|  | //==- AArch64PromoteConstant.cpp - Promote constant to global for AArch64 --==// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the AArch64PromoteConstant pass which promotes constants | 
|  | // to global variables when this is likely to be more efficient. Currently only | 
|  | // types related to constant vector (i.e., constant vector, array of constant | 
|  | // vectors, constant structure with a constant vector field, etc.) are promoted | 
|  | // to global variables. Constant vectors are likely to be lowered in target | 
|  | // constant pool during instruction selection already; therefore, the access | 
|  | // will remain the same (memory load), but the structure types are not split | 
|  | // into different constant pool accesses for each field. A bonus side effect is | 
|  | // that created globals may be merged by the global merge pass. | 
|  | // | 
|  | // FIXME: This pass may be useful for other targets too. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "AArch64.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/Constant.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/GlobalValue.h" | 
|  | #include "llvm/IR/GlobalVariable.h" | 
|  | #include "llvm/IR/IRBuilder.h" | 
|  | #include "llvm/IR/InlineAsm.h" | 
|  | #include "llvm/IR/InstIterator.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <utility> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "aarch64-promote-const" | 
|  |  | 
|  | // Stress testing mode - disable heuristics. | 
|  | static cl::opt<bool> Stress("aarch64-stress-promote-const", cl::Hidden, | 
|  | cl::desc("Promote all vector constants")); | 
|  |  | 
|  | STATISTIC(NumPromoted, "Number of promoted constants"); | 
|  | STATISTIC(NumPromotedUses, "Number of promoted constants uses"); | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                       AArch64PromoteConstant | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// Promotes interesting constant into global variables. | 
|  | /// The motivating example is: | 
|  | /// static const uint16_t TableA[32] = { | 
|  | ///   41944, 40330, 38837, 37450, 36158, 34953, 33826, 32768, | 
|  | ///   31776, 30841, 29960, 29128, 28340, 27595, 26887, 26215, | 
|  | ///   25576, 24967, 24386, 23832, 23302, 22796, 22311, 21846, | 
|  | ///   21400, 20972, 20561, 20165, 19785, 19419, 19066, 18725, | 
|  | /// }; | 
|  | /// | 
|  | /// uint8x16x4_t LoadStatic(void) { | 
|  | ///   uint8x16x4_t ret; | 
|  | ///   ret.val[0] = vld1q_u16(TableA +  0); | 
|  | ///   ret.val[1] = vld1q_u16(TableA +  8); | 
|  | ///   ret.val[2] = vld1q_u16(TableA + 16); | 
|  | ///   ret.val[3] = vld1q_u16(TableA + 24); | 
|  | ///   return ret; | 
|  | /// } | 
|  | /// | 
|  | /// The constants in this example are folded into the uses. Thus, 4 different | 
|  | /// constants are created. | 
|  | /// | 
|  | /// As their type is vector the cheapest way to create them is to load them | 
|  | /// for the memory. | 
|  | /// | 
|  | /// Therefore the final assembly final has 4 different loads. With this pass | 
|  | /// enabled, only one load is issued for the constants. | 
|  | class AArch64PromoteConstant : public ModulePass { | 
|  | public: | 
|  | struct PromotedConstant { | 
|  | bool ShouldConvert = false; | 
|  | GlobalVariable *GV = nullptr; | 
|  | }; | 
|  | using PromotionCacheTy = SmallDenseMap<Constant *, PromotedConstant, 16>; | 
|  |  | 
|  | struct UpdateRecord { | 
|  | Constant *C; | 
|  | Instruction *User; | 
|  | unsigned Op; | 
|  |  | 
|  | UpdateRecord(Constant *C, Instruction *User, unsigned Op) | 
|  | : C(C), User(User), Op(Op) {} | 
|  | }; | 
|  |  | 
|  | static char ID; | 
|  |  | 
|  | AArch64PromoteConstant() : ModulePass(ID) { | 
|  | initializeAArch64PromoteConstantPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | StringRef getPassName() const override { return "AArch64 Promote Constant"; } | 
|  |  | 
|  | /// Iterate over the functions and promote the interesting constants into | 
|  | /// global variables with module scope. | 
|  | bool runOnModule(Module &M) override { | 
|  | DEBUG(dbgs() << getPassName() << '\n'); | 
|  | if (skipModule(M)) | 
|  | return false; | 
|  | bool Changed = false; | 
|  | PromotionCacheTy PromotionCache; | 
|  | for (auto &MF : M) { | 
|  | Changed |= runOnFunction(MF, PromotionCache); | 
|  | } | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | private: | 
|  | /// Look for interesting constants used within the given function. | 
|  | /// Promote them into global variables, load these global variables within | 
|  | /// the related function, so that the number of inserted load is minimal. | 
|  | bool runOnFunction(Function &F, PromotionCacheTy &PromotionCache); | 
|  |  | 
|  | // This transformation requires dominator info | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.setPreservesCFG(); | 
|  | AU.addRequired<DominatorTreeWrapperPass>(); | 
|  | AU.addPreserved<DominatorTreeWrapperPass>(); | 
|  | } | 
|  |  | 
|  | /// Type to store a list of Uses. | 
|  | using Uses = SmallVector<std::pair<Instruction *, unsigned>, 4>; | 
|  | /// Map an insertion point to all the uses it dominates. | 
|  | using InsertionPoints = DenseMap<Instruction *, Uses>; | 
|  |  | 
|  | /// Find the closest point that dominates the given Use. | 
|  | Instruction *findInsertionPoint(Instruction &User, unsigned OpNo); | 
|  |  | 
|  | /// Check if the given insertion point is dominated by an existing | 
|  | /// insertion point. | 
|  | /// If true, the given use is added to the list of dominated uses for | 
|  | /// the related existing point. | 
|  | /// \param NewPt the insertion point to be checked | 
|  | /// \param User the user of the constant | 
|  | /// \param OpNo the operand number of the use | 
|  | /// \param InsertPts existing insertion points | 
|  | /// \pre NewPt and all instruction in InsertPts belong to the same function | 
|  | /// \return true if one of the insertion point in InsertPts dominates NewPt, | 
|  | ///         false otherwise | 
|  | bool isDominated(Instruction *NewPt, Instruction *User, unsigned OpNo, | 
|  | InsertionPoints &InsertPts); | 
|  |  | 
|  | /// Check if the given insertion point can be merged with an existing | 
|  | /// insertion point in a common dominator. | 
|  | /// If true, the given use is added to the list of the created insertion | 
|  | /// point. | 
|  | /// \param NewPt the insertion point to be checked | 
|  | /// \param User the user of the constant | 
|  | /// \param OpNo the operand number of the use | 
|  | /// \param InsertPts existing insertion points | 
|  | /// \pre NewPt and all instruction in InsertPts belong to the same function | 
|  | /// \pre isDominated returns false for the exact same parameters. | 
|  | /// \return true if it exists an insertion point in InsertPts that could | 
|  | ///         have been merged with NewPt in a common dominator, | 
|  | ///         false otherwise | 
|  | bool tryAndMerge(Instruction *NewPt, Instruction *User, unsigned OpNo, | 
|  | InsertionPoints &InsertPts); | 
|  |  | 
|  | /// Compute the minimal insertion points to dominates all the interesting | 
|  | /// uses of value. | 
|  | /// Insertion points are group per function and each insertion point | 
|  | /// contains a list of all the uses it dominates within the related function | 
|  | /// \param User the user of the constant | 
|  | /// \param OpNo the operand number of the constant | 
|  | /// \param[out] InsertPts output storage of the analysis | 
|  | void computeInsertionPoint(Instruction *User, unsigned OpNo, | 
|  | InsertionPoints &InsertPts); | 
|  |  | 
|  | /// Insert a definition of a new global variable at each point contained in | 
|  | /// InsPtsPerFunc and update the related uses (also contained in | 
|  | /// InsPtsPerFunc). | 
|  | void insertDefinitions(Function &F, GlobalVariable &GV, | 
|  | InsertionPoints &InsertPts); | 
|  |  | 
|  | /// Do the constant promotion indicated by the Updates records, keeping track | 
|  | /// of globals in PromotionCache. | 
|  | void promoteConstants(Function &F, SmallVectorImpl<UpdateRecord> &Updates, | 
|  | PromotionCacheTy &PromotionCache); | 
|  |  | 
|  | /// Transfer the list of dominated uses of IPI to NewPt in InsertPts. | 
|  | /// Append Use to this list and delete the entry of IPI in InsertPts. | 
|  | static void appendAndTransferDominatedUses(Instruction *NewPt, | 
|  | Instruction *User, unsigned OpNo, | 
|  | InsertionPoints::iterator &IPI, | 
|  | InsertionPoints &InsertPts) { | 
|  | // Record the dominated use. | 
|  | IPI->second.emplace_back(User, OpNo); | 
|  | // Transfer the dominated uses of IPI to NewPt | 
|  | // Inserting into the DenseMap may invalidate existing iterator. | 
|  | // Keep a copy of the key to find the iterator to erase.  Keep a copy of the | 
|  | // value so that we don't have to dereference IPI->second. | 
|  | Instruction *OldInstr = IPI->first; | 
|  | Uses OldUses = std::move(IPI->second); | 
|  | InsertPts[NewPt] = std::move(OldUses); | 
|  | // Erase IPI. | 
|  | InsertPts.erase(OldInstr); | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | char AArch64PromoteConstant::ID = 0; | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN(AArch64PromoteConstant, "aarch64-promote-const", | 
|  | "AArch64 Promote Constant Pass", false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) | 
|  | INITIALIZE_PASS_END(AArch64PromoteConstant, "aarch64-promote-const", | 
|  | "AArch64 Promote Constant Pass", false, false) | 
|  |  | 
|  | ModulePass *llvm::createAArch64PromoteConstantPass() { | 
|  | return new AArch64PromoteConstant(); | 
|  | } | 
|  |  | 
|  | /// Check if the given type uses a vector type. | 
|  | static bool isConstantUsingVectorTy(const Type *CstTy) { | 
|  | if (CstTy->isVectorTy()) | 
|  | return true; | 
|  | if (CstTy->isStructTy()) { | 
|  | for (unsigned EltIdx = 0, EndEltIdx = CstTy->getStructNumElements(); | 
|  | EltIdx < EndEltIdx; ++EltIdx) | 
|  | if (isConstantUsingVectorTy(CstTy->getStructElementType(EltIdx))) | 
|  | return true; | 
|  | } else if (CstTy->isArrayTy()) | 
|  | return isConstantUsingVectorTy(CstTy->getArrayElementType()); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Check if the given use (Instruction + OpIdx) of Cst should be converted into | 
|  | /// a load of a global variable initialized with Cst. | 
|  | /// A use should be converted if it is legal to do so. | 
|  | /// For instance, it is not legal to turn the mask operand of a shuffle vector | 
|  | /// into a load of a global variable. | 
|  | static bool shouldConvertUse(const Constant *Cst, const Instruction *Instr, | 
|  | unsigned OpIdx) { | 
|  | // shufflevector instruction expects a const for the mask argument, i.e., the | 
|  | // third argument. Do not promote this use in that case. | 
|  | if (isa<const ShuffleVectorInst>(Instr) && OpIdx == 2) | 
|  | return false; | 
|  |  | 
|  | // extractvalue instruction expects a const idx. | 
|  | if (isa<const ExtractValueInst>(Instr) && OpIdx > 0) | 
|  | return false; | 
|  |  | 
|  | // extractvalue instruction expects a const idx. | 
|  | if (isa<const InsertValueInst>(Instr) && OpIdx > 1) | 
|  | return false; | 
|  |  | 
|  | if (isa<const AllocaInst>(Instr) && OpIdx > 0) | 
|  | return false; | 
|  |  | 
|  | // Alignment argument must be constant. | 
|  | if (isa<const LoadInst>(Instr) && OpIdx > 0) | 
|  | return false; | 
|  |  | 
|  | // Alignment argument must be constant. | 
|  | if (isa<const StoreInst>(Instr) && OpIdx > 1) | 
|  | return false; | 
|  |  | 
|  | // Index must be constant. | 
|  | if (isa<const GetElementPtrInst>(Instr) && OpIdx > 0) | 
|  | return false; | 
|  |  | 
|  | // Personality function and filters must be constant. | 
|  | // Give up on that instruction. | 
|  | if (isa<const LandingPadInst>(Instr)) | 
|  | return false; | 
|  |  | 
|  | // Switch instruction expects constants to compare to. | 
|  | if (isa<const SwitchInst>(Instr)) | 
|  | return false; | 
|  |  | 
|  | // Expected address must be a constant. | 
|  | if (isa<const IndirectBrInst>(Instr)) | 
|  | return false; | 
|  |  | 
|  | // Do not mess with intrinsics. | 
|  | if (isa<const IntrinsicInst>(Instr)) | 
|  | return false; | 
|  |  | 
|  | // Do not mess with inline asm. | 
|  | const CallInst *CI = dyn_cast<const CallInst>(Instr); | 
|  | return !(CI && isa<const InlineAsm>(CI->getCalledValue())); | 
|  | } | 
|  |  | 
|  | /// Check if the given Cst should be converted into | 
|  | /// a load of a global variable initialized with Cst. | 
|  | /// A constant should be converted if it is likely that the materialization of | 
|  | /// the constant will be tricky. Thus, we give up on zero or undef values. | 
|  | /// | 
|  | /// \todo Currently, accept only vector related types. | 
|  | /// Also we give up on all simple vector type to keep the existing | 
|  | /// behavior. Otherwise, we should push here all the check of the lowering of | 
|  | /// BUILD_VECTOR. By giving up, we lose the potential benefit of merging | 
|  | /// constant via global merge and the fact that the same constant is stored | 
|  | /// only once with this method (versus, as many function that uses the constant | 
|  | /// for the regular approach, even for float). | 
|  | /// Again, the simplest solution would be to promote every | 
|  | /// constant and rematerialize them when they are actually cheap to create. | 
|  | static bool shouldConvertImpl(const Constant *Cst) { | 
|  | if (isa<const UndefValue>(Cst)) | 
|  | return false; | 
|  |  | 
|  | // FIXME: In some cases, it may be interesting to promote in memory | 
|  | // a zero initialized constant. | 
|  | // E.g., when the type of Cst require more instructions than the | 
|  | // adrp/add/load sequence or when this sequence can be shared by several | 
|  | // instances of Cst. | 
|  | // Ideally, we could promote this into a global and rematerialize the constant | 
|  | // when it was a bad idea. | 
|  | if (Cst->isZeroValue()) | 
|  | return false; | 
|  |  | 
|  | if (Stress) | 
|  | return true; | 
|  |  | 
|  | // FIXME: see function \todo | 
|  | if (Cst->getType()->isVectorTy()) | 
|  | return false; | 
|  | return isConstantUsingVectorTy(Cst->getType()); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | shouldConvert(Constant &C, | 
|  | AArch64PromoteConstant::PromotionCacheTy &PromotionCache) { | 
|  | auto Converted = PromotionCache.insert( | 
|  | std::make_pair(&C, AArch64PromoteConstant::PromotedConstant())); | 
|  | if (Converted.second) | 
|  | Converted.first->second.ShouldConvert = shouldConvertImpl(&C); | 
|  | return Converted.first->second.ShouldConvert; | 
|  | } | 
|  |  | 
|  | Instruction *AArch64PromoteConstant::findInsertionPoint(Instruction &User, | 
|  | unsigned OpNo) { | 
|  | // If this user is a phi, the insertion point is in the related | 
|  | // incoming basic block. | 
|  | if (PHINode *PhiInst = dyn_cast<PHINode>(&User)) | 
|  | return PhiInst->getIncomingBlock(OpNo)->getTerminator(); | 
|  |  | 
|  | return &User; | 
|  | } | 
|  |  | 
|  | bool AArch64PromoteConstant::isDominated(Instruction *NewPt, Instruction *User, | 
|  | unsigned OpNo, | 
|  | InsertionPoints &InsertPts) { | 
|  | DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>( | 
|  | *NewPt->getParent()->getParent()).getDomTree(); | 
|  |  | 
|  | // Traverse all the existing insertion points and check if one is dominating | 
|  | // NewPt. If it is, remember that. | 
|  | for (auto &IPI : InsertPts) { | 
|  | if (NewPt == IPI.first || DT.dominates(IPI.first, NewPt) || | 
|  | // When IPI.first is a terminator instruction, DT may think that | 
|  | // the result is defined on the edge. | 
|  | // Here we are testing the insertion point, not the definition. | 
|  | (IPI.first->getParent() != NewPt->getParent() && | 
|  | DT.dominates(IPI.first->getParent(), NewPt->getParent()))) { | 
|  | // No need to insert this point. Just record the dominated use. | 
|  | DEBUG(dbgs() << "Insertion point dominated by:\n"); | 
|  | DEBUG(IPI.first->print(dbgs())); | 
|  | DEBUG(dbgs() << '\n'); | 
|  | IPI.second.emplace_back(User, OpNo); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool AArch64PromoteConstant::tryAndMerge(Instruction *NewPt, Instruction *User, | 
|  | unsigned OpNo, | 
|  | InsertionPoints &InsertPts) { | 
|  | DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>( | 
|  | *NewPt->getParent()->getParent()).getDomTree(); | 
|  | BasicBlock *NewBB = NewPt->getParent(); | 
|  |  | 
|  | // Traverse all the existing insertion point and check if one is dominated by | 
|  | // NewPt and thus useless or can be combined with NewPt into a common | 
|  | // dominator. | 
|  | for (InsertionPoints::iterator IPI = InsertPts.begin(), | 
|  | EndIPI = InsertPts.end(); | 
|  | IPI != EndIPI; ++IPI) { | 
|  | BasicBlock *CurBB = IPI->first->getParent(); | 
|  | if (NewBB == CurBB) { | 
|  | // Instructions are in the same block. | 
|  | // By construction, NewPt is dominating the other. | 
|  | // Indeed, isDominated returned false with the exact same arguments. | 
|  | DEBUG(dbgs() << "Merge insertion point with:\n"); | 
|  | DEBUG(IPI->first->print(dbgs())); | 
|  | DEBUG(dbgs() << "\nat considered insertion point.\n"); | 
|  | appendAndTransferDominatedUses(NewPt, User, OpNo, IPI, InsertPts); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Look for a common dominator | 
|  | BasicBlock *CommonDominator = DT.findNearestCommonDominator(NewBB, CurBB); | 
|  | // If none exists, we cannot merge these two points. | 
|  | if (!CommonDominator) | 
|  | continue; | 
|  |  | 
|  | if (CommonDominator != NewBB) { | 
|  | // By construction, the CommonDominator cannot be CurBB. | 
|  | assert(CommonDominator != CurBB && | 
|  | "Instruction has not been rejected during isDominated check!"); | 
|  | // Take the last instruction of the CommonDominator as insertion point | 
|  | NewPt = CommonDominator->getTerminator(); | 
|  | } | 
|  | // else, CommonDominator is the block of NewBB, hence NewBB is the last | 
|  | // possible insertion point in that block. | 
|  | DEBUG(dbgs() << "Merge insertion point with:\n"); | 
|  | DEBUG(IPI->first->print(dbgs())); | 
|  | DEBUG(dbgs() << '\n'); | 
|  | DEBUG(NewPt->print(dbgs())); | 
|  | DEBUG(dbgs() << '\n'); | 
|  | appendAndTransferDominatedUses(NewPt, User, OpNo, IPI, InsertPts); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void AArch64PromoteConstant::computeInsertionPoint( | 
|  | Instruction *User, unsigned OpNo, InsertionPoints &InsertPts) { | 
|  | DEBUG(dbgs() << "Considered use, opidx " << OpNo << ":\n"); | 
|  | DEBUG(User->print(dbgs())); | 
|  | DEBUG(dbgs() << '\n'); | 
|  |  | 
|  | Instruction *InsertionPoint = findInsertionPoint(*User, OpNo); | 
|  |  | 
|  | DEBUG(dbgs() << "Considered insertion point:\n"); | 
|  | DEBUG(InsertionPoint->print(dbgs())); | 
|  | DEBUG(dbgs() << '\n'); | 
|  |  | 
|  | if (isDominated(InsertionPoint, User, OpNo, InsertPts)) | 
|  | return; | 
|  | // This insertion point is useful, check if we can merge some insertion | 
|  | // point in a common dominator or if NewPt dominates an existing one. | 
|  | if (tryAndMerge(InsertionPoint, User, OpNo, InsertPts)) | 
|  | return; | 
|  |  | 
|  | DEBUG(dbgs() << "Keep considered insertion point\n"); | 
|  |  | 
|  | // It is definitely useful by its own | 
|  | InsertPts[InsertionPoint].emplace_back(User, OpNo); | 
|  | } | 
|  |  | 
|  | static void ensurePromotedGV(Function &F, Constant &C, | 
|  | AArch64PromoteConstant::PromotedConstant &PC) { | 
|  | assert(PC.ShouldConvert && | 
|  | "Expected that we should convert this to a global"); | 
|  | if (PC.GV) | 
|  | return; | 
|  | PC.GV = new GlobalVariable( | 
|  | *F.getParent(), C.getType(), true, GlobalValue::InternalLinkage, nullptr, | 
|  | "_PromotedConst", nullptr, GlobalVariable::NotThreadLocal); | 
|  | PC.GV->setInitializer(&C); | 
|  | DEBUG(dbgs() << "Global replacement: "); | 
|  | DEBUG(PC.GV->print(dbgs())); | 
|  | DEBUG(dbgs() << '\n'); | 
|  | ++NumPromoted; | 
|  | } | 
|  |  | 
|  | void AArch64PromoteConstant::insertDefinitions(Function &F, | 
|  | GlobalVariable &PromotedGV, | 
|  | InsertionPoints &InsertPts) { | 
|  | #ifndef NDEBUG | 
|  | // Do more checking for debug purposes. | 
|  | DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); | 
|  | #endif | 
|  | assert(!InsertPts.empty() && "Empty uses does not need a definition"); | 
|  |  | 
|  | for (const auto &IPI : InsertPts) { | 
|  | // Create the load of the global variable. | 
|  | IRBuilder<> Builder(IPI.first); | 
|  | LoadInst *LoadedCst = Builder.CreateLoad(&PromotedGV); | 
|  | DEBUG(dbgs() << "**********\n"); | 
|  | DEBUG(dbgs() << "New def: "); | 
|  | DEBUG(LoadedCst->print(dbgs())); | 
|  | DEBUG(dbgs() << '\n'); | 
|  |  | 
|  | // Update the dominated uses. | 
|  | for (auto Use : IPI.second) { | 
|  | #ifndef NDEBUG | 
|  | assert(DT.dominates(LoadedCst, | 
|  | findInsertionPoint(*Use.first, Use.second)) && | 
|  | "Inserted definition does not dominate all its uses!"); | 
|  | #endif | 
|  | DEBUG({ | 
|  | dbgs() << "Use to update " << Use.second << ":"; | 
|  | Use.first->print(dbgs()); | 
|  | dbgs() << '\n'; | 
|  | }); | 
|  | Use.first->setOperand(Use.second, LoadedCst); | 
|  | ++NumPromotedUses; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void AArch64PromoteConstant::promoteConstants( | 
|  | Function &F, SmallVectorImpl<UpdateRecord> &Updates, | 
|  | PromotionCacheTy &PromotionCache) { | 
|  | // Promote the constants. | 
|  | for (auto U = Updates.begin(), E = Updates.end(); U != E;) { | 
|  | DEBUG(dbgs() << "** Compute insertion points **\n"); | 
|  | auto First = U; | 
|  | Constant *C = First->C; | 
|  | InsertionPoints InsertPts; | 
|  | do { | 
|  | computeInsertionPoint(U->User, U->Op, InsertPts); | 
|  | } while (++U != E && U->C == C); | 
|  |  | 
|  | auto &Promotion = PromotionCache[C]; | 
|  | ensurePromotedGV(F, *C, Promotion); | 
|  | insertDefinitions(F, *Promotion.GV, InsertPts); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool AArch64PromoteConstant::runOnFunction(Function &F, | 
|  | PromotionCacheTy &PromotionCache) { | 
|  | // Look for instructions using constant vector. Promote that constant to a | 
|  | // global variable. Create as few loads of this variable as possible and | 
|  | // update the uses accordingly. | 
|  | SmallVector<UpdateRecord, 64> Updates; | 
|  | for (Instruction &I : instructions(&F)) { | 
|  | // Traverse the operand, looking for constant vectors. Replace them by a | 
|  | // load of a global variable of constant vector type. | 
|  | for (Use &U : I.operands()) { | 
|  | Constant *Cst = dyn_cast<Constant>(U); | 
|  | // There is no point in promoting global values as they are already | 
|  | // global. Do not promote constant expressions either, as they may | 
|  | // require some code expansion. | 
|  | if (!Cst || isa<GlobalValue>(Cst) || isa<ConstantExpr>(Cst)) | 
|  | continue; | 
|  |  | 
|  | // Check if this constant is worth promoting. | 
|  | if (!shouldConvert(*Cst, PromotionCache)) | 
|  | continue; | 
|  |  | 
|  | // Check if this use should be promoted. | 
|  | unsigned OpNo = &U - I.op_begin(); | 
|  | if (!shouldConvertUse(Cst, &I, OpNo)) | 
|  | continue; | 
|  |  | 
|  | Updates.emplace_back(Cst, &I, OpNo); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Updates.empty()) | 
|  | return false; | 
|  |  | 
|  | promoteConstants(F, Updates, PromotionCache); | 
|  | return true; | 
|  | } |