|  | //===- SpillPlacement.cpp - Optimal Spill Code Placement ------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the spill code placement analysis. | 
|  | // | 
|  | // Each edge bundle corresponds to a node in a Hopfield network. Constraints on | 
|  | // basic blocks are weighted by the block frequency and added to become the node | 
|  | // bias. | 
|  | // | 
|  | // Transparent basic blocks have the variable live through, but don't care if it | 
|  | // is spilled or in a register. These blocks become connections in the Hopfield | 
|  | // network, again weighted by block frequency. | 
|  | // | 
|  | // The Hopfield network minimizes (possibly locally) its energy function: | 
|  | // | 
|  | //   E = -sum_n V_n * ( B_n + sum_{n, m linked by b} V_m * F_b ) | 
|  | // | 
|  | // The energy function represents the expected spill code execution frequency, | 
|  | // or the cost of spilling. This is a Lyapunov function which never increases | 
|  | // when a node is updated. It is guaranteed to converge to a local minimum. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "SpillPlacement.h" | 
|  | #include "llvm/ADT/ArrayRef.h" | 
|  | #include "llvm/ADT/BitVector.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/SparseSet.h" | 
|  | #include "llvm/CodeGen/EdgeBundles.h" | 
|  | #include "llvm/CodeGen/MachineBasicBlock.h" | 
|  | #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineLoopInfo.h" | 
|  | #include "llvm/CodeGen/Passes.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/BlockFrequency.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <cstdint> | 
|  | #include <utility> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "spill-code-placement" | 
|  |  | 
|  | char SpillPlacement::ID = 0; | 
|  |  | 
|  | char &llvm::SpillPlacementID = SpillPlacement::ID; | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN(SpillPlacement, DEBUG_TYPE, | 
|  | "Spill Code Placement Analysis", true, true) | 
|  | INITIALIZE_PASS_DEPENDENCY(EdgeBundles) | 
|  | INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) | 
|  | INITIALIZE_PASS_END(SpillPlacement, DEBUG_TYPE, | 
|  | "Spill Code Placement Analysis", true, true) | 
|  |  | 
|  | void SpillPlacement::getAnalysisUsage(AnalysisUsage &AU) const { | 
|  | AU.setPreservesAll(); | 
|  | AU.addRequired<MachineBlockFrequencyInfo>(); | 
|  | AU.addRequiredTransitive<EdgeBundles>(); | 
|  | AU.addRequiredTransitive<MachineLoopInfo>(); | 
|  | MachineFunctionPass::getAnalysisUsage(AU); | 
|  | } | 
|  |  | 
|  | /// Node - Each edge bundle corresponds to a Hopfield node. | 
|  | /// | 
|  | /// The node contains precomputed frequency data that only depends on the CFG, | 
|  | /// but Bias and Links are computed each time placeSpills is called. | 
|  | /// | 
|  | /// The node Value is positive when the variable should be in a register. The | 
|  | /// value can change when linked nodes change, but convergence is very fast | 
|  | /// because all weights are positive. | 
|  | struct SpillPlacement::Node { | 
|  | /// BiasN - Sum of blocks that prefer a spill. | 
|  | BlockFrequency BiasN; | 
|  |  | 
|  | /// BiasP - Sum of blocks that prefer a register. | 
|  | BlockFrequency BiasP; | 
|  |  | 
|  | /// Value - Output value of this node computed from the Bias and links. | 
|  | /// This is always on of the values {-1, 0, 1}. A positive number means the | 
|  | /// variable should go in a register through this bundle. | 
|  | int Value; | 
|  |  | 
|  | using LinkVector = SmallVector<std::pair<BlockFrequency, unsigned>, 4>; | 
|  |  | 
|  | /// Links - (Weight, BundleNo) for all transparent blocks connecting to other | 
|  | /// bundles. The weights are all positive block frequencies. | 
|  | LinkVector Links; | 
|  |  | 
|  | /// SumLinkWeights - Cached sum of the weights of all links + ThresHold. | 
|  | BlockFrequency SumLinkWeights; | 
|  |  | 
|  | /// preferReg - Return true when this node prefers to be in a register. | 
|  | bool preferReg() const { | 
|  | // Undecided nodes (Value==0) go on the stack. | 
|  | return Value > 0; | 
|  | } | 
|  |  | 
|  | /// mustSpill - Return True if this node is so biased that it must spill. | 
|  | bool mustSpill() const { | 
|  | // We must spill if Bias < -sum(weights) or the MustSpill flag was set. | 
|  | // BiasN is saturated when MustSpill is set, make sure this still returns | 
|  | // true when the RHS saturates. Note that SumLinkWeights includes Threshold. | 
|  | return BiasN >= BiasP + SumLinkWeights; | 
|  | } | 
|  |  | 
|  | /// clear - Reset per-query data, but preserve frequencies that only depend on | 
|  | /// the CFG. | 
|  | void clear(const BlockFrequency &Threshold) { | 
|  | BiasN = BiasP = Value = 0; | 
|  | SumLinkWeights = Threshold; | 
|  | Links.clear(); | 
|  | } | 
|  |  | 
|  | /// addLink - Add a link to bundle b with weight w. | 
|  | void addLink(unsigned b, BlockFrequency w) { | 
|  | // Update cached sum. | 
|  | SumLinkWeights += w; | 
|  |  | 
|  | // There can be multiple links to the same bundle, add them up. | 
|  | for (LinkVector::iterator I = Links.begin(), E = Links.end(); I != E; ++I) | 
|  | if (I->second == b) { | 
|  | I->first += w; | 
|  | return; | 
|  | } | 
|  | // This must be the first link to b. | 
|  | Links.push_back(std::make_pair(w, b)); | 
|  | } | 
|  |  | 
|  | /// addBias - Bias this node. | 
|  | void addBias(BlockFrequency freq, BorderConstraint direction) { | 
|  | switch (direction) { | 
|  | default: | 
|  | break; | 
|  | case PrefReg: | 
|  | BiasP += freq; | 
|  | break; | 
|  | case PrefSpill: | 
|  | BiasN += freq; | 
|  | break; | 
|  | case MustSpill: | 
|  | BiasN = BlockFrequency::getMaxFrequency(); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// update - Recompute Value from Bias and Links. Return true when node | 
|  | /// preference changes. | 
|  | bool update(const Node nodes[], const BlockFrequency &Threshold) { | 
|  | // Compute the weighted sum of inputs. | 
|  | BlockFrequency SumN = BiasN; | 
|  | BlockFrequency SumP = BiasP; | 
|  | for (LinkVector::iterator I = Links.begin(), E = Links.end(); I != E; ++I) { | 
|  | if (nodes[I->second].Value == -1) | 
|  | SumN += I->first; | 
|  | else if (nodes[I->second].Value == 1) | 
|  | SumP += I->first; | 
|  | } | 
|  |  | 
|  | // Each weighted sum is going to be less than the total frequency of the | 
|  | // bundle. Ideally, we should simply set Value = sign(SumP - SumN), but we | 
|  | // will add a dead zone around 0 for two reasons: | 
|  | // | 
|  | //  1. It avoids arbitrary bias when all links are 0 as is possible during | 
|  | //     initial iterations. | 
|  | //  2. It helps tame rounding errors when the links nominally sum to 0. | 
|  | // | 
|  | bool Before = preferReg(); | 
|  | if (SumN >= SumP + Threshold) | 
|  | Value = -1; | 
|  | else if (SumP >= SumN + Threshold) | 
|  | Value = 1; | 
|  | else | 
|  | Value = 0; | 
|  | return Before != preferReg(); | 
|  | } | 
|  |  | 
|  | void getDissentingNeighbors(SparseSet<unsigned> &List, | 
|  | const Node nodes[]) const { | 
|  | for (const auto &Elt : Links) { | 
|  | unsigned n = Elt.second; | 
|  | // Neighbors that already have the same value are not going to | 
|  | // change because of this node changing. | 
|  | if (Value != nodes[n].Value) | 
|  | List.insert(n); | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | bool SpillPlacement::runOnMachineFunction(MachineFunction &mf) { | 
|  | MF = &mf; | 
|  | bundles = &getAnalysis<EdgeBundles>(); | 
|  | loops = &getAnalysis<MachineLoopInfo>(); | 
|  |  | 
|  | assert(!nodes && "Leaking node array"); | 
|  | nodes = new Node[bundles->getNumBundles()]; | 
|  | TodoList.clear(); | 
|  | TodoList.setUniverse(bundles->getNumBundles()); | 
|  |  | 
|  | // Compute total ingoing and outgoing block frequencies for all bundles. | 
|  | BlockFrequencies.resize(mf.getNumBlockIDs()); | 
|  | MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); | 
|  | setThreshold(MBFI->getEntryFreq()); | 
|  | for (auto &I : mf) { | 
|  | unsigned Num = I.getNumber(); | 
|  | BlockFrequencies[Num] = MBFI->getBlockFreq(&I); | 
|  | } | 
|  |  | 
|  | // We never change the function. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void SpillPlacement::releaseMemory() { | 
|  | delete[] nodes; | 
|  | nodes = nullptr; | 
|  | TodoList.clear(); | 
|  | } | 
|  |  | 
|  | /// activate - mark node n as active if it wasn't already. | 
|  | void SpillPlacement::activate(unsigned n) { | 
|  | TodoList.insert(n); | 
|  | if (ActiveNodes->test(n)) | 
|  | return; | 
|  | ActiveNodes->set(n); | 
|  | nodes[n].clear(Threshold); | 
|  |  | 
|  | // Very large bundles usually come from big switches, indirect branches, | 
|  | // landing pads, or loops with many 'continue' statements. It is difficult to | 
|  | // allocate registers when so many different blocks are involved. | 
|  | // | 
|  | // Give a small negative bias to large bundles such that a substantial | 
|  | // fraction of the connected blocks need to be interested before we consider | 
|  | // expanding the region through the bundle. This helps compile time by | 
|  | // limiting the number of blocks visited and the number of links in the | 
|  | // Hopfield network. | 
|  | if (bundles->getBlocks(n).size() > 100) { | 
|  | nodes[n].BiasP = 0; | 
|  | nodes[n].BiasN = (MBFI->getEntryFreq() / 16); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Set the threshold for a given entry frequency. | 
|  | /// | 
|  | /// Set the threshold relative to \c Entry.  Since the threshold is used as a | 
|  | /// bound on the open interval (-Threshold;Threshold), 1 is the minimum | 
|  | /// threshold. | 
|  | void SpillPlacement::setThreshold(const BlockFrequency &Entry) { | 
|  | // Apparently 2 is a good threshold when Entry==2^14, but we need to scale | 
|  | // it.  Divide by 2^13, rounding as appropriate. | 
|  | uint64_t Freq = Entry.getFrequency(); | 
|  | uint64_t Scaled = (Freq >> 13) + bool(Freq & (1 << 12)); | 
|  | Threshold = std::max(UINT64_C(1), Scaled); | 
|  | } | 
|  |  | 
|  | /// addConstraints - Compute node biases and weights from a set of constraints. | 
|  | /// Set a bit in NodeMask for each active node. | 
|  | void SpillPlacement::addConstraints(ArrayRef<BlockConstraint> LiveBlocks) { | 
|  | for (ArrayRef<BlockConstraint>::iterator I = LiveBlocks.begin(), | 
|  | E = LiveBlocks.end(); I != E; ++I) { | 
|  | BlockFrequency Freq = BlockFrequencies[I->Number]; | 
|  |  | 
|  | // Live-in to block? | 
|  | if (I->Entry != DontCare) { | 
|  | unsigned ib = bundles->getBundle(I->Number, false); | 
|  | activate(ib); | 
|  | nodes[ib].addBias(Freq, I->Entry); | 
|  | } | 
|  |  | 
|  | // Live-out from block? | 
|  | if (I->Exit != DontCare) { | 
|  | unsigned ob = bundles->getBundle(I->Number, true); | 
|  | activate(ob); | 
|  | nodes[ob].addBias(Freq, I->Exit); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// addPrefSpill - Same as addConstraints(PrefSpill) | 
|  | void SpillPlacement::addPrefSpill(ArrayRef<unsigned> Blocks, bool Strong) { | 
|  | for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end(); | 
|  | I != E; ++I) { | 
|  | BlockFrequency Freq = BlockFrequencies[*I]; | 
|  | if (Strong) | 
|  | Freq += Freq; | 
|  | unsigned ib = bundles->getBundle(*I, false); | 
|  | unsigned ob = bundles->getBundle(*I, true); | 
|  | activate(ib); | 
|  | activate(ob); | 
|  | nodes[ib].addBias(Freq, PrefSpill); | 
|  | nodes[ob].addBias(Freq, PrefSpill); | 
|  | } | 
|  | } | 
|  |  | 
|  | void SpillPlacement::addLinks(ArrayRef<unsigned> Links) { | 
|  | for (ArrayRef<unsigned>::iterator I = Links.begin(), E = Links.end(); I != E; | 
|  | ++I) { | 
|  | unsigned Number = *I; | 
|  | unsigned ib = bundles->getBundle(Number, false); | 
|  | unsigned ob = bundles->getBundle(Number, true); | 
|  |  | 
|  | // Ignore self-loops. | 
|  | if (ib == ob) | 
|  | continue; | 
|  | activate(ib); | 
|  | activate(ob); | 
|  | BlockFrequency Freq = BlockFrequencies[Number]; | 
|  | nodes[ib].addLink(ob, Freq); | 
|  | nodes[ob].addLink(ib, Freq); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool SpillPlacement::scanActiveBundles() { | 
|  | RecentPositive.clear(); | 
|  | for (unsigned n : ActiveNodes->set_bits()) { | 
|  | update(n); | 
|  | // A node that must spill, or a node without any links is not going to | 
|  | // change its value ever again, so exclude it from iterations. | 
|  | if (nodes[n].mustSpill()) | 
|  | continue; | 
|  | if (nodes[n].preferReg()) | 
|  | RecentPositive.push_back(n); | 
|  | } | 
|  | return !RecentPositive.empty(); | 
|  | } | 
|  |  | 
|  | bool SpillPlacement::update(unsigned n) { | 
|  | if (!nodes[n].update(nodes, Threshold)) | 
|  | return false; | 
|  | nodes[n].getDissentingNeighbors(TodoList, nodes); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// iterate - Repeatedly update the Hopfield nodes until stability or the | 
|  | /// maximum number of iterations is reached. | 
|  | void SpillPlacement::iterate() { | 
|  | // We do not need to push those node in the todolist. | 
|  | // They are already been proceeded as part of the previous iteration. | 
|  | RecentPositive.clear(); | 
|  |  | 
|  | // Since the last iteration, the todolist have been augmented by calls | 
|  | // to addConstraints, addLinks, and co. | 
|  | // Update the network energy starting at this new frontier. | 
|  | // The call to ::update will add the nodes that changed into the todolist. | 
|  | unsigned Limit = bundles->getNumBundles() * 10; | 
|  | while(Limit-- > 0 && !TodoList.empty()) { | 
|  | unsigned n = TodoList.pop_back_val(); | 
|  | if (!update(n)) | 
|  | continue; | 
|  | if (nodes[n].preferReg()) | 
|  | RecentPositive.push_back(n); | 
|  | } | 
|  | } | 
|  |  | 
|  | void SpillPlacement::prepare(BitVector &RegBundles) { | 
|  | RecentPositive.clear(); | 
|  | TodoList.clear(); | 
|  | // Reuse RegBundles as our ActiveNodes vector. | 
|  | ActiveNodes = &RegBundles; | 
|  | ActiveNodes->clear(); | 
|  | ActiveNodes->resize(bundles->getNumBundles()); | 
|  | } | 
|  |  | 
|  | bool | 
|  | SpillPlacement::finish() { | 
|  | assert(ActiveNodes && "Call prepare() first"); | 
|  |  | 
|  | // Write preferences back to ActiveNodes. | 
|  | bool Perfect = true; | 
|  | for (unsigned n : ActiveNodes->set_bits()) | 
|  | if (!nodes[n].preferReg()) { | 
|  | ActiveNodes->reset(n); | 
|  | Perfect = false; | 
|  | } | 
|  | ActiveNodes = nullptr; | 
|  | return Perfect; | 
|  | } |