blob: 9d7bbca89d6b11e6d09f9dbf62a0ffc568b30608 [file] [log] [blame]
//===- lib/ReaderWriter/PECOFF/ReaderCOFF.cpp -----------------------------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "ReaderCOFF"
#include "Atoms.h"
#include "ReaderImportHeader.h"
#include "lld/Core/File.h"
#include "lld/Driver/Driver.h"
#include "lld/ReaderWriter/PECOFFLinkingContext.h"
#include "lld/ReaderWriter/Reader.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/Object/COFF.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FileOutputBuffer.h"
#include "llvm/Support/FileUtilities.h"
#include "llvm/Support/Memory.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/Program.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/system_error.h"
#include <map>
#include <set>
#include <vector>
using std::vector;
using lld::coff::COFFAbsoluteAtom;
using lld::coff::COFFBSSAtom;
using lld::coff::COFFDefinedAtom;
using lld::coff::COFFDefinedFileAtom;
using lld::coff::COFFReference;
using lld::coff::COFFUndefinedAtom;
using llvm::object::coff_aux_section_definition;
using llvm::object::coff_aux_weak_external;
using llvm::object::coff_relocation;
using llvm::object::coff_section;
using llvm::object::coff_symbol;
using namespace lld;
namespace {
// Converts the COFF symbol attribute to the LLD's atom attribute.
Atom::Scope getScope(const coff_symbol *symbol) {
switch (symbol->StorageClass) {
case llvm::COFF::IMAGE_SYM_CLASS_EXTERNAL:
return Atom::scopeGlobal;
case llvm::COFF::IMAGE_SYM_CLASS_STATIC:
case llvm::COFF::IMAGE_SYM_CLASS_LABEL:
return Atom::scopeTranslationUnit;
}
llvm_unreachable("Unknown scope");
}
DefinedAtom::ContentType getContentType(const coff_section *section) {
if (section->Characteristics & llvm::COFF::IMAGE_SCN_CNT_CODE)
return DefinedAtom::typeCode;
if (section->Characteristics & llvm::COFF::IMAGE_SCN_CNT_INITIALIZED_DATA)
return DefinedAtom::typeData;
if (section->Characteristics & llvm::COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA)
return DefinedAtom::typeZeroFill;
return DefinedAtom::typeUnknown;
}
DefinedAtom::ContentPermissions getPermissions(const coff_section *section) {
if (section->Characteristics & llvm::COFF::IMAGE_SCN_MEM_READ &&
section->Characteristics & llvm::COFF::IMAGE_SCN_MEM_WRITE)
return DefinedAtom::permRW_;
if (section->Characteristics & llvm::COFF::IMAGE_SCN_MEM_READ &&
section->Characteristics & llvm::COFF::IMAGE_SCN_MEM_EXECUTE)
return DefinedAtom::permR_X;
if (section->Characteristics & llvm::COFF::IMAGE_SCN_MEM_READ)
return DefinedAtom::permR__;
return DefinedAtom::perm___;
}
/// Returns the alignment of the section. The contents of the section must be
/// aligned by this value in the resulting executable/DLL.
DefinedAtom::Alignment getAlignment(const coff_section *section) {
if (section->Characteristics & llvm::COFF::IMAGE_SCN_TYPE_NO_PAD)
return DefinedAtom::Alignment(0);
// Bit [20:24] contains section alignment information. We need to decrease
// the value stored by 1 in order to get the real exponent (e.g, ALIGN_1BYTE
// is 0x00100000, but the exponent should be 0)
uint32_t characteristics = (section->Characteristics >> 20) & 0xf;
// If all bits are off, we treat it as if ALIGN_1BYTE was on. The PE/COFF spec
// does not say anything about this case, but CVTRES.EXE does not set any bit
// in characteristics[20:24], and its output is intended to be copied to .rsrc
// section with no padding, so I think doing this is the right thing.
if (characteristics == 0)
return DefinedAtom::Alignment(0);
uint32_t powerOf2 = characteristics - 1;
return DefinedAtom::Alignment(powerOf2);
}
DefinedAtom::Merge getMerge(const coff_aux_section_definition *auxsym) {
switch (auxsym->Selection) {
case llvm::COFF::IMAGE_COMDAT_SELECT_NODUPLICATES:
return DefinedAtom::mergeNo;
case llvm::COFF::IMAGE_COMDAT_SELECT_ANY:
return DefinedAtom::mergeAsWeakAndAddressUsed;
case llvm::COFF::IMAGE_COMDAT_SELECT_SAME_SIZE:
case llvm::COFF::IMAGE_COMDAT_SELECT_EXACT_MATCH:
case llvm::COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE:
case llvm::COFF::IMAGE_COMDAT_SELECT_LARGEST:
case llvm::COFF::IMAGE_COMDAT_SELECT_NEWEST:
// FIXME: These attributes has more complicated semantics than the regular
// weak symbol. These are mapped to mergeAsWeakAndAddressUsed for now
// because the core linker does not support them yet. We eventually have
// to implement them for full COFF support.
return DefinedAtom::mergeAsWeakAndAddressUsed;
default:
llvm_unreachable("Unknown merge type");
}
}
class FileCOFF : public File {
private:
typedef vector<const coff_symbol *> SymbolVectorT;
typedef std::map<const coff_section *, SymbolVectorT> SectionToSymbolsT;
typedef std::map<const StringRef, Atom *> SymbolNameToAtomT;
typedef std::map<const coff_section *, vector<COFFDefinedFileAtom *> >
SectionToAtomsT;
public:
FileCOFF(const LinkingContext &context,
std::unique_ptr<MemoryBuffer> mb, error_code &ec)
: File(mb->getBufferIdentifier(), kindObject), _context(context) {
OwningPtr<llvm::object::Binary> bin;
ec = llvm::object::createBinary(mb.release(), bin);
if (ec)
return;
_obj.reset(dyn_cast<const llvm::object::COFFObjectFile>(bin.get()));
if (!_obj) {
ec = make_error_code(llvm::object::object_error::invalid_file_type);
return;
}
bin.take();
// Read the symbol table and atomize them if possible. Defined atoms
// cannot be atomized in one pass, so they will be not be atomized but
// added to symbolToAtom.
SymbolVectorT symbols;
if ((ec = readSymbolTable(symbols)))
return;
createAbsoluteAtoms(symbols, _absoluteAtoms._atoms);
if ((ec = createUndefinedAtoms(symbols, _undefinedAtoms._atoms)))
return;
if ((ec = createDefinedSymbols(symbols, _definedAtoms._atoms)))
return;
if ((ec = addRelocationReferenceToAtoms()))
return;
// Read .drectve section if exists.
ec = maybeReadLinkerDirectives();
}
virtual const atom_collection<DefinedAtom> &defined() const {
return _definedAtoms;
}
virtual const atom_collection<UndefinedAtom> &undefined() const {
return _undefinedAtoms;
}
virtual const atom_collection<SharedLibraryAtom> &sharedLibrary() const {
return _sharedLibraryAtoms;
}
virtual const atom_collection<AbsoluteAtom> &absolute() const {
return _absoluteAtoms;
}
virtual const LinkingContext &getLinkingContext() const { return _context; }
StringRef getLinkerDirectives() const { return _directives; }
private:
/// Iterate over the symbol table to retrieve all symbols.
error_code readSymbolTable(vector<const coff_symbol *> &result) {
const llvm::object::coff_file_header *header = nullptr;
if (error_code ec = _obj->getHeader(header))
return ec;
for (uint32_t i = 0, e = header->NumberOfSymbols; i != e; ++i) {
// Retrieve the symbol.
const coff_symbol *sym;
if (error_code ec = _obj->getSymbol(i, sym))
return ec;
assert(sym->SectionNumber != llvm::COFF::IMAGE_SYM_DEBUG &&
"Cannot atomize IMAGE_SYM_DEBUG!");
result.push_back(sym);
// Cache the name.
StringRef name;
if (error_code ec = _obj->getSymbolName(sym, name))
return ec;
_symbolName[sym] = name;
// Symbol may be followed by auxiliary symbol table records. The aux
// record can be in any format, but the size is always the same as the
// regular symbol. The aux record supplies additional information for the
// standard symbol. We do not interpret the aux record here, but just
// store it to _auxSymbol.
if (sym->NumberOfAuxSymbols > 0) {
const coff_symbol *aux = nullptr;
if (error_code ec = _obj->getAuxSymbol(i + 1, aux))
return ec;
_auxSymbol[sym] = aux;
i += sym->NumberOfAuxSymbols;
}
}
return error_code::success();
}
/// Create atoms for the absolute symbols.
void createAbsoluteAtoms(const SymbolVectorT &symbols,
vector<const AbsoluteAtom *> &result) {
for (const coff_symbol *sym : symbols) {
if (sym->SectionNumber != llvm::COFF::IMAGE_SYM_ABSOLUTE)
continue;
auto *atom = new (_alloc)
COFFAbsoluteAtom(*this, _symbolName[sym], getScope(sym), sym->Value);
result.push_back(atom);
_symbolAtom[sym] = atom;
}
}
/// Create atoms for the undefined symbols. This code is bit complicated
/// because it supports "weak externals" mechanism of COFF. If an undefined
/// symbol (sym1) has auxiliary data, the data contains a symbol table index
/// at which the "second symbol" (sym2) for sym1 exists. If sym1 is resolved,
/// it's linked normally. If not, sym1 is resolved as if it has sym2's
/// name. This relationship between sym1 and sym2 is represented using
/// fallback mechanism of undefined symbol.
error_code createUndefinedAtoms(const SymbolVectorT &symbols,
vector<const UndefinedAtom *> &result) {
// Sort out undefined symbols from all symbols.
std::set<const coff_symbol *> undefines;
std::map<const coff_symbol *, const coff_symbol *> weakExternal;
for (const coff_symbol *sym : symbols) {
if (sym->SectionNumber != llvm::COFF::IMAGE_SYM_UNDEFINED)
continue;
undefines.insert(sym);
// Create a mapping from sym1 to sym2, if the undefined symbol has
// auxiliary data.
auto iter = _auxSymbol.find(sym);
if (iter == _auxSymbol.end())
continue;
const coff_aux_weak_external *aux = reinterpret_cast<
const coff_aux_weak_external *>(iter->second);
const coff_symbol *sym2;
if (error_code ec = _obj->getSymbol(aux->TagIndex, sym2))
return ec;
weakExternal[sym] = sym2;
}
// Sort out sym1s from sym2s. Sym2s shouldn't be added to the undefined atom
// list because they shouldn't be resolved unless sym1 is failed to
// be resolved.
for (auto i : weakExternal)
undefines.erase(i.second);
// Create atoms for the undefined symbols.
for (const coff_symbol *sym : undefines) {
// If the symbol has sym2, create an undefiend atom for sym2, so that we
// can pass it as a fallback atom.
UndefinedAtom *fallback = nullptr;
auto iter = weakExternal.find(sym);
if (iter != weakExternal.end()) {
const coff_symbol *sym2 = iter->second;
fallback = new (_alloc) COFFUndefinedAtom(*this, _symbolName[sym2]);
_symbolAtom[sym2] = fallback;
}
// Create an atom for the symbol.
auto *atom = new (_alloc) COFFUndefinedAtom(
*this, _symbolName[sym], fallback);
result.push_back(atom);
_symbolAtom[sym] = atom;
}
return error_code::success();
}
/// Create atoms for the defined symbols. This pass is a bit complicated than
/// the other two, because in order to create the atom for the defined symbol
/// we need to know the adjacent symbols.
error_code createDefinedSymbols(const SymbolVectorT &symbols,
vector<const DefinedAtom *> &result) {
// A defined atom can be merged if its section attribute allows its contents
// to be merged. In COFF, it's not very easy to get the section attribute
// for the symbol, so scan all sections in advance and cache the attributes
// for later use.
if (error_code ec = cacheSectionAttributes())
return ec;
// Filter non-defined atoms, and group defined atoms by its section.
SectionToSymbolsT definedSymbols;
for (const coff_symbol *sym : symbols) {
// A symbol with section number 0 and non-zero value represents a common
// symbol. The MS COFF spec did not give a definition of what the common
// symbol is. We should probably follow ELF's definition shown below.
//
// - If one object file has a common symbol and another has a definition,
// the common symbol is treated as an undefined reference.
// - If there is no definition for a common symbol, the program linker
// acts as though it saw a definition initialized to zero of the
// appropriate size.
// - Two object files may have common symbols of
// different sizes, in which case the program linker will use the
// largest size.
//
// FIXME: We are currently treating the common symbol as a normal
// mergeable atom. Implement the above semantcis.
if (sym->SectionNumber == llvm::COFF::IMAGE_SYM_UNDEFINED &&
sym->Value > 0) {
StringRef name = _symbolName[sym];
uint32_t size = sym->Value;
auto *atom = new (_alloc)
COFFBSSAtom(*this, name, getScope(sym), DefinedAtom::permRW_,
DefinedAtom::mergeAsWeakAndAddressUsed, size, 0);
result.push_back(atom);
continue;
}
// Skip if it's not for defined atom.
if (sym->SectionNumber == llvm::COFF::IMAGE_SYM_ABSOLUTE ||
sym->SectionNumber == llvm::COFF::IMAGE_SYM_UNDEFINED)
continue;
const coff_section *sec;
if (error_code ec = _obj->getSection(sym->SectionNumber, sec))
return ec;
assert(sec && "SectionIndex > 0, Sec must be non-null!");
// Skip if it's a section symbol for a COMDAT section. A section symbol
// has the name of the section and value 0. A translation unit may contain
// multiple COMDAT sections whose section name are the same. We don't want
// to make atoms for them as they would become duplicate symbols.
StringRef sectionName;
if (error_code ec = _obj->getSectionName(sec, sectionName))
return ec;
if (_symbolName[sym] == sectionName && sym->Value == 0 &&
_merge[sec] != DefinedAtom::mergeNo)
continue;
uint8_t sc = sym->StorageClass;
if (sc != llvm::COFF::IMAGE_SYM_CLASS_EXTERNAL &&
sc != llvm::COFF::IMAGE_SYM_CLASS_STATIC &&
sc != llvm::COFF::IMAGE_SYM_CLASS_FUNCTION &&
sc != llvm::COFF::IMAGE_SYM_CLASS_LABEL) {
llvm::errs() << "Unable to create atom for: " << _symbolName[sym]
<< " (" << static_cast<int>(sc) << ")\n";
return llvm::object::object_error::parse_failed;
}
definedSymbols[sec].push_back(sym);
}
// Atomize the defined symbols.
if (error_code ec = AtomizeDefinedSymbols(definedSymbols, result))
return ec;
return error_code::success();
}
// Cache the COMDAT attributes, which indicate whether the symbols in the
// section can be merged or not.
error_code cacheSectionAttributes() {
// The COMDAT section attribute is not an attribute of coff_section, but is
// stored in the auxiliary symbol for the first symbol referring a COMDAT
// section. It feels to me that it's unnecessarily complicated, but this is
// how COFF works.
for (auto i : _auxSymbol) {
const coff_symbol *sym = i.first;
if (sym->SectionNumber == llvm::COFF::IMAGE_SYM_ABSOLUTE ||
sym->SectionNumber == llvm::COFF::IMAGE_SYM_UNDEFINED)
continue;
const coff_section *sec;
if (error_code ec = _obj->getSection(sym->SectionNumber, sec))
return ec;
if (_merge.count(sec))
continue;
if (!(sec->Characteristics & llvm::COFF::IMAGE_SCN_LNK_COMDAT))
continue;
_comdatSections.insert(sec);
if (sym->NumberOfAuxSymbols == 0)
return llvm::object::object_error::parse_failed;
const coff_aux_section_definition *aux =
reinterpret_cast<const coff_aux_section_definition *>(i.second);
_merge[sec] = getMerge(aux);
}
// The sections that does not have auxiliary symbol are regular sections, in
// which symbols are not allowed to be merged.
error_code ec;
for (auto si = _obj->begin_sections(), se = _obj->end_sections(); si != se;
si.increment(ec)) {
const coff_section *sec = _obj->getCOFFSection(si);
if (!_merge.count(sec))
_merge[sec] = DefinedAtom::mergeNo;
}
return error_code::success();
}
/// Atomize \p symbols and append the results to \p atoms. The symbols are
/// assumed to have been defined in the \p section.
error_code
AtomizeDefinedSymbolsInSection(const coff_section *section,
vector<const coff_symbol *> &symbols,
vector<COFFDefinedFileAtom *> &atoms) {
// Sort symbols by position.
std::stable_sort(
symbols.begin(), symbols.end(),
// For some reason MSVC fails to allow the lambda in this context with a
// "illegal use of local type in type instantiation". MSVC is clearly
// wrong here. Force a conversion to function pointer to work around.
static_cast<bool (*)(const coff_symbol *, const coff_symbol *)>(
[](const coff_symbol * a, const coff_symbol * b)->bool {
return a->Value < b->Value;
}));
StringRef sectionName;
if (error_code ec = _obj->getSectionName(section, sectionName))
return ec;
uint64_t ordinal = -1;
// BSS section does not have contents. If this is the BSS section, create
// COFFBSSAtom instead of COFFDefinedAtom.
if (section->Characteristics &
llvm::COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA) {
for (auto si = symbols.begin(), se = symbols.end(); si != se; ++si) {
const coff_symbol *sym = *si;
uint32_t size = (si + 1 == se) ? section->SizeOfRawData - sym->Value
: si[1]->Value - sym->Value;
auto *atom = new (_alloc) COFFBSSAtom(
*this, _symbolName[sym], getScope(sym), getPermissions(section),
DefinedAtom::mergeAsWeakAndAddressUsed, size, ++ordinal);
atoms.push_back(atom);
_symbolAtom[sym] = atom;
}
return error_code::success();
}
ArrayRef<uint8_t> secData;
if (error_code ec = _obj->getSectionContents(section, secData))
return ec;
// We do not support debug information yet. We could keep data in ".debug$S"
// section in the resultant binary by copying as opaque bytes, but it would
// make the binary hard to debug because of extraneous data. So we'll skip
// the debug info.
if (sectionName == ".debug$S")
return error_code::success();
// A section with IMAGE_SCN_LNK_REMOVE attribute will never become
// a part of the output image. That's what the COFF spec says.
if (section->Characteristics & llvm::COFF::IMAGE_SCN_LNK_REMOVE)
return error_code::success();
DefinedAtom::ContentType type = getContentType(section);
DefinedAtom::ContentPermissions perms = getPermissions(section);
bool isComdat = (_comdatSections.count(section) == 1);
// Create an atom for the entire section.
if (symbols.empty()) {
ArrayRef<uint8_t> data(secData.data(), secData.size());
auto *atom = new (_alloc)
COFFDefinedAtom(*this, "", sectionName, Atom::scopeTranslationUnit,
type, isComdat, perms, _merge[section], data, 0);
atoms.push_back(atom);
_definedAtomLocations[section][0].push_back(atom);
return error_code::success();
}
// Create an unnamed atom if the first atom isn't at the start of the
// section.
if (symbols[0]->Value != 0) {
uint64_t size = symbols[0]->Value;
ArrayRef<uint8_t> data(secData.data(), size);
auto *atom = new (_alloc) COFFDefinedAtom(
*this, "", sectionName, Atom::scopeTranslationUnit, type, isComdat,
perms, _merge[section], data, ++ordinal);
atoms.push_back(atom);
_definedAtomLocations[section][0].push_back(atom);
}
for (auto si = symbols.begin(), se = symbols.end(); si != se; ++si) {
const uint8_t *start = secData.data() + (*si)->Value;
// if this is the last symbol, take up the remaining data.
const uint8_t *end = (si + 1 == se) ? secData.data() + secData.size()
: secData.data() + (*(si + 1))->Value;
ArrayRef<uint8_t> data(start, end);
auto *atom = new (_alloc) COFFDefinedAtom(
*this, _symbolName[*si], sectionName, getScope(*si), type, isComdat,
perms, _merge[section], data, ++ordinal);
atoms.push_back(atom);
_symbolAtom[*si] = atom;
_definedAtomLocations[section][(*si)->Value].push_back(atom);
}
// Finally, set alignment to the first atom so that the section contents
// will be aligned as specified by the object section header.
_definedAtomLocations[section][0][0]->setAlignment(getAlignment(section));
return error_code::success();
}
error_code AtomizeDefinedSymbols(SectionToSymbolsT &definedSymbols,
vector<const DefinedAtom *> &definedAtoms) {
// For each section, make atoms for all the symbols defined in the
// section, and append the atoms to the result objects.
for (auto &i : definedSymbols) {
const coff_section *section = i.first;
vector<const coff_symbol *> &symbols = i.second;
vector<COFFDefinedFileAtom *> atoms;
if (error_code ec =
AtomizeDefinedSymbolsInSection(section, symbols, atoms))
return ec;
// Connect atoms with layout-before/layout-after edges.
connectAtomsWithLayoutEdge(atoms);
for (COFFDefinedFileAtom *atom : atoms) {
_sectionAtoms[section].push_back(atom);
definedAtoms.push_back(atom);
}
}
return error_code::success();
}
/// Find the atom that is at \p targetAddress in \p section.
error_code findAtomAt(const coff_section *section, uint32_t targetAddress,
COFFDefinedFileAtom *&result, uint32_t &offsetInAtom) {
for (auto i : _definedAtomLocations[section]) {
uint32_t atomAddress = i.first;
std::vector<COFFDefinedAtom *> &atomsAtSameLocation = i.second;
COFFDefinedAtom *atom = atomsAtSameLocation.back();
if (atomAddress <= targetAddress &&
targetAddress < atomAddress + atom->size()) {
result = atom;
offsetInAtom = targetAddress - atomAddress;
return error_code::success();
}
}
// Relocation target is out of range
return llvm::object::object_error::parse_failed;
}
/// Find the atom for the symbol that was at the \p index in the symbol
/// table.
error_code getAtomBySymbolIndex(uint32_t index, Atom *&ret) {
const coff_symbol *symbol;
if (error_code ec = _obj->getSymbol(index, symbol))
return ec;
ret = _symbolAtom[symbol];
assert(ret);
return error_code::success();
}
/// Add relocation information to an atom based on \p rel. \p rel is an
/// relocation entry for the \p section, and \p atoms are all the atoms
/// defined in the \p section.
error_code
addRelocationReference(const coff_relocation *rel,
const coff_section *section,
const vector<COFFDefinedFileAtom *> &atoms) {
assert(atoms.size() > 0);
// The address of the item which relocation is applied. Section's
// VirtualAddress needs to be added for historical reasons, but the value
// is usually just zero, so adding it is usually no-op.
uint32_t itemAddress = rel->VirtualAddress + section->VirtualAddress;
Atom *targetAtom = nullptr;
if (error_code ec = getAtomBySymbolIndex(rel->SymbolTableIndex, targetAtom))
return ec;
COFFDefinedFileAtom *atom;
uint32_t offsetInAtom;
if (error_code ec = findAtomAt(section, itemAddress, atom, offsetInAtom))
return ec;
atom->addReference(std::unique_ptr<COFFReference>(
new COFFReference(targetAtom, offsetInAtom, rel->Type)));
return error_code::success();
}
/// Add relocation information to atoms.
error_code addRelocationReferenceToAtoms() {
// Relocation entries are defined for each section.
error_code ec;
for (auto si = _obj->begin_sections(), se = _obj->end_sections(); si != se;
si.increment(ec)) {
const coff_section *section = _obj->getCOFFSection(si);
// Skip there's no atom for the section. Currently we do not create any
// atoms for some sections, such as "debug$S", and such sections need to
// be skipped here too.
if (_sectionAtoms.find(section) == _sectionAtoms.end())
continue;
for (auto ri = si->begin_relocations(), re = si->end_relocations();
ri != re; ri.increment(ec)) {
const coff_relocation *rel = _obj->getCOFFRelocation(ri);
if ((ec = addRelocationReference(rel, section, _sectionAtoms[section])))
return ec;
}
}
return error_code::success();
}
/// Find a section by name.
error_code findSection(StringRef name, const coff_section *&result) {
error_code ec;
for (auto si = _obj->begin_sections(), se = _obj->end_sections(); si != se;
si.increment(ec)) {
const coff_section *section = _obj->getCOFFSection(si);
StringRef sectionName;
if ((ec = _obj->getSectionName(section, sectionName)))
return ec;
if (sectionName == name) {
result = section;
return error_code::success();
}
}
// Section was not found, but it's not an error. This method returns an
// error
// only when there's a read error.
return error_code::success();
}
// Convert ArrayRef<uint8_t> to std::string. The array contains a string which
// may not be terminated by NUL.
std::string ArrayRefToString(ArrayRef<uint8_t> array) {
// Skip the UTF-8 byte marker if exists. The contents of .drectve section
// is, according to the Microsoft PE/COFF spec, encoded as ANSI or UTF-8
// with the BOM marker.
//
// FIXME: I think "ANSI" in the spec means Windows-1252 encoding, which is a
// superset of ASCII. We need to convert it to UTF-8.
if (array.size() >= 3 && array[0] == 0xEF && array[1] == 0xBB &&
array[2] == 0xBF) {
array = array.slice(3);
}
if (array.size() == 0)
return "";
size_t len = 0;
size_t e = array.size();
while (len < e && array[len] != '\0')
++len;
return std::string(reinterpret_cast<const char *>(&array[0]), len);
}
// Read .drectve section contents if exists, and store it to _directives.
error_code maybeReadLinkerDirectives() {
const coff_section *section = nullptr;
if (error_code ec = findSection(".drectve", section))
return ec;
if (section != nullptr) {
ArrayRef<uint8_t> contents;
if (error_code ec = _obj->getSectionContents(section, contents))
return ec;
_directives = std::move(ArrayRefToString(contents));
}
return error_code::success();
}
std::unique_ptr<const llvm::object::COFFObjectFile> _obj;
atom_collection_vector<DefinedAtom> _definedAtoms;
atom_collection_vector<UndefinedAtom> _undefinedAtoms;
atom_collection_vector<SharedLibraryAtom> _sharedLibraryAtoms;
atom_collection_vector<AbsoluteAtom> _absoluteAtoms;
// The contents of .drectve section.
std::string _directives;
// A map from symbol to its name. All symbols should be in this map except
// unnamed ones.
std::map<const coff_symbol *, StringRef> _symbolName;
// A map from symbol to its resultant atom.
std::map<const coff_symbol *, Atom *> _symbolAtom;
// A map from symbol to its aux symbol.
std::map<const coff_symbol *, const coff_symbol *> _auxSymbol;
// A map from section to its atoms.
std::map<const coff_section *, vector<COFFDefinedFileAtom *> > _sectionAtoms;
// A set of COMDAT sections.
std::set<const coff_section *> _comdatSections;
// A map to get whether the section allows its contents to be merged or not.
std::map<const coff_section *, DefinedAtom::Merge> _merge;
// A sorted map to find an atom from a section and an offset within
// the section.
std::map<const coff_section *,
std::map<uint32_t, std::vector<COFFDefinedAtom *> > >
_definedAtomLocations;
mutable llvm::BumpPtrAllocator _alloc;
const LinkingContext &_context;
};
class BumpPtrStringSaver : public llvm::cl::StringSaver {
public:
virtual const char *SaveString(const char *str) {
size_t len = strlen(str);
char *copy = _alloc.Allocate<char>(len + 1);
memcpy(copy, str, len + 1);
return copy;
}
private:
llvm::BumpPtrAllocator _alloc;
};
class ReaderCOFF : public Reader {
public:
explicit ReaderCOFF(PECOFFLinkingContext &context)
: Reader(context), _PECOFFLinkingContext(context) {}
error_code parseFile(std::unique_ptr<MemoryBuffer> &mb,
std::vector<std::unique_ptr<File> > &result) const {
StringRef magic(mb->getBufferStart(), mb->getBufferSize());
// The input file should be a resource file, an archive file, a regular COFF
// file, or an import library member file. Try to parse in that order. If
// the input file does not start with a known magic, parseCOFFImportLibrary
// will return an error object.
llvm::sys::fs::file_magic fileType = llvm::sys::fs::identify_magic(magic);
if (fileType == llvm::sys::fs::file_magic::windows_resource)
return convertAndParseResourceFile(mb, result);
if (fileType == llvm::sys::fs::file_magic::coff_object)
return parseCOFFFile(mb, result);
return lld::coff::parseCOFFImportLibrary(_context, mb, result);
}
private:
// Interpret the contents of .drectve section. If exists, the section contains
// a string containing command line options. The linker is expected to
// interpret the options as if they were given via the command line.
//
// The section mainly contains /defaultlib (-l in Unix), but can contain any
// options as long as they are valid.
error_code handleDirectiveSection(StringRef directives) const {
DEBUG({
llvm::dbgs() << ".drectve: " << directives << "\n";
});
// Split the string into tokens, as the shell would do for argv.
SmallVector<const char *, 16> tokens;
tokens.push_back("link"); // argv[0] is the command name. Will be ignored.
llvm::cl::TokenizeWindowsCommandLine(directives, _stringSaver, tokens);
tokens.push_back(nullptr);
// Calls the command line parser to interpret the token string as if they
// were given via the command line.
int argc = tokens.size() - 1;
const char **argv = &tokens[0];
std::string errorMessage;
llvm::raw_string_ostream stream(errorMessage);
bool parseFailed = !WinLinkDriver::parse(argc, argv, _PECOFFLinkingContext,
stream, /*isDirective*/ true);
stream.flush();
// Print error message if error.
if (parseFailed) {
llvm::errs() << "Failed to parse '" << directives << "'\n";
return make_error_code(llvm::object::object_error::invalid_file_type);
}
if (!errorMessage.empty()) {
llvm::errs() << "lld warning: " << errorMessage << "\n";
}
return error_code::success();
}
//
// RC file Reader
//
ErrorOr<std::string>
writeResToTemporaryFile(std::unique_ptr<MemoryBuffer> mb) const {
// Get a temporary file path for .res file.
SmallString<128> tempFilePath;
if (error_code ec = llvm::sys::fs::createTemporaryFile(
"tmp", "res", tempFilePath))
return ec;
// Write the memory buffer contents to .res file, so that we can run
// cvtres.exe on it.
OwningPtr<llvm::FileOutputBuffer> buffer;
if (error_code ec = llvm::FileOutputBuffer::create(
tempFilePath.str(), mb->getBufferSize(), buffer))
return ec;
memcpy(buffer->getBufferStart(), mb->getBufferStart(), mb->getBufferSize());
if (error_code ec = buffer->commit())
return ec;
// Convert SmallString -> StringRef -> std::string.
return tempFilePath.str().str();
}
ErrorOr<std::string>
convertResourceFileToCOFF(std::unique_ptr<MemoryBuffer> mb) const {
// Write the resource file to a temporary file.
ErrorOr<std::string> inFilePath = writeResToTemporaryFile(std::move(mb));
if (!inFilePath)
return error_code(inFilePath);
llvm::FileRemover inFileRemover(*inFilePath);
// Create an output file path.
SmallString<128> outFilePath;
if (error_code ec = llvm::sys::fs::createTemporaryFile(
"tmp", "obj", outFilePath))
return ec;
std::string outFileArg = ("/out:" + outFilePath).str();
// Construct CVTRES.EXE command line and execute it.
std::string program = "cvtres.exe";
std::string programPath = llvm::sys::FindProgramByName(program);
if (programPath.empty()) {
llvm::errs() << "Unable to find " << program << " in PATH\n";
return llvm::errc::broken_pipe;
}
std::vector<const char *> args;
args.push_back(programPath.c_str());
args.push_back("/machine:x86");
args.push_back("/readonly");
args.push_back("/nologo");
args.push_back(outFileArg.c_str());
args.push_back(inFilePath->c_str());
args.push_back(nullptr);
DEBUG({
for (const char **p = &args[0]; *p; ++p)
llvm::dbgs() << *p << " ";
llvm::dbgs() << "\n";
});
if (llvm::sys::ExecuteAndWait(programPath.c_str(), &args[0]) != 0) {
llvm::errs() << program << " failed\n";
return llvm::errc::broken_pipe;
}
return outFilePath.str().str();
}
// Convert .res file to .coff file and then parse it. Resource file is a file
// containing various types of data, such as icons, translation texts,
// etc. "cvtres.exe" command reads an RC file to create a COFF file which
// encapsulates resource data into rsrc$N sections, where N is an integer.
//
// The linker is not capable to handle RC files directly. Instead, it runs
// cvtres.exe on RC files and then then link its outputs.
error_code
convertAndParseResourceFile(
std::unique_ptr<MemoryBuffer> &mb,
std::vector<std::unique_ptr<File> > &result) const {
// Convert an RC to a COFF
ErrorOr<std::string> coffFilePath = convertResourceFileToCOFF(std::move(mb));
if (!coffFilePath)
return error_code(coffFilePath);
llvm::FileRemover coffFileRemover(*coffFilePath);
// Read and parse the COFF
OwningPtr<MemoryBuffer> opmb;
if (error_code ec = MemoryBuffer::getFileOrSTDIN(*coffFilePath, opmb))
return ec;
std::unique_ptr<MemoryBuffer> newmb(opmb.take());
return parseCOFFFile(newmb, result);
}
//
// COFF file Reader
//
error_code parseCOFFFile(std::unique_ptr<MemoryBuffer> &mb,
std::vector<std::unique_ptr<File> > &result) const {
// Parse the memory buffer as PECOFF file.
error_code ec;
std::unique_ptr<FileCOFF> file(new FileCOFF(_context, std::move(mb), ec));
if (ec)
return ec;
DEBUG({
llvm::dbgs() << "Defined atoms:\n";
for (const auto &atom : file->defined()) {
llvm::dbgs() << " " << atom->name() << "\n";
for (const Reference *ref : *atom)
llvm::dbgs() << " @" << ref->offsetInAtom() << " -> "
<< ref->target()->name() << "\n";
}
});
// Interpret .drectve section if the section has contents.
StringRef directives = file->getLinkerDirectives();
if (!directives.empty())
if (error_code ec = handleDirectiveSection(directives))
return ec;
result.push_back(std::move(file));
return error_code::success();
}
PECOFFLinkingContext &_PECOFFLinkingContext;
mutable BumpPtrStringSaver _stringSaver;
};
} // end namespace anonymous
namespace lld {
std::unique_ptr<Reader> createReaderPECOFF(PECOFFLinkingContext &context) {
return std::unique_ptr<Reader>(new ReaderCOFF(context));
}
}