
|  | !<index> = !{ i32 1 } | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>load</tt>' instruction is used to read from memory.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The argument to the '<tt>load</tt>' instruction specifies the memory address | 
|  | from which to load.  The pointer must point to | 
|  | a <a href="#t_firstclass">first class</a> type.  If the <tt>load</tt> is | 
|  | marked as <tt>volatile</tt>, then the optimizer is not allowed to modify the | 
|  | number or order of execution of this <tt>load</tt> with other <a | 
|  | href="#volatile">volatile operations</a>.</p> | 
|  |  | 
|  | <p>If the <code>load</code> is marked as <code>atomic</code>, it takes an extra | 
|  | <a href="#ordering">ordering</a> and optional <code>singlethread</code> | 
|  | argument.  The <code>release</code> and <code>acq_rel</code> orderings are | 
|  | not valid on <code>load</code> instructions.  Atomic loads produce <a | 
|  | href="#memorymodel">defined</a> results when they may see multiple atomic | 
|  | stores.  The type of the pointee must be an integer type whose bit width | 
|  | is a power of two greater than or equal to eight and less than or equal | 
|  | to a target-specific size limit. <code>align</code> must be explicitly | 
|  | specified on atomic loads, and the load has undefined behavior if the | 
|  | alignment is not set to a value which is at least the size in bytes of | 
|  | the pointee. <code>!nontemporal</code> does not have any defined semantics | 
|  | for atomic loads.</p> | 
|  |  | 
|  | <p>The optional constant <tt>align</tt> argument specifies the alignment of the | 
|  | operation (that is, the alignment of the memory address). A value of 0 or an | 
|  | omitted <tt>align</tt> argument means that the operation has the preferential | 
|  | alignment for the target. It is the responsibility of the code emitter to | 
|  | ensure that the alignment information is correct. Overestimating the | 
|  | alignment results in undefined behavior. Underestimating the alignment may | 
|  | produce less efficient code. An alignment of 1 is always safe.</p> | 
|  |  | 
|  | <p>The optional <tt>!nontemporal</tt> metadata must reference a single | 
|  | metatadata name <index> corresponding to a metadata node with | 
|  | one <tt>i32</tt> entry of value 1.  The existence of | 
|  | the <tt>!nontemporal</tt> metatadata on the instruction tells the optimizer | 
|  | and code generator that this load is not expected to be reused in the cache. | 
|  | The code generator may select special instructions to save cache bandwidth, | 
|  | such as the <tt>MOVNT</tt> instruction on x86.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The location of memory pointed to is loaded.  If the value being loaded is of | 
|  | scalar type then the number of bytes read does not exceed the minimum number | 
|  | of bytes needed to hold all bits of the type.  For example, loading an | 
|  | <tt>i24</tt> reads at most three bytes.  When loading a value of a type like | 
|  | <tt>i20</tt> with a size that is not an integral number of bytes, the result | 
|  | is undefined if the value was not originally written using a store of the | 
|  | same type.</p> | 
|  |  | 
|  | <h5>Examples:</h5> | 
|  | <pre> | 
|  | %ptr = <a href="#i_alloca">alloca</a> i32                               <i>; yields {i32*}:ptr</i> | 
|  | <a href="#i_store">store</a> i32 3, i32* %ptr                          <i>; yields {void}</i> | 
|  | %val = load i32* %ptr                           <i>; yields {i32}:val = i32 3</i> | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="i_store">'<tt>store</tt>' Instruction</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>]        <i>; yields {void}</i> | 
|  | store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment>  <i>; yields {void}</i> | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>store</tt>' instruction is used to write to memory.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>There are two arguments to the '<tt>store</tt>' instruction: a value to store | 
|  | and an address at which to store it.  The type of the | 
|  | '<tt><pointer></tt>' operand must be a pointer to | 
|  | the <a href="#t_firstclass">first class</a> type of the | 
|  | '<tt><value></tt>' operand. If the <tt>store</tt> is marked as | 
|  | <tt>volatile</tt>, then the optimizer is not allowed to modify the number or | 
|  | order of execution of this <tt>store</tt> with other <a | 
|  | href="#volatile">volatile operations</a>.</p> | 
|  |  | 
|  | <p>If the <code>store</code> is marked as <code>atomic</code>, it takes an extra | 
|  | <a href="#ordering">ordering</a> and optional <code>singlethread</code> | 
|  | argument.  The <code>acquire</code> and <code>acq_rel</code> orderings aren't | 
|  | valid on <code>store</code> instructions.  Atomic loads produce <a | 
|  | href="#memorymodel">defined</a> results when they may see multiple atomic | 
|  | stores. The type of the pointee must be an integer type whose bit width | 
|  | is a power of two greater than or equal to eight and less than or equal | 
|  | to a target-specific size limit. <code>align</code> must be explicitly | 
|  | specified on atomic stores, and the store has undefined behavior if the | 
|  | alignment is not set to a value which is at least the size in bytes of | 
|  | the pointee. <code>!nontemporal</code> does not have any defined semantics | 
|  | for atomic stores.</p> | 
|  |  | 
|  | <p>The optional constant "align" argument specifies the alignment of the | 
|  | operation (that is, the alignment of the memory address). A value of 0 or an | 
|  | omitted "align" argument means that the operation has the preferential | 
|  | alignment for the target. It is the responsibility of the code emitter to | 
|  | ensure that the alignment information is correct. Overestimating the | 
|  | alignment results in an undefined behavior. Underestimating the alignment may | 
|  | produce less efficient code. An alignment of 1 is always safe.</p> | 
|  |  | 
|  | <p>The optional !nontemporal metadata must reference a single metatadata | 
|  | name <index> corresponding to a metadata node with one i32 entry of | 
|  | value 1.  The existence of the !nontemporal metatadata on the | 
|  | instruction tells the optimizer and code generator that this load is | 
|  | not expected to be reused in the cache.  The code generator may | 
|  | select special instructions to save cache bandwidth, such as the | 
|  | MOVNT instruction on x86.</p> | 
|  |  | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The contents of memory are updated to contain '<tt><value></tt>' at the | 
|  | location specified by the '<tt><pointer></tt>' operand.  If | 
|  | '<tt><value></tt>' is of scalar type then the number of bytes written | 
|  | does not exceed the minimum number of bytes needed to hold all bits of the | 
|  | type.  For example, storing an <tt>i24</tt> writes at most three bytes.  When | 
|  | writing a value of a type like <tt>i20</tt> with a size that is not an | 
|  | integral number of bytes, it is unspecified what happens to the extra bits | 
|  | that do not belong to the type, but they will typically be overwritten.</p> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  | <pre> | 
|  | %ptr = <a href="#i_alloca">alloca</a> i32                               <i>; yields {i32*}:ptr</i> | 
|  | store i32 3, i32* %ptr                          <i>; yields {void}</i> | 
|  | %val = <a href="#i_load">load</a> i32* %ptr                           <i>; yields {i32}:val = i32 3</i> | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="i_fence">'<tt>fence</tt>' Instruction</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | fence [singlethread] <ordering>                   <i>; yields {void}</i> | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>fence</tt>' instruction is used to introduce happens-before edges | 
|  | between operations.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> <p>'<code>fence</code>' instructions take an <a | 
|  | href="#ordering">ordering</a> argument which defines what | 
|  | <i>synchronizes-with</i> edges they add.  They can only be given | 
|  | <code>acquire</code>, <code>release</code>, <code>acq_rel</code>, and | 
|  | <code>seq_cst</code> orderings.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>A fence <var>A</var> which has (at least) <code>release</code> ordering | 
|  | semantics <i>synchronizes with</i> a fence <var>B</var> with (at least) | 
|  | <code>acquire</code> ordering semantics if and only if there exist atomic | 
|  | operations <var>X</var> and <var>Y</var>, both operating on some atomic object | 
|  | <var>M</var>, such that <var>A</var> is sequenced before <var>X</var>, | 
|  | <var>X</var> modifies <var>M</var> (either directly or through some side effect | 
|  | of a sequence headed by <var>X</var>), <var>Y</var> is sequenced before | 
|  | <var>B</var>, and <var>Y</var> observes <var>M</var>. This provides a | 
|  | <i>happens-before</i> dependency between <var>A</var> and <var>B</var>. Rather | 
|  | than an explicit <code>fence</code>, one (but not both) of the atomic operations | 
|  | <var>X</var> or <var>Y</var> might provide a <code>release</code> or | 
|  | <code>acquire</code> (resp.) ordering constraint and still | 
|  | <i>synchronize-with</i> the explicit <code>fence</code> and establish the | 
|  | <i>happens-before</i> edge.</p> | 
|  |  | 
|  | <p>A <code>fence</code> which has <code>seq_cst</code> ordering, in addition to | 
|  | having both <code>acquire</code> and <code>release</code> semantics specified | 
|  | above, participates in the global program order of other <code>seq_cst</code> | 
|  | operations and/or fences.</p> | 
|  |  | 
|  | <p>The optional "<a href="#singlethread"><code>singlethread</code></a>" argument | 
|  | specifies that the fence only synchronizes with other fences in the same | 
|  | thread.  (This is useful for interacting with signal handlers.)</p> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  | <pre> | 
|  | fence acquire                          <i>; yields {void}</i> | 
|  | fence singlethread seq_cst             <i>; yields {void}</i> | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="i_cmpxchg">'<tt>cmpxchg</tt>' Instruction</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | cmpxchg [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <ordering>  <i>; yields {ty}</i> | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>cmpxchg</tt>' instruction is used to atomically modify memory. | 
|  | It loads a value in memory and compares it to a given value. If they are | 
|  | equal, it stores a new value into the memory.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>There are three arguments to the '<code>cmpxchg</code>' instruction: an | 
|  | address to operate on, a value to compare to the value currently be at that | 
|  | address, and a new value to place at that address if the compared values are | 
|  | equal.  The type of '<var><cmp></var>' must be an integer type whose | 
|  | bit width is a power of two greater than or equal to eight and less than | 
|  | or equal to a target-specific size limit. '<var><cmp></var>' and | 
|  | '<var><new></var>' must have the same type, and the type of | 
|  | '<var><pointer></var>' must be a pointer to that type. If the | 
|  | <code>cmpxchg</code> is marked as <code>volatile</code>, then the | 
|  | optimizer is not allowed to modify the number or order of execution | 
|  | of this <code>cmpxchg</code> with other <a href="#volatile">volatile | 
|  | operations</a>.</p> | 
|  |  | 
|  | <!-- FIXME: Extend allowed types. --> | 
|  |  | 
|  | <p>The <a href="#ordering"><var>ordering</var></a> argument specifies how this | 
|  | <code>cmpxchg</code> synchronizes with other atomic operations.</p> | 
|  |  | 
|  | <p>The optional "<code>singlethread</code>" argument declares that the | 
|  | <code>cmpxchg</code> is only atomic with respect to code (usually signal | 
|  | handlers) running in the same thread as the <code>cmpxchg</code>.  Otherwise the | 
|  | cmpxchg is atomic with respect to all other code in the system.</p> | 
|  |  | 
|  | <p>The pointer passed into cmpxchg must have alignment greater than or equal to | 
|  | the size in memory of the operand. | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The contents of memory at the location specified by the | 
|  | '<tt><pointer></tt>' operand is read and compared to | 
|  | '<tt><cmp></tt>'; if the read value is the equal, | 
|  | '<tt><new></tt>' is written.  The original value at the location | 
|  | is returned. | 
|  |  | 
|  | <p>A successful <code>cmpxchg</code> is a read-modify-write instruction for the | 
|  | purpose of identifying <a href="#release_sequence">release sequences</a>.  A | 
|  | failed <code>cmpxchg</code> is equivalent to an atomic load with an ordering | 
|  | parameter determined by dropping any <code>release</code> part of the | 
|  | <code>cmpxchg</code>'s ordering.</p> | 
|  |  | 
|  | <!-- | 
|  | FIXME: Is compare_exchange_weak() necessary?  (Consider after we've done | 
|  | optimization work on ARM.) | 
|  |  | 
|  | FIXME: Is a weaker ordering constraint on failure helpful in practice? | 
|  | --> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  | <pre> | 
|  | entry: | 
|  | %orig = atomic <a href="#i_load">load</a> i32* %ptr unordered                   <i>; yields {i32}</i> | 
|  | <a href="#i_br">br</a> label %loop | 
|  |  | 
|  | loop: | 
|  | %cmp = <a href="#i_phi">phi</a> i32 [ %orig, %entry ], [%old, %loop] | 
|  | %squared = <a href="#i_mul">mul</a> i32 %cmp, %cmp | 
|  | %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared          <i>; yields {i32}</i> | 
|  | %success = <a href="#i_icmp">icmp</a> eq i32 %cmp, %old | 
|  | <a href="#i_br">br</a> i1 %success, label %done, label %loop | 
|  |  | 
|  | done: | 
|  | ... | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="i_atomicrmw">'<tt>atomicrmw</tt>' Instruction</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering>                   <i>; yields {ty}</i> | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>atomicrmw</tt>' instruction is used to atomically modify memory.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>There are three arguments to the '<code>atomicrmw</code>' instruction: an | 
|  | operation to apply, an address whose value to modify, an argument to the | 
|  | operation.  The operation must be one of the following keywords:</p> | 
|  | <ul> | 
|  | <li>xchg</li> | 
|  | <li>add</li> | 
|  | <li>sub</li> | 
|  | <li>and</li> | 
|  | <li>nand</li> | 
|  | <li>or</li> | 
|  | <li>xor</li> | 
|  | <li>max</li> | 
|  | <li>min</li> | 
|  | <li>umax</li> | 
|  | <li>umin</li> | 
|  | </ul> | 
|  |  | 
|  | <p>The type of '<var><value></var>' must be an integer type whose | 
|  | bit width is a power of two greater than or equal to eight and less than | 
|  | or equal to a target-specific size limit.  The type of the | 
|  | '<code><pointer></code>' operand must be a pointer to that type. | 
|  | If the <code>atomicrmw</code> is marked as <code>volatile</code>, then the | 
|  | optimizer is not allowed to modify the number or order of execution of this | 
|  | <code>atomicrmw</code> with other <a href="#volatile">volatile | 
|  | operations</a>.</p> | 
|  |  | 
|  | <!-- FIXME: Extend allowed types. --> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The contents of memory at the location specified by the | 
|  | '<tt><pointer></tt>' operand are atomically read, modified, and written | 
|  | back.  The original value at the location is returned.  The modification is | 
|  | specified by the <var>operation</var> argument:</p> | 
|  |  | 
|  | <ul> | 
|  | <li>xchg: <code>*ptr = val</code></li> | 
|  | <li>add: <code>*ptr = *ptr + val</code></li> | 
|  | <li>sub: <code>*ptr = *ptr - val</code></li> | 
|  | <li>and: <code>*ptr = *ptr & val</code></li> | 
|  | <li>nand: <code>*ptr = ~(*ptr & val)</code></li> | 
|  | <li>or: <code>*ptr = *ptr | val</code></li> | 
|  | <li>xor: <code>*ptr = *ptr ^ val</code></li> | 
|  | <li>max: <code>*ptr = *ptr > val ? *ptr : val</code> (using a signed comparison)</li> | 
|  | <li>min: <code>*ptr = *ptr < val ? *ptr : val</code> (using a signed comparison)</li> | 
|  | <li>umax: <code>*ptr = *ptr > val ? *ptr : val</code> (using an unsigned comparison)</li> | 
|  | <li>umin: <code>*ptr = *ptr < val ? *ptr : val</code> (using an unsigned comparison)</li> | 
|  | </ul> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  | <pre> | 
|  | %old = atomicrmw add i32* %ptr, i32 1 acquire                        <i>; yields {i32}</i> | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}* | 
|  | <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}* | 
|  | <result> = getelementptr <ptr vector> ptrval, <vector index type> idx | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>getelementptr</tt>' instruction is used to get the address of a | 
|  | subelement of an <a href="#t_aggregate">aggregate</a> data structure. | 
|  | It performs address calculation only and does not access memory.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The first argument is always a pointer or a vector of pointers, | 
|  | and forms the basis of the | 
|  | calculation. The remaining arguments are indices that indicate which of the | 
|  | elements of the aggregate object are indexed. The interpretation of each | 
|  | index is dependent on the type being indexed into. The first index always | 
|  | indexes the pointer value given as the first argument, the second index | 
|  | indexes a value of the type pointed to (not necessarily the value directly | 
|  | pointed to, since the first index can be non-zero), etc. The first type | 
|  | indexed into must be a pointer value, subsequent types can be arrays, | 
|  | vectors, and structs. Note that subsequent types being indexed into | 
|  | can never be pointers, since that would require loading the pointer before | 
|  | continuing calculation.</p> | 
|  |  | 
|  | <p>The type of each index argument depends on the type it is indexing into. | 
|  | When indexing into a (optionally packed) structure, only <tt>i32</tt> | 
|  | integer <b>constants</b> are allowed.  When indexing into an array, pointer | 
|  | or vector, integers of any width are allowed, and they are not required to be | 
|  | constant.  These integers are treated as signed values where relevant.</p> | 
|  |  | 
|  | <p>For example, let's consider a C code fragment and how it gets compiled to | 
|  | LLVM:</p> | 
|  |  | 
|  | <pre class="doc_code"> | 
|  | struct RT { | 
|  | char A; | 
|  | int B[10][20]; | 
|  | char C; | 
|  | }; | 
|  | struct ST { | 
|  | int X; | 
|  | double Y; | 
|  | struct RT Z; | 
|  | }; | 
|  |  | 
|  | int *foo(struct ST *s) { | 
|  | return &s[1].Z.B[5][13]; | 
|  | } | 
|  | </pre> | 
|  |  | 
|  | <p>The LLVM code generated by Clang is:</p> | 
|  |  | 
|  | <pre class="doc_code"> | 
|  | %struct.RT = <a href="#namedtypes">type</a> { i8, [10 x [20 x i32]], i8 } | 
|  | %struct.ST = <a href="#namedtypes">type</a> { i32, double, %struct.RT } | 
|  |  | 
|  | define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp { | 
|  | entry: | 
|  | %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13 | 
|  | ret i32* %arrayidx | 
|  | } | 
|  | </pre> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>In the example above, the first index is indexing into the | 
|  | '<tt>%struct.ST*</tt>' type, which is a pointer, yielding a | 
|  | '<tt>%struct.ST</tt>' = '<tt>{ i32, double, %struct.RT }</tt>' type, a | 
|  | structure. The second index indexes into the third element of the structure, | 
|  | yielding a '<tt>%struct.RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]], i8 }</tt>' | 
|  | type, another structure. The third index indexes into the second element of | 
|  | the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an array. The | 
|  | two dimensions of the array are subscripted into, yielding an '<tt>i32</tt>' | 
|  | type. The '<tt>getelementptr</tt>' instruction returns a pointer to this | 
|  | element, thus computing a value of '<tt>i32*</tt>' type.</p> | 
|  |  | 
|  | <p>Note that it is perfectly legal to index partially through a structure, | 
|  | returning a pointer to an inner element.  Because of this, the LLVM code for | 
|  | the given testcase is equivalent to:</p> | 
|  |  | 
|  | <pre class="doc_code"> | 
|  | define i32* @foo(%struct.ST* %s) { | 
|  | %t1 = getelementptr %struct.ST* %s, i32 1                 <i>; yields %struct.ST*:%t1</i> | 
|  | %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2         <i>; yields %struct.RT*:%t2</i> | 
|  | %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1         <i>; yields [10 x [20 x i32]]*:%t3</i> | 
|  | %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5  <i>; yields [20 x i32]*:%t4</i> | 
|  | %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13        <i>; yields i32*:%t5</i> | 
|  | ret i32* %t5 | 
|  | } | 
|  | </pre> | 
|  |  | 
|  | <p>If the <tt>inbounds</tt> keyword is present, the result value of the | 
|  | <tt>getelementptr</tt> is a <a href="#poisonvalues">poison value</a> if the | 
|  | base pointer is not an <i>in bounds</i> address of an allocated object, | 
|  | or if any of the addresses that would be formed by successive addition of | 
|  | the offsets implied by the indices to the base address with infinitely | 
|  | precise signed arithmetic are not an <i>in bounds</i> address of that | 
|  | allocated object. The <i>in bounds</i> addresses for an allocated object | 
|  | are all the addresses that point into the object, plus the address one | 
|  | byte past the end. | 
|  | In cases where the base is a vector of pointers the <tt>inbounds</tt> keyword | 
|  | applies to each of the computations element-wise. </p> | 
|  |  | 
|  | <p>If the <tt>inbounds</tt> keyword is not present, the offsets are added to | 
|  | the base address with silently-wrapping two's complement arithmetic. If the | 
|  | offsets have a different width from the pointer, they are sign-extended or | 
|  | truncated to the width of the pointer. The result value of the | 
|  | <tt>getelementptr</tt> may be outside the object pointed to by the base | 
|  | pointer. The result value may not necessarily be used to access memory | 
|  | though, even if it happens to point into allocated storage. See the | 
|  | <a href="#pointeraliasing">Pointer Aliasing Rules</a> section for more | 
|  | information.</p> | 
|  |  | 
|  | <p>The getelementptr instruction is often confusing.  For some more insight into | 
|  | how it works, see <a href="GetElementPtr.html">the getelementptr FAQ</a>.</p> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  | <pre> | 
|  | <i>; yields [12 x i8]*:aptr</i> | 
|  | %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1 | 
|  | <i>; yields i8*:vptr</i> | 
|  | %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1 | 
|  | <i>; yields i8*:eptr</i> | 
|  | %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1 | 
|  | <i>; yields i32*:iptr</i> | 
|  | %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0 | 
|  | </pre> | 
|  |  | 
|  | <p>In cases where the pointer argument is a vector of pointers, only a | 
|  | single index may be used, and the number of vector elements has to be | 
|  | the same.  For example: </p> | 
|  | <pre class="doc_code"> | 
|  | %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets, | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <h3> | 
|  | <a name="convertops">Conversion Operations</a> | 
|  | </h3> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>The instructions in this category are the conversion instructions (casting) | 
|  | which all take a single operand and a type. They perform various bit | 
|  | conversions on the operand.</p> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | <result> = trunc <ty> <value> to <ty2>             <i>; yields ty2</i> | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>trunc</tt>' instruction truncates its operand to the | 
|  | type <tt>ty2</tt>.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The '<tt>trunc</tt>' instruction takes a value to trunc, and a type to trunc it to. | 
|  | Both types must be of <a href="#t_integer">integer</a> types, or vectors | 
|  | of the same number of integers. | 
|  | The bit size of the <tt>value</tt> must be larger than | 
|  | the bit size of the destination type, <tt>ty2</tt>. | 
|  | Equal sized types are not allowed.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The '<tt>trunc</tt>' instruction truncates the high order bits | 
|  | in <tt>value</tt> and converts the remaining bits to <tt>ty2</tt>. Since the | 
|  | source size must be larger than the destination size, <tt>trunc</tt> cannot | 
|  | be a <i>no-op cast</i>.  It will always truncate bits.</p> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  | <pre> | 
|  | %X = trunc i32 257 to i8                        <i>; yields i8:1</i> | 
|  | %Y = trunc i32 123 to i1                        <i>; yields i1:true</i> | 
|  | %Z = trunc i32 122 to i1                        <i>; yields i1:false</i> | 
|  | %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> <i>; yields <i8 8, i8 7></i> | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | <result> = zext <ty> <value> to <ty2>             <i>; yields ty2</i> | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>zext</tt>' instruction zero extends its operand to type | 
|  | <tt>ty2</tt>.</p> | 
|  |  | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The '<tt>zext</tt>' instruction takes a value to cast, and a type to cast it to. | 
|  | Both types must be of <a href="#t_integer">integer</a> types, or vectors | 
|  | of the same number of integers. | 
|  | The bit size of the <tt>value</tt> must be smaller than | 
|  | the bit size of the destination type, | 
|  | <tt>ty2</tt>.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero | 
|  | bits until it reaches the size of the destination type, <tt>ty2</tt>.</p> | 
|  |  | 
|  | <p>When zero extending from i1, the result will always be either 0 or 1.</p> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  | <pre> | 
|  | %X = zext i32 257 to i64              <i>; yields i64:257</i> | 
|  | %Y = zext i1 true to i32              <i>; yields i32:1</i> | 
|  | %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> <i>; yields <i32 8, i32 7></i> | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | <result> = sext <ty> <value> to <ty2>             <i>; yields ty2</i> | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The '<tt>sext</tt>' instruction takes a value to cast, and a type to cast it to. | 
|  | Both types must be of <a href="#t_integer">integer</a> types, or vectors | 
|  | of the same number of integers. | 
|  | The bit size of the <tt>value</tt> must be smaller than | 
|  | the bit size of the destination type, | 
|  | <tt>ty2</tt>.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The '<tt>sext</tt>' instruction performs a sign extension by copying the sign | 
|  | bit (highest order bit) of the <tt>value</tt> until it reaches the bit size | 
|  | of the type <tt>ty2</tt>.</p> | 
|  |  | 
|  | <p>When sign extending from i1, the extension always results in -1 or 0.</p> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  | <pre> | 
|  | %X = sext i8  -1 to i16              <i>; yields i16   :65535</i> | 
|  | %Y = sext i1 true to i32             <i>; yields i32:-1</i> | 
|  | %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> <i>; yields <i32 8, i32 7></i> | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | <result> = fptrunc <ty> <value> to <ty2>             <i>; yields ty2</i> | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type | 
|  | <tt>ty2</tt>.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating | 
|  | point</a> value to cast and a <a href="#t_floating">floating point</a> type | 
|  | to cast it to. The size of <tt>value</tt> must be larger than the size of | 
|  | <tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a | 
|  | <i>no-op cast</i>.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger | 
|  | <a href="#t_floating">floating point</a> type to a smaller | 
|  | <a href="#t_floating">floating point</a> type.  If the value cannot fit | 
|  | within the destination type, <tt>ty2</tt>, then the results are | 
|  | undefined.</p> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  | <pre> | 
|  | %X = fptrunc double 123.0 to float         <i>; yields float:123.0</i> | 
|  | %Y = fptrunc double 1.0E+300 to float      <i>; yields undefined</i> | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | <result> = fpext <ty> <value> to <ty2>             <i>; yields ty2</i> | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger | 
|  | floating point value.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The '<tt>fpext</tt>' instruction takes a | 
|  | <a href="#t_floating">floating point</a> <tt>value</tt> to cast, and | 
|  | a <a href="#t_floating">floating point</a> type to cast it to. The source | 
|  | type must be smaller than the destination type.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller | 
|  | <a href="#t_floating">floating point</a> type to a larger | 
|  | <a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be | 
|  | used to make a <i>no-op cast</i> because it always changes bits. Use | 
|  | <tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  | <pre> | 
|  | %X = fpext float 3.125 to double         <i>; yields double:3.125000e+00</i> | 
|  | %Y = fpext double %X to fp128            <i>; yields fp128:0xL00000000000000004000900000000000</i> | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | <result> = fptoui <ty> <value> to <ty2>             <i>; yields ty2</i> | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its | 
|  | unsigned integer equivalent of type <tt>ty2</tt>.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a | 
|  | scalar or vector <a href="#t_floating">floating point</a> value, and a type | 
|  | to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> | 
|  | type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a | 
|  | vector integer type with the same number of elements as <tt>ty</tt></p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The '<tt>fptoui</tt>' instruction converts its | 
|  | <a href="#t_floating">floating point</a> operand into the nearest (rounding | 
|  | towards zero) unsigned integer value. If the value cannot fit | 
|  | in <tt>ty2</tt>, the results are undefined.</p> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  | <pre> | 
|  | %X = fptoui double 123.0 to i32      <i>; yields i32:123</i> | 
|  | %Y = fptoui float 1.0E+300 to i1     <i>; yields undefined:1</i> | 
|  | %Z = fptoui float 1.04E+17 to i8     <i>; yields undefined:1</i> | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | <result> = fptosi <ty> <value> to <ty2>             <i>; yields ty2</i> | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>fptosi</tt>' instruction converts | 
|  | <a href="#t_floating">floating point</a> <tt>value</tt> to | 
|  | type <tt>ty2</tt>.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a | 
|  | scalar or vector <a href="#t_floating">floating point</a> value, and a type | 
|  | to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> | 
|  | type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a | 
|  | vector integer type with the same number of elements as <tt>ty</tt></p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The '<tt>fptosi</tt>' instruction converts its | 
|  | <a href="#t_floating">floating point</a> operand into the nearest (rounding | 
|  | towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>, | 
|  | the results are undefined.</p> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  | <pre> | 
|  | %X = fptosi double -123.0 to i32      <i>; yields i32:-123</i> | 
|  | %Y = fptosi float 1.0E-247 to i1      <i>; yields undefined:1</i> | 
|  | %Z = fptosi float 1.04E+17 to i8      <i>; yields undefined:1</i> | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | <result> = uitofp <ty> <value> to <ty2>             <i>; yields ty2</i> | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned | 
|  | integer and converts that value to the <tt>ty2</tt> type.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a | 
|  | scalar or vector <a href="#t_integer">integer</a> value, and a type to cast | 
|  | it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a> | 
|  | type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector | 
|  | floating point type with the same number of elements as <tt>ty</tt></p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned | 
|  | integer quantity and converts it to the corresponding floating point | 
|  | value. If the value cannot fit in the floating point value, the results are | 
|  | undefined.</p> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  | <pre> | 
|  | %X = uitofp i32 257 to float         <i>; yields float:257.0</i> | 
|  | %Y = uitofp i8 -1 to double          <i>; yields double:255.0</i> | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | <result> = sitofp <ty> <value> to <ty2>             <i>; yields ty2</i> | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed integer | 
|  | and converts that value to the <tt>ty2</tt> type.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a | 
|  | scalar or vector <a href="#t_integer">integer</a> value, and a type to cast | 
|  | it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a> | 
|  | type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector | 
|  | floating point type with the same number of elements as <tt>ty</tt></p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed integer | 
|  | quantity and converts it to the corresponding floating point value. If the | 
|  | value cannot fit in the floating point value, the results are undefined.</p> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  | <pre> | 
|  | %X = sitofp i32 257 to float         <i>; yields float:257.0</i> | 
|  | %Y = sitofp i8 -1 to double          <i>; yields double:-1.0</i> | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | <result> = ptrtoint <ty> <value> to <ty2>             <i>; yields ty2</i> | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>ptrtoint</tt>' instruction converts the pointer or a vector of | 
|  | pointers <tt>value</tt> to | 
|  | the integer (or vector of integers) type <tt>ty2</tt>.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which | 
|  | must be a a value of type <a href="#t_pointer">pointer</a> or a vector of | 
|  | pointers, and a type to cast it to | 
|  | <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> or a vector | 
|  | of integers type.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type | 
|  | <tt>ty2</tt> by interpreting the pointer value as an integer and either | 
|  | truncating or zero extending that value to the size of the integer type. If | 
|  | <tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If | 
|  | <tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they | 
|  | are the same size, then nothing is done (<i>no-op cast</i>) other than a type | 
|  | change.</p> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  | <pre> | 
|  | %X = ptrtoint i32* %P to i8                         <i>; yields truncation on 32-bit architecture</i> | 
|  | %Y = ptrtoint i32* %P to i64                        <i>; yields zero extension on 32-bit architecture</i> | 
|  | %Z = ptrtoint <4 x i32*> %P to <4 x i64><i>; yields vector zero extension for a vector of addresses on 32-bit architecture</i> | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | <result> = inttoptr <ty> <value> to <ty2>             <i>; yields ty2</i> | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to a | 
|  | pointer type, <tt>ty2</tt>.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a> | 
|  | value to cast, and a type to cast it to, which must be a | 
|  | <a href="#t_pointer">pointer</a> type.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type | 
|  | <tt>ty2</tt> by applying either a zero extension or a truncation depending on | 
|  | the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the | 
|  | size of a pointer then a truncation is done. If <tt>value</tt> is smaller | 
|  | than the size of a pointer then a zero extension is done. If they are the | 
|  | same size, nothing is done (<i>no-op cast</i>).</p> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  | <pre> | 
|  | %X = inttoptr i32 255 to i32*          <i>; yields zero extension on 64-bit architecture</i> | 
|  | %Y = inttoptr i32 255 to i32*          <i>; yields no-op on 32-bit architecture</i> | 
|  | %Z = inttoptr i64 0 to i32*            <i>; yields truncation on 32-bit architecture</i> | 
|  | %Z = inttoptr <4 x i32> %G to <4 x i8*><i>; yields truncation of vector G to four pointers</i> | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | <result> = bitcast <ty> <value> to <ty2>             <i>; yields ty2</i> | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type | 
|  | <tt>ty2</tt> without changing any bits.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be a | 
|  | non-aggregate first class value, and a type to cast it to, which must also be | 
|  | a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes | 
|  | of <tt>value</tt> and the destination type, <tt>ty2</tt>, must be | 
|  | identical. If the source type is a pointer, the destination type must also be | 
|  | a pointer.  This instruction supports bitwise conversion of vectors to | 
|  | integers and to vectors of other types (as long as they have the same | 
|  | size).</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type | 
|  | <tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with | 
|  | this conversion.  The conversion is done as if the <tt>value</tt> had been | 
|  | stored to memory and read back as type <tt>ty2</tt>. | 
|  | Pointer (or vector of pointers) types may only be converted to other pointer | 
|  | (or vector of pointers) types with this instruction. To convert | 
|  | pointers to other types, use the <a href="#i_inttoptr">inttoptr</a> or | 
|  | <a href="#i_ptrtoint">ptrtoint</a> instructions first.</p> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  | <pre> | 
|  | %X = bitcast i8 255 to i8              <i>; yields i8 :-1</i> | 
|  | %Y = bitcast i32* %x to sint*          <i>; yields sint*:%x</i> | 
|  | %Z = bitcast <2 x int> %V to i64;        <i>; yields i64: %V</i> | 
|  | %Z = bitcast <2 x i32*> %V to <2 x i64*> <i>; yields <2 x i64*></i> | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <h3> | 
|  | <a name="otherops">Other Operations</a> | 
|  | </h3> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>The instructions in this category are the "miscellaneous" instructions, which | 
|  | defy better classification.</p> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="i_icmp">'<tt>icmp</tt>' Instruction</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | <result> = icmp <cond> <ty> <op1>, <op2>   <i>; yields {i1} or {<N x i1>}:result</i> | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>icmp</tt>' instruction returns a boolean value or a vector of | 
|  | boolean values based on comparison of its two integer, integer vector, | 
|  | pointer, or pointer vector operands.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is | 
|  | the condition code indicating the kind of comparison to perform. It is not a | 
|  | value, just a keyword. The possible condition code are:</p> | 
|  |  | 
|  | <ol> | 
|  | <li><tt>eq</tt>: equal</li> | 
|  | <li><tt>ne</tt>: not equal </li> | 
|  | <li><tt>ugt</tt>: unsigned greater than</li> | 
|  | <li><tt>uge</tt>: unsigned greater or equal</li> | 
|  | <li><tt>ult</tt>: unsigned less than</li> | 
|  | <li><tt>ule</tt>: unsigned less or equal</li> | 
|  | <li><tt>sgt</tt>: signed greater than</li> | 
|  | <li><tt>sge</tt>: signed greater or equal</li> | 
|  | <li><tt>slt</tt>: signed less than</li> | 
|  | <li><tt>sle</tt>: signed less or equal</li> | 
|  | </ol> | 
|  |  | 
|  | <p>The remaining two arguments must be <a href="#t_integer">integer</a> or | 
|  | <a href="#t_pointer">pointer</a> or integer <a href="#t_vector">vector</a> | 
|  | typed.  They must also be identical types.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to the | 
|  | condition code given as <tt>cond</tt>. The comparison performed always yields | 
|  | either an <a href="#t_integer"><tt>i1</tt></a> or vector of <tt>i1</tt> | 
|  | result, as follows:</p> | 
|  |  | 
|  | <ol> | 
|  | <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal, | 
|  | <tt>false</tt> otherwise. No sign interpretation is necessary or | 
|  | performed.</li> | 
|  |  | 
|  | <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal, | 
|  | <tt>false</tt> otherwise. No sign interpretation is necessary or | 
|  | performed.</li> | 
|  |  | 
|  | <li><tt>ugt</tt>: interprets the operands as unsigned values and yields | 
|  | <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li> | 
|  |  | 
|  | <li><tt>uge</tt>: interprets the operands as unsigned values and yields | 
|  | <tt>true</tt> if <tt>op1</tt> is greater than or equal | 
|  | to <tt>op2</tt>.</li> | 
|  |  | 
|  | <li><tt>ult</tt>: interprets the operands as unsigned values and yields | 
|  | <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li> | 
|  |  | 
|  | <li><tt>ule</tt>: interprets the operands as unsigned values and yields | 
|  | <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li> | 
|  |  | 
|  | <li><tt>sgt</tt>: interprets the operands as signed values and yields | 
|  | <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li> | 
|  |  | 
|  | <li><tt>sge</tt>: interprets the operands as signed values and yields | 
|  | <tt>true</tt> if <tt>op1</tt> is greater than or equal | 
|  | to <tt>op2</tt>.</li> | 
|  |  | 
|  | <li><tt>slt</tt>: interprets the operands as signed values and yields | 
|  | <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li> | 
|  |  | 
|  | <li><tt>sle</tt>: interprets the operands as signed values and yields | 
|  | <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li> | 
|  | </ol> | 
|  |  | 
|  | <p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer | 
|  | values are compared as if they were integers.</p> | 
|  |  | 
|  | <p>If the operands are integer vectors, then they are compared element by | 
|  | element. The result is an <tt>i1</tt> vector with the same number of elements | 
|  | as the values being compared.  Otherwise, the result is an <tt>i1</tt>.</p> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  | <pre> | 
|  | <result> = icmp eq i32 4, 5          <i>; yields: result=false</i> | 
|  | <result> = icmp ne float* %X, %X     <i>; yields: result=false</i> | 
|  | <result> = icmp ult i16  4, 5        <i>; yields: result=true</i> | 
|  | <result> = icmp sgt i16  4, 5        <i>; yields: result=false</i> | 
|  | <result> = icmp ule i16 -4, 5        <i>; yields: result=false</i> | 
|  | <result> = icmp sge i16  4, 5        <i>; yields: result=false</i> | 
|  | </pre> | 
|  |  | 
|  | <p>Note that the code generator does not yet support vector types with | 
|  | the <tt>icmp</tt> instruction.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | <result> = fcmp <cond> <ty> <op1>, <op2>     <i>; yields {i1} or {<N x i1>}:result</i> | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>fcmp</tt>' instruction returns a boolean value or vector of boolean | 
|  | values based on comparison of its operands.</p> | 
|  |  | 
|  | <p>If the operands are floating point scalars, then the result type is a boolean | 
|  | (<a href="#t_integer"><tt>i1</tt></a>).</p> | 
|  |  | 
|  | <p>If the operands are floating point vectors, then the result type is a vector | 
|  | of boolean with the same number of elements as the operands being | 
|  | compared.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is | 
|  | the condition code indicating the kind of comparison to perform. It is not a | 
|  | value, just a keyword. The possible condition code are:</p> | 
|  |  | 
|  | <ol> | 
|  | <li><tt>false</tt>: no comparison, always returns false</li> | 
|  | <li><tt>oeq</tt>: ordered and equal</li> | 
|  | <li><tt>ogt</tt>: ordered and greater than </li> | 
|  | <li><tt>oge</tt>: ordered and greater than or equal</li> | 
|  | <li><tt>olt</tt>: ordered and less than </li> | 
|  | <li><tt>ole</tt>: ordered and less than or equal</li> | 
|  | <li><tt>one</tt>: ordered and not equal</li> | 
|  | <li><tt>ord</tt>: ordered (no nans)</li> | 
|  | <li><tt>ueq</tt>: unordered or equal</li> | 
|  | <li><tt>ugt</tt>: unordered or greater than </li> | 
|  | <li><tt>uge</tt>: unordered or greater than or equal</li> | 
|  | <li><tt>ult</tt>: unordered or less than </li> | 
|  | <li><tt>ule</tt>: unordered or less than or equal</li> | 
|  | <li><tt>une</tt>: unordered or not equal</li> | 
|  | <li><tt>uno</tt>: unordered (either nans)</li> | 
|  | <li><tt>true</tt>: no comparison, always returns true</li> | 
|  | </ol> | 
|  |  | 
|  | <p><i>Ordered</i> means that neither operand is a QNAN while | 
|  | <i>unordered</i> means that either operand may be a QNAN.</p> | 
|  |  | 
|  | <p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be either | 
|  | a <a href="#t_floating">floating point</a> type or | 
|  | a <a href="#t_vector">vector</a> of floating point type.  They must have | 
|  | identical types.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt> | 
|  | according to the condition code given as <tt>cond</tt>.  If the operands are | 
|  | vectors, then the vectors are compared element by element.  Each comparison | 
|  | performed always yields an <a href="#t_integer">i1</a> result, as | 
|  | follows:</p> | 
|  |  | 
|  | <ol> | 
|  | <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li> | 
|  |  | 
|  | <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and | 
|  | <tt>op1</tt> is equal to <tt>op2</tt>.</li> | 
|  |  | 
|  | <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and | 
|  | <tt>op1</tt> is greater than <tt>op2</tt>.</li> | 
|  |  | 
|  | <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and | 
|  | <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li> | 
|  |  | 
|  | <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and | 
|  | <tt>op1</tt> is less than <tt>op2</tt>.</li> | 
|  |  | 
|  | <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and | 
|  | <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li> | 
|  |  | 
|  | <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and | 
|  | <tt>op1</tt> is not equal to <tt>op2</tt>.</li> | 
|  |  | 
|  | <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li> | 
|  |  | 
|  | <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or | 
|  | <tt>op1</tt> is equal to <tt>op2</tt>.</li> | 
|  |  | 
|  | <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or | 
|  | <tt>op1</tt> is greater than <tt>op2</tt>.</li> | 
|  |  | 
|  | <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or | 
|  | <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li> | 
|  |  | 
|  | <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or | 
|  | <tt>op1</tt> is less than <tt>op2</tt>.</li> | 
|  |  | 
|  | <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or | 
|  | <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li> | 
|  |  | 
|  | <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or | 
|  | <tt>op1</tt> is not equal to <tt>op2</tt>.</li> | 
|  |  | 
|  | <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li> | 
|  |  | 
|  | <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li> | 
|  | </ol> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  | <pre> | 
|  | <result> = fcmp oeq float 4.0, 5.0    <i>; yields: result=false</i> | 
|  | <result> = fcmp one float 4.0, 5.0    <i>; yields: result=true</i> | 
|  | <result> = fcmp olt float 4.0, 5.0    <i>; yields: result=true</i> | 
|  | <result> = fcmp ueq double 1.0, 2.0   <i>; yields: result=false</i> | 
|  | </pre> | 
|  |  | 
|  | <p>Note that the code generator does not yet support vector types with | 
|  | the <tt>fcmp</tt> instruction.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="i_phi">'<tt>phi</tt>' Instruction</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | <result> = phi <ty> [ <val0>, <label0>], ... | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>phi</tt>' instruction is used to implement the φ node in the | 
|  | SSA graph representing the function.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The type of the incoming values is specified with the first type field. After | 
|  | this, the '<tt>phi</tt>' instruction takes a list of pairs as arguments, with | 
|  | one pair for each predecessor basic block of the current block.  Only values | 
|  | of <a href="#t_firstclass">first class</a> type may be used as the value | 
|  | arguments to the PHI node.  Only labels may be used as the label | 
|  | arguments.</p> | 
|  |  | 
|  | <p>There must be no non-phi instructions between the start of a basic block and | 
|  | the PHI instructions: i.e. PHI instructions must be first in a basic | 
|  | block.</p> | 
|  |  | 
|  | <p>For the purposes of the SSA form, the use of each incoming value is deemed to | 
|  | occur on the edge from the corresponding predecessor block to the current | 
|  | block (but after any definition of an '<tt>invoke</tt>' instruction's return | 
|  | value on the same edge).</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value | 
|  | specified by the pair corresponding to the predecessor basic block that | 
|  | executed just prior to the current block.</p> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  | <pre> | 
|  | Loop:       ; Infinite loop that counts from 0 on up... | 
|  | %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ] | 
|  | %nextindvar = add i32 %indvar, 1 | 
|  | br label %Loop | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="i_select">'<tt>select</tt>' Instruction</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | <result> = select <i>selty</i> <cond>, <ty> <val1>, <ty> <val2>             <i>; yields ty</i> | 
|  |  | 
|  | <i>selty</i> is either i1 or {<N x i1>} | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>select</tt>' instruction is used to choose one value based on a | 
|  | condition, without branching.</p> | 
|  |  | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The '<tt>select</tt>' instruction requires an 'i1' value or a vector of 'i1' | 
|  | values indicating the condition, and two values of the | 
|  | same <a href="#t_firstclass">first class</a> type.  If the val1/val2 are | 
|  | vectors and the condition is a scalar, then entire vectors are selected, not | 
|  | individual elements.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>If the condition is an i1 and it evaluates to 1, the instruction returns the | 
|  | first value argument; otherwise, it returns the second value argument.</p> | 
|  |  | 
|  | <p>If the condition is a vector of i1, then the value arguments must be vectors | 
|  | of the same size, and the selection is done element by element.</p> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  | <pre> | 
|  | %X = select i1 true, i8 17, i8 42          <i>; yields i8:17</i> | 
|  | </pre> | 
|  |  | 
|  | <p>Note that the code generator does not yet support conditions | 
|  | with vector type.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="i_call">'<tt>call</tt>' Instruction</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | <result> = [tail] call [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] <ty> [<fnty>*] <fnptrval>(<function args>) [<a href="#fnattrs">fn attrs</a>] | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>call</tt>' instruction represents a simple function call.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>This instruction requires several arguments:</p> | 
|  |  | 
|  | <ol> | 
|  | <li>The optional "tail" marker indicates that the callee function does not | 
|  | access any allocas or varargs in the caller.  Note that calls may be | 
|  | marked "tail" even if they do not occur before | 
|  | a <a href="#i_ret"><tt>ret</tt></a> instruction.  If the "tail" marker is | 
|  | present, the function call is eligible for tail call optimization, | 
|  | but <a href="CodeGenerator.html#tailcallopt">might not in fact be | 
|  | optimized into a jump</a>.  The code generator may optimize calls marked | 
|  | "tail" with either 1) automatic <a href="CodeGenerator.html#sibcallopt"> | 
|  | sibling call optimization</a> when the caller and callee have | 
|  | matching signatures, or 2) forced tail call optimization when the | 
|  | following extra requirements are met: | 
|  | <ul> | 
|  | <li>Caller and callee both have the calling | 
|  | convention <tt>fastcc</tt>.</li> | 
|  | <li>The call is in tail position (ret immediately follows call and ret | 
|  | uses value of call or is void).</li> | 
|  | <li>Option <tt>-tailcallopt</tt> is enabled, | 
|  | or <code>llvm::GuaranteedTailCallOpt</code> is <code>true</code>.</li> | 
|  | <li><a href="CodeGenerator.html#tailcallopt">Platform specific | 
|  | constraints are met.</a></li> | 
|  | </ul> | 
|  | </li> | 
|  |  | 
|  | <li>The optional "cconv" marker indicates which <a href="#callingconv">calling | 
|  | convention</a> the call should use.  If none is specified, the call | 
|  | defaults to using C calling conventions.  The calling convention of the | 
|  | call must match the calling convention of the target function, or else the | 
|  | behavior is undefined.</li> | 
|  |  | 
|  | <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for | 
|  | return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and | 
|  | '<tt>inreg</tt>' attributes are valid here.</li> | 
|  |  | 
|  | <li>'<tt>ty</tt>': the type of the call instruction itself which is also the | 
|  | type of the return value.  Functions that return no value are marked | 
|  | <tt><a href="#t_void">void</a></tt>.</li> | 
|  |  | 
|  | <li>'<tt>fnty</tt>': shall be the signature of the pointer to function value | 
|  | being invoked.  The argument types must match the types implied by this | 
|  | signature.  This type can be omitted if the function is not varargs and if | 
|  | the function type does not return a pointer to a function.</li> | 
|  |  | 
|  | <li>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to | 
|  | be invoked. In most cases, this is a direct function invocation, but | 
|  | indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer | 
|  | to function value.</li> | 
|  |  | 
|  | <li>'<tt>function args</tt>': argument list whose types match the function | 
|  | signature argument types and parameter attributes. All arguments must be | 
|  | of <a href="#t_firstclass">first class</a> type. If the function | 
|  | signature indicates the function accepts a variable number of arguments, | 
|  | the extra arguments can be specified.</li> | 
|  |  | 
|  | <li>The optional <a href="#fnattrs">function attributes</a> list. Only | 
|  | '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and | 
|  | '<tt>readnone</tt>' attributes are valid here.</li> | 
|  | </ol> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The '<tt>call</tt>' instruction is used to cause control flow to transfer to | 
|  | a specified function, with its incoming arguments bound to the specified | 
|  | values. Upon a '<tt><a href="#i_ret">ret</a></tt>' instruction in the called | 
|  | function, control flow continues with the instruction after the function | 
|  | call, and the return value of the function is bound to the result | 
|  | argument.</p> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  | <pre> | 
|  | %retval = call i32 @test(i32 %argc) | 
|  | call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42)        <i>; yields i32</i> | 
|  | %X = tail call i32 @foo()                                    <i>; yields i32</i> | 
|  | %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo()  <i>; yields i32</i> | 
|  | call void %foo(i8 97 signext) | 
|  |  | 
|  | %struct.A = type { i32, i8 } | 
|  | %r = call %struct.A @foo()                        <i>; yields { 32, i8 }</i> | 
|  | %gr = extractvalue %struct.A %r, 0                <i>; yields i32</i> | 
|  | %gr1 = extractvalue %struct.A %r, 1               <i>; yields i8</i> | 
|  | %Z = call void @foo() noreturn                    <i>; indicates that %foo never returns normally</i> | 
|  | %ZZ = call zeroext i32 @bar()                     <i>; Return value is %zero extended</i> | 
|  | </pre> | 
|  |  | 
|  | <p>llvm treats calls to some functions with names and arguments that match the | 
|  | standard C99 library as being the C99 library functions, and may perform | 
|  | optimizations or generate code for them under that assumption.  This is | 
|  | something we'd like to change in the future to provide better support for | 
|  | freestanding environments and non-C-based languages.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | <resultval> = va_arg <va_list*> <arglist>, <argty> | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through | 
|  | the "variable argument" area of a function call.  It is used to implement the | 
|  | <tt>va_arg</tt> macro in C.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>This instruction takes a <tt>va_list*</tt> value and the type of the | 
|  | argument. It returns a value of the specified argument type and increments | 
|  | the <tt>va_list</tt> to point to the next argument.  The actual type | 
|  | of <tt>va_list</tt> is target specific.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The '<tt>va_arg</tt>' instruction loads an argument of the specified type | 
|  | from the specified <tt>va_list</tt> and causes the <tt>va_list</tt> to point | 
|  | to the next argument.  For more information, see the variable argument | 
|  | handling <a href="#int_varargs">Intrinsic Functions</a>.</p> | 
|  |  | 
|  | <p>It is legal for this instruction to be called in a function which does not | 
|  | take a variable number of arguments, for example, the <tt>vfprintf</tt> | 
|  | function.</p> | 
|  |  | 
|  | <p><tt>va_arg</tt> is an LLVM instruction instead of | 
|  | an <a href="#intrinsics">intrinsic function</a> because it takes a type as an | 
|  | argument.</p> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  | <p>See the <a href="#int_varargs">variable argument processing</a> section.</p> | 
|  |  | 
|  | <p>Note that the code generator does not yet fully support va_arg on many | 
|  | targets. Also, it does not currently support va_arg with aggregate types on | 
|  | any target.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="i_landingpad">'<tt>landingpad</tt>' Instruction</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | <resultval> = landingpad <somety> personality <type> <pers_fn> <clause>+ | 
|  | <resultval> = landingpad <somety> personality <type> <pers_fn> cleanup <clause>* | 
|  |  | 
|  | <clause> := catch <type> <value> | 
|  | <clause> := filter <array constant type> <array constant> | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>landingpad</tt>' instruction is used by | 
|  | <a href="ExceptionHandling.html#overview">LLVM's exception handling | 
|  | system</a> to specify that a basic block is a landing pad — one where | 
|  | the exception lands, and corresponds to the code found in the | 
|  | <i><tt>catch</tt></i> portion of a <i><tt>try/catch</tt></i> sequence. It | 
|  | defines values supplied by the personality function (<tt>pers_fn</tt>) upon | 
|  | re-entry to the function. The <tt>resultval</tt> has the | 
|  | type <tt>somety</tt>.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>This instruction takes a <tt>pers_fn</tt> value. This is the personality | 
|  | function associated with the unwinding mechanism. The optional | 
|  | <tt>cleanup</tt> flag indicates that the landing pad block is a cleanup.</p> | 
|  |  | 
|  | <p>A <tt>clause</tt> begins with the clause type — <tt>catch</tt> | 
|  | or <tt>filter</tt> — and contains the global variable representing the | 
|  | "type" that may be caught or filtered respectively. Unlike the | 
|  | <tt>catch</tt> clause, the <tt>filter</tt> clause takes an array constant as | 
|  | its argument. Use "<tt>[0 x i8**] undef</tt>" for a filter which cannot | 
|  | throw. The '<tt>landingpad</tt>' instruction must contain <em>at least</em> | 
|  | one <tt>clause</tt> or the <tt>cleanup</tt> flag.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The '<tt>landingpad</tt>' instruction defines the values which are set by the | 
|  | personality function (<tt>pers_fn</tt>) upon re-entry to the function, and | 
|  | therefore the "result type" of the <tt>landingpad</tt> instruction. As with | 
|  | calling conventions, how the personality function results are represented in | 
|  | LLVM IR is target specific.</p> | 
|  |  | 
|  | <p>The clauses are applied in order from top to bottom. If two | 
|  | <tt>landingpad</tt> instructions are merged together through inlining, the | 
|  | clauses from the calling function are appended to the list of clauses.</p> | 
|  |  | 
|  | <p>The <tt>landingpad</tt> instruction has several restrictions:</p> | 
|  |  | 
|  | <ul> | 
|  | <li>A landing pad block is a basic block which is the unwind destination of an | 
|  | '<tt>invoke</tt>' instruction.</li> | 
|  | <li>A landing pad block must have a '<tt>landingpad</tt>' instruction as its | 
|  | first non-PHI instruction.</li> | 
|  | <li>There can be only one '<tt>landingpad</tt>' instruction within the landing | 
|  | pad block.</li> | 
|  | <li>A basic block that is not a landing pad block may not include a | 
|  | '<tt>landingpad</tt>' instruction.</li> | 
|  | <li>All '<tt>landingpad</tt>' instructions in a function must have the same | 
|  | personality function.</li> | 
|  | </ul> | 
|  |  | 
|  | <h5>Example:</h5> | 
|  | <pre> | 
|  | ;; A landing pad which can catch an integer. | 
|  | %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0 | 
|  | catch i8** @_ZTIi | 
|  | ;; A landing pad that is a cleanup. | 
|  | %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0 | 
|  | cleanup | 
|  | ;; A landing pad which can catch an integer and can only throw a double. | 
|  | %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0 | 
|  | catch i8** @_ZTIi | 
|  | filter [1 x i8**] [@_ZTId] | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- *********************************************************************** --> | 
|  | <h2><a name="intrinsics">Intrinsic Functions</a></h2> | 
|  | <!-- *********************************************************************** --> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>LLVM supports the notion of an "intrinsic function".  These functions have | 
|  | well known names and semantics and are required to follow certain | 
|  | restrictions.  Overall, these intrinsics represent an extension mechanism for | 
|  | the LLVM language that does not require changing all of the transformations | 
|  | in LLVM when adding to the language (or the bitcode reader/writer, the | 
|  | parser, etc...).</p> | 
|  |  | 
|  | <p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This | 
|  | prefix is reserved in LLVM for intrinsic names; thus, function names may not | 
|  | begin with this prefix.  Intrinsic functions must always be external | 
|  | functions: you cannot define the body of intrinsic functions.  Intrinsic | 
|  | functions may only be used in call or invoke instructions: it is illegal to | 
|  | take the address of an intrinsic function.  Additionally, because intrinsic | 
|  | functions are part of the LLVM language, it is required if any are added that | 
|  | they be documented here.</p> | 
|  |  | 
|  | <p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents a | 
|  | family of functions that perform the same operation but on different data | 
|  | types. Because LLVM can represent over 8 million different integer types, | 
|  | overloading is used commonly to allow an intrinsic function to operate on any | 
|  | integer type. One or more of the argument types or the result type can be | 
|  | overloaded to accept any integer type. Argument types may also be defined as | 
|  | exactly matching a previous argument's type or the result type. This allows | 
|  | an intrinsic function which accepts multiple arguments, but needs all of them | 
|  | to be of the same type, to only be overloaded with respect to a single | 
|  | argument or the result.</p> | 
|  |  | 
|  | <p>Overloaded intrinsics will have the names of its overloaded argument types | 
|  | encoded into its function name, each preceded by a period. Only those types | 
|  | which are overloaded result in a name suffix. Arguments whose type is matched | 
|  | against another type do not. For example, the <tt>llvm.ctpop</tt> function | 
|  | can take an integer of any width and returns an integer of exactly the same | 
|  | integer width. This leads to a family of functions such as | 
|  | <tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29 | 
|  | %val)</tt>.  Only one type, the return type, is overloaded, and only one type | 
|  | suffix is required. Because the argument's type is matched against the return | 
|  | type, it does not require its own name suffix.</p> | 
|  |  | 
|  | <p>To learn how to add an intrinsic function, please see the | 
|  | <a href="ExtendingLLVM.html">Extending LLVM Guide</a>.</p> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <h3> | 
|  | <a name="int_varargs">Variable Argument Handling Intrinsics</a> | 
|  | </h3> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>Variable argument support is defined in LLVM with | 
|  | the <a href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three | 
|  | intrinsic functions.  These functions are related to the similarly named | 
|  | macros defined in the <tt><stdarg.h></tt> header file.</p> | 
|  |  | 
|  | <p>All of these functions operate on arguments that use a target-specific value | 
|  | type "<tt>va_list</tt>".  The LLVM assembly language reference manual does | 
|  | not define what this type is, so all transformations should be prepared to | 
|  | handle these functions regardless of the type used.</p> | 
|  |  | 
|  | <p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a> | 
|  | instruction and the variable argument handling intrinsic functions are | 
|  | used.</p> | 
|  |  | 
|  | <pre class="doc_code"> | 
|  | define i32 @test(i32 %X, ...) { | 
|  | ; Initialize variable argument processing | 
|  | %ap = alloca i8* | 
|  | %ap2 = bitcast i8** %ap to i8* | 
|  | call void @llvm.va_start(i8* %ap2) | 
|  |  | 
|  | ; Read a single integer argument | 
|  | %tmp = va_arg i8** %ap, i32 | 
|  |  | 
|  | ; Demonstrate usage of llvm.va_copy and llvm.va_end | 
|  | %aq = alloca i8* | 
|  | %aq2 = bitcast i8** %aq to i8* | 
|  | call void @llvm.va_copy(i8* %aq2, i8* %ap2) | 
|  | call void @llvm.va_end(i8* %aq2) | 
|  |  | 
|  | ; Stop processing of arguments. | 
|  | call void @llvm.va_end(i8* %ap2) | 
|  | ret i32 %tmp | 
|  | } | 
|  |  | 
|  | declare void @llvm.va_start(i8*) | 
|  | declare void @llvm.va_copy(i8*, i8*) | 
|  | declare void @llvm.va_end(i8*) | 
|  | </pre> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a> | 
|  | </h4> | 
|  |  | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | declare void %llvm.va_start(i8* <arglist>) | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>llvm.va_start</tt>' intrinsic initializes <tt>*<arglist></tt> | 
|  | for subsequent use by <tt><a href="#i_va_arg">va_arg</a></tt>.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt> | 
|  | macro available in C.  In a target-dependent way, it initializes | 
|  | the <tt>va_list</tt> element to which the argument points, so that the next | 
|  | call to <tt>va_arg</tt> will produce the first variable argument passed to | 
|  | the function.  Unlike the C <tt>va_start</tt> macro, this intrinsic does not | 
|  | need to know the last argument of the function as the compiler can figure | 
|  | that out.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | declare void @llvm.va_end(i8* <arglist>) | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*<arglist></tt>, | 
|  | which has been initialized previously | 
|  | with <tt><a href="#int_va_start">llvm.va_start</a></tt> | 
|  | or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt> | 
|  | macro available in C.  In a target-dependent way, it destroys | 
|  | the <tt>va_list</tt> element to which the argument points.  Calls | 
|  | to <a href="#int_va_start"><tt>llvm.va_start</tt></a> | 
|  | and <a href="#int_va_copy"> <tt>llvm.va_copy</tt></a> must be matched exactly | 
|  | with calls to <tt>llvm.va_end</tt>.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>) | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position | 
|  | from the source argument list to the destination argument list.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The first argument is a pointer to a <tt>va_list</tt> element to initialize. | 
|  | The second argument is a pointer to a <tt>va_list</tt> element to copy | 
|  | from.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt> | 
|  | macro available in C.  In a target-dependent way, it copies the | 
|  | source <tt>va_list</tt> element into the destination <tt>va_list</tt> | 
|  | element.  This intrinsic is necessary because | 
|  | the <tt><a href="#int_va_start"> llvm.va_start</a></tt> intrinsic may be | 
|  | arbitrarily complex and require, for example, memory allocation.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <h3> | 
|  | <a name="int_gc">Accurate Garbage Collection Intrinsics</a> | 
|  | </h3> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>LLVM support for <a href="GarbageCollection.html">Accurate Garbage | 
|  | Collection</a> (GC) requires the implementation and generation of these | 
|  | intrinsics. These intrinsics allow identification of <a href="#int_gcroot">GC | 
|  | roots on the stack</a>, as well as garbage collector implementations that | 
|  | require <a href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a> | 
|  | barriers.  Front-ends for type-safe garbage collected languages should generate | 
|  | these intrinsics to make use of the LLVM garbage collectors.  For more details, | 
|  | see <a href="GarbageCollection.html">Accurate Garbage Collection with | 
|  | LLVM</a>.</p> | 
|  |  | 
|  | <p>The garbage collection intrinsics only operate on objects in the generic | 
|  | address space (address space zero).</p> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata) | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to | 
|  | the code generator, and allows some metadata to be associated with it.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The first argument specifies the address of a stack object that contains the | 
|  | root pointer.  The second pointer (which must be either a constant or a | 
|  | global value address) contains the meta-data to be associated with the | 
|  | root.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc" | 
|  | location.  At compile-time, the code generator generates information to allow | 
|  | the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>' | 
|  | intrinsic may only be used in a function which <a href="#gc">specifies a GC | 
|  | algorithm</a>.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr) | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap | 
|  | locations, allowing garbage collector implementations that require read | 
|  | barriers.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The second argument is the address to read from, which should be an address | 
|  | allocated from the garbage collector.  The first object is a pointer to the | 
|  | start of the referenced object, if needed by the language runtime (otherwise | 
|  | null).</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load | 
|  | instruction, but may be replaced with substantially more complex code by the | 
|  | garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic | 
|  | may only be used in a function which <a href="#gc">specifies a GC | 
|  | algorithm</a>.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2) | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap | 
|  | locations, allowing garbage collector implementations that require write | 
|  | barriers (such as generational or reference counting collectors).</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The first argument is the reference to store, the second is the start of the | 
|  | object to store it to, and the third is the address of the field of Obj to | 
|  | store to.  If the runtime does not require a pointer to the object, Obj may | 
|  | be null.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store | 
|  | instruction, but may be replaced with substantially more complex code by the | 
|  | garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic | 
|  | may only be used in a function which <a href="#gc">specifies a GC | 
|  | algorithm</a>.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <h3> | 
|  | <a name="int_codegen">Code Generator Intrinsics</a> | 
|  | </h3> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>These intrinsics are provided by LLVM to expose special features that may | 
|  | only be implemented with code generator support.</p> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | declare i8  *@llvm.returnaddress(i32 <level>) | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a | 
|  | target-specific value indicating the return address of the current function | 
|  | or one of its callers.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The argument to this intrinsic indicates which function to return the address | 
|  | for.  Zero indicates the calling function, one indicates its caller, etc. | 
|  | The argument is <b>required</b> to be a constant integer value.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer | 
|  | indicating the return address of the specified call frame, or zero if it | 
|  | cannot be identified.  The value returned by this intrinsic is likely to be | 
|  | incorrect or 0 for arguments other than zero, so it should only be used for | 
|  | debugging purposes.</p> | 
|  |  | 
|  | <p>Note that calling this intrinsic does not prevent function inlining or other | 
|  | aggressive transformations, so the value returned may not be that of the | 
|  | obvious source-language caller.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | declare i8* @llvm.frameaddress(i32 <level>) | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the | 
|  | target-specific frame pointer value for the specified stack frame.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The argument to this intrinsic indicates which function to return the frame | 
|  | pointer for.  Zero indicates the calling function, one indicates its caller, | 
|  | etc.  The argument is <b>required</b> to be a constant integer value.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer | 
|  | indicating the frame address of the specified call frame, or zero if it | 
|  | cannot be identified.  The value returned by this intrinsic is likely to be | 
|  | incorrect or 0 for arguments other than zero, so it should only be used for | 
|  | debugging purposes.</p> | 
|  |  | 
|  | <p>Note that calling this intrinsic does not prevent function inlining or other | 
|  | aggressive transformations, so the value returned may not be that of the | 
|  | obvious source-language caller.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | declare i8* @llvm.stacksave() | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state | 
|  | of the function stack, for use | 
|  | with <a href="#int_stackrestore"> <tt>llvm.stackrestore</tt></a>.  This is | 
|  | useful for implementing language features like scoped automatic variable | 
|  | sized arrays in C99.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>This intrinsic returns a opaque pointer value that can be passed | 
|  | to <a href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>.  When | 
|  | an <tt>llvm.stackrestore</tt> intrinsic is executed with a value saved | 
|  | from <tt>llvm.stacksave</tt>, it effectively restores the state of the stack | 
|  | to the state it was in when the <tt>llvm.stacksave</tt> intrinsic executed. | 
|  | In practice, this pops any <a href="#i_alloca">alloca</a> blocks from the | 
|  | stack that were allocated after the <tt>llvm.stacksave</tt> was executed.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | declare void @llvm.stackrestore(i8* %ptr) | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of | 
|  | the function stack to the state it was in when the | 
|  | corresponding <a href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic | 
|  | executed.  This is useful for implementing language features like scoped | 
|  | automatic variable sized arrays in C99.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>See the description | 
|  | for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>) | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to | 
|  | insert a prefetch instruction if supported; otherwise, it is a noop. | 
|  | Prefetches have no effect on the behavior of the program but can change its | 
|  | performance characteristics.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p><tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the | 
|  | specifier determining if the fetch should be for a read (0) or write (1), | 
|  | and <tt>locality</tt> is a temporal locality specifier ranging from (0) - no | 
|  | locality, to (3) - extremely local keep in cache. The <tt>cache type</tt> | 
|  | specifies whether the prefetch is performed on the data (1) or instruction (0) | 
|  | cache. The <tt>rw</tt>, <tt>locality</tt> and <tt>cache type</tt> arguments | 
|  | must be constant integers.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>This intrinsic does not modify the behavior of the program.  In particular, | 
|  | prefetches cannot trap and do not produce a value.  On targets that support | 
|  | this intrinsic, the prefetch can provide hints to the processor cache for | 
|  | better performance.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | declare void @llvm.pcmarker(i32 <id>) | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program | 
|  | Counter (PC) in a region of code to simulators and other tools.  The method | 
|  | is target specific, but it is expected that the marker will use exported | 
|  | symbols to transmit the PC of the marker.  The marker makes no guarantees | 
|  | that it will remain with any specific instruction after optimizations.  It is | 
|  | possible that the presence of a marker will inhibit optimizations.  The | 
|  | intended use is to be inserted after optimizations to allow correlations of | 
|  | simulation runs.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p><tt>id</tt> is a numerical id identifying the marker.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>This intrinsic does not modify the behavior of the program.  Backends that do | 
|  | not support this intrinsic may ignore it.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | declare i64 @llvm.readcyclecounter() | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle | 
|  | counter register (or similar low latency, high accuracy clocks) on those | 
|  | targets that support it.  On X86, it should map to RDTSC.  On Alpha, it | 
|  | should map to RPCC.  As the backing counters overflow quickly (on the order | 
|  | of 9 seconds on alpha), this should only be used for small timings.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>When directly supported, reading the cycle counter should not modify any | 
|  | memory.  Implementations are allowed to either return a application specific | 
|  | value or a system wide value.  On backends without support, this is lowered | 
|  | to a constant 0.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <h3> | 
|  | <a name="int_libc">Standard C Library Intrinsics</a> | 
|  | </h3> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>LLVM provides intrinsics for a few important standard C library functions. | 
|  | These intrinsics allow source-language front-ends to pass information about | 
|  | the alignment of the pointer arguments to the code generator, providing | 
|  | opportunity for more efficient code generation.</p> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <p>This is an overloaded intrinsic. You can use <tt>llvm.memcpy</tt> on any | 
|  | integer bit width and for different address spaces. Not all targets support | 
|  | all bit widths however.</p> | 
|  |  | 
|  | <pre> | 
|  | declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>, | 
|  | i32 <len>, i32 <align>, i1 <isvolatile>) | 
|  | declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>, | 
|  | i64 <len>, i32 <align>, i1 <isvolatile>) | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the | 
|  | source location to the destination location.</p> | 
|  |  | 
|  | <p>Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt> | 
|  | intrinsics do not return a value, takes extra alignment/isvolatile arguments | 
|  | and the pointers can be in specified address spaces.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  |  | 
|  | <p>The first argument is a pointer to the destination, the second is a pointer | 
|  | to the source.  The third argument is an integer argument specifying the | 
|  | number of bytes to copy, the fourth argument is the alignment of the | 
|  | source and destination locations, and the fifth is a boolean indicating a | 
|  | volatile access.</p> | 
|  |  | 
|  | <p>If the call to this intrinsic has an alignment value that is not 0 or 1, | 
|  | then the caller guarantees that both the source and destination pointers are | 
|  | aligned to that boundary.</p> | 
|  |  | 
|  | <p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the | 
|  | <tt>llvm.memcpy</tt> call is a <a href="#volatile">volatile operation</a>. | 
|  | The detailed access behavior is not very cleanly specified and it is unwise | 
|  | to depend on it.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  |  | 
|  | <p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the | 
|  | source location to the destination location, which are not allowed to | 
|  | overlap.  It copies "len" bytes of memory over.  If the argument is known to | 
|  | be aligned to some boundary, this can be specified as the fourth argument, | 
|  | otherwise it should be set to 0 or 1.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <p>This is an overloaded intrinsic. You can use llvm.memmove on any integer bit | 
|  | width and for different address space. Not all targets support all bit | 
|  | widths however.</p> | 
|  |  | 
|  | <pre> | 
|  | declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>, | 
|  | i32 <len>, i32 <align>, i1 <isvolatile>) | 
|  | declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>, | 
|  | i64 <len>, i32 <align>, i1 <isvolatile>) | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the | 
|  | source location to the destination location. It is similar to the | 
|  | '<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to | 
|  | overlap.</p> | 
|  |  | 
|  | <p>Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt> | 
|  | intrinsics do not return a value, takes extra alignment/isvolatile arguments | 
|  | and the pointers can be in specified address spaces.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  |  | 
|  | <p>The first argument is a pointer to the destination, the second is a pointer | 
|  | to the source.  The third argument is an integer argument specifying the | 
|  | number of bytes to copy, the fourth argument is the alignment of the | 
|  | source and destination locations, and the fifth is a boolean indicating a | 
|  | volatile access.</p> | 
|  |  | 
|  | <p>If the call to this intrinsic has an alignment value that is not 0 or 1, | 
|  | then the caller guarantees that the source and destination pointers are | 
|  | aligned to that boundary.</p> | 
|  |  | 
|  | <p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the | 
|  | <tt>llvm.memmove</tt> call is a <a href="#volatile">volatile operation</a>. | 
|  | The detailed access behavior is not very cleanly specified and it is unwise | 
|  | to depend on it.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  |  | 
|  | <p>The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the | 
|  | source location to the destination location, which may overlap.  It copies | 
|  | "len" bytes of memory over.  If the argument is known to be aligned to some | 
|  | boundary, this can be specified as the fourth argument, otherwise it should | 
|  | be set to 0 or 1.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <p>This is an overloaded intrinsic. You can use llvm.memset on any integer bit | 
|  | width and for different address spaces. However, not all targets support all | 
|  | bit widths.</p> | 
|  |  | 
|  | <pre> | 
|  | declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>, | 
|  | i32 <len>, i32 <align>, i1 <isvolatile>) | 
|  | declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>, | 
|  | i64 <len>, i32 <align>, i1 <isvolatile>) | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a | 
|  | particular byte value.</p> | 
|  |  | 
|  | <p>Note that, unlike the standard libc function, the <tt>llvm.memset</tt> | 
|  | intrinsic does not return a value and takes extra alignment/volatile | 
|  | arguments.  Also, the destination can be in an arbitrary address space.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The first argument is a pointer to the destination to fill, the second is the | 
|  | byte value with which to fill it, the third argument is an integer argument | 
|  | specifying the number of bytes to fill, and the fourth argument is the known | 
|  | alignment of the destination location.</p> | 
|  |  | 
|  | <p>If the call to this intrinsic has an alignment value that is not 0 or 1, | 
|  | then the caller guarantees that the destination pointer is aligned to that | 
|  | boundary.</p> | 
|  |  | 
|  | <p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the | 
|  | <tt>llvm.memset</tt> call is a <a href="#volatile">volatile operation</a>. | 
|  | The detailed access behavior is not very cleanly specified and it is unwise | 
|  | to depend on it.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting | 
|  | at the destination location.  If the argument is known to be aligned to some | 
|  | boundary, this can be specified as the fourth argument, otherwise it should | 
|  | be set to 0 or 1.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any | 
|  | floating point or vector of floating point type. Not all targets support all | 
|  | types however.</p> | 
|  |  | 
|  | <pre> | 
|  | declare float     @llvm.sqrt.f32(float %Val) | 
|  | declare double    @llvm.sqrt.f64(double %Val) | 
|  | declare x86_fp80  @llvm.sqrt.f80(x86_fp80 %Val) | 
|  | declare fp128     @llvm.sqrt.f128(fp128 %Val) | 
|  | declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val) | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand, | 
|  | returning the same value as the libm '<tt>sqrt</tt>' functions would. | 
|  | Unlike <tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined | 
|  | behavior for negative numbers other than -0.0 (which allows for better | 
|  | optimization, because there is no need to worry about errno being | 
|  | set).  <tt>llvm.sqrt(-0.0)</tt> is defined to return -0.0 like IEEE sqrt.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The argument and return value are floating point numbers of the same | 
|  | type.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>This function returns the sqrt of the specified operand if it is a | 
|  | nonnegative floating point number.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any | 
|  | floating point or vector of floating point type. Not all targets support all | 
|  | types however.</p> | 
|  |  | 
|  | <pre> | 
|  | declare float     @llvm.powi.f32(float  %Val, i32 %power) | 
|  | declare double    @llvm.powi.f64(double %Val, i32 %power) | 
|  | declare x86_fp80  @llvm.powi.f80(x86_fp80  %Val, i32 %power) | 
|  | declare fp128     @llvm.powi.f128(fp128 %Val, i32 %power) | 
|  | declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128  %Val, i32 %power) | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the | 
|  | specified (positive or negative) power.  The order of evaluation of | 
|  | multiplications is not defined.  When a vector of floating point type is | 
|  | used, the second argument remains a scalar integer value.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The second argument is an integer power, and the first is a value to raise to | 
|  | that power.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>This function returns the first value raised to the second power with an | 
|  | unspecified sequence of rounding operations.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any | 
|  | floating point or vector of floating point type. Not all targets support all | 
|  | types however.</p> | 
|  |  | 
|  | <pre> | 
|  | declare float     @llvm.sin.f32(float  %Val) | 
|  | declare double    @llvm.sin.f64(double %Val) | 
|  | declare x86_fp80  @llvm.sin.f80(x86_fp80  %Val) | 
|  | declare fp128     @llvm.sin.f128(fp128 %Val) | 
|  | declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128  %Val) | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The argument and return value are floating point numbers of the same | 
|  | type.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>This function returns the sine of the specified operand, returning the same | 
|  | values as the libm <tt>sin</tt> functions would, and handles error conditions | 
|  | in the same way.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any | 
|  | floating point or vector of floating point type. Not all targets support all | 
|  | types however.</p> | 
|  |  | 
|  | <pre> | 
|  | declare float     @llvm.cos.f32(float  %Val) | 
|  | declare double    @llvm.cos.f64(double %Val) | 
|  | declare x86_fp80  @llvm.cos.f80(x86_fp80  %Val) | 
|  | declare fp128     @llvm.cos.f128(fp128 %Val) | 
|  | declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128  %Val) | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The argument and return value are floating point numbers of the same | 
|  | type.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>This function returns the cosine of the specified operand, returning the same | 
|  | values as the libm <tt>cos</tt> functions would, and handles error conditions | 
|  | in the same way.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any | 
|  | floating point or vector of floating point type. Not all targets support all | 
|  | types however.</p> | 
|  |  | 
|  | <pre> | 
|  | declare float     @llvm.pow.f32(float  %Val, float %Power) | 
|  | declare double    @llvm.pow.f64(double %Val, double %Power) | 
|  | declare x86_fp80  @llvm.pow.f80(x86_fp80  %Val, x86_fp80 %Power) | 
|  | declare fp128     @llvm.pow.f128(fp128 %Val, fp128 %Power) | 
|  | declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128  %Val, ppc_fp128 Power) | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the | 
|  | specified (positive or negative) power.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The second argument is a floating point power, and the first is a value to | 
|  | raise to that power.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>This function returns the first value raised to the second power, returning | 
|  | the same values as the libm <tt>pow</tt> functions would, and handles error | 
|  | conditions in the same way.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="int_exp">'<tt>llvm.exp.*</tt>' Intrinsic</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <p>This is an overloaded intrinsic. You can use <tt>llvm.exp</tt> on any | 
|  | floating point or vector of floating point type. Not all targets support all | 
|  | types however.</p> | 
|  |  | 
|  | <pre> | 
|  | declare float     @llvm.exp.f32(float  %Val) | 
|  | declare double    @llvm.exp.f64(double %Val) | 
|  | declare x86_fp80  @llvm.exp.f80(x86_fp80  %Val) | 
|  | declare fp128     @llvm.exp.f128(fp128 %Val) | 
|  | declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128  %Val) | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>llvm.exp.*</tt>' intrinsics perform the exp function.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The argument and return value are floating point numbers of the same | 
|  | type.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>This function returns the same values as the libm <tt>exp</tt> functions | 
|  | would, and handles error conditions in the same way.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="int_log">'<tt>llvm.log.*</tt>' Intrinsic</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <p>This is an overloaded intrinsic. You can use <tt>llvm.log</tt> on any | 
|  | floating point or vector of floating point type. Not all targets support all | 
|  | types however.</p> | 
|  |  | 
|  | <pre> | 
|  | declare float     @llvm.log.f32(float  %Val) | 
|  | declare double    @llvm.log.f64(double %Val) | 
|  | declare x86_fp80  @llvm.log.f80(x86_fp80  %Val) | 
|  | declare fp128     @llvm.log.f128(fp128 %Val) | 
|  | declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128  %Val) | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>llvm.log.*</tt>' intrinsics perform the log function.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The argument and return value are floating point numbers of the same | 
|  | type.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>This function returns the same values as the libm <tt>log</tt> functions | 
|  | would, and handles error conditions in the same way.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="int_fma">'<tt>llvm.fma.*</tt>' Intrinsic</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <p>This is an overloaded intrinsic. You can use <tt>llvm.fma</tt> on any | 
|  | floating point or vector of floating point type. Not all targets support all | 
|  | types however.</p> | 
|  |  | 
|  | <pre> | 
|  | declare float     @llvm.fma.f32(float  %a, float  %b, float  %c) | 
|  | declare double    @llvm.fma.f64(double %a, double %b, double %c) | 
|  | declare x86_fp80  @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c) | 
|  | declare fp128     @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c) | 
|  | declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c) | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>llvm.fma.*</tt>' intrinsics perform the fused multiply-add | 
|  | operation.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The argument and return value are floating point numbers of the same | 
|  | type.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>This function returns the same values as the libm <tt>fma</tt> functions | 
|  | would.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <h3> | 
|  | <a name="int_manip">Bit Manipulation Intrinsics</a> | 
|  | </h3> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>LLVM provides intrinsics for a few important bit manipulation operations. | 
|  | These allow efficient code generation for some algorithms.</p> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <p>This is an overloaded intrinsic function. You can use bswap on any integer | 
|  | type that is an even number of bytes (i.e. BitWidth % 16 == 0).</p> | 
|  |  | 
|  | <pre> | 
|  | declare i16 @llvm.bswap.i16(i16 <id>) | 
|  | declare i32 @llvm.bswap.i32(i32 <id>) | 
|  | declare i64 @llvm.bswap.i64(i64 <id>) | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer | 
|  | values with an even number of bytes (positive multiple of 16 bits).  These | 
|  | are useful for performing operations on data that is not in the target's | 
|  | native byte order.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high | 
|  | and low byte of the input i16 swapped.  Similarly, | 
|  | the <tt>llvm.bswap.i32</tt> intrinsic returns an i32 value that has the four | 
|  | bytes of the input i32 swapped, so that if the input bytes are numbered 0, 1, | 
|  | 2, 3 then the returned i32 will have its bytes in 3, 2, 1, 0 order. | 
|  | The <tt>llvm.bswap.i48</tt>, <tt>llvm.bswap.i64</tt> and other intrinsics | 
|  | extend this concept to additional even-byte lengths (6 bytes, 8 bytes and | 
|  | more, respectively).</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit | 
|  | width, or on any vector with integer elements. Not all targets support all | 
|  | bit widths or vector types, however.</p> | 
|  |  | 
|  | <pre> | 
|  | declare i8 @llvm.ctpop.i8(i8  <src>) | 
|  | declare i16 @llvm.ctpop.i16(i16 <src>) | 
|  | declare i32 @llvm.ctpop.i32(i32 <src>) | 
|  | declare i64 @llvm.ctpop.i64(i64 <src>) | 
|  | declare i256 @llvm.ctpop.i256(i256 <src>) | 
|  | declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>) | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set | 
|  | in a value.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The only argument is the value to be counted.  The argument may be of any | 
|  | integer type, or a vector with integer elements. | 
|  | The return type must match the argument type.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable, or within each | 
|  | element of a vector.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any | 
|  | integer bit width, or any vector whose elements are integers. Not all | 
|  | targets support all bit widths or vector types, however.</p> | 
|  |  | 
|  | <pre> | 
|  | declare i8   @llvm.ctlz.i8  (i8   <src>, i1 <is_zero_undef>) | 
|  | declare i16  @llvm.ctlz.i16 (i16  <src>, i1 <is_zero_undef>) | 
|  | declare i32  @llvm.ctlz.i32 (i32  <src>, i1 <is_zero_undef>) | 
|  | declare i64  @llvm.ctlz.i64 (i64  <src>, i1 <is_zero_undef>) | 
|  | declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>) | 
|  | declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>) | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of | 
|  | leading zeros in a variable.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The first argument is the value to be counted. This argument may be of any | 
|  | integer type, or a vectory with integer element type. The return type | 
|  | must match the first argument type.</p> | 
|  |  | 
|  | <p>The second argument must be a constant and is a flag to indicate whether the | 
|  | intrinsic should ensure that a zero as the first argument produces a defined | 
|  | result. Historically some architectures did not provide a defined result for | 
|  | zero values as efficiently, and many algorithms are now predicated on | 
|  | avoiding zero-value inputs.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) | 
|  | zeros in a variable, or within each element of the vector. | 
|  | If <tt>src == 0</tt> then the result is the size in bits of the type of | 
|  | <tt>src</tt> if <tt>is_zero_undef == 0</tt> and <tt>undef</tt> otherwise. | 
|  | For example, <tt>llvm.ctlz(i32 2) = 30</tt>.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any | 
|  | integer bit width, or any vector of integer elements. Not all targets | 
|  | support all bit widths or vector types, however.</p> | 
|  |  | 
|  | <pre> | 
|  | declare i8   @llvm.cttz.i8  (i8   <src>, i1 <is_zero_undef>) | 
|  | declare i16  @llvm.cttz.i16 (i16  <src>, i1 <is_zero_undef>) | 
|  | declare i32  @llvm.cttz.i32 (i32  <src>, i1 <is_zero_undef>) | 
|  | declare i64  @llvm.cttz.i64 (i64  <src>, i1 <is_zero_undef>) | 
|  | declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>) | 
|  | declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>) | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of | 
|  | trailing zeros.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The first argument is the value to be counted. This argument may be of any | 
|  | integer type, or a vectory with integer element type. The return type | 
|  | must match the first argument type.</p> | 
|  |  | 
|  | <p>The second argument must be a constant and is a flag to indicate whether the | 
|  | intrinsic should ensure that a zero as the first argument produces a defined | 
|  | result. Historically some architectures did not provide a defined result for | 
|  | zero values as efficiently, and many algorithms are now predicated on | 
|  | avoiding zero-value inputs.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) | 
|  | zeros in a variable, or within each element of a vector. | 
|  | If <tt>src == 0</tt> then the result is the size in bits of the type of | 
|  | <tt>src</tt> if <tt>is_zero_undef == 0</tt> and <tt>undef</tt> otherwise. | 
|  | For example, <tt>llvm.cttz(2) = 1</tt>.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <h3> | 
|  | <a name="int_overflow">Arithmetic with Overflow Intrinsics</a> | 
|  | </h3> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>LLVM provides intrinsics for some arithmetic with overflow operations.</p> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="int_sadd_overflow"> | 
|  | '<tt>llvm.sadd.with.overflow.*</tt>' Intrinsics | 
|  | </a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <p>This is an overloaded intrinsic. You can use <tt>llvm.sadd.with.overflow</tt> | 
|  | on any integer bit width.</p> | 
|  |  | 
|  | <pre> | 
|  | declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b) | 
|  | declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b) | 
|  | declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b) | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform | 
|  | a signed addition of the two arguments, and indicate whether an overflow | 
|  | occurred during the signed summation.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The arguments (%a and %b) and the first element of the result structure may | 
|  | be of integer types of any bit width, but they must have the same bit | 
|  | width. The second element of the result structure must be of | 
|  | type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will | 
|  | undergo signed addition.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform | 
|  | a signed addition of the two variables. They return a structure — the | 
|  | first element of which is the signed summation, and the second element of | 
|  | which is a bit specifying if the signed summation resulted in an | 
|  | overflow.</p> | 
|  |  | 
|  | <h5>Examples:</h5> | 
|  | <pre> | 
|  | %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b) | 
|  | %sum = extractvalue {i32, i1} %res, 0 | 
|  | %obit = extractvalue {i32, i1} %res, 1 | 
|  | br i1 %obit, label %overflow, label %normal | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="int_uadd_overflow"> | 
|  | '<tt>llvm.uadd.with.overflow.*</tt>' Intrinsics | 
|  | </a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <p>This is an overloaded intrinsic. You can use <tt>llvm.uadd.with.overflow</tt> | 
|  | on any integer bit width.</p> | 
|  |  | 
|  | <pre> | 
|  | declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b) | 
|  | declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b) | 
|  | declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b) | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform | 
|  | an unsigned addition of the two arguments, and indicate whether a carry | 
|  | occurred during the unsigned summation.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The arguments (%a and %b) and the first element of the result structure may | 
|  | be of integer types of any bit width, but they must have the same bit | 
|  | width. The second element of the result structure must be of | 
|  | type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will | 
|  | undergo unsigned addition.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform | 
|  | an unsigned addition of the two arguments. They return a structure — | 
|  | the first element of which is the sum, and the second element of which is a | 
|  | bit specifying if the unsigned summation resulted in a carry.</p> | 
|  |  | 
|  | <h5>Examples:</h5> | 
|  | <pre> | 
|  | %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b) | 
|  | %sum = extractvalue {i32, i1} %res, 0 | 
|  | %obit = extractvalue {i32, i1} %res, 1 | 
|  | br i1 %obit, label %carry, label %normal | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="int_ssub_overflow"> | 
|  | '<tt>llvm.ssub.with.overflow.*</tt>' Intrinsics | 
|  | </a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <p>This is an overloaded intrinsic. You can use <tt>llvm.ssub.with.overflow</tt> | 
|  | on any integer bit width.</p> | 
|  |  | 
|  | <pre> | 
|  | declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b) | 
|  | declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b) | 
|  | declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b) | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform | 
|  | a signed subtraction of the two arguments, and indicate whether an overflow | 
|  | occurred during the signed subtraction.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The arguments (%a and %b) and the first element of the result structure may | 
|  | be of integer types of any bit width, but they must have the same bit | 
|  | width. The second element of the result structure must be of | 
|  | type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will | 
|  | undergo signed subtraction.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform | 
|  | a signed subtraction of the two arguments. They return a structure — | 
|  | the first element of which is the subtraction, and the second element of | 
|  | which is a bit specifying if the signed subtraction resulted in an | 
|  | overflow.</p> | 
|  |  | 
|  | <h5>Examples:</h5> | 
|  | <pre> | 
|  | %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b) | 
|  | %sum = extractvalue {i32, i1} %res, 0 | 
|  | %obit = extractvalue {i32, i1} %res, 1 | 
|  | br i1 %obit, label %overflow, label %normal | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="int_usub_overflow"> | 
|  | '<tt>llvm.usub.with.overflow.*</tt>' Intrinsics | 
|  | </a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <p>This is an overloaded intrinsic. You can use <tt>llvm.usub.with.overflow</tt> | 
|  | on any integer bit width.</p> | 
|  |  | 
|  | <pre> | 
|  | declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b) | 
|  | declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b) | 
|  | declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b) | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform | 
|  | an unsigned subtraction of the two arguments, and indicate whether an | 
|  | overflow occurred during the unsigned subtraction.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The arguments (%a and %b) and the first element of the result structure may | 
|  | be of integer types of any bit width, but they must have the same bit | 
|  | width. The second element of the result structure must be of | 
|  | type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will | 
|  | undergo unsigned subtraction.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform | 
|  | an unsigned subtraction of the two arguments. They return a structure — | 
|  | the first element of which is the subtraction, and the second element of | 
|  | which is a bit specifying if the unsigned subtraction resulted in an | 
|  | overflow.</p> | 
|  |  | 
|  | <h5>Examples:</h5> | 
|  | <pre> | 
|  | %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b) | 
|  | %sum = extractvalue {i32, i1} %res, 0 | 
|  | %obit = extractvalue {i32, i1} %res, 1 | 
|  | br i1 %obit, label %overflow, label %normal | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="int_smul_overflow"> | 
|  | '<tt>llvm.smul.with.overflow.*</tt>' Intrinsics | 
|  | </a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <p>This is an overloaded intrinsic. You can use <tt>llvm.smul.with.overflow</tt> | 
|  | on any integer bit width.</p> | 
|  |  | 
|  | <pre> | 
|  | declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b) | 
|  | declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b) | 
|  | declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b) | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  |  | 
|  | <p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform | 
|  | a signed multiplication of the two arguments, and indicate whether an | 
|  | overflow occurred during the signed multiplication.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The arguments (%a and %b) and the first element of the result structure may | 
|  | be of integer types of any bit width, but they must have the same bit | 
|  | width. The second element of the result structure must be of | 
|  | type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will | 
|  | undergo signed multiplication.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform | 
|  | a signed multiplication of the two arguments. They return a structure — | 
|  | the first element of which is the multiplication, and the second element of | 
|  | which is a bit specifying if the signed multiplication resulted in an | 
|  | overflow.</p> | 
|  |  | 
|  | <h5>Examples:</h5> | 
|  | <pre> | 
|  | %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b) | 
|  | %sum = extractvalue {i32, i1} %res, 0 | 
|  | %obit = extractvalue {i32, i1} %res, 1 | 
|  | br i1 %obit, label %overflow, label %normal | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="int_umul_overflow"> | 
|  | '<tt>llvm.umul.with.overflow.*</tt>' Intrinsics | 
|  | </a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <p>This is an overloaded intrinsic. You can use <tt>llvm.umul.with.overflow</tt> | 
|  | on any integer bit width.</p> | 
|  |  | 
|  | <pre> | 
|  | declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b) | 
|  | declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b) | 
|  | declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b) | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform | 
|  | a unsigned multiplication of the two arguments, and indicate whether an | 
|  | overflow occurred during the unsigned multiplication.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The arguments (%a and %b) and the first element of the result structure may | 
|  | be of integer types of any bit width, but they must have the same bit | 
|  | width. The second element of the result structure must be of | 
|  | type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will | 
|  | undergo unsigned multiplication.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform | 
|  | an unsigned multiplication of the two arguments. They return a structure | 
|  | — the first element of which is the multiplication, and the second | 
|  | element of which is a bit specifying if the unsigned multiplication resulted | 
|  | in an overflow.</p> | 
|  |  | 
|  | <h5>Examples:</h5> | 
|  | <pre> | 
|  | %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b) | 
|  | %sum = extractvalue {i32, i1} %res, 0 | 
|  | %obit = extractvalue {i32, i1} %res, 1 | 
|  | br i1 %obit, label %overflow, label %normal | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <h3> | 
|  | <a name="int_fp16">Half Precision Floating Point Intrinsics</a> | 
|  | </h3> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>Half precision floating point is a storage-only format. This means that it is | 
|  | a dense encoding (in memory) but does not support computation in the | 
|  | format.</p> | 
|  |  | 
|  | <p>This means that code must first load the half-precision floating point | 
|  | value as an i16, then convert it to float with <a | 
|  | href="#int_convert_from_fp16"><tt>llvm.convert.from.fp16</tt></a>. | 
|  | Computation can then be performed on the float value (including extending to | 
|  | double etc).  To store the value back to memory, it is first converted to | 
|  | float if needed, then converted to i16 with | 
|  | <a href="#int_convert_to_fp16"><tt>llvm.convert.to.fp16</tt></a>, then | 
|  | storing as an i16 value.</p> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="int_convert_to_fp16"> | 
|  | '<tt>llvm.convert.to.fp16</tt>' Intrinsic | 
|  | </a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | declare i16 @llvm.convert.to.fp16(f32 %a) | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>llvm.convert.to.fp16</tt>' intrinsic function performs | 
|  | a conversion from single precision floating point format to half precision | 
|  | floating point format.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The intrinsic function contains single argument - the value to be | 
|  | converted.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The '<tt>llvm.convert.to.fp16</tt>' intrinsic function performs | 
|  | a conversion from single precision floating point format to half precision | 
|  | floating point format. The return value is an <tt>i16</tt> which | 
|  | contains the converted number.</p> | 
|  |  | 
|  | <h5>Examples:</h5> | 
|  | <pre> | 
|  | %res = call i16 @llvm.convert.to.fp16(f32 %a) | 
|  | store i16 %res, i16* @x, align 2 | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="int_convert_from_fp16"> | 
|  | '<tt>llvm.convert.from.fp16</tt>' Intrinsic | 
|  | </a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | declare f32 @llvm.convert.from.fp16(i16 %a) | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>llvm.convert.from.fp16</tt>' intrinsic function performs | 
|  | a conversion from half precision floating point format to single precision | 
|  | floating point format.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The intrinsic function contains single argument - the value to be | 
|  | converted.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The '<tt>llvm.convert.from.fp16</tt>' intrinsic function performs a | 
|  | conversion from half single precision floating point format to single | 
|  | precision floating point format. The input half-float value is represented by | 
|  | an <tt>i16</tt> value.</p> | 
|  |  | 
|  | <h5>Examples:</h5> | 
|  | <pre> | 
|  | %a = load i16* @x, align 2 | 
|  | %res = call f32 @llvm.convert.from.fp16(i16 %a) | 
|  | </pre> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <h3> | 
|  | <a name="int_debugger">Debugger Intrinsics</a> | 
|  | </h3> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> | 
|  | prefix), are described in | 
|  | the <a href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source | 
|  | Level Debugging</a> document.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <h3> | 
|  | <a name="int_eh">Exception Handling Intrinsics</a> | 
|  | </h3> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>The LLVM exception handling intrinsics (which all start with | 
|  | <tt>llvm.eh.</tt> prefix), are described in | 
|  | the <a href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception | 
|  | Handling</a> document.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <h3> | 
|  | <a name="int_trampoline">Trampoline Intrinsics</a> | 
|  | </h3> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>These intrinsics make it possible to excise one parameter, marked with | 
|  | the <a href="#nest"><tt>nest</tt></a> attribute, from a function. | 
|  | The result is a callable | 
|  | function pointer lacking the nest parameter - the caller does not need to | 
|  | provide a value for it.  Instead, the value to use is stored in advance in a | 
|  | "trampoline", a block of memory usually allocated on the stack, which also | 
|  | contains code to splice the nest value into the argument list.  This is used | 
|  | to implement the GCC nested function address extension.</p> | 
|  |  | 
|  | <p>For example, if the function is | 
|  | <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function | 
|  | pointer has signature <tt>i32 (i32, i32)*</tt>.  It can be created as | 
|  | follows:</p> | 
|  |  | 
|  | <pre class="doc_code"> | 
|  | %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86 | 
|  | %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0 | 
|  | call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval) | 
|  | %p = call i8* @llvm.adjust.trampoline(i8* %tramp1) | 
|  | %fp = bitcast i8* %p to i32 (i32, i32)* | 
|  | </pre> | 
|  |  | 
|  | <p>The call <tt>%val = call i32 %fp(i32 %x, i32 %y)</tt> is then equivalent | 
|  | to <tt>%val = call i32 %f(i8* %nval, i32 %x, i32 %y)</tt>.</p> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="int_it"> | 
|  | '<tt>llvm.init.trampoline</tt>' Intrinsic | 
|  | </a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>) | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>This fills the memory pointed to by <tt>tramp</tt> with executable code, | 
|  | turning it into a trampoline.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all | 
|  | pointers.  The <tt>tramp</tt> argument must point to a sufficiently large and | 
|  | sufficiently aligned block of memory; this memory is written to by the | 
|  | intrinsic.  Note that the size and the alignment are target-specific - LLVM | 
|  | currently provides no portable way of determining them, so a front-end that | 
|  | generates this intrinsic needs to have some target-specific knowledge. | 
|  | The <tt>func</tt> argument must hold a function bitcast to | 
|  | an <tt>i8*</tt>.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The block of memory pointed to by <tt>tramp</tt> is filled with target | 
|  | dependent code, turning it into a function.  Then <tt>tramp</tt> needs to be | 
|  | passed to <a href="#int_at">llvm.adjust.trampoline</a> to get a pointer | 
|  | which can be <a href="#int_trampoline">bitcast (to a new function) and | 
|  | called</a>.  The new function's signature is the same as that of | 
|  | <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute | 
|  | removed.  At most one such <tt>nest</tt> argument is allowed, and it must be of | 
|  | pointer type.  Calling the new function is equivalent to calling <tt>func</tt> | 
|  | with the same argument list, but with <tt>nval</tt> used for the missing | 
|  | <tt>nest</tt> argument.  If, after calling <tt>llvm.init.trampoline</tt>, the | 
|  | memory pointed to by <tt>tramp</tt> is modified, then the effect of any later call | 
|  | to the returned function pointer is undefined.</p> | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="int_at"> | 
|  | '<tt>llvm.adjust.trampoline</tt>' Intrinsic | 
|  | </a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | declare i8* @llvm.adjust.trampoline(i8* <tramp>) | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>This performs any required machine-specific adjustment to the address of a | 
|  | trampoline (passed as <tt>tramp</tt>).</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p><tt>tramp</tt> must point to a block of memory which already has trampoline code | 
|  | filled in by a previous call to <a href="#int_it"><tt>llvm.init.trampoline</tt> | 
|  | </a>.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>On some architectures the address of the code to be executed needs to be | 
|  | different to the address where the trampoline is actually stored.  This | 
|  | intrinsic returns the executable address corresponding to <tt>tramp</tt> | 
|  | after performing the required machine specific adjustments. | 
|  | The pointer returned can then be <a href="#int_trampoline"> bitcast and | 
|  | executed</a>. | 
|  | </p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <h3> | 
|  | <a name="int_memorymarkers">Memory Use Markers</a> | 
|  | </h3> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>This class of intrinsics exists to information about the lifetime of memory | 
|  | objects and ranges where variables are immutable.</p> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="int_lifetime_start">'<tt>llvm.lifetime.start</tt>' Intrinsic</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>) | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>llvm.lifetime.start</tt>' intrinsic specifies the start of a memory | 
|  | object's lifetime.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The first argument is a constant integer representing the size of the | 
|  | object, or -1 if it is variable sized.  The second argument is a pointer to | 
|  | the object.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>This intrinsic indicates that before this point in the code, the value of the | 
|  | memory pointed to by <tt>ptr</tt> is dead.  This means that it is known to | 
|  | never be used and has an undefined value.  A load from the pointer that | 
|  | precedes this intrinsic can be replaced with | 
|  | <tt>'<a href="#undefvalues">undef</a>'</tt>.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="int_lifetime_end">'<tt>llvm.lifetime.end</tt>' Intrinsic</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>) | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>llvm.lifetime.end</tt>' intrinsic specifies the end of a memory | 
|  | object's lifetime.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The first argument is a constant integer representing the size of the | 
|  | object, or -1 if it is variable sized.  The second argument is a pointer to | 
|  | the object.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>This intrinsic indicates that after this point in the code, the value of the | 
|  | memory pointed to by <tt>ptr</tt> is dead.  This means that it is known to | 
|  | never be used and has an undefined value.  Any stores into the memory object | 
|  | following this intrinsic may be removed as dead. | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="int_invariant_start">'<tt>llvm.invariant.start</tt>' Intrinsic</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>) | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>llvm.invariant.start</tt>' intrinsic specifies that the contents of | 
|  | a memory object will not change.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The first argument is a constant integer representing the size of the | 
|  | object, or -1 if it is variable sized.  The second argument is a pointer to | 
|  | the object.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>This intrinsic indicates that until an <tt>llvm.invariant.end</tt> that uses | 
|  | the return value, the referenced memory location is constant and | 
|  | unchanging.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="int_invariant_end">'<tt>llvm.invariant.end</tt>' Intrinsic</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>) | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>llvm.invariant.end</tt>' intrinsic specifies that the contents of | 
|  | a memory object are mutable.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The first argument is the matching <tt>llvm.invariant.start</tt> intrinsic. | 
|  | The second argument is a constant integer representing the size of the | 
|  | object, or -1 if it is variable sized and the third argument is a pointer | 
|  | to the object.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>This intrinsic indicates that the memory is mutable again.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <h3> | 
|  | <a name="int_general">General Intrinsics</a> | 
|  | </h3> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>This class of intrinsics is designed to be generic and has no specific | 
|  | purpose.</p> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32  <int>) | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>llvm.var.annotation</tt>' intrinsic.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The first argument is a pointer to a value, the second is a pointer to a | 
|  | global string, the third is a pointer to a global string which is the source | 
|  | file name, and the last argument is the line number.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>This intrinsic allows annotation of local variables with arbitrary strings. | 
|  | This can be useful for special purpose optimizations that want to look for | 
|  | these annotations.  These have no other defined use; they are ignored by code | 
|  | generation and optimization.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on | 
|  | any integer bit width.</p> | 
|  |  | 
|  | <pre> | 
|  | declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32  <int>) | 
|  | declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32  <int>) | 
|  | declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32  <int>) | 
|  | declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32  <int>) | 
|  | declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32  <int>) | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>llvm.annotation</tt>' intrinsic.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The first argument is an integer value (result of some expression), the | 
|  | second is a pointer to a global string, the third is a pointer to a global | 
|  | string which is the source file name, and the last argument is the line | 
|  | number.  It returns the value of the first argument.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>This intrinsic allows annotations to be put on arbitrary expressions with | 
|  | arbitrary strings.  This can be useful for special purpose optimizations that | 
|  | want to look for these annotations.  These have no other defined use; they | 
|  | are ignored by code generation and optimization.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | declare void @llvm.trap() | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The '<tt>llvm.trap</tt>' intrinsic.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>None.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>This intrinsics is lowered to the target dependent trap instruction. If the | 
|  | target does not have a trap instruction, this intrinsic will be lowered to | 
|  | the call of the <tt>abort()</tt> function.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="int_stackprotector">'<tt>llvm.stackprotector</tt>' Intrinsic</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | declare void @llvm.stackprotector(i8* <guard>, i8** <slot>) | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The <tt>llvm.stackprotector</tt> intrinsic takes the <tt>guard</tt> and | 
|  | stores it onto the stack at <tt>slot</tt>. The stack slot is adjusted to | 
|  | ensure that it is placed on the stack before local variables.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The <tt>llvm.stackprotector</tt> intrinsic requires two pointer | 
|  | arguments. The first argument is the value loaded from the stack | 
|  | guard <tt>@__stack_chk_guard</tt>. The second variable is an <tt>alloca</tt> | 
|  | that has enough space to hold the value of the guard.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>This intrinsic causes the prologue/epilogue inserter to force the position of | 
|  | the <tt>AllocaInst</tt> stack slot to be before local variables on the | 
|  | stack. This is to ensure that if a local variable on the stack is | 
|  | overwritten, it will destroy the value of the guard. When the function exits, | 
|  | the guard on the stack is checked against the original guard. If they are | 
|  | different, then the program aborts by calling the <tt>__stack_chk_fail()</tt> | 
|  | function.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="int_objectsize">'<tt>llvm.objectsize</tt>' Intrinsic</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | declare i32 @llvm.objectsize.i32(i8* <object>, i1 <type>) | 
|  | declare i64 @llvm.objectsize.i64(i8* <object>, i1 <type>) | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The <tt>llvm.objectsize</tt> intrinsic is designed to provide information to | 
|  | the optimizers to determine at compile time whether a) an operation (like | 
|  | memcpy) will overflow a buffer that corresponds to an object, or b) that a | 
|  | runtime check for overflow isn't necessary. An object in this context means | 
|  | an allocation of a specific class, structure, array, or other object.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The <tt>llvm.objectsize</tt> intrinsic takes two arguments. The first | 
|  | argument is a pointer to or into the <tt>object</tt>. The second argument | 
|  | is a boolean 0 or 1. This argument determines whether you want the | 
|  | maximum (0) or minimum (1) bytes remaining. This needs to be a literal 0 or | 
|  | 1, variables are not allowed.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>The <tt>llvm.objectsize</tt> intrinsic is lowered to either a constant | 
|  | representing the size of the object concerned, or <tt>i32/i64 -1 or 0</tt>, | 
|  | depending on the <tt>type</tt> argument, if the size cannot be determined at | 
|  | compile time.</p> | 
|  |  | 
|  | </div> | 
|  | <!-- _______________________________________________________________________ --> | 
|  | <h4> | 
|  | <a name="int_expect">'<tt>llvm.expect</tt>' Intrinsic</a> | 
|  | </h4> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <h5>Syntax:</h5> | 
|  | <pre> | 
|  | declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>) | 
|  | declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>) | 
|  | </pre> | 
|  |  | 
|  | <h5>Overview:</h5> | 
|  | <p>The <tt>llvm.expect</tt> intrinsic provides information about expected (the | 
|  | most probable) value of <tt>val</tt>, which can be used by optimizers.</p> | 
|  |  | 
|  | <h5>Arguments:</h5> | 
|  | <p>The <tt>llvm.expect</tt> intrinsic takes two arguments. The first | 
|  | argument is a value. The second argument is an expected value, this needs to | 
|  | be a constant value, variables are not allowed.</p> | 
|  |  | 
|  | <h5>Semantics:</h5> | 
|  | <p>This intrinsic is lowered to the <tt>val</tt>.</p> | 
|  | </div> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | </div> | 
|  | <!-- *********************************************************************** --> | 
|  | <hr> | 
|  | <address> | 
|  | <a href="http://jigsaw.w3.org/css-validator/check/referer"><img | 
|  | src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a> | 
|  | <a href="http://validator.w3.org/check/referer"><img | 
|  | src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a> | 
|  |  | 
|  | <a href="mailto:sabre@nondot.org">Chris Lattner</a><br> | 
|  | <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br> | 
|  | Last modified: $Date$ | 
|  | </address> | 
|  |  | 
|  | </body> | 
|  | </html> |