|  | //===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This pass combines dag nodes to form fewer, simpler DAG nodes.  It can be run | 
|  | // both before and after the DAG is legalized. | 
|  | // | 
|  | // This pass is not a substitute for the LLVM IR instcombine pass. This pass is | 
|  | // primarily intended to handle simplification opportunities that are implicit | 
|  | // in the LLVM IR and exposed by the various codegen lowering phases. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #define DEBUG_TYPE "dagcombine" | 
|  | #include "llvm/CodeGen/SelectionDAG.h" | 
|  | #include "llvm/DerivedTypes.h" | 
|  | #include "llvm/LLVMContext.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/Analysis/AliasAnalysis.h" | 
|  | #include "llvm/Target/TargetData.h" | 
|  | #include "llvm/Target/TargetLowering.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include "llvm/Target/TargetOptions.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <algorithm> | 
|  | using namespace llvm; | 
|  |  | 
|  | STATISTIC(NodesCombined   , "Number of dag nodes combined"); | 
|  | STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created"); | 
|  | STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created"); | 
|  | STATISTIC(OpsNarrowed     , "Number of load/op/store narrowed"); | 
|  | STATISTIC(LdStFP2Int      , "Number of fp load/store pairs transformed to int"); | 
|  |  | 
|  | namespace { | 
|  | static cl::opt<bool> | 
|  | CombinerAA("combiner-alias-analysis", cl::Hidden, | 
|  | cl::desc("Turn on alias analysis during testing")); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden, | 
|  | cl::desc("Include global information in alias analysis")); | 
|  |  | 
|  | //------------------------------ DAGCombiner ---------------------------------// | 
|  |  | 
|  | class DAGCombiner { | 
|  | SelectionDAG &DAG; | 
|  | const TargetLowering &TLI; | 
|  | CombineLevel Level; | 
|  | CodeGenOpt::Level OptLevel; | 
|  | bool LegalOperations; | 
|  | bool LegalTypes; | 
|  |  | 
|  | // Worklist of all of the nodes that need to be simplified. | 
|  | std::vector<SDNode*> WorkList; | 
|  |  | 
|  | // AA - Used for DAG load/store alias analysis. | 
|  | AliasAnalysis &AA; | 
|  |  | 
|  | /// AddUsersToWorkList - When an instruction is simplified, add all users of | 
|  | /// the instruction to the work lists because they might get more simplified | 
|  | /// now. | 
|  | /// | 
|  | void AddUsersToWorkList(SDNode *N) { | 
|  | for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); | 
|  | UI != UE; ++UI) | 
|  | AddToWorkList(*UI); | 
|  | } | 
|  |  | 
|  | /// visit - call the node-specific routine that knows how to fold each | 
|  | /// particular type of node. | 
|  | SDValue visit(SDNode *N); | 
|  |  | 
|  | public: | 
|  | /// AddToWorkList - Add to the work list making sure it's instance is at the | 
|  | /// the back (next to be processed.) | 
|  | void AddToWorkList(SDNode *N) { | 
|  | removeFromWorkList(N); | 
|  | WorkList.push_back(N); | 
|  | } | 
|  |  | 
|  | /// removeFromWorkList - remove all instances of N from the worklist. | 
|  | /// | 
|  | void removeFromWorkList(SDNode *N) { | 
|  | WorkList.erase(std::remove(WorkList.begin(), WorkList.end(), N), | 
|  | WorkList.end()); | 
|  | } | 
|  |  | 
|  | SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo, | 
|  | bool AddTo = true); | 
|  |  | 
|  | SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) { | 
|  | return CombineTo(N, &Res, 1, AddTo); | 
|  | } | 
|  |  | 
|  | SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, | 
|  | bool AddTo = true) { | 
|  | SDValue To[] = { Res0, Res1 }; | 
|  | return CombineTo(N, To, 2, AddTo); | 
|  | } | 
|  |  | 
|  | void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO); | 
|  |  | 
|  | private: | 
|  |  | 
|  | /// SimplifyDemandedBits - Check the specified integer node value to see if | 
|  | /// it can be simplified or if things it uses can be simplified by bit | 
|  | /// propagation.  If so, return true. | 
|  | bool SimplifyDemandedBits(SDValue Op) { | 
|  | unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits(); | 
|  | APInt Demanded = APInt::getAllOnesValue(BitWidth); | 
|  | return SimplifyDemandedBits(Op, Demanded); | 
|  | } | 
|  |  | 
|  | bool SimplifyDemandedBits(SDValue Op, const APInt &Demanded); | 
|  |  | 
|  | bool CombineToPreIndexedLoadStore(SDNode *N); | 
|  | bool CombineToPostIndexedLoadStore(SDNode *N); | 
|  |  | 
|  | void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad); | 
|  | SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace); | 
|  | SDValue SExtPromoteOperand(SDValue Op, EVT PVT); | 
|  | SDValue ZExtPromoteOperand(SDValue Op, EVT PVT); | 
|  | SDValue PromoteIntBinOp(SDValue Op); | 
|  | SDValue PromoteIntShiftOp(SDValue Op); | 
|  | SDValue PromoteExtend(SDValue Op); | 
|  | bool PromoteLoad(SDValue Op); | 
|  |  | 
|  | void ExtendSetCCUses(SmallVector<SDNode*, 4> SetCCs, | 
|  | SDValue Trunc, SDValue ExtLoad, DebugLoc DL, | 
|  | ISD::NodeType ExtType); | 
|  |  | 
|  | /// combine - call the node-specific routine that knows how to fold each | 
|  | /// particular type of node. If that doesn't do anything, try the | 
|  | /// target-specific DAG combines. | 
|  | SDValue combine(SDNode *N); | 
|  |  | 
|  | // Visitation implementation - Implement dag node combining for different | 
|  | // node types.  The semantics are as follows: | 
|  | // Return Value: | 
|  | //   SDValue.getNode() == 0 - No change was made | 
|  | //   SDValue.getNode() == N - N was replaced, is dead and has been handled. | 
|  | //   otherwise              - N should be replaced by the returned Operand. | 
|  | // | 
|  | SDValue visitTokenFactor(SDNode *N); | 
|  | SDValue visitMERGE_VALUES(SDNode *N); | 
|  | SDValue visitADD(SDNode *N); | 
|  | SDValue visitSUB(SDNode *N); | 
|  | SDValue visitADDC(SDNode *N); | 
|  | SDValue visitADDE(SDNode *N); | 
|  | SDValue visitMUL(SDNode *N); | 
|  | SDValue visitSDIV(SDNode *N); | 
|  | SDValue visitUDIV(SDNode *N); | 
|  | SDValue visitSREM(SDNode *N); | 
|  | SDValue visitUREM(SDNode *N); | 
|  | SDValue visitMULHU(SDNode *N); | 
|  | SDValue visitMULHS(SDNode *N); | 
|  | SDValue visitSMUL_LOHI(SDNode *N); | 
|  | SDValue visitUMUL_LOHI(SDNode *N); | 
|  | SDValue visitSMULO(SDNode *N); | 
|  | SDValue visitUMULO(SDNode *N); | 
|  | SDValue visitSDIVREM(SDNode *N); | 
|  | SDValue visitUDIVREM(SDNode *N); | 
|  | SDValue visitAND(SDNode *N); | 
|  | SDValue visitOR(SDNode *N); | 
|  | SDValue visitXOR(SDNode *N); | 
|  | SDValue SimplifyVBinOp(SDNode *N); | 
|  | SDValue visitSHL(SDNode *N); | 
|  | SDValue visitSRA(SDNode *N); | 
|  | SDValue visitSRL(SDNode *N); | 
|  | SDValue visitCTLZ(SDNode *N); | 
|  | SDValue visitCTLZ_ZERO_UNDEF(SDNode *N); | 
|  | SDValue visitCTTZ(SDNode *N); | 
|  | SDValue visitCTTZ_ZERO_UNDEF(SDNode *N); | 
|  | SDValue visitCTPOP(SDNode *N); | 
|  | SDValue visitSELECT(SDNode *N); | 
|  | SDValue visitSELECT_CC(SDNode *N); | 
|  | SDValue visitSETCC(SDNode *N); | 
|  | SDValue visitSIGN_EXTEND(SDNode *N); | 
|  | SDValue visitZERO_EXTEND(SDNode *N); | 
|  | SDValue visitANY_EXTEND(SDNode *N); | 
|  | SDValue visitSIGN_EXTEND_INREG(SDNode *N); | 
|  | SDValue visitTRUNCATE(SDNode *N); | 
|  | SDValue visitBITCAST(SDNode *N); | 
|  | SDValue visitBUILD_PAIR(SDNode *N); | 
|  | SDValue visitFADD(SDNode *N); | 
|  | SDValue visitFSUB(SDNode *N); | 
|  | SDValue visitFMUL(SDNode *N); | 
|  | SDValue visitFDIV(SDNode *N); | 
|  | SDValue visitFREM(SDNode *N); | 
|  | SDValue visitFCOPYSIGN(SDNode *N); | 
|  | SDValue visitSINT_TO_FP(SDNode *N); | 
|  | SDValue visitUINT_TO_FP(SDNode *N); | 
|  | SDValue visitFP_TO_SINT(SDNode *N); | 
|  | SDValue visitFP_TO_UINT(SDNode *N); | 
|  | SDValue visitFP_ROUND(SDNode *N); | 
|  | SDValue visitFP_ROUND_INREG(SDNode *N); | 
|  | SDValue visitFP_EXTEND(SDNode *N); | 
|  | SDValue visitFNEG(SDNode *N); | 
|  | SDValue visitFABS(SDNode *N); | 
|  | SDValue visitBRCOND(SDNode *N); | 
|  | SDValue visitBR_CC(SDNode *N); | 
|  | SDValue visitLOAD(SDNode *N); | 
|  | SDValue visitSTORE(SDNode *N); | 
|  | SDValue visitINSERT_VECTOR_ELT(SDNode *N); | 
|  | SDValue visitEXTRACT_VECTOR_ELT(SDNode *N); | 
|  | SDValue visitBUILD_VECTOR(SDNode *N); | 
|  | SDValue visitCONCAT_VECTORS(SDNode *N); | 
|  | SDValue visitEXTRACT_SUBVECTOR(SDNode *N); | 
|  | SDValue visitVECTOR_SHUFFLE(SDNode *N); | 
|  | SDValue visitMEMBARRIER(SDNode *N); | 
|  |  | 
|  | SDValue XformToShuffleWithZero(SDNode *N); | 
|  | SDValue ReassociateOps(unsigned Opc, DebugLoc DL, SDValue LHS, SDValue RHS); | 
|  |  | 
|  | SDValue visitShiftByConstant(SDNode *N, unsigned Amt); | 
|  |  | 
|  | bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS); | 
|  | SDValue SimplifyBinOpWithSameOpcodeHands(SDNode *N); | 
|  | SDValue SimplifySelect(DebugLoc DL, SDValue N0, SDValue N1, SDValue N2); | 
|  | SDValue SimplifySelectCC(DebugLoc DL, SDValue N0, SDValue N1, SDValue N2, | 
|  | SDValue N3, ISD::CondCode CC, | 
|  | bool NotExtCompare = false); | 
|  | SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, | 
|  | DebugLoc DL, bool foldBooleans = true); | 
|  | SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, | 
|  | unsigned HiOp); | 
|  | SDValue CombineConsecutiveLoads(SDNode *N, EVT VT); | 
|  | SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT); | 
|  | SDValue BuildSDIV(SDNode *N); | 
|  | SDValue BuildUDIV(SDNode *N); | 
|  | SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1, | 
|  | bool DemandHighBits = true); | 
|  | SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1); | 
|  | SDNode *MatchRotate(SDValue LHS, SDValue RHS, DebugLoc DL); | 
|  | SDValue ReduceLoadWidth(SDNode *N); | 
|  | SDValue ReduceLoadOpStoreWidth(SDNode *N); | 
|  | SDValue TransformFPLoadStorePair(SDNode *N); | 
|  |  | 
|  | SDValue GetDemandedBits(SDValue V, const APInt &Mask); | 
|  |  | 
|  | /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes, | 
|  | /// looking for aliasing nodes and adding them to the Aliases vector. | 
|  | void GatherAllAliases(SDNode *N, SDValue OriginalChain, | 
|  | SmallVector<SDValue, 8> &Aliases); | 
|  |  | 
|  | /// isAlias - Return true if there is any possibility that the two addresses | 
|  | /// overlap. | 
|  | bool isAlias(SDValue Ptr1, int64_t Size1, | 
|  | const Value *SrcValue1, int SrcValueOffset1, | 
|  | unsigned SrcValueAlign1, | 
|  | const MDNode *TBAAInfo1, | 
|  | SDValue Ptr2, int64_t Size2, | 
|  | const Value *SrcValue2, int SrcValueOffset2, | 
|  | unsigned SrcValueAlign2, | 
|  | const MDNode *TBAAInfo2) const; | 
|  |  | 
|  | /// FindAliasInfo - Extracts the relevant alias information from the memory | 
|  | /// node.  Returns true if the operand was a load. | 
|  | bool FindAliasInfo(SDNode *N, | 
|  | SDValue &Ptr, int64_t &Size, | 
|  | const Value *&SrcValue, int &SrcValueOffset, | 
|  | unsigned &SrcValueAlignment, | 
|  | const MDNode *&TBAAInfo) const; | 
|  |  | 
|  | /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes, | 
|  | /// looking for a better chain (aliasing node.) | 
|  | SDValue FindBetterChain(SDNode *N, SDValue Chain); | 
|  |  | 
|  | public: | 
|  | DAGCombiner(SelectionDAG &D, AliasAnalysis &A, CodeGenOpt::Level OL) | 
|  | : DAG(D), TLI(D.getTargetLoweringInfo()), Level(BeforeLegalizeTypes), | 
|  | OptLevel(OL), LegalOperations(false), LegalTypes(false), AA(A) {} | 
|  |  | 
|  | /// Run - runs the dag combiner on all nodes in the work list | 
|  | void Run(CombineLevel AtLevel); | 
|  |  | 
|  | SelectionDAG &getDAG() const { return DAG; } | 
|  |  | 
|  | /// getShiftAmountTy - Returns a type large enough to hold any valid | 
|  | /// shift amount - before type legalization these can be huge. | 
|  | EVT getShiftAmountTy(EVT LHSTy) { | 
|  | return LegalTypes ? TLI.getShiftAmountTy(LHSTy) : TLI.getPointerTy(); | 
|  | } | 
|  |  | 
|  | /// isTypeLegal - This method returns true if we are running before type | 
|  | /// legalization or if the specified VT is legal. | 
|  | bool isTypeLegal(const EVT &VT) { | 
|  | if (!LegalTypes) return true; | 
|  | return TLI.isTypeLegal(VT); | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  |  | 
|  | namespace { | 
|  | /// WorkListRemover - This class is a DAGUpdateListener that removes any deleted | 
|  | /// nodes from the worklist. | 
|  | class WorkListRemover : public SelectionDAG::DAGUpdateListener { | 
|  | DAGCombiner &DC; | 
|  | public: | 
|  | explicit WorkListRemover(DAGCombiner &dc) : DC(dc) {} | 
|  |  | 
|  | virtual void NodeDeleted(SDNode *N, SDNode *E) { | 
|  | DC.removeFromWorkList(N); | 
|  | } | 
|  |  | 
|  | virtual void NodeUpdated(SDNode *N) { | 
|  | // Ignore updates. | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  TargetLowering::DAGCombinerInfo implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) { | 
|  | ((DAGCombiner*)DC)->AddToWorkList(N); | 
|  | } | 
|  |  | 
|  | void TargetLowering::DAGCombinerInfo::RemoveFromWorklist(SDNode *N) { | 
|  | ((DAGCombiner*)DC)->removeFromWorkList(N); | 
|  | } | 
|  |  | 
|  | SDValue TargetLowering::DAGCombinerInfo:: | 
|  | CombineTo(SDNode *N, const std::vector<SDValue> &To, bool AddTo) { | 
|  | return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo); | 
|  | } | 
|  |  | 
|  | SDValue TargetLowering::DAGCombinerInfo:: | 
|  | CombineTo(SDNode *N, SDValue Res, bool AddTo) { | 
|  | return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo); | 
|  | } | 
|  |  | 
|  |  | 
|  | SDValue TargetLowering::DAGCombinerInfo:: | 
|  | CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) { | 
|  | return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo); | 
|  | } | 
|  |  | 
|  | void TargetLowering::DAGCombinerInfo:: | 
|  | CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) { | 
|  | return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Helper Functions | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// isNegatibleForFree - Return 1 if we can compute the negated form of the | 
|  | /// specified expression for the same cost as the expression itself, or 2 if we | 
|  | /// can compute the negated form more cheaply than the expression itself. | 
|  | static char isNegatibleForFree(SDValue Op, bool LegalOperations, | 
|  | const TargetOptions *Options, | 
|  | unsigned Depth = 0) { | 
|  | // No compile time optimizations on this type. | 
|  | if (Op.getValueType() == MVT::ppcf128) | 
|  | return 0; | 
|  |  | 
|  | // fneg is removable even if it has multiple uses. | 
|  | if (Op.getOpcode() == ISD::FNEG) return 2; | 
|  |  | 
|  | // Don't allow anything with multiple uses. | 
|  | if (!Op.hasOneUse()) return 0; | 
|  |  | 
|  | // Don't recurse exponentially. | 
|  | if (Depth > 6) return 0; | 
|  |  | 
|  | switch (Op.getOpcode()) { | 
|  | default: return false; | 
|  | case ISD::ConstantFP: | 
|  | // Don't invert constant FP values after legalize.  The negated constant | 
|  | // isn't necessarily legal. | 
|  | return LegalOperations ? 0 : 1; | 
|  | case ISD::FADD: | 
|  | // FIXME: determine better conditions for this xform. | 
|  | if (!Options->UnsafeFPMath) return 0; | 
|  |  | 
|  | // fold (fsub (fadd A, B)) -> (fsub (fneg A), B) | 
|  | if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, Options, | 
|  | Depth + 1)) | 
|  | return V; | 
|  | // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) | 
|  | return isNegatibleForFree(Op.getOperand(1), LegalOperations, Options, | 
|  | Depth + 1); | 
|  | case ISD::FSUB: | 
|  | // We can't turn -(A-B) into B-A when we honor signed zeros. | 
|  | if (!Options->UnsafeFPMath) return 0; | 
|  |  | 
|  | // fold (fneg (fsub A, B)) -> (fsub B, A) | 
|  | return 1; | 
|  |  | 
|  | case ISD::FMUL: | 
|  | case ISD::FDIV: | 
|  | if (Options->HonorSignDependentRoundingFPMath()) return 0; | 
|  |  | 
|  | // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y)) | 
|  | if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, Options, | 
|  | Depth + 1)) | 
|  | return V; | 
|  |  | 
|  | return isNegatibleForFree(Op.getOperand(1), LegalOperations, Options, | 
|  | Depth + 1); | 
|  |  | 
|  | case ISD::FP_EXTEND: | 
|  | case ISD::FP_ROUND: | 
|  | case ISD::FSIN: | 
|  | return isNegatibleForFree(Op.getOperand(0), LegalOperations, Options, | 
|  | Depth + 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// GetNegatedExpression - If isNegatibleForFree returns true, this function | 
|  | /// returns the newly negated expression. | 
|  | static SDValue GetNegatedExpression(SDValue Op, SelectionDAG &DAG, | 
|  | bool LegalOperations, unsigned Depth = 0) { | 
|  | // fneg is removable even if it has multiple uses. | 
|  | if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0); | 
|  |  | 
|  | // Don't allow anything with multiple uses. | 
|  | assert(Op.hasOneUse() && "Unknown reuse!"); | 
|  |  | 
|  | assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree"); | 
|  | switch (Op.getOpcode()) { | 
|  | default: llvm_unreachable("Unknown code"); | 
|  | case ISD::ConstantFP: { | 
|  | APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); | 
|  | V.changeSign(); | 
|  | return DAG.getConstantFP(V, Op.getValueType()); | 
|  | } | 
|  | case ISD::FADD: | 
|  | // FIXME: determine better conditions for this xform. | 
|  | assert(DAG.getTarget().Options.UnsafeFPMath); | 
|  |  | 
|  | // fold (fneg (fadd A, B)) -> (fsub (fneg A), B) | 
|  | if (isNegatibleForFree(Op.getOperand(0), LegalOperations, | 
|  | &DAG.getTarget().Options, Depth+1)) | 
|  | return DAG.getNode(ISD::FSUB, Op.getDebugLoc(), Op.getValueType(), | 
|  | GetNegatedExpression(Op.getOperand(0), DAG, | 
|  | LegalOperations, Depth+1), | 
|  | Op.getOperand(1)); | 
|  | // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) | 
|  | return DAG.getNode(ISD::FSUB, Op.getDebugLoc(), Op.getValueType(), | 
|  | GetNegatedExpression(Op.getOperand(1), DAG, | 
|  | LegalOperations, Depth+1), | 
|  | Op.getOperand(0)); | 
|  | case ISD::FSUB: | 
|  | // We can't turn -(A-B) into B-A when we honor signed zeros. | 
|  | assert(DAG.getTarget().Options.UnsafeFPMath); | 
|  |  | 
|  | // fold (fneg (fsub 0, B)) -> B | 
|  | if (ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Op.getOperand(0))) | 
|  | if (N0CFP->getValueAPF().isZero()) | 
|  | return Op.getOperand(1); | 
|  |  | 
|  | // fold (fneg (fsub A, B)) -> (fsub B, A) | 
|  | return DAG.getNode(ISD::FSUB, Op.getDebugLoc(), Op.getValueType(), | 
|  | Op.getOperand(1), Op.getOperand(0)); | 
|  |  | 
|  | case ISD::FMUL: | 
|  | case ISD::FDIV: | 
|  | assert(!DAG.getTarget().Options.HonorSignDependentRoundingFPMath()); | 
|  |  | 
|  | // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) | 
|  | if (isNegatibleForFree(Op.getOperand(0), LegalOperations, | 
|  | &DAG.getTarget().Options, Depth+1)) | 
|  | return DAG.getNode(Op.getOpcode(), Op.getDebugLoc(), Op.getValueType(), | 
|  | GetNegatedExpression(Op.getOperand(0), DAG, | 
|  | LegalOperations, Depth+1), | 
|  | Op.getOperand(1)); | 
|  |  | 
|  | // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) | 
|  | return DAG.getNode(Op.getOpcode(), Op.getDebugLoc(), Op.getValueType(), | 
|  | Op.getOperand(0), | 
|  | GetNegatedExpression(Op.getOperand(1), DAG, | 
|  | LegalOperations, Depth+1)); | 
|  |  | 
|  | case ISD::FP_EXTEND: | 
|  | case ISD::FSIN: | 
|  | return DAG.getNode(Op.getOpcode(), Op.getDebugLoc(), Op.getValueType(), | 
|  | GetNegatedExpression(Op.getOperand(0), DAG, | 
|  | LegalOperations, Depth+1)); | 
|  | case ISD::FP_ROUND: | 
|  | return DAG.getNode(ISD::FP_ROUND, Op.getDebugLoc(), Op.getValueType(), | 
|  | GetNegatedExpression(Op.getOperand(0), DAG, | 
|  | LegalOperations, Depth+1), | 
|  | Op.getOperand(1)); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | // isSetCCEquivalent - Return true if this node is a setcc, or is a select_cc | 
|  | // that selects between the values 1 and 0, making it equivalent to a setcc. | 
|  | // Also, set the incoming LHS, RHS, and CC references to the appropriate | 
|  | // nodes based on the type of node we are checking.  This simplifies life a | 
|  | // bit for the callers. | 
|  | static bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS, | 
|  | SDValue &CC) { | 
|  | if (N.getOpcode() == ISD::SETCC) { | 
|  | LHS = N.getOperand(0); | 
|  | RHS = N.getOperand(1); | 
|  | CC  = N.getOperand(2); | 
|  | return true; | 
|  | } | 
|  | if (N.getOpcode() == ISD::SELECT_CC && | 
|  | N.getOperand(2).getOpcode() == ISD::Constant && | 
|  | N.getOperand(3).getOpcode() == ISD::Constant && | 
|  | cast<ConstantSDNode>(N.getOperand(2))->getAPIntValue() == 1 && | 
|  | cast<ConstantSDNode>(N.getOperand(3))->isNullValue()) { | 
|  | LHS = N.getOperand(0); | 
|  | RHS = N.getOperand(1); | 
|  | CC  = N.getOperand(4); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // isOneUseSetCC - Return true if this is a SetCC-equivalent operation with only | 
|  | // one use.  If this is true, it allows the users to invert the operation for | 
|  | // free when it is profitable to do so. | 
|  | static bool isOneUseSetCC(SDValue N) { | 
|  | SDValue N0, N1, N2; | 
|  | if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse()) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::ReassociateOps(unsigned Opc, DebugLoc DL, | 
|  | SDValue N0, SDValue N1) { | 
|  | EVT VT = N0.getValueType(); | 
|  | if (N0.getOpcode() == Opc && isa<ConstantSDNode>(N0.getOperand(1))) { | 
|  | if (isa<ConstantSDNode>(N1)) { | 
|  | // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2)) | 
|  | SDValue OpNode = | 
|  | DAG.FoldConstantArithmetic(Opc, VT, | 
|  | cast<ConstantSDNode>(N0.getOperand(1)), | 
|  | cast<ConstantSDNode>(N1)); | 
|  | return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode); | 
|  | } | 
|  | if (N0.hasOneUse()) { | 
|  | // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one use | 
|  | SDValue OpNode = DAG.getNode(Opc, N0.getDebugLoc(), VT, | 
|  | N0.getOperand(0), N1); | 
|  | AddToWorkList(OpNode.getNode()); | 
|  | return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (N1.getOpcode() == Opc && isa<ConstantSDNode>(N1.getOperand(1))) { | 
|  | if (isa<ConstantSDNode>(N0)) { | 
|  | // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2)) | 
|  | SDValue OpNode = | 
|  | DAG.FoldConstantArithmetic(Opc, VT, | 
|  | cast<ConstantSDNode>(N1.getOperand(1)), | 
|  | cast<ConstantSDNode>(N0)); | 
|  | return DAG.getNode(Opc, DL, VT, N1.getOperand(0), OpNode); | 
|  | } | 
|  | if (N1.hasOneUse()) { | 
|  | // reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one use | 
|  | SDValue OpNode = DAG.getNode(Opc, N0.getDebugLoc(), VT, | 
|  | N1.getOperand(0), N0); | 
|  | AddToWorkList(OpNode.getNode()); | 
|  | return DAG.getNode(Opc, DL, VT, OpNode, N1.getOperand(1)); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo, | 
|  | bool AddTo) { | 
|  | assert(N->getNumValues() == NumTo && "Broken CombineTo call!"); | 
|  | ++NodesCombined; | 
|  | DEBUG(dbgs() << "\nReplacing.1 "; | 
|  | N->dump(&DAG); | 
|  | dbgs() << "\nWith: "; | 
|  | To[0].getNode()->dump(&DAG); | 
|  | dbgs() << " and " << NumTo-1 << " other values\n"; | 
|  | for (unsigned i = 0, e = NumTo; i != e; ++i) | 
|  | assert((!To[i].getNode() || | 
|  | N->getValueType(i) == To[i].getValueType()) && | 
|  | "Cannot combine value to value of different type!")); | 
|  | WorkListRemover DeadNodes(*this); | 
|  | DAG.ReplaceAllUsesWith(N, To, &DeadNodes); | 
|  |  | 
|  | if (AddTo) { | 
|  | // Push the new nodes and any users onto the worklist | 
|  | for (unsigned i = 0, e = NumTo; i != e; ++i) { | 
|  | if (To[i].getNode()) { | 
|  | AddToWorkList(To[i].getNode()); | 
|  | AddUsersToWorkList(To[i].getNode()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Finally, if the node is now dead, remove it from the graph.  The node | 
|  | // may not be dead if the replacement process recursively simplified to | 
|  | // something else needing this node. | 
|  | if (N->use_empty()) { | 
|  | // Nodes can be reintroduced into the worklist.  Make sure we do not | 
|  | // process a node that has been replaced. | 
|  | removeFromWorkList(N); | 
|  |  | 
|  | // Finally, since the node is now dead, remove it from the graph. | 
|  | DAG.DeleteNode(N); | 
|  | } | 
|  | return SDValue(N, 0); | 
|  | } | 
|  |  | 
|  | void DAGCombiner:: | 
|  | CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) { | 
|  | // Replace all uses.  If any nodes become isomorphic to other nodes and | 
|  | // are deleted, make sure to remove them from our worklist. | 
|  | WorkListRemover DeadNodes(*this); | 
|  | DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New, &DeadNodes); | 
|  |  | 
|  | // Push the new node and any (possibly new) users onto the worklist. | 
|  | AddToWorkList(TLO.New.getNode()); | 
|  | AddUsersToWorkList(TLO.New.getNode()); | 
|  |  | 
|  | // Finally, if the node is now dead, remove it from the graph.  The node | 
|  | // may not be dead if the replacement process recursively simplified to | 
|  | // something else needing this node. | 
|  | if (TLO.Old.getNode()->use_empty()) { | 
|  | removeFromWorkList(TLO.Old.getNode()); | 
|  |  | 
|  | // If the operands of this node are only used by the node, they will now | 
|  | // be dead.  Make sure to visit them first to delete dead nodes early. | 
|  | for (unsigned i = 0, e = TLO.Old.getNode()->getNumOperands(); i != e; ++i) | 
|  | if (TLO.Old.getNode()->getOperand(i).getNode()->hasOneUse()) | 
|  | AddToWorkList(TLO.Old.getNode()->getOperand(i).getNode()); | 
|  |  | 
|  | DAG.DeleteNode(TLO.Old.getNode()); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// SimplifyDemandedBits - Check the specified integer node value to see if | 
|  | /// it can be simplified or if things it uses can be simplified by bit | 
|  | /// propagation.  If so, return true. | 
|  | bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &Demanded) { | 
|  | TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations); | 
|  | APInt KnownZero, KnownOne; | 
|  | if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO)) | 
|  | return false; | 
|  |  | 
|  | // Revisit the node. | 
|  | AddToWorkList(Op.getNode()); | 
|  |  | 
|  | // Replace the old value with the new one. | 
|  | ++NodesCombined; | 
|  | DEBUG(dbgs() << "\nReplacing.2 "; | 
|  | TLO.Old.getNode()->dump(&DAG); | 
|  | dbgs() << "\nWith: "; | 
|  | TLO.New.getNode()->dump(&DAG); | 
|  | dbgs() << '\n'); | 
|  |  | 
|  | CommitTargetLoweringOpt(TLO); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) { | 
|  | DebugLoc dl = Load->getDebugLoc(); | 
|  | EVT VT = Load->getValueType(0); | 
|  | SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, VT, SDValue(ExtLoad, 0)); | 
|  |  | 
|  | DEBUG(dbgs() << "\nReplacing.9 "; | 
|  | Load->dump(&DAG); | 
|  | dbgs() << "\nWith: "; | 
|  | Trunc.getNode()->dump(&DAG); | 
|  | dbgs() << '\n'); | 
|  | WorkListRemover DeadNodes(*this); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc, &DeadNodes); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1), | 
|  | &DeadNodes); | 
|  | removeFromWorkList(Load); | 
|  | DAG.DeleteNode(Load); | 
|  | AddToWorkList(Trunc.getNode()); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) { | 
|  | Replace = false; | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  | if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { | 
|  | EVT MemVT = LD->getMemoryVT(); | 
|  | ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) | 
|  | ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT) ? ISD::ZEXTLOAD | 
|  | : ISD::EXTLOAD) | 
|  | : LD->getExtensionType(); | 
|  | Replace = true; | 
|  | return DAG.getExtLoad(ExtType, dl, PVT, | 
|  | LD->getChain(), LD->getBasePtr(), | 
|  | LD->getPointerInfo(), | 
|  | MemVT, LD->isVolatile(), | 
|  | LD->isNonTemporal(), LD->getAlignment()); | 
|  | } | 
|  |  | 
|  | unsigned Opc = Op.getOpcode(); | 
|  | switch (Opc) { | 
|  | default: break; | 
|  | case ISD::AssertSext: | 
|  | return DAG.getNode(ISD::AssertSext, dl, PVT, | 
|  | SExtPromoteOperand(Op.getOperand(0), PVT), | 
|  | Op.getOperand(1)); | 
|  | case ISD::AssertZext: | 
|  | return DAG.getNode(ISD::AssertZext, dl, PVT, | 
|  | ZExtPromoteOperand(Op.getOperand(0), PVT), | 
|  | Op.getOperand(1)); | 
|  | case ISD::Constant: { | 
|  | unsigned ExtOpc = | 
|  | Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; | 
|  | return DAG.getNode(ExtOpc, dl, PVT, Op); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT)) | 
|  | return SDValue(); | 
|  | return DAG.getNode(ISD::ANY_EXTEND, dl, PVT, Op); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) { | 
|  | if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT)) | 
|  | return SDValue(); | 
|  | EVT OldVT = Op.getValueType(); | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  | bool Replace = false; | 
|  | SDValue NewOp = PromoteOperand(Op, PVT, Replace); | 
|  | if (NewOp.getNode() == 0) | 
|  | return SDValue(); | 
|  | AddToWorkList(NewOp.getNode()); | 
|  |  | 
|  | if (Replace) | 
|  | ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode()); | 
|  | return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NewOp.getValueType(), NewOp, | 
|  | DAG.getValueType(OldVT)); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) { | 
|  | EVT OldVT = Op.getValueType(); | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  | bool Replace = false; | 
|  | SDValue NewOp = PromoteOperand(Op, PVT, Replace); | 
|  | if (NewOp.getNode() == 0) | 
|  | return SDValue(); | 
|  | AddToWorkList(NewOp.getNode()); | 
|  |  | 
|  | if (Replace) | 
|  | ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode()); | 
|  | return DAG.getZeroExtendInReg(NewOp, dl, OldVT); | 
|  | } | 
|  |  | 
|  | /// PromoteIntBinOp - Promote the specified integer binary operation if the | 
|  | /// target indicates it is beneficial. e.g. On x86, it's usually better to | 
|  | /// promote i16 operations to i32 since i16 instructions are longer. | 
|  | SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) { | 
|  | if (!LegalOperations) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT VT = Op.getValueType(); | 
|  | if (VT.isVector() || !VT.isInteger()) | 
|  | return SDValue(); | 
|  |  | 
|  | // If operation type is 'undesirable', e.g. i16 on x86, consider | 
|  | // promoting it. | 
|  | unsigned Opc = Op.getOpcode(); | 
|  | if (TLI.isTypeDesirableForOp(Opc, VT)) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT PVT = VT; | 
|  | // Consult target whether it is a good idea to promote this operation and | 
|  | // what's the right type to promote it to. | 
|  | if (TLI.IsDesirableToPromoteOp(Op, PVT)) { | 
|  | assert(PVT != VT && "Don't know what type to promote to!"); | 
|  |  | 
|  | bool Replace0 = false; | 
|  | SDValue N0 = Op.getOperand(0); | 
|  | SDValue NN0 = PromoteOperand(N0, PVT, Replace0); | 
|  | if (NN0.getNode() == 0) | 
|  | return SDValue(); | 
|  |  | 
|  | bool Replace1 = false; | 
|  | SDValue N1 = Op.getOperand(1); | 
|  | SDValue NN1; | 
|  | if (N0 == N1) | 
|  | NN1 = NN0; | 
|  | else { | 
|  | NN1 = PromoteOperand(N1, PVT, Replace1); | 
|  | if (NN1.getNode() == 0) | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | AddToWorkList(NN0.getNode()); | 
|  | if (NN1.getNode()) | 
|  | AddToWorkList(NN1.getNode()); | 
|  |  | 
|  | if (Replace0) | 
|  | ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode()); | 
|  | if (Replace1) | 
|  | ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode()); | 
|  |  | 
|  | DEBUG(dbgs() << "\nPromoting "; | 
|  | Op.getNode()->dump(&DAG)); | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  | return DAG.getNode(ISD::TRUNCATE, dl, VT, | 
|  | DAG.getNode(Opc, dl, PVT, NN0, NN1)); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// PromoteIntShiftOp - Promote the specified integer shift operation if the | 
|  | /// target indicates it is beneficial. e.g. On x86, it's usually better to | 
|  | /// promote i16 operations to i32 since i16 instructions are longer. | 
|  | SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) { | 
|  | if (!LegalOperations) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT VT = Op.getValueType(); | 
|  | if (VT.isVector() || !VT.isInteger()) | 
|  | return SDValue(); | 
|  |  | 
|  | // If operation type is 'undesirable', e.g. i16 on x86, consider | 
|  | // promoting it. | 
|  | unsigned Opc = Op.getOpcode(); | 
|  | if (TLI.isTypeDesirableForOp(Opc, VT)) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT PVT = VT; | 
|  | // Consult target whether it is a good idea to promote this operation and | 
|  | // what's the right type to promote it to. | 
|  | if (TLI.IsDesirableToPromoteOp(Op, PVT)) { | 
|  | assert(PVT != VT && "Don't know what type to promote to!"); | 
|  |  | 
|  | bool Replace = false; | 
|  | SDValue N0 = Op.getOperand(0); | 
|  | if (Opc == ISD::SRA) | 
|  | N0 = SExtPromoteOperand(Op.getOperand(0), PVT); | 
|  | else if (Opc == ISD::SRL) | 
|  | N0 = ZExtPromoteOperand(Op.getOperand(0), PVT); | 
|  | else | 
|  | N0 = PromoteOperand(N0, PVT, Replace); | 
|  | if (N0.getNode() == 0) | 
|  | return SDValue(); | 
|  |  | 
|  | AddToWorkList(N0.getNode()); | 
|  | if (Replace) | 
|  | ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode()); | 
|  |  | 
|  | DEBUG(dbgs() << "\nPromoting "; | 
|  | Op.getNode()->dump(&DAG)); | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  | return DAG.getNode(ISD::TRUNCATE, dl, VT, | 
|  | DAG.getNode(Opc, dl, PVT, N0, Op.getOperand(1))); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::PromoteExtend(SDValue Op) { | 
|  | if (!LegalOperations) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT VT = Op.getValueType(); | 
|  | if (VT.isVector() || !VT.isInteger()) | 
|  | return SDValue(); | 
|  |  | 
|  | // If operation type is 'undesirable', e.g. i16 on x86, consider | 
|  | // promoting it. | 
|  | unsigned Opc = Op.getOpcode(); | 
|  | if (TLI.isTypeDesirableForOp(Opc, VT)) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT PVT = VT; | 
|  | // Consult target whether it is a good idea to promote this operation and | 
|  | // what's the right type to promote it to. | 
|  | if (TLI.IsDesirableToPromoteOp(Op, PVT)) { | 
|  | assert(PVT != VT && "Don't know what type to promote to!"); | 
|  | // fold (aext (aext x)) -> (aext x) | 
|  | // fold (aext (zext x)) -> (zext x) | 
|  | // fold (aext (sext x)) -> (sext x) | 
|  | DEBUG(dbgs() << "\nPromoting "; | 
|  | Op.getNode()->dump(&DAG)); | 
|  | return DAG.getNode(Op.getOpcode(), Op.getDebugLoc(), VT, Op.getOperand(0)); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | bool DAGCombiner::PromoteLoad(SDValue Op) { | 
|  | if (!LegalOperations) | 
|  | return false; | 
|  |  | 
|  | EVT VT = Op.getValueType(); | 
|  | if (VT.isVector() || !VT.isInteger()) | 
|  | return false; | 
|  |  | 
|  | // If operation type is 'undesirable', e.g. i16 on x86, consider | 
|  | // promoting it. | 
|  | unsigned Opc = Op.getOpcode(); | 
|  | if (TLI.isTypeDesirableForOp(Opc, VT)) | 
|  | return false; | 
|  |  | 
|  | EVT PVT = VT; | 
|  | // Consult target whether it is a good idea to promote this operation and | 
|  | // what's the right type to promote it to. | 
|  | if (TLI.IsDesirableToPromoteOp(Op, PVT)) { | 
|  | assert(PVT != VT && "Don't know what type to promote to!"); | 
|  |  | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  | SDNode *N = Op.getNode(); | 
|  | LoadSDNode *LD = cast<LoadSDNode>(N); | 
|  | EVT MemVT = LD->getMemoryVT(); | 
|  | ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) | 
|  | ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT) ? ISD::ZEXTLOAD | 
|  | : ISD::EXTLOAD) | 
|  | : LD->getExtensionType(); | 
|  | SDValue NewLD = DAG.getExtLoad(ExtType, dl, PVT, | 
|  | LD->getChain(), LD->getBasePtr(), | 
|  | LD->getPointerInfo(), | 
|  | MemVT, LD->isVolatile(), | 
|  | LD->isNonTemporal(), LD->getAlignment()); | 
|  | SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, VT, NewLD); | 
|  |  | 
|  | DEBUG(dbgs() << "\nPromoting "; | 
|  | N->dump(&DAG); | 
|  | dbgs() << "\nTo: "; | 
|  | Result.getNode()->dump(&DAG); | 
|  | dbgs() << '\n'); | 
|  | WorkListRemover DeadNodes(*this); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result, &DeadNodes); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1), &DeadNodes); | 
|  | removeFromWorkList(N); | 
|  | DAG.DeleteNode(N); | 
|  | AddToWorkList(Result.getNode()); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  Main DAG Combiner implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | void DAGCombiner::Run(CombineLevel AtLevel) { | 
|  | // set the instance variables, so that the various visit routines may use it. | 
|  | Level = AtLevel; | 
|  | LegalOperations = Level >= AfterLegalizeVectorOps; | 
|  | LegalTypes = Level >= AfterLegalizeTypes; | 
|  |  | 
|  | // Add all the dag nodes to the worklist. | 
|  | WorkList.reserve(DAG.allnodes_size()); | 
|  | for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), | 
|  | E = DAG.allnodes_end(); I != E; ++I) | 
|  | WorkList.push_back(I); | 
|  |  | 
|  | // Create a dummy node (which is not added to allnodes), that adds a reference | 
|  | // to the root node, preventing it from being deleted, and tracking any | 
|  | // changes of the root. | 
|  | HandleSDNode Dummy(DAG.getRoot()); | 
|  |  | 
|  | // The root of the dag may dangle to deleted nodes until the dag combiner is | 
|  | // done.  Set it to null to avoid confusion. | 
|  | DAG.setRoot(SDValue()); | 
|  |  | 
|  | // while the worklist isn't empty, inspect the node on the end of it and | 
|  | // try and combine it. | 
|  | while (!WorkList.empty()) { | 
|  | SDNode *N = WorkList.back(); | 
|  | WorkList.pop_back(); | 
|  |  | 
|  | // If N has no uses, it is dead.  Make sure to revisit all N's operands once | 
|  | // N is deleted from the DAG, since they too may now be dead or may have a | 
|  | // reduced number of uses, allowing other xforms. | 
|  | if (N->use_empty() && N != &Dummy) { | 
|  | for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) | 
|  | AddToWorkList(N->getOperand(i).getNode()); | 
|  |  | 
|  | DAG.DeleteNode(N); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | SDValue RV = combine(N); | 
|  |  | 
|  | if (RV.getNode() == 0) | 
|  | continue; | 
|  |  | 
|  | ++NodesCombined; | 
|  |  | 
|  | // If we get back the same node we passed in, rather than a new node or | 
|  | // zero, we know that the node must have defined multiple values and | 
|  | // CombineTo was used.  Since CombineTo takes care of the worklist | 
|  | // mechanics for us, we have no work to do in this case. | 
|  | if (RV.getNode() == N) | 
|  | continue; | 
|  |  | 
|  | assert(N->getOpcode() != ISD::DELETED_NODE && | 
|  | RV.getNode()->getOpcode() != ISD::DELETED_NODE && | 
|  | "Node was deleted but visit returned new node!"); | 
|  |  | 
|  | DEBUG(dbgs() << "\nReplacing.3 "; | 
|  | N->dump(&DAG); | 
|  | dbgs() << "\nWith: "; | 
|  | RV.getNode()->dump(&DAG); | 
|  | dbgs() << '\n'); | 
|  |  | 
|  | // Transfer debug value. | 
|  | DAG.TransferDbgValues(SDValue(N, 0), RV); | 
|  | WorkListRemover DeadNodes(*this); | 
|  | if (N->getNumValues() == RV.getNode()->getNumValues()) | 
|  | DAG.ReplaceAllUsesWith(N, RV.getNode(), &DeadNodes); | 
|  | else { | 
|  | assert(N->getValueType(0) == RV.getValueType() && | 
|  | N->getNumValues() == 1 && "Type mismatch"); | 
|  | SDValue OpV = RV; | 
|  | DAG.ReplaceAllUsesWith(N, &OpV, &DeadNodes); | 
|  | } | 
|  |  | 
|  | // Push the new node and any users onto the worklist | 
|  | AddToWorkList(RV.getNode()); | 
|  | AddUsersToWorkList(RV.getNode()); | 
|  |  | 
|  | // Add any uses of the old node to the worklist in case this node is the | 
|  | // last one that uses them.  They may become dead after this node is | 
|  | // deleted. | 
|  | for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) | 
|  | AddToWorkList(N->getOperand(i).getNode()); | 
|  |  | 
|  | // Finally, if the node is now dead, remove it from the graph.  The node | 
|  | // may not be dead if the replacement process recursively simplified to | 
|  | // something else needing this node. | 
|  | if (N->use_empty()) { | 
|  | // Nodes can be reintroduced into the worklist.  Make sure we do not | 
|  | // process a node that has been replaced. | 
|  | removeFromWorkList(N); | 
|  |  | 
|  | // Finally, since the node is now dead, remove it from the graph. | 
|  | DAG.DeleteNode(N); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the root changed (e.g. it was a dead load, update the root). | 
|  | DAG.setRoot(Dummy.getValue()); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visit(SDNode *N) { | 
|  | switch (N->getOpcode()) { | 
|  | default: break; | 
|  | case ISD::TokenFactor:        return visitTokenFactor(N); | 
|  | case ISD::MERGE_VALUES:       return visitMERGE_VALUES(N); | 
|  | case ISD::ADD:                return visitADD(N); | 
|  | case ISD::SUB:                return visitSUB(N); | 
|  | case ISD::ADDC:               return visitADDC(N); | 
|  | case ISD::ADDE:               return visitADDE(N); | 
|  | case ISD::MUL:                return visitMUL(N); | 
|  | case ISD::SDIV:               return visitSDIV(N); | 
|  | case ISD::UDIV:               return visitUDIV(N); | 
|  | case ISD::SREM:               return visitSREM(N); | 
|  | case ISD::UREM:               return visitUREM(N); | 
|  | case ISD::MULHU:              return visitMULHU(N); | 
|  | case ISD::MULHS:              return visitMULHS(N); | 
|  | case ISD::SMUL_LOHI:          return visitSMUL_LOHI(N); | 
|  | case ISD::UMUL_LOHI:          return visitUMUL_LOHI(N); | 
|  | case ISD::SMULO:              return visitSMULO(N); | 
|  | case ISD::UMULO:              return visitUMULO(N); | 
|  | case ISD::SDIVREM:            return visitSDIVREM(N); | 
|  | case ISD::UDIVREM:            return visitUDIVREM(N); | 
|  | case ISD::AND:                return visitAND(N); | 
|  | case ISD::OR:                 return visitOR(N); | 
|  | case ISD::XOR:                return visitXOR(N); | 
|  | case ISD::SHL:                return visitSHL(N); | 
|  | case ISD::SRA:                return visitSRA(N); | 
|  | case ISD::SRL:                return visitSRL(N); | 
|  | case ISD::CTLZ:               return visitCTLZ(N); | 
|  | case ISD::CTLZ_ZERO_UNDEF:    return visitCTLZ_ZERO_UNDEF(N); | 
|  | case ISD::CTTZ:               return visitCTTZ(N); | 
|  | case ISD::CTTZ_ZERO_UNDEF:    return visitCTTZ_ZERO_UNDEF(N); | 
|  | case ISD::CTPOP:              return visitCTPOP(N); | 
|  | case ISD::SELECT:             return visitSELECT(N); | 
|  | case ISD::SELECT_CC:          return visitSELECT_CC(N); | 
|  | case ISD::SETCC:              return visitSETCC(N); | 
|  | case ISD::SIGN_EXTEND:        return visitSIGN_EXTEND(N); | 
|  | case ISD::ZERO_EXTEND:        return visitZERO_EXTEND(N); | 
|  | case ISD::ANY_EXTEND:         return visitANY_EXTEND(N); | 
|  | case ISD::SIGN_EXTEND_INREG:  return visitSIGN_EXTEND_INREG(N); | 
|  | case ISD::TRUNCATE:           return visitTRUNCATE(N); | 
|  | case ISD::BITCAST:            return visitBITCAST(N); | 
|  | case ISD::BUILD_PAIR:         return visitBUILD_PAIR(N); | 
|  | case ISD::FADD:               return visitFADD(N); | 
|  | case ISD::FSUB:               return visitFSUB(N); | 
|  | case ISD::FMUL:               return visitFMUL(N); | 
|  | case ISD::FDIV:               return visitFDIV(N); | 
|  | case ISD::FREM:               return visitFREM(N); | 
|  | case ISD::FCOPYSIGN:          return visitFCOPYSIGN(N); | 
|  | case ISD::SINT_TO_FP:         return visitSINT_TO_FP(N); | 
|  | case ISD::UINT_TO_FP:         return visitUINT_TO_FP(N); | 
|  | case ISD::FP_TO_SINT:         return visitFP_TO_SINT(N); | 
|  | case ISD::FP_TO_UINT:         return visitFP_TO_UINT(N); | 
|  | case ISD::FP_ROUND:           return visitFP_ROUND(N); | 
|  | case ISD::FP_ROUND_INREG:     return visitFP_ROUND_INREG(N); | 
|  | case ISD::FP_EXTEND:          return visitFP_EXTEND(N); | 
|  | case ISD::FNEG:               return visitFNEG(N); | 
|  | case ISD::FABS:               return visitFABS(N); | 
|  | case ISD::BRCOND:             return visitBRCOND(N); | 
|  | case ISD::BR_CC:              return visitBR_CC(N); | 
|  | case ISD::LOAD:               return visitLOAD(N); | 
|  | case ISD::STORE:              return visitSTORE(N); | 
|  | case ISD::INSERT_VECTOR_ELT:  return visitINSERT_VECTOR_ELT(N); | 
|  | case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N); | 
|  | case ISD::BUILD_VECTOR:       return visitBUILD_VECTOR(N); | 
|  | case ISD::CONCAT_VECTORS:     return visitCONCAT_VECTORS(N); | 
|  | case ISD::EXTRACT_SUBVECTOR:  return visitEXTRACT_SUBVECTOR(N); | 
|  | case ISD::VECTOR_SHUFFLE:     return visitVECTOR_SHUFFLE(N); | 
|  | case ISD::MEMBARRIER:         return visitMEMBARRIER(N); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::combine(SDNode *N) { | 
|  | SDValue RV = visit(N); | 
|  |  | 
|  | // If nothing happened, try a target-specific DAG combine. | 
|  | if (RV.getNode() == 0) { | 
|  | assert(N->getOpcode() != ISD::DELETED_NODE && | 
|  | "Node was deleted but visit returned NULL!"); | 
|  |  | 
|  | if (N->getOpcode() >= ISD::BUILTIN_OP_END || | 
|  | TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) { | 
|  |  | 
|  | // Expose the DAG combiner to the target combiner impls. | 
|  | TargetLowering::DAGCombinerInfo | 
|  | DagCombineInfo(DAG, !LegalTypes, !LegalOperations, false, this); | 
|  |  | 
|  | RV = TLI.PerformDAGCombine(N, DagCombineInfo); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If nothing happened still, try promoting the operation. | 
|  | if (RV.getNode() == 0) { | 
|  | switch (N->getOpcode()) { | 
|  | default: break; | 
|  | case ISD::ADD: | 
|  | case ISD::SUB: | 
|  | case ISD::MUL: | 
|  | case ISD::AND: | 
|  | case ISD::OR: | 
|  | case ISD::XOR: | 
|  | RV = PromoteIntBinOp(SDValue(N, 0)); | 
|  | break; | 
|  | case ISD::SHL: | 
|  | case ISD::SRA: | 
|  | case ISD::SRL: | 
|  | RV = PromoteIntShiftOp(SDValue(N, 0)); | 
|  | break; | 
|  | case ISD::SIGN_EXTEND: | 
|  | case ISD::ZERO_EXTEND: | 
|  | case ISD::ANY_EXTEND: | 
|  | RV = PromoteExtend(SDValue(N, 0)); | 
|  | break; | 
|  | case ISD::LOAD: | 
|  | if (PromoteLoad(SDValue(N, 0))) | 
|  | RV = SDValue(N, 0); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If N is a commutative binary node, try commuting it to enable more | 
|  | // sdisel CSE. | 
|  | if (RV.getNode() == 0 && | 
|  | SelectionDAG::isCommutativeBinOp(N->getOpcode()) && | 
|  | N->getNumValues() == 1) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  |  | 
|  | // Constant operands are canonicalized to RHS. | 
|  | if (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1)) { | 
|  | SDValue Ops[] = { N1, N0 }; | 
|  | SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(), | 
|  | Ops, 2); | 
|  | if (CSENode) | 
|  | return SDValue(CSENode, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | return RV; | 
|  | } | 
|  |  | 
|  | /// getInputChainForNode - Given a node, return its input chain if it has one, | 
|  | /// otherwise return a null sd operand. | 
|  | static SDValue getInputChainForNode(SDNode *N) { | 
|  | if (unsigned NumOps = N->getNumOperands()) { | 
|  | if (N->getOperand(0).getValueType() == MVT::Other) | 
|  | return N->getOperand(0); | 
|  | else if (N->getOperand(NumOps-1).getValueType() == MVT::Other) | 
|  | return N->getOperand(NumOps-1); | 
|  | for (unsigned i = 1; i < NumOps-1; ++i) | 
|  | if (N->getOperand(i).getValueType() == MVT::Other) | 
|  | return N->getOperand(i); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitTokenFactor(SDNode *N) { | 
|  | // If N has two operands, where one has an input chain equal to the other, | 
|  | // the 'other' chain is redundant. | 
|  | if (N->getNumOperands() == 2) { | 
|  | if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1)) | 
|  | return N->getOperand(0); | 
|  | if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0)) | 
|  | return N->getOperand(1); | 
|  | } | 
|  |  | 
|  | SmallVector<SDNode *, 8> TFs;     // List of token factors to visit. | 
|  | SmallVector<SDValue, 8> Ops;    // Ops for replacing token factor. | 
|  | SmallPtrSet<SDNode*, 16> SeenOps; | 
|  | bool Changed = false;             // If we should replace this token factor. | 
|  |  | 
|  | // Start out with this token factor. | 
|  | TFs.push_back(N); | 
|  |  | 
|  | // Iterate through token factors.  The TFs grows when new token factors are | 
|  | // encountered. | 
|  | for (unsigned i = 0; i < TFs.size(); ++i) { | 
|  | SDNode *TF = TFs[i]; | 
|  |  | 
|  | // Check each of the operands. | 
|  | for (unsigned i = 0, ie = TF->getNumOperands(); i != ie; ++i) { | 
|  | SDValue Op = TF->getOperand(i); | 
|  |  | 
|  | switch (Op.getOpcode()) { | 
|  | case ISD::EntryToken: | 
|  | // Entry tokens don't need to be added to the list. They are | 
|  | // rededundant. | 
|  | Changed = true; | 
|  | break; | 
|  |  | 
|  | case ISD::TokenFactor: | 
|  | if (Op.hasOneUse() && | 
|  | std::find(TFs.begin(), TFs.end(), Op.getNode()) == TFs.end()) { | 
|  | // Queue up for processing. | 
|  | TFs.push_back(Op.getNode()); | 
|  | // Clean up in case the token factor is removed. | 
|  | AddToWorkList(Op.getNode()); | 
|  | Changed = true; | 
|  | break; | 
|  | } | 
|  | // Fall thru | 
|  |  | 
|  | default: | 
|  | // Only add if it isn't already in the list. | 
|  | if (SeenOps.insert(Op.getNode())) | 
|  | Ops.push_back(Op); | 
|  | else | 
|  | Changed = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue Result; | 
|  |  | 
|  | // If we've change things around then replace token factor. | 
|  | if (Changed) { | 
|  | if (Ops.empty()) { | 
|  | // The entry token is the only possible outcome. | 
|  | Result = DAG.getEntryNode(); | 
|  | } else { | 
|  | // New and improved token factor. | 
|  | Result = DAG.getNode(ISD::TokenFactor, N->getDebugLoc(), | 
|  | MVT::Other, &Ops[0], Ops.size()); | 
|  | } | 
|  |  | 
|  | // Don't add users to work list. | 
|  | return CombineTo(N, Result, false); | 
|  | } | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | /// MERGE_VALUES can always be eliminated. | 
|  | SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) { | 
|  | WorkListRemover DeadNodes(*this); | 
|  | // Replacing results may cause a different MERGE_VALUES to suddenly | 
|  | // be CSE'd with N, and carry its uses with it. Iterate until no | 
|  | // uses remain, to ensure that the node can be safely deleted. | 
|  | do { | 
|  | for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(N, i), N->getOperand(i), | 
|  | &DeadNodes); | 
|  | } while (!N->use_empty()); | 
|  | removeFromWorkList(N); | 
|  | DAG.DeleteNode(N); | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  |  | 
|  | static | 
|  | SDValue combineShlAddConstant(DebugLoc DL, SDValue N0, SDValue N1, | 
|  | SelectionDAG &DAG) { | 
|  | EVT VT = N0.getValueType(); | 
|  | SDValue N00 = N0.getOperand(0); | 
|  | SDValue N01 = N0.getOperand(1); | 
|  | ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N01); | 
|  |  | 
|  | if (N01C && N00.getOpcode() == ISD::ADD && N00.getNode()->hasOneUse() && | 
|  | isa<ConstantSDNode>(N00.getOperand(1))) { | 
|  | // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), ) | 
|  | N0 = DAG.getNode(ISD::ADD, N0.getDebugLoc(), VT, | 
|  | DAG.getNode(ISD::SHL, N00.getDebugLoc(), VT, | 
|  | N00.getOperand(0), N01), | 
|  | DAG.getNode(ISD::SHL, N01.getDebugLoc(), VT, | 
|  | N00.getOperand(1), N01)); | 
|  | return DAG.getNode(ISD::ADD, DL, VT, N0, N1); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitADD(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); | 
|  | ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); | 
|  | EVT VT = N0.getValueType(); | 
|  |  | 
|  | // fold vector ops | 
|  | if (VT.isVector()) { | 
|  | SDValue FoldedVOp = SimplifyVBinOp(N); | 
|  | if (FoldedVOp.getNode()) return FoldedVOp; | 
|  | } | 
|  |  | 
|  | // fold (add x, undef) -> undef | 
|  | if (N0.getOpcode() == ISD::UNDEF) | 
|  | return N0; | 
|  | if (N1.getOpcode() == ISD::UNDEF) | 
|  | return N1; | 
|  | // fold (add c1, c2) -> c1+c2 | 
|  | if (N0C && N1C) | 
|  | return DAG.FoldConstantArithmetic(ISD::ADD, VT, N0C, N1C); | 
|  | // canonicalize constant to RHS | 
|  | if (N0C && !N1C) | 
|  | return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N1, N0); | 
|  | // fold (add x, 0) -> x | 
|  | if (N1C && N1C->isNullValue()) | 
|  | return N0; | 
|  | // fold (add Sym, c) -> Sym+c | 
|  | if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0)) | 
|  | if (!LegalOperations && TLI.isOffsetFoldingLegal(GA) && N1C && | 
|  | GA->getOpcode() == ISD::GlobalAddress) | 
|  | return DAG.getGlobalAddress(GA->getGlobal(), N1C->getDebugLoc(), VT, | 
|  | GA->getOffset() + | 
|  | (uint64_t)N1C->getSExtValue()); | 
|  | // fold ((c1-A)+c2) -> (c1+c2)-A | 
|  | if (N1C && N0.getOpcode() == ISD::SUB) | 
|  | if (ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getOperand(0))) | 
|  | return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, | 
|  | DAG.getConstant(N1C->getAPIntValue()+ | 
|  | N0C->getAPIntValue(), VT), | 
|  | N0.getOperand(1)); | 
|  | // reassociate add | 
|  | SDValue RADD = ReassociateOps(ISD::ADD, N->getDebugLoc(), N0, N1); | 
|  | if (RADD.getNode() != 0) | 
|  | return RADD; | 
|  | // fold ((0-A) + B) -> B-A | 
|  | if (N0.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N0.getOperand(0)) && | 
|  | cast<ConstantSDNode>(N0.getOperand(0))->isNullValue()) | 
|  | return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1, N0.getOperand(1)); | 
|  | // fold (A + (0-B)) -> A-B | 
|  | if (N1.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N1.getOperand(0)) && | 
|  | cast<ConstantSDNode>(N1.getOperand(0))->isNullValue()) | 
|  | return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0, N1.getOperand(1)); | 
|  | // fold (A+(B-A)) -> B | 
|  | if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1)) | 
|  | return N1.getOperand(0); | 
|  | // fold ((B-A)+A) -> B | 
|  | if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1)) | 
|  | return N0.getOperand(0); | 
|  | // fold (A+(B-(A+C))) to (B-C) | 
|  | if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD && | 
|  | N0 == N1.getOperand(1).getOperand(0)) | 
|  | return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1.getOperand(0), | 
|  | N1.getOperand(1).getOperand(1)); | 
|  | // fold (A+(B-(C+A))) to (B-C) | 
|  | if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD && | 
|  | N0 == N1.getOperand(1).getOperand(1)) | 
|  | return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1.getOperand(0), | 
|  | N1.getOperand(1).getOperand(0)); | 
|  | // fold (A+((B-A)+or-C)) to (B+or-C) | 
|  | if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) && | 
|  | N1.getOperand(0).getOpcode() == ISD::SUB && | 
|  | N0 == N1.getOperand(0).getOperand(1)) | 
|  | return DAG.getNode(N1.getOpcode(), N->getDebugLoc(), VT, | 
|  | N1.getOperand(0).getOperand(0), N1.getOperand(1)); | 
|  |  | 
|  | // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant | 
|  | if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) { | 
|  | SDValue N00 = N0.getOperand(0); | 
|  | SDValue N01 = N0.getOperand(1); | 
|  | SDValue N10 = N1.getOperand(0); | 
|  | SDValue N11 = N1.getOperand(1); | 
|  |  | 
|  | if (isa<ConstantSDNode>(N00) || isa<ConstantSDNode>(N10)) | 
|  | return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, | 
|  | DAG.getNode(ISD::ADD, N0.getDebugLoc(), VT, N00, N10), | 
|  | DAG.getNode(ISD::ADD, N1.getDebugLoc(), VT, N01, N11)); | 
|  | } | 
|  |  | 
|  | if (!VT.isVector() && SimplifyDemandedBits(SDValue(N, 0))) | 
|  | return SDValue(N, 0); | 
|  |  | 
|  | // fold (a+b) -> (a|b) iff a and b share no bits. | 
|  | if (VT.isInteger() && !VT.isVector()) { | 
|  | APInt LHSZero, LHSOne; | 
|  | APInt RHSZero, RHSOne; | 
|  | APInt Mask = APInt::getAllOnesValue(VT.getScalarType().getSizeInBits()); | 
|  | DAG.ComputeMaskedBits(N0, Mask, LHSZero, LHSOne); | 
|  |  | 
|  | if (LHSZero.getBoolValue()) { | 
|  | DAG.ComputeMaskedBits(N1, Mask, RHSZero, RHSOne); | 
|  |  | 
|  | // If all possibly-set bits on the LHS are clear on the RHS, return an OR. | 
|  | // If all possibly-set bits on the RHS are clear on the LHS, return an OR. | 
|  | if ((RHSZero & (~LHSZero & Mask)) == (~LHSZero & Mask) || | 
|  | (LHSZero & (~RHSZero & Mask)) == (~RHSZero & Mask)) | 
|  | return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N1); | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), ) | 
|  | if (N0.getOpcode() == ISD::SHL && N0.getNode()->hasOneUse()) { | 
|  | SDValue Result = combineShlAddConstant(N->getDebugLoc(), N0, N1, DAG); | 
|  | if (Result.getNode()) return Result; | 
|  | } | 
|  | if (N1.getOpcode() == ISD::SHL && N1.getNode()->hasOneUse()) { | 
|  | SDValue Result = combineShlAddConstant(N->getDebugLoc(), N1, N0, DAG); | 
|  | if (Result.getNode()) return Result; | 
|  | } | 
|  |  | 
|  | // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n)) | 
|  | if (N1.getOpcode() == ISD::SHL && | 
|  | N1.getOperand(0).getOpcode() == ISD::SUB) | 
|  | if (ConstantSDNode *C = | 
|  | dyn_cast<ConstantSDNode>(N1.getOperand(0).getOperand(0))) | 
|  | if (C->getAPIntValue() == 0) | 
|  | return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0, | 
|  | DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, | 
|  | N1.getOperand(0).getOperand(1), | 
|  | N1.getOperand(1))); | 
|  | if (N0.getOpcode() == ISD::SHL && | 
|  | N0.getOperand(0).getOpcode() == ISD::SUB) | 
|  | if (ConstantSDNode *C = | 
|  | dyn_cast<ConstantSDNode>(N0.getOperand(0).getOperand(0))) | 
|  | if (C->getAPIntValue() == 0) | 
|  | return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1, | 
|  | DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, | 
|  | N0.getOperand(0).getOperand(1), | 
|  | N0.getOperand(1))); | 
|  |  | 
|  | if (N1.getOpcode() == ISD::AND) { | 
|  | SDValue AndOp0 = N1.getOperand(0); | 
|  | ConstantSDNode *AndOp1 = dyn_cast<ConstantSDNode>(N1->getOperand(1)); | 
|  | unsigned NumSignBits = DAG.ComputeNumSignBits(AndOp0); | 
|  | unsigned DestBits = VT.getScalarType().getSizeInBits(); | 
|  |  | 
|  | // (add z, (and (sbbl x, x), 1)) -> (sub z, (sbbl x, x)) | 
|  | // and similar xforms where the inner op is either ~0 or 0. | 
|  | if (NumSignBits == DestBits && AndOp1 && AndOp1->isOne()) { | 
|  | DebugLoc DL = N->getDebugLoc(); | 
|  | return DAG.getNode(ISD::SUB, DL, VT, N->getOperand(0), AndOp0); | 
|  | } | 
|  | } | 
|  |  | 
|  | // add (sext i1), X -> sub X, (zext i1) | 
|  | if (N0.getOpcode() == ISD::SIGN_EXTEND && | 
|  | N0.getOperand(0).getValueType() == MVT::i1 && | 
|  | !TLI.isOperationLegal(ISD::SIGN_EXTEND, MVT::i1)) { | 
|  | DebugLoc DL = N->getDebugLoc(); | 
|  | SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)); | 
|  | return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitADDC(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); | 
|  | ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); | 
|  | EVT VT = N0.getValueType(); | 
|  |  | 
|  | // If the flag result is dead, turn this into an ADD. | 
|  | if (N->hasNUsesOfValue(0, 1)) | 
|  | return CombineTo(N, DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N1, N0), | 
|  | DAG.getNode(ISD::CARRY_FALSE, | 
|  | N->getDebugLoc(), MVT::Glue)); | 
|  |  | 
|  | // canonicalize constant to RHS. | 
|  | if (N0C && !N1C) | 
|  | return DAG.getNode(ISD::ADDC, N->getDebugLoc(), N->getVTList(), N1, N0); | 
|  |  | 
|  | // fold (addc x, 0) -> x + no carry out | 
|  | if (N1C && N1C->isNullValue()) | 
|  | return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, | 
|  | N->getDebugLoc(), MVT::Glue)); | 
|  |  | 
|  | // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits. | 
|  | APInt LHSZero, LHSOne; | 
|  | APInt RHSZero, RHSOne; | 
|  | APInt Mask = APInt::getAllOnesValue(VT.getScalarType().getSizeInBits()); | 
|  | DAG.ComputeMaskedBits(N0, Mask, LHSZero, LHSOne); | 
|  |  | 
|  | if (LHSZero.getBoolValue()) { | 
|  | DAG.ComputeMaskedBits(N1, Mask, RHSZero, RHSOne); | 
|  |  | 
|  | // If all possibly-set bits on the LHS are clear on the RHS, return an OR. | 
|  | // If all possibly-set bits on the RHS are clear on the LHS, return an OR. | 
|  | if ((RHSZero & (~LHSZero & Mask)) == (~LHSZero & Mask) || | 
|  | (LHSZero & (~RHSZero & Mask)) == (~RHSZero & Mask)) | 
|  | return CombineTo(N, DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N1), | 
|  | DAG.getNode(ISD::CARRY_FALSE, | 
|  | N->getDebugLoc(), MVT::Glue)); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitADDE(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | SDValue CarryIn = N->getOperand(2); | 
|  | ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); | 
|  | ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); | 
|  |  | 
|  | // canonicalize constant to RHS | 
|  | if (N0C && !N1C) | 
|  | return DAG.getNode(ISD::ADDE, N->getDebugLoc(), N->getVTList(), | 
|  | N1, N0, CarryIn); | 
|  |  | 
|  | // fold (adde x, y, false) -> (addc x, y) | 
|  | if (CarryIn.getOpcode() == ISD::CARRY_FALSE) | 
|  | return DAG.getNode(ISD::ADDC, N->getDebugLoc(), N->getVTList(), N1, N0); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Since it may not be valid to emit a fold to zero for vector initializers | 
|  | // check if we can before folding. | 
|  | static SDValue tryFoldToZero(DebugLoc DL, const TargetLowering &TLI, EVT VT, | 
|  | SelectionDAG &DAG, bool LegalOperations) { | 
|  | if (!VT.isVector()) { | 
|  | return DAG.getConstant(0, VT); | 
|  | } | 
|  | if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) { | 
|  | // Produce a vector of zeros. | 
|  | SDValue El = DAG.getConstant(0, VT.getVectorElementType()); | 
|  | std::vector<SDValue> Ops(VT.getVectorNumElements(), El); | 
|  | return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, | 
|  | &Ops[0], Ops.size()); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitSUB(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode()); | 
|  | ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode()); | 
|  | ConstantSDNode *N1C1 = N1.getOpcode() != ISD::ADD ? 0 : | 
|  | dyn_cast<ConstantSDNode>(N1.getOperand(1).getNode()); | 
|  | EVT VT = N0.getValueType(); | 
|  |  | 
|  | // fold vector ops | 
|  | if (VT.isVector()) { | 
|  | SDValue FoldedVOp = SimplifyVBinOp(N); | 
|  | if (FoldedVOp.getNode()) return FoldedVOp; | 
|  | } | 
|  |  | 
|  | // fold (sub x, x) -> 0 | 
|  | // FIXME: Refactor this and xor and other similar operations together. | 
|  | if (N0 == N1) | 
|  | return tryFoldToZero(N->getDebugLoc(), TLI, VT, DAG, LegalOperations); | 
|  | // fold (sub c1, c2) -> c1-c2 | 
|  | if (N0C && N1C) | 
|  | return DAG.FoldConstantArithmetic(ISD::SUB, VT, N0C, N1C); | 
|  | // fold (sub x, c) -> (add x, -c) | 
|  | if (N1C) | 
|  | return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, | 
|  | DAG.getConstant(-N1C->getAPIntValue(), VT)); | 
|  | // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) | 
|  | if (N0C && N0C->isAllOnesValue()) | 
|  | return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N1, N0); | 
|  | // fold A-(A-B) -> B | 
|  | if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0)) | 
|  | return N1.getOperand(1); | 
|  | // fold (A+B)-A -> B | 
|  | if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1) | 
|  | return N0.getOperand(1); | 
|  | // fold (A+B)-B -> A | 
|  | if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1) | 
|  | return N0.getOperand(0); | 
|  | // fold C2-(A+C1) -> (C2-C1)-A | 
|  | if (N1.getOpcode() == ISD::ADD && N0C && N1C1) { | 
|  | SDValue NewC = DAG.getConstant((N0C->getAPIntValue() - N1C1->getAPIntValue()), VT); | 
|  | return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, NewC, | 
|  | N1.getOperand(0)); | 
|  | } | 
|  | // fold ((A+(B+or-C))-B) -> A+or-C | 
|  | if (N0.getOpcode() == ISD::ADD && | 
|  | (N0.getOperand(1).getOpcode() == ISD::SUB || | 
|  | N0.getOperand(1).getOpcode() == ISD::ADD) && | 
|  | N0.getOperand(1).getOperand(0) == N1) | 
|  | return DAG.getNode(N0.getOperand(1).getOpcode(), N->getDebugLoc(), VT, | 
|  | N0.getOperand(0), N0.getOperand(1).getOperand(1)); | 
|  | // fold ((A+(C+B))-B) -> A+C | 
|  | if (N0.getOpcode() == ISD::ADD && | 
|  | N0.getOperand(1).getOpcode() == ISD::ADD && | 
|  | N0.getOperand(1).getOperand(1) == N1) | 
|  | return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, | 
|  | N0.getOperand(0), N0.getOperand(1).getOperand(0)); | 
|  | // fold ((A-(B-C))-C) -> A-B | 
|  | if (N0.getOpcode() == ISD::SUB && | 
|  | N0.getOperand(1).getOpcode() == ISD::SUB && | 
|  | N0.getOperand(1).getOperand(1) == N1) | 
|  | return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, | 
|  | N0.getOperand(0), N0.getOperand(1).getOperand(0)); | 
|  |  | 
|  | // If either operand of a sub is undef, the result is undef | 
|  | if (N0.getOpcode() == ISD::UNDEF) | 
|  | return N0; | 
|  | if (N1.getOpcode() == ISD::UNDEF) | 
|  | return N1; | 
|  |  | 
|  | // If the relocation model supports it, consider symbol offsets. | 
|  | if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0)) | 
|  | if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) { | 
|  | // fold (sub Sym, c) -> Sym-c | 
|  | if (N1C && GA->getOpcode() == ISD::GlobalAddress) | 
|  | return DAG.getGlobalAddress(GA->getGlobal(), N1C->getDebugLoc(), VT, | 
|  | GA->getOffset() - | 
|  | (uint64_t)N1C->getSExtValue()); | 
|  | // fold (sub Sym+c1, Sym+c2) -> c1-c2 | 
|  | if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1)) | 
|  | if (GA->getGlobal() == GB->getGlobal()) | 
|  | return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(), | 
|  | VT); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitMUL(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); | 
|  | ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); | 
|  | EVT VT = N0.getValueType(); | 
|  |  | 
|  | // fold vector ops | 
|  | if (VT.isVector()) { | 
|  | SDValue FoldedVOp = SimplifyVBinOp(N); | 
|  | if (FoldedVOp.getNode()) return FoldedVOp; | 
|  | } | 
|  |  | 
|  | // fold (mul x, undef) -> 0 | 
|  | if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF) | 
|  | return DAG.getConstant(0, VT); | 
|  | // fold (mul c1, c2) -> c1*c2 | 
|  | if (N0C && N1C) | 
|  | return DAG.FoldConstantArithmetic(ISD::MUL, VT, N0C, N1C); | 
|  | // canonicalize constant to RHS | 
|  | if (N0C && !N1C) | 
|  | return DAG.getNode(ISD::MUL, N->getDebugLoc(), VT, N1, N0); | 
|  | // fold (mul x, 0) -> 0 | 
|  | if (N1C && N1C->isNullValue()) | 
|  | return N1; | 
|  | // fold (mul x, -1) -> 0-x | 
|  | if (N1C && N1C->isAllOnesValue()) | 
|  | return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, | 
|  | DAG.getConstant(0, VT), N0); | 
|  | // fold (mul x, (1 << c)) -> x << c | 
|  | if (N1C && N1C->getAPIntValue().isPowerOf2()) | 
|  | return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0, | 
|  | DAG.getConstant(N1C->getAPIntValue().logBase2(), | 
|  | getShiftAmountTy(N0.getValueType()))); | 
|  | // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c | 
|  | if (N1C && (-N1C->getAPIntValue()).isPowerOf2()) { | 
|  | unsigned Log2Val = (-N1C->getAPIntValue()).logBase2(); | 
|  | // FIXME: If the input is something that is easily negated (e.g. a | 
|  | // single-use add), we should put the negate there. | 
|  | return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, | 
|  | DAG.getConstant(0, VT), | 
|  | DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0, | 
|  | DAG.getConstant(Log2Val, | 
|  | getShiftAmountTy(N0.getValueType())))); | 
|  | } | 
|  | // (mul (shl X, c1), c2) -> (mul X, c2 << c1) | 
|  | if (N1C && N0.getOpcode() == ISD::SHL && | 
|  | isa<ConstantSDNode>(N0.getOperand(1))) { | 
|  | SDValue C3 = DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, | 
|  | N1, N0.getOperand(1)); | 
|  | AddToWorkList(C3.getNode()); | 
|  | return DAG.getNode(ISD::MUL, N->getDebugLoc(), VT, | 
|  | N0.getOperand(0), C3); | 
|  | } | 
|  |  | 
|  | // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one | 
|  | // use. | 
|  | { | 
|  | SDValue Sh(0,0), Y(0,0); | 
|  | // Check for both (mul (shl X, C), Y)  and  (mul Y, (shl X, C)). | 
|  | if (N0.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N0.getOperand(1)) && | 
|  | N0.getNode()->hasOneUse()) { | 
|  | Sh = N0; Y = N1; | 
|  | } else if (N1.getOpcode() == ISD::SHL && | 
|  | isa<ConstantSDNode>(N1.getOperand(1)) && | 
|  | N1.getNode()->hasOneUse()) { | 
|  | Sh = N1; Y = N0; | 
|  | } | 
|  |  | 
|  | if (Sh.getNode()) { | 
|  | SDValue Mul = DAG.getNode(ISD::MUL, N->getDebugLoc(), VT, | 
|  | Sh.getOperand(0), Y); | 
|  | return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, | 
|  | Mul, Sh.getOperand(1)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2) | 
|  | if (N1C && N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse() && | 
|  | isa<ConstantSDNode>(N0.getOperand(1))) | 
|  | return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, | 
|  | DAG.getNode(ISD::MUL, N0.getDebugLoc(), VT, | 
|  | N0.getOperand(0), N1), | 
|  | DAG.getNode(ISD::MUL, N1.getDebugLoc(), VT, | 
|  | N0.getOperand(1), N1)); | 
|  |  | 
|  | // reassociate mul | 
|  | SDValue RMUL = ReassociateOps(ISD::MUL, N->getDebugLoc(), N0, N1); | 
|  | if (RMUL.getNode() != 0) | 
|  | return RMUL; | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitSDIV(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode()); | 
|  | ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode()); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold vector ops | 
|  | if (VT.isVector()) { | 
|  | SDValue FoldedVOp = SimplifyVBinOp(N); | 
|  | if (FoldedVOp.getNode()) return FoldedVOp; | 
|  | } | 
|  |  | 
|  | // fold (sdiv c1, c2) -> c1/c2 | 
|  | if (N0C && N1C && !N1C->isNullValue()) | 
|  | return DAG.FoldConstantArithmetic(ISD::SDIV, VT, N0C, N1C); | 
|  | // fold (sdiv X, 1) -> X | 
|  | if (N1C && N1C->getAPIntValue() == 1LL) | 
|  | return N0; | 
|  | // fold (sdiv X, -1) -> 0-X | 
|  | if (N1C && N1C->isAllOnesValue()) | 
|  | return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, | 
|  | DAG.getConstant(0, VT), N0); | 
|  | // If we know the sign bits of both operands are zero, strength reduce to a | 
|  | // udiv instead.  Handles (X&15) /s 4 -> X&15 >> 2 | 
|  | if (!VT.isVector()) { | 
|  | if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0)) | 
|  | return DAG.getNode(ISD::UDIV, N->getDebugLoc(), N1.getValueType(), | 
|  | N0, N1); | 
|  | } | 
|  | // fold (sdiv X, pow2) -> simple ops after legalize | 
|  | if (N1C && !N1C->isNullValue() && | 
|  | (N1C->getAPIntValue().isPowerOf2() || | 
|  | (-N1C->getAPIntValue()).isPowerOf2())) { | 
|  | // If dividing by powers of two is cheap, then don't perform the following | 
|  | // fold. | 
|  | if (TLI.isPow2DivCheap()) | 
|  | return SDValue(); | 
|  |  | 
|  | unsigned lg2 = N1C->getAPIntValue().countTrailingZeros(); | 
|  |  | 
|  | // Splat the sign bit into the register | 
|  | SDValue SGN = DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, N0, | 
|  | DAG.getConstant(VT.getSizeInBits()-1, | 
|  | getShiftAmountTy(N0.getValueType()))); | 
|  | AddToWorkList(SGN.getNode()); | 
|  |  | 
|  | // Add (N0 < 0) ? abs2 - 1 : 0; | 
|  | SDValue SRL = DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, SGN, | 
|  | DAG.getConstant(VT.getSizeInBits() - lg2, | 
|  | getShiftAmountTy(SGN.getValueType()))); | 
|  | SDValue ADD = DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, SRL); | 
|  | AddToWorkList(SRL.getNode()); | 
|  | AddToWorkList(ADD.getNode());    // Divide by pow2 | 
|  | SDValue SRA = DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, ADD, | 
|  | DAG.getConstant(lg2, getShiftAmountTy(ADD.getValueType()))); | 
|  |  | 
|  | // If we're dividing by a positive value, we're done.  Otherwise, we must | 
|  | // negate the result. | 
|  | if (N1C->getAPIntValue().isNonNegative()) | 
|  | return SRA; | 
|  |  | 
|  | AddToWorkList(SRA.getNode()); | 
|  | return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, | 
|  | DAG.getConstant(0, VT), SRA); | 
|  | } | 
|  |  | 
|  | // if integer divide is expensive and we satisfy the requirements, emit an | 
|  | // alternate sequence. | 
|  | if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap()) { | 
|  | SDValue Op = BuildSDIV(N); | 
|  | if (Op.getNode()) return Op; | 
|  | } | 
|  |  | 
|  | // undef / X -> 0 | 
|  | if (N0.getOpcode() == ISD::UNDEF) | 
|  | return DAG.getConstant(0, VT); | 
|  | // X / undef -> undef | 
|  | if (N1.getOpcode() == ISD::UNDEF) | 
|  | return N1; | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitUDIV(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode()); | 
|  | ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode()); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold vector ops | 
|  | if (VT.isVector()) { | 
|  | SDValue FoldedVOp = SimplifyVBinOp(N); | 
|  | if (FoldedVOp.getNode()) return FoldedVOp; | 
|  | } | 
|  |  | 
|  | // fold (udiv c1, c2) -> c1/c2 | 
|  | if (N0C && N1C && !N1C->isNullValue()) | 
|  | return DAG.FoldConstantArithmetic(ISD::UDIV, VT, N0C, N1C); | 
|  | // fold (udiv x, (1 << c)) -> x >>u c | 
|  | if (N1C && N1C->getAPIntValue().isPowerOf2()) | 
|  | return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0, | 
|  | DAG.getConstant(N1C->getAPIntValue().logBase2(), | 
|  | getShiftAmountTy(N0.getValueType()))); | 
|  | // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2 | 
|  | if (N1.getOpcode() == ISD::SHL) { | 
|  | if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) { | 
|  | if (SHC->getAPIntValue().isPowerOf2()) { | 
|  | EVT ADDVT = N1.getOperand(1).getValueType(); | 
|  | SDValue Add = DAG.getNode(ISD::ADD, N->getDebugLoc(), ADDVT, | 
|  | N1.getOperand(1), | 
|  | DAG.getConstant(SHC->getAPIntValue() | 
|  | .logBase2(), | 
|  | ADDVT)); | 
|  | AddToWorkList(Add.getNode()); | 
|  | return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0, Add); | 
|  | } | 
|  | } | 
|  | } | 
|  | // fold (udiv x, c) -> alternate | 
|  | if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap()) { | 
|  | SDValue Op = BuildUDIV(N); | 
|  | if (Op.getNode()) return Op; | 
|  | } | 
|  |  | 
|  | // undef / X -> 0 | 
|  | if (N0.getOpcode() == ISD::UNDEF) | 
|  | return DAG.getConstant(0, VT); | 
|  | // X / undef -> undef | 
|  | if (N1.getOpcode() == ISD::UNDEF) | 
|  | return N1; | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitSREM(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); | 
|  | ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold (srem c1, c2) -> c1%c2 | 
|  | if (N0C && N1C && !N1C->isNullValue()) | 
|  | return DAG.FoldConstantArithmetic(ISD::SREM, VT, N0C, N1C); | 
|  | // If we know the sign bits of both operands are zero, strength reduce to a | 
|  | // urem instead.  Handles (X & 0x0FFFFFFF) %s 16 -> X&15 | 
|  | if (!VT.isVector()) { | 
|  | if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0)) | 
|  | return DAG.getNode(ISD::UREM, N->getDebugLoc(), VT, N0, N1); | 
|  | } | 
|  |  | 
|  | // If X/C can be simplified by the division-by-constant logic, lower | 
|  | // X%C to the equivalent of X-X/C*C. | 
|  | if (N1C && !N1C->isNullValue()) { | 
|  | SDValue Div = DAG.getNode(ISD::SDIV, N->getDebugLoc(), VT, N0, N1); | 
|  | AddToWorkList(Div.getNode()); | 
|  | SDValue OptimizedDiv = combine(Div.getNode()); | 
|  | if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) { | 
|  | SDValue Mul = DAG.getNode(ISD::MUL, N->getDebugLoc(), VT, | 
|  | OptimizedDiv, N1); | 
|  | SDValue Sub = DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0, Mul); | 
|  | AddToWorkList(Mul.getNode()); | 
|  | return Sub; | 
|  | } | 
|  | } | 
|  |  | 
|  | // undef % X -> 0 | 
|  | if (N0.getOpcode() == ISD::UNDEF) | 
|  | return DAG.getConstant(0, VT); | 
|  | // X % undef -> undef | 
|  | if (N1.getOpcode() == ISD::UNDEF) | 
|  | return N1; | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitUREM(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); | 
|  | ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold (urem c1, c2) -> c1%c2 | 
|  | if (N0C && N1C && !N1C->isNullValue()) | 
|  | return DAG.FoldConstantArithmetic(ISD::UREM, VT, N0C, N1C); | 
|  | // fold (urem x, pow2) -> (and x, pow2-1) | 
|  | if (N1C && !N1C->isNullValue() && N1C->getAPIntValue().isPowerOf2()) | 
|  | return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0, | 
|  | DAG.getConstant(N1C->getAPIntValue()-1,VT)); | 
|  | // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1)) | 
|  | if (N1.getOpcode() == ISD::SHL) { | 
|  | if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) { | 
|  | if (SHC->getAPIntValue().isPowerOf2()) { | 
|  | SDValue Add = | 
|  | DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N1, | 
|  | DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), | 
|  | VT)); | 
|  | AddToWorkList(Add.getNode()); | 
|  | return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0, Add); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If X/C can be simplified by the division-by-constant logic, lower | 
|  | // X%C to the equivalent of X-X/C*C. | 
|  | if (N1C && !N1C->isNullValue()) { | 
|  | SDValue Div = DAG.getNode(ISD::UDIV, N->getDebugLoc(), VT, N0, N1); | 
|  | AddToWorkList(Div.getNode()); | 
|  | SDValue OptimizedDiv = combine(Div.getNode()); | 
|  | if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) { | 
|  | SDValue Mul = DAG.getNode(ISD::MUL, N->getDebugLoc(), VT, | 
|  | OptimizedDiv, N1); | 
|  | SDValue Sub = DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0, Mul); | 
|  | AddToWorkList(Mul.getNode()); | 
|  | return Sub; | 
|  | } | 
|  | } | 
|  |  | 
|  | // undef % X -> 0 | 
|  | if (N0.getOpcode() == ISD::UNDEF) | 
|  | return DAG.getConstant(0, VT); | 
|  | // X % undef -> undef | 
|  | if (N1.getOpcode() == ISD::UNDEF) | 
|  | return N1; | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitMULHS(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); | 
|  | EVT VT = N->getValueType(0); | 
|  | DebugLoc DL = N->getDebugLoc(); | 
|  |  | 
|  | // fold (mulhs x, 0) -> 0 | 
|  | if (N1C && N1C->isNullValue()) | 
|  | return N1; | 
|  | // fold (mulhs x, 1) -> (sra x, size(x)-1) | 
|  | if (N1C && N1C->getAPIntValue() == 1) | 
|  | return DAG.getNode(ISD::SRA, N->getDebugLoc(), N0.getValueType(), N0, | 
|  | DAG.getConstant(N0.getValueType().getSizeInBits() - 1, | 
|  | getShiftAmountTy(N0.getValueType()))); | 
|  | // fold (mulhs x, undef) -> 0 | 
|  | if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF) | 
|  | return DAG.getConstant(0, VT); | 
|  |  | 
|  | // If the type twice as wide is legal, transform the mulhs to a wider multiply | 
|  | // plus a shift. | 
|  | if (VT.isSimple() && !VT.isVector()) { | 
|  | MVT Simple = VT.getSimpleVT(); | 
|  | unsigned SimpleSize = Simple.getSizeInBits(); | 
|  | EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); | 
|  | if (TLI.isOperationLegal(ISD::MUL, NewVT)) { | 
|  | N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0); | 
|  | N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1); | 
|  | N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1); | 
|  | N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1, | 
|  | DAG.getConstant(SimpleSize, getShiftAmountTy(N1.getValueType()))); | 
|  | return DAG.getNode(ISD::TRUNCATE, DL, VT, N1); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitMULHU(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); | 
|  | EVT VT = N->getValueType(0); | 
|  | DebugLoc DL = N->getDebugLoc(); | 
|  |  | 
|  | // fold (mulhu x, 0) -> 0 | 
|  | if (N1C && N1C->isNullValue()) | 
|  | return N1; | 
|  | // fold (mulhu x, 1) -> 0 | 
|  | if (N1C && N1C->getAPIntValue() == 1) | 
|  | return DAG.getConstant(0, N0.getValueType()); | 
|  | // fold (mulhu x, undef) -> 0 | 
|  | if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF) | 
|  | return DAG.getConstant(0, VT); | 
|  |  | 
|  | // If the type twice as wide is legal, transform the mulhu to a wider multiply | 
|  | // plus a shift. | 
|  | if (VT.isSimple() && !VT.isVector()) { | 
|  | MVT Simple = VT.getSimpleVT(); | 
|  | unsigned SimpleSize = Simple.getSizeInBits(); | 
|  | EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); | 
|  | if (TLI.isOperationLegal(ISD::MUL, NewVT)) { | 
|  | N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0); | 
|  | N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1); | 
|  | N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1); | 
|  | N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1, | 
|  | DAG.getConstant(SimpleSize, getShiftAmountTy(N1.getValueType()))); | 
|  | return DAG.getNode(ISD::TRUNCATE, DL, VT, N1); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// SimplifyNodeWithTwoResults - Perform optimizations common to nodes that | 
|  | /// compute two values. LoOp and HiOp give the opcodes for the two computations | 
|  | /// that are being performed. Return true if a simplification was made. | 
|  | /// | 
|  | SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, | 
|  | unsigned HiOp) { | 
|  | // If the high half is not needed, just compute the low half. | 
|  | bool HiExists = N->hasAnyUseOfValue(1); | 
|  | if (!HiExists && | 
|  | (!LegalOperations || | 
|  | TLI.isOperationLegal(LoOp, N->getValueType(0)))) { | 
|  | SDValue Res = DAG.getNode(LoOp, N->getDebugLoc(), N->getValueType(0), | 
|  | N->op_begin(), N->getNumOperands()); | 
|  | return CombineTo(N, Res, Res); | 
|  | } | 
|  |  | 
|  | // If the low half is not needed, just compute the high half. | 
|  | bool LoExists = N->hasAnyUseOfValue(0); | 
|  | if (!LoExists && | 
|  | (!LegalOperations || | 
|  | TLI.isOperationLegal(HiOp, N->getValueType(1)))) { | 
|  | SDValue Res = DAG.getNode(HiOp, N->getDebugLoc(), N->getValueType(1), | 
|  | N->op_begin(), N->getNumOperands()); | 
|  | return CombineTo(N, Res, Res); | 
|  | } | 
|  |  | 
|  | // If both halves are used, return as it is. | 
|  | if (LoExists && HiExists) | 
|  | return SDValue(); | 
|  |  | 
|  | // If the two computed results can be simplified separately, separate them. | 
|  | if (LoExists) { | 
|  | SDValue Lo = DAG.getNode(LoOp, N->getDebugLoc(), N->getValueType(0), | 
|  | N->op_begin(), N->getNumOperands()); | 
|  | AddToWorkList(Lo.getNode()); | 
|  | SDValue LoOpt = combine(Lo.getNode()); | 
|  | if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() && | 
|  | (!LegalOperations || | 
|  | TLI.isOperationLegal(LoOpt.getOpcode(), LoOpt.getValueType()))) | 
|  | return CombineTo(N, LoOpt, LoOpt); | 
|  | } | 
|  |  | 
|  | if (HiExists) { | 
|  | SDValue Hi = DAG.getNode(HiOp, N->getDebugLoc(), N->getValueType(1), | 
|  | N->op_begin(), N->getNumOperands()); | 
|  | AddToWorkList(Hi.getNode()); | 
|  | SDValue HiOpt = combine(Hi.getNode()); | 
|  | if (HiOpt.getNode() && HiOpt != Hi && | 
|  | (!LegalOperations || | 
|  | TLI.isOperationLegal(HiOpt.getOpcode(), HiOpt.getValueType()))) | 
|  | return CombineTo(N, HiOpt, HiOpt); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) { | 
|  | SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS); | 
|  | if (Res.getNode()) return Res; | 
|  |  | 
|  | EVT VT = N->getValueType(0); | 
|  | DebugLoc DL = N->getDebugLoc(); | 
|  |  | 
|  | // If the type twice as wide is legal, transform the mulhu to a wider multiply | 
|  | // plus a shift. | 
|  | if (VT.isSimple() && !VT.isVector()) { | 
|  | MVT Simple = VT.getSimpleVT(); | 
|  | unsigned SimpleSize = Simple.getSizeInBits(); | 
|  | EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); | 
|  | if (TLI.isOperationLegal(ISD::MUL, NewVT)) { | 
|  | SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(0)); | 
|  | SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(1)); | 
|  | Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi); | 
|  | // Compute the high part as N1. | 
|  | Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo, | 
|  | DAG.getConstant(SimpleSize, getShiftAmountTy(Lo.getValueType()))); | 
|  | Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi); | 
|  | // Compute the low part as N0. | 
|  | Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo); | 
|  | return CombineTo(N, Lo, Hi); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) { | 
|  | SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU); | 
|  | if (Res.getNode()) return Res; | 
|  |  | 
|  | EVT VT = N->getValueType(0); | 
|  | DebugLoc DL = N->getDebugLoc(); | 
|  |  | 
|  | // If the type twice as wide is legal, transform the mulhu to a wider multiply | 
|  | // plus a shift. | 
|  | if (VT.isSimple() && !VT.isVector()) { | 
|  | MVT Simple = VT.getSimpleVT(); | 
|  | unsigned SimpleSize = Simple.getSizeInBits(); | 
|  | EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); | 
|  | if (TLI.isOperationLegal(ISD::MUL, NewVT)) { | 
|  | SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(0)); | 
|  | SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(1)); | 
|  | Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi); | 
|  | // Compute the high part as N1. | 
|  | Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo, | 
|  | DAG.getConstant(SimpleSize, getShiftAmountTy(Lo.getValueType()))); | 
|  | Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi); | 
|  | // Compute the low part as N0. | 
|  | Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo); | 
|  | return CombineTo(N, Lo, Hi); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitSMULO(SDNode *N) { | 
|  | // (smulo x, 2) -> (saddo x, x) | 
|  | if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1))) | 
|  | if (C2->getAPIntValue() == 2) | 
|  | return DAG.getNode(ISD::SADDO, N->getDebugLoc(), N->getVTList(), | 
|  | N->getOperand(0), N->getOperand(0)); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitUMULO(SDNode *N) { | 
|  | // (umulo x, 2) -> (uaddo x, x) | 
|  | if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1))) | 
|  | if (C2->getAPIntValue() == 2) | 
|  | return DAG.getNode(ISD::UADDO, N->getDebugLoc(), N->getVTList(), | 
|  | N->getOperand(0), N->getOperand(0)); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitSDIVREM(SDNode *N) { | 
|  | SDValue Res = SimplifyNodeWithTwoResults(N, ISD::SDIV, ISD::SREM); | 
|  | if (Res.getNode()) return Res; | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitUDIVREM(SDNode *N) { | 
|  | SDValue Res = SimplifyNodeWithTwoResults(N, ISD::UDIV, ISD::UREM); | 
|  | if (Res.getNode()) return Res; | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// SimplifyBinOpWithSameOpcodeHands - If this is a binary operator with | 
|  | /// two operands of the same opcode, try to simplify it. | 
|  | SDValue DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); | 
|  | EVT VT = N0.getValueType(); | 
|  | assert(N0.getOpcode() == N1.getOpcode() && "Bad input!"); | 
|  |  | 
|  | // Bail early if none of these transforms apply. | 
|  | if (N0.getNode()->getNumOperands() == 0) return SDValue(); | 
|  |  | 
|  | // For each of OP in AND/OR/XOR: | 
|  | // fold (OP (zext x), (zext y)) -> (zext (OP x, y)) | 
|  | // fold (OP (sext x), (sext y)) -> (sext (OP x, y)) | 
|  | // fold (OP (aext x), (aext y)) -> (aext (OP x, y)) | 
|  | // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y)) (if trunc isn't free) | 
|  | // | 
|  | // do not sink logical op inside of a vector extend, since it may combine | 
|  | // into a vsetcc. | 
|  | EVT Op0VT = N0.getOperand(0).getValueType(); | 
|  | if ((N0.getOpcode() == ISD::ZERO_EXTEND || | 
|  | N0.getOpcode() == ISD::SIGN_EXTEND || | 
|  | // Avoid infinite looping with PromoteIntBinOp. | 
|  | (N0.getOpcode() == ISD::ANY_EXTEND && | 
|  | (!LegalTypes || TLI.isTypeDesirableForOp(N->getOpcode(), Op0VT))) || | 
|  | (N0.getOpcode() == ISD::TRUNCATE && | 
|  | (!TLI.isZExtFree(VT, Op0VT) || | 
|  | !TLI.isTruncateFree(Op0VT, VT)) && | 
|  | TLI.isTypeLegal(Op0VT))) && | 
|  | !VT.isVector() && | 
|  | Op0VT == N1.getOperand(0).getValueType() && | 
|  | (!LegalOperations || TLI.isOperationLegal(N->getOpcode(), Op0VT))) { | 
|  | SDValue ORNode = DAG.getNode(N->getOpcode(), N0.getDebugLoc(), | 
|  | N0.getOperand(0).getValueType(), | 
|  | N0.getOperand(0), N1.getOperand(0)); | 
|  | AddToWorkList(ORNode.getNode()); | 
|  | return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT, ORNode); | 
|  | } | 
|  |  | 
|  | // For each of OP in SHL/SRL/SRA/AND... | 
|  | //   fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z) | 
|  | //   fold (or  (OP x, z), (OP y, z)) -> (OP (or  x, y), z) | 
|  | //   fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z) | 
|  | if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL || | 
|  | N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) && | 
|  | N0.getOperand(1) == N1.getOperand(1)) { | 
|  | SDValue ORNode = DAG.getNode(N->getOpcode(), N0.getDebugLoc(), | 
|  | N0.getOperand(0).getValueType(), | 
|  | N0.getOperand(0), N1.getOperand(0)); | 
|  | AddToWorkList(ORNode.getNode()); | 
|  | return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT, | 
|  | ORNode, N0.getOperand(1)); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitAND(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | SDValue LL, LR, RL, RR, CC0, CC1; | 
|  | ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); | 
|  | ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); | 
|  | EVT VT = N1.getValueType(); | 
|  | unsigned BitWidth = VT.getScalarType().getSizeInBits(); | 
|  |  | 
|  | // fold vector ops | 
|  | if (VT.isVector()) { | 
|  | SDValue FoldedVOp = SimplifyVBinOp(N); | 
|  | if (FoldedVOp.getNode()) return FoldedVOp; | 
|  | } | 
|  |  | 
|  | // fold (and x, undef) -> 0 | 
|  | if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF) | 
|  | return DAG.getConstant(0, VT); | 
|  | // fold (and c1, c2) -> c1&c2 | 
|  | if (N0C && N1C) | 
|  | return DAG.FoldConstantArithmetic(ISD::AND, VT, N0C, N1C); | 
|  | // canonicalize constant to RHS | 
|  | if (N0C && !N1C) | 
|  | return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N1, N0); | 
|  | // fold (and x, -1) -> x | 
|  | if (N1C && N1C->isAllOnesValue()) | 
|  | return N0; | 
|  | // if (and x, c) is known to be zero, return 0 | 
|  | if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0), | 
|  | APInt::getAllOnesValue(BitWidth))) | 
|  | return DAG.getConstant(0, VT); | 
|  | // reassociate and | 
|  | SDValue RAND = ReassociateOps(ISD::AND, N->getDebugLoc(), N0, N1); | 
|  | if (RAND.getNode() != 0) | 
|  | return RAND; | 
|  | // fold (and (or x, C), D) -> D if (C & D) == D | 
|  | if (N1C && N0.getOpcode() == ISD::OR) | 
|  | if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) | 
|  | if ((ORI->getAPIntValue() & N1C->getAPIntValue()) == N1C->getAPIntValue()) | 
|  | return N1; | 
|  | // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits. | 
|  | if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { | 
|  | SDValue N0Op0 = N0.getOperand(0); | 
|  | APInt Mask = ~N1C->getAPIntValue(); | 
|  | Mask = Mask.trunc(N0Op0.getValueSizeInBits()); | 
|  | if (DAG.MaskedValueIsZero(N0Op0, Mask)) { | 
|  | SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), | 
|  | N0.getValueType(), N0Op0); | 
|  |  | 
|  | // Replace uses of the AND with uses of the Zero extend node. | 
|  | CombineTo(N, Zext); | 
|  |  | 
|  | // We actually want to replace all uses of the any_extend with the | 
|  | // zero_extend, to avoid duplicating things.  This will later cause this | 
|  | // AND to be folded. | 
|  | CombineTo(N0.getNode(), Zext); | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  | } | 
|  | // fold (and (setcc x), (setcc y)) -> (setcc (and x, y)) | 
|  | if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){ | 
|  | ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get(); | 
|  | ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get(); | 
|  |  | 
|  | if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 && | 
|  | LL.getValueType().isInteger()) { | 
|  | // fold (and (seteq X, 0), (seteq Y, 0)) -> (seteq (or X, Y), 0) | 
|  | if (cast<ConstantSDNode>(LR)->isNullValue() && Op1 == ISD::SETEQ) { | 
|  | SDValue ORNode = DAG.getNode(ISD::OR, N0.getDebugLoc(), | 
|  | LR.getValueType(), LL, RL); | 
|  | AddToWorkList(ORNode.getNode()); | 
|  | return DAG.getSetCC(N->getDebugLoc(), VT, ORNode, LR, Op1); | 
|  | } | 
|  | // fold (and (seteq X, -1), (seteq Y, -1)) -> (seteq (and X, Y), -1) | 
|  | if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETEQ) { | 
|  | SDValue ANDNode = DAG.getNode(ISD::AND, N0.getDebugLoc(), | 
|  | LR.getValueType(), LL, RL); | 
|  | AddToWorkList(ANDNode.getNode()); | 
|  | return DAG.getSetCC(N->getDebugLoc(), VT, ANDNode, LR, Op1); | 
|  | } | 
|  | // fold (and (setgt X,  -1), (setgt Y,  -1)) -> (setgt (or X, Y), -1) | 
|  | if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETGT) { | 
|  | SDValue ORNode = DAG.getNode(ISD::OR, N0.getDebugLoc(), | 
|  | LR.getValueType(), LL, RL); | 
|  | AddToWorkList(ORNode.getNode()); | 
|  | return DAG.getSetCC(N->getDebugLoc(), VT, ORNode, LR, Op1); | 
|  | } | 
|  | } | 
|  | // canonicalize equivalent to ll == rl | 
|  | if (LL == RR && LR == RL) { | 
|  | Op1 = ISD::getSetCCSwappedOperands(Op1); | 
|  | std::swap(RL, RR); | 
|  | } | 
|  | if (LL == RL && LR == RR) { | 
|  | bool isInteger = LL.getValueType().isInteger(); | 
|  | ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger); | 
|  | if (Result != ISD::SETCC_INVALID && | 
|  | (!LegalOperations || TLI.isCondCodeLegal(Result, LL.getValueType()))) | 
|  | return DAG.getSetCC(N->getDebugLoc(), N0.getValueType(), | 
|  | LL, LR, Result); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Simplify: (and (op x...), (op y...))  -> (op (and x, y)) | 
|  | if (N0.getOpcode() == N1.getOpcode()) { | 
|  | SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N); | 
|  | if (Tmp.getNode()) return Tmp; | 
|  | } | 
|  |  | 
|  | // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1) | 
|  | // fold (and (sra)) -> (and (srl)) when possible. | 
|  | if (!VT.isVector() && | 
|  | SimplifyDemandedBits(SDValue(N, 0))) | 
|  | return SDValue(N, 0); | 
|  |  | 
|  | // fold (zext_inreg (extload x)) -> (zextload x) | 
|  | if (ISD::isEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode())) { | 
|  | LoadSDNode *LN0 = cast<LoadSDNode>(N0); | 
|  | EVT MemVT = LN0->getMemoryVT(); | 
|  | // If we zero all the possible extended bits, then we can turn this into | 
|  | // a zextload if we are running before legalize or the operation is legal. | 
|  | unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits(); | 
|  | if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth, | 
|  | BitWidth - MemVT.getScalarType().getSizeInBits())) && | 
|  | ((!LegalOperations && !LN0->isVolatile()) || | 
|  | TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT))) { | 
|  | SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N0.getDebugLoc(), VT, | 
|  | LN0->getChain(), LN0->getBasePtr(), | 
|  | LN0->getPointerInfo(), MemVT, | 
|  | LN0->isVolatile(), LN0->isNonTemporal(), | 
|  | LN0->getAlignment()); | 
|  | AddToWorkList(N); | 
|  | CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  | } | 
|  | // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use | 
|  | if (ISD::isSEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && | 
|  | N0.hasOneUse()) { | 
|  | LoadSDNode *LN0 = cast<LoadSDNode>(N0); | 
|  | EVT MemVT = LN0->getMemoryVT(); | 
|  | // If we zero all the possible extended bits, then we can turn this into | 
|  | // a zextload if we are running before legalize or the operation is legal. | 
|  | unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits(); | 
|  | if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth, | 
|  | BitWidth - MemVT.getScalarType().getSizeInBits())) && | 
|  | ((!LegalOperations && !LN0->isVolatile()) || | 
|  | TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT))) { | 
|  | SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N0.getDebugLoc(), VT, | 
|  | LN0->getChain(), | 
|  | LN0->getBasePtr(), LN0->getPointerInfo(), | 
|  | MemVT, | 
|  | LN0->isVolatile(), LN0->isNonTemporal(), | 
|  | LN0->getAlignment()); | 
|  | AddToWorkList(N); | 
|  | CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (and (load x), 255) -> (zextload x, i8) | 
|  | // fold (and (extload x, i16), 255) -> (zextload x, i8) | 
|  | // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8) | 
|  | if (N1C && (N0.getOpcode() == ISD::LOAD || | 
|  | (N0.getOpcode() == ISD::ANY_EXTEND && | 
|  | N0.getOperand(0).getOpcode() == ISD::LOAD))) { | 
|  | bool HasAnyExt = N0.getOpcode() == ISD::ANY_EXTEND; | 
|  | LoadSDNode *LN0 = HasAnyExt | 
|  | ? cast<LoadSDNode>(N0.getOperand(0)) | 
|  | : cast<LoadSDNode>(N0); | 
|  | if (LN0->getExtensionType() != ISD::SEXTLOAD && | 
|  | LN0->isUnindexed() && N0.hasOneUse() && LN0->hasOneUse()) { | 
|  | uint32_t ActiveBits = N1C->getAPIntValue().getActiveBits(); | 
|  | if (ActiveBits > 0 && APIntOps::isMask(ActiveBits, N1C->getAPIntValue())){ | 
|  | EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits); | 
|  | EVT LoadedVT = LN0->getMemoryVT(); | 
|  |  | 
|  | if (ExtVT == LoadedVT && | 
|  | (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT))) { | 
|  | EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT; | 
|  |  | 
|  | SDValue NewLoad = | 
|  | DAG.getExtLoad(ISD::ZEXTLOAD, LN0->getDebugLoc(), LoadResultTy, | 
|  | LN0->getChain(), LN0->getBasePtr(), | 
|  | LN0->getPointerInfo(), | 
|  | ExtVT, LN0->isVolatile(), LN0->isNonTemporal(), | 
|  | LN0->getAlignment()); | 
|  | AddToWorkList(N); | 
|  | CombineTo(LN0, NewLoad, NewLoad.getValue(1)); | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  |  | 
|  | // Do not change the width of a volatile load. | 
|  | // Do not generate loads of non-round integer types since these can | 
|  | // be expensive (and would be wrong if the type is not byte sized). | 
|  | if (!LN0->isVolatile() && LoadedVT.bitsGT(ExtVT) && ExtVT.isRound() && | 
|  | (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT))) { | 
|  | EVT PtrType = LN0->getOperand(1).getValueType(); | 
|  |  | 
|  | unsigned Alignment = LN0->getAlignment(); | 
|  | SDValue NewPtr = LN0->getBasePtr(); | 
|  |  | 
|  | // For big endian targets, we need to add an offset to the pointer | 
|  | // to load the correct bytes.  For little endian systems, we merely | 
|  | // need to read fewer bytes from the same pointer. | 
|  | if (TLI.isBigEndian()) { | 
|  | unsigned LVTStoreBytes = LoadedVT.getStoreSize(); | 
|  | unsigned EVTStoreBytes = ExtVT.getStoreSize(); | 
|  | unsigned PtrOff = LVTStoreBytes - EVTStoreBytes; | 
|  | NewPtr = DAG.getNode(ISD::ADD, LN0->getDebugLoc(), PtrType, | 
|  | NewPtr, DAG.getConstant(PtrOff, PtrType)); | 
|  | Alignment = MinAlign(Alignment, PtrOff); | 
|  | } | 
|  |  | 
|  | AddToWorkList(NewPtr.getNode()); | 
|  |  | 
|  | EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT; | 
|  | SDValue Load = | 
|  | DAG.getExtLoad(ISD::ZEXTLOAD, LN0->getDebugLoc(), LoadResultTy, | 
|  | LN0->getChain(), NewPtr, | 
|  | LN0->getPointerInfo(), | 
|  | ExtVT, LN0->isVolatile(), LN0->isNonTemporal(), | 
|  | Alignment); | 
|  | AddToWorkList(N); | 
|  | CombineTo(LN0, Load, Load.getValue(1)); | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// MatchBSwapHWord - Match (a >> 8) | (a << 8) as (bswap a) >> 16 | 
|  | /// | 
|  | SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1, | 
|  | bool DemandHighBits) { | 
|  | if (!LegalOperations) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT VT = N->getValueType(0); | 
|  | if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16) | 
|  | return SDValue(); | 
|  | if (!TLI.isOperationLegal(ISD::BSWAP, VT)) | 
|  | return SDValue(); | 
|  |  | 
|  | // Recognize (and (shl a, 8), 0xff), (and (srl a, 8), 0xff00) | 
|  | bool LookPassAnd0 = false; | 
|  | bool LookPassAnd1 = false; | 
|  | if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL) | 
|  | std::swap(N0, N1); | 
|  | if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL) | 
|  | std::swap(N0, N1); | 
|  | if (N0.getOpcode() == ISD::AND) { | 
|  | if (!N0.getNode()->hasOneUse()) | 
|  | return SDValue(); | 
|  | ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); | 
|  | if (!N01C || N01C->getZExtValue() != 0xFF00) | 
|  | return SDValue(); | 
|  | N0 = N0.getOperand(0); | 
|  | LookPassAnd0 = true; | 
|  | } | 
|  |  | 
|  | if (N1.getOpcode() == ISD::AND) { | 
|  | if (!N1.getNode()->hasOneUse()) | 
|  | return SDValue(); | 
|  | ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); | 
|  | if (!N11C || N11C->getZExtValue() != 0xFF) | 
|  | return SDValue(); | 
|  | N1 = N1.getOperand(0); | 
|  | LookPassAnd1 = true; | 
|  | } | 
|  |  | 
|  | if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL) | 
|  | std::swap(N0, N1); | 
|  | if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL) | 
|  | return SDValue(); | 
|  | if (!N0.getNode()->hasOneUse() || | 
|  | !N1.getNode()->hasOneUse()) | 
|  | return SDValue(); | 
|  |  | 
|  | ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); | 
|  | ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); | 
|  | if (!N01C || !N11C) | 
|  | return SDValue(); | 
|  | if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8) | 
|  | return SDValue(); | 
|  |  | 
|  | // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8) | 
|  | SDValue N00 = N0->getOperand(0); | 
|  | if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) { | 
|  | if (!N00.getNode()->hasOneUse()) | 
|  | return SDValue(); | 
|  | ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1)); | 
|  | if (!N001C || N001C->getZExtValue() != 0xFF) | 
|  | return SDValue(); | 
|  | N00 = N00.getOperand(0); | 
|  | LookPassAnd0 = true; | 
|  | } | 
|  |  | 
|  | SDValue N10 = N1->getOperand(0); | 
|  | if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) { | 
|  | if (!N10.getNode()->hasOneUse()) | 
|  | return SDValue(); | 
|  | ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1)); | 
|  | if (!N101C || N101C->getZExtValue() != 0xFF00) | 
|  | return SDValue(); | 
|  | N10 = N10.getOperand(0); | 
|  | LookPassAnd1 = true; | 
|  | } | 
|  |  | 
|  | if (N00 != N10) | 
|  | return SDValue(); | 
|  |  | 
|  | // Make sure everything beyond the low halfword is zero since the SRL 16 | 
|  | // will clear the top bits. | 
|  | unsigned OpSizeInBits = VT.getSizeInBits(); | 
|  | if (DemandHighBits && OpSizeInBits > 16 && | 
|  | (!LookPassAnd0 || !LookPassAnd1) && | 
|  | !DAG.MaskedValueIsZero(N10, APInt::getHighBitsSet(OpSizeInBits, 16))) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue Res = DAG.getNode(ISD::BSWAP, N->getDebugLoc(), VT, N00); | 
|  | if (OpSizeInBits > 16) | 
|  | Res = DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, Res, | 
|  | DAG.getConstant(OpSizeInBits-16, getShiftAmountTy(VT))); | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | /// isBSwapHWordElement - Return true if the specified node is an element | 
|  | /// that makes up a 32-bit packed halfword byteswap. i.e. | 
|  | /// ((x&0xff)<<8)|((x&0xff00)>>8)|((x&0x00ff0000)<<8)|((x&0xff000000)>>8) | 
|  | static bool isBSwapHWordElement(SDValue N, SmallVector<SDNode*,4> &Parts) { | 
|  | if (!N.getNode()->hasOneUse()) | 
|  | return false; | 
|  |  | 
|  | unsigned Opc = N.getOpcode(); | 
|  | if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL) | 
|  | return false; | 
|  |  | 
|  | ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N.getOperand(1)); | 
|  | if (!N1C) | 
|  | return false; | 
|  |  | 
|  | unsigned Num; | 
|  | switch (N1C->getZExtValue()) { | 
|  | default: | 
|  | return false; | 
|  | case 0xFF:       Num = 0; break; | 
|  | case 0xFF00:     Num = 1; break; | 
|  | case 0xFF0000:   Num = 2; break; | 
|  | case 0xFF000000: Num = 3; break; | 
|  | } | 
|  |  | 
|  | // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00). | 
|  | SDValue N0 = N.getOperand(0); | 
|  | if (Opc == ISD::AND) { | 
|  | if (Num == 0 || Num == 2) { | 
|  | // (x >> 8) & 0xff | 
|  | // (x >> 8) & 0xff0000 | 
|  | if (N0.getOpcode() != ISD::SRL) | 
|  | return false; | 
|  | ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); | 
|  | if (!C || C->getZExtValue() != 8) | 
|  | return false; | 
|  | } else { | 
|  | // (x << 8) & 0xff00 | 
|  | // (x << 8) & 0xff000000 | 
|  | if (N0.getOpcode() != ISD::SHL) | 
|  | return false; | 
|  | ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); | 
|  | if (!C || C->getZExtValue() != 8) | 
|  | return false; | 
|  | } | 
|  | } else if (Opc == ISD::SHL) { | 
|  | // (x & 0xff) << 8 | 
|  | // (x & 0xff0000) << 8 | 
|  | if (Num != 0 && Num != 2) | 
|  | return false; | 
|  | ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1)); | 
|  | if (!C || C->getZExtValue() != 8) | 
|  | return false; | 
|  | } else { // Opc == ISD::SRL | 
|  | // (x & 0xff00) >> 8 | 
|  | // (x & 0xff000000) >> 8 | 
|  | if (Num != 1 && Num != 3) | 
|  | return false; | 
|  | ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1)); | 
|  | if (!C || C->getZExtValue() != 8) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (Parts[Num]) | 
|  | return false; | 
|  |  | 
|  | Parts[Num] = N0.getOperand(0).getNode(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// MatchBSwapHWord - Match a 32-bit packed halfword bswap. That is | 
|  | /// ((x&0xff)<<8)|((x&0xff00)>>8)|((x&0x00ff0000)<<8)|((x&0xff000000)>>8) | 
|  | /// => (rotl (bswap x), 16) | 
|  | SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) { | 
|  | if (!LegalOperations) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT VT = N->getValueType(0); | 
|  | if (VT != MVT::i32) | 
|  | return SDValue(); | 
|  | if (!TLI.isOperationLegal(ISD::BSWAP, VT)) | 
|  | return SDValue(); | 
|  |  | 
|  | SmallVector<SDNode*,4> Parts(4, (SDNode*)0); | 
|  | // Look for either | 
|  | // (or (or (and), (and)), (or (and), (and))) | 
|  | // (or (or (or (and), (and)), (and)), (and)) | 
|  | if (N0.getOpcode() != ISD::OR) | 
|  | return SDValue(); | 
|  | SDValue N00 = N0.getOperand(0); | 
|  | SDValue N01 = N0.getOperand(1); | 
|  |  | 
|  | if (N1.getOpcode() == ISD::OR) { | 
|  | // (or (or (and), (and)), (or (and), (and))) | 
|  | SDValue N000 = N00.getOperand(0); | 
|  | if (!isBSwapHWordElement(N000, Parts)) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue N001 = N00.getOperand(1); | 
|  | if (!isBSwapHWordElement(N001, Parts)) | 
|  | return SDValue(); | 
|  | SDValue N010 = N01.getOperand(0); | 
|  | if (!isBSwapHWordElement(N010, Parts)) | 
|  | return SDValue(); | 
|  | SDValue N011 = N01.getOperand(1); | 
|  | if (!isBSwapHWordElement(N011, Parts)) | 
|  | return SDValue(); | 
|  | } else { | 
|  | // (or (or (or (and), (and)), (and)), (and)) | 
|  | if (!isBSwapHWordElement(N1, Parts)) | 
|  | return SDValue(); | 
|  | if (!isBSwapHWordElement(N01, Parts)) | 
|  | return SDValue(); | 
|  | if (N00.getOpcode() != ISD::OR) | 
|  | return SDValue(); | 
|  | SDValue N000 = N00.getOperand(0); | 
|  | if (!isBSwapHWordElement(N000, Parts)) | 
|  | return SDValue(); | 
|  | SDValue N001 = N00.getOperand(1); | 
|  | if (!isBSwapHWordElement(N001, Parts)) | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Make sure the parts are all coming from the same node. | 
|  | if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3]) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue BSwap = DAG.getNode(ISD::BSWAP, N->getDebugLoc(), VT, | 
|  | SDValue(Parts[0],0)); | 
|  |  | 
|  | // Result of the bswap should be rotated by 16. If it's not legal, than | 
|  | // do  (x << 16) | (x >> 16). | 
|  | SDValue ShAmt = DAG.getConstant(16, getShiftAmountTy(VT)); | 
|  | if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT)) | 
|  | return DAG.getNode(ISD::ROTL, N->getDebugLoc(), VT, BSwap, ShAmt); | 
|  | else if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT)) | 
|  | return DAG.getNode(ISD::ROTR, N->getDebugLoc(), VT, BSwap, ShAmt); | 
|  | return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, | 
|  | DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, BSwap, ShAmt), | 
|  | DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, BSwap, ShAmt)); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitOR(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | SDValue LL, LR, RL, RR, CC0, CC1; | 
|  | ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); | 
|  | ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); | 
|  | EVT VT = N1.getValueType(); | 
|  |  | 
|  | // fold vector ops | 
|  | if (VT.isVector()) { | 
|  | SDValue FoldedVOp = SimplifyVBinOp(N); | 
|  | if (FoldedVOp.getNode()) return FoldedVOp; | 
|  | } | 
|  |  | 
|  | // fold (or x, undef) -> -1 | 
|  | if (!LegalOperations && | 
|  | (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)) { | 
|  | EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT; | 
|  | return DAG.getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT); | 
|  | } | 
|  | // fold (or c1, c2) -> c1|c2 | 
|  | if (N0C && N1C) | 
|  | return DAG.FoldConstantArithmetic(ISD::OR, VT, N0C, N1C); | 
|  | // canonicalize constant to RHS | 
|  | if (N0C && !N1C) | 
|  | return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N1, N0); | 
|  | // fold (or x, 0) -> x | 
|  | if (N1C && N1C->isNullValue()) | 
|  | return N0; | 
|  | // fold (or x, -1) -> -1 | 
|  | if (N1C && N1C->isAllOnesValue()) | 
|  | return N1; | 
|  | // fold (or x, c) -> c iff (x & ~c) == 0 | 
|  | if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue())) | 
|  | return N1; | 
|  |  | 
|  | // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16) | 
|  | SDValue BSwap = MatchBSwapHWord(N, N0, N1); | 
|  | if (BSwap.getNode() != 0) | 
|  | return BSwap; | 
|  | BSwap = MatchBSwapHWordLow(N, N0, N1); | 
|  | if (BSwap.getNode() != 0) | 
|  | return BSwap; | 
|  |  | 
|  | // reassociate or | 
|  | SDValue ROR = ReassociateOps(ISD::OR, N->getDebugLoc(), N0, N1); | 
|  | if (ROR.getNode() != 0) | 
|  | return ROR; | 
|  | // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2) | 
|  | // iff (c1 & c2) == 0. | 
|  | if (N1C && N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() && | 
|  | isa<ConstantSDNode>(N0.getOperand(1))) { | 
|  | ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1)); | 
|  | if ((C1->getAPIntValue() & N1C->getAPIntValue()) != 0) | 
|  | return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, | 
|  | DAG.getNode(ISD::OR, N0.getDebugLoc(), VT, | 
|  | N0.getOperand(0), N1), | 
|  | DAG.FoldConstantArithmetic(ISD::OR, VT, N1C, C1)); | 
|  | } | 
|  | // fold (or (setcc x), (setcc y)) -> (setcc (or x, y)) | 
|  | if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){ | 
|  | ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get(); | 
|  | ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get(); | 
|  |  | 
|  | if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 && | 
|  | LL.getValueType().isInteger()) { | 
|  | // fold (or (setne X, 0), (setne Y, 0)) -> (setne (or X, Y), 0) | 
|  | // fold (or (setlt X, 0), (setlt Y, 0)) -> (setne (or X, Y), 0) | 
|  | if (cast<ConstantSDNode>(LR)->isNullValue() && | 
|  | (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) { | 
|  | SDValue ORNode = DAG.getNode(ISD::OR, LR.getDebugLoc(), | 
|  | LR.getValueType(), LL, RL); | 
|  | AddToWorkList(ORNode.getNode()); | 
|  | return DAG.getSetCC(N->getDebugLoc(), VT, ORNode, LR, Op1); | 
|  | } | 
|  | // fold (or (setne X, -1), (setne Y, -1)) -> (setne (and X, Y), -1) | 
|  | // fold (or (setgt X, -1), (setgt Y  -1)) -> (setgt (and X, Y), -1) | 
|  | if (cast<ConstantSDNode>(LR)->isAllOnesValue() && | 
|  | (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) { | 
|  | SDValue ANDNode = DAG.getNode(ISD::AND, LR.getDebugLoc(), | 
|  | LR.getValueType(), LL, RL); | 
|  | AddToWorkList(ANDNode.getNode()); | 
|  | return DAG.getSetCC(N->getDebugLoc(), VT, ANDNode, LR, Op1); | 
|  | } | 
|  | } | 
|  | // canonicalize equivalent to ll == rl | 
|  | if (LL == RR && LR == RL) { | 
|  | Op1 = ISD::getSetCCSwappedOperands(Op1); | 
|  | std::swap(RL, RR); | 
|  | } | 
|  | if (LL == RL && LR == RR) { | 
|  | bool isInteger = LL.getValueType().isInteger(); | 
|  | ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger); | 
|  | if (Result != ISD::SETCC_INVALID && | 
|  | (!LegalOperations || TLI.isCondCodeLegal(Result, LL.getValueType()))) | 
|  | return DAG.getSetCC(N->getDebugLoc(), N0.getValueType(), | 
|  | LL, LR, Result); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Simplify: (or (op x...), (op y...))  -> (op (or x, y)) | 
|  | if (N0.getOpcode() == N1.getOpcode()) { | 
|  | SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N); | 
|  | if (Tmp.getNode()) return Tmp; | 
|  | } | 
|  |  | 
|  | // (or (and X, C1), (and Y, C2))  -> (and (or X, Y), C3) if possible. | 
|  | if (N0.getOpcode() == ISD::AND && | 
|  | N1.getOpcode() == ISD::AND && | 
|  | N0.getOperand(1).getOpcode() == ISD::Constant && | 
|  | N1.getOperand(1).getOpcode() == ISD::Constant && | 
|  | // Don't increase # computations. | 
|  | (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) { | 
|  | // We can only do this xform if we know that bits from X that are set in C2 | 
|  | // but not in C1 are already zero.  Likewise for Y. | 
|  | const APInt &LHSMask = | 
|  | cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); | 
|  | const APInt &RHSMask = | 
|  | cast<ConstantSDNode>(N1.getOperand(1))->getAPIntValue(); | 
|  |  | 
|  | if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) && | 
|  | DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) { | 
|  | SDValue X = DAG.getNode(ISD::OR, N0.getDebugLoc(), VT, | 
|  | N0.getOperand(0), N1.getOperand(0)); | 
|  | return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, X, | 
|  | DAG.getConstant(LHSMask | RHSMask, VT)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // See if this is some rotate idiom. | 
|  | if (SDNode *Rot = MatchRotate(N0, N1, N->getDebugLoc())) | 
|  | return SDValue(Rot, 0); | 
|  |  | 
|  | // Simplify the operands using demanded-bits information. | 
|  | if (!VT.isVector() && | 
|  | SimplifyDemandedBits(SDValue(N, 0))) | 
|  | return SDValue(N, 0); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// MatchRotateHalf - Match "(X shl/srl V1) & V2" where V2 may not be present. | 
|  | static bool MatchRotateHalf(SDValue Op, SDValue &Shift, SDValue &Mask) { | 
|  | if (Op.getOpcode() == ISD::AND) { | 
|  | if (isa<ConstantSDNode>(Op.getOperand(1))) { | 
|  | Mask = Op.getOperand(1); | 
|  | Op = Op.getOperand(0); | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) { | 
|  | Shift = Op; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // MatchRotate - Handle an 'or' of two operands.  If this is one of the many | 
|  | // idioms for rotate, and if the target supports rotation instructions, generate | 
|  | // a rot[lr]. | 
|  | SDNode *DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, DebugLoc DL) { | 
|  | // Must be a legal type.  Expanded 'n promoted things won't work with rotates. | 
|  | EVT VT = LHS.getValueType(); | 
|  | if (!TLI.isTypeLegal(VT)) return 0; | 
|  |  | 
|  | // The target must have at least one rotate flavor. | 
|  | bool HasROTL = TLI.isOperationLegalOrCustom(ISD::ROTL, VT); | 
|  | bool HasROTR = TLI.isOperationLegalOrCustom(ISD::ROTR, VT); | 
|  | if (!HasROTL && !HasROTR) return 0; | 
|  |  | 
|  | // Match "(X shl/srl V1) & V2" where V2 may not be present. | 
|  | SDValue LHSShift;   // The shift. | 
|  | SDValue LHSMask;    // AND value if any. | 
|  | if (!MatchRotateHalf(LHS, LHSShift, LHSMask)) | 
|  | return 0; // Not part of a rotate. | 
|  |  | 
|  | SDValue RHSShift;   // The shift. | 
|  | SDValue RHSMask;    // AND value if any. | 
|  | if (!MatchRotateHalf(RHS, RHSShift, RHSMask)) | 
|  | return 0; // Not part of a rotate. | 
|  |  | 
|  | if (LHSShift.getOperand(0) != RHSShift.getOperand(0)) | 
|  | return 0;   // Not shifting the same value. | 
|  |  | 
|  | if (LHSShift.getOpcode() == RHSShift.getOpcode()) | 
|  | return 0;   // Shifts must disagree. | 
|  |  | 
|  | // Canonicalize shl to left side in a shl/srl pair. | 
|  | if (RHSShift.getOpcode() == ISD::SHL) { | 
|  | std::swap(LHS, RHS); | 
|  | std::swap(LHSShift, RHSShift); | 
|  | std::swap(LHSMask , RHSMask ); | 
|  | } | 
|  |  | 
|  | unsigned OpSizeInBits = VT.getSizeInBits(); | 
|  | SDValue LHSShiftArg = LHSShift.getOperand(0); | 
|  | SDValue LHSShiftAmt = LHSShift.getOperand(1); | 
|  | SDValue RHSShiftAmt = RHSShift.getOperand(1); | 
|  |  | 
|  | // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1) | 
|  | // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2) | 
|  | if (LHSShiftAmt.getOpcode() == ISD::Constant && | 
|  | RHSShiftAmt.getOpcode() == ISD::Constant) { | 
|  | uint64_t LShVal = cast<ConstantSDNode>(LHSShiftAmt)->getZExtValue(); | 
|  | uint64_t RShVal = cast<ConstantSDNode>(RHSShiftAmt)->getZExtValue(); | 
|  | if ((LShVal + RShVal) != OpSizeInBits) | 
|  | return 0; | 
|  |  | 
|  | SDValue Rot; | 
|  | if (HasROTL) | 
|  | Rot = DAG.getNode(ISD::ROTL, DL, VT, LHSShiftArg, LHSShiftAmt); | 
|  | else | 
|  | Rot = DAG.getNode(ISD::ROTR, DL, VT, LHSShiftArg, RHSShiftAmt); | 
|  |  | 
|  | // If there is an AND of either shifted operand, apply it to the result. | 
|  | if (LHSMask.getNode() || RHSMask.getNode()) { | 
|  | APInt Mask = APInt::getAllOnesValue(OpSizeInBits); | 
|  |  | 
|  | if (LHSMask.getNode()) { | 
|  | APInt RHSBits = APInt::getLowBitsSet(OpSizeInBits, LShVal); | 
|  | Mask &= cast<ConstantSDNode>(LHSMask)->getAPIntValue() | RHSBits; | 
|  | } | 
|  | if (RHSMask.getNode()) { | 
|  | APInt LHSBits = APInt::getHighBitsSet(OpSizeInBits, RShVal); | 
|  | Mask &= cast<ConstantSDNode>(RHSMask)->getAPIntValue() | LHSBits; | 
|  | } | 
|  |  | 
|  | Rot = DAG.getNode(ISD::AND, DL, VT, Rot, DAG.getConstant(Mask, VT)); | 
|  | } | 
|  |  | 
|  | return Rot.getNode(); | 
|  | } | 
|  |  | 
|  | // If there is a mask here, and we have a variable shift, we can't be sure | 
|  | // that we're masking out the right stuff. | 
|  | if (LHSMask.getNode() || RHSMask.getNode()) | 
|  | return 0; | 
|  |  | 
|  | // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotl x, y) | 
|  | // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotr x, (sub 32, y)) | 
|  | if (RHSShiftAmt.getOpcode() == ISD::SUB && | 
|  | LHSShiftAmt == RHSShiftAmt.getOperand(1)) { | 
|  | if (ConstantSDNode *SUBC = | 
|  | dyn_cast<ConstantSDNode>(RHSShiftAmt.getOperand(0))) { | 
|  | if (SUBC->getAPIntValue() == OpSizeInBits) { | 
|  | if (HasROTL) | 
|  | return DAG.getNode(ISD::ROTL, DL, VT, | 
|  | LHSShiftArg, LHSShiftAmt).getNode(); | 
|  | else | 
|  | return DAG.getNode(ISD::ROTR, DL, VT, | 
|  | LHSShiftArg, RHSShiftAmt).getNode(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotr x, y) | 
|  | // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotl x, (sub 32, y)) | 
|  | if (LHSShiftAmt.getOpcode() == ISD::SUB && | 
|  | RHSShiftAmt == LHSShiftAmt.getOperand(1)) { | 
|  | if (ConstantSDNode *SUBC = | 
|  | dyn_cast<ConstantSDNode>(LHSShiftAmt.getOperand(0))) { | 
|  | if (SUBC->getAPIntValue() == OpSizeInBits) { | 
|  | if (HasROTR) | 
|  | return DAG.getNode(ISD::ROTR, DL, VT, | 
|  | LHSShiftArg, RHSShiftAmt).getNode(); | 
|  | else | 
|  | return DAG.getNode(ISD::ROTL, DL, VT, | 
|  | LHSShiftArg, LHSShiftAmt).getNode(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Look for sign/zext/any-extended or truncate cases: | 
|  | if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND | 
|  | || LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND | 
|  | || LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND | 
|  | || LHSShiftAmt.getOpcode() == ISD::TRUNCATE) && | 
|  | (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND | 
|  | || RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND | 
|  | || RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND | 
|  | || RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) { | 
|  | SDValue LExtOp0 = LHSShiftAmt.getOperand(0); | 
|  | SDValue RExtOp0 = RHSShiftAmt.getOperand(0); | 
|  | if (RExtOp0.getOpcode() == ISD::SUB && | 
|  | RExtOp0.getOperand(1) == LExtOp0) { | 
|  | // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) -> | 
|  | //   (rotl x, y) | 
|  | // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) -> | 
|  | //   (rotr x, (sub 32, y)) | 
|  | if (ConstantSDNode *SUBC = | 
|  | dyn_cast<ConstantSDNode>(RExtOp0.getOperand(0))) { | 
|  | if (SUBC->getAPIntValue() == OpSizeInBits) { | 
|  | return DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT, | 
|  | LHSShiftArg, | 
|  | HasROTL ? LHSShiftAmt : RHSShiftAmt).getNode(); | 
|  | } | 
|  | } | 
|  | } else if (LExtOp0.getOpcode() == ISD::SUB && | 
|  | RExtOp0 == LExtOp0.getOperand(1)) { | 
|  | // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) -> | 
|  | //   (rotr x, y) | 
|  | // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) -> | 
|  | //   (rotl x, (sub 32, y)) | 
|  | if (ConstantSDNode *SUBC = | 
|  | dyn_cast<ConstantSDNode>(LExtOp0.getOperand(0))) { | 
|  | if (SUBC->getAPIntValue() == OpSizeInBits) { | 
|  | return DAG.getNode(HasROTR ? ISD::ROTR : ISD::ROTL, DL, VT, | 
|  | LHSShiftArg, | 
|  | HasROTR ? RHSShiftAmt : LHSShiftAmt).getNode(); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitXOR(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | SDValue LHS, RHS, CC; | 
|  | ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); | 
|  | ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); | 
|  | EVT VT = N0.getValueType(); | 
|  |  | 
|  | // fold vector ops | 
|  | if (VT.isVector()) { | 
|  | SDValue FoldedVOp = SimplifyVBinOp(N); | 
|  | if (FoldedVOp.getNode()) return FoldedVOp; | 
|  | } | 
|  |  | 
|  | // fold (xor undef, undef) -> 0. This is a common idiom (misuse). | 
|  | if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF) | 
|  | return DAG.getConstant(0, VT); | 
|  | // fold (xor x, undef) -> undef | 
|  | if (N0.getOpcode() == ISD::UNDEF) | 
|  | return N0; | 
|  | if (N1.getOpcode() == ISD::UNDEF) | 
|  | return N1; | 
|  | // fold (xor c1, c2) -> c1^c2 | 
|  | if (N0C && N1C) | 
|  | return DAG.FoldConstantArithmetic(ISD::XOR, VT, N0C, N1C); | 
|  | // canonicalize constant to RHS | 
|  | if (N0C && !N1C) | 
|  | return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N1, N0); | 
|  | // fold (xor x, 0) -> x | 
|  | if (N1C && N1C->isNullValue()) | 
|  | return N0; | 
|  | // reassociate xor | 
|  | SDValue RXOR = ReassociateOps(ISD::XOR, N->getDebugLoc(), N0, N1); | 
|  | if (RXOR.getNode() != 0) | 
|  | return RXOR; | 
|  |  | 
|  | // fold !(x cc y) -> (x !cc y) | 
|  | if (N1C && N1C->getAPIntValue() == 1 && isSetCCEquivalent(N0, LHS, RHS, CC)) { | 
|  | bool isInt = LHS.getValueType().isInteger(); | 
|  | ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), | 
|  | isInt); | 
|  |  | 
|  | if (!LegalOperations || TLI.isCondCodeLegal(NotCC, LHS.getValueType())) { | 
|  | switch (N0.getOpcode()) { | 
|  | default: | 
|  | llvm_unreachable("Unhandled SetCC Equivalent!"); | 
|  | case ISD::SETCC: | 
|  | return DAG.getSetCC(N->getDebugLoc(), VT, LHS, RHS, NotCC); | 
|  | case ISD::SELECT_CC: | 
|  | return DAG.getSelectCC(N->getDebugLoc(), LHS, RHS, N0.getOperand(2), | 
|  | N0.getOperand(3), NotCC); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y))) | 
|  | if (N1C && N1C->getAPIntValue() == 1 && N0.getOpcode() == ISD::ZERO_EXTEND && | 
|  | N0.getNode()->hasOneUse() && | 
|  | isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){ | 
|  | SDValue V = N0.getOperand(0); | 
|  | V = DAG.getNode(ISD::XOR, N0.getDebugLoc(), V.getValueType(), V, | 
|  | DAG.getConstant(1, V.getValueType())); | 
|  | AddToWorkList(V.getNode()); | 
|  | return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, V); | 
|  | } | 
|  |  | 
|  | // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc | 
|  | if (N1C && N1C->getAPIntValue() == 1 && VT == MVT::i1 && | 
|  | (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) { | 
|  | SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1); | 
|  | if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) { | 
|  | unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND; | 
|  | LHS = DAG.getNode(ISD::XOR, LHS.getDebugLoc(), VT, LHS, N1); // LHS = ~LHS | 
|  | RHS = DAG.getNode(ISD::XOR, RHS.getDebugLoc(), VT, RHS, N1); // RHS = ~RHS | 
|  | AddToWorkList(LHS.getNode()); AddToWorkList(RHS.getNode()); | 
|  | return DAG.getNode(NewOpcode, N->getDebugLoc(), VT, LHS, RHS); | 
|  | } | 
|  | } | 
|  | // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants | 
|  | if (N1C && N1C->isAllOnesValue() && | 
|  | (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) { | 
|  | SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1); | 
|  | if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) { | 
|  | unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND; | 
|  | LHS = DAG.getNode(ISD::XOR, LHS.getDebugLoc(), VT, LHS, N1); // LHS = ~LHS | 
|  | RHS = DAG.getNode(ISD::XOR, RHS.getDebugLoc(), VT, RHS, N1); // RHS = ~RHS | 
|  | AddToWorkList(LHS.getNode()); AddToWorkList(RHS.getNode()); | 
|  | return DAG.getNode(NewOpcode, N->getDebugLoc(), VT, LHS, RHS); | 
|  | } | 
|  | } | 
|  | // fold (xor (xor x, c1), c2) -> (xor x, (xor c1, c2)) | 
|  | if (N1C && N0.getOpcode() == ISD::XOR) { | 
|  | ConstantSDNode *N00C = dyn_cast<ConstantSDNode>(N0.getOperand(0)); | 
|  | ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); | 
|  | if (N00C) | 
|  | return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N0.getOperand(1), | 
|  | DAG.getConstant(N1C->getAPIntValue() ^ | 
|  | N00C->getAPIntValue(), VT)); | 
|  | if (N01C) | 
|  | return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N0.getOperand(0), | 
|  | DAG.getConstant(N1C->getAPIntValue() ^ | 
|  | N01C->getAPIntValue(), VT)); | 
|  | } | 
|  | // fold (xor x, x) -> 0 | 
|  | if (N0 == N1) | 
|  | return tryFoldToZero(N->getDebugLoc(), TLI, VT, DAG, LegalOperations); | 
|  |  | 
|  | // Simplify: xor (op x...), (op y...)  -> (op (xor x, y)) | 
|  | if (N0.getOpcode() == N1.getOpcode()) { | 
|  | SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N); | 
|  | if (Tmp.getNode()) return Tmp; | 
|  | } | 
|  |  | 
|  | // Simplify the expression using non-local knowledge. | 
|  | if (!VT.isVector() && | 
|  | SimplifyDemandedBits(SDValue(N, 0))) | 
|  | return SDValue(N, 0); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// visitShiftByConstant - Handle transforms common to the three shifts, when | 
|  | /// the shift amount is a constant. | 
|  | SDValue DAGCombiner::visitShiftByConstant(SDNode *N, unsigned Amt) { | 
|  | SDNode *LHS = N->getOperand(0).getNode(); | 
|  | if (!LHS->hasOneUse()) return SDValue(); | 
|  |  | 
|  | // We want to pull some binops through shifts, so that we have (and (shift)) | 
|  | // instead of (shift (and)), likewise for add, or, xor, etc.  This sort of | 
|  | // thing happens with address calculations, so it's important to canonicalize | 
|  | // it. | 
|  | bool HighBitSet = false;  // Can we transform this if the high bit is set? | 
|  |  | 
|  | switch (LHS->getOpcode()) { | 
|  | default: return SDValue(); | 
|  | case ISD::OR: | 
|  | case ISD::XOR: | 
|  | HighBitSet = false; // We can only transform sra if the high bit is clear. | 
|  | break; | 
|  | case ISD::AND: | 
|  | HighBitSet = true;  // We can only transform sra if the high bit is set. | 
|  | break; | 
|  | case ISD::ADD: | 
|  | if (N->getOpcode() != ISD::SHL) | 
|  | return SDValue(); // only shl(add) not sr[al](add). | 
|  | HighBitSet = false; // We can only transform sra if the high bit is clear. | 
|  | break; | 
|  | } | 
|  |  | 
|  | // We require the RHS of the binop to be a constant as well. | 
|  | ConstantSDNode *BinOpCst = dyn_cast<ConstantSDNode>(LHS->getOperand(1)); | 
|  | if (!BinOpCst) return SDValue(); | 
|  |  | 
|  | // FIXME: disable this unless the input to the binop is a shift by a constant. | 
|  | // If it is not a shift, it pessimizes some common cases like: | 
|  | // | 
|  | //    void foo(int *X, int i) { X[i & 1235] = 1; } | 
|  | //    int bar(int *X, int i) { return X[i & 255]; } | 
|  | SDNode *BinOpLHSVal = LHS->getOperand(0).getNode(); | 
|  | if ((BinOpLHSVal->getOpcode() != ISD::SHL && | 
|  | BinOpLHSVal->getOpcode() != ISD::SRA && | 
|  | BinOpLHSVal->getOpcode() != ISD::SRL) || | 
|  | !isa<ConstantSDNode>(BinOpLHSVal->getOperand(1))) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // If this is a signed shift right, and the high bit is modified by the | 
|  | // logical operation, do not perform the transformation. The highBitSet | 
|  | // boolean indicates the value of the high bit of the constant which would | 
|  | // cause it to be modified for this operation. | 
|  | if (N->getOpcode() == ISD::SRA) { | 
|  | bool BinOpRHSSignSet = BinOpCst->getAPIntValue().isNegative(); | 
|  | if (BinOpRHSSignSet != HighBitSet) | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Fold the constants, shifting the binop RHS by the shift amount. | 
|  | SDValue NewRHS = DAG.getNode(N->getOpcode(), LHS->getOperand(1).getDebugLoc(), | 
|  | N->getValueType(0), | 
|  | LHS->getOperand(1), N->getOperand(1)); | 
|  |  | 
|  | // Create the new shift. | 
|  | SDValue NewShift = DAG.getNode(N->getOpcode(), | 
|  | LHS->getOperand(0).getDebugLoc(), | 
|  | VT, LHS->getOperand(0), N->getOperand(1)); | 
|  |  | 
|  | // Create the new binop. | 
|  | return DAG.getNode(LHS->getOpcode(), N->getDebugLoc(), VT, NewShift, NewRHS); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitSHL(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); | 
|  | ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); | 
|  | EVT VT = N0.getValueType(); | 
|  | unsigned OpSizeInBits = VT.getScalarType().getSizeInBits(); | 
|  |  | 
|  | // fold (shl c1, c2) -> c1<<c2 | 
|  | if (N0C && N1C) | 
|  | return DAG.FoldConstantArithmetic(ISD::SHL, VT, N0C, N1C); | 
|  | // fold (shl 0, x) -> 0 | 
|  | if (N0C && N0C->isNullValue()) | 
|  | return N0; | 
|  | // fold (shl x, c >= size(x)) -> undef | 
|  | if (N1C && N1C->getZExtValue() >= OpSizeInBits) | 
|  | return DAG.getUNDEF(VT); | 
|  | // fold (shl x, 0) -> x | 
|  | if (N1C && N1C->isNullValue()) | 
|  | return N0; | 
|  | // fold (shl undef, x) -> 0 | 
|  | if (N0.getOpcode() == ISD::UNDEF) | 
|  | return DAG.getConstant(0, VT); | 
|  | // if (shl x, c) is known to be zero, return 0 | 
|  | if (DAG.MaskedValueIsZero(SDValue(N, 0), | 
|  | APInt::getAllOnesValue(OpSizeInBits))) | 
|  | return DAG.getConstant(0, VT); | 
|  | // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))). | 
|  | if (N1.getOpcode() == ISD::TRUNCATE && | 
|  | N1.getOperand(0).getOpcode() == ISD::AND && | 
|  | N1.hasOneUse() && N1.getOperand(0).hasOneUse()) { | 
|  | SDValue N101 = N1.getOperand(0).getOperand(1); | 
|  | if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) { | 
|  | EVT TruncVT = N1.getValueType(); | 
|  | SDValue N100 = N1.getOperand(0).getOperand(0); | 
|  | APInt TruncC = N101C->getAPIntValue(); | 
|  | TruncC = TruncC.trunc(TruncVT.getSizeInBits()); | 
|  | return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0, | 
|  | DAG.getNode(ISD::AND, N->getDebugLoc(), TruncVT, | 
|  | DAG.getNode(ISD::TRUNCATE, | 
|  | N->getDebugLoc(), | 
|  | TruncVT, N100), | 
|  | DAG.getConstant(TruncC, TruncVT))); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (N1C && SimplifyDemandedBits(SDValue(N, 0))) | 
|  | return SDValue(N, 0); | 
|  |  | 
|  | // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2)) | 
|  | if (N1C && N0.getOpcode() == ISD::SHL && | 
|  | N0.getOperand(1).getOpcode() == ISD::Constant) { | 
|  | uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue(); | 
|  | uint64_t c2 = N1C->getZExtValue(); | 
|  | if (c1 + c2 >= OpSizeInBits) | 
|  | return DAG.getConstant(0, VT); | 
|  | return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0.getOperand(0), | 
|  | DAG.getConstant(c1 + c2, N1.getValueType())); | 
|  | } | 
|  |  | 
|  | // fold (shl (ext (shl x, c1)), c2) -> (ext (shl x, (add c1, c2))) | 
|  | // For this to be valid, the second form must not preserve any of the bits | 
|  | // that are shifted out by the inner shift in the first form.  This means | 
|  | // the outer shift size must be >= the number of bits added by the ext. | 
|  | // As a corollary, we don't care what kind of ext it is. | 
|  | if (N1C && (N0.getOpcode() == ISD::ZERO_EXTEND || | 
|  | N0.getOpcode() == ISD::ANY_EXTEND || | 
|  | N0.getOpcode() == ISD::SIGN_EXTEND) && | 
|  | N0.getOperand(0).getOpcode() == ISD::SHL && | 
|  | isa<ConstantSDNode>(N0.getOperand(0)->getOperand(1))) { | 
|  | uint64_t c1 = | 
|  | cast<ConstantSDNode>(N0.getOperand(0)->getOperand(1))->getZExtValue(); | 
|  | uint64_t c2 = N1C->getZExtValue(); | 
|  | EVT InnerShiftVT = N0.getOperand(0).getValueType(); | 
|  | uint64_t InnerShiftSize = InnerShiftVT.getScalarType().getSizeInBits(); | 
|  | if (c2 >= OpSizeInBits - InnerShiftSize) { | 
|  | if (c1 + c2 >= OpSizeInBits) | 
|  | return DAG.getConstant(0, VT); | 
|  | return DAG.getNode(ISD::SHL, N0->getDebugLoc(), VT, | 
|  | DAG.getNode(N0.getOpcode(), N0->getDebugLoc(), VT, | 
|  | N0.getOperand(0)->getOperand(0)), | 
|  | DAG.getConstant(c1 + c2, N1.getValueType())); | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or | 
|  | //                               (and (srl x, (sub c1, c2), MASK) | 
|  | if (N1C && N0.getOpcode() == ISD::SRL && | 
|  | N0.getOperand(1).getOpcode() == ISD::Constant) { | 
|  | uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue(); | 
|  | if (c1 < VT.getSizeInBits()) { | 
|  | uint64_t c2 = N1C->getZExtValue(); | 
|  | APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(), | 
|  | VT.getSizeInBits() - c1); | 
|  | SDValue Shift; | 
|  | if (c2 > c1) { | 
|  | Mask = Mask.shl(c2-c1); | 
|  | Shift = DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0.getOperand(0), | 
|  | DAG.getConstant(c2-c1, N1.getValueType())); | 
|  | } else { | 
|  | Mask = Mask.lshr(c1-c2); | 
|  | Shift = DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0.getOperand(0), | 
|  | DAG.getConstant(c1-c2, N1.getValueType())); | 
|  | } | 
|  | return DAG.getNode(ISD::AND, N0.getDebugLoc(), VT, Shift, | 
|  | DAG.getConstant(Mask, VT)); | 
|  | } | 
|  | } | 
|  | // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1)) | 
|  | if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1)) { | 
|  | SDValue HiBitsMask = | 
|  | DAG.getConstant(APInt::getHighBitsSet(VT.getSizeInBits(), | 
|  | VT.getSizeInBits() - | 
|  | N1C->getZExtValue()), | 
|  | VT); | 
|  | return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0.getOperand(0), | 
|  | HiBitsMask); | 
|  | } | 
|  |  | 
|  | if (N1C) { | 
|  | SDValue NewSHL = visitShiftByConstant(N, N1C->getZExtValue()); | 
|  | if (NewSHL.getNode()) | 
|  | return NewSHL; | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitSRA(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); | 
|  | ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); | 
|  | EVT VT = N0.getValueType(); | 
|  | unsigned OpSizeInBits = VT.getScalarType().getSizeInBits(); | 
|  |  | 
|  | // fold (sra c1, c2) -> (sra c1, c2) | 
|  | if (N0C && N1C) | 
|  | return DAG.FoldConstantArithmetic(ISD::SRA, VT, N0C, N1C); | 
|  | // fold (sra 0, x) -> 0 | 
|  | if (N0C && N0C->isNullValue()) | 
|  | return N0; | 
|  | // fold (sra -1, x) -> -1 | 
|  | if (N0C && N0C->isAllOnesValue()) | 
|  | return N0; | 
|  | // fold (sra x, (setge c, size(x))) -> undef | 
|  | if (N1C && N1C->getZExtValue() >= OpSizeInBits) | 
|  | return DAG.getUNDEF(VT); | 
|  | // fold (sra x, 0) -> x | 
|  | if (N1C && N1C->isNullValue()) | 
|  | return N0; | 
|  | // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports | 
|  | // sext_inreg. | 
|  | if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) { | 
|  | unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue(); | 
|  | EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits); | 
|  | if (VT.isVector()) | 
|  | ExtVT = EVT::getVectorVT(*DAG.getContext(), | 
|  | ExtVT, VT.getVectorNumElements()); | 
|  | if ((!LegalOperations || | 
|  | TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, ExtVT))) | 
|  | return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT, | 
|  | N0.getOperand(0), DAG.getValueType(ExtVT)); | 
|  | } | 
|  |  | 
|  | // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2)) | 
|  | if (N1C && N0.getOpcode() == ISD::SRA) { | 
|  | if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { | 
|  | unsigned Sum = N1C->getZExtValue() + C1->getZExtValue(); | 
|  | if (Sum >= OpSizeInBits) Sum = OpSizeInBits-1; | 
|  | return DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, N0.getOperand(0), | 
|  | DAG.getConstant(Sum, N1C->getValueType(0))); | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (sra (shl X, m), (sub result_size, n)) | 
|  | // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for | 
|  | // result_size - n != m. | 
|  | // If truncate is free for the target sext(shl) is likely to result in better | 
|  | // code. | 
|  | if (N0.getOpcode() == ISD::SHL) { | 
|  | // Get the two constanst of the shifts, CN0 = m, CN = n. | 
|  | const ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); | 
|  | if (N01C && N1C) { | 
|  | // Determine what the truncate's result bitsize and type would be. | 
|  | EVT TruncVT = | 
|  | EVT::getIntegerVT(*DAG.getContext(), | 
|  | OpSizeInBits - N1C->getZExtValue()); | 
|  | // Determine the residual right-shift amount. | 
|  | signed ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue(); | 
|  |  | 
|  | // If the shift is not a no-op (in which case this should be just a sign | 
|  | // extend already), the truncated to type is legal, sign_extend is legal | 
|  | // on that type, and the truncate to that type is both legal and free, | 
|  | // perform the transform. | 
|  | if ((ShiftAmt > 0) && | 
|  | TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) && | 
|  | TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) && | 
|  | TLI.isTruncateFree(VT, TruncVT)) { | 
|  |  | 
|  | SDValue Amt = DAG.getConstant(ShiftAmt, | 
|  | getShiftAmountTy(N0.getOperand(0).getValueType())); | 
|  | SDValue Shift = DAG.getNode(ISD::SRL, N0.getDebugLoc(), VT, | 
|  | N0.getOperand(0), Amt); | 
|  | SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), TruncVT, | 
|  | Shift); | 
|  | return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), | 
|  | N->getValueType(0), Trunc); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))). | 
|  | if (N1.getOpcode() == ISD::TRUNCATE && | 
|  | N1.getOperand(0).getOpcode() == ISD::AND && | 
|  | N1.hasOneUse() && N1.getOperand(0).hasOneUse()) { | 
|  | SDValue N101 = N1.getOperand(0).getOperand(1); | 
|  | if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) { | 
|  | EVT TruncVT = N1.getValueType(); | 
|  | SDValue N100 = N1.getOperand(0).getOperand(0); | 
|  | APInt TruncC = N101C->getAPIntValue(); | 
|  | TruncC = TruncC.trunc(TruncVT.getScalarType().getSizeInBits()); | 
|  | return DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, N0, | 
|  | DAG.getNode(ISD::AND, N->getDebugLoc(), | 
|  | TruncVT, | 
|  | DAG.getNode(ISD::TRUNCATE, | 
|  | N->getDebugLoc(), | 
|  | TruncVT, N100), | 
|  | DAG.getConstant(TruncC, TruncVT))); | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (sra (trunc (sr x, c1)), c2) -> (trunc (sra x, c1+c2)) | 
|  | //      if c1 is equal to the number of bits the trunc removes | 
|  | if (N0.getOpcode() == ISD::TRUNCATE && | 
|  | (N0.getOperand(0).getOpcode() == ISD::SRL || | 
|  | N0.getOperand(0).getOpcode() == ISD::SRA) && | 
|  | N0.getOperand(0).hasOneUse() && | 
|  | N0.getOperand(0).getOperand(1).hasOneUse() && | 
|  | N1C && isa<ConstantSDNode>(N0.getOperand(0).getOperand(1))) { | 
|  | EVT LargeVT = N0.getOperand(0).getValueType(); | 
|  | ConstantSDNode *LargeShiftAmt = | 
|  | cast<ConstantSDNode>(N0.getOperand(0).getOperand(1)); | 
|  |  | 
|  | if (LargeVT.getScalarType().getSizeInBits() - OpSizeInBits == | 
|  | LargeShiftAmt->getZExtValue()) { | 
|  | SDValue Amt = | 
|  | DAG.getConstant(LargeShiftAmt->getZExtValue() + N1C->getZExtValue(), | 
|  | getShiftAmountTy(N0.getOperand(0).getOperand(0).getValueType())); | 
|  | SDValue SRA = DAG.getNode(ISD::SRA, N->getDebugLoc(), LargeVT, | 
|  | N0.getOperand(0).getOperand(0), Amt); | 
|  | return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, SRA); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Simplify, based on bits shifted out of the LHS. | 
|  | if (N1C && SimplifyDemandedBits(SDValue(N, 0))) | 
|  | return SDValue(N, 0); | 
|  |  | 
|  |  | 
|  | // If the sign bit is known to be zero, switch this to a SRL. | 
|  | if (DAG.SignBitIsZero(N0)) | 
|  | return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0, N1); | 
|  |  | 
|  | if (N1C) { | 
|  | SDValue NewSRA = visitShiftByConstant(N, N1C->getZExtValue()); | 
|  | if (NewSRA.getNode()) | 
|  | return NewSRA; | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitSRL(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); | 
|  | ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); | 
|  | EVT VT = N0.getValueType(); | 
|  | unsigned OpSizeInBits = VT.getScalarType().getSizeInBits(); | 
|  |  | 
|  | // fold (srl c1, c2) -> c1 >>u c2 | 
|  | if (N0C && N1C) | 
|  | return DAG.FoldConstantArithmetic(ISD::SRL, VT, N0C, N1C); | 
|  | // fold (srl 0, x) -> 0 | 
|  | if (N0C && N0C->isNullValue()) | 
|  | return N0; | 
|  | // fold (srl x, c >= size(x)) -> undef | 
|  | if (N1C && N1C->getZExtValue() >= OpSizeInBits) | 
|  | return DAG.getUNDEF(VT); | 
|  | // fold (srl x, 0) -> x | 
|  | if (N1C && N1C->isNullValue()) | 
|  | return N0; | 
|  | // if (srl x, c) is known to be zero, return 0 | 
|  | if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0), | 
|  | APInt::getAllOnesValue(OpSizeInBits))) | 
|  | return DAG.getConstant(0, VT); | 
|  |  | 
|  | // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2)) | 
|  | if (N1C && N0.getOpcode() == ISD::SRL && | 
|  | N0.getOperand(1).getOpcode() == ISD::Constant) { | 
|  | uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue(); | 
|  | uint64_t c2 = N1C->getZExtValue(); | 
|  | if (c1 + c2 >= OpSizeInBits) | 
|  | return DAG.getConstant(0, VT); | 
|  | return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0.getOperand(0), | 
|  | DAG.getConstant(c1 + c2, N1.getValueType())); | 
|  | } | 
|  |  | 
|  | // fold (srl (trunc (srl x, c1)), c2) -> 0 or (trunc (srl x, (add c1, c2))) | 
|  | if (N1C && N0.getOpcode() == ISD::TRUNCATE && | 
|  | N0.getOperand(0).getOpcode() == ISD::SRL && | 
|  | isa<ConstantSDNode>(N0.getOperand(0)->getOperand(1))) { | 
|  | uint64_t c1 = | 
|  | cast<ConstantSDNode>(N0.getOperand(0)->getOperand(1))->getZExtValue(); | 
|  | uint64_t c2 = N1C->getZExtValue(); | 
|  | EVT InnerShiftVT = N0.getOperand(0).getValueType(); | 
|  | EVT ShiftCountVT = N0.getOperand(0)->getOperand(1).getValueType(); | 
|  | uint64_t InnerShiftSize = InnerShiftVT.getScalarType().getSizeInBits(); | 
|  | // This is only valid if the OpSizeInBits + c1 = size of inner shift. | 
|  | if (c1 + OpSizeInBits == InnerShiftSize) { | 
|  | if (c1 + c2 >= InnerShiftSize) | 
|  | return DAG.getConstant(0, VT); | 
|  | return DAG.getNode(ISD::TRUNCATE, N0->getDebugLoc(), VT, | 
|  | DAG.getNode(ISD::SRL, N0->getDebugLoc(), InnerShiftVT, | 
|  | N0.getOperand(0)->getOperand(0), | 
|  | DAG.getConstant(c1 + c2, ShiftCountVT))); | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (srl (shl x, c), c) -> (and x, cst2) | 
|  | if (N1C && N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1 && | 
|  | N0.getValueSizeInBits() <= 64) { | 
|  | uint64_t ShAmt = N1C->getZExtValue()+64-N0.getValueSizeInBits(); | 
|  | return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0.getOperand(0), | 
|  | DAG.getConstant(~0ULL >> ShAmt, VT)); | 
|  | } | 
|  |  | 
|  |  | 
|  | // fold (srl (anyextend x), c) -> (anyextend (srl x, c)) | 
|  | if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { | 
|  | // Shifting in all undef bits? | 
|  | EVT SmallVT = N0.getOperand(0).getValueType(); | 
|  | if (N1C->getZExtValue() >= SmallVT.getSizeInBits()) | 
|  | return DAG.getUNDEF(VT); | 
|  |  | 
|  | if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) { | 
|  | uint64_t ShiftAmt = N1C->getZExtValue(); | 
|  | SDValue SmallShift = DAG.getNode(ISD::SRL, N0.getDebugLoc(), SmallVT, | 
|  | N0.getOperand(0), | 
|  | DAG.getConstant(ShiftAmt, getShiftAmountTy(SmallVT))); | 
|  | AddToWorkList(SmallShift.getNode()); | 
|  | return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, SmallShift); | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (srl (sra X, Y), 31) -> (srl X, 31).  This srl only looks at the sign | 
|  | // bit, which is unmodified by sra. | 
|  | if (N1C && N1C->getZExtValue() + 1 == VT.getSizeInBits()) { | 
|  | if (N0.getOpcode() == ISD::SRA) | 
|  | return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0.getOperand(0), N1); | 
|  | } | 
|  |  | 
|  | // fold (srl (ctlz x), "5") -> x  iff x has one bit set (the low bit). | 
|  | if (N1C && N0.getOpcode() == ISD::CTLZ && | 
|  | N1C->getAPIntValue() == Log2_32(VT.getSizeInBits())) { | 
|  | APInt KnownZero, KnownOne; | 
|  | APInt Mask = APInt::getAllOnesValue(VT.getScalarType().getSizeInBits()); | 
|  | DAG.ComputeMaskedBits(N0.getOperand(0), Mask, KnownZero, KnownOne); | 
|  |  | 
|  | // If any of the input bits are KnownOne, then the input couldn't be all | 
|  | // zeros, thus the result of the srl will always be zero. | 
|  | if (KnownOne.getBoolValue()) return DAG.getConstant(0, VT); | 
|  |  | 
|  | // If all of the bits input the to ctlz node are known to be zero, then | 
|  | // the result of the ctlz is "32" and the result of the shift is one. | 
|  | APInt UnknownBits = ~KnownZero & Mask; | 
|  | if (UnknownBits == 0) return DAG.getConstant(1, VT); | 
|  |  | 
|  | // Otherwise, check to see if there is exactly one bit input to the ctlz. | 
|  | if ((UnknownBits & (UnknownBits - 1)) == 0) { | 
|  | // Okay, we know that only that the single bit specified by UnknownBits | 
|  | // could be set on input to the CTLZ node. If this bit is set, the SRL | 
|  | // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair | 
|  | // to an SRL/XOR pair, which is likely to simplify more. | 
|  | unsigned ShAmt = UnknownBits.countTrailingZeros(); | 
|  | SDValue Op = N0.getOperand(0); | 
|  |  | 
|  | if (ShAmt) { | 
|  | Op = DAG.getNode(ISD::SRL, N0.getDebugLoc(), VT, Op, | 
|  | DAG.getConstant(ShAmt, getShiftAmountTy(Op.getValueType()))); | 
|  | AddToWorkList(Op.getNode()); | 
|  | } | 
|  |  | 
|  | return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, | 
|  | Op, DAG.getConstant(1, VT)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))). | 
|  | if (N1.getOpcode() == ISD::TRUNCATE && | 
|  | N1.getOperand(0).getOpcode() == ISD::AND && | 
|  | N1.hasOneUse() && N1.getOperand(0).hasOneUse()) { | 
|  | SDValue N101 = N1.getOperand(0).getOperand(1); | 
|  | if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) { | 
|  | EVT TruncVT = N1.getValueType(); | 
|  | SDValue N100 = N1.getOperand(0).getOperand(0); | 
|  | APInt TruncC = N101C->getAPIntValue(); | 
|  | TruncC = TruncC.trunc(TruncVT.getSizeInBits()); | 
|  | return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0, | 
|  | DAG.getNode(ISD::AND, N->getDebugLoc(), | 
|  | TruncVT, | 
|  | DAG.getNode(ISD::TRUNCATE, | 
|  | N->getDebugLoc(), | 
|  | TruncVT, N100), | 
|  | DAG.getConstant(TruncC, TruncVT))); | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold operands of srl based on knowledge that the low bits are not | 
|  | // demanded. | 
|  | if (N1C && SimplifyDemandedBits(SDValue(N, 0))) | 
|  | return SDValue(N, 0); | 
|  |  | 
|  | if (N1C) { | 
|  | SDValue NewSRL = visitShiftByConstant(N, N1C->getZExtValue()); | 
|  | if (NewSRL.getNode()) | 
|  | return NewSRL; | 
|  | } | 
|  |  | 
|  | // Attempt to convert a srl of a load into a narrower zero-extending load. | 
|  | SDValue NarrowLoad = ReduceLoadWidth(N); | 
|  | if (NarrowLoad.getNode()) | 
|  | return NarrowLoad; | 
|  |  | 
|  | // Here is a common situation. We want to optimize: | 
|  | // | 
|  | //   %a = ... | 
|  | //   %b = and i32 %a, 2 | 
|  | //   %c = srl i32 %b, 1 | 
|  | //   brcond i32 %c ... | 
|  | // | 
|  | // into | 
|  | // | 
|  | //   %a = ... | 
|  | //   %b = and %a, 2 | 
|  | //   %c = setcc eq %b, 0 | 
|  | //   brcond %c ... | 
|  | // | 
|  | // However when after the source operand of SRL is optimized into AND, the SRL | 
|  | // itself may not be optimized further. Look for it and add the BRCOND into | 
|  | // the worklist. | 
|  | if (N->hasOneUse()) { | 
|  | SDNode *Use = *N->use_begin(); | 
|  | if (Use->getOpcode() == ISD::BRCOND) | 
|  | AddToWorkList(Use); | 
|  | else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) { | 
|  | // Also look pass the truncate. | 
|  | Use = *Use->use_begin(); | 
|  | if (Use->getOpcode() == ISD::BRCOND) | 
|  | AddToWorkList(Use); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitCTLZ(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold (ctlz c1) -> c2 | 
|  | if (isa<ConstantSDNode>(N0)) | 
|  | return DAG.getNode(ISD::CTLZ, N->getDebugLoc(), VT, N0); | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold (ctlz_zero_undef c1) -> c2 | 
|  | if (isa<ConstantSDNode>(N0)) | 
|  | return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, N->getDebugLoc(), VT, N0); | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitCTTZ(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold (cttz c1) -> c2 | 
|  | if (isa<ConstantSDNode>(N0)) | 
|  | return DAG.getNode(ISD::CTTZ, N->getDebugLoc(), VT, N0); | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold (cttz_zero_undef c1) -> c2 | 
|  | if (isa<ConstantSDNode>(N0)) | 
|  | return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, N->getDebugLoc(), VT, N0); | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitCTPOP(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold (ctpop c1) -> c2 | 
|  | if (isa<ConstantSDNode>(N0)) | 
|  | return DAG.getNode(ISD::CTPOP, N->getDebugLoc(), VT, N0); | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitSELECT(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | SDValue N2 = N->getOperand(2); | 
|  | ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); | 
|  | ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); | 
|  | ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); | 
|  | EVT VT = N->getValueType(0); | 
|  | EVT VT0 = N0.getValueType(); | 
|  |  | 
|  | // fold (select C, X, X) -> X | 
|  | if (N1 == N2) | 
|  | return N1; | 
|  | // fold (select true, X, Y) -> X | 
|  | if (N0C && !N0C->isNullValue()) | 
|  | return N1; | 
|  | // fold (select false, X, Y) -> Y | 
|  | if (N0C && N0C->isNullValue()) | 
|  | return N2; | 
|  | // fold (select C, 1, X) -> (or C, X) | 
|  | if (VT == MVT::i1 && N1C && N1C->getAPIntValue() == 1) | 
|  | return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N2); | 
|  | // fold (select C, 0, 1) -> (xor C, 1) | 
|  | if (VT.isInteger() && | 
|  | (VT0 == MVT::i1 || | 
|  | (VT0.isInteger() && | 
|  | TLI.getBooleanContents(false) == TargetLowering::ZeroOrOneBooleanContent)) && | 
|  | N1C && N2C && N1C->isNullValue() && N2C->getAPIntValue() == 1) { | 
|  | SDValue XORNode; | 
|  | if (VT == VT0) | 
|  | return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT0, | 
|  | N0, DAG.getConstant(1, VT0)); | 
|  | XORNode = DAG.getNode(ISD::XOR, N0.getDebugLoc(), VT0, | 
|  | N0, DAG.getConstant(1, VT0)); | 
|  | AddToWorkList(XORNode.getNode()); | 
|  | if (VT.bitsGT(VT0)) | 
|  | return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, XORNode); | 
|  | return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, XORNode); | 
|  | } | 
|  | // fold (select C, 0, X) -> (and (not C), X) | 
|  | if (VT == VT0 && VT == MVT::i1 && N1C && N1C->isNullValue()) { | 
|  | SDValue NOTNode = DAG.getNOT(N0.getDebugLoc(), N0, VT); | 
|  | AddToWorkList(NOTNode.getNode()); | 
|  | return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, NOTNode, N2); | 
|  | } | 
|  | // fold (select C, X, 1) -> (or (not C), X) | 
|  | if (VT == VT0 && VT == MVT::i1 && N2C && N2C->getAPIntValue() == 1) { | 
|  | SDValue NOTNode = DAG.getNOT(N0.getDebugLoc(), N0, VT); | 
|  | AddToWorkList(NOTNode.getNode()); | 
|  | return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, NOTNode, N1); | 
|  | } | 
|  | // fold (select C, X, 0) -> (and C, X) | 
|  | if (VT == MVT::i1 && N2C && N2C->isNullValue()) | 
|  | return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0, N1); | 
|  | // fold (select X, X, Y) -> (or X, Y) | 
|  | // fold (select X, 1, Y) -> (or X, Y) | 
|  | if (VT == MVT::i1 && (N0 == N1 || (N1C && N1C->getAPIntValue() == 1))) | 
|  | return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N2); | 
|  | // fold (select X, Y, X) -> (and X, Y) | 
|  | // fold (select X, Y, 0) -> (and X, Y) | 
|  | if (VT == MVT::i1 && (N0 == N2 || (N2C && N2C->getAPIntValue() == 0))) | 
|  | return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0, N1); | 
|  |  | 
|  | // If we can fold this based on the true/false value, do so. | 
|  | if (SimplifySelectOps(N, N1, N2)) | 
|  | return SDValue(N, 0);  // Don't revisit N. | 
|  |  | 
|  | // fold selects based on a setcc into other things, such as min/max/abs | 
|  | if (N0.getOpcode() == ISD::SETCC) { | 
|  | // FIXME: | 
|  | // Check against MVT::Other for SELECT_CC, which is a workaround for targets | 
|  | // having to say they don't support SELECT_CC on every type the DAG knows | 
|  | // about, since there is no way to mark an opcode illegal at all value types | 
|  | if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other) && | 
|  | TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT)) | 
|  | return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), VT, | 
|  | N0.getOperand(0), N0.getOperand(1), | 
|  | N1, N2, N0.getOperand(2)); | 
|  | return SimplifySelect(N->getDebugLoc(), N0, N1, N2); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitSELECT_CC(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | SDValue N2 = N->getOperand(2); | 
|  | SDValue N3 = N->getOperand(3); | 
|  | SDValue N4 = N->getOperand(4); | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get(); | 
|  |  | 
|  | // fold select_cc lhs, rhs, x, x, cc -> x | 
|  | if (N2 == N3) | 
|  | return N2; | 
|  |  | 
|  | // Determine if the condition we're dealing with is constant | 
|  | SDValue SCC = SimplifySetCC(TLI.getSetCCResultType(N0.getValueType()), | 
|  | N0, N1, CC, N->getDebugLoc(), false); | 
|  | if (SCC.getNode()) AddToWorkList(SCC.getNode()); | 
|  |  | 
|  | if (ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode())) { | 
|  | if (!SCCC->isNullValue()) | 
|  | return N2;    // cond always true -> true val | 
|  | else | 
|  | return N3;    // cond always false -> false val | 
|  | } | 
|  |  | 
|  | // Fold to a simpler select_cc | 
|  | if (SCC.getNode() && SCC.getOpcode() == ISD::SETCC) | 
|  | return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), N2.getValueType(), | 
|  | SCC.getOperand(0), SCC.getOperand(1), N2, N3, | 
|  | SCC.getOperand(2)); | 
|  |  | 
|  | // If we can fold this based on the true/false value, do so. | 
|  | if (SimplifySelectOps(N, N2, N3)) | 
|  | return SDValue(N, 0);  // Don't revisit N. | 
|  |  | 
|  | // fold select_cc into other things, such as min/max/abs | 
|  | return SimplifySelectCC(N->getDebugLoc(), N0, N1, N2, N3, CC); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitSETCC(SDNode *N) { | 
|  | return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1), | 
|  | cast<CondCodeSDNode>(N->getOperand(2))->get(), | 
|  | N->getDebugLoc()); | 
|  | } | 
|  |  | 
|  | // ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this: | 
|  | // "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))" | 
|  | // transformation. Returns true if extension are possible and the above | 
|  | // mentioned transformation is profitable. | 
|  | static bool ExtendUsesToFormExtLoad(SDNode *N, SDValue N0, | 
|  | unsigned ExtOpc, | 
|  | SmallVector<SDNode*, 4> &ExtendNodes, | 
|  | const TargetLowering &TLI) { | 
|  | bool HasCopyToRegUses = false; | 
|  | bool isTruncFree = TLI.isTruncateFree(N->getValueType(0), N0.getValueType()); | 
|  | for (SDNode::use_iterator UI = N0.getNode()->use_begin(), | 
|  | UE = N0.getNode()->use_end(); | 
|  | UI != UE; ++UI) { | 
|  | SDNode *User = *UI; | 
|  | if (User == N) | 
|  | continue; | 
|  | if (UI.getUse().getResNo() != N0.getResNo()) | 
|  | continue; | 
|  | // FIXME: Only extend SETCC N, N and SETCC N, c for now. | 
|  | if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) { | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get(); | 
|  | if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC)) | 
|  | // Sign bits will be lost after a zext. | 
|  | return false; | 
|  | bool Add = false; | 
|  | for (unsigned i = 0; i != 2; ++i) { | 
|  | SDValue UseOp = User->getOperand(i); | 
|  | if (UseOp == N0) | 
|  | continue; | 
|  | if (!isa<ConstantSDNode>(UseOp)) | 
|  | return false; | 
|  | Add = true; | 
|  | } | 
|  | if (Add) | 
|  | ExtendNodes.push_back(User); | 
|  | continue; | 
|  | } | 
|  | // If truncates aren't free and there are users we can't | 
|  | // extend, it isn't worthwhile. | 
|  | if (!isTruncFree) | 
|  | return false; | 
|  | // Remember if this value is live-out. | 
|  | if (User->getOpcode() == ISD::CopyToReg) | 
|  | HasCopyToRegUses = true; | 
|  | } | 
|  |  | 
|  | if (HasCopyToRegUses) { | 
|  | bool BothLiveOut = false; | 
|  | for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); | 
|  | UI != UE; ++UI) { | 
|  | SDUse &Use = UI.getUse(); | 
|  | if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) { | 
|  | BothLiveOut = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (BothLiveOut) | 
|  | // Both unextended and extended values are live out. There had better be | 
|  | // a good reason for the transformation. | 
|  | return ExtendNodes.size(); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void DAGCombiner::ExtendSetCCUses(SmallVector<SDNode*, 4> SetCCs, | 
|  | SDValue Trunc, SDValue ExtLoad, DebugLoc DL, | 
|  | ISD::NodeType ExtType) { | 
|  | // Extend SetCC uses if necessary. | 
|  | for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) { | 
|  | SDNode *SetCC = SetCCs[i]; | 
|  | SmallVector<SDValue, 4> Ops; | 
|  |  | 
|  | for (unsigned j = 0; j != 2; ++j) { | 
|  | SDValue SOp = SetCC->getOperand(j); | 
|  | if (SOp == Trunc) | 
|  | Ops.push_back(ExtLoad); | 
|  | else | 
|  | Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp)); | 
|  | } | 
|  |  | 
|  | Ops.push_back(SetCC->getOperand(2)); | 
|  | CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), | 
|  | &Ops[0], Ops.size())); | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold (sext c1) -> c1 | 
|  | if (isa<ConstantSDNode>(N0)) | 
|  | return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, N0); | 
|  |  | 
|  | // fold (sext (sext x)) -> (sext x) | 
|  | // fold (sext (aext x)) -> (sext x) | 
|  | if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) | 
|  | return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, | 
|  | N0.getOperand(0)); | 
|  |  | 
|  | if (N0.getOpcode() == ISD::TRUNCATE) { | 
|  | // fold (sext (truncate (load x))) -> (sext (smaller load x)) | 
|  | // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n))) | 
|  | SDValue NarrowLoad = ReduceLoadWidth(N0.getNode()); | 
|  | if (NarrowLoad.getNode()) { | 
|  | SDNode* oye = N0.getNode()->getOperand(0).getNode(); | 
|  | if (NarrowLoad.getNode() != N0.getNode()) { | 
|  | CombineTo(N0.getNode(), NarrowLoad); | 
|  | // CombineTo deleted the truncate, if needed, but not what's under it. | 
|  | AddToWorkList(oye); | 
|  | } | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  |  | 
|  | // See if the value being truncated is already sign extended.  If so, just | 
|  | // eliminate the trunc/sext pair. | 
|  | SDValue Op = N0.getOperand(0); | 
|  | unsigned OpBits   = Op.getValueType().getScalarType().getSizeInBits(); | 
|  | unsigned MidBits  = N0.getValueType().getScalarType().getSizeInBits(); | 
|  | unsigned DestBits = VT.getScalarType().getSizeInBits(); | 
|  | unsigned NumSignBits = DAG.ComputeNumSignBits(Op); | 
|  |  | 
|  | if (OpBits == DestBits) { | 
|  | // Op is i32, Mid is i8, and Dest is i32.  If Op has more than 24 sign | 
|  | // bits, it is already ready. | 
|  | if (NumSignBits > DestBits-MidBits) | 
|  | return Op; | 
|  | } else if (OpBits < DestBits) { | 
|  | // Op is i32, Mid is i8, and Dest is i64.  If Op has more than 24 sign | 
|  | // bits, just sext from i32. | 
|  | if (NumSignBits > OpBits-MidBits) | 
|  | return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, Op); | 
|  | } else { | 
|  | // Op is i64, Mid is i8, and Dest is i32.  If Op has more than 56 sign | 
|  | // bits, just truncate to i32. | 
|  | if (NumSignBits > OpBits-MidBits) | 
|  | return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, Op); | 
|  | } | 
|  |  | 
|  | // fold (sext (truncate x)) -> (sextinreg x). | 
|  | if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, | 
|  | N0.getValueType())) { | 
|  | if (OpBits < DestBits) | 
|  | Op = DAG.getNode(ISD::ANY_EXTEND, N0.getDebugLoc(), VT, Op); | 
|  | else if (OpBits > DestBits) | 
|  | Op = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), VT, Op); | 
|  | return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT, Op, | 
|  | DAG.getValueType(N0.getValueType())); | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (sext (load x)) -> (sext (truncate (sextload x))) | 
|  | // None of the supported targets knows how to perform load and sign extend | 
|  | // on vectors in one instruction.  We only perform this transformation on | 
|  | // scalars. | 
|  | if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() && | 
|  | ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) || | 
|  | TLI.isLoadExtLegal(ISD::SEXTLOAD, N0.getValueType()))) { | 
|  | bool DoXform = true; | 
|  | SmallVector<SDNode*, 4> SetCCs; | 
|  | if (!N0.hasOneUse()) | 
|  | DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::SIGN_EXTEND, SetCCs, TLI); | 
|  | if (DoXform) { | 
|  | LoadSDNode *LN0 = cast<LoadSDNode>(N0); | 
|  | SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT, | 
|  | LN0->getChain(), | 
|  | LN0->getBasePtr(), LN0->getPointerInfo(), | 
|  | N0.getValueType(), | 
|  | LN0->isVolatile(), LN0->isNonTemporal(), | 
|  | LN0->getAlignment()); | 
|  | CombineTo(N, ExtLoad); | 
|  | SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), | 
|  | N0.getValueType(), ExtLoad); | 
|  | CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1)); | 
|  | ExtendSetCCUses(SetCCs, Trunc, ExtLoad, N->getDebugLoc(), | 
|  | ISD::SIGN_EXTEND); | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (sext (sextload x)) -> (sext (truncate (sextload x))) | 
|  | // fold (sext ( extload x)) -> (sext (truncate (sextload x))) | 
|  | if ((ISD::isSEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) && | 
|  | ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) { | 
|  | LoadSDNode *LN0 = cast<LoadSDNode>(N0); | 
|  | EVT MemVT = LN0->getMemoryVT(); | 
|  | if ((!LegalOperations && !LN0->isVolatile()) || | 
|  | TLI.isLoadExtLegal(ISD::SEXTLOAD, MemVT)) { | 
|  | SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT, | 
|  | LN0->getChain(), | 
|  | LN0->getBasePtr(), LN0->getPointerInfo(), | 
|  | MemVT, | 
|  | LN0->isVolatile(), LN0->isNonTemporal(), | 
|  | LN0->getAlignment()); | 
|  | CombineTo(N, ExtLoad); | 
|  | CombineTo(N0.getNode(), | 
|  | DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), | 
|  | N0.getValueType(), ExtLoad), | 
|  | ExtLoad.getValue(1)); | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (sext (and/or/xor (load x), cst)) -> | 
|  | //      (and/or/xor (sextload x), (sext cst)) | 
|  | if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || | 
|  | N0.getOpcode() == ISD::XOR) && | 
|  | isa<LoadSDNode>(N0.getOperand(0)) && | 
|  | N0.getOperand(1).getOpcode() == ISD::Constant && | 
|  | TLI.isLoadExtLegal(ISD::SEXTLOAD, N0.getValueType()) && | 
|  | (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) { | 
|  | LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0)); | 
|  | if (LN0->getExtensionType() != ISD::ZEXTLOAD) { | 
|  | bool DoXform = true; | 
|  | SmallVector<SDNode*, 4> SetCCs; | 
|  | if (!N0.hasOneUse()) | 
|  | DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::SIGN_EXTEND, | 
|  | SetCCs, TLI); | 
|  | if (DoXform) { | 
|  | SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, LN0->getDebugLoc(), VT, | 
|  | LN0->getChain(), LN0->getBasePtr(), | 
|  | LN0->getPointerInfo(), | 
|  | LN0->getMemoryVT(), | 
|  | LN0->isVolatile(), | 
|  | LN0->isNonTemporal(), | 
|  | LN0->getAlignment()); | 
|  | APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); | 
|  | Mask = Mask.sext(VT.getSizeInBits()); | 
|  | SDValue And = DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT, | 
|  | ExtLoad, DAG.getConstant(Mask, VT)); | 
|  | SDValue Trunc = DAG.getNode(ISD::TRUNCATE, | 
|  | N0.getOperand(0).getDebugLoc(), | 
|  | N0.getOperand(0).getValueType(), ExtLoad); | 
|  | CombineTo(N, And); | 
|  | CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1)); | 
|  | ExtendSetCCUses(SetCCs, Trunc, ExtLoad, N->getDebugLoc(), | 
|  | ISD::SIGN_EXTEND); | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (N0.getOpcode() == ISD::SETCC) { | 
|  | // sext(setcc) -> sext_in_reg(vsetcc) for vectors. | 
|  | // Only do this before legalize for now. | 
|  | if (VT.isVector() && !LegalOperations) { | 
|  | EVT N0VT = N0.getOperand(0).getValueType(); | 
|  | // We know that the # elements of the results is the same as the | 
|  | // # elements of the compare (and the # elements of the compare result | 
|  | // for that matter).  Check to see that they are the same size.  If so, | 
|  | // we know that the element size of the sext'd result matches the | 
|  | // element size of the compare operands. | 
|  | if (VT.getSizeInBits() == N0VT.getSizeInBits()) | 
|  | return DAG.getSetCC(N->getDebugLoc(), VT, N0.getOperand(0), | 
|  | N0.getOperand(1), | 
|  | cast<CondCodeSDNode>(N0.getOperand(2))->get()); | 
|  | // If the desired elements are smaller or larger than the source | 
|  | // elements we can use a matching integer vector type and then | 
|  | // truncate/sign extend | 
|  | else { | 
|  | EVT MatchingElementType = | 
|  | EVT::getIntegerVT(*DAG.getContext(), | 
|  | N0VT.getScalarType().getSizeInBits()); | 
|  | EVT MatchingVectorType = | 
|  | EVT::getVectorVT(*DAG.getContext(), MatchingElementType, | 
|  | N0VT.getVectorNumElements()); | 
|  | SDValue VsetCC = | 
|  | DAG.getSetCC(N->getDebugLoc(), MatchingVectorType, N0.getOperand(0), | 
|  | N0.getOperand(1), | 
|  | cast<CondCodeSDNode>(N0.getOperand(2))->get()); | 
|  | return DAG.getSExtOrTrunc(VsetCC, N->getDebugLoc(), VT); | 
|  | } | 
|  | } | 
|  |  | 
|  | // sext(setcc x, y, cc) -> (select_cc x, y, -1, 0, cc) | 
|  | unsigned ElementWidth = VT.getScalarType().getSizeInBits(); | 
|  | SDValue NegOne = | 
|  | DAG.getConstant(APInt::getAllOnesValue(ElementWidth), VT); | 
|  | SDValue SCC = | 
|  | SimplifySelectCC(N->getDebugLoc(), N0.getOperand(0), N0.getOperand(1), | 
|  | NegOne, DAG.getConstant(0, VT), | 
|  | cast<CondCodeSDNode>(N0.getOperand(2))->get(), true); | 
|  | if (SCC.getNode()) return SCC; | 
|  | if (!LegalOperations || | 
|  | TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultType(VT))) | 
|  | return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT, | 
|  | DAG.getSetCC(N->getDebugLoc(), | 
|  | TLI.getSetCCResultType(VT), | 
|  | N0.getOperand(0), N0.getOperand(1), | 
|  | cast<CondCodeSDNode>(N0.getOperand(2))->get()), | 
|  | NegOne, DAG.getConstant(0, VT)); | 
|  | } | 
|  |  | 
|  | // fold (sext x) -> (zext x) if the sign bit is known zero. | 
|  | if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) && | 
|  | DAG.SignBitIsZero(N0)) | 
|  | return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, N0); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold (zext c1) -> c1 | 
|  | if (isa<ConstantSDNode>(N0)) | 
|  | return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, N0); | 
|  | // fold (zext (zext x)) -> (zext x) | 
|  | // fold (zext (aext x)) -> (zext x) | 
|  | if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) | 
|  | return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, | 
|  | N0.getOperand(0)); | 
|  |  | 
|  | // fold (zext (truncate (load x))) -> (zext (smaller load x)) | 
|  | // fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n))) | 
|  | if (N0.getOpcode() == ISD::TRUNCATE) { | 
|  | SDValue NarrowLoad = ReduceLoadWidth(N0.getNode()); | 
|  | if (NarrowLoad.getNode()) { | 
|  | SDNode* oye = N0.getNode()->getOperand(0).getNode(); | 
|  | if (NarrowLoad.getNode() != N0.getNode()) { | 
|  | CombineTo(N0.getNode(), NarrowLoad); | 
|  | // CombineTo deleted the truncate, if needed, but not what's under it. | 
|  | AddToWorkList(oye); | 
|  | } | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (zext (truncate x)) -> (and x, mask) | 
|  | if (N0.getOpcode() == ISD::TRUNCATE && | 
|  | (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT))) { | 
|  |  | 
|  | // fold (zext (truncate (load x))) -> (zext (smaller load x)) | 
|  | // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n))) | 
|  | SDValue NarrowLoad = ReduceLoadWidth(N0.getNode()); | 
|  | if (NarrowLoad.getNode()) { | 
|  | SDNode* oye = N0.getNode()->getOperand(0).getNode(); | 
|  | if (NarrowLoad.getNode() != N0.getNode()) { | 
|  | CombineTo(N0.getNode(), NarrowLoad); | 
|  | // CombineTo deleted the truncate, if needed, but not what's under it. | 
|  | AddToWorkList(oye); | 
|  | } | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  |  | 
|  | SDValue Op = N0.getOperand(0); | 
|  | if (Op.getValueType().bitsLT(VT)) { | 
|  | Op = DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, Op); | 
|  | } else if (Op.getValueType().bitsGT(VT)) { | 
|  | Op = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, Op); | 
|  | } | 
|  | return DAG.getZeroExtendInReg(Op, N->getDebugLoc(), | 
|  | N0.getValueType().getScalarType()); | 
|  | } | 
|  |  | 
|  | // Fold (zext (and (trunc x), cst)) -> (and x, cst), | 
|  | // if either of the casts is not free. | 
|  | if (N0.getOpcode() == ISD::AND && | 
|  | N0.getOperand(0).getOpcode() == ISD::TRUNCATE && | 
|  | N0.getOperand(1).getOpcode() == ISD::Constant && | 
|  | (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(), | 
|  | N0.getValueType()) || | 
|  | !TLI.isZExtFree(N0.getValueType(), VT))) { | 
|  | SDValue X = N0.getOperand(0).getOperand(0); | 
|  | if (X.getValueType().bitsLT(VT)) { | 
|  | X = DAG.getNode(ISD::ANY_EXTEND, X.getDebugLoc(), VT, X); | 
|  | } else if (X.getValueType().bitsGT(VT)) { | 
|  | X = DAG.getNode(ISD::TRUNCATE, X.getDebugLoc(), VT, X); | 
|  | } | 
|  | APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); | 
|  | Mask = Mask.zext(VT.getSizeInBits()); | 
|  | return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, | 
|  | X, DAG.getConstant(Mask, VT)); | 
|  | } | 
|  |  | 
|  | // fold (zext (load x)) -> (zext (truncate (zextload x))) | 
|  | // None of the supported targets knows how to perform load and vector_zext | 
|  | // on vectors in one instruction.  We only perform this transformation on | 
|  | // scalars. | 
|  | if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() && | 
|  | ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) || | 
|  | TLI.isLoadExtLegal(ISD::ZEXTLOAD, N0.getValueType()))) { | 
|  | bool DoXform = true; | 
|  | SmallVector<SDNode*, 4> SetCCs; | 
|  | if (!N0.hasOneUse()) | 
|  | DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ZERO_EXTEND, SetCCs, TLI); | 
|  | if (DoXform) { | 
|  | LoadSDNode *LN0 = cast<LoadSDNode>(N0); | 
|  | SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N->getDebugLoc(), VT, | 
|  | LN0->getChain(), | 
|  | LN0->getBasePtr(), LN0->getPointerInfo(), | 
|  | N0.getValueType(), | 
|  | LN0->isVolatile(), LN0->isNonTemporal(), | 
|  | LN0->getAlignment()); | 
|  | CombineTo(N, ExtLoad); | 
|  | SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), | 
|  | N0.getValueType(), ExtLoad); | 
|  | CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1)); | 
|  |  | 
|  | ExtendSetCCUses(SetCCs, Trunc, ExtLoad, N->getDebugLoc(), | 
|  | ISD::ZERO_EXTEND); | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (zext (and/or/xor (load x), cst)) -> | 
|  | //      (and/or/xor (zextload x), (zext cst)) | 
|  | if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || | 
|  | N0.getOpcode() == ISD::XOR) && | 
|  | isa<LoadSDNode>(N0.getOperand(0)) && | 
|  | N0.getOperand(1).getOpcode() == ISD::Constant && | 
|  | TLI.isLoadExtLegal(ISD::ZEXTLOAD, N0.getValueType()) && | 
|  | (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) { | 
|  | LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0)); | 
|  | if (LN0->getExtensionType() != ISD::SEXTLOAD) { | 
|  | bool DoXform = true; | 
|  | SmallVector<SDNode*, 4> SetCCs; | 
|  | if (!N0.hasOneUse()) | 
|  | DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::ZERO_EXTEND, | 
|  | SetCCs, TLI); | 
|  | if (DoXform) { | 
|  | SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, LN0->getDebugLoc(), VT, | 
|  | LN0->getChain(), LN0->getBasePtr(), | 
|  | LN0->getPointerInfo(), | 
|  | LN0->getMemoryVT(), | 
|  | LN0->isVolatile(), | 
|  | LN0->isNonTemporal(), | 
|  | LN0->getAlignment()); | 
|  | APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); | 
|  | Mask = Mask.zext(VT.getSizeInBits()); | 
|  | SDValue And = DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT, | 
|  | ExtLoad, DAG.getConstant(Mask, VT)); | 
|  | SDValue Trunc = DAG.getNode(ISD::TRUNCATE, | 
|  | N0.getOperand(0).getDebugLoc(), | 
|  | N0.getOperand(0).getValueType(), ExtLoad); | 
|  | CombineTo(N, And); | 
|  | CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1)); | 
|  | ExtendSetCCUses(SetCCs, Trunc, ExtLoad, N->getDebugLoc(), | 
|  | ISD::ZERO_EXTEND); | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (zext (zextload x)) -> (zext (truncate (zextload x))) | 
|  | // fold (zext ( extload x)) -> (zext (truncate (zextload x))) | 
|  | if ((ISD::isZEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) && | 
|  | ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) { | 
|  | LoadSDNode *LN0 = cast<LoadSDNode>(N0); | 
|  | EVT MemVT = LN0->getMemoryVT(); | 
|  | if ((!LegalOperations && !LN0->isVolatile()) || | 
|  | TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT)) { | 
|  | SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N->getDebugLoc(), VT, | 
|  | LN0->getChain(), | 
|  | LN0->getBasePtr(), LN0->getPointerInfo(), | 
|  | MemVT, | 
|  | LN0->isVolatile(), LN0->isNonTemporal(), | 
|  | LN0->getAlignment()); | 
|  | CombineTo(N, ExtLoad); | 
|  | CombineTo(N0.getNode(), | 
|  | DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), N0.getValueType(), | 
|  | ExtLoad), | 
|  | ExtLoad.getValue(1)); | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  | } | 
|  |  | 
|  | if (N0.getOpcode() == ISD::SETCC) { | 
|  | if (!LegalOperations && VT.isVector()) { | 
|  | // zext(setcc) -> (and (vsetcc), (1, 1, ...) for vectors. | 
|  | // Only do this before legalize for now. | 
|  | EVT N0VT = N0.getOperand(0).getValueType(); | 
|  | EVT EltVT = VT.getVectorElementType(); | 
|  | SmallVector<SDValue,8> OneOps(VT.getVectorNumElements(), | 
|  | DAG.getConstant(1, EltVT)); | 
|  | if (VT.getSizeInBits() == N0VT.getSizeInBits()) | 
|  | // We know that the # elements of the results is the same as the | 
|  | // # elements of the compare (and the # elements of the compare result | 
|  | // for that matter).  Check to see that they are the same size.  If so, | 
|  | // we know that the element size of the sext'd result matches the | 
|  | // element size of the compare operands. | 
|  | return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, | 
|  | DAG.getSetCC(N->getDebugLoc(), VT, N0.getOperand(0), | 
|  | N0.getOperand(1), | 
|  | cast<CondCodeSDNode>(N0.getOperand(2))->get()), | 
|  | DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), VT, | 
|  | &OneOps[0], OneOps.size())); | 
|  |  | 
|  | // If the desired elements are smaller or larger than the source | 
|  | // elements we can use a matching integer vector type and then | 
|  | // truncate/sign extend | 
|  | EVT MatchingElementType = | 
|  | EVT::getIntegerVT(*DAG.getContext(), | 
|  | N0VT.getScalarType().getSizeInBits()); | 
|  | EVT MatchingVectorType = | 
|  | EVT::getVectorVT(*DAG.getContext(), MatchingElementType, | 
|  | N0VT.getVectorNumElements()); | 
|  | SDValue VsetCC = | 
|  | DAG.getSetCC(N->getDebugLoc(), MatchingVectorType, N0.getOperand(0), | 
|  | N0.getOperand(1), | 
|  | cast<CondCodeSDNode>(N0.getOperand(2))->get()); | 
|  | return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, | 
|  | DAG.getSExtOrTrunc(VsetCC, N->getDebugLoc(), VT), | 
|  | DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), VT, | 
|  | &OneOps[0], OneOps.size())); | 
|  | } | 
|  |  | 
|  | // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc | 
|  | SDValue SCC = | 
|  | SimplifySelectCC(N->getDebugLoc(), N0.getOperand(0), N0.getOperand(1), | 
|  | DAG.getConstant(1, VT), DAG.getConstant(0, VT), | 
|  | cast<CondCodeSDNode>(N0.getOperand(2))->get(), true); | 
|  | if (SCC.getNode()) return SCC; | 
|  | } | 
|  |  | 
|  | // (zext (shl (zext x), cst)) -> (shl (zext x), cst) | 
|  | if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) && | 
|  | isa<ConstantSDNode>(N0.getOperand(1)) && | 
|  | N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND && | 
|  | N0.hasOneUse()) { | 
|  | SDValue ShAmt = N0.getOperand(1); | 
|  | unsigned ShAmtVal = cast<ConstantSDNode>(ShAmt)->getZExtValue(); | 
|  | if (N0.getOpcode() == ISD::SHL) { | 
|  | SDValue InnerZExt = N0.getOperand(0); | 
|  | // If the original shl may be shifting out bits, do not perform this | 
|  | // transformation. | 
|  | unsigned KnownZeroBits = InnerZExt.getValueType().getSizeInBits() - | 
|  | InnerZExt.getOperand(0).getValueType().getSizeInBits(); | 
|  | if (ShAmtVal > KnownZeroBits) | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | DebugLoc DL = N->getDebugLoc(); | 
|  |  | 
|  | // Ensure that the shift amount is wide enough for the shifted value. | 
|  | if (VT.getSizeInBits() >= 256) | 
|  | ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt); | 
|  |  | 
|  | return DAG.getNode(N0.getOpcode(), DL, VT, | 
|  | DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)), | 
|  | ShAmt); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold (aext c1) -> c1 | 
|  | if (isa<ConstantSDNode>(N0)) | 
|  | return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, N0); | 
|  | // fold (aext (aext x)) -> (aext x) | 
|  | // fold (aext (zext x)) -> (zext x) | 
|  | // fold (aext (sext x)) -> (sext x) | 
|  | if (N0.getOpcode() == ISD::ANY_EXTEND  || | 
|  | N0.getOpcode() == ISD::ZERO_EXTEND || | 
|  | N0.getOpcode() == ISD::SIGN_EXTEND) | 
|  | return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT, N0.getOperand(0)); | 
|  |  | 
|  | // fold (aext (truncate (load x))) -> (aext (smaller load x)) | 
|  | // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n))) | 
|  | if (N0.getOpcode() == ISD::TRUNCATE) { | 
|  | SDValue NarrowLoad = ReduceLoadWidth(N0.getNode()); | 
|  | if (NarrowLoad.getNode()) { | 
|  | SDNode* oye = N0.getNode()->getOperand(0).getNode(); | 
|  | if (NarrowLoad.getNode() != N0.getNode()) { | 
|  | CombineTo(N0.getNode(), NarrowLoad); | 
|  | // CombineTo deleted the truncate, if needed, but not what's under it. | 
|  | AddToWorkList(oye); | 
|  | } | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (aext (truncate x)) | 
|  | if (N0.getOpcode() == ISD::TRUNCATE) { | 
|  | SDValue TruncOp = N0.getOperand(0); | 
|  | if (TruncOp.getValueType() == VT) | 
|  | return TruncOp; // x iff x size == zext size. | 
|  | if (TruncOp.getValueType().bitsGT(VT)) | 
|  | return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, TruncOp); | 
|  | return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, TruncOp); | 
|  | } | 
|  |  | 
|  | // Fold (aext (and (trunc x), cst)) -> (and x, cst) | 
|  | // if the trunc is not free. | 
|  | if (N0.getOpcode() == ISD::AND && | 
|  | N0.getOperand(0).getOpcode() == ISD::TRUNCATE && | 
|  | N0.getOperand(1).getOpcode() == ISD::Constant && | 
|  | !TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(), | 
|  | N0.getValueType())) { | 
|  | SDValue X = N0.getOperand(0).getOperand(0); | 
|  | if (X.getValueType().bitsLT(VT)) { | 
|  | X = DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, X); | 
|  | } else if (X.getValueType().bitsGT(VT)) { | 
|  | X = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, X); | 
|  | } | 
|  | APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); | 
|  | Mask = Mask.zext(VT.getSizeInBits()); | 
|  | return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, | 
|  | X, DAG.getConstant(Mask, VT)); | 
|  | } | 
|  |  | 
|  | // fold (aext (load x)) -> (aext (truncate (extload x))) | 
|  | // None of the supported targets knows how to perform load and any_ext | 
|  | // on vectors in one instruction.  We only perform this transformation on | 
|  | // scalars. | 
|  | if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() && | 
|  | ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) || | 
|  | TLI.isLoadExtLegal(ISD::EXTLOAD, N0.getValueType()))) { | 
|  | bool DoXform = true; | 
|  | SmallVector<SDNode*, 4> SetCCs; | 
|  | if (!N0.hasOneUse()) | 
|  | DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ANY_EXTEND, SetCCs, TLI); | 
|  | if (DoXform) { | 
|  | LoadSDNode *LN0 = cast<LoadSDNode>(N0); | 
|  | SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, N->getDebugLoc(), VT, | 
|  | LN0->getChain(), | 
|  | LN0->getBasePtr(), LN0->getPointerInfo(), | 
|  | N0.getValueType(), | 
|  | LN0->isVolatile(), LN0->isNonTemporal(), | 
|  | LN0->getAlignment()); | 
|  | CombineTo(N, ExtLoad); | 
|  | SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), | 
|  | N0.getValueType(), ExtLoad); | 
|  | CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1)); | 
|  | ExtendSetCCUses(SetCCs, Trunc, ExtLoad, N->getDebugLoc(), | 
|  | ISD::ANY_EXTEND); | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (aext (zextload x)) -> (aext (truncate (zextload x))) | 
|  | // fold (aext (sextload x)) -> (aext (truncate (sextload x))) | 
|  | // fold (aext ( extload x)) -> (aext (truncate (extload  x))) | 
|  | if (N0.getOpcode() == ISD::LOAD && | 
|  | !ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && | 
|  | N0.hasOneUse()) { | 
|  | LoadSDNode *LN0 = cast<LoadSDNode>(N0); | 
|  | EVT MemVT = LN0->getMemoryVT(); | 
|  | SDValue ExtLoad = DAG.getExtLoad(LN0->getExtensionType(), N->getDebugLoc(), | 
|  | VT, LN0->getChain(), LN0->getBasePtr(), | 
|  | LN0->getPointerInfo(), MemVT, | 
|  | LN0->isVolatile(), LN0->isNonTemporal(), | 
|  | LN0->getAlignment()); | 
|  | CombineTo(N, ExtLoad); | 
|  | CombineTo(N0.getNode(), | 
|  | DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), | 
|  | N0.getValueType(), ExtLoad), | 
|  | ExtLoad.getValue(1)); | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  |  | 
|  | if (N0.getOpcode() == ISD::SETCC) { | 
|  | // aext(setcc) -> sext_in_reg(vsetcc) for vectors. | 
|  | // Only do this before legalize for now. | 
|  | if (VT.isVector() && !LegalOperations) { | 
|  | EVT N0VT = N0.getOperand(0).getValueType(); | 
|  | // We know that the # elements of the results is the same as the | 
|  | // # elements of the compare (and the # elements of the compare result | 
|  | // for that matter).  Check to see that they are the same size.  If so, | 
|  | // we know that the element size of the sext'd result matches the | 
|  | // element size of the compare operands. | 
|  | if (VT.getSizeInBits() == N0VT.getSizeInBits()) | 
|  | return DAG.getSetCC(N->getDebugLoc(), VT, N0.getOperand(0), | 
|  | N0.getOperand(1), | 
|  | cast<CondCodeSDNode>(N0.getOperand(2))->get()); | 
|  | // If the desired elements are smaller or larger than the source | 
|  | // elements we can use a matching integer vector type and then | 
|  | // truncate/sign extend | 
|  | else { | 
|  | EVT MatchingElementType = | 
|  | EVT::getIntegerVT(*DAG.getContext(), | 
|  | N0VT.getScalarType().getSizeInBits()); | 
|  | EVT MatchingVectorType = | 
|  | EVT::getVectorVT(*DAG.getContext(), MatchingElementType, | 
|  | N0VT.getVectorNumElements()); | 
|  | SDValue VsetCC = | 
|  | DAG.getSetCC(N->getDebugLoc(), MatchingVectorType, N0.getOperand(0), | 
|  | N0.getOperand(1), | 
|  | cast<CondCodeSDNode>(N0.getOperand(2))->get()); | 
|  | return DAG.getSExtOrTrunc(VsetCC, N->getDebugLoc(), VT); | 
|  | } | 
|  | } | 
|  |  | 
|  | // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc | 
|  | SDValue SCC = | 
|  | SimplifySelectCC(N->getDebugLoc(), N0.getOperand(0), N0.getOperand(1), | 
|  | DAG.getConstant(1, VT), DAG.getConstant(0, VT), | 
|  | cast<CondCodeSDNode>(N0.getOperand(2))->get(), true); | 
|  | if (SCC.getNode()) | 
|  | return SCC; | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// GetDemandedBits - See if the specified operand can be simplified with the | 
|  | /// knowledge that only the bits specified by Mask are used.  If so, return the | 
|  | /// simpler operand, otherwise return a null SDValue. | 
|  | SDValue DAGCombiner::GetDemandedBits(SDValue V, const APInt &Mask) { | 
|  | switch (V.getOpcode()) { | 
|  | default: break; | 
|  | case ISD::Constant: { | 
|  | const ConstantSDNode *CV = cast<ConstantSDNode>(V.getNode()); | 
|  | assert(CV != 0 && "Const value should be ConstSDNode."); | 
|  | const APInt &CVal = CV->getAPIntValue(); | 
|  | APInt NewVal = CVal & Mask; | 
|  | if (NewVal != CVal) { | 
|  | return DAG.getConstant(NewVal, V.getValueType()); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ISD::OR: | 
|  | case ISD::XOR: | 
|  | // If the LHS or RHS don't contribute bits to the or, drop them. | 
|  | if (DAG.MaskedValueIsZero(V.getOperand(0), Mask)) | 
|  | return V.getOperand(1); | 
|  | if (DAG.MaskedValueIsZero(V.getOperand(1), Mask)) | 
|  | return V.getOperand(0); | 
|  | break; | 
|  | case ISD::SRL: | 
|  | // Only look at single-use SRLs. | 
|  | if (!V.getNode()->hasOneUse()) | 
|  | break; | 
|  | if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { | 
|  | // See if we can recursively simplify the LHS. | 
|  | unsigned Amt = RHSC->getZExtValue(); | 
|  |  | 
|  | // Watch out for shift count overflow though. | 
|  | if (Amt >= Mask.getBitWidth()) break; | 
|  | APInt NewMask = Mask << Amt; | 
|  | SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask); | 
|  | if (SimplifyLHS.getNode()) | 
|  | return DAG.getNode(ISD::SRL, V.getDebugLoc(), V.getValueType(), | 
|  | SimplifyLHS, V.getOperand(1)); | 
|  | } | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// ReduceLoadWidth - If the result of a wider load is shifted to right of N | 
|  | /// bits and then truncated to a narrower type and where N is a multiple | 
|  | /// of number of bits of the narrower type, transform it to a narrower load | 
|  | /// from address + N / num of bits of new type. If the result is to be | 
|  | /// extended, also fold the extension to form a extending load. | 
|  | SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) { | 
|  | unsigned Opc = N->getOpcode(); | 
|  |  | 
|  | ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  | EVT ExtVT = VT; | 
|  |  | 
|  | // This transformation isn't valid for vector loads. | 
|  | if (VT.isVector()) | 
|  | return SDValue(); | 
|  |  | 
|  | // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then | 
|  | // extended to VT. | 
|  | if (Opc == ISD::SIGN_EXTEND_INREG) { | 
|  | ExtType = ISD::SEXTLOAD; | 
|  | ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT(); | 
|  | } else if (Opc == ISD::SRL) { | 
|  | // Another special-case: SRL is basically zero-extending a narrower value. | 
|  | ExtType = ISD::ZEXTLOAD; | 
|  | N0 = SDValue(N, 0); | 
|  | ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1)); | 
|  | if (!N01) return SDValue(); | 
|  | ExtVT = EVT::getIntegerVT(*DAG.getContext(), | 
|  | VT.getSizeInBits() - N01->getZExtValue()); | 
|  | } | 
|  | if (LegalOperations && !TLI.isLoadExtLegal(ExtType, ExtVT)) | 
|  | return SDValue(); | 
|  |  | 
|  | unsigned EVTBits = ExtVT.getSizeInBits(); | 
|  |  | 
|  | // Do not generate loads of non-round integer types since these can | 
|  | // be expensive (and would be wrong if the type is not byte sized). | 
|  | if (!ExtVT.isRound()) | 
|  | return SDValue(); | 
|  |  | 
|  | unsigned ShAmt = 0; | 
|  | if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) { | 
|  | if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { | 
|  | ShAmt = N01->getZExtValue(); | 
|  | // Is the shift amount a multiple of size of VT? | 
|  | if ((ShAmt & (EVTBits-1)) == 0) { | 
|  | N0 = N0.getOperand(0); | 
|  | // Is the load width a multiple of size of VT? | 
|  | if ((N0.getValueType().getSizeInBits() & (EVTBits-1)) != 0) | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // At this point, we must have a load or else we can't do the transform. | 
|  | if (!isa<LoadSDNode>(N0)) return SDValue(); | 
|  |  | 
|  | // If the shift amount is larger than the input type then we're not | 
|  | // accessing any of the loaded bytes.  If the load was a zextload/extload | 
|  | // then the result of the shift+trunc is zero/undef (handled elsewhere). | 
|  | // If the load was a sextload then the result is a splat of the sign bit | 
|  | // of the extended byte.  This is not worth optimizing for. | 
|  | if (ShAmt >= cast<LoadSDNode>(N0)->getMemoryVT().getSizeInBits()) | 
|  | return SDValue(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the load is shifted left (and the result isn't shifted back right), | 
|  | // we can fold the truncate through the shift. | 
|  | unsigned ShLeftAmt = 0; | 
|  | if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() && | 
|  | ExtVT == VT && TLI.isNarrowingProfitable(N0.getValueType(), VT)) { | 
|  | if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { | 
|  | ShLeftAmt = N01->getZExtValue(); | 
|  | N0 = N0.getOperand(0); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we haven't found a load, we can't narrow it.  Don't transform one with | 
|  | // multiple uses, this would require adding a new load. | 
|  | if (!isa<LoadSDNode>(N0) || !N0.hasOneUse() || | 
|  | // Don't change the width of a volatile load. | 
|  | cast<LoadSDNode>(N0)->isVolatile()) | 
|  | return SDValue(); | 
|  |  | 
|  | // Verify that we are actually reducing a load width here. | 
|  | if (cast<LoadSDNode>(N0)->getMemoryVT().getSizeInBits() < EVTBits) | 
|  | return SDValue(); | 
|  |  | 
|  | LoadSDNode *LN0 = cast<LoadSDNode>(N0); | 
|  | EVT PtrType = N0.getOperand(1).getValueType(); | 
|  |  | 
|  | // For big endian targets, we need to adjust the offset to the pointer to | 
|  | // load the correct bytes. | 
|  | if (TLI.isBigEndian()) { | 
|  | unsigned LVTStoreBits = LN0->getMemoryVT().getStoreSizeInBits(); | 
|  | unsigned EVTStoreBits = ExtVT.getStoreSizeInBits(); | 
|  | ShAmt = LVTStoreBits - EVTStoreBits - ShAmt; | 
|  | } | 
|  |  | 
|  | uint64_t PtrOff = ShAmt / 8; | 
|  | unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff); | 
|  | SDValue NewPtr = DAG.getNode(ISD::ADD, LN0->getDebugLoc(), | 
|  | PtrType, LN0->getBasePtr(), | 
|  | DAG.getConstant(PtrOff, PtrType)); | 
|  | AddToWorkList(NewPtr.getNode()); | 
|  |  | 
|  | SDValue Load; | 
|  | if (ExtType == ISD::NON_EXTLOAD) | 
|  | Load =  DAG.getLoad(VT, N0.getDebugLoc(), LN0->getChain(), NewPtr, | 
|  | LN0->getPointerInfo().getWithOffset(PtrOff), | 
|  | LN0->isVolatile(), LN0->isNonTemporal(), | 
|  | LN0->isInvariant(), NewAlign); | 
|  | else | 
|  | Load = DAG.getExtLoad(ExtType, N0.getDebugLoc(), VT, LN0->getChain(),NewPtr, | 
|  | LN0->getPointerInfo().getWithOffset(PtrOff), | 
|  | ExtVT, LN0->isVolatile(), LN0->isNonTemporal(), | 
|  | NewAlign); | 
|  |  | 
|  | // Replace the old load's chain with the new load's chain. | 
|  | WorkListRemover DeadNodes(*this); | 
|  | DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1), | 
|  | &DeadNodes); | 
|  |  | 
|  | // Shift the result left, if we've swallowed a left shift. | 
|  | SDValue Result = Load; | 
|  | if (ShLeftAmt != 0) { | 
|  | EVT ShImmTy = getShiftAmountTy(Result.getValueType()); | 
|  | if (!isUIntN(ShImmTy.getSizeInBits(), ShLeftAmt)) | 
|  | ShImmTy = VT; | 
|  | Result = DAG.getNode(ISD::SHL, N0.getDebugLoc(), VT, | 
|  | Result, DAG.getConstant(ShLeftAmt, ShImmTy)); | 
|  | } | 
|  |  | 
|  | // Return the new loaded value. | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | EVT VT = N->getValueType(0); | 
|  | EVT EVT = cast<VTSDNode>(N1)->getVT(); | 
|  | unsigned VTBits = VT.getScalarType().getSizeInBits(); | 
|  | unsigned EVTBits = EVT.getScalarType().getSizeInBits(); | 
|  |  | 
|  | // fold (sext_in_reg c1) -> c1 | 
|  | if (isa<ConstantSDNode>(N0) || N0.getOpcode() == ISD::UNDEF) | 
|  | return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT, N0, N1); | 
|  |  | 
|  | // If the input is already sign extended, just drop the extension. | 
|  | if (DAG.ComputeNumSignBits(N0) >= VTBits-EVTBits+1) | 
|  | return N0; | 
|  |  | 
|  | // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2 | 
|  | if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && | 
|  | EVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT())) { | 
|  | return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT, | 
|  | N0.getOperand(0), N1); | 
|  | } | 
|  |  | 
|  | // fold (sext_in_reg (sext x)) -> (sext x) | 
|  | // fold (sext_in_reg (aext x)) -> (sext x) | 
|  | // if x is small enough. | 
|  | if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) { | 
|  | SDValue N00 = N0.getOperand(0); | 
|  | if (N00.getValueType().getScalarType().getSizeInBits() <= EVTBits && | 
|  | (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT))) | 
|  | return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, N00, N1); | 
|  | } | 
|  |  | 
|  | // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero. | 
|  | if (DAG.MaskedValueIsZero(N0, APInt::getBitsSet(VTBits, EVTBits-1, EVTBits))) | 
|  | return DAG.getZeroExtendInReg(N0, N->getDebugLoc(), EVT); | 
|  |  | 
|  | // fold operands of sext_in_reg based on knowledge that the top bits are not | 
|  | // demanded. | 
|  | if (SimplifyDemandedBits(SDValue(N, 0))) | 
|  | return SDValue(N, 0); | 
|  |  | 
|  | // fold (sext_in_reg (load x)) -> (smaller sextload x) | 
|  | // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits)) | 
|  | SDValue NarrowLoad = ReduceLoadWidth(N); | 
|  | if (NarrowLoad.getNode()) | 
|  | return NarrowLoad; | 
|  |  | 
|  | // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24) | 
|  | // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible. | 
|  | // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above. | 
|  | if (N0.getOpcode() == ISD::SRL) { | 
|  | if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1))) | 
|  | if (ShAmt->getZExtValue()+EVTBits <= VTBits) { | 
|  | // We can turn this into an SRA iff the input to the SRL is already sign | 
|  | // extended enough. | 
|  | unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0)); | 
|  | if (VTBits-(ShAmt->getZExtValue()+EVTBits) < InSignBits) | 
|  | return DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, | 
|  | N0.getOperand(0), N0.getOperand(1)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (sext_inreg (extload x)) -> (sextload x) | 
|  | if (ISD::isEXTLoad(N0.getNode()) && | 
|  | ISD::isUNINDEXEDLoad(N0.getNode()) && | 
|  | EVT == cast<LoadSDNode>(N0)->getMemoryVT() && | 
|  | ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) || | 
|  | TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT))) { | 
|  | LoadSDNode *LN0 = cast<LoadSDNode>(N0); | 
|  | SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT, | 
|  | LN0->getChain(), | 
|  | LN0->getBasePtr(), LN0->getPointerInfo(), | 
|  | EVT, | 
|  | LN0->isVolatile(), LN0->isNonTemporal(), | 
|  | LN0->getAlignment()); | 
|  | CombineTo(N, ExtLoad); | 
|  | CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  | // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use | 
|  | if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && | 
|  | N0.hasOneUse() && | 
|  | EVT == cast<LoadSDNode>(N0)->getMemoryVT() && | 
|  | ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) || | 
|  | TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT))) { | 
|  | LoadSDNode *LN0 = cast<LoadSDNode>(N0); | 
|  | SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT, | 
|  | LN0->getChain(), | 
|  | LN0->getBasePtr(), LN0->getPointerInfo(), | 
|  | EVT, | 
|  | LN0->isVolatile(), LN0->isNonTemporal(), | 
|  | LN0->getAlignment()); | 
|  | CombineTo(N, ExtLoad); | 
|  | CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  |  | 
|  | // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16)) | 
|  | if (EVTBits <= 16 && N0.getOpcode() == ISD::OR) { | 
|  | SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0), | 
|  | N0.getOperand(1), false); | 
|  | if (BSwap.getNode() != 0) | 
|  | return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT, | 
|  | BSwap, N1); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitTRUNCATE(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // noop truncate | 
|  | if (N0.getValueType() == N->getValueType(0)) | 
|  | return N0; | 
|  | // fold (truncate c1) -> c1 | 
|  | if (isa<ConstantSDNode>(N0)) | 
|  | return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, N0); | 
|  | // fold (truncate (truncate x)) -> (truncate x) | 
|  | if (N0.getOpcode() == ISD::TRUNCATE) | 
|  | return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, N0.getOperand(0)); | 
|  | // fold (truncate (ext x)) -> (ext x) or (truncate x) or x | 
|  | if (N0.getOpcode() == ISD::ZERO_EXTEND || | 
|  | N0.getOpcode() == ISD::SIGN_EXTEND || | 
|  | N0.getOpcode() == ISD::ANY_EXTEND) { | 
|  | if (N0.getOperand(0).getValueType().bitsLT(VT)) | 
|  | // if the source is smaller than the dest, we still need an extend | 
|  | return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT, | 
|  | N0.getOperand(0)); | 
|  | else if (N0.getOperand(0).getValueType().bitsGT(VT)) | 
|  | // if the source is larger than the dest, than we just need the truncate | 
|  | return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, N0.getOperand(0)); | 
|  | else | 
|  | // if the source and dest are the same type, we can drop both the extend | 
|  | // and the truncate. | 
|  | return N0.getOperand(0); | 
|  | } | 
|  |  | 
|  | // See if we can simplify the input to this truncate through knowledge that | 
|  | // only the low bits are being used. | 
|  | // For example "trunc (or (shl x, 8), y)" // -> trunc y | 
|  | // Currently we only perform this optimization on scalars because vectors | 
|  | // may have different active low bits. | 
|  | if (!VT.isVector()) { | 
|  | SDValue Shorter = | 
|  | GetDemandedBits(N0, APInt::getLowBitsSet(N0.getValueSizeInBits(), | 
|  | VT.getSizeInBits())); | 
|  | if (Shorter.getNode()) | 
|  | return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, Shorter); | 
|  | } | 
|  | // fold (truncate (load x)) -> (smaller load x) | 
|  | // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits)) | 
|  | if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) { | 
|  | SDValue Reduced = ReduceLoadWidth(N); | 
|  | if (Reduced.getNode()) | 
|  | return Reduced; | 
|  | } | 
|  |  | 
|  | // Simplify the operands using demanded-bits information. | 
|  | if (!VT.isVector() && | 
|  | SimplifyDemandedBits(SDValue(N, 0))) | 
|  | return SDValue(N, 0); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDNode *getBuildPairElt(SDNode *N, unsigned i) { | 
|  | SDValue Elt = N->getOperand(i); | 
|  | if (Elt.getOpcode() != ISD::MERGE_VALUES) | 
|  | return Elt.getNode(); | 
|  | return Elt.getOperand(Elt.getResNo()).getNode(); | 
|  | } | 
|  |  | 
|  | /// CombineConsecutiveLoads - build_pair (load, load) -> load | 
|  | /// if load locations are consecutive. | 
|  | SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) { | 
|  | assert(N->getOpcode() == ISD::BUILD_PAIR); | 
|  |  | 
|  | LoadSDNode *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0)); | 
|  | LoadSDNode *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1)); | 
|  | if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse() || | 
|  | LD1->getPointerInfo().getAddrSpace() != | 
|  | LD2->getPointerInfo().getAddrSpace()) | 
|  | return SDValue(); | 
|  | EVT LD1VT = LD1->getValueType(0); | 
|  |  | 
|  | if (ISD::isNON_EXTLoad(LD2) && | 
|  | LD2->hasOneUse() && | 
|  | // If both are volatile this would reduce the number of volatile loads. | 
|  | // If one is volatile it might be ok, but play conservative and bail out. | 
|  | !LD1->isVolatile() && | 
|  | !LD2->isVolatile() && | 
|  | DAG.isConsecutiveLoad(LD2, LD1, LD1VT.getSizeInBits()/8, 1)) { | 
|  | unsigned Align = LD1->getAlignment(); | 
|  | unsigned NewAlign = TLI.getTargetData()-> | 
|  | getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext())); | 
|  |  | 
|  | if (NewAlign <= Align && | 
|  | (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT))) | 
|  | return DAG.getLoad(VT, N->getDebugLoc(), LD1->getChain(), | 
|  | LD1->getBasePtr(), LD1->getPointerInfo(), | 
|  | false, false, false, Align); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitBITCAST(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // If the input is a BUILD_VECTOR with all constant elements, fold this now. | 
|  | // Only do this before legalize, since afterward the target may be depending | 
|  | // on the bitconvert. | 
|  | // First check to see if this is all constant. | 
|  | if (!LegalTypes && | 
|  | N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() && | 
|  | VT.isVector()) { | 
|  | bool isSimple = true; | 
|  | for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) | 
|  | if (N0.getOperand(i).getOpcode() != ISD::UNDEF && | 
|  | N0.getOperand(i).getOpcode() != ISD::Constant && | 
|  | N0.getOperand(i).getOpcode() != ISD::ConstantFP) { | 
|  | isSimple = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | EVT DestEltVT = N->getValueType(0).getVectorElementType(); | 
|  | assert(!DestEltVT.isVector() && | 
|  | "Element type of vector ValueType must not be vector!"); | 
|  | if (isSimple) | 
|  | return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(), DestEltVT); | 
|  | } | 
|  |  | 
|  | // If the input is a constant, let getNode fold it. | 
|  | if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) { | 
|  | SDValue Res = DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, N0); | 
|  | if (Res.getNode() != N) { | 
|  | if (!LegalOperations || | 
|  | TLI.isOperationLegal(Res.getNode()->getOpcode(), VT)) | 
|  | return Res; | 
|  |  | 
|  | // Folding it resulted in an illegal node, and it's too late to | 
|  | // do that. Clean up the old node and forego the transformation. | 
|  | // Ideally this won't happen very often, because instcombine | 
|  | // and the earlier dagcombine runs (where illegal nodes are | 
|  | // permitted) should have folded most of them already. | 
|  | DAG.DeleteNode(Res.getNode()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // (conv (conv x, t1), t2) -> (conv x, t2) | 
|  | if (N0.getOpcode() == ISD::BITCAST) | 
|  | return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, | 
|  | N0.getOperand(0)); | 
|  |  | 
|  | // fold (conv (load x)) -> (load (conv*)x) | 
|  | // If the resultant load doesn't need a higher alignment than the original! | 
|  | if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && | 
|  | // Do not change the width of a volatile load. | 
|  | !cast<LoadSDNode>(N0)->isVolatile() && | 
|  | (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT))) { | 
|  | LoadSDNode *LN0 = cast<LoadSDNode>(N0); | 
|  | unsigned Align = TLI.getTargetData()-> | 
|  | getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext())); | 
|  | unsigned OrigAlign = LN0->getAlignment(); | 
|  |  | 
|  | if (Align <= OrigAlign) { | 
|  | SDValue Load = DAG.getLoad(VT, N->getDebugLoc(), LN0->getChain(), | 
|  | LN0->getBasePtr(), LN0->getPointerInfo(), | 
|  | LN0->isVolatile(), LN0->isNonTemporal(), | 
|  | LN0->isInvariant(), OrigAlign); | 
|  | AddToWorkList(N); | 
|  | CombineTo(N0.getNode(), | 
|  | DAG.getNode(ISD::BITCAST, N0.getDebugLoc(), | 
|  | N0.getValueType(), Load), | 
|  | Load.getValue(1)); | 
|  | return Load; | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) | 
|  | // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) | 
|  | // This often reduces constant pool loads. | 
|  | if ((N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FABS) && | 
|  | N0.getNode()->hasOneUse() && VT.isInteger() && !VT.isVector()) { | 
|  | SDValue NewConv = DAG.getNode(ISD::BITCAST, N0.getDebugLoc(), VT, | 
|  | N0.getOperand(0)); | 
|  | AddToWorkList(NewConv.getNode()); | 
|  |  | 
|  | APInt SignBit = APInt::getSignBit(VT.getSizeInBits()); | 
|  | if (N0.getOpcode() == ISD::FNEG) | 
|  | return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, | 
|  | NewConv, DAG.getConstant(SignBit, VT)); | 
|  | assert(N0.getOpcode() == ISD::FABS); | 
|  | return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, | 
|  | NewConv, DAG.getConstant(~SignBit, VT)); | 
|  | } | 
|  |  | 
|  | // fold (bitconvert (fcopysign cst, x)) -> | 
|  | //         (or (and (bitconvert x), sign), (and cst, (not sign))) | 
|  | // Note that we don't handle (copysign x, cst) because this can always be | 
|  | // folded to an fneg or fabs. | 
|  | if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() && | 
|  | isa<ConstantFPSDNode>(N0.getOperand(0)) && | 
|  | VT.isInteger() && !VT.isVector()) { | 
|  | unsigned OrigXWidth = N0.getOperand(1).getValueType().getSizeInBits(); | 
|  | EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth); | 
|  | if (isTypeLegal(IntXVT)) { | 
|  | SDValue X = DAG.getNode(ISD::BITCAST, N0.getDebugLoc(), | 
|  | IntXVT, N0.getOperand(1)); | 
|  | AddToWorkList(X.getNode()); | 
|  |  | 
|  | // If X has a different width than the result/lhs, sext it or truncate it. | 
|  | unsigned VTWidth = VT.getSizeInBits(); | 
|  | if (OrigXWidth < VTWidth) { | 
|  | X = DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, X); | 
|  | AddToWorkList(X.getNode()); | 
|  | } else if (OrigXWidth > VTWidth) { | 
|  | // To get the sign bit in the right place, we have to shift it right | 
|  | // before truncating. | 
|  | X = DAG.getNode(ISD::SRL, X.getDebugLoc(), | 
|  | X.getValueType(), X, | 
|  | DAG.getConstant(OrigXWidth-VTWidth, X.getValueType())); | 
|  | AddToWorkList(X.getNode()); | 
|  | X = DAG.getNode(ISD::TRUNCATE, X.getDebugLoc(), VT, X); | 
|  | AddToWorkList(X.getNode()); | 
|  | } | 
|  |  | 
|  | APInt SignBit = APInt::getSignBit(VT.getSizeInBits()); | 
|  | X = DAG.getNode(ISD::AND, X.getDebugLoc(), VT, | 
|  | X, DAG.getConstant(SignBit, VT)); | 
|  | AddToWorkList(X.getNode()); | 
|  |  | 
|  | SDValue Cst = DAG.getNode(ISD::BITCAST, N0.getDebugLoc(), | 
|  | VT, N0.getOperand(0)); | 
|  | Cst = DAG.getNode(ISD::AND, Cst.getDebugLoc(), VT, | 
|  | Cst, DAG.getConstant(~SignBit, VT)); | 
|  | AddToWorkList(Cst.getNode()); | 
|  |  | 
|  | return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, X, Cst); | 
|  | } | 
|  | } | 
|  |  | 
|  | // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive. | 
|  | if (N0.getOpcode() == ISD::BUILD_PAIR) { | 
|  | SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT); | 
|  | if (CombineLD.getNode()) | 
|  | return CombineLD; | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) { | 
|  | EVT VT = N->getValueType(0); | 
|  | return CombineConsecutiveLoads(N, VT); | 
|  | } | 
|  |  | 
|  | /// ConstantFoldBITCASTofBUILD_VECTOR - We know that BV is a build_vector | 
|  | /// node with Constant, ConstantFP or Undef operands.  DstEltVT indicates the | 
|  | /// destination element value type. | 
|  | SDValue DAGCombiner:: | 
|  | ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) { | 
|  | EVT SrcEltVT = BV->getValueType(0).getVectorElementType(); | 
|  |  | 
|  | // If this is already the right type, we're done. | 
|  | if (SrcEltVT == DstEltVT) return SDValue(BV, 0); | 
|  |  | 
|  | unsigned SrcBitSize = SrcEltVT.getSizeInBits(); | 
|  | unsigned DstBitSize = DstEltVT.getSizeInBits(); | 
|  |  | 
|  | // If this is a conversion of N elements of one type to N elements of another | 
|  | // type, convert each element.  This handles FP<->INT cases. | 
|  | if (SrcBitSize == DstBitSize) { | 
|  | EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, | 
|  | BV->getValueType(0).getVectorNumElements()); | 
|  |  | 
|  | // Due to the FP element handling below calling this routine recursively, | 
|  | // we can end up with a scalar-to-vector node here. | 
|  | if (BV->getOpcode() == ISD::SCALAR_TO_VECTOR) | 
|  | return DAG.getNode(ISD::SCALAR_TO_VECTOR, BV->getDebugLoc(), VT, | 
|  | DAG.getNode(ISD::BITCAST, BV->getDebugLoc(), | 
|  | DstEltVT, BV->getOperand(0))); | 
|  |  | 
|  | SmallVector<SDValue, 8> Ops; | 
|  | for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { | 
|  | SDValue Op = BV->getOperand(i); | 
|  | // If the vector element type is not legal, the BUILD_VECTOR operands | 
|  | // are promoted and implicitly truncated.  Make that explicit here. | 
|  | if (Op.getValueType() != SrcEltVT) | 
|  | Op = DAG.getNode(ISD::TRUNCATE, BV->getDebugLoc(), SrcEltVT, Op); | 
|  | Ops.push_back(DAG.getNode(ISD::BITCAST, BV->getDebugLoc(), | 
|  | DstEltVT, Op)); | 
|  | AddToWorkList(Ops.back().getNode()); | 
|  | } | 
|  | return DAG.getNode(ISD::BUILD_VECTOR, BV->getDebugLoc(), VT, | 
|  | &Ops[0], Ops.size()); | 
|  | } | 
|  |  | 
|  | // Otherwise, we're growing or shrinking the elements.  To avoid having to | 
|  | // handle annoying details of growing/shrinking FP values, we convert them to | 
|  | // int first. | 
|  | if (SrcEltVT.isFloatingPoint()) { | 
|  | // Convert the input float vector to a int vector where the elements are the | 
|  | // same sizes. | 
|  | assert((SrcEltVT == MVT::f32 || SrcEltVT == MVT::f64) && "Unknown FP VT!"); | 
|  | EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits()); | 
|  | BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode(); | 
|  | SrcEltVT = IntVT; | 
|  | } | 
|  |  | 
|  | // Now we know the input is an integer vector.  If the output is a FP type, | 
|  | // convert to integer first, then to FP of the right size. | 
|  | if (DstEltVT.isFloatingPoint()) { | 
|  | assert((DstEltVT == MVT::f32 || DstEltVT == MVT::f64) && "Unknown FP VT!"); | 
|  | EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits()); | 
|  | SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode(); | 
|  |  | 
|  | // Next, convert to FP elements of the same size. | 
|  | return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT); | 
|  | } | 
|  |  | 
|  | // Okay, we know the src/dst types are both integers of differing types. | 
|  | // Handling growing first. | 
|  | assert(SrcEltVT.isInteger() && DstEltVT.isInteger()); | 
|  | if (SrcBitSize < DstBitSize) { | 
|  | unsigned NumInputsPerOutput = DstBitSize/SrcBitSize; | 
|  |  | 
|  | SmallVector<SDValue, 8> Ops; | 
|  | for (unsigned i = 0, e = BV->getNumOperands(); i != e; | 
|  | i += NumInputsPerOutput) { | 
|  | bool isLE = TLI.isLittleEndian(); | 
|  | APInt NewBits = APInt(DstBitSize, 0); | 
|  | bool EltIsUndef = true; | 
|  | for (unsigned j = 0; j != NumInputsPerOutput; ++j) { | 
|  | // Shift the previously computed bits over. | 
|  | NewBits <<= SrcBitSize; | 
|  | SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j)); | 
|  | if (Op.getOpcode() == ISD::UNDEF) continue; | 
|  | EltIsUndef = false; | 
|  |  | 
|  | NewBits |= cast<ConstantSDNode>(Op)->getAPIntValue(). | 
|  | zextOrTrunc(SrcBitSize).zext(DstBitSize); | 
|  | } | 
|  |  | 
|  | if (EltIsUndef) | 
|  | Ops.push_back(DAG.getUNDEF(DstEltVT)); | 
|  | else | 
|  | Ops.push_back(DAG.getConstant(NewBits, DstEltVT)); | 
|  | } | 
|  |  | 
|  | EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size()); | 
|  | return DAG.getNode(ISD::BUILD_VECTOR, BV->getDebugLoc(), VT, | 
|  | &Ops[0], Ops.size()); | 
|  | } | 
|  |  | 
|  | // Finally, this must be the case where we are shrinking elements: each input | 
|  | // turns into multiple outputs. | 
|  | bool isS2V = ISD::isScalarToVector(BV); | 
|  | unsigned NumOutputsPerInput = SrcBitSize/DstBitSize; | 
|  | EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, | 
|  | NumOutputsPerInput*BV->getNumOperands()); | 
|  | SmallVector<SDValue, 8> Ops; | 
|  |  | 
|  | for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { | 
|  | if (BV->getOperand(i).getOpcode() == ISD::UNDEF) { | 
|  | for (unsigned j = 0; j != NumOutputsPerInput; ++j) | 
|  | Ops.push_back(DAG.getUNDEF(DstEltVT)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | APInt OpVal = cast<ConstantSDNode>(BV->getOperand(i))-> | 
|  | getAPIntValue().zextOrTrunc(SrcBitSize); | 
|  |  | 
|  | for (unsigned j = 0; j != NumOutputsPerInput; ++j) { | 
|  | APInt ThisVal = OpVal.trunc(DstBitSize); | 
|  | Ops.push_back(DAG.getConstant(ThisVal, DstEltVT)); | 
|  | if (isS2V && i == 0 && j == 0 && ThisVal.zext(SrcBitSize) == OpVal) | 
|  | // Simply turn this into a SCALAR_TO_VECTOR of the new type. | 
|  | return DAG.getNode(ISD::SCALAR_TO_VECTOR, BV->getDebugLoc(), VT, | 
|  | Ops[0]); | 
|  | OpVal = OpVal.lshr(DstBitSize); | 
|  | } | 
|  |  | 
|  | // For big endian targets, swap the order of the pieces of each element. | 
|  | if (TLI.isBigEndian()) | 
|  | std::reverse(Ops.end()-NumOutputsPerInput, Ops.end()); | 
|  | } | 
|  |  | 
|  | return DAG.getNode(ISD::BUILD_VECTOR, BV->getDebugLoc(), VT, | 
|  | &Ops[0], Ops.size()); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitFADD(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); | 
|  | ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold vector ops | 
|  | if (VT.isVector()) { | 
|  | SDValue FoldedVOp = SimplifyVBinOp(N); | 
|  | if (FoldedVOp.getNode()) return FoldedVOp; | 
|  | } | 
|  |  | 
|  | // fold (fadd c1, c2) -> (fadd c1, c2) | 
|  | if (N0CFP && N1CFP && VT != MVT::ppcf128) | 
|  | return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0, N1); | 
|  | // canonicalize constant to RHS | 
|  | if (N0CFP && !N1CFP) | 
|  | return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N1, N0); | 
|  | // fold (fadd A, 0) -> A | 
|  | if (DAG.getTarget().Options.UnsafeFPMath && N1CFP && | 
|  | N1CFP->getValueAPF().isZero()) | 
|  | return N0; | 
|  | // fold (fadd A, (fneg B)) -> (fsub A, B) | 
|  | if (isNegatibleForFree(N1, LegalOperations, &DAG.getTarget().Options) == 2) | 
|  | return DAG.getNode(ISD::FSUB, N->getDebugLoc(), VT, N0, | 
|  | GetNegatedExpression(N1, DAG, LegalOperations)); | 
|  | // fold (fadd (fneg A), B) -> (fsub B, A) | 
|  | if (isNegatibleForFree(N0, LegalOperations, &DAG.getTarget().Options) == 2) | 
|  | return DAG.getNode(ISD::FSUB, N->getDebugLoc(), VT, N1, | 
|  | GetNegatedExpression(N0, DAG, LegalOperations)); | 
|  |  | 
|  | // If allowed, fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2)) | 
|  | if (DAG.getTarget().Options.UnsafeFPMath && N1CFP && | 
|  | N0.getOpcode() == ISD::FADD && N0.getNode()->hasOneUse() && | 
|  | isa<ConstantFPSDNode>(N0.getOperand(1))) | 
|  | return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0.getOperand(0), | 
|  | DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, | 
|  | N0.getOperand(1), N1)); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitFSUB(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); | 
|  | ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold vector ops | 
|  | if (VT.isVector()) { | 
|  | SDValue FoldedVOp = SimplifyVBinOp(N); | 
|  | if (FoldedVOp.getNode()) return FoldedVOp; | 
|  | } | 
|  |  | 
|  | // fold (fsub c1, c2) -> c1-c2 | 
|  | if (N0CFP && N1CFP && VT != MVT::ppcf128) | 
|  | return DAG.getNode(ISD::FSUB, N->getDebugLoc(), VT, N0, N1); | 
|  | // fold (fsub A, 0) -> A | 
|  | if (DAG.getTarget().Options.UnsafeFPMath && | 
|  | N1CFP && N1CFP->getValueAPF().isZero()) | 
|  | return N0; | 
|  | // fold (fsub 0, B) -> -B | 
|  | if (DAG.getTarget().Options.UnsafeFPMath && | 
|  | N0CFP && N0CFP->getValueAPF().isZero()) { | 
|  | if (isNegatibleForFree(N1, LegalOperations, &DAG.getTarget().Options)) | 
|  | return GetNegatedExpression(N1, DAG, LegalOperations); | 
|  | if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) | 
|  | return DAG.getNode(ISD::FNEG, N->getDebugLoc(), VT, N1); | 
|  | } | 
|  | // fold (fsub A, (fneg B)) -> (fadd A, B) | 
|  | if (isNegatibleForFree(N1, LegalOperations, &DAG.getTarget().Options)) | 
|  | return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0, | 
|  | GetNegatedExpression(N1, DAG, LegalOperations)); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitFMUL(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); | 
|  | ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold vector ops | 
|  | if (VT.isVector()) { | 
|  | SDValue FoldedVOp = SimplifyVBinOp(N); | 
|  | if (FoldedVOp.getNode()) return FoldedVOp; | 
|  | } | 
|  |  | 
|  | // fold (fmul c1, c2) -> c1*c2 | 
|  | if (N0CFP && N1CFP && VT != MVT::ppcf128) | 
|  | return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, N0, N1); | 
|  | // canonicalize constant to RHS | 
|  | if (N0CFP && !N1CFP) | 
|  | return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, N1, N0); | 
|  | // fold (fmul A, 0) -> 0 | 
|  | if (DAG.getTarget().Options.UnsafeFPMath && | 
|  | N1CFP && N1CFP->getValueAPF().isZero()) | 
|  | return N1; | 
|  | // fold (fmul A, 0) -> 0, vector edition. | 
|  | if (DAG.getTarget().Options.UnsafeFPMath && | 
|  | ISD::isBuildVectorAllZeros(N1.getNode())) | 
|  | return N1; | 
|  | // fold (fmul X, 2.0) -> (fadd X, X) | 
|  | if (N1CFP && N1CFP->isExactlyValue(+2.0)) | 
|  | return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0, N0); | 
|  | // fold (fmul X, -1.0) -> (fneg X) | 
|  | if (N1CFP && N1CFP->isExactlyValue(-1.0)) | 
|  | if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) | 
|  | return DAG.getNode(ISD::FNEG, N->getDebugLoc(), VT, N0); | 
|  |  | 
|  | // fold (fmul (fneg X), (fneg Y)) -> (fmul X, Y) | 
|  | if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, | 
|  | &DAG.getTarget().Options)) { | 
|  | if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, | 
|  | &DAG.getTarget().Options)) { | 
|  | // Both can be negated for free, check to see if at least one is cheaper | 
|  | // negated. | 
|  | if (LHSNeg == 2 || RHSNeg == 2) | 
|  | return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, | 
|  | GetNegatedExpression(N0, DAG, LegalOperations), | 
|  | GetNegatedExpression(N1, DAG, LegalOperations)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If allowed, fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2)) | 
|  | if (DAG.getTarget().Options.UnsafeFPMath && | 
|  | N1CFP && N0.getOpcode() == ISD::FMUL && | 
|  | N0.getNode()->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1))) | 
|  | return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, N0.getOperand(0), | 
|  | DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, | 
|  | N0.getOperand(1), N1)); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitFDIV(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); | 
|  | ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold vector ops | 
|  | if (VT.isVector()) { | 
|  | SDValue FoldedVOp = SimplifyVBinOp(N); | 
|  | if (FoldedVOp.getNode()) return FoldedVOp; | 
|  | } | 
|  |  | 
|  | // fold (fdiv c1, c2) -> c1/c2 | 
|  | if (N0CFP && N1CFP && VT != MVT::ppcf128) | 
|  | return DAG.getNode(ISD::FDIV, N->getDebugLoc(), VT, N0, N1); | 
|  |  | 
|  |  | 
|  | // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y) | 
|  | if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, | 
|  | &DAG.getTarget().Options)) { | 
|  | if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, | 
|  | &DAG.getTarget().Options)) { | 
|  | // Both can be negated for free, check to see if at least one is cheaper | 
|  | // negated. | 
|  | if (LHSNeg == 2 || RHSNeg == 2) | 
|  | return DAG.getNode(ISD::FDIV, N->getDebugLoc(), VT, | 
|  | GetNegatedExpression(N0, DAG, LegalOperations), | 
|  | GetNegatedExpression(N1, DAG, LegalOperations)); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitFREM(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); | 
|  | ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold (frem c1, c2) -> fmod(c1,c2) | 
|  | if (N0CFP && N1CFP && VT != MVT::ppcf128) | 
|  | return DAG.getNode(ISD::FREM, N->getDebugLoc(), VT, N0, N1); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); | 
|  | ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | if (N0CFP && N1CFP && VT != MVT::ppcf128)  // Constant fold | 
|  | return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT, N0, N1); | 
|  |  | 
|  | if (N1CFP) { | 
|  | const APFloat& V = N1CFP->getValueAPF(); | 
|  | // copysign(x, c1) -> fabs(x)       iff ispos(c1) | 
|  | // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1) | 
|  | if (!V.isNegative()) { | 
|  | if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT)) | 
|  | return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0); | 
|  | } else { | 
|  | if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) | 
|  | return DAG.getNode(ISD::FNEG, N->getDebugLoc(), VT, | 
|  | DAG.getNode(ISD::FABS, N0.getDebugLoc(), VT, N0)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // copysign(fabs(x), y) -> copysign(x, y) | 
|  | // copysign(fneg(x), y) -> copysign(x, y) | 
|  | // copysign(copysign(x,z), y) -> copysign(x, y) | 
|  | if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG || | 
|  | N0.getOpcode() == ISD::FCOPYSIGN) | 
|  | return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT, | 
|  | N0.getOperand(0), N1); | 
|  |  | 
|  | // copysign(x, abs(y)) -> abs(x) | 
|  | if (N1.getOpcode() == ISD::FABS) | 
|  | return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0); | 
|  |  | 
|  | // copysign(x, copysign(y,z)) -> copysign(x, z) | 
|  | if (N1.getOpcode() == ISD::FCOPYSIGN) | 
|  | return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT, | 
|  | N0, N1.getOperand(1)); | 
|  |  | 
|  | // copysign(x, fp_extend(y)) -> copysign(x, y) | 
|  | // copysign(x, fp_round(y)) -> copysign(x, y) | 
|  | if (N1.getOpcode() == ISD::FP_EXTEND || N1.getOpcode() == ISD::FP_ROUND) | 
|  | return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT, | 
|  | N0, N1.getOperand(0)); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); | 
|  | EVT VT = N->getValueType(0); | 
|  | EVT OpVT = N0.getValueType(); | 
|  |  | 
|  | // fold (sint_to_fp c1) -> c1fp | 
|  | if (N0C && OpVT != MVT::ppcf128 && | 
|  | // ...but only if the target supports immediate floating-point values | 
|  | (!LegalOperations || | 
|  | TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) | 
|  | return DAG.getNode(ISD::SINT_TO_FP, N->getDebugLoc(), VT, N0); | 
|  |  | 
|  | // If the input is a legal type, and SINT_TO_FP is not legal on this target, | 
|  | // but UINT_TO_FP is legal on this target, try to convert. | 
|  | if (!TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT) && | 
|  | TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT)) { | 
|  | // If the sign bit is known to be zero, we can change this to UINT_TO_FP. | 
|  | if (DAG.SignBitIsZero(N0)) | 
|  | return DAG.getNode(ISD::UINT_TO_FP, N->getDebugLoc(), VT, N0); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); | 
|  | EVT VT = N->getValueType(0); | 
|  | EVT OpVT = N0.getValueType(); | 
|  |  | 
|  | // fold (uint_to_fp c1) -> c1fp | 
|  | if (N0C && OpVT != MVT::ppcf128 && | 
|  | // ...but only if the target supports immediate floating-point values | 
|  | (!LegalOperations || | 
|  | TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) | 
|  | return DAG.getNode(ISD::UINT_TO_FP, N->getDebugLoc(), VT, N0); | 
|  |  | 
|  | // If the input is a legal type, and UINT_TO_FP is not legal on this target, | 
|  | // but SINT_TO_FP is legal on this target, try to convert. | 
|  | if (!TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT) && | 
|  | TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT)) { | 
|  | // If the sign bit is known to be zero, we can change this to SINT_TO_FP. | 
|  | if (DAG.SignBitIsZero(N0)) | 
|  | return DAG.getNode(ISD::SINT_TO_FP, N->getDebugLoc(), VT, N0); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold (fp_to_sint c1fp) -> c1 | 
|  | if (N0CFP) | 
|  | return DAG.getNode(ISD::FP_TO_SINT, N->getDebugLoc(), VT, N0); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold (fp_to_uint c1fp) -> c1 | 
|  | if (N0CFP && VT != MVT::ppcf128) | 
|  | return DAG.getNode(ISD::FP_TO_UINT, N->getDebugLoc(), VT, N0); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitFP_ROUND(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold (fp_round c1fp) -> c1fp | 
|  | if (N0CFP && N0.getValueType() != MVT::ppcf128) | 
|  | return DAG.getNode(ISD::FP_ROUND, N->getDebugLoc(), VT, N0, N1); | 
|  |  | 
|  | // fold (fp_round (fp_extend x)) -> x | 
|  | if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType()) | 
|  | return N0.getOperand(0); | 
|  |  | 
|  | // fold (fp_round (fp_round x)) -> (fp_round x) | 
|  | if (N0.getOpcode() == ISD::FP_ROUND) { | 
|  | // This is a value preserving truncation if both round's are. | 
|  | bool IsTrunc = N->getConstantOperandVal(1) == 1 && | 
|  | N0.getNode()->getConstantOperandVal(1) == 1; | 
|  | return DAG.getNode(ISD::FP_ROUND, N->getDebugLoc(), VT, N0.getOperand(0), | 
|  | DAG.getIntPtrConstant(IsTrunc)); | 
|  | } | 
|  |  | 
|  | // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y) | 
|  | if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) { | 
|  | SDValue Tmp = DAG.getNode(ISD::FP_ROUND, N0.getDebugLoc(), VT, | 
|  | N0.getOperand(0), N1); | 
|  | AddToWorkList(Tmp.getNode()); | 
|  | return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT, | 
|  | Tmp, N0.getOperand(1)); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitFP_ROUND_INREG(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  | EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT(); | 
|  | ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); | 
|  |  | 
|  | // fold (fp_round_inreg c1fp) -> c1fp | 
|  | if (N0CFP && isTypeLegal(EVT)) { | 
|  | SDValue Round = DAG.getConstantFP(*N0CFP->getConstantFPValue(), EVT); | 
|  | return DAG.getNode(ISD::FP_EXTEND, N->getDebugLoc(), VT, Round); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded. | 
|  | if (N->hasOneUse() && | 
|  | N->use_begin()->getOpcode() == ISD::FP_ROUND) | 
|  | return SDValue(); | 
|  |  | 
|  | // fold (fp_extend c1fp) -> c1fp | 
|  | if (N0CFP && VT != MVT::ppcf128) | 
|  | return DAG.getNode(ISD::FP_EXTEND, N->getDebugLoc(), VT, N0); | 
|  |  | 
|  | // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the | 
|  | // value of X. | 
|  | if (N0.getOpcode() == ISD::FP_ROUND | 
|  | && N0.getNode()->getConstantOperandVal(1) == 1) { | 
|  | SDValue In = N0.getOperand(0); | 
|  | if (In.getValueType() == VT) return In; | 
|  | if (VT.bitsLT(In.getValueType())) | 
|  | return DAG.getNode(ISD::FP_ROUND, N->getDebugLoc(), VT, | 
|  | In, N0.getOperand(1)); | 
|  | return DAG.getNode(ISD::FP_EXTEND, N->getDebugLoc(), VT, In); | 
|  | } | 
|  |  | 
|  | // fold (fpext (load x)) -> (fpext (fptrunc (extload x))) | 
|  | if (ISD::isNON_EXTLoad(N0.getNode()) && N0.hasOneUse() && | 
|  | ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) || | 
|  | TLI.isLoadExtLegal(ISD::EXTLOAD, N0.getValueType()))) { | 
|  | LoadSDNode *LN0 = cast<LoadSDNode>(N0); | 
|  | SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, N->getDebugLoc(), VT, | 
|  | LN0->getChain(), | 
|  | LN0->getBasePtr(), LN0->getPointerInfo(), | 
|  | N0.getValueType(), | 
|  | LN0->isVolatile(), LN0->isNonTemporal(), | 
|  | LN0->getAlignment()); | 
|  | CombineTo(N, ExtLoad); | 
|  | CombineTo(N0.getNode(), | 
|  | DAG.getNode(ISD::FP_ROUND, N0.getDebugLoc(), | 
|  | N0.getValueType(), ExtLoad, DAG.getIntPtrConstant(1)), | 
|  | ExtLoad.getValue(1)); | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitFNEG(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | if (isNegatibleForFree(N0, LegalOperations, &DAG.getTarget().Options)) | 
|  | return GetNegatedExpression(N0, DAG, LegalOperations); | 
|  |  | 
|  | // Transform fneg(bitconvert(x)) -> bitconvert(x^sign) to avoid loading | 
|  | // constant pool values. | 
|  | if (N0.getOpcode() == ISD::BITCAST && | 
|  | !VT.isVector() && | 
|  | N0.getNode()->hasOneUse() && | 
|  | N0.getOperand(0).getValueType().isInteger()) { | 
|  | SDValue Int = N0.getOperand(0); | 
|  | EVT IntVT = Int.getValueType(); | 
|  | if (IntVT.isInteger() && !IntVT.isVector()) { | 
|  | Int = DAG.getNode(ISD::XOR, N0.getDebugLoc(), IntVT, Int, | 
|  | DAG.getConstant(APInt::getSignBit(IntVT.getSizeInBits()), IntVT)); | 
|  | AddToWorkList(Int.getNode()); | 
|  | return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), | 
|  | VT, Int); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitFABS(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold (fabs c1) -> fabs(c1) | 
|  | if (N0CFP && VT != MVT::ppcf128) | 
|  | return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0); | 
|  | // fold (fabs (fabs x)) -> (fabs x) | 
|  | if (N0.getOpcode() == ISD::FABS) | 
|  | return N->getOperand(0); | 
|  | // fold (fabs (fneg x)) -> (fabs x) | 
|  | // fold (fabs (fcopysign x, y)) -> (fabs x) | 
|  | if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN) | 
|  | return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0.getOperand(0)); | 
|  |  | 
|  | // Transform fabs(bitconvert(x)) -> bitconvert(x&~sign) to avoid loading | 
|  | // constant pool values. | 
|  | if (N0.getOpcode() == ISD::BITCAST && N0.getNode()->hasOneUse() && | 
|  | N0.getOperand(0).getValueType().isInteger() && | 
|  | !N0.getOperand(0).getValueType().isVector()) { | 
|  | SDValue Int = N0.getOperand(0); | 
|  | EVT IntVT = Int.getValueType(); | 
|  | if (IntVT.isInteger() && !IntVT.isVector()) { | 
|  | Int = DAG.getNode(ISD::AND, N0.getDebugLoc(), IntVT, Int, | 
|  | DAG.getConstant(~APInt::getSignBit(IntVT.getSizeInBits()), IntVT)); | 
|  | AddToWorkList(Int.getNode()); | 
|  | return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), | 
|  | N->getValueType(0), Int); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitBRCOND(SDNode *N) { | 
|  | SDValue Chain = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | SDValue N2 = N->getOperand(2); | 
|  |  | 
|  | // If N is a constant we could fold this into a fallthrough or unconditional | 
|  | // branch. However that doesn't happen very often in normal code, because | 
|  | // Instcombine/SimplifyCFG should have handled the available opportunities. | 
|  | // If we did this folding here, it would be necessary to update the | 
|  | // MachineBasicBlock CFG, which is awkward. | 
|  |  | 
|  | // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal | 
|  | // on the target. | 
|  | if (N1.getOpcode() == ISD::SETCC && | 
|  | TLI.isOperationLegalOrCustom(ISD::BR_CC, MVT::Other)) { | 
|  | return DAG.getNode(ISD::BR_CC, N->getDebugLoc(), MVT::Other, | 
|  | Chain, N1.getOperand(2), | 
|  | N1.getOperand(0), N1.getOperand(1), N2); | 
|  | } | 
|  |  | 
|  | if ((N1.hasOneUse() && N1.getOpcode() == ISD::SRL) || | 
|  | ((N1.getOpcode() == ISD::TRUNCATE && N1.hasOneUse()) && | 
|  | (N1.getOperand(0).hasOneUse() && | 
|  | N1.getOperand(0).getOpcode() == ISD::SRL))) { | 
|  | SDNode *Trunc = 0; | 
|  | if (N1.getOpcode() == ISD::TRUNCATE) { | 
|  | // Look pass the truncate. | 
|  | Trunc = N1.getNode(); | 
|  | N1 = N1.getOperand(0); | 
|  | } | 
|  |  | 
|  | // Match this pattern so that we can generate simpler code: | 
|  | // | 
|  | //   %a = ... | 
|  | //   %b = and i32 %a, 2 | 
|  | //   %c = srl i32 %b, 1 | 
|  | //   brcond i32 %c ... | 
|  | // | 
|  | // into | 
|  | // | 
|  | //   %a = ... | 
|  | //   %b = and i32 %a, 2 | 
|  | //   %c = setcc eq %b, 0 | 
|  | //   brcond %c ... | 
|  | // | 
|  | // This applies only when the AND constant value has one bit set and the | 
|  | // SRL constant is equal to the log2 of the AND constant. The back-end is | 
|  | // smart enough to convert the result into a TEST/JMP sequence. | 
|  | SDValue Op0 = N1.getOperand(0); | 
|  | SDValue Op1 = N1.getOperand(1); | 
|  |  | 
|  | if (Op0.getOpcode() == ISD::AND && | 
|  | Op1.getOpcode() == ISD::Constant) { | 
|  | SDValue AndOp1 = Op0.getOperand(1); | 
|  |  | 
|  | if (AndOp1.getOpcode() == ISD::Constant) { | 
|  | const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue(); | 
|  |  | 
|  | if (AndConst.isPowerOf2() && | 
|  | cast<ConstantSDNode>(Op1)->getAPIntValue()==AndConst.logBase2()) { | 
|  | SDValue SetCC = | 
|  | DAG.getSetCC(N->getDebugLoc(), | 
|  | TLI.getSetCCResultType(Op0.getValueType()), | 
|  | Op0, DAG.getConstant(0, Op0.getValueType()), | 
|  | ISD::SETNE); | 
|  |  | 
|  | SDValue NewBRCond = DAG.getNode(ISD::BRCOND, N->getDebugLoc(), | 
|  | MVT::Other, Chain, SetCC, N2); | 
|  | // Don't add the new BRCond into the worklist or else SimplifySelectCC | 
|  | // will convert it back to (X & C1) >> C2. | 
|  | CombineTo(N, NewBRCond, false); | 
|  | // Truncate is dead. | 
|  | if (Trunc) { | 
|  | removeFromWorkList(Trunc); | 
|  | DAG.DeleteNode(Trunc); | 
|  | } | 
|  | // Replace the uses of SRL with SETCC | 
|  | WorkListRemover DeadNodes(*this); | 
|  | DAG.ReplaceAllUsesOfValueWith(N1, SetCC, &DeadNodes); | 
|  | removeFromWorkList(N1.getNode()); | 
|  | DAG.DeleteNode(N1.getNode()); | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Trunc) | 
|  | // Restore N1 if the above transformation doesn't match. | 
|  | N1 = N->getOperand(1); | 
|  | } | 
|  |  | 
|  | // Transform br(xor(x, y)) -> br(x != y) | 
|  | // Transform br(xor(xor(x,y), 1)) -> br (x == y) | 
|  | if (N1.hasOneUse() && N1.getOpcode() == ISD::XOR) { | 
|  | SDNode *TheXor = N1.getNode(); | 
|  | SDValue Op0 = TheXor->getOperand(0); | 
|  | SDValue Op1 = TheXor->getOperand(1); | 
|  | if (Op0.getOpcode() == Op1.getOpcode()) { | 
|  | // Avoid missing important xor optimizations. | 
|  | SDValue Tmp = visitXOR(TheXor); | 
|  | if (Tmp.getNode() && Tmp.getNode() != TheXor) { | 
|  | DEBUG(dbgs() << "\nReplacing.8 "; | 
|  | TheXor->dump(&DAG); | 
|  | dbgs() << "\nWith: "; | 
|  | Tmp.getNode()->dump(&DAG); | 
|  | dbgs() << '\n'); | 
|  | WorkListRemover DeadNodes(*this); | 
|  | DAG.ReplaceAllUsesOfValueWith(N1, Tmp, &DeadNodes); | 
|  | removeFromWorkList(TheXor); | 
|  | DAG.DeleteNode(TheXor); | 
|  | return DAG.getNode(ISD::BRCOND, N->getDebugLoc(), | 
|  | MVT::Other, Chain, Tmp, N2); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) { | 
|  | bool Equal = false; | 
|  | if (ConstantSDNode *RHSCI = dyn_cast<ConstantSDNode>(Op0)) | 
|  | if (RHSCI->getAPIntValue() == 1 && Op0.hasOneUse() && | 
|  | Op0.getOpcode() == ISD::XOR) { | 
|  | TheXor = Op0.getNode(); | 
|  | Equal = true; | 
|  | } | 
|  |  | 
|  | EVT SetCCVT = N1.getValueType(); | 
|  | if (LegalTypes) | 
|  | SetCCVT = TLI.getSetCCResultType(SetCCVT); | 
|  | SDValue SetCC = DAG.getSetCC(TheXor->getDebugLoc(), | 
|  | SetCCVT, | 
|  | Op0, Op1, | 
|  | Equal ? ISD::SETEQ : ISD::SETNE); | 
|  | // Replace the uses of XOR with SETCC | 
|  | WorkListRemover DeadNodes(*this); | 
|  | DAG.ReplaceAllUsesOfValueWith(N1, SetCC, &DeadNodes); | 
|  | removeFromWorkList(N1.getNode()); | 
|  | DAG.DeleteNode(N1.getNode()); | 
|  | return DAG.getNode(ISD::BRCOND, N->getDebugLoc(), | 
|  | MVT::Other, Chain, SetCC, N2); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB. | 
|  | // | 
|  | SDValue DAGCombiner::visitBR_CC(SDNode *N) { | 
|  | CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1)); | 
|  | SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3); | 
|  |  | 
|  | // If N is a constant we could fold this into a fallthrough or unconditional | 
|  | // branch. However that doesn't happen very often in normal code, because | 
|  | // Instcombine/SimplifyCFG should have handled the available opportunities. | 
|  | // If we did this folding here, it would be necessary to update the | 
|  | // MachineBasicBlock CFG, which is awkward. | 
|  |  | 
|  | // Use SimplifySetCC to simplify SETCC's. | 
|  | SDValue Simp = SimplifySetCC(TLI.getSetCCResultType(CondLHS.getValueType()), | 
|  | CondLHS, CondRHS, CC->get(), N->getDebugLoc(), | 
|  | false); | 
|  | if (Simp.getNode()) AddToWorkList(Simp.getNode()); | 
|  |  | 
|  | // fold to a simpler setcc | 
|  | if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC) | 
|  | return DAG.getNode(ISD::BR_CC, N->getDebugLoc(), MVT::Other, | 
|  | N->getOperand(0), Simp.getOperand(2), | 
|  | Simp.getOperand(0), Simp.getOperand(1), | 
|  | N->getOperand(4)); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// CombineToPreIndexedLoadStore - Try turning a load / store into a | 
|  | /// pre-indexed load / store when the base pointer is an add or subtract | 
|  | /// and it has other uses besides the load / store. After the | 
|  | /// transformation, the new indexed load / store has effectively folded | 
|  | /// the add / subtract in and all of its other uses are redirected to the | 
|  | /// new load / store. | 
|  | bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) { | 
|  | if (Level < AfterLegalizeDAG) | 
|  | return false; | 
|  |  | 
|  | bool isLoad = true; | 
|  | SDValue Ptr; | 
|  | EVT VT; | 
|  | if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) { | 
|  | if (LD->isIndexed()) | 
|  | return false; | 
|  | VT = LD->getMemoryVT(); | 
|  | if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) && | 
|  | !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT)) | 
|  | return false; | 
|  | Ptr = LD->getBasePtr(); | 
|  | } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) { | 
|  | if (ST->isIndexed()) | 
|  | return false; | 
|  | VT = ST->getMemoryVT(); | 
|  | if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) && | 
|  | !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT)) | 
|  | return false; | 
|  | Ptr = ST->getBasePtr(); | 
|  | isLoad = false; | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail | 
|  | // out.  There is no reason to make this a preinc/predec. | 
|  | if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) || | 
|  | Ptr.getNode()->hasOneUse()) | 
|  | return false; | 
|  |  | 
|  | // Ask the target to do addressing mode selection. | 
|  | SDValue BasePtr; | 
|  | SDValue Offset; | 
|  | ISD::MemIndexedMode AM = ISD::UNINDEXED; | 
|  | if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG)) | 
|  | return false; | 
|  | // Don't create a indexed load / store with zero offset. | 
|  | if (isa<ConstantSDNode>(Offset) && | 
|  | cast<ConstantSDNode>(Offset)->isNullValue()) | 
|  | return false; | 
|  |  | 
|  | // Try turning it into a pre-indexed load / store except when: | 
|  | // 1) The new base ptr is a frame index. | 
|  | // 2) If N is a store and the new base ptr is either the same as or is a | 
|  | //    predecessor of the value being stored. | 
|  | // 3) Another use of old base ptr is a predecessor of N. If ptr is folded | 
|  | //    that would create a cycle. | 
|  | // 4) All uses are load / store ops that use it as old base ptr. | 
|  |  | 
|  | // Check #1.  Preinc'ing a frame index would require copying the stack pointer | 
|  | // (plus the implicit offset) to a register to preinc anyway. | 
|  | if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr)) | 
|  | return false; | 
|  |  | 
|  | // Check #2. | 
|  | if (!isLoad) { | 
|  | SDValue Val = cast<StoreSDNode>(N)->getValue(); | 
|  | if (Val == BasePtr || BasePtr.getNode()->isPredecessorOf(Val.getNode())) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Now check for #3 and #4. | 
|  | bool RealUse = false; | 
|  |  | 
|  | // Caches for hasPredecessorHelper | 
|  | SmallPtrSet<const SDNode *, 32> Visited; | 
|  | SmallVector<const SDNode *, 16> Worklist; | 
|  |  | 
|  | for (SDNode::use_iterator I = Ptr.getNode()->use_begin(), | 
|  | E = Ptr.getNode()->use_end(); I != E; ++I) { | 
|  | SDNode *Use = *I; | 
|  | if (Use == N) | 
|  | continue; | 
|  | if (N->hasPredecessorHelper(Use, Visited, Worklist)) | 
|  | return false; | 
|  |  | 
|  | if (!((Use->getOpcode() == ISD::LOAD && | 
|  | cast<LoadSDNode>(Use)->getBasePtr() == Ptr) || | 
|  | (Use->getOpcode() == ISD::STORE && | 
|  | cast<StoreSDNode>(Use)->getBasePtr() == Ptr))) | 
|  | RealUse = true; | 
|  | } | 
|  |  | 
|  | if (!RealUse) | 
|  | return false; | 
|  |  | 
|  | SDValue Result; | 
|  | if (isLoad) | 
|  | Result = DAG.getIndexedLoad(SDValue(N,0), N->getDebugLoc(), | 
|  | BasePtr, Offset, AM); | 
|  | else | 
|  | Result = DAG.getIndexedStore(SDValue(N,0), N->getDebugLoc(), | 
|  | BasePtr, Offset, AM); | 
|  | ++PreIndexedNodes; | 
|  | ++NodesCombined; | 
|  | DEBUG(dbgs() << "\nReplacing.4 "; | 
|  | N->dump(&DAG); | 
|  | dbgs() << "\nWith: "; | 
|  | Result.getNode()->dump(&DAG); | 
|  | dbgs() << '\n'); | 
|  | WorkListRemover DeadNodes(*this); | 
|  | if (isLoad) { | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0), | 
|  | &DeadNodes); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2), | 
|  | &DeadNodes); | 
|  | } else { | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1), | 
|  | &DeadNodes); | 
|  | } | 
|  |  | 
|  | // Finally, since the node is now dead, remove it from the graph. | 
|  | DAG.DeleteNode(N); | 
|  |  | 
|  | // Replace the uses of Ptr with uses of the updated base value. | 
|  | DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0), | 
|  | &DeadNodes); | 
|  | removeFromWorkList(Ptr.getNode()); | 
|  | DAG.DeleteNode(Ptr.getNode()); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// CombineToPostIndexedLoadStore - Try to combine a load / store with a | 
|  | /// add / sub of the base pointer node into a post-indexed load / store. | 
|  | /// The transformation folded the add / subtract into the new indexed | 
|  | /// load / store effectively and all of its uses are redirected to the | 
|  | /// new load / store. | 
|  | bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) { | 
|  | if (Level < AfterLegalizeDAG) | 
|  | return false; | 
|  |  | 
|  | bool isLoad = true; | 
|  | SDValue Ptr; | 
|  | EVT VT; | 
|  | if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) { | 
|  | if (LD->isIndexed()) | 
|  | return false; | 
|  | VT = LD->getMemoryVT(); | 
|  | if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) && | 
|  | !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT)) | 
|  | return false; | 
|  | Ptr = LD->getBasePtr(); | 
|  | } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) { | 
|  | if (ST->isIndexed()) | 
|  | return false; | 
|  | VT = ST->getMemoryVT(); | 
|  | if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) && | 
|  | !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT)) | 
|  | return false; | 
|  | Ptr = ST->getBasePtr(); | 
|  | isLoad = false; | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (Ptr.getNode()->hasOneUse()) | 
|  | return false; | 
|  |  | 
|  | for (SDNode::use_iterator I = Ptr.getNode()->use_begin(), | 
|  | E = Ptr.getNode()->use_end(); I != E; ++I) { | 
|  | SDNode *Op = *I; | 
|  | if (Op == N || | 
|  | (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB)) | 
|  | continue; | 
|  |  | 
|  | SDValue BasePtr; | 
|  | SDValue Offset; | 
|  | ISD::MemIndexedMode AM = ISD::UNINDEXED; | 
|  | if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) { | 
|  | // Don't create a indexed load / store with zero offset. | 
|  | if (isa<ConstantSDNode>(Offset) && | 
|  | cast<ConstantSDNode>(Offset)->isNullValue()) | 
|  | continue; | 
|  |  | 
|  | // Try turning it into a post-indexed load / store except when | 
|  | // 1) All uses are load / store ops that use it as base ptr. | 
|  | // 2) Op must be independent of N, i.e. Op is neither a predecessor | 
|  | //    nor a successor of N. Otherwise, if Op is folded that would | 
|  | //    create a cycle. | 
|  |  | 
|  | if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr)) | 
|  | continue; | 
|  |  | 
|  | // Check for #1. | 
|  | bool TryNext = false; | 
|  | for (SDNode::use_iterator II = BasePtr.getNode()->use_begin(), | 
|  | EE = BasePtr.getNode()->use_end(); II != EE; ++II) { | 
|  | SDNode *Use = *II; | 
|  | if (Use == Ptr.getNode()) | 
|  | continue; | 
|  |  | 
|  | // If all the uses are load / store addresses, then don't do the | 
|  | // transformation. | 
|  | if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){ | 
|  | bool RealUse = false; | 
|  | for (SDNode::use_iterator III = Use->use_begin(), | 
|  | EEE = Use->use_end(); III != EEE; ++III) { | 
|  | SDNode *UseUse = *III; | 
|  | if (!((UseUse->getOpcode() == ISD::LOAD && | 
|  | cast<LoadSDNode>(UseUse)->getBasePtr().getNode() == Use) || | 
|  | (UseUse->getOpcode() == ISD::STORE && | 
|  | cast<StoreSDNode>(UseUse)->getBasePtr().getNode() == Use))) | 
|  | RealUse = true; | 
|  | } | 
|  |  | 
|  | if (!RealUse) { | 
|  | TryNext = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (TryNext) | 
|  | continue; | 
|  |  | 
|  | // Check for #2 | 
|  | if (!Op->isPredecessorOf(N) && !N->isPredecessorOf(Op)) { | 
|  | SDValue Result = isLoad | 
|  | ? DAG.getIndexedLoad(SDValue(N,0), N->getDebugLoc(), | 
|  | BasePtr, Offset, AM) | 
|  | : DAG.getIndexedStore(SDValue(N,0), N->getDebugLoc(), | 
|  | BasePtr, Offset, AM); | 
|  | ++PostIndexedNodes; | 
|  | ++NodesCombined; | 
|  | DEBUG(dbgs() << "\nReplacing.5 "; | 
|  | N->dump(&DAG); | 
|  | dbgs() << "\nWith: "; | 
|  | Result.getNode()->dump(&DAG); | 
|  | dbgs() << '\n'); | 
|  | WorkListRemover DeadNodes(*this); | 
|  | if (isLoad) { | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0), | 
|  | &DeadNodes); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2), | 
|  | &DeadNodes); | 
|  | } else { | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1), | 
|  | &DeadNodes); | 
|  | } | 
|  |  | 
|  | // Finally, since the node is now dead, remove it from the graph. | 
|  | DAG.DeleteNode(N); | 
|  |  | 
|  | // Replace the uses of Use with uses of the updated base value. | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0), | 
|  | Result.getValue(isLoad ? 1 : 0), | 
|  | &DeadNodes); | 
|  | removeFromWorkList(Op); | 
|  | DAG.DeleteNode(Op); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitLOAD(SDNode *N) { | 
|  | LoadSDNode *LD  = cast<LoadSDNode>(N); | 
|  | SDValue Chain = LD->getChain(); | 
|  | SDValue Ptr   = LD->getBasePtr(); | 
|  |  | 
|  | // If load is not volatile and there are no uses of the loaded value (and | 
|  | // the updated indexed value in case of indexed loads), change uses of the | 
|  | // chain value into uses of the chain input (i.e. delete the dead load). | 
|  | if (!LD->isVolatile()) { | 
|  | if (N->getValueType(1) == MVT::Other) { | 
|  | // Unindexed loads. | 
|  | if (N->hasNUsesOfValue(0, 0)) { | 
|  | // It's not safe to use the two value CombineTo variant here. e.g. | 
|  | // v1, chain2 = load chain1, loc | 
|  | // v2, chain3 = load chain2, loc | 
|  | // v3         = add v2, c | 
|  | // Now we replace use of chain2 with chain1.  This makes the second load | 
|  | // isomorphic to the one we are deleting, and thus makes this load live. | 
|  | DEBUG(dbgs() << "\nReplacing.6 "; | 
|  | N->dump(&DAG); | 
|  | dbgs() << "\nWith chain: "; | 
|  | Chain.getNode()->dump(&DAG); | 
|  | dbgs() << "\n"); | 
|  | WorkListRemover DeadNodes(*this); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain, &DeadNodes); | 
|  |  | 
|  | if (N->use_empty()) { | 
|  | removeFromWorkList(N); | 
|  | DAG.DeleteNode(N); | 
|  | } | 
|  |  | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  | } else { | 
|  | // Indexed loads. | 
|  | assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?"); | 
|  | if (N->hasNUsesOfValue(0, 0) && N->hasNUsesOfValue(0, 1)) { | 
|  | SDValue Undef = DAG.getUNDEF(N->getValueType(0)); | 
|  | DEBUG(dbgs() << "\nReplacing.7 "; | 
|  | N->dump(&DAG); | 
|  | dbgs() << "\nWith: "; | 
|  | Undef.getNode()->dump(&DAG); | 
|  | dbgs() << " and 2 other values\n"); | 
|  | WorkListRemover DeadNodes(*this); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef, &DeadNodes); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), | 
|  | DAG.getUNDEF(N->getValueType(1)), | 
|  | &DeadNodes); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain, &DeadNodes); | 
|  | removeFromWorkList(N); | 
|  | DAG.DeleteNode(N); | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this load is directly stored, replace the load value with the stored | 
|  | // value. | 
|  | // TODO: Handle store large -> read small portion. | 
|  | // TODO: Handle TRUNCSTORE/LOADEXT | 
|  | if (ISD::isNormalLoad(N) && !LD->isVolatile()) { | 
|  | if (ISD::isNON_TRUNCStore(Chain.getNode())) { | 
|  | StoreSDNode *PrevST = cast<StoreSDNode>(Chain); | 
|  | if (PrevST->getBasePtr() == Ptr && | 
|  | PrevST->getValue().getValueType() == N->getValueType(0)) | 
|  | return CombineTo(N, Chain.getOperand(1), Chain); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Try to infer better alignment information than the load already has. | 
|  | if (OptLevel != CodeGenOpt::None && LD->isUnindexed()) { | 
|  | if (unsigned Align = DAG.InferPtrAlignment(Ptr)) { | 
|  | if (Align > LD->getAlignment()) | 
|  | return DAG.getExtLoad(LD->getExtensionType(), N->getDebugLoc(), | 
|  | LD->getValueType(0), | 
|  | Chain, Ptr, LD->getPointerInfo(), | 
|  | LD->getMemoryVT(), | 
|  | LD->isVolatile(), LD->isNonTemporal(), Align); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (CombinerAA) { | 
|  | // Walk up chain skipping non-aliasing memory nodes. | 
|  | SDValue BetterChain = FindBetterChain(N, Chain); | 
|  |  | 
|  | // If there is a better chain. | 
|  | if (Chain != BetterChain) { | 
|  | SDValue ReplLoad; | 
|  |  | 
|  | // Replace the chain to void dependency. | 
|  | if (LD->getExtensionType() == ISD::NON_EXTLOAD) { | 
|  | ReplLoad = DAG.getLoad(N->getValueType(0), LD->getDebugLoc(), | 
|  | BetterChain, Ptr, LD->getPointerInfo(), | 
|  | LD->isVolatile(), LD->isNonTemporal(), | 
|  | LD->isInvariant(), LD->getAlignment()); | 
|  | } else { | 
|  | ReplLoad = DAG.getExtLoad(LD->getExtensionType(), LD->getDebugLoc(), | 
|  | LD->getValueType(0), | 
|  | BetterChain, Ptr, LD->getPointerInfo(), | 
|  | LD->getMemoryVT(), | 
|  | LD->isVolatile(), | 
|  | LD->isNonTemporal(), | 
|  | LD->getAlignment()); | 
|  | } | 
|  |  | 
|  | // Create token factor to keep old chain connected. | 
|  | SDValue Token = DAG.getNode(ISD::TokenFactor, N->getDebugLoc(), | 
|  | MVT::Other, Chain, ReplLoad.getValue(1)); | 
|  |  | 
|  | // Make sure the new and old chains are cleaned up. | 
|  | AddToWorkList(Token.getNode()); | 
|  |  | 
|  | // Replace uses with load result and token factor. Don't add users | 
|  | // to work list. | 
|  | return CombineTo(N, ReplLoad.getValue(0), Token, false); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Try transforming N to an indexed load. | 
|  | if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) | 
|  | return SDValue(N, 0); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// CheckForMaskedLoad - Check to see if V is (and load (ptr), imm), where the | 
|  | /// load is having specific bytes cleared out.  If so, return the byte size | 
|  | /// being masked out and the shift amount. | 
|  | static std::pair<unsigned, unsigned> | 
|  | CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) { | 
|  | std::pair<unsigned, unsigned> Result(0, 0); | 
|  |  | 
|  | // Check for the structure we're looking for. | 
|  | if (V->getOpcode() != ISD::AND || | 
|  | !isa<ConstantSDNode>(V->getOperand(1)) || | 
|  | !ISD::isNormalLoad(V->getOperand(0).getNode())) | 
|  | return Result; | 
|  |  | 
|  | // Check the chain and pointer. | 
|  | LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0)); | 
|  | if (LD->getBasePtr() != Ptr) return Result;  // Not from same pointer. | 
|  |  | 
|  | // The store should be chained directly to the load or be an operand of a | 
|  | // tokenfactor. | 
|  | if (LD == Chain.getNode()) | 
|  | ; // ok. | 
|  | else if (Chain->getOpcode() != ISD::TokenFactor) | 
|  | return Result; // Fail. | 
|  | else { | 
|  | bool isOk = false; | 
|  | for (unsigned i = 0, e = Chain->getNumOperands(); i != e; ++i) | 
|  | if (Chain->getOperand(i).getNode() == LD) { | 
|  | isOk = true; | 
|  | break; | 
|  | } | 
|  | if (!isOk) return Result; | 
|  | } | 
|  |  | 
|  | // This only handles simple types. | 
|  | if (V.getValueType() != MVT::i16 && | 
|  | V.getValueType() != MVT::i32 && | 
|  | V.getValueType() != MVT::i64) | 
|  | return Result; | 
|  |  | 
|  | // Check the constant mask.  Invert it so that the bits being masked out are | 
|  | // 0 and the bits being kept are 1.  Use getSExtValue so that leading bits | 
|  | // follow the sign bit for uniformity. | 
|  | uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue(); | 
|  | unsigned NotMaskLZ = CountLeadingZeros_64(NotMask); | 
|  | if (NotMaskLZ & 7) return Result;  // Must be multiple of a byte. | 
|  | unsigned NotMaskTZ = CountTrailingZeros_64(NotMask); | 
|  | if (NotMaskTZ & 7) return Result;  // Must be multiple of a byte. | 
|  | if (NotMaskLZ == 64) return Result;  // All zero mask. | 
|  |  | 
|  | // See if we have a continuous run of bits.  If so, we have 0*1+0* | 
|  | if (CountTrailingOnes_64(NotMask >> NotMaskTZ)+NotMaskTZ+NotMaskLZ != 64) | 
|  | return Result; | 
|  |  | 
|  | // Adjust NotMaskLZ down to be from the actual size of the int instead of i64. | 
|  | if (V.getValueType() != MVT::i64 && NotMaskLZ) | 
|  | NotMaskLZ -= 64-V.getValueSizeInBits(); | 
|  |  | 
|  | unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8; | 
|  | switch (MaskedBytes) { | 
|  | case 1: | 
|  | case 2: | 
|  | case 4: break; | 
|  | default: return Result; // All one mask, or 5-byte mask. | 
|  | } | 
|  |  | 
|  | // Verify that the first bit starts at a multiple of mask so that the access | 
|  | // is aligned the same as the access width. | 
|  | if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result; | 
|  |  | 
|  | Result.first = MaskedBytes; | 
|  | Result.second = NotMaskTZ/8; | 
|  | return Result; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// ShrinkLoadReplaceStoreWithStore - Check to see if IVal is something that | 
|  | /// provides a value as specified by MaskInfo.  If so, replace the specified | 
|  | /// store with a narrower store of truncated IVal. | 
|  | static SDNode * | 
|  | ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo, | 
|  | SDValue IVal, StoreSDNode *St, | 
|  | DAGCombiner *DC) { | 
|  | unsigned NumBytes = MaskInfo.first; | 
|  | unsigned ByteShift = MaskInfo.second; | 
|  | SelectionDAG &DAG = DC->getDAG(); | 
|  |  | 
|  | // Check to see if IVal is all zeros in the part being masked in by the 'or' | 
|  | // that uses this.  If not, this is not a replacement. | 
|  | APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(), | 
|  | ByteShift*8, (ByteShift+NumBytes)*8); | 
|  | if (!DAG.MaskedValueIsZero(IVal, Mask)) return 0; | 
|  |  | 
|  | // Check that it is legal on the target to do this.  It is legal if the new | 
|  | // VT we're shrinking to (i8/i16/i32) is legal or we're still before type | 
|  | // legalization. | 
|  | MVT VT = MVT::getIntegerVT(NumBytes*8); | 
|  | if (!DC->isTypeLegal(VT)) | 
|  | return 0; | 
|  |  | 
|  | // Okay, we can do this!  Replace the 'St' store with a store of IVal that is | 
|  | // shifted by ByteShift and truncated down to NumBytes. | 
|  | if (ByteShift) | 
|  | IVal = DAG.getNode(ISD::SRL, IVal->getDebugLoc(), IVal.getValueType(), IVal, | 
|  | DAG.getConstant(ByteShift*8, | 
|  | DC->getShiftAmountTy(IVal.getValueType()))); | 
|  |  | 
|  | // Figure out the offset for the store and the alignment of the access. | 
|  | unsigned StOffset; | 
|  | unsigned NewAlign = St->getAlignment(); | 
|  |  | 
|  | if (DAG.getTargetLoweringInfo().isLittleEndian()) | 
|  | StOffset = ByteShift; | 
|  | else | 
|  | StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes; | 
|  |  | 
|  | SDValue Ptr = St->getBasePtr(); | 
|  | if (StOffset) { | 
|  | Ptr = DAG.getNode(ISD::ADD, IVal->getDebugLoc(), Ptr.getValueType(), | 
|  | Ptr, DAG.getConstant(StOffset, Ptr.getValueType())); | 
|  | NewAlign = MinAlign(NewAlign, StOffset); | 
|  | } | 
|  |  | 
|  | // Truncate down to the new size. | 
|  | IVal = DAG.getNode(ISD::TRUNCATE, IVal->getDebugLoc(), VT, IVal); | 
|  |  | 
|  | ++OpsNarrowed; | 
|  | return DAG.getStore(St->getChain(), St->getDebugLoc(), IVal, Ptr, | 
|  | St->getPointerInfo().getWithOffset(StOffset), | 
|  | false, false, NewAlign).getNode(); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// ReduceLoadOpStoreWidth - Look for sequence of load / op / store where op is | 
|  | /// one of 'or', 'xor', and 'and' of immediates. If 'op' is only touching some | 
|  | /// of the loaded bits, try narrowing the load and store if it would end up | 
|  | /// being a win for performance or code size. | 
|  | SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) { | 
|  | StoreSDNode *ST  = cast<StoreSDNode>(N); | 
|  | if (ST->isVolatile()) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue Chain = ST->getChain(); | 
|  | SDValue Value = ST->getValue(); | 
|  | SDValue Ptr   = ST->getBasePtr(); | 
|  | EVT VT = Value.getValueType(); | 
|  |  | 
|  | if (ST->isTruncatingStore() || VT.isVector() || !Value.hasOneUse()) | 
|  | return SDValue(); | 
|  |  | 
|  | unsigned Opc = Value.getOpcode(); | 
|  |  | 
|  | // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst | 
|  | // is a byte mask indicating a consecutive number of bytes, check to see if | 
|  | // Y is known to provide just those bytes.  If so, we try to replace the | 
|  | // load + replace + store sequence with a single (narrower) store, which makes | 
|  | // the load dead. | 
|  | if (Opc == ISD::OR) { | 
|  | std::pair<unsigned, unsigned> MaskedLoad; | 
|  | MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain); | 
|  | if (MaskedLoad.first) | 
|  | if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad, | 
|  | Value.getOperand(1), ST,this)) | 
|  | return SDValue(NewST, 0); | 
|  |  | 
|  | // Or is commutative, so try swapping X and Y. | 
|  | MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain); | 
|  | if (MaskedLoad.first) | 
|  | if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad, | 
|  | Value.getOperand(0), ST,this)) | 
|  | return SDValue(NewST, 0); | 
|  | } | 
|  |  | 
|  | if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) || | 
|  | Value.getOperand(1).getOpcode() != ISD::Constant) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue N0 = Value.getOperand(0); | 
|  | if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && | 
|  | Chain == SDValue(N0.getNode(), 1)) { | 
|  | LoadSDNode *LD = cast<LoadSDNode>(N0); | 
|  | if (LD->getBasePtr() != Ptr || | 
|  | LD->getPointerInfo().getAddrSpace() != | 
|  | ST->getPointerInfo().getAddrSpace()) | 
|  | return SDValue(); | 
|  |  | 
|  | // Find the type to narrow it the load / op / store to. | 
|  | SDValue N1 = Value.getOperand(1); | 
|  | unsigned BitWidth = N1.getValueSizeInBits(); | 
|  | APInt Imm = cast<ConstantSDNode>(N1)->getAPIntValue(); | 
|  | if (Opc == ISD::AND) | 
|  | Imm ^= APInt::getAllOnesValue(BitWidth); | 
|  | if (Imm == 0 || Imm.isAllOnesValue()) | 
|  | return SDValue(); | 
|  | unsigned ShAmt = Imm.countTrailingZeros(); | 
|  | unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1; | 
|  | unsigned NewBW = NextPowerOf2(MSB - ShAmt); | 
|  | EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW); | 
|  | while (NewBW < BitWidth && | 
|  | !(TLI.isOperationLegalOrCustom(Opc, NewVT) && | 
|  | TLI.isNarrowingProfitable(VT, NewVT))) { | 
|  | NewBW = NextPowerOf2(NewBW); | 
|  | NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW); | 
|  | } | 
|  | if (NewBW >= BitWidth) | 
|  | return SDValue(); | 
|  |  | 
|  | // If the lsb changed does not start at the type bitwidth boundary, | 
|  | // start at the previous one. | 
|  | if (ShAmt % NewBW) | 
|  | ShAmt = (((ShAmt + NewBW - 1) / NewBW) * NewBW) - NewBW; | 
|  | APInt Mask = APInt::getBitsSet(BitWidth, ShAmt, ShAmt + NewBW); | 
|  | if ((Imm & Mask) == Imm) { | 
|  | APInt NewImm = (Imm & Mask).lshr(ShAmt).trunc(NewBW); | 
|  | if (Opc == ISD::AND) | 
|  | NewImm ^= APInt::getAllOnesValue(NewBW); | 
|  | uint64_t PtrOff = ShAmt / 8; | 
|  | // For big endian targets, we need to adjust the offset to the pointer to | 
|  | // load the correct bytes. | 
|  | if (TLI.isBigEndian()) | 
|  | PtrOff = (BitWidth + 7 - NewBW) / 8 - PtrOff; | 
|  |  | 
|  | unsigned NewAlign = MinAlign(LD->getAlignment(), PtrOff); | 
|  | Type *NewVTTy = NewVT.getTypeForEVT(*DAG.getContext()); | 
|  | if (NewAlign < TLI.getTargetData()->getABITypeAlignment(NewVTTy)) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue NewPtr = DAG.getNode(ISD::ADD, LD->getDebugLoc(), | 
|  | Ptr.getValueType(), Ptr, | 
|  | DAG.getConstant(PtrOff, Ptr.getValueType())); | 
|  | SDValue NewLD = DAG.getLoad(NewVT, N0.getDebugLoc(), | 
|  | LD->getChain(), NewPtr, | 
|  | LD->getPointerInfo().getWithOffset(PtrOff), | 
|  | LD->isVolatile(), LD->isNonTemporal(), | 
|  | LD->isInvariant(), NewAlign); | 
|  | SDValue NewVal = DAG.getNode(Opc, Value.getDebugLoc(), NewVT, NewLD, | 
|  | DAG.getConstant(NewImm, NewVT)); | 
|  | SDValue NewST = DAG.getStore(Chain, N->getDebugLoc(), | 
|  | NewVal, NewPtr, | 
|  | ST->getPointerInfo().getWithOffset(PtrOff), | 
|  | false, false, NewAlign); | 
|  |  | 
|  | AddToWorkList(NewPtr.getNode()); | 
|  | AddToWorkList(NewLD.getNode()); | 
|  | AddToWorkList(NewVal.getNode()); | 
|  | WorkListRemover DeadNodes(*this); | 
|  | DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1), | 
|  | &DeadNodes); | 
|  | ++OpsNarrowed; | 
|  | return NewST; | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// TransformFPLoadStorePair - For a given floating point load / store pair, | 
|  | /// if the load value isn't used by any other operations, then consider | 
|  | /// transforming the pair to integer load / store operations if the target | 
|  | /// deems the transformation profitable. | 
|  | SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) { | 
|  | StoreSDNode *ST  = cast<StoreSDNode>(N); | 
|  | SDValue Chain = ST->getChain(); | 
|  | SDValue Value = ST->getValue(); | 
|  | if (ISD::isNormalStore(ST) && ISD::isNormalLoad(Value.getNode()) && | 
|  | Value.hasOneUse() && | 
|  | Chain == SDValue(Value.getNode(), 1)) { | 
|  | LoadSDNode *LD = cast<LoadSDNode>(Value); | 
|  | EVT VT = LD->getMemoryVT(); | 
|  | if (!VT.isFloatingPoint() || | 
|  | VT != ST->getMemoryVT() || | 
|  | LD->isNonTemporal() || | 
|  | ST->isNonTemporal() || | 
|  | LD->getPointerInfo().getAddrSpace() != 0 || | 
|  | ST->getPointerInfo().getAddrSpace() != 0) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); | 
|  | if (!TLI.isOperationLegal(ISD::LOAD, IntVT) || | 
|  | !TLI.isOperationLegal(ISD::STORE, IntVT) || | 
|  | !TLI.isDesirableToTransformToIntegerOp(ISD::LOAD, VT) || | 
|  | !TLI.isDesirableToTransformToIntegerOp(ISD::STORE, VT)) | 
|  | return SDValue(); | 
|  |  | 
|  | unsigned LDAlign = LD->getAlignment(); | 
|  | unsigned STAlign = ST->getAlignment(); | 
|  | Type *IntVTTy = IntVT.getTypeForEVT(*DAG.getContext()); | 
|  | unsigned ABIAlign = TLI.getTargetData()->getABITypeAlignment(IntVTTy); | 
|  | if (LDAlign < ABIAlign || STAlign < ABIAlign) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue NewLD = DAG.getLoad(IntVT, Value.getDebugLoc(), | 
|  | LD->getChain(), LD->getBasePtr(), | 
|  | LD->getPointerInfo(), | 
|  | false, false, false, LDAlign); | 
|  |  | 
|  | SDValue NewST = DAG.getStore(NewLD.getValue(1), N->getDebugLoc(), | 
|  | NewLD, ST->getBasePtr(), | 
|  | ST->getPointerInfo(), | 
|  | false, false, STAlign); | 
|  |  | 
|  | AddToWorkList(NewLD.getNode()); | 
|  | AddToWorkList(NewST.getNode()); | 
|  | WorkListRemover DeadNodes(*this); | 
|  | DAG.ReplaceAllUsesOfValueWith(Value.getValue(1), NewLD.getValue(1), | 
|  | &DeadNodes); | 
|  | ++LdStFP2Int; | 
|  | return NewST; | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitSTORE(SDNode *N) { | 
|  | StoreSDNode *ST  = cast<StoreSDNode>(N); | 
|  | SDValue Chain = ST->getChain(); | 
|  | SDValue Value = ST->getValue(); | 
|  | SDValue Ptr   = ST->getBasePtr(); | 
|  |  | 
|  | // If this is a store of a bit convert, store the input value if the | 
|  | // resultant store does not need a higher alignment than the original. | 
|  | if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() && | 
|  | ST->isUnindexed()) { | 
|  | unsigned OrigAlign = ST->getAlignment(); | 
|  | EVT SVT = Value.getOperand(0).getValueType(); | 
|  | unsigned Align = TLI.getTargetData()-> | 
|  | getABITypeAlignment(SVT.getTypeForEVT(*DAG.getContext())); | 
|  | if (Align <= OrigAlign && | 
|  | ((!LegalOperations && !ST->isVolatile()) || | 
|  | TLI.isOperationLegalOrCustom(ISD::STORE, SVT))) | 
|  | return DAG.getStore(Chain, N->getDebugLoc(), Value.getOperand(0), | 
|  | Ptr, ST->getPointerInfo(), ST->isVolatile(), | 
|  | ST->isNonTemporal(), OrigAlign); | 
|  | } | 
|  |  | 
|  | // Turn 'store undef, Ptr' -> nothing. | 
|  | if (Value.getOpcode() == ISD::UNDEF && ST->isUnindexed()) | 
|  | return Chain; | 
|  |  | 
|  | // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' | 
|  | if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Value)) { | 
|  | // NOTE: If the original store is volatile, this transform must not increase | 
|  | // the number of stores.  For example, on x86-32 an f64 can be stored in one | 
|  | // processor operation but an i64 (which is not legal) requires two.  So the | 
|  | // transform should not be done in this case. | 
|  | if (Value.getOpcode() != ISD::TargetConstantFP) { | 
|  | SDValue Tmp; | 
|  | switch (CFP->getValueType(0).getSimpleVT().SimpleTy) { | 
|  | default: llvm_unreachable("Unknown FP type"); | 
|  | case MVT::f80:    // We don't do this for these yet. | 
|  | case MVT::f128: | 
|  | case MVT::ppcf128: | 
|  | break; | 
|  | case MVT::f32: | 
|  | if ((isTypeLegal(MVT::i32) && !LegalOperations && !ST->isVolatile()) || | 
|  | TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) { | 
|  | Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF(). | 
|  | bitcastToAPInt().getZExtValue(), MVT::i32); | 
|  | return DAG.getStore(Chain, N->getDebugLoc(), Tmp, | 
|  | Ptr, ST->getPointerInfo(), ST->isVolatile(), | 
|  | ST->isNonTemporal(), ST->getAlignment()); | 
|  | } | 
|  | break; | 
|  | case MVT::f64: | 
|  | if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations && | 
|  | !ST->isVolatile()) || | 
|  | TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) { | 
|  | Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). | 
|  | getZExtValue(), MVT::i64); | 
|  | return DAG.getStore(Chain, N->getDebugLoc(), Tmp, | 
|  | Ptr, ST->getPointerInfo(), ST->isVolatile(), | 
|  | ST->isNonTemporal(), ST->getAlignment()); | 
|  | } | 
|  |  | 
|  | if (!ST->isVolatile() && | 
|  | TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) { | 
|  | // Many FP stores are not made apparent until after legalize, e.g. for | 
|  | // argument passing.  Since this is so common, custom legalize the | 
|  | // 64-bit integer store into two 32-bit stores. | 
|  | uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); | 
|  | SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, MVT::i32); | 
|  | SDValue Hi = DAG.getConstant(Val >> 32, MVT::i32); | 
|  | if (TLI.isBigEndian()) std::swap(Lo, Hi); | 
|  |  | 
|  | unsigned Alignment = ST->getAlignment(); | 
|  | bool isVolatile = ST->isVolatile(); | 
|  | bool isNonTemporal = ST->isNonTemporal(); | 
|  |  | 
|  | SDValue St0 = DAG.getStore(Chain, ST->getDebugLoc(), Lo, | 
|  | Ptr, ST->getPointerInfo(), | 
|  | isVolatile, isNonTemporal, | 
|  | ST->getAlignment()); | 
|  | Ptr = DAG.getNode(ISD::ADD, N->getDebugLoc(), Ptr.getValueType(), Ptr, | 
|  | DAG.getConstant(4, Ptr.getValueType())); | 
|  | Alignment = MinAlign(Alignment, 4U); | 
|  | SDValue St1 = DAG.getStore(Chain, ST->getDebugLoc(), Hi, | 
|  | Ptr, ST->getPointerInfo().getWithOffset(4), | 
|  | isVolatile, isNonTemporal, | 
|  | Alignment); | 
|  | return DAG.getNode(ISD::TokenFactor, N->getDebugLoc(), MVT::Other, | 
|  | St0, St1); | 
|  | } | 
|  |  | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Try to infer better alignment information than the store already has. | 
|  | if (OptLevel != CodeGenOpt::None && ST->isUnindexed()) { | 
|  | if (unsigned Align = DAG.InferPtrAlignment(Ptr)) { | 
|  | if (Align > ST->getAlignment()) | 
|  | return DAG.getTruncStore(Chain, N->getDebugLoc(), Value, | 
|  | Ptr, ST->getPointerInfo(), ST->getMemoryVT(), | 
|  | ST->isVolatile(), ST->isNonTemporal(), Align); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Try transforming a pair floating point load / store ops to integer | 
|  | // load / store ops. | 
|  | SDValue NewST = TransformFPLoadStorePair(N); | 
|  | if (NewST.getNode()) | 
|  | return NewST; | 
|  |  | 
|  | if (CombinerAA) { | 
|  | // Walk up chain skipping non-aliasing memory nodes. | 
|  | SDValue BetterChain = FindBetterChain(N, Chain); | 
|  |  | 
|  | // If there is a better chain. | 
|  | if (Chain != BetterChain) { | 
|  | SDValue ReplStore; | 
|  |  | 
|  | // Replace the chain to avoid dependency. | 
|  | if (ST->isTruncatingStore()) { | 
|  | ReplStore = DAG.getTruncStore(BetterChain, N->getDebugLoc(), Value, Ptr, | 
|  | ST->getPointerInfo(), | 
|  | ST->getMemoryVT(), ST->isVolatile(), | 
|  | ST->isNonTemporal(), ST->getAlignment()); | 
|  | } else { | 
|  | ReplStore = DAG.getStore(BetterChain, N->getDebugLoc(), Value, Ptr, | 
|  | ST->getPointerInfo(), | 
|  | ST->isVolatile(), ST->isNonTemporal(), | 
|  | ST->getAlignment()); | 
|  | } | 
|  |  | 
|  | // Create token to keep both nodes around. | 
|  | SDValue Token = DAG.getNode(ISD::TokenFactor, N->getDebugLoc(), | 
|  | MVT::Other, Chain, ReplStore); | 
|  |  | 
|  | // Make sure the new and old chains are cleaned up. | 
|  | AddToWorkList(Token.getNode()); | 
|  |  | 
|  | // Don't add users to work list. | 
|  | return CombineTo(N, Token, false); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Try transforming N to an indexed store. | 
|  | if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) | 
|  | return SDValue(N, 0); | 
|  |  | 
|  | // FIXME: is there such a thing as a truncating indexed store? | 
|  | if (ST->isTruncatingStore() && ST->isUnindexed() && | 
|  | Value.getValueType().isInteger()) { | 
|  | // See if we can simplify the input to this truncstore with knowledge that | 
|  | // only the low bits are being used.  For example: | 
|  | // "truncstore (or (shl x, 8), y), i8"  -> "truncstore y, i8" | 
|  | SDValue Shorter = | 
|  | GetDemandedBits(Value, | 
|  | APInt::getLowBitsSet( | 
|  | Value.getValueType().getScalarType().getSizeInBits(), | 
|  | ST->getMemoryVT().getScalarType().getSizeInBits())); | 
|  | AddToWorkList(Value.getNode()); | 
|  | if (Shorter.getNode()) | 
|  | return DAG.getTruncStore(Chain, N->getDebugLoc(), Shorter, | 
|  | Ptr, ST->getPointerInfo(), ST->getMemoryVT(), | 
|  | ST->isVolatile(), ST->isNonTemporal(), | 
|  | ST->getAlignment()); | 
|  |  | 
|  | // Otherwise, see if we can simplify the operation with | 
|  | // SimplifyDemandedBits, which only works if the value has a single use. | 
|  | if (SimplifyDemandedBits(Value, | 
|  | APInt::getLowBitsSet( | 
|  | Value.getValueType().getScalarType().getSizeInBits(), | 
|  | ST->getMemoryVT().getScalarType().getSizeInBits()))) | 
|  | return SDValue(N, 0); | 
|  | } | 
|  |  | 
|  | // If this is a load followed by a store to the same location, then the store | 
|  | // is dead/noop. | 
|  | if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) { | 
|  | if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() && | 
|  | ST->isUnindexed() && !ST->isVolatile() && | 
|  | // There can't be any side effects between the load and store, such as | 
|  | // a call or store. | 
|  | Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) { | 
|  | // The store is dead, remove it. | 
|  | return Chain; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this is an FP_ROUND or TRUNC followed by a store, fold this into a | 
|  | // truncating store.  We can do this even if this is already a truncstore. | 
|  | if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE) | 
|  | && Value.getNode()->hasOneUse() && ST->isUnindexed() && | 
|  | TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(), | 
|  | ST->getMemoryVT())) { | 
|  | return DAG.getTruncStore(Chain, N->getDebugLoc(), Value.getOperand(0), | 
|  | Ptr, ST->getPointerInfo(), ST->getMemoryVT(), | 
|  | ST->isVolatile(), ST->isNonTemporal(), | 
|  | ST->getAlignment()); | 
|  | } | 
|  |  | 
|  | return ReduceLoadOpStoreWidth(N); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) { | 
|  | SDValue InVec = N->getOperand(0); | 
|  | SDValue InVal = N->getOperand(1); | 
|  | SDValue EltNo = N->getOperand(2); | 
|  | DebugLoc dl = N->getDebugLoc(); | 
|  |  | 
|  | // If the inserted element is an UNDEF, just use the input vector. | 
|  | if (InVal.getOpcode() == ISD::UNDEF) | 
|  | return InVec; | 
|  |  | 
|  | EVT VT = InVec.getValueType(); | 
|  |  | 
|  | // If we can't generate a legal BUILD_VECTOR, exit | 
|  | if (LegalOperations && !TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) | 
|  | return SDValue(); | 
|  |  | 
|  | // Check that we know which element is being inserted | 
|  | if (!isa<ConstantSDNode>(EltNo)) | 
|  | return SDValue(); | 
|  | unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); | 
|  |  | 
|  | // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially | 
|  | // be converted to a BUILD_VECTOR).  Fill in the Ops vector with the | 
|  | // vector elements. | 
|  | SmallVector<SDValue, 8> Ops; | 
|  | if (InVec.getOpcode() == ISD::BUILD_VECTOR) { | 
|  | Ops.append(InVec.getNode()->op_begin(), | 
|  | InVec.getNode()->op_end()); | 
|  | } else if (InVec.getOpcode() == ISD::UNDEF) { | 
|  | unsigned NElts = VT.getVectorNumElements(); | 
|  | Ops.append(NElts, DAG.getUNDEF(InVal.getValueType())); | 
|  | } else { | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Insert the element | 
|  | if (Elt < Ops.size()) { | 
|  | // All the operands of BUILD_VECTOR must have the same type; | 
|  | // we enforce that here. | 
|  | EVT OpVT = Ops[0].getValueType(); | 
|  | if (InVal.getValueType() != OpVT) | 
|  | InVal = OpVT.bitsGT(InVal.getValueType()) ? | 
|  | DAG.getNode(ISD::ANY_EXTEND, dl, OpVT, InVal) : | 
|  | DAG.getNode(ISD::TRUNCATE, dl, OpVT, InVal); | 
|  | Ops[Elt] = InVal; | 
|  | } | 
|  |  | 
|  | // Return the new vector | 
|  | return DAG.getNode(ISD::BUILD_VECTOR, dl, | 
|  | VT, &Ops[0], Ops.size()); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) { | 
|  | // (vextract (scalar_to_vector val, 0) -> val | 
|  | SDValue InVec = N->getOperand(0); | 
|  |  | 
|  | if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) { | 
|  | // Check if the result type doesn't match the inserted element type. A | 
|  | // SCALAR_TO_VECTOR may truncate the inserted element and the | 
|  | // EXTRACT_VECTOR_ELT may widen the extracted vector. | 
|  | SDValue InOp = InVec.getOperand(0); | 
|  | EVT NVT = N->getValueType(0); | 
|  | if (InOp.getValueType() != NVT) { | 
|  | assert(InOp.getValueType().isInteger() && NVT.isInteger()); | 
|  | return DAG.getSExtOrTrunc(InOp, InVec.getDebugLoc(), NVT); | 
|  | } | 
|  | return InOp; | 
|  | } | 
|  |  | 
|  | // Perform only after legalization to ensure build_vector / vector_shuffle | 
|  | // optimizations have already been done. | 
|  | if (!LegalOperations) return SDValue(); | 
|  |  | 
|  | // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size) | 
|  | // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size) | 
|  | // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr) | 
|  | SDValue EltNo = N->getOperand(1); | 
|  |  | 
|  | if (isa<ConstantSDNode>(EltNo)) { | 
|  | int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); | 
|  | bool NewLoad = false; | 
|  | bool BCNumEltsChanged = false; | 
|  | EVT VT = InVec.getValueType(); | 
|  | EVT ExtVT = VT.getVectorElementType(); | 
|  | EVT LVT = ExtVT; | 
|  |  | 
|  | if (InVec.getOpcode() == ISD::BITCAST) { | 
|  | EVT BCVT = InVec.getOperand(0).getValueType(); | 
|  | if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType())) | 
|  | return SDValue(); | 
|  | if (VT.getVectorNumElements() != BCVT.getVectorNumElements()) | 
|  | BCNumEltsChanged = true; | 
|  | InVec = InVec.getOperand(0); | 
|  | ExtVT = BCVT.getVectorElementType(); | 
|  | NewLoad = true; | 
|  | } | 
|  |  | 
|  | LoadSDNode *LN0 = NULL; | 
|  | const ShuffleVectorSDNode *SVN = NULL; | 
|  | if (ISD::isNormalLoad(InVec.getNode())) { | 
|  | LN0 = cast<LoadSDNode>(InVec); | 
|  | } else if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR && | 
|  | InVec.getOperand(0).getValueType() == ExtVT && | 
|  | ISD::isNormalLoad(InVec.getOperand(0).getNode())) { | 
|  | LN0 = cast<LoadSDNode>(InVec.getOperand(0)); | 
|  | } else if ((SVN = dyn_cast<ShuffleVectorSDNode>(InVec))) { | 
|  | // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1) | 
|  | // => | 
|  | // (load $addr+1*size) | 
|  |  | 
|  | // If the bit convert changed the number of elements, it is unsafe | 
|  | // to examine the mask. | 
|  | if (BCNumEltsChanged) | 
|  | return SDValue(); | 
|  |  | 
|  | // Select the input vector, guarding against out of range extract vector. | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  | int Idx = (Elt > (int)NumElems) ? -1 : SVN->getMaskElt(Elt); | 
|  | InVec = (Idx < (int)NumElems) ? InVec.getOperand(0) : InVec.getOperand(1); | 
|  |  | 
|  | if (InVec.getOpcode() == ISD::BITCAST) | 
|  | InVec = InVec.getOperand(0); | 
|  | if (ISD::isNormalLoad(InVec.getNode())) { | 
|  | LN0 = cast<LoadSDNode>(InVec); | 
|  | Elt = (Idx < (int)NumElems) ? Idx : Idx - (int)NumElems; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!LN0 || !LN0->hasNUsesOfValue(1,0) || LN0->isVolatile()) | 
|  | return SDValue(); | 
|  |  | 
|  | // If Idx was -1 above, Elt is going to be -1, so just return undef. | 
|  | if (Elt == -1) | 
|  | return DAG.getUNDEF(LVT); | 
|  |  | 
|  | unsigned Align = LN0->getAlignment(); | 
|  | if (NewLoad) { | 
|  | // Check the resultant load doesn't need a higher alignment than the | 
|  | // original load. | 
|  | unsigned NewAlign = | 
|  | TLI.getTargetData() | 
|  | ->getABITypeAlignment(LVT.getTypeForEVT(*DAG.getContext())); | 
|  |  | 
|  | if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, LVT)) | 
|  | return SDValue(); | 
|  |  | 
|  | Align = NewAlign; | 
|  | } | 
|  |  | 
|  | SDValue NewPtr = LN0->getBasePtr(); | 
|  | unsigned PtrOff = 0; | 
|  |  | 
|  | if (Elt) { | 
|  | PtrOff = LVT.getSizeInBits() * Elt / 8; | 
|  | EVT PtrType = NewPtr.getValueType(); | 
|  | if (TLI.isBigEndian()) | 
|  | PtrOff = VT.getSizeInBits() / 8 - PtrOff; | 
|  | NewPtr = DAG.getNode(ISD::ADD, N->getDebugLoc(), PtrType, NewPtr, | 
|  | DAG.getConstant(PtrOff, PtrType)); | 
|  | } | 
|  |  | 
|  | // The replacement we need to do here is a little tricky: we need to | 
|  | // replace an extractelement of a load with a load. | 
|  | // Use ReplaceAllUsesOfValuesWith to do the replacement. | 
|  | SDValue Load = DAG.getLoad(LVT, N->getDebugLoc(), LN0->getChain(), NewPtr, | 
|  | LN0->getPointerInfo().getWithOffset(PtrOff), | 
|  | LN0->isVolatile(), LN0->isNonTemporal(), | 
|  | LN0->isInvariant(), Align); | 
|  | WorkListRemover DeadNodes(*this); | 
|  | SDValue From[] = { SDValue(N, 0), SDValue(LN0,1) }; | 
|  | SDValue To[] = { Load.getValue(0), Load.getValue(1) }; | 
|  | DAG.ReplaceAllUsesOfValuesWith(From, To, 2, &DeadNodes); | 
|  | // Since we're explcitly calling ReplaceAllUses, add the new node to the | 
|  | // worklist explicitly as well. | 
|  | AddToWorkList(Load.getNode()); | 
|  | // Make sure to revisit this node to clean it up; it will usually be dead. | 
|  | AddToWorkList(N); | 
|  | return SDValue(N, 0); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) { | 
|  | unsigned NumInScalars = N->getNumOperands(); | 
|  | DebugLoc dl = N->getDebugLoc(); | 
|  | EVT VT = N->getValueType(0); | 
|  | // Check to see if this is a BUILD_VECTOR of a bunch of values | 
|  | // which come from any_extend or zero_extend nodes. If so, we can create | 
|  | // a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR | 
|  | // optimizations. We do not handle sign-extend because we can't fill the sign | 
|  | // using shuffles. | 
|  | EVT SourceType = MVT::Other; | 
|  | bool allAnyExt = true; | 
|  | for (unsigned i = 0; i < NumInScalars; ++i) { | 
|  | SDValue In = N->getOperand(i); | 
|  | // Ignore undef inputs. | 
|  | if (In.getOpcode() == ISD::UNDEF) continue; | 
|  |  | 
|  | bool AnyExt  = In.getOpcode() == ISD::ANY_EXTEND; | 
|  | bool ZeroExt = In.getOpcode() == ISD::ZERO_EXTEND; | 
|  |  | 
|  | // Abort if the element is not an extension. | 
|  | if (!ZeroExt && !AnyExt) { | 
|  | SourceType = MVT::Other; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // The input is a ZeroExt or AnyExt. Check the original type. | 
|  | EVT InTy = In.getOperand(0).getValueType(); | 
|  |  | 
|  | // Check that all of the widened source types are the same. | 
|  | if (SourceType == MVT::Other) | 
|  | // First time. | 
|  | SourceType = InTy; | 
|  | else if (InTy != SourceType) { | 
|  | // Multiple income types. Abort. | 
|  | SourceType = MVT::Other; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Check if all of the extends are ANY_EXTENDs. | 
|  | allAnyExt &= AnyExt; | 
|  | } | 
|  |  | 
|  |  | 
|  | // In order to have valid types, all of the inputs must be extended from the | 
|  | // same source type and all of the inputs must be any or zero extend. | 
|  | // Scalar sizes must be a power of two. | 
|  | EVT OutScalarTy = N->getValueType(0).getScalarType(); | 
|  | bool validTypes = SourceType != MVT::Other && | 
|  | isPowerOf2_32(OutScalarTy.getSizeInBits()) && | 
|  | isPowerOf2_32(SourceType.getSizeInBits()); | 
|  |  | 
|  | // We perform this optimization post type-legalization because | 
|  | // the type-legalizer often scalarizes integer-promoted vectors. | 
|  | // Performing this optimization before may create bit-casts which | 
|  | // will be type-legalized to complex code sequences. | 
|  | // We perform this optimization only before the operation legalizer because we | 
|  | // may introduce illegal operations. | 
|  | if (LegalTypes && !LegalOperations && validTypes) { | 
|  | bool isLE = TLI.isLittleEndian(); | 
|  | unsigned ElemRatio = OutScalarTy.getSizeInBits()/SourceType.getSizeInBits(); | 
|  | assert(ElemRatio > 1 && "Invalid element size ratio"); | 
|  | SDValue Filler = allAnyExt ? DAG.getUNDEF(SourceType): | 
|  | DAG.getConstant(0, SourceType); | 
|  |  | 
|  | unsigned NewBVElems = ElemRatio * N->getValueType(0).getVectorNumElements(); | 
|  | SmallVector<SDValue, 8> Ops(NewBVElems, Filler); | 
|  |  | 
|  | // Populate the new build_vector | 
|  | for (unsigned i=0; i < N->getNumOperands(); ++i) { | 
|  | SDValue Cast = N->getOperand(i); | 
|  | assert((Cast.getOpcode() == ISD::ANY_EXTEND || | 
|  | Cast.getOpcode() == ISD::ZERO_EXTEND || | 
|  | Cast.getOpcode() == ISD::UNDEF) && "Invalid cast opcode"); | 
|  | SDValue In; | 
|  | if (Cast.getOpcode() == ISD::UNDEF) | 
|  | In = DAG.getUNDEF(SourceType); | 
|  | else | 
|  | In = Cast->getOperand(0); | 
|  | unsigned Index = isLE ? (i * ElemRatio) : | 
|  | (i * ElemRatio + (ElemRatio - 1)); | 
|  |  | 
|  | assert(Index < Ops.size() && "Invalid index"); | 
|  | Ops[Index] = In; | 
|  | } | 
|  |  | 
|  | // The type of the new BUILD_VECTOR node. | 
|  | EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SourceType, NewBVElems); | 
|  | assert(VecVT.getSizeInBits() == N->getValueType(0).getSizeInBits() && | 
|  | "Invalid vector size"); | 
|  | // Check if the new vector type is legal. | 
|  | if (!isTypeLegal(VecVT)) return SDValue(); | 
|  |  | 
|  | // Make the new BUILD_VECTOR. | 
|  | SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), | 
|  | VecVT, &Ops[0], Ops.size()); | 
|  |  | 
|  | // Bitcast to the desired type. | 
|  | return DAG.getNode(ISD::BITCAST, dl, N->getValueType(0), BV); | 
|  | } | 
|  |  | 
|  | // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT | 
|  | // operations.  If so, and if the EXTRACT_VECTOR_ELT vector inputs come from | 
|  | // at most two distinct vectors, turn this into a shuffle node. | 
|  | SDValue VecIn1, VecIn2; | 
|  | for (unsigned i = 0; i != NumInScalars; ++i) { | 
|  | // Ignore undef inputs. | 
|  | if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; | 
|  |  | 
|  | // If this input is something other than a EXTRACT_VECTOR_ELT with a | 
|  | // constant index, bail out. | 
|  | if (N->getOperand(i).getOpcode() != ISD::EXTRACT_VECTOR_ELT || | 
|  | !isa<ConstantSDNode>(N->getOperand(i).getOperand(1))) { | 
|  | VecIn1 = VecIn2 = SDValue(0, 0); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If the input vector type disagrees with the result of the build_vector, | 
|  | // we can't make a shuffle. | 
|  | SDValue ExtractedFromVec = N->getOperand(i).getOperand(0); | 
|  | if (ExtractedFromVec.getValueType() != VT) { | 
|  | VecIn1 = VecIn2 = SDValue(0, 0); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Otherwise, remember this.  We allow up to two distinct input vectors. | 
|  | if (ExtractedFromVec == VecIn1 || ExtractedFromVec == VecIn2) | 
|  | continue; | 
|  |  | 
|  | if (VecIn1.getNode() == 0) { | 
|  | VecIn1 = ExtractedFromVec; | 
|  | } else if (VecIn2.getNode() == 0) { | 
|  | VecIn2 = ExtractedFromVec; | 
|  | } else { | 
|  | // Too many inputs. | 
|  | VecIn1 = VecIn2 = SDValue(0, 0); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If everything is good, we can make a shuffle operation. | 
|  | if (VecIn1.getNode()) { | 
|  | SmallVector<int, 8> Mask; | 
|  | for (unsigned i = 0; i != NumInScalars; ++i) { | 
|  | if (N->getOperand(i).getOpcode() == ISD::UNDEF) { | 
|  | Mask.push_back(-1); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If extracting from the first vector, just use the index directly. | 
|  | SDValue Extract = N->getOperand(i); | 
|  | SDValue ExtVal = Extract.getOperand(1); | 
|  | if (Extract.getOperand(0) == VecIn1) { | 
|  | unsigned ExtIndex = cast<ConstantSDNode>(ExtVal)->getZExtValue(); | 
|  | if (ExtIndex > VT.getVectorNumElements()) | 
|  | return SDValue(); | 
|  |  | 
|  | Mask.push_back(ExtIndex); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Otherwise, use InIdx + VecSize | 
|  | unsigned Idx = cast<ConstantSDNode>(ExtVal)->getZExtValue(); | 
|  | Mask.push_back(Idx+NumInScalars); | 
|  | } | 
|  |  | 
|  | // Add count and size info. | 
|  | if (!isTypeLegal(VT)) | 
|  | return SDValue(); | 
|  |  | 
|  | // Return the new VECTOR_SHUFFLE node. | 
|  | SDValue Ops[2]; | 
|  | Ops[0] = VecIn1; | 
|  | Ops[1] = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT); | 
|  | return DAG.getVectorShuffle(VT, N->getDebugLoc(), Ops[0], Ops[1], &Mask[0]); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) { | 
|  | // TODO: Check to see if this is a CONCAT_VECTORS of a bunch of | 
|  | // EXTRACT_SUBVECTOR operations.  If so, and if the EXTRACT_SUBVECTOR vector | 
|  | // inputs come from at most two distinct vectors, turn this into a shuffle | 
|  | // node. | 
|  |  | 
|  | // If we only have one input vector, we don't need to do any concatenation. | 
|  | if (N->getNumOperands() == 1) | 
|  | return N->getOperand(0); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode* N) { | 
|  | EVT NVT = N->getValueType(0); | 
|  | SDValue V = N->getOperand(0); | 
|  |  | 
|  | if (V->getOpcode() == ISD::INSERT_SUBVECTOR) { | 
|  | // Handle only simple case where vector being inserted and vector | 
|  | // being extracted are of same type, and are half size of larger vectors. | 
|  | EVT BigVT = V->getOperand(0).getValueType(); | 
|  | EVT SmallVT = V->getOperand(1).getValueType(); | 
|  | if (NVT != SmallVT || NVT.getSizeInBits()*2 != BigVT.getSizeInBits()) | 
|  | return SDValue(); | 
|  |  | 
|  | // Only handle cases where both indexes are constants with the same type. | 
|  | ConstantSDNode *InsIdx = dyn_cast<ConstantSDNode>(N->getOperand(1)); | 
|  | ConstantSDNode *ExtIdx = dyn_cast<ConstantSDNode>(V->getOperand(2)); | 
|  |  | 
|  | if (InsIdx && ExtIdx && | 
|  | InsIdx->getValueType(0).getSizeInBits() <= 64 && | 
|  | ExtIdx->getValueType(0).getSizeInBits() <= 64) { | 
|  | // Combine: | 
|  | //    (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx) | 
|  | // Into: | 
|  | //    indices are equal => V1 | 
|  | //    otherwise => (extract_subvec V1, ExtIdx) | 
|  | if (InsIdx->getZExtValue() == ExtIdx->getZExtValue()) | 
|  | return V->getOperand(1); | 
|  | return DAG.getNode(ISD::EXTRACT_SUBVECTOR, N->getDebugLoc(), NVT, | 
|  | V->getOperand(0), N->getOperand(1)); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) { | 
|  | EVT VT = N->getValueType(0); | 
|  | unsigned NumElts = VT.getVectorNumElements(); | 
|  |  | 
|  | SDValue N0 = N->getOperand(0); | 
|  |  | 
|  | assert(N0.getValueType().getVectorNumElements() == NumElts && | 
|  | "Vector shuffle must be normalized in DAG"); | 
|  |  | 
|  | // FIXME: implement canonicalizations from DAG.getVectorShuffle() | 
|  |  | 
|  | // If it is a splat, check if the argument vector is another splat or a | 
|  | // build_vector with all scalar elements the same. | 
|  | ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); | 
|  | if (SVN->isSplat() && SVN->getSplatIndex() < (int)NumElts) { | 
|  | SDNode *V = N0.getNode(); | 
|  |  | 
|  | // If this is a bit convert that changes the element type of the vector but | 
|  | // not the number of vector elements, look through it.  Be careful not to | 
|  | // look though conversions that change things like v4f32 to v2f64. | 
|  | if (V->getOpcode() == ISD::BITCAST) { | 
|  | SDValue ConvInput = V->getOperand(0); | 
|  | if (ConvInput.getValueType().isVector() && | 
|  | ConvInput.getValueType().getVectorNumElements() == NumElts) | 
|  | V = ConvInput.getNode(); | 
|  | } | 
|  |  | 
|  | if (V->getOpcode() == ISD::BUILD_VECTOR) { | 
|  | assert(V->getNumOperands() == NumElts && | 
|  | "BUILD_VECTOR has wrong number of operands"); | 
|  | SDValue Base; | 
|  | bool AllSame = true; | 
|  | for (unsigned i = 0; i != NumElts; ++i) { | 
|  | if (V->getOperand(i).getOpcode() != ISD::UNDEF) { | 
|  | Base = V->getOperand(i); | 
|  | break; | 
|  | } | 
|  | } | 
|  | // Splat of <u, u, u, u>, return <u, u, u, u> | 
|  | if (!Base.getNode()) | 
|  | return N0; | 
|  | for (unsigned i = 0; i != NumElts; ++i) { | 
|  | if (V->getOperand(i) != Base) { | 
|  | AllSame = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | // Splat of <x, x, x, x>, return <x, x, x, x> | 
|  | if (AllSame) | 
|  | return N0; | 
|  | } | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitMEMBARRIER(SDNode* N) { | 
|  | if (!TLI.getShouldFoldAtomicFences()) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue atomic = N->getOperand(0); | 
|  | switch (atomic.getOpcode()) { | 
|  | case ISD::ATOMIC_CMP_SWAP: | 
|  | case ISD::ATOMIC_SWAP: | 
|  | case ISD::ATOMIC_LOAD_ADD: | 
|  | case ISD::ATOMIC_LOAD_SUB: | 
|  | case ISD::ATOMIC_LOAD_AND: | 
|  | case ISD::ATOMIC_LOAD_OR: | 
|  | case ISD::ATOMIC_LOAD_XOR: | 
|  | case ISD::ATOMIC_LOAD_NAND: | 
|  | case ISD::ATOMIC_LOAD_MIN: | 
|  | case ISD::ATOMIC_LOAD_MAX: | 
|  | case ISD::ATOMIC_LOAD_UMIN: | 
|  | case ISD::ATOMIC_LOAD_UMAX: | 
|  | break; | 
|  | default: | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue fence = atomic.getOperand(0); | 
|  | if (fence.getOpcode() != ISD::MEMBARRIER) | 
|  | return SDValue(); | 
|  |  | 
|  | switch (atomic.getOpcode()) { | 
|  | case ISD::ATOMIC_CMP_SWAP: | 
|  | return SDValue(DAG.UpdateNodeOperands(atomic.getNode(), | 
|  | fence.getOperand(0), | 
|  | atomic.getOperand(1), atomic.getOperand(2), | 
|  | atomic.getOperand(3)), atomic.getResNo()); | 
|  | case ISD::ATOMIC_SWAP: | 
|  | case ISD::ATOMIC_LOAD_ADD: | 
|  | case ISD::ATOMIC_LOAD_SUB: | 
|  | case ISD::ATOMIC_LOAD_AND: | 
|  | case ISD::ATOMIC_LOAD_OR: | 
|  | case ISD::ATOMIC_LOAD_XOR: | 
|  | case ISD::ATOMIC_LOAD_NAND: | 
|  | case ISD::ATOMIC_LOAD_MIN: | 
|  | case ISD::ATOMIC_LOAD_MAX: | 
|  | case ISD::ATOMIC_LOAD_UMIN: | 
|  | case ISD::ATOMIC_LOAD_UMAX: | 
|  | return SDValue(DAG.UpdateNodeOperands(atomic.getNode(), | 
|  | fence.getOperand(0), | 
|  | atomic.getOperand(1), atomic.getOperand(2)), | 
|  | atomic.getResNo()); | 
|  | default: | 
|  | return SDValue(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// XformToShuffleWithZero - Returns a vector_shuffle if it able to transform | 
|  | /// an AND to a vector_shuffle with the destination vector and a zero vector. | 
|  | /// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==> | 
|  | ///      vector_shuffle V, Zero, <0, 4, 2, 4> | 
|  | SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) { | 
|  | EVT VT = N->getValueType(0); | 
|  | DebugLoc dl = N->getDebugLoc(); | 
|  | SDValue LHS = N->getOperand(0); | 
|  | SDValue RHS = N->getOperand(1); | 
|  | if (N->getOpcode() == ISD::AND) { | 
|  | if (RHS.getOpcode() == ISD::BITCAST) | 
|  | RHS = RHS.getOperand(0); | 
|  | if (RHS.getOpcode() == ISD::BUILD_VECTOR) { | 
|  | SmallVector<int, 8> Indices; | 
|  | unsigned NumElts = RHS.getNumOperands(); | 
|  | for (unsigned i = 0; i != NumElts; ++i) { | 
|  | SDValue Elt = RHS.getOperand(i); | 
|  | if (!isa<ConstantSDNode>(Elt)) | 
|  | return SDValue(); | 
|  | else if (cast<ConstantSDNode>(Elt)->isAllOnesValue()) | 
|  | Indices.push_back(i); | 
|  | else if (cast<ConstantSDNode>(Elt)->isNullValue()) | 
|  | Indices.push_back(NumElts); | 
|  | else | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Let's see if the target supports this vector_shuffle. | 
|  | EVT RVT = RHS.getValueType(); | 
|  | if (!TLI.isVectorClearMaskLegal(Indices, RVT)) | 
|  | return SDValue(); | 
|  |  | 
|  | // Return the new VECTOR_SHUFFLE node. | 
|  | EVT EltVT = RVT.getVectorElementType(); | 
|  | SmallVector<SDValue,8> ZeroOps(RVT.getVectorNumElements(), | 
|  | DAG.getConstant(0, EltVT)); | 
|  | SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), | 
|  | RVT, &ZeroOps[0], ZeroOps.size()); | 
|  | LHS = DAG.getNode(ISD::BITCAST, dl, RVT, LHS); | 
|  | SDValue Shuf = DAG.getVectorShuffle(RVT, dl, LHS, Zero, &Indices[0]); | 
|  | return DAG.getNode(ISD::BITCAST, dl, VT, Shuf); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// SimplifyVBinOp - Visit a binary vector operation, like ADD. | 
|  | SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) { | 
|  | // After legalize, the target may be depending on adds and other | 
|  | // binary ops to provide legal ways to construct constants or other | 
|  | // things. Simplifying them may result in a loss of legality. | 
|  | if (LegalOperations) return SDValue(); | 
|  |  | 
|  | assert(N->getValueType(0).isVector() && | 
|  | "SimplifyVBinOp only works on vectors!"); | 
|  |  | 
|  | SDValue LHS = N->getOperand(0); | 
|  | SDValue RHS = N->getOperand(1); | 
|  | SDValue Shuffle = XformToShuffleWithZero(N); | 
|  | if (Shuffle.getNode()) return Shuffle; | 
|  |  | 
|  | // If the LHS and RHS are BUILD_VECTOR nodes, see if we can constant fold | 
|  | // this operation. | 
|  | if (LHS.getOpcode() == ISD::BUILD_VECTOR && | 
|  | RHS.getOpcode() == ISD::BUILD_VECTOR) { | 
|  | SmallVector<SDValue, 8> Ops; | 
|  | for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { | 
|  | SDValue LHSOp = LHS.getOperand(i); | 
|  | SDValue RHSOp = RHS.getOperand(i); | 
|  | // If these two elements can't be folded, bail out. | 
|  | if ((LHSOp.getOpcode() != ISD::UNDEF && | 
|  | LHSOp.getOpcode() != ISD::Constant && | 
|  | LHSOp.getOpcode() != ISD::ConstantFP) || | 
|  | (RHSOp.getOpcode() != ISD::UNDEF && | 
|  | RHSOp.getOpcode() != ISD::Constant && | 
|  | RHSOp.getOpcode() != ISD::ConstantFP)) | 
|  | break; | 
|  |  | 
|  | // Can't fold divide by zero. | 
|  | if (N->getOpcode() == ISD::SDIV || N->getOpcode() == ISD::UDIV || | 
|  | N->getOpcode() == ISD::FDIV) { | 
|  | if ((RHSOp.getOpcode() == ISD::Constant && | 
|  | cast<ConstantSDNode>(RHSOp.getNode())->isNullValue()) || | 
|  | (RHSOp.getOpcode() == ISD::ConstantFP && | 
|  | cast<ConstantFPSDNode>(RHSOp.getNode())->getValueAPF().isZero())) | 
|  | break; | 
|  | } | 
|  |  | 
|  | EVT VT = LHSOp.getValueType(); | 
|  | EVT RVT = RHSOp.getValueType(); | 
|  | if (RVT != VT) { | 
|  | // Integer BUILD_VECTOR operands may have types larger than the element | 
|  | // size (e.g., when the element type is not legal).  Prior to type | 
|  | // legalization, the types may not match between the two BUILD_VECTORS. | 
|  | // Truncate one of the operands to make them match. | 
|  | if (RVT.getSizeInBits() > VT.getSizeInBits()) { | 
|  | RHSOp = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, RHSOp); | 
|  | } else { | 
|  | LHSOp = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), RVT, LHSOp); | 
|  | VT = RVT; | 
|  | } | 
|  | } | 
|  | SDValue FoldOp = DAG.getNode(N->getOpcode(), LHS.getDebugLoc(), VT, | 
|  | LHSOp, RHSOp); | 
|  | if (FoldOp.getOpcode() != ISD::UNDEF && | 
|  | FoldOp.getOpcode() != ISD::Constant && | 
|  | FoldOp.getOpcode() != ISD::ConstantFP) | 
|  | break; | 
|  | Ops.push_back(FoldOp); | 
|  | AddToWorkList(FoldOp.getNode()); | 
|  | } | 
|  |  | 
|  | if (Ops.size() == LHS.getNumOperands()) | 
|  | return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), | 
|  | LHS.getValueType(), &Ops[0], Ops.size()); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::SimplifySelect(DebugLoc DL, SDValue N0, | 
|  | SDValue N1, SDValue N2){ | 
|  | assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!"); | 
|  |  | 
|  | SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2, | 
|  | cast<CondCodeSDNode>(N0.getOperand(2))->get()); | 
|  |  | 
|  | // If we got a simplified select_cc node back from SimplifySelectCC, then | 
|  | // break it down into a new SETCC node, and a new SELECT node, and then return | 
|  | // the SELECT node, since we were called with a SELECT node. | 
|  | if (SCC.getNode()) { | 
|  | // Check to see if we got a select_cc back (to turn into setcc/select). | 
|  | // Otherwise, just return whatever node we got back, like fabs. | 
|  | if (SCC.getOpcode() == ISD::SELECT_CC) { | 
|  | SDValue SETCC = DAG.getNode(ISD::SETCC, N0.getDebugLoc(), | 
|  | N0.getValueType(), | 
|  | SCC.getOperand(0), SCC.getOperand(1), | 
|  | SCC.getOperand(4)); | 
|  | AddToWorkList(SETCC.getNode()); | 
|  | return DAG.getNode(ISD::SELECT, SCC.getDebugLoc(), SCC.getValueType(), | 
|  | SCC.getOperand(2), SCC.getOperand(3), SETCC); | 
|  | } | 
|  |  | 
|  | return SCC; | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// SimplifySelectOps - Given a SELECT or a SELECT_CC node, where LHS and RHS | 
|  | /// are the two values being selected between, see if we can simplify the | 
|  | /// select.  Callers of this should assume that TheSelect is deleted if this | 
|  | /// returns true.  As such, they should return the appropriate thing (e.g. the | 
|  | /// node) back to the top-level of the DAG combiner loop to avoid it being | 
|  | /// looked at. | 
|  | bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS, | 
|  | SDValue RHS) { | 
|  |  | 
|  | // Cannot simplify select with vector condition | 
|  | if (TheSelect->getOperand(0).getValueType().isVector()) return false; | 
|  |  | 
|  | // If this is a select from two identical things, try to pull the operation | 
|  | // through the select. | 
|  | if (LHS.getOpcode() != RHS.getOpcode() || | 
|  | !LHS.hasOneUse() || !RHS.hasOneUse()) | 
|  | return false; | 
|  |  | 
|  | // If this is a load and the token chain is identical, replace the select | 
|  | // of two loads with a load through a select of the address to load from. | 
|  | // This triggers in things like "select bool X, 10.0, 123.0" after the FP | 
|  | // constants have been dropped into the constant pool. | 
|  | if (LHS.getOpcode() == ISD::LOAD) { | 
|  | LoadSDNode *LLD = cast<LoadSDNode>(LHS); | 
|  | LoadSDNode *RLD = cast<LoadSDNode>(RHS); | 
|  |  | 
|  | // Token chains must be identical. | 
|  | if (LHS.getOperand(0) != RHS.getOperand(0) || | 
|  | // Do not let this transformation reduce the number of volatile loads. | 
|  | LLD->isVolatile() || RLD->isVolatile() || | 
|  | // If this is an EXTLOAD, the VT's must match. | 
|  | LLD->getMemoryVT() != RLD->getMemoryVT() || | 
|  | // If this is an EXTLOAD, the kind of extension must match. | 
|  | (LLD->getExtensionType() != RLD->getExtensionType() && | 
|  | // The only exception is if one of the extensions is anyext. | 
|  | LLD->getExtensionType() != ISD::EXTLOAD && | 
|  | RLD->getExtensionType() != ISD::EXTLOAD) || | 
|  | // FIXME: this discards src value information.  This is | 
|  | // over-conservative. It would be beneficial to be able to remember | 
|  | // both potential memory locations.  Since we are discarding | 
|  | // src value info, don't do the transformation if the memory | 
|  | // locations are not in the default address space. | 
|  | LLD->getPointerInfo().getAddrSpace() != 0 || | 
|  | RLD->getPointerInfo().getAddrSpace() != 0) | 
|  | return false; | 
|  |  | 
|  | // Check that the select condition doesn't reach either load.  If so, | 
|  | // folding this will induce a cycle into the DAG.  If not, this is safe to | 
|  | // xform, so create a select of the addresses. | 
|  | SDValue Addr; | 
|  | if (TheSelect->getOpcode() == ISD::SELECT) { | 
|  | SDNode *CondNode = TheSelect->getOperand(0).getNode(); | 
|  | if ((LLD->hasAnyUseOfValue(1) && LLD->isPredecessorOf(CondNode)) || | 
|  | (RLD->hasAnyUseOfValue(1) && RLD->isPredecessorOf(CondNode))) | 
|  | return false; | 
|  | Addr = DAG.getNode(ISD::SELECT, TheSelect->getDebugLoc(), | 
|  | LLD->getBasePtr().getValueType(), | 
|  | TheSelect->getOperand(0), LLD->getBasePtr(), | 
|  | RLD->getBasePtr()); | 
|  | } else {  // Otherwise SELECT_CC | 
|  | SDNode *CondLHS = TheSelect->getOperand(0).getNode(); | 
|  | SDNode *CondRHS = TheSelect->getOperand(1).getNode(); | 
|  |  | 
|  | if ((LLD->hasAnyUseOfValue(1) && | 
|  | (LLD->isPredecessorOf(CondLHS) || LLD->isPredecessorOf(CondRHS))) || | 
|  | (LLD->hasAnyUseOfValue(1) && | 
|  | (LLD->isPredecessorOf(CondLHS) || LLD->isPredecessorOf(CondRHS)))) | 
|  | return false; | 
|  |  | 
|  | Addr = DAG.getNode(ISD::SELECT_CC, TheSelect->getDebugLoc(), | 
|  | LLD->getBasePtr().getValueType(), | 
|  | TheSelect->getOperand(0), | 
|  | TheSelect->getOperand(1), | 
|  | LLD->getBasePtr(), RLD->getBasePtr(), | 
|  | TheSelect->getOperand(4)); | 
|  | } | 
|  |  | 
|  | SDValue Load; | 
|  | if (LLD->getExtensionType() == ISD::NON_EXTLOAD) { | 
|  | Load = DAG.getLoad(TheSelect->getValueType(0), | 
|  | TheSelect->getDebugLoc(), | 
|  | // FIXME: Discards pointer info. | 
|  | LLD->getChain(), Addr, MachinePointerInfo(), | 
|  | LLD->isVolatile(), LLD->isNonTemporal(), | 
|  | LLD->isInvariant(), LLD->getAlignment()); | 
|  | } else { | 
|  | Load = DAG.getExtLoad(LLD->getExtensionType() == ISD::EXTLOAD ? | 
|  | RLD->getExtensionType() : LLD->getExtensionType(), | 
|  | TheSelect->getDebugLoc(), | 
|  | TheSelect->getValueType(0), | 
|  | // FIXME: Discards pointer info. | 
|  | LLD->getChain(), Addr, MachinePointerInfo(), | 
|  | LLD->getMemoryVT(), LLD->isVolatile(), | 
|  | LLD->isNonTemporal(), LLD->getAlignment()); | 
|  | } | 
|  |  | 
|  | // Users of the select now use the result of the load. | 
|  | CombineTo(TheSelect, Load); | 
|  |  | 
|  | // Users of the old loads now use the new load's chain.  We know the | 
|  | // old-load value is dead now. | 
|  | CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1)); | 
|  | CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// SimplifySelectCC - Simplify an expression of the form (N0 cond N1) ? N2 : N3 | 
|  | /// where 'cond' is the comparison specified by CC. | 
|  | SDValue DAGCombiner::SimplifySelectCC(DebugLoc DL, SDValue N0, SDValue N1, | 
|  | SDValue N2, SDValue N3, | 
|  | ISD::CondCode CC, bool NotExtCompare) { | 
|  | // (x ? y : y) -> y. | 
|  | if (N2 == N3) return N2; | 
|  |  | 
|  | EVT VT = N2.getValueType(); | 
|  | ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode()); | 
|  | ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode()); | 
|  | ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.getNode()); | 
|  |  | 
|  | // Determine if the condition we're dealing with is constant | 
|  | SDValue SCC = SimplifySetCC(TLI.getSetCCResultType(N0.getValueType()), | 
|  | N0, N1, CC, DL, false); | 
|  | if (SCC.getNode()) AddToWorkList(SCC.getNode()); | 
|  | ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode()); | 
|  |  | 
|  | // fold select_cc true, x, y -> x | 
|  | if (SCCC && !SCCC->isNullValue()) | 
|  | return N2; | 
|  | // fold select_cc false, x, y -> y | 
|  | if (SCCC && SCCC->isNullValue()) | 
|  | return N3; | 
|  |  | 
|  | // Check to see if we can simplify the select into an fabs node | 
|  | if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) { | 
|  | // Allow either -0.0 or 0.0 | 
|  | if (CFP->getValueAPF().isZero()) { | 
|  | // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs | 
|  | if ((CC == ISD::SETGE || CC == ISD::SETGT) && | 
|  | N0 == N2 && N3.getOpcode() == ISD::FNEG && | 
|  | N2 == N3.getOperand(0)) | 
|  | return DAG.getNode(ISD::FABS, DL, VT, N0); | 
|  |  | 
|  | // select (setl[te] X, +/-0.0), fneg(X), X -> fabs | 
|  | if ((CC == ISD::SETLT || CC == ISD::SETLE) && | 
|  | N0 == N3 && N2.getOpcode() == ISD::FNEG && | 
|  | N2.getOperand(0) == N3) | 
|  | return DAG.getNode(ISD::FABS, DL, VT, N3); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)" | 
|  | // where "tmp" is a constant pool entry containing an array with 1.0 and 2.0 | 
|  | // in it.  This is a win when the constant is not otherwise available because | 
|  | // it replaces two constant pool loads with one.  We only do this if the FP | 
|  | // type is known to be legal, because if it isn't, then we are before legalize | 
|  | // types an we want the other legalization to happen first (e.g. to avoid | 
|  | // messing with soft float) and if the ConstantFP is not legal, because if | 
|  | // it is legal, we may not need to store the FP constant in a constant pool. | 
|  | if (ConstantFPSDNode *TV = dyn_cast<ConstantFPSDNode>(N2)) | 
|  | if (ConstantFPSDNode *FV = dyn_cast<ConstantFPSDNode>(N3)) { | 
|  | if (TLI.isTypeLegal(N2.getValueType()) && | 
|  | (TLI.getOperationAction(ISD::ConstantFP, N2.getValueType()) != | 
|  | TargetLowering::Legal) && | 
|  | // If both constants have multiple uses, then we won't need to do an | 
|  | // extra load, they are likely around in registers for other users. | 
|  | (TV->hasOneUse() || FV->hasOneUse())) { | 
|  | Constant *Elts[] = { | 
|  | const_cast<ConstantFP*>(FV->getConstantFPValue()), | 
|  | const_cast<ConstantFP*>(TV->getConstantFPValue()) | 
|  | }; | 
|  | Type *FPTy = Elts[0]->getType(); | 
|  | const TargetData &TD = *TLI.getTargetData(); | 
|  |  | 
|  | // Create a ConstantArray of the two constants. | 
|  | Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts); | 
|  | SDValue CPIdx = DAG.getConstantPool(CA, TLI.getPointerTy(), | 
|  | TD.getPrefTypeAlignment(FPTy)); | 
|  | unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); | 
|  |  | 
|  | // Get the offsets to the 0 and 1 element of the array so that we can | 
|  | // select between them. | 
|  | SDValue Zero = DAG.getIntPtrConstant(0); | 
|  | unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType()); | 
|  | SDValue One = DAG.getIntPtrConstant(EltSize); | 
|  |  | 
|  | SDValue Cond = DAG.getSetCC(DL, | 
|  | TLI.getSetCCResultType(N0.getValueType()), | 
|  | N0, N1, CC); | 
|  | AddToWorkList(Cond.getNode()); | 
|  | SDValue CstOffset = DAG.getNode(ISD::SELECT, DL, Zero.getValueType(), | 
|  | Cond, One, Zero); | 
|  | AddToWorkList(CstOffset.getNode()); | 
|  | CPIdx = DAG.getNode(ISD::ADD, DL, TLI.getPointerTy(), CPIdx, | 
|  | CstOffset); | 
|  | AddToWorkList(CPIdx.getNode()); | 
|  | return DAG.getLoad(TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx, | 
|  | MachinePointerInfo::getConstantPool(), false, | 
|  | false, false, Alignment); | 
|  |  | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check to see if we can perform the "gzip trick", transforming | 
|  | // (select_cc setlt X, 0, A, 0) -> (and (sra X, (sub size(X), 1), A) | 
|  | if (N1C && N3C && N3C->isNullValue() && CC == ISD::SETLT && | 
|  | (N1C->isNullValue() ||                         // (a < 0) ? b : 0 | 
|  | (N1C->getAPIntValue() == 1 && N0 == N2))) {   // (a < 1) ? a : 0 | 
|  | EVT XType = N0.getValueType(); | 
|  | EVT AType = N2.getValueType(); | 
|  | if (XType.bitsGE(AType)) { | 
|  | // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a | 
|  | // single-bit constant. | 
|  | if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue()-1)) == 0)) { | 
|  | unsigned ShCtV = N2C->getAPIntValue().logBase2(); | 
|  | ShCtV = XType.getSizeInBits()-ShCtV-1; | 
|  | SDValue ShCt = DAG.getConstant(ShCtV, | 
|  | getShiftAmountTy(N0.getValueType())); | 
|  | SDValue Shift = DAG.getNode(ISD::SRL, N0.getDebugLoc(), | 
|  | XType, N0, ShCt); | 
|  | AddToWorkList(Shift.getNode()); | 
|  |  | 
|  | if (XType.bitsGT(AType)) { | 
|  | Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift); | 
|  | AddToWorkList(Shift.getNode()); | 
|  | } | 
|  |  | 
|  | return DAG.getNode(ISD::AND, DL, AType, Shift, N2); | 
|  | } | 
|  |  | 
|  | SDValue Shift = DAG.getNode(ISD::SRA, N0.getDebugLoc(), | 
|  | XType, N0, | 
|  | DAG.getConstant(XType.getSizeInBits()-1, | 
|  | getShiftAmountTy(N0.getValueType()))); | 
|  | AddToWorkList(Shift.getNode()); | 
|  |  | 
|  | if (XType.bitsGT(AType)) { | 
|  | Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift); | 
|  | AddToWorkList(Shift.getNode()); | 
|  | } | 
|  |  | 
|  | return DAG.getNode(ISD::AND, DL, AType, Shift, N2); | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A) | 
|  | // where y is has a single bit set. | 
|  | // A plaintext description would be, we can turn the SELECT_CC into an AND | 
|  | // when the condition can be materialized as an all-ones register.  Any | 
|  | // single bit-test can be materialized as an all-ones register with | 
|  | // shift-left and shift-right-arith. | 
|  | if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND && | 
|  | N0->getValueType(0) == VT && | 
|  | N1C && N1C->isNullValue() && | 
|  | N2C && N2C->isNullValue()) { | 
|  | SDValue AndLHS = N0->getOperand(0); | 
|  | ConstantSDNode *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1)); | 
|  | if (ConstAndRHS && ConstAndRHS->getAPIntValue().countPopulation() == 1) { | 
|  | // Shift the tested bit over the sign bit. | 
|  | APInt AndMask = ConstAndRHS->getAPIntValue(); | 
|  | SDValue ShlAmt = | 
|  | DAG.getConstant(AndMask.countLeadingZeros(), | 
|  | getShiftAmountTy(AndLHS.getValueType())); | 
|  | SDValue Shl = DAG.getNode(ISD::SHL, N0.getDebugLoc(), VT, AndLHS, ShlAmt); | 
|  |  | 
|  | // Now arithmetic right shift it all the way over, so the result is either | 
|  | // all-ones, or zero. | 
|  | SDValue ShrAmt = | 
|  | DAG.getConstant(AndMask.getBitWidth()-1, | 
|  | getShiftAmountTy(Shl.getValueType())); | 
|  | SDValue Shr = DAG.getNode(ISD::SRA, N0.getDebugLoc(), VT, Shl, ShrAmt); | 
|  |  | 
|  | return DAG.getNode(ISD::AND, DL, VT, Shr, N3); | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold select C, 16, 0 -> shl C, 4 | 
|  | if (N2C && N3C && N3C->isNullValue() && N2C->getAPIntValue().isPowerOf2() && | 
|  | TLI.getBooleanContents(N0.getValueType().isVector()) == | 
|  | TargetLowering::ZeroOrOneBooleanContent) { | 
|  |  | 
|  | // If the caller doesn't want us to simplify this into a zext of a compare, | 
|  | // don't do it. | 
|  | if (NotExtCompare && N2C->getAPIntValue() == 1) | 
|  | return SDValue(); | 
|  |  | 
|  | // Get a SetCC of the condition | 
|  | // FIXME: Should probably make sure that setcc is legal if we ever have a | 
|  | // target where it isn't. | 
|  | SDValue Temp, SCC; | 
|  | // cast from setcc result type to select result type | 
|  | if (LegalTypes) { | 
|  | SCC  = DAG.getSetCC(DL, TLI.getSetCCResultType(N0.getValueType()), | 
|  | N0, N1, CC); | 
|  | if (N2.getValueType().bitsLT(SCC.getValueType())) | 
|  | Temp = DAG.getZeroExtendInReg(SCC, N2.getDebugLoc(), N2.getValueType()); | 
|  | else | 
|  | Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getDebugLoc(), | 
|  | N2.getValueType(), SCC); | 
|  | } else { | 
|  | SCC  = DAG.getSetCC(N0.getDebugLoc(), MVT::i1, N0, N1, CC); | 
|  | Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getDebugLoc(), | 
|  | N2.getValueType(), SCC); | 
|  | } | 
|  |  | 
|  | AddToWorkList(SCC.getNode()); | 
|  | AddToWorkList(Temp.getNode()); | 
|  |  | 
|  | if (N2C->getAPIntValue() == 1) | 
|  | return Temp; | 
|  |  | 
|  | // shl setcc result by log2 n2c | 
|  | return DAG.getNode(ISD::SHL, DL, N2.getValueType(), Temp, | 
|  | DAG.getConstant(N2C->getAPIntValue().logBase2(), | 
|  | getShiftAmountTy(Temp.getValueType()))); | 
|  | } | 
|  |  | 
|  | // Check to see if this is the equivalent of setcc | 
|  | // FIXME: Turn all of these into setcc if setcc if setcc is legal | 
|  | // otherwise, go ahead with the folds. | 
|  | if (0 && N3C && N3C->isNullValue() && N2C && (N2C->getAPIntValue() == 1ULL)) { | 
|  | EVT XType = N0.getValueType(); | 
|  | if (!LegalOperations || | 
|  | TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultType(XType))) { | 
|  | SDValue Res = DAG.getSetCC(DL, TLI.getSetCCResultType(XType), N0, N1, CC); | 
|  | if (Res.getValueType() != VT) | 
|  | Res = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Res); | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | // fold (seteq X, 0) -> (srl (ctlz X, log2(size(X)))) | 
|  | if (N1C && N1C->isNullValue() && CC == ISD::SETEQ && | 
|  | (!LegalOperations || | 
|  | TLI.isOperationLegal(ISD::CTLZ, XType))) { | 
|  | SDValue Ctlz = DAG.getNode(ISD::CTLZ, N0.getDebugLoc(), XType, N0); | 
|  | return DAG.getNode(ISD::SRL, DL, XType, Ctlz, | 
|  | DAG.getConstant(Log2_32(XType.getSizeInBits()), | 
|  | getShiftAmountTy(Ctlz.getValueType()))); | 
|  | } | 
|  | // fold (setgt X, 0) -> (srl (and (-X, ~X), size(X)-1)) | 
|  | if (N1C && N1C->isNullValue() && CC == ISD::SETGT) { | 
|  | SDValue NegN0 = DAG.getNode(ISD::SUB, N0.getDebugLoc(), | 
|  | XType, DAG.getConstant(0, XType), N0); | 
|  | SDValue NotN0 = DAG.getNOT(N0.getDebugLoc(), N0, XType); | 
|  | return DAG.getNode(ISD::SRL, DL, XType, | 
|  | DAG.getNode(ISD::AND, DL, XType, NegN0, NotN0), | 
|  | DAG.getConstant(XType.getSizeInBits()-1, | 
|  | getShiftAmountTy(XType))); | 
|  | } | 
|  | // fold (setgt X, -1) -> (xor (srl (X, size(X)-1), 1)) | 
|  | if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT) { | 
|  | SDValue Sign = DAG.getNode(ISD::SRL, N0.getDebugLoc(), XType, N0, | 
|  | DAG.getConstant(XType.getSizeInBits()-1, | 
|  | getShiftAmountTy(N0.getValueType()))); | 
|  | return DAG.getNode(ISD::XOR, DL, XType, Sign, DAG.getConstant(1, XType)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check to see if this is an integer abs. | 
|  | // select_cc setg[te] X,  0,  X, -X -> | 
|  | // select_cc setgt    X, -1,  X, -X -> | 
|  | // select_cc setl[te] X,  0, -X,  X -> | 
|  | // select_cc setlt    X,  1, -X,  X -> | 
|  | // Y = sra (X, size(X)-1); xor (add (X, Y), Y) | 
|  | if (N1C) { | 
|  | ConstantSDNode *SubC = NULL; | 
|  | if (((N1C->isNullValue() && (CC == ISD::SETGT || CC == ISD::SETGE)) || | 
|  | (N1C->isAllOnesValue() && CC == ISD::SETGT)) && | 
|  | N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1)) | 
|  | SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0)); | 
|  | else if (((N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE)) || | 
|  | (N1C->isOne() && CC == ISD::SETLT)) && | 
|  | N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1)) | 
|  | SubC = dyn_cast<ConstantSDNode>(N2.getOperand(0)); | 
|  |  | 
|  | EVT XType = N0.getValueType(); | 
|  | if (SubC && SubC->isNullValue() && XType.isInteger()) { | 
|  | SDValue Shift = DAG.getNode(ISD::SRA, N0.getDebugLoc(), XType, | 
|  | N0, | 
|  | DAG.getConstant(XType.getSizeInBits()-1, | 
|  | getShiftAmountTy(N0.getValueType()))); | 
|  | SDValue Add = DAG.getNode(ISD::ADD, N0.getDebugLoc(), | 
|  | XType, N0, Shift); | 
|  | AddToWorkList(Shift.getNode()); | 
|  | AddToWorkList(Add.getNode()); | 
|  | return DAG.getNode(ISD::XOR, DL, XType, Add, Shift); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// SimplifySetCC - This is a stub for TargetLowering::SimplifySetCC. | 
|  | SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0, | 
|  | SDValue N1, ISD::CondCode Cond, | 
|  | DebugLoc DL, bool foldBooleans) { | 
|  | TargetLowering::DAGCombinerInfo | 
|  | DagCombineInfo(DAG, !LegalTypes, !LegalOperations, false, this); | 
|  | return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL); | 
|  | } | 
|  |  | 
|  | /// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant, | 
|  | /// return a DAG expression to select that will generate the same value by | 
|  | /// multiplying by a magic number.  See: | 
|  | /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html> | 
|  | SDValue DAGCombiner::BuildSDIV(SDNode *N) { | 
|  | std::vector<SDNode*> Built; | 
|  | SDValue S = TLI.BuildSDIV(N, DAG, LegalOperations, &Built); | 
|  |  | 
|  | for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end(); | 
|  | ii != ee; ++ii) | 
|  | AddToWorkList(*ii); | 
|  | return S; | 
|  | } | 
|  |  | 
|  | /// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant, | 
|  | /// return a DAG expression to select that will generate the same value by | 
|  | /// multiplying by a magic number.  See: | 
|  | /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html> | 
|  | SDValue DAGCombiner::BuildUDIV(SDNode *N) { | 
|  | std::vector<SDNode*> Built; | 
|  | SDValue S = TLI.BuildUDIV(N, DAG, LegalOperations, &Built); | 
|  |  | 
|  | for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end(); | 
|  | ii != ee; ++ii) | 
|  | AddToWorkList(*ii); | 
|  | return S; | 
|  | } | 
|  |  | 
|  | /// FindBaseOffset - Return true if base is a frame index, which is known not | 
|  | // to alias with anything but itself.  Provides base object and offset as | 
|  | // results. | 
|  | static bool FindBaseOffset(SDValue Ptr, SDValue &Base, int64_t &Offset, | 
|  | const GlobalValue *&GV, void *&CV) { | 
|  | // Assume it is a primitive operation. | 
|  | Base = Ptr; Offset = 0; GV = 0; CV = 0; | 
|  |  | 
|  | // If it's an adding a simple constant then integrate the offset. | 
|  | if (Base.getOpcode() == ISD::ADD) { | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Base.getOperand(1))) { | 
|  | Base = Base.getOperand(0); | 
|  | Offset += C->getZExtValue(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Return the underlying GlobalValue, and update the Offset.  Return false | 
|  | // for GlobalAddressSDNode since the same GlobalAddress may be represented | 
|  | // by multiple nodes with different offsets. | 
|  | if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Base)) { | 
|  | GV = G->getGlobal(); | 
|  | Offset += G->getOffset(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Return the underlying Constant value, and update the Offset.  Return false | 
|  | // for ConstantSDNodes since the same constant pool entry may be represented | 
|  | // by multiple nodes with different offsets. | 
|  | if (ConstantPoolSDNode *C = dyn_cast<ConstantPoolSDNode>(Base)) { | 
|  | CV = C->isMachineConstantPoolEntry() ? (void *)C->getMachineCPVal() | 
|  | : (void *)C->getConstVal(); | 
|  | Offset += C->getOffset(); | 
|  | return false; | 
|  | } | 
|  | // If it's any of the following then it can't alias with anything but itself. | 
|  | return isa<FrameIndexSDNode>(Base); | 
|  | } | 
|  |  | 
|  | /// isAlias - Return true if there is any possibility that the two addresses | 
|  | /// overlap. | 
|  | bool DAGCombiner::isAlias(SDValue Ptr1, int64_t Size1, | 
|  | const Value *SrcValue1, int SrcValueOffset1, | 
|  | unsigned SrcValueAlign1, | 
|  | const MDNode *TBAAInfo1, | 
|  | SDValue Ptr2, int64_t Size2, | 
|  | const Value *SrcValue2, int SrcValueOffset2, | 
|  | unsigned SrcValueAlign2, | 
|  | const MDNode *TBAAInfo2) const { | 
|  | // If they are the same then they must be aliases. | 
|  | if (Ptr1 == Ptr2) return true; | 
|  |  | 
|  | // Gather base node and offset information. | 
|  | SDValue Base1, Base2; | 
|  | int64_t Offset1, Offset2; | 
|  | const GlobalValue *GV1, *GV2; | 
|  | void *CV1, *CV2; | 
|  | bool isFrameIndex1 = FindBaseOffset(Ptr1, Base1, Offset1, GV1, CV1); | 
|  | bool isFrameIndex2 = FindBaseOffset(Ptr2, Base2, Offset2, GV2, CV2); | 
|  |  | 
|  | // If they have a same base address then check to see if they overlap. | 
|  | if (Base1 == Base2 || (GV1 && (GV1 == GV2)) || (CV1 && (CV1 == CV2))) | 
|  | return !((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1); | 
|  |  | 
|  | // It is possible for different frame indices to alias each other, mostly | 
|  | // when tail call optimization reuses return address slots for arguments. | 
|  | // To catch this case, look up the actual index of frame indices to compute | 
|  | // the real alias relationship. | 
|  | if (isFrameIndex1 && isFrameIndex2) { | 
|  | MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); | 
|  | Offset1 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base1)->getIndex()); | 
|  | Offset2 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base2)->getIndex()); | 
|  | return !((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1); | 
|  | } | 
|  |  | 
|  | // Otherwise, if we know what the bases are, and they aren't identical, then | 
|  | // we know they cannot alias. | 
|  | if ((isFrameIndex1 || CV1 || GV1) && (isFrameIndex2 || CV2 || GV2)) | 
|  | return false; | 
|  |  | 
|  | // If we know required SrcValue1 and SrcValue2 have relatively large alignment | 
|  | // compared to the size and offset of the access, we may be able to prove they | 
|  | // do not alias.  This check is conservative for now to catch cases created by | 
|  | // splitting vector types. | 
|  | if ((SrcValueAlign1 == SrcValueAlign2) && | 
|  | (SrcValueOffset1 != SrcValueOffset2) && | 
|  | (Size1 == Size2) && (SrcValueAlign1 > Size1)) { | 
|  | int64_t OffAlign1 = SrcValueOffset1 % SrcValueAlign1; | 
|  | int64_t OffAlign2 = SrcValueOffset2 % SrcValueAlign1; | 
|  |  | 
|  | // There is no overlap between these relatively aligned accesses of similar | 
|  | // size, return no alias. | 
|  | if ((OffAlign1 + Size1) <= OffAlign2 || (OffAlign2 + Size2) <= OffAlign1) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (CombinerGlobalAA) { | 
|  | // Use alias analysis information. | 
|  | int64_t MinOffset = std::min(SrcValueOffset1, SrcValueOffset2); | 
|  | int64_t Overlap1 = Size1 + SrcValueOffset1 - MinOffset; | 
|  | int64_t Overlap2 = Size2 + SrcValueOffset2 - MinOffset; | 
|  | AliasAnalysis::AliasResult AAResult = | 
|  | AA.alias(AliasAnalysis::Location(SrcValue1, Overlap1, TBAAInfo1), | 
|  | AliasAnalysis::Location(SrcValue2, Overlap2, TBAAInfo2)); | 
|  | if (AAResult == AliasAnalysis::NoAlias) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Otherwise we have to assume they alias. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// FindAliasInfo - Extracts the relevant alias information from the memory | 
|  | /// node.  Returns true if the operand was a load. | 
|  | bool DAGCombiner::FindAliasInfo(SDNode *N, | 
|  | SDValue &Ptr, int64_t &Size, | 
|  | const Value *&SrcValue, | 
|  | int &SrcValueOffset, | 
|  | unsigned &SrcValueAlign, | 
|  | const MDNode *&TBAAInfo) const { | 
|  | if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { | 
|  | Ptr = LD->getBasePtr(); | 
|  | Size = LD->getMemoryVT().getSizeInBits() >> 3; | 
|  | SrcValue = LD->getSrcValue(); | 
|  | SrcValueOffset = LD->getSrcValueOffset(); | 
|  | SrcValueAlign = LD->getOriginalAlignment(); | 
|  | TBAAInfo = LD->getTBAAInfo(); | 
|  | return true; | 
|  | } | 
|  | if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { | 
|  | Ptr = ST->getBasePtr(); | 
|  | Size = ST->getMemoryVT().getSizeInBits() >> 3; | 
|  | SrcValue = ST->getSrcValue(); | 
|  | SrcValueOffset = ST->getSrcValueOffset(); | 
|  | SrcValueAlign = ST->getOriginalAlignment(); | 
|  | TBAAInfo = ST->getTBAAInfo(); | 
|  | return false; | 
|  | } | 
|  | llvm_unreachable("FindAliasInfo expected a memory operand"); | 
|  | } | 
|  |  | 
|  | /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes, | 
|  | /// looking for aliasing nodes and adding them to the Aliases vector. | 
|  | void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain, | 
|  | SmallVector<SDValue, 8> &Aliases) { | 
|  | SmallVector<SDValue, 8> Chains;     // List of chains to visit. | 
|  | SmallPtrSet<SDNode *, 16> Visited;  // Visited node set. | 
|  |  | 
|  | // Get alias information for node. | 
|  | SDValue Ptr; | 
|  | int64_t Size; | 
|  | const Value *SrcValue; | 
|  | int SrcValueOffset; | 
|  | unsigned SrcValueAlign; | 
|  | const MDNode *SrcTBAAInfo; | 
|  | bool IsLoad = FindAliasInfo(N, Ptr, Size, SrcValue, SrcValueOffset, | 
|  | SrcValueAlign, SrcTBAAInfo); | 
|  |  | 
|  | // Starting off. | 
|  | Chains.push_back(OriginalChain); | 
|  | unsigned Depth = 0; | 
|  |  | 
|  | // Look at each chain and determine if it is an alias.  If so, add it to the | 
|  | // aliases list.  If not, then continue up the chain looking for the next | 
|  | // candidate. | 
|  | while (!Chains.empty()) { | 
|  | SDValue Chain = Chains.back(); | 
|  | Chains.pop_back(); | 
|  |  | 
|  | // For TokenFactor nodes, look at each operand and only continue up the | 
|  | // chain until we find two aliases.  If we've seen two aliases, assume we'll | 
|  | // find more and revert to original chain since the xform is unlikely to be | 
|  | // profitable. | 
|  | // | 
|  | // FIXME: The depth check could be made to return the last non-aliasing | 
|  | // chain we found before we hit a tokenfactor rather than the original | 
|  | // chain. | 
|  | if (Depth > 6 || Aliases.size() == 2) { | 
|  | Aliases.clear(); | 
|  | Aliases.push_back(OriginalChain); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Don't bother if we've been before. | 
|  | if (!Visited.insert(Chain.getNode())) | 
|  | continue; | 
|  |  | 
|  | switch (Chain.getOpcode()) { | 
|  | case ISD::EntryToken: | 
|  | // Entry token is ideal chain operand, but handled in FindBetterChain. | 
|  | break; | 
|  |  | 
|  | case ISD::LOAD: | 
|  | case ISD::STORE: { | 
|  | // Get alias information for Chain. | 
|  | SDValue OpPtr; | 
|  | int64_t OpSize; | 
|  | const Value *OpSrcValue; | 
|  | int OpSrcValueOffset; | 
|  | unsigned OpSrcValueAlign; | 
|  | const MDNode *OpSrcTBAAInfo; | 
|  | bool IsOpLoad = FindAliasInfo(Chain.getNode(), OpPtr, OpSize, | 
|  | OpSrcValue, OpSrcValueOffset, | 
|  | OpSrcValueAlign, | 
|  | OpSrcTBAAInfo); | 
|  |  | 
|  | // If chain is alias then stop here. | 
|  | if (!(IsLoad && IsOpLoad) && | 
|  | isAlias(Ptr, Size, SrcValue, SrcValueOffset, SrcValueAlign, | 
|  | SrcTBAAInfo, | 
|  | OpPtr, OpSize, OpSrcValue, OpSrcValueOffset, | 
|  | OpSrcValueAlign, OpSrcTBAAInfo)) { | 
|  | Aliases.push_back(Chain); | 
|  | } else { | 
|  | // Look further up the chain. | 
|  | Chains.push_back(Chain.getOperand(0)); | 
|  | ++Depth; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ISD::TokenFactor: | 
|  | // We have to check each of the operands of the token factor for "small" | 
|  | // token factors, so we queue them up.  Adding the operands to the queue | 
|  | // (stack) in reverse order maintains the original order and increases the | 
|  | // likelihood that getNode will find a matching token factor (CSE.) | 
|  | if (Chain.getNumOperands() > 16) { | 
|  | Aliases.push_back(Chain); | 
|  | break; | 
|  | } | 
|  | for (unsigned n = Chain.getNumOperands(); n;) | 
|  | Chains.push_back(Chain.getOperand(--n)); | 
|  | ++Depth; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | // For all other instructions we will just have to take what we can get. | 
|  | Aliases.push_back(Chain); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes, looking | 
|  | /// for a better chain (aliasing node.) | 
|  | SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) { | 
|  | SmallVector<SDValue, 8> Aliases;  // Ops for replacing token factor. | 
|  |  | 
|  | // Accumulate all the aliases to this node. | 
|  | GatherAllAliases(N, OldChain, Aliases); | 
|  |  | 
|  | // If no operands then chain to entry token. | 
|  | if (Aliases.size() == 0) | 
|  | return DAG.getEntryNode(); | 
|  |  | 
|  | // If a single operand then chain to it.  We don't need to revisit it. | 
|  | if (Aliases.size() == 1) | 
|  | return Aliases[0]; | 
|  |  | 
|  | // Construct a custom tailored token factor. | 
|  | return DAG.getNode(ISD::TokenFactor, N->getDebugLoc(), MVT::Other, | 
|  | &Aliases[0], Aliases.size()); | 
|  | } | 
|  |  | 
|  | // SelectionDAG::Combine - This is the entry point for the file. | 
|  | // | 
|  | void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis &AA, | 
|  | CodeGenOpt::Level OptLevel) { | 
|  | /// run - This is the main entry point to this class. | 
|  | /// | 
|  | DAGCombiner(*this, AA, OptLevel).Run(Level); | 
|  | } |