|  | //===-- tsan_rtl.h ----------------------------------------------*- C++ -*-===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file is a part of ThreadSanitizer (TSan), a race detector. | 
|  | // | 
|  | // Main internal TSan header file. | 
|  | // | 
|  | // Ground rules: | 
|  | //   - C++ run-time should not be used (static CTORs, RTTI, exceptions, static | 
|  | //     function-scope locals) | 
|  | //   - All functions/classes/etc reside in namespace __tsan, except for those | 
|  | //     declared in tsan_interface.h. | 
|  | //   - Platform-specific files should be used instead of ifdefs (*). | 
|  | //   - No system headers included in header files (*). | 
|  | //   - Platform specific headres included only into platform-specific files (*). | 
|  | // | 
|  | //  (*) Except when inlining is critical for performance. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #ifndef TSAN_RTL_H | 
|  | #define TSAN_RTL_H | 
|  |  | 
|  | #include "sanitizer_common/sanitizer_common.h" | 
|  | #include "sanitizer_common/sanitizer_allocator64.h" | 
|  | #include "tsan_clock.h" | 
|  | #include "tsan_defs.h" | 
|  | #include "tsan_flags.h" | 
|  | #include "tsan_sync.h" | 
|  | #include "tsan_trace.h" | 
|  | #include "tsan_vector.h" | 
|  | #include "tsan_report.h" | 
|  |  | 
|  | namespace __tsan { | 
|  |  | 
|  | // Descriptor of user's memory block. | 
|  | struct MBlock { | 
|  | Mutex mtx; | 
|  | uptr size; | 
|  | u32 alloc_tid; | 
|  | u32 alloc_stack_id; | 
|  | SyncVar *head; | 
|  | }; | 
|  |  | 
|  | #ifndef TSAN_GO | 
|  | #if defined(TSAN_COMPAT_SHADOW) && TSAN_COMPAT_SHADOW | 
|  | const uptr kAllocatorSpace = 0x7d0000000000ULL; | 
|  | #else | 
|  | const uptr kAllocatorSpace = 0x7d0000000000ULL; | 
|  | #endif | 
|  | const uptr kAllocatorSize  =  0x10000000000ULL;  // 1T. | 
|  |  | 
|  | typedef SizeClassAllocator64<kAllocatorSpace, kAllocatorSize, sizeof(MBlock), | 
|  | DefaultSizeClassMap> PrimaryAllocator; | 
|  | typedef SizeClassAllocatorLocalCache<PrimaryAllocator::kNumClasses, | 
|  | PrimaryAllocator> AllocatorCache; | 
|  | typedef LargeMmapAllocator SecondaryAllocator; | 
|  | typedef CombinedAllocator<PrimaryAllocator, AllocatorCache, | 
|  | SecondaryAllocator> Allocator; | 
|  | Allocator *allocator(); | 
|  | #endif | 
|  |  | 
|  | void TsanCheckFailed(const char *file, int line, const char *cond, | 
|  | u64 v1, u64 v2); | 
|  |  | 
|  | // FastState (from most significant bit): | 
|  | //   unused          : 1 | 
|  | //   tid             : kTidBits | 
|  | //   epoch           : kClkBits | 
|  | //   unused          : - | 
|  | //   ignore_bit      : 1 | 
|  | class FastState { | 
|  | public: | 
|  | FastState(u64 tid, u64 epoch) { | 
|  | x_ = tid << kTidShift; | 
|  | x_ |= epoch << kClkShift; | 
|  | DCHECK(tid == this->tid()); | 
|  | DCHECK(epoch == this->epoch()); | 
|  | } | 
|  |  | 
|  | explicit FastState(u64 x) | 
|  | : x_(x) { | 
|  | } | 
|  |  | 
|  | u64 raw() const { | 
|  | return x_; | 
|  | } | 
|  |  | 
|  | u64 tid() const { | 
|  | u64 res = x_ >> kTidShift; | 
|  | return res; | 
|  | } | 
|  |  | 
|  | u64 epoch() const { | 
|  | u64 res = (x_ << (kTidBits + 1)) >> (64 - kClkBits); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | void IncrementEpoch() { | 
|  | u64 old_epoch = epoch(); | 
|  | x_ += 1 << kClkShift; | 
|  | DCHECK_EQ(old_epoch + 1, epoch()); | 
|  | (void)old_epoch; | 
|  | } | 
|  |  | 
|  | void SetIgnoreBit() { x_ |= kIgnoreBit; } | 
|  | void ClearIgnoreBit() { x_ &= ~kIgnoreBit; } | 
|  | bool GetIgnoreBit() const { return x_ & kIgnoreBit; } | 
|  |  | 
|  | private: | 
|  | friend class Shadow; | 
|  | static const int kTidShift = 64 - kTidBits - 1; | 
|  | static const int kClkShift = kTidShift - kClkBits; | 
|  | static const u64 kIgnoreBit = 1ull; | 
|  | static const u64 kFreedBit = 1ull << 63; | 
|  | u64 x_; | 
|  | }; | 
|  |  | 
|  | // Shadow (from most significant bit): | 
|  | //   freed           : 1 | 
|  | //   tid             : kTidBits | 
|  | //   epoch           : kClkBits | 
|  | //   is_write        : 1 | 
|  | //   size_log        : 2 | 
|  | //   addr0           : 3 | 
|  | class Shadow : public FastState { | 
|  | public: | 
|  | explicit Shadow(u64 x) : FastState(x) { } | 
|  |  | 
|  | explicit Shadow(const FastState &s) : FastState(s.x_) { } | 
|  |  | 
|  | void SetAddr0AndSizeLog(u64 addr0, unsigned kAccessSizeLog) { | 
|  | DCHECK_EQ(x_ & 31, 0); | 
|  | DCHECK_LE(addr0, 7); | 
|  | DCHECK_LE(kAccessSizeLog, 3); | 
|  | x_ |= (kAccessSizeLog << 3) | addr0; | 
|  | DCHECK_EQ(kAccessSizeLog, size_log()); | 
|  | DCHECK_EQ(addr0, this->addr0()); | 
|  | } | 
|  |  | 
|  | void SetWrite(unsigned kAccessIsWrite) { | 
|  | DCHECK_EQ(x_ & 32, 0); | 
|  | if (kAccessIsWrite) | 
|  | x_ |= 32; | 
|  | DCHECK_EQ(kAccessIsWrite, is_write()); | 
|  | } | 
|  |  | 
|  | bool IsZero() const { return x_ == 0; } | 
|  |  | 
|  | static inline bool TidsAreEqual(const Shadow s1, const Shadow s2) { | 
|  | u64 shifted_xor = (s1.x_ ^ s2.x_) >> kTidShift; | 
|  | DCHECK_EQ(shifted_xor == 0, s1.tid() == s2.tid()); | 
|  | return shifted_xor == 0; | 
|  | } | 
|  |  | 
|  | static inline bool Addr0AndSizeAreEqual(const Shadow s1, const Shadow s2) { | 
|  | u64 masked_xor = (s1.x_ ^ s2.x_) & 31; | 
|  | return masked_xor == 0; | 
|  | } | 
|  |  | 
|  | static inline bool TwoRangesIntersect(Shadow s1, Shadow s2, | 
|  | unsigned kS2AccessSize) { | 
|  | bool res = false; | 
|  | u64 diff = s1.addr0() - s2.addr0(); | 
|  | if ((s64)diff < 0) {  // s1.addr0 < s2.addr0  // NOLINT | 
|  | // if (s1.addr0() + size1) > s2.addr0()) return true; | 
|  | if (s1.size() > -diff)  res = true; | 
|  | } else { | 
|  | // if (s2.addr0() + kS2AccessSize > s1.addr0()) return true; | 
|  | if (kS2AccessSize > diff) res = true; | 
|  | } | 
|  | DCHECK_EQ(res, TwoRangesIntersectSLOW(s1, s2)); | 
|  | DCHECK_EQ(res, TwoRangesIntersectSLOW(s2, s1)); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | // The idea behind the offset is as follows. | 
|  | // Consider that we have 8 bool's contained within a single 8-byte block | 
|  | // (mapped to a single shadow "cell"). Now consider that we write to the bools | 
|  | // from a single thread (which we consider the common case). | 
|  | // W/o offsetting each access will have to scan 4 shadow values at average | 
|  | // to find the corresponding shadow value for the bool. | 
|  | // With offsetting we start scanning shadow with the offset so that | 
|  | // each access hits necessary shadow straight off (at least in an expected | 
|  | // optimistic case). | 
|  | // This logic works seamlessly for any layout of user data. For example, | 
|  | // if user data is {int, short, char, char}, then accesses to the int are | 
|  | // offsetted to 0, short - 4, 1st char - 6, 2nd char - 7. Hopefully, accesses | 
|  | // from a single thread won't need to scan all 8 shadow values. | 
|  | unsigned ComputeSearchOffset() { | 
|  | return x_ & 7; | 
|  | } | 
|  | u64 addr0() const { return x_ & 7; } | 
|  | u64 size() const { return 1ull << size_log(); } | 
|  | bool is_write() const { return x_ & 32; } | 
|  |  | 
|  | // The idea behind the freed bit is as follows. | 
|  | // When the memory is freed (or otherwise unaccessible) we write to the shadow | 
|  | // values with tid/epoch related to the free and the freed bit set. | 
|  | // During memory accesses processing the freed bit is considered | 
|  | // as msb of tid. So any access races with shadow with freed bit set | 
|  | // (it is as if write from a thread with which we never synchronized before). | 
|  | // This allows us to detect accesses to freed memory w/o additional | 
|  | // overheads in memory access processing and at the same time restore | 
|  | // tid/epoch of free. | 
|  | void MarkAsFreed() { | 
|  | x_ |= kFreedBit; | 
|  | } | 
|  |  | 
|  | bool GetFreedAndReset() { | 
|  | bool res = x_ & kFreedBit; | 
|  | x_ &= ~kFreedBit; | 
|  | return res; | 
|  | } | 
|  |  | 
|  | private: | 
|  | u64 size_log() const { return (x_ >> 3) & 3; } | 
|  |  | 
|  | static bool TwoRangesIntersectSLOW(const Shadow s1, const Shadow s2) { | 
|  | if (s1.addr0() == s2.addr0()) return true; | 
|  | if (s1.addr0() < s2.addr0() && s1.addr0() + s1.size() > s2.addr0()) | 
|  | return true; | 
|  | if (s2.addr0() < s1.addr0() && s2.addr0() + s2.size() > s1.addr0()) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  | }; | 
|  |  | 
|  | // Freed memory. | 
|  | // As if 8-byte write by thread 0xff..f at epoch 0xff..f, races with everything. | 
|  | const u64 kShadowFreed = 0xfffffffffffffff8ull; | 
|  |  | 
|  | struct SignalContext; | 
|  |  | 
|  | // This struct is stored in TLS. | 
|  | struct ThreadState { | 
|  | FastState fast_state; | 
|  | // Synch epoch represents the threads's epoch before the last synchronization | 
|  | // action. It allows to reduce number of shadow state updates. | 
|  | // For example, fast_synch_epoch=100, last write to addr X was at epoch=150, | 
|  | // if we are processing write to X from the same thread at epoch=200, | 
|  | // we do nothing, because both writes happen in the same 'synch epoch'. | 
|  | // That is, if another memory access does not race with the former write, | 
|  | // it does not race with the latter as well. | 
|  | // QUESTION: can we can squeeze this into ThreadState::Fast? | 
|  | // E.g. ThreadState::Fast is a 44-bit, 32 are taken by synch_epoch and 12 are | 
|  | // taken by epoch between synchs. | 
|  | // This way we can save one load from tls. | 
|  | u64 fast_synch_epoch; | 
|  | // This is a slow path flag. On fast path, fast_state.GetIgnoreBit() is read. | 
|  | // We do not distinguish beteween ignoring reads and writes | 
|  | // for better performance. | 
|  | int ignore_reads_and_writes; | 
|  | uptr *shadow_stack_pos; | 
|  | u64 *racy_shadow_addr; | 
|  | u64 racy_state[2]; | 
|  | Trace trace; | 
|  | #ifndef TSAN_GO | 
|  | // C/C++ uses embed shadow stack of fixed size. | 
|  | uptr shadow_stack[kShadowStackSize]; | 
|  | #else | 
|  | // Go uses satellite shadow stack with dynamic size. | 
|  | uptr *shadow_stack; | 
|  | uptr *shadow_stack_end; | 
|  | #endif | 
|  | ThreadClock clock; | 
|  | #ifndef TSAN_GO | 
|  | AllocatorCache alloc_cache; | 
|  | #endif | 
|  | u64 stat[StatCnt]; | 
|  | const int tid; | 
|  | const int unique_id; | 
|  | int in_rtl; | 
|  | bool is_alive; | 
|  | const uptr stk_addr; | 
|  | const uptr stk_size; | 
|  | const uptr tls_addr; | 
|  | const uptr tls_size; | 
|  |  | 
|  | DeadlockDetector deadlock_detector; | 
|  |  | 
|  | bool in_signal_handler; | 
|  | SignalContext *signal_ctx; | 
|  |  | 
|  | #ifndef TSAN_GO | 
|  | u32 last_sleep_stack_id; | 
|  | ThreadClock last_sleep_clock; | 
|  | #endif | 
|  |  | 
|  | // Set in regions of runtime that must be signal-safe and fork-safe. | 
|  | // If set, malloc must not be called. | 
|  | int nomalloc; | 
|  |  | 
|  | explicit ThreadState(Context *ctx, int tid, int unique_id, u64 epoch, | 
|  | uptr stk_addr, uptr stk_size, | 
|  | uptr tls_addr, uptr tls_size); | 
|  | }; | 
|  |  | 
|  | Context *CTX(); | 
|  |  | 
|  | #ifndef TSAN_GO | 
|  | extern THREADLOCAL char cur_thread_placeholder[]; | 
|  | INLINE ThreadState *cur_thread() { | 
|  | return reinterpret_cast<ThreadState *>(&cur_thread_placeholder); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | enum ThreadStatus { | 
|  | ThreadStatusInvalid,   // Non-existent thread, data is invalid. | 
|  | ThreadStatusCreated,   // Created but not yet running. | 
|  | ThreadStatusRunning,   // The thread is currently running. | 
|  | ThreadStatusFinished,  // Joinable thread is finished but not yet joined. | 
|  | ThreadStatusDead       // Joined, but some info (trace) is still alive. | 
|  | }; | 
|  |  | 
|  | // An info about a thread that is hold for some time after its termination. | 
|  | struct ThreadDeadInfo { | 
|  | Trace trace; | 
|  | }; | 
|  |  | 
|  | struct ThreadContext { | 
|  | const int tid; | 
|  | int unique_id;  // Non-rolling thread id. | 
|  | uptr os_id;  // pid | 
|  | uptr user_id;  // Some opaque user thread id (e.g. pthread_t). | 
|  | ThreadState *thr; | 
|  | ThreadStatus status; | 
|  | bool detached; | 
|  | int reuse_count; | 
|  | SyncClock sync; | 
|  | // Epoch at which the thread had started. | 
|  | // If we see an event from the thread stamped by an older epoch, | 
|  | // the event is from a dead thread that shared tid with this thread. | 
|  | u64 epoch0; | 
|  | u64 epoch1; | 
|  | StackTrace creation_stack; | 
|  | ThreadDeadInfo *dead_info; | 
|  | ThreadContext *dead_next;  // In dead thread list. | 
|  |  | 
|  | explicit ThreadContext(int tid); | 
|  | }; | 
|  |  | 
|  | struct RacyStacks { | 
|  | MD5Hash hash[2]; | 
|  | bool operator==(const RacyStacks &other) const { | 
|  | if (hash[0] == other.hash[0] && hash[1] == other.hash[1]) | 
|  | return true; | 
|  | if (hash[0] == other.hash[1] && hash[1] == other.hash[0]) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct RacyAddress { | 
|  | uptr addr_min; | 
|  | uptr addr_max; | 
|  | }; | 
|  |  | 
|  | struct FiredSuppression { | 
|  | ReportType type; | 
|  | uptr pc; | 
|  | }; | 
|  |  | 
|  | struct Context { | 
|  | Context(); | 
|  |  | 
|  | bool initialized; | 
|  |  | 
|  | SyncTab synctab; | 
|  |  | 
|  | Mutex report_mtx; | 
|  | int nreported; | 
|  | int nmissed_expected; | 
|  |  | 
|  | Mutex thread_mtx; | 
|  | unsigned thread_seq; | 
|  | unsigned unique_thread_seq; | 
|  | int alive_threads; | 
|  | int max_alive_threads; | 
|  | ThreadContext *threads[kMaxTid]; | 
|  | int dead_list_size; | 
|  | ThreadContext* dead_list_head; | 
|  | ThreadContext* dead_list_tail; | 
|  |  | 
|  | Vector<RacyStacks> racy_stacks; | 
|  | Vector<RacyAddress> racy_addresses; | 
|  | Vector<FiredSuppression> fired_suppressions; | 
|  |  | 
|  | Flags flags; | 
|  |  | 
|  | u64 stat[StatCnt]; | 
|  | u64 int_alloc_cnt[MBlockTypeCount]; | 
|  | u64 int_alloc_siz[MBlockTypeCount]; | 
|  | }; | 
|  |  | 
|  | class ScopedInRtl { | 
|  | public: | 
|  | ScopedInRtl(); | 
|  | ~ScopedInRtl(); | 
|  | private: | 
|  | ThreadState*thr_; | 
|  | int in_rtl_; | 
|  | int errno_; | 
|  | }; | 
|  |  | 
|  | class ScopedReport { | 
|  | public: | 
|  | explicit ScopedReport(ReportType typ); | 
|  | ~ScopedReport(); | 
|  |  | 
|  | void AddStack(const StackTrace *stack); | 
|  | void AddMemoryAccess(uptr addr, Shadow s, const StackTrace *stack); | 
|  | void AddThread(const ThreadContext *tctx); | 
|  | void AddMutex(const SyncVar *s); | 
|  | void AddLocation(uptr addr, uptr size); | 
|  | void AddSleep(u32 stack_id); | 
|  |  | 
|  | const ReportDesc *GetReport() const; | 
|  |  | 
|  | private: | 
|  | Context *ctx_; | 
|  | ReportDesc *rep_; | 
|  |  | 
|  | ScopedReport(const ScopedReport&); | 
|  | void operator = (const ScopedReport&); | 
|  | }; | 
|  |  | 
|  | void RestoreStack(int tid, const u64 epoch, StackTrace *stk); | 
|  |  | 
|  | void StatAggregate(u64 *dst, u64 *src); | 
|  | void StatOutput(u64 *stat); | 
|  | void ALWAYS_INLINE INLINE StatInc(ThreadState *thr, StatType typ, u64 n = 1) { | 
|  | if (kCollectStats) | 
|  | thr->stat[typ] += n; | 
|  | } | 
|  |  | 
|  | void MapShadow(uptr addr, uptr size); | 
|  | void InitializeShadowMemory(); | 
|  | void InitializeInterceptors(); | 
|  | void InitializeDynamicAnnotations(); | 
|  |  | 
|  | void ReportRace(ThreadState *thr); | 
|  | bool OutputReport(Context *ctx, | 
|  | const ScopedReport &srep, | 
|  | const ReportStack *suppress_stack = 0); | 
|  | bool IsFiredSuppression(Context *ctx, | 
|  | const ScopedReport &srep, | 
|  | const StackTrace &trace); | 
|  | bool IsExpectedReport(uptr addr, uptr size); | 
|  |  | 
|  | #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 1 | 
|  | # define DPrintf Printf | 
|  | #else | 
|  | # define DPrintf(...) | 
|  | #endif | 
|  |  | 
|  | #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 2 | 
|  | # define DPrintf2 Printf | 
|  | #else | 
|  | # define DPrintf2(...) | 
|  | #endif | 
|  |  | 
|  | u32 CurrentStackId(ThreadState *thr, uptr pc); | 
|  | void PrintCurrentStack(ThreadState *thr, uptr pc); | 
|  |  | 
|  | void Initialize(ThreadState *thr); | 
|  | int Finalize(ThreadState *thr); | 
|  |  | 
|  | void MemoryAccess(ThreadState *thr, uptr pc, uptr addr, | 
|  | int kAccessSizeLog, bool kAccessIsWrite); | 
|  | void MemoryAccessImpl(ThreadState *thr, uptr addr, | 
|  | int kAccessSizeLog, bool kAccessIsWrite, FastState fast_state, | 
|  | u64 *shadow_mem, Shadow cur); | 
|  | void MemoryRead1Byte(ThreadState *thr, uptr pc, uptr addr); | 
|  | void MemoryWrite1Byte(ThreadState *thr, uptr pc, uptr addr); | 
|  | void MemoryRead8Byte(ThreadState *thr, uptr pc, uptr addr); | 
|  | void MemoryWrite8Byte(ThreadState *thr, uptr pc, uptr addr); | 
|  | void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr, | 
|  | uptr size, bool is_write); | 
|  | void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size); | 
|  | void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size); | 
|  | void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size); | 
|  | void IgnoreCtl(ThreadState *thr, bool write, bool begin); | 
|  |  | 
|  | void FuncEntry(ThreadState *thr, uptr pc); | 
|  | void FuncExit(ThreadState *thr); | 
|  |  | 
|  | int ThreadCreate(ThreadState *thr, uptr pc, uptr uid, bool detached); | 
|  | void ThreadStart(ThreadState *thr, int tid, uptr os_id); | 
|  | void ThreadFinish(ThreadState *thr); | 
|  | int ThreadTid(ThreadState *thr, uptr pc, uptr uid); | 
|  | void ThreadJoin(ThreadState *thr, uptr pc, int tid); | 
|  | void ThreadDetach(ThreadState *thr, uptr pc, int tid); | 
|  | void ThreadFinalize(ThreadState *thr); | 
|  |  | 
|  | void MutexCreate(ThreadState *thr, uptr pc, uptr addr, | 
|  | bool rw, bool recursive, bool linker_init); | 
|  | void MutexDestroy(ThreadState *thr, uptr pc, uptr addr); | 
|  | void MutexLock(ThreadState *thr, uptr pc, uptr addr); | 
|  | void MutexUnlock(ThreadState *thr, uptr pc, uptr addr); | 
|  | void MutexReadLock(ThreadState *thr, uptr pc, uptr addr); | 
|  | void MutexReadUnlock(ThreadState *thr, uptr pc, uptr addr); | 
|  | void MutexReadOrWriteUnlock(ThreadState *thr, uptr pc, uptr addr); | 
|  |  | 
|  | void Acquire(ThreadState *thr, uptr pc, uptr addr); | 
|  | void AcquireGlobal(ThreadState *thr, uptr pc); | 
|  | void Release(ThreadState *thr, uptr pc, uptr addr); | 
|  | void ReleaseStore(ThreadState *thr, uptr pc, uptr addr); | 
|  | void AfterSleep(ThreadState *thr, uptr pc); | 
|  |  | 
|  | // The hacky call uses custom calling convention and an assembly thunk. | 
|  | // It is considerably faster that a normal call for the caller | 
|  | // if it is not executed (it is intended for slow paths from hot functions). | 
|  | // The trick is that the call preserves all registers and the compiler | 
|  | // does not treat it as a call. | 
|  | // If it does not work for you, use normal call. | 
|  | #if TSAN_DEBUG == 0 | 
|  | // The caller may not create the stack frame for itself at all, | 
|  | // so we create a reserve stack frame for it (1024b must be enough). | 
|  | #define HACKY_CALL(f) \ | 
|  | __asm__ __volatile__("sub $1024, %%rsp;" \ | 
|  | "/*.cfi_adjust_cfa_offset 1024;*/" \ | 
|  | "call " #f "_thunk;" \ | 
|  | "add $1024, %%rsp;" \ | 
|  | "/*.cfi_adjust_cfa_offset -1024;*/" \ | 
|  | ::: "memory", "cc"); | 
|  | #else | 
|  | #define HACKY_CALL(f) f() | 
|  | #endif | 
|  |  | 
|  | void TraceSwitch(ThreadState *thr); | 
|  |  | 
|  | extern "C" void __tsan_trace_switch(); | 
|  | void ALWAYS_INLINE INLINE TraceAddEvent(ThreadState *thr, u64 epoch, | 
|  | EventType typ, uptr addr) { | 
|  | StatInc(thr, StatEvents); | 
|  | if (UNLIKELY((epoch % kTracePartSize) == 0)) { | 
|  | #ifndef TSAN_GO | 
|  | HACKY_CALL(__tsan_trace_switch); | 
|  | #else | 
|  | TraceSwitch(thr); | 
|  | #endif | 
|  | } | 
|  | Event *evp = &thr->trace.events[epoch % kTraceSize]; | 
|  | Event ev = (u64)addr | ((u64)typ << 61); | 
|  | *evp = ev; | 
|  | } | 
|  |  | 
|  | }  // namespace __tsan | 
|  |  | 
|  | #endif  // TSAN_RTL_H |