|  | //===- PhiElimination.cpp - Eliminate PHI nodes by inserting copies -------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This pass eliminates machine instruction PHI nodes by inserting copy | 
|  | // instructions.  This destroys SSA information, but is the desired input for | 
|  | // some register allocators. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "PHIEliminationUtils.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Analysis/LoopInfo.h" | 
|  | #include "llvm/CodeGen/LiveInterval.h" | 
|  | #include "llvm/CodeGen/LiveIntervalAnalysis.h" | 
|  | #include "llvm/CodeGen/LiveVariables.h" | 
|  | #include "llvm/CodeGen/MachineBasicBlock.h" | 
|  | #include "llvm/CodeGen/MachineDominators.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineFunctionPass.h" | 
|  | #include "llvm/CodeGen/MachineInstr.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineLoopInfo.h" | 
|  | #include "llvm/CodeGen/MachineOperand.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/SlotIndexes.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Target/TargetInstrInfo.h" | 
|  | #include "llvm/Target/TargetOpcodes.h" | 
|  | #include "llvm/Target/TargetRegisterInfo.h" | 
|  | #include "llvm/Target/TargetSubtargetInfo.h" | 
|  | #include <cassert> | 
|  | #include <iterator> | 
|  | #include <utility> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "phi-node-elimination" | 
|  |  | 
|  | static cl::opt<bool> | 
|  | DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false), | 
|  | cl::Hidden, cl::desc("Disable critical edge splitting " | 
|  | "during PHI elimination")); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false), | 
|  | cl::Hidden, cl::desc("Split all critical edges during " | 
|  | "PHI elimination")); | 
|  |  | 
|  | static cl::opt<bool> NoPhiElimLiveOutEarlyExit( | 
|  | "no-phi-elim-live-out-early-exit", cl::init(false), cl::Hidden, | 
|  | cl::desc("Do not use an early exit if isLiveOutPastPHIs returns true.")); | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class PHIElimination : public MachineFunctionPass { | 
|  | MachineRegisterInfo *MRI; // Machine register information | 
|  | LiveVariables *LV; | 
|  | LiveIntervals *LIS; | 
|  |  | 
|  | public: | 
|  | static char ID; // Pass identification, replacement for typeid | 
|  |  | 
|  | PHIElimination() : MachineFunctionPass(ID) { | 
|  | initializePHIEliminationPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | bool runOnMachineFunction(MachineFunction &Fn) override; | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override; | 
|  |  | 
|  | private: | 
|  | /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions | 
|  | /// in predecessor basic blocks. | 
|  | bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB); | 
|  |  | 
|  | void LowerPHINode(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator LastPHIIt); | 
|  |  | 
|  | /// analyzePHINodes - Gather information about the PHI nodes in | 
|  | /// here. In particular, we want to map the number of uses of a virtual | 
|  | /// register which is used in a PHI node. We map that to the BB the | 
|  | /// vreg is coming from. This is used later to determine when the vreg | 
|  | /// is killed in the BB. | 
|  | void analyzePHINodes(const MachineFunction& Fn); | 
|  |  | 
|  | /// Split critical edges where necessary for good coalescer performance. | 
|  | bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB, | 
|  | MachineLoopInfo *MLI); | 
|  |  | 
|  | // These functions are temporary abstractions around LiveVariables and | 
|  | // LiveIntervals, so they can go away when LiveVariables does. | 
|  | bool isLiveIn(unsigned Reg, const MachineBasicBlock *MBB); | 
|  | bool isLiveOutPastPHIs(unsigned Reg, const MachineBasicBlock *MBB); | 
|  |  | 
|  | using BBVRegPair = std::pair<unsigned, unsigned>; | 
|  | using VRegPHIUse = DenseMap<BBVRegPair, unsigned>; | 
|  |  | 
|  | VRegPHIUse VRegPHIUseCount; | 
|  |  | 
|  | // Defs of PHI sources which are implicit_def. | 
|  | SmallPtrSet<MachineInstr*, 4> ImpDefs; | 
|  |  | 
|  | // Map reusable lowered PHI node -> incoming join register. | 
|  | using LoweredPHIMap = | 
|  | DenseMap<MachineInstr*, unsigned, MachineInstrExpressionTrait>; | 
|  | LoweredPHIMap LoweredPHIs; | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | STATISTIC(NumLowered, "Number of phis lowered"); | 
|  | STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split"); | 
|  | STATISTIC(NumReused, "Number of reused lowered phis"); | 
|  |  | 
|  | char PHIElimination::ID = 0; | 
|  |  | 
|  | char& llvm::PHIEliminationID = PHIElimination::ID; | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN(PHIElimination, DEBUG_TYPE, | 
|  | "Eliminate PHI nodes for register allocation", | 
|  | false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(LiveVariables) | 
|  | INITIALIZE_PASS_END(PHIElimination, DEBUG_TYPE, | 
|  | "Eliminate PHI nodes for register allocation", false, false) | 
|  |  | 
|  | void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const { | 
|  | AU.addUsedIfAvailable<LiveVariables>(); | 
|  | AU.addPreserved<LiveVariables>(); | 
|  | AU.addPreserved<SlotIndexes>(); | 
|  | AU.addPreserved<LiveIntervals>(); | 
|  | AU.addPreserved<MachineDominatorTree>(); | 
|  | AU.addPreserved<MachineLoopInfo>(); | 
|  | MachineFunctionPass::getAnalysisUsage(AU); | 
|  | } | 
|  |  | 
|  | bool PHIElimination::runOnMachineFunction(MachineFunction &MF) { | 
|  | MRI = &MF.getRegInfo(); | 
|  | LV = getAnalysisIfAvailable<LiveVariables>(); | 
|  | LIS = getAnalysisIfAvailable<LiveIntervals>(); | 
|  |  | 
|  | bool Changed = false; | 
|  |  | 
|  | // This pass takes the function out of SSA form. | 
|  | MRI->leaveSSA(); | 
|  |  | 
|  | // Split critical edges to help the coalescer. This does not yet support | 
|  | // updating LiveIntervals, so we disable it. | 
|  | if (!DisableEdgeSplitting && (LV || LIS)) { | 
|  | MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>(); | 
|  | for (auto &MBB : MF) | 
|  | Changed |= SplitPHIEdges(MF, MBB, MLI); | 
|  | } | 
|  |  | 
|  | // Populate VRegPHIUseCount | 
|  | analyzePHINodes(MF); | 
|  |  | 
|  | // Eliminate PHI instructions by inserting copies into predecessor blocks. | 
|  | for (auto &MBB : MF) | 
|  | Changed |= EliminatePHINodes(MF, MBB); | 
|  |  | 
|  | // Remove dead IMPLICIT_DEF instructions. | 
|  | for (MachineInstr *DefMI : ImpDefs) { | 
|  | unsigned DefReg = DefMI->getOperand(0).getReg(); | 
|  | if (MRI->use_nodbg_empty(DefReg)) { | 
|  | if (LIS) | 
|  | LIS->RemoveMachineInstrFromMaps(*DefMI); | 
|  | DefMI->eraseFromParent(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Clean up the lowered PHI instructions. | 
|  | for (auto &I : LoweredPHIs) { | 
|  | if (LIS) | 
|  | LIS->RemoveMachineInstrFromMaps(*I.first); | 
|  | MF.DeleteMachineInstr(I.first); | 
|  | } | 
|  |  | 
|  | LoweredPHIs.clear(); | 
|  | ImpDefs.clear(); | 
|  | VRegPHIUseCount.clear(); | 
|  |  | 
|  | MF.getProperties().set(MachineFunctionProperties::Property::NoPHIs); | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in | 
|  | /// predecessor basic blocks. | 
|  | bool PHIElimination::EliminatePHINodes(MachineFunction &MF, | 
|  | MachineBasicBlock &MBB) { | 
|  | if (MBB.empty() || !MBB.front().isPHI()) | 
|  | return false;   // Quick exit for basic blocks without PHIs. | 
|  |  | 
|  | // Get an iterator to the first instruction after the last PHI node (this may | 
|  | // also be the end of the basic block). | 
|  | MachineBasicBlock::iterator LastPHIIt = | 
|  | std::prev(MBB.SkipPHIsAndLabels(MBB.begin())); | 
|  |  | 
|  | while (MBB.front().isPHI()) | 
|  | LowerPHINode(MBB, LastPHIIt); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isImplicitlyDefined - Return true if all defs of VirtReg are implicit-defs. | 
|  | /// This includes registers with no defs. | 
|  | static bool isImplicitlyDefined(unsigned VirtReg, | 
|  | const MachineRegisterInfo *MRI) { | 
|  | for (MachineInstr &DI : MRI->def_instructions(VirtReg)) | 
|  | if (!DI.isImplicitDef()) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isSourceDefinedByImplicitDef - Return true if all sources of the phi node | 
|  | /// are implicit_def's. | 
|  | static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi, | 
|  | const MachineRegisterInfo *MRI) { | 
|  | for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) | 
|  | if (!isImplicitlyDefined(MPhi->getOperand(i).getReg(), MRI)) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// LowerPHINode - Lower the PHI node at the top of the specified block. | 
|  | void PHIElimination::LowerPHINode(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator LastPHIIt) { | 
|  | ++NumLowered; | 
|  |  | 
|  | MachineBasicBlock::iterator AfterPHIsIt = std::next(LastPHIIt); | 
|  |  | 
|  | // Unlink the PHI node from the basic block, but don't delete the PHI yet. | 
|  | MachineInstr *MPhi = MBB.remove(&*MBB.begin()); | 
|  |  | 
|  | unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2; | 
|  | unsigned DestReg = MPhi->getOperand(0).getReg(); | 
|  | assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs"); | 
|  | bool isDead = MPhi->getOperand(0).isDead(); | 
|  |  | 
|  | // Create a new register for the incoming PHI arguments. | 
|  | MachineFunction &MF = *MBB.getParent(); | 
|  | unsigned IncomingReg = 0; | 
|  | bool reusedIncoming = false;  // Is IncomingReg reused from an earlier PHI? | 
|  |  | 
|  | // Insert a register to register copy at the top of the current block (but | 
|  | // after any remaining phi nodes) which copies the new incoming register | 
|  | // into the phi node destination. | 
|  | const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); | 
|  | if (isSourceDefinedByImplicitDef(MPhi, MRI)) | 
|  | // If all sources of a PHI node are implicit_def, just emit an | 
|  | // implicit_def instead of a copy. | 
|  | BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(), | 
|  | TII->get(TargetOpcode::IMPLICIT_DEF), DestReg); | 
|  | else { | 
|  | // Can we reuse an earlier PHI node? This only happens for critical edges, | 
|  | // typically those created by tail duplication. | 
|  | unsigned &entry = LoweredPHIs[MPhi]; | 
|  | if (entry) { | 
|  | // An identical PHI node was already lowered. Reuse the incoming register. | 
|  | IncomingReg = entry; | 
|  | reusedIncoming = true; | 
|  | ++NumReused; | 
|  | DEBUG(dbgs() << "Reusing " << PrintReg(IncomingReg) << " for " << *MPhi); | 
|  | } else { | 
|  | const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg); | 
|  | entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC); | 
|  | } | 
|  | BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(), | 
|  | TII->get(TargetOpcode::COPY), DestReg) | 
|  | .addReg(IncomingReg); | 
|  | } | 
|  |  | 
|  | // Update live variable information if there is any. | 
|  | if (LV) { | 
|  | MachineInstr &PHICopy = *std::prev(AfterPHIsIt); | 
|  |  | 
|  | if (IncomingReg) { | 
|  | LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg); | 
|  |  | 
|  | // Increment use count of the newly created virtual register. | 
|  | LV->setPHIJoin(IncomingReg); | 
|  |  | 
|  | // When we are reusing the incoming register, it may already have been | 
|  | // killed in this block. The old kill will also have been inserted at | 
|  | // AfterPHIsIt, so it appears before the current PHICopy. | 
|  | if (reusedIncoming) | 
|  | if (MachineInstr *OldKill = VI.findKill(&MBB)) { | 
|  | DEBUG(dbgs() << "Remove old kill from " << *OldKill); | 
|  | LV->removeVirtualRegisterKilled(IncomingReg, *OldKill); | 
|  | DEBUG(MBB.dump()); | 
|  | } | 
|  |  | 
|  | // Add information to LiveVariables to know that the incoming value is | 
|  | // killed.  Note that because the value is defined in several places (once | 
|  | // each for each incoming block), the "def" block and instruction fields | 
|  | // for the VarInfo is not filled in. | 
|  | LV->addVirtualRegisterKilled(IncomingReg, PHICopy); | 
|  | } | 
|  |  | 
|  | // Since we are going to be deleting the PHI node, if it is the last use of | 
|  | // any registers, or if the value itself is dead, we need to move this | 
|  | // information over to the new copy we just inserted. | 
|  | LV->removeVirtualRegistersKilled(*MPhi); | 
|  |  | 
|  | // If the result is dead, update LV. | 
|  | if (isDead) { | 
|  | LV->addVirtualRegisterDead(DestReg, PHICopy); | 
|  | LV->removeVirtualRegisterDead(DestReg, *MPhi); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Update LiveIntervals for the new copy or implicit def. | 
|  | if (LIS) { | 
|  | SlotIndex DestCopyIndex = | 
|  | LIS->InsertMachineInstrInMaps(*std::prev(AfterPHIsIt)); | 
|  |  | 
|  | SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB); | 
|  | if (IncomingReg) { | 
|  | // Add the region from the beginning of MBB to the copy instruction to | 
|  | // IncomingReg's live interval. | 
|  | LiveInterval &IncomingLI = LIS->createEmptyInterval(IncomingReg); | 
|  | VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex); | 
|  | if (!IncomingVNI) | 
|  | IncomingVNI = IncomingLI.getNextValue(MBBStartIndex, | 
|  | LIS->getVNInfoAllocator()); | 
|  | IncomingLI.addSegment(LiveInterval::Segment(MBBStartIndex, | 
|  | DestCopyIndex.getRegSlot(), | 
|  | IncomingVNI)); | 
|  | } | 
|  |  | 
|  | LiveInterval &DestLI = LIS->getInterval(DestReg); | 
|  | assert(DestLI.begin() != DestLI.end() && | 
|  | "PHIs should have nonempty LiveIntervals."); | 
|  | if (DestLI.endIndex().isDead()) { | 
|  | // A dead PHI's live range begins and ends at the start of the MBB, but | 
|  | // the lowered copy, which will still be dead, needs to begin and end at | 
|  | // the copy instruction. | 
|  | VNInfo *OrigDestVNI = DestLI.getVNInfoAt(MBBStartIndex); | 
|  | assert(OrigDestVNI && "PHI destination should be live at block entry."); | 
|  | DestLI.removeSegment(MBBStartIndex, MBBStartIndex.getDeadSlot()); | 
|  | DestLI.createDeadDef(DestCopyIndex.getRegSlot(), | 
|  | LIS->getVNInfoAllocator()); | 
|  | DestLI.removeValNo(OrigDestVNI); | 
|  | } else { | 
|  | // Otherwise, remove the region from the beginning of MBB to the copy | 
|  | // instruction from DestReg's live interval. | 
|  | DestLI.removeSegment(MBBStartIndex, DestCopyIndex.getRegSlot()); | 
|  | VNInfo *DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getRegSlot()); | 
|  | assert(DestVNI && "PHI destination should be live at its definition."); | 
|  | DestVNI->def = DestCopyIndex.getRegSlot(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Adjust the VRegPHIUseCount map to account for the removal of this PHI node. | 
|  | for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) | 
|  | --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(), | 
|  | MPhi->getOperand(i).getReg())]; | 
|  |  | 
|  | // Now loop over all of the incoming arguments, changing them to copy into the | 
|  | // IncomingReg register in the corresponding predecessor basic block. | 
|  | SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto; | 
|  | for (int i = NumSrcs - 1; i >= 0; --i) { | 
|  | unsigned SrcReg = MPhi->getOperand(i*2+1).getReg(); | 
|  | unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg(); | 
|  | bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() || | 
|  | isImplicitlyDefined(SrcReg, MRI); | 
|  | assert(TargetRegisterInfo::isVirtualRegister(SrcReg) && | 
|  | "Machine PHI Operands must all be virtual registers!"); | 
|  |  | 
|  | // Get the MachineBasicBlock equivalent of the BasicBlock that is the source | 
|  | // path the PHI. | 
|  | MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB(); | 
|  |  | 
|  | // Check to make sure we haven't already emitted the copy for this block. | 
|  | // This can happen because PHI nodes may have multiple entries for the same | 
|  | // basic block. | 
|  | if (!MBBsInsertedInto.insert(&opBlock).second) | 
|  | continue;  // If the copy has already been emitted, we're done. | 
|  |  | 
|  | // Find a safe location to insert the copy, this may be the first terminator | 
|  | // in the block (or end()). | 
|  | MachineBasicBlock::iterator InsertPos = | 
|  | findPHICopyInsertPoint(&opBlock, &MBB, SrcReg); | 
|  |  | 
|  | // Insert the copy. | 
|  | MachineInstr *NewSrcInstr = nullptr; | 
|  | if (!reusedIncoming && IncomingReg) { | 
|  | if (SrcUndef) { | 
|  | // The source register is undefined, so there is no need for a real | 
|  | // COPY, but we still need to ensure joint dominance by defs. | 
|  | // Insert an IMPLICIT_DEF instruction. | 
|  | NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(), | 
|  | TII->get(TargetOpcode::IMPLICIT_DEF), | 
|  | IncomingReg); | 
|  |  | 
|  | // Clean up the old implicit-def, if there even was one. | 
|  | if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg)) | 
|  | if (DefMI->isImplicitDef()) | 
|  | ImpDefs.insert(DefMI); | 
|  | } else { | 
|  | NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(), | 
|  | TII->get(TargetOpcode::COPY), IncomingReg) | 
|  | .addReg(SrcReg, 0, SrcSubReg); | 
|  | } | 
|  | } | 
|  |  | 
|  | // We only need to update the LiveVariables kill of SrcReg if this was the | 
|  | // last PHI use of SrcReg to be lowered on this CFG edge and it is not live | 
|  | // out of the predecessor. We can also ignore undef sources. | 
|  | if (LV && !SrcUndef && | 
|  | !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] && | 
|  | !LV->isLiveOut(SrcReg, opBlock)) { | 
|  | // We want to be able to insert a kill of the register if this PHI (aka, | 
|  | // the copy we just inserted) is the last use of the source value. Live | 
|  | // variable analysis conservatively handles this by saying that the value | 
|  | // is live until the end of the block the PHI entry lives in. If the value | 
|  | // really is dead at the PHI copy, there will be no successor blocks which | 
|  | // have the value live-in. | 
|  |  | 
|  | // Okay, if we now know that the value is not live out of the block, we | 
|  | // can add a kill marker in this block saying that it kills the incoming | 
|  | // value! | 
|  |  | 
|  | // In our final twist, we have to decide which instruction kills the | 
|  | // register.  In most cases this is the copy, however, terminator | 
|  | // instructions at the end of the block may also use the value. In this | 
|  | // case, we should mark the last such terminator as being the killing | 
|  | // block, not the copy. | 
|  | MachineBasicBlock::iterator KillInst = opBlock.end(); | 
|  | MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator(); | 
|  | for (MachineBasicBlock::iterator Term = FirstTerm; | 
|  | Term != opBlock.end(); ++Term) { | 
|  | if (Term->readsRegister(SrcReg)) | 
|  | KillInst = Term; | 
|  | } | 
|  |  | 
|  | if (KillInst == opBlock.end()) { | 
|  | // No terminator uses the register. | 
|  |  | 
|  | if (reusedIncoming || !IncomingReg) { | 
|  | // We may have to rewind a bit if we didn't insert a copy this time. | 
|  | KillInst = FirstTerm; | 
|  | while (KillInst != opBlock.begin()) { | 
|  | --KillInst; | 
|  | if (KillInst->isDebugValue()) | 
|  | continue; | 
|  | if (KillInst->readsRegister(SrcReg)) | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | // We just inserted this copy. | 
|  | KillInst = std::prev(InsertPos); | 
|  | } | 
|  | } | 
|  | assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction"); | 
|  |  | 
|  | // Finally, mark it killed. | 
|  | LV->addVirtualRegisterKilled(SrcReg, *KillInst); | 
|  |  | 
|  | // This vreg no longer lives all of the way through opBlock. | 
|  | unsigned opBlockNum = opBlock.getNumber(); | 
|  | LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum); | 
|  | } | 
|  |  | 
|  | if (LIS) { | 
|  | if (NewSrcInstr) { | 
|  | LIS->InsertMachineInstrInMaps(*NewSrcInstr); | 
|  | LIS->addSegmentToEndOfBlock(IncomingReg, *NewSrcInstr); | 
|  | } | 
|  |  | 
|  | if (!SrcUndef && | 
|  | !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) { | 
|  | LiveInterval &SrcLI = LIS->getInterval(SrcReg); | 
|  |  | 
|  | bool isLiveOut = false; | 
|  | for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(), | 
|  | SE = opBlock.succ_end(); SI != SE; ++SI) { | 
|  | SlotIndex startIdx = LIS->getMBBStartIdx(*SI); | 
|  | VNInfo *VNI = SrcLI.getVNInfoAt(startIdx); | 
|  |  | 
|  | // Definitions by other PHIs are not truly live-in for our purposes. | 
|  | if (VNI && VNI->def != startIdx) { | 
|  | isLiveOut = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!isLiveOut) { | 
|  | MachineBasicBlock::iterator KillInst = opBlock.end(); | 
|  | MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator(); | 
|  | for (MachineBasicBlock::iterator Term = FirstTerm; | 
|  | Term != opBlock.end(); ++Term) { | 
|  | if (Term->readsRegister(SrcReg)) | 
|  | KillInst = Term; | 
|  | } | 
|  |  | 
|  | if (KillInst == opBlock.end()) { | 
|  | // No terminator uses the register. | 
|  |  | 
|  | if (reusedIncoming || !IncomingReg) { | 
|  | // We may have to rewind a bit if we didn't just insert a copy. | 
|  | KillInst = FirstTerm; | 
|  | while (KillInst != opBlock.begin()) { | 
|  | --KillInst; | 
|  | if (KillInst->isDebugValue()) | 
|  | continue; | 
|  | if (KillInst->readsRegister(SrcReg)) | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | // We just inserted this copy. | 
|  | KillInst = std::prev(InsertPos); | 
|  | } | 
|  | } | 
|  | assert(KillInst->readsRegister(SrcReg) && | 
|  | "Cannot find kill instruction"); | 
|  |  | 
|  | SlotIndex LastUseIndex = LIS->getInstructionIndex(*KillInst); | 
|  | SrcLI.removeSegment(LastUseIndex.getRegSlot(), | 
|  | LIS->getMBBEndIdx(&opBlock)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Really delete the PHI instruction now, if it is not in the LoweredPHIs map. | 
|  | if (reusedIncoming || !IncomingReg) { | 
|  | if (LIS) | 
|  | LIS->RemoveMachineInstrFromMaps(*MPhi); | 
|  | MF.DeleteMachineInstr(MPhi); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// analyzePHINodes - Gather information about the PHI nodes in here. In | 
|  | /// particular, we want to map the number of uses of a virtual register which is | 
|  | /// used in a PHI node. We map that to the BB the vreg is coming from. This is | 
|  | /// used later to determine when the vreg is killed in the BB. | 
|  | void PHIElimination::analyzePHINodes(const MachineFunction& MF) { | 
|  | for (const auto &MBB : MF) | 
|  | for (const auto &BBI : MBB) { | 
|  | if (!BBI.isPHI()) | 
|  | break; | 
|  | for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) | 
|  | ++VRegPHIUseCount[BBVRegPair(BBI.getOperand(i+1).getMBB()->getNumber(), | 
|  | BBI.getOperand(i).getReg())]; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool PHIElimination::SplitPHIEdges(MachineFunction &MF, | 
|  | MachineBasicBlock &MBB, | 
|  | MachineLoopInfo *MLI) { | 
|  | if (MBB.empty() || !MBB.front().isPHI() || MBB.isEHPad()) | 
|  | return false;   // Quick exit for basic blocks without PHIs. | 
|  |  | 
|  | const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : nullptr; | 
|  | bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader(); | 
|  |  | 
|  | bool Changed = false; | 
|  | for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end(); | 
|  | BBI != BBE && BBI->isPHI(); ++BBI) { | 
|  | for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) { | 
|  | unsigned Reg = BBI->getOperand(i).getReg(); | 
|  | MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB(); | 
|  | // Is there a critical edge from PreMBB to MBB? | 
|  | if (PreMBB->succ_size() == 1) | 
|  | continue; | 
|  |  | 
|  | // Avoid splitting backedges of loops. It would introduce small | 
|  | // out-of-line blocks into the loop which is very bad for code placement. | 
|  | if (PreMBB == &MBB && !SplitAllCriticalEdges) | 
|  | continue; | 
|  | const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : nullptr; | 
|  | if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges) | 
|  | continue; | 
|  |  | 
|  | // LV doesn't consider a phi use live-out, so isLiveOut only returns true | 
|  | // when the source register is live-out for some other reason than a phi | 
|  | // use. That means the copy we will insert in PreMBB won't be a kill, and | 
|  | // there is a risk it may not be coalesced away. | 
|  | // | 
|  | // If the copy would be a kill, there is no need to split the edge. | 
|  | bool ShouldSplit = isLiveOutPastPHIs(Reg, PreMBB); | 
|  | if (!ShouldSplit && !NoPhiElimLiveOutEarlyExit) | 
|  | continue; | 
|  | if (ShouldSplit) { | 
|  | DEBUG(dbgs() << PrintReg(Reg) << " live-out before critical edge BB#" | 
|  | << PreMBB->getNumber() << " -> BB#" << MBB.getNumber() | 
|  | << ": " << *BBI); | 
|  | } | 
|  |  | 
|  | // If Reg is not live-in to MBB, it means it must be live-in to some | 
|  | // other PreMBB successor, and we can avoid the interference by splitting | 
|  | // the edge. | 
|  | // | 
|  | // If Reg *is* live-in to MBB, the interference is inevitable and a copy | 
|  | // is likely to be left after coalescing. If we are looking at a loop | 
|  | // exiting edge, split it so we won't insert code in the loop, otherwise | 
|  | // don't bother. | 
|  | ShouldSplit = ShouldSplit && !isLiveIn(Reg, &MBB); | 
|  |  | 
|  | // Check for a loop exiting edge. | 
|  | if (!ShouldSplit && CurLoop != PreLoop) { | 
|  | DEBUG({ | 
|  | dbgs() << "Split wouldn't help, maybe avoid loop copies?\n"; | 
|  | if (PreLoop) dbgs() << "PreLoop: " << *PreLoop; | 
|  | if (CurLoop) dbgs() << "CurLoop: " << *CurLoop; | 
|  | }); | 
|  | // This edge could be entering a loop, exiting a loop, or it could be | 
|  | // both: Jumping directly form one loop to the header of a sibling | 
|  | // loop. | 
|  | // Split unless this edge is entering CurLoop from an outer loop. | 
|  | ShouldSplit = PreLoop && !PreLoop->contains(CurLoop); | 
|  | } | 
|  | if (!ShouldSplit && !SplitAllCriticalEdges) | 
|  | continue; | 
|  | if (!PreMBB->SplitCriticalEdge(&MBB, *this)) { | 
|  | DEBUG(dbgs() << "Failed to split critical edge.\n"); | 
|  | continue; | 
|  | } | 
|  | Changed = true; | 
|  | ++NumCriticalEdgesSplit; | 
|  | } | 
|  | } | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | bool PHIElimination::isLiveIn(unsigned Reg, const MachineBasicBlock *MBB) { | 
|  | assert((LV || LIS) && | 
|  | "isLiveIn() requires either LiveVariables or LiveIntervals"); | 
|  | if (LIS) | 
|  | return LIS->isLiveInToMBB(LIS->getInterval(Reg), MBB); | 
|  | else | 
|  | return LV->isLiveIn(Reg, *MBB); | 
|  | } | 
|  |  | 
|  | bool PHIElimination::isLiveOutPastPHIs(unsigned Reg, | 
|  | const MachineBasicBlock *MBB) { | 
|  | assert((LV || LIS) && | 
|  | "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals"); | 
|  | // LiveVariables considers uses in PHIs to be in the predecessor basic block, | 
|  | // so that a register used only in a PHI is not live out of the block. In | 
|  | // contrast, LiveIntervals considers uses in PHIs to be on the edge rather than | 
|  | // in the predecessor basic block, so that a register used only in a PHI is live | 
|  | // out of the block. | 
|  | if (LIS) { | 
|  | const LiveInterval &LI = LIS->getInterval(Reg); | 
|  | for (const MachineBasicBlock *SI : MBB->successors()) | 
|  | if (LI.liveAt(LIS->getMBBStartIdx(SI))) | 
|  | return true; | 
|  | return false; | 
|  | } else { | 
|  | return LV->isLiveOut(Reg, *MBB); | 
|  | } | 
|  | } |