| //===--------- ScopInfo.cpp - Create Scops from LLVM IR ------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Create a polyhedral description for a static control flow region. |
| // |
| // The pass creates a polyhedral description of the Scops detected by the Scop |
| // detection derived from their LLVM-IR code. |
| // |
| // This representation is shared among several tools in the polyhedral |
| // community, which are e.g. Cloog, Pluto, Loopo, Graphite. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "polly/LinkAllPasses.h" |
| #include "polly/Options.h" |
| #include "polly/ScopInfo.h" |
| #include "polly/Support/GICHelper.h" |
| #include "polly/Support/SCEVValidator.h" |
| #include "polly/Support/ScopHelper.h" |
| #include "polly/CodeGen/BlockGenerators.h" |
| #include "llvm/ADT/MapVector.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/ADT/PostOrderIterator.h" |
| #include "llvm/Analysis/LoopIterator.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/RegionIterator.h" |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| #include "llvm/Support/Debug.h" |
| #include "isl/aff.h" |
| #include "isl/constraint.h" |
| #include "isl/local_space.h" |
| #include "isl/map.h" |
| #include "isl/options.h" |
| #include "isl/printer.h" |
| #include "isl/schedule.h" |
| #include "isl/schedule_node.h" |
| #include "isl/set.h" |
| #include "isl/union_map.h" |
| #include "isl/union_set.h" |
| #include "isl/val.h" |
| #include <sstream> |
| #include <string> |
| #include <vector> |
| |
| using namespace llvm; |
| using namespace polly; |
| |
| #define DEBUG_TYPE "polly-scops" |
| |
| STATISTIC(ScopFound, "Number of valid Scops"); |
| STATISTIC(RichScopFound, "Number of Scops containing a loop"); |
| |
| static cl::opt<bool> ModelReadOnlyScalars( |
| "polly-analyze-read-only-scalars", |
| cl::desc("Model read-only scalar values in the scop description"), |
| cl::Hidden, cl::ZeroOrMore, cl::init(true), cl::cat(PollyCategory)); |
| |
| // Multiplicative reductions can be disabled separately as these kind of |
| // operations can overflow easily. Additive reductions and bit operations |
| // are in contrast pretty stable. |
| static cl::opt<bool> DisableMultiplicativeReductions( |
| "polly-disable-multiplicative-reductions", |
| cl::desc("Disable multiplicative reductions"), cl::Hidden, cl::ZeroOrMore, |
| cl::init(false), cl::cat(PollyCategory)); |
| |
| static cl::opt<unsigned> RunTimeChecksMaxParameters( |
| "polly-rtc-max-parameters", |
| cl::desc("The maximal number of parameters allowed in RTCs."), cl::Hidden, |
| cl::ZeroOrMore, cl::init(8), cl::cat(PollyCategory)); |
| |
| static cl::opt<unsigned> RunTimeChecksMaxArraysPerGroup( |
| "polly-rtc-max-arrays-per-group", |
| cl::desc("The maximal number of arrays to compare in each alias group."), |
| cl::Hidden, cl::ZeroOrMore, cl::init(20), cl::cat(PollyCategory)); |
| static cl::opt<std::string> UserContextStr( |
| "polly-context", cl::value_desc("isl parameter set"), |
| cl::desc("Provide additional constraints on the context parameters"), |
| cl::init(""), cl::cat(PollyCategory)); |
| |
| static cl::opt<bool> DetectReductions("polly-detect-reductions", |
| cl::desc("Detect and exploit reductions"), |
| cl::Hidden, cl::ZeroOrMore, |
| cl::init(true), cl::cat(PollyCategory)); |
| |
| //===----------------------------------------------------------------------===// |
| /// Helper Classes |
| |
| void Comparison::print(raw_ostream &OS) const { |
| // Not yet implemented. |
| } |
| |
| // Create a sequence of two schedules. Either argument may be null and is |
| // interpreted as the empty schedule. Can also return null if both schedules are |
| // empty. |
| static __isl_give isl_schedule * |
| combineInSequence(__isl_take isl_schedule *Prev, |
| __isl_take isl_schedule *Succ) { |
| if (!Prev) |
| return Succ; |
| if (!Succ) |
| return Prev; |
| |
| return isl_schedule_sequence(Prev, Succ); |
| } |
| |
| static __isl_give isl_set *addRangeBoundsToSet(__isl_take isl_set *S, |
| const ConstantRange &Range, |
| int dim, |
| enum isl_dim_type type) { |
| isl_val *V; |
| isl_ctx *ctx = isl_set_get_ctx(S); |
| |
| bool useLowerUpperBound = Range.isSignWrappedSet() && !Range.isFullSet(); |
| const auto LB = useLowerUpperBound ? Range.getLower() : Range.getSignedMin(); |
| V = isl_valFromAPInt(ctx, LB, true); |
| isl_set *SLB = isl_set_lower_bound_val(isl_set_copy(S), type, dim, V); |
| |
| const auto UB = useLowerUpperBound ? Range.getUpper() : Range.getSignedMax(); |
| V = isl_valFromAPInt(ctx, UB, true); |
| if (useLowerUpperBound) |
| V = isl_val_sub_ui(V, 1); |
| isl_set *SUB = isl_set_upper_bound_val(S, type, dim, V); |
| |
| if (useLowerUpperBound) |
| return isl_set_union(SLB, SUB); |
| else |
| return isl_set_intersect(SLB, SUB); |
| } |
| |
| static const ScopArrayInfo *identifyBasePtrOriginSAI(Scop *S, Value *BasePtr) { |
| LoadInst *BasePtrLI = dyn_cast<LoadInst>(BasePtr); |
| if (!BasePtrLI) |
| return nullptr; |
| |
| if (!S->getRegion().contains(BasePtrLI)) |
| return nullptr; |
| |
| ScalarEvolution &SE = *S->getSE(); |
| |
| auto *OriginBaseSCEV = |
| SE.getPointerBase(SE.getSCEV(BasePtrLI->getPointerOperand())); |
| if (!OriginBaseSCEV) |
| return nullptr; |
| |
| auto *OriginBaseSCEVUnknown = dyn_cast<SCEVUnknown>(OriginBaseSCEV); |
| if (!OriginBaseSCEVUnknown) |
| return nullptr; |
| |
| return S->getScopArrayInfo(OriginBaseSCEVUnknown->getValue()); |
| } |
| |
| ScopArrayInfo::ScopArrayInfo(Value *BasePtr, Type *ElementType, isl_ctx *Ctx, |
| ArrayRef<const SCEV *> DimensionSizes, bool IsPHI, |
| Scop *S) |
| : BasePtr(BasePtr), ElementType(ElementType), |
| DimensionSizes(DimensionSizes.begin(), DimensionSizes.end()), |
| IsPHI(IsPHI) { |
| std::string BasePtrName = |
| getIslCompatibleName("MemRef_", BasePtr, IsPHI ? "__phi" : ""); |
| Id = isl_id_alloc(Ctx, BasePtrName.c_str(), this); |
| for (const SCEV *Expr : DimensionSizes) { |
| isl_pw_aff *Size = S->getPwAff(Expr); |
| DimensionSizesPw.push_back(Size); |
| } |
| |
| BasePtrOriginSAI = identifyBasePtrOriginSAI(S, BasePtr); |
| if (BasePtrOriginSAI) |
| const_cast<ScopArrayInfo *>(BasePtrOriginSAI)->addDerivedSAI(this); |
| } |
| |
| ScopArrayInfo::~ScopArrayInfo() { |
| isl_id_free(Id); |
| for (isl_pw_aff *Size : DimensionSizesPw) |
| isl_pw_aff_free(Size); |
| } |
| |
| std::string ScopArrayInfo::getName() const { return isl_id_get_name(Id); } |
| |
| int ScopArrayInfo::getElemSizeInBytes() const { |
| return ElementType->getPrimitiveSizeInBits() / 8; |
| } |
| |
| isl_id *ScopArrayInfo::getBasePtrId() const { return isl_id_copy(Id); } |
| |
| void ScopArrayInfo::dump() const { print(errs()); } |
| |
| void ScopArrayInfo::print(raw_ostream &OS, bool SizeAsPwAff) const { |
| OS.indent(8) << *getElementType() << " " << getName() << "[*]"; |
| for (unsigned u = 0; u < getNumberOfDimensions(); u++) { |
| OS << "["; |
| |
| if (SizeAsPwAff) |
| OS << " " << DimensionSizesPw[u] << " "; |
| else |
| OS << *DimensionSizes[u]; |
| |
| OS << "]"; |
| } |
| |
| if (BasePtrOriginSAI) |
| OS << " [BasePtrOrigin: " << BasePtrOriginSAI->getName() << "]"; |
| |
| OS << " // Element size " << getElemSizeInBytes() << "\n"; |
| } |
| |
| const ScopArrayInfo * |
| ScopArrayInfo::getFromAccessFunction(__isl_keep isl_pw_multi_aff *PMA) { |
| isl_id *Id = isl_pw_multi_aff_get_tuple_id(PMA, isl_dim_out); |
| assert(Id && "Output dimension didn't have an ID"); |
| return getFromId(Id); |
| } |
| |
| const ScopArrayInfo *ScopArrayInfo::getFromId(isl_id *Id) { |
| void *User = isl_id_get_user(Id); |
| const ScopArrayInfo *SAI = static_cast<ScopArrayInfo *>(User); |
| isl_id_free(Id); |
| return SAI; |
| } |
| |
| void MemoryAccess::printIR(raw_ostream &OS) const { |
| if (isRead()) |
| OS << "Read "; |
| else { |
| if (isMayWrite()) |
| OS << "May"; |
| OS << "Write "; |
| } |
| OS << BaseAddr->getName() << '[' << *Offset << "]\n"; |
| } |
| |
| const std::string |
| MemoryAccess::getReductionOperatorStr(MemoryAccess::ReductionType RT) { |
| switch (RT) { |
| case MemoryAccess::RT_NONE: |
| llvm_unreachable("Requested a reduction operator string for a memory " |
| "access which isn't a reduction"); |
| case MemoryAccess::RT_ADD: |
| return "+"; |
| case MemoryAccess::RT_MUL: |
| return "*"; |
| case MemoryAccess::RT_BOR: |
| return "|"; |
| case MemoryAccess::RT_BXOR: |
| return "^"; |
| case MemoryAccess::RT_BAND: |
| return "&"; |
| } |
| llvm_unreachable("Unknown reduction type"); |
| return ""; |
| } |
| |
| /// @brief Return the reduction type for a given binary operator |
| static MemoryAccess::ReductionType getReductionType(const BinaryOperator *BinOp, |
| const Instruction *Load) { |
| if (!BinOp) |
| return MemoryAccess::RT_NONE; |
| switch (BinOp->getOpcode()) { |
| case Instruction::FAdd: |
| if (!BinOp->hasUnsafeAlgebra()) |
| return MemoryAccess::RT_NONE; |
| // Fall through |
| case Instruction::Add: |
| return MemoryAccess::RT_ADD; |
| case Instruction::Or: |
| return MemoryAccess::RT_BOR; |
| case Instruction::Xor: |
| return MemoryAccess::RT_BXOR; |
| case Instruction::And: |
| return MemoryAccess::RT_BAND; |
| case Instruction::FMul: |
| if (!BinOp->hasUnsafeAlgebra()) |
| return MemoryAccess::RT_NONE; |
| // Fall through |
| case Instruction::Mul: |
| if (DisableMultiplicativeReductions) |
| return MemoryAccess::RT_NONE; |
| return MemoryAccess::RT_MUL; |
| default: |
| return MemoryAccess::RT_NONE; |
| } |
| } |
| |
| /// @brief Derive the individual index expressions from a GEP instruction |
| /// |
| /// This function optimistically assumes the GEP references into a fixed size |
| /// array. If this is actually true, this function returns a list of array |
| /// subscript expressions as SCEV as well as a list of integers describing |
| /// the size of the individual array dimensions. Both lists have either equal |
| /// length of the size list is one element shorter in case there is no known |
| /// size available for the outermost array dimension. |
| /// |
| /// @param GEP The GetElementPtr instruction to analyze. |
| /// |
| /// @return A tuple with the subscript expressions and the dimension sizes. |
| static std::tuple<std::vector<const SCEV *>, std::vector<int>> |
| getIndexExpressionsFromGEP(GetElementPtrInst *GEP, ScalarEvolution &SE) { |
| std::vector<const SCEV *> Subscripts; |
| std::vector<int> Sizes; |
| |
| Type *Ty = GEP->getPointerOperandType(); |
| |
| bool DroppedFirstDim = false; |
| |
| for (long i = 1; i < GEP->getNumOperands(); i++) { |
| |
| const SCEV *Expr = SE.getSCEV(GEP->getOperand(i)); |
| |
| if (i == 1) { |
| if (auto PtrTy = dyn_cast<PointerType>(Ty)) { |
| Ty = PtrTy->getElementType(); |
| } else if (auto ArrayTy = dyn_cast<ArrayType>(Ty)) { |
| Ty = ArrayTy->getElementType(); |
| } else { |
| Subscripts.clear(); |
| Sizes.clear(); |
| break; |
| } |
| if (auto Const = dyn_cast<SCEVConstant>(Expr)) |
| if (Const->getValue()->isZero()) { |
| DroppedFirstDim = true; |
| continue; |
| } |
| Subscripts.push_back(Expr); |
| continue; |
| } |
| |
| auto ArrayTy = dyn_cast<ArrayType>(Ty); |
| if (!ArrayTy) { |
| Subscripts.clear(); |
| Sizes.clear(); |
| break; |
| } |
| |
| Subscripts.push_back(Expr); |
| if (!(DroppedFirstDim && i == 2)) |
| Sizes.push_back(ArrayTy->getNumElements()); |
| |
| Ty = ArrayTy->getElementType(); |
| } |
| |
| return std::make_tuple(Subscripts, Sizes); |
| } |
| |
| MemoryAccess::~MemoryAccess() { |
| isl_id_free(Id); |
| isl_map_free(AccessRelation); |
| isl_map_free(NewAccessRelation); |
| } |
| |
| const ScopArrayInfo *MemoryAccess::getScopArrayInfo() const { |
| isl_id *ArrayId = getArrayId(); |
| void *User = isl_id_get_user(ArrayId); |
| const ScopArrayInfo *SAI = static_cast<ScopArrayInfo *>(User); |
| isl_id_free(ArrayId); |
| return SAI; |
| } |
| |
| __isl_give isl_id *MemoryAccess::getArrayId() const { |
| return isl_map_get_tuple_id(AccessRelation, isl_dim_out); |
| } |
| |
| __isl_give isl_pw_multi_aff *MemoryAccess::applyScheduleToAccessRelation( |
| __isl_take isl_union_map *USchedule) const { |
| isl_map *Schedule, *ScheduledAccRel; |
| isl_union_set *UDomain; |
| |
| UDomain = isl_union_set_from_set(getStatement()->getDomain()); |
| USchedule = isl_union_map_intersect_domain(USchedule, UDomain); |
| Schedule = isl_map_from_union_map(USchedule); |
| ScheduledAccRel = isl_map_apply_domain(getAccessRelation(), Schedule); |
| return isl_pw_multi_aff_from_map(ScheduledAccRel); |
| } |
| |
| __isl_give isl_map *MemoryAccess::getOriginalAccessRelation() const { |
| return isl_map_copy(AccessRelation); |
| } |
| |
| std::string MemoryAccess::getOriginalAccessRelationStr() const { |
| return stringFromIslObj(AccessRelation); |
| } |
| |
| __isl_give isl_space *MemoryAccess::getOriginalAccessRelationSpace() const { |
| return isl_map_get_space(AccessRelation); |
| } |
| |
| __isl_give isl_map *MemoryAccess::getNewAccessRelation() const { |
| return isl_map_copy(NewAccessRelation); |
| } |
| |
| std::string MemoryAccess::getNewAccessRelationStr() const { |
| return stringFromIslObj(NewAccessRelation); |
| } |
| |
| __isl_give isl_basic_map * |
| MemoryAccess::createBasicAccessMap(ScopStmt *Statement) { |
| isl_space *Space = isl_space_set_alloc(Statement->getIslCtx(), 0, 1); |
| Space = isl_space_align_params(Space, Statement->getDomainSpace()); |
| |
| return isl_basic_map_from_domain_and_range( |
| isl_basic_set_universe(Statement->getDomainSpace()), |
| isl_basic_set_universe(Space)); |
| } |
| |
| // Formalize no out-of-bound access assumption |
| // |
| // When delinearizing array accesses we optimistically assume that the |
| // delinearized accesses do not access out of bound locations (the subscript |
| // expression of each array evaluates for each statement instance that is |
| // executed to a value that is larger than zero and strictly smaller than the |
| // size of the corresponding dimension). The only exception is the outermost |
| // dimension for which we do not need to assume any upper bound. At this point |
| // we formalize this assumption to ensure that at code generation time the |
| // relevant run-time checks can be generated. |
| // |
| // To find the set of constraints necessary to avoid out of bound accesses, we |
| // first build the set of data locations that are not within array bounds. We |
| // then apply the reverse access relation to obtain the set of iterations that |
| // may contain invalid accesses and reduce this set of iterations to the ones |
| // that are actually executed by intersecting them with the domain of the |
| // statement. If we now project out all loop dimensions, we obtain a set of |
| // parameters that may cause statement instances to be executed that may |
| // possibly yield out of bound memory accesses. The complement of these |
| // constraints is the set of constraints that needs to be assumed to ensure such |
| // statement instances are never executed. |
| void MemoryAccess::assumeNoOutOfBound() { |
| isl_space *Space = isl_space_range(getOriginalAccessRelationSpace()); |
| isl_set *Outside = isl_set_empty(isl_space_copy(Space)); |
| for (int i = 1, Size = Subscripts.size(); i < Size; ++i) { |
| isl_local_space *LS = isl_local_space_from_space(isl_space_copy(Space)); |
| isl_pw_aff *Var = |
| isl_pw_aff_var_on_domain(isl_local_space_copy(LS), isl_dim_set, i); |
| isl_pw_aff *Zero = isl_pw_aff_zero_on_domain(LS); |
| |
| isl_set *DimOutside; |
| |
| DimOutside = isl_pw_aff_lt_set(isl_pw_aff_copy(Var), Zero); |
| isl_pw_aff *SizeE = Statement->getPwAff(Sizes[i - 1]); |
| |
| SizeE = isl_pw_aff_drop_dims(SizeE, isl_dim_in, 0, |
| Statement->getNumIterators()); |
| SizeE = isl_pw_aff_add_dims(SizeE, isl_dim_in, |
| isl_space_dim(Space, isl_dim_set)); |
| SizeE = isl_pw_aff_set_tuple_id(SizeE, isl_dim_in, |
| isl_space_get_tuple_id(Space, isl_dim_set)); |
| |
| DimOutside = isl_set_union(DimOutside, isl_pw_aff_le_set(SizeE, Var)); |
| |
| Outside = isl_set_union(Outside, DimOutside); |
| } |
| |
| Outside = isl_set_apply(Outside, isl_map_reverse(getAccessRelation())); |
| Outside = isl_set_intersect(Outside, Statement->getDomain()); |
| Outside = isl_set_params(Outside); |
| |
| // Remove divs to avoid the construction of overly complicated assumptions. |
| // Doing so increases the set of parameter combinations that are assumed to |
| // not appear. This is always save, but may make the resulting run-time check |
| // bail out more often than strictly necessary. |
| Outside = isl_set_remove_divs(Outside); |
| Outside = isl_set_complement(Outside); |
| Statement->getParent()->addAssumption(Outside); |
| isl_space_free(Space); |
| } |
| |
| void MemoryAccess::computeBoundsOnAccessRelation(unsigned ElementSize) { |
| ScalarEvolution *SE = Statement->getParent()->getSE(); |
| |
| Value *Ptr = getPointerOperand(*getAccessInstruction()); |
| if (!Ptr || !SE->isSCEVable(Ptr->getType())) |
| return; |
| |
| auto *PtrSCEV = SE->getSCEV(Ptr); |
| if (isa<SCEVCouldNotCompute>(PtrSCEV)) |
| return; |
| |
| auto *BasePtrSCEV = SE->getPointerBase(PtrSCEV); |
| if (BasePtrSCEV && !isa<SCEVCouldNotCompute>(BasePtrSCEV)) |
| PtrSCEV = SE->getMinusSCEV(PtrSCEV, BasePtrSCEV); |
| |
| const ConstantRange &Range = SE->getSignedRange(PtrSCEV); |
| if (Range.isFullSet()) |
| return; |
| |
| bool isWrapping = Range.isSignWrappedSet(); |
| unsigned BW = Range.getBitWidth(); |
| const auto LB = isWrapping ? Range.getLower() : Range.getSignedMin(); |
| const auto UB = isWrapping ? Range.getUpper() : Range.getSignedMax(); |
| |
| auto Min = LB.sdiv(APInt(BW, ElementSize)); |
| auto Max = (UB - APInt(BW, 1)).sdiv(APInt(BW, ElementSize)); |
| |
| isl_set *AccessRange = isl_map_range(isl_map_copy(AccessRelation)); |
| AccessRange = |
| addRangeBoundsToSet(AccessRange, ConstantRange(Min, Max), 0, isl_dim_set); |
| AccessRelation = isl_map_intersect_range(AccessRelation, AccessRange); |
| } |
| |
| __isl_give isl_map *MemoryAccess::foldAccess(__isl_take isl_map *AccessRelation, |
| ScopStmt *Statement) { |
| int Size = Subscripts.size(); |
| |
| for (int i = Size - 2; i >= 0; --i) { |
| isl_space *Space; |
| isl_map *MapOne, *MapTwo; |
| isl_pw_aff *DimSize = Statement->getPwAff(Sizes[i]); |
| |
| isl_space *SpaceSize = isl_pw_aff_get_space(DimSize); |
| isl_pw_aff_free(DimSize); |
| isl_id *ParamId = isl_space_get_dim_id(SpaceSize, isl_dim_param, 0); |
| |
| Space = isl_map_get_space(AccessRelation); |
| Space = isl_space_map_from_set(isl_space_range(Space)); |
| Space = isl_space_align_params(Space, SpaceSize); |
| |
| int ParamLocation = isl_space_find_dim_by_id(Space, isl_dim_param, ParamId); |
| isl_id_free(ParamId); |
| |
| MapOne = isl_map_universe(isl_space_copy(Space)); |
| for (int j = 0; j < Size; ++j) |
| MapOne = isl_map_equate(MapOne, isl_dim_in, j, isl_dim_out, j); |
| MapOne = isl_map_lower_bound_si(MapOne, isl_dim_in, i + 1, 0); |
| |
| MapTwo = isl_map_universe(isl_space_copy(Space)); |
| for (int j = 0; j < Size; ++j) |
| if (j < i || j > i + 1) |
| MapTwo = isl_map_equate(MapTwo, isl_dim_in, j, isl_dim_out, j); |
| |
| isl_local_space *LS = isl_local_space_from_space(Space); |
| isl_constraint *C; |
| C = isl_equality_alloc(isl_local_space_copy(LS)); |
| C = isl_constraint_set_constant_si(C, -1); |
| C = isl_constraint_set_coefficient_si(C, isl_dim_in, i, 1); |
| C = isl_constraint_set_coefficient_si(C, isl_dim_out, i, -1); |
| MapTwo = isl_map_add_constraint(MapTwo, C); |
| C = isl_equality_alloc(LS); |
| C = isl_constraint_set_coefficient_si(C, isl_dim_in, i + 1, 1); |
| C = isl_constraint_set_coefficient_si(C, isl_dim_out, i + 1, -1); |
| C = isl_constraint_set_coefficient_si(C, isl_dim_param, ParamLocation, 1); |
| MapTwo = isl_map_add_constraint(MapTwo, C); |
| MapTwo = isl_map_upper_bound_si(MapTwo, isl_dim_in, i + 1, -1); |
| |
| MapOne = isl_map_union(MapOne, MapTwo); |
| AccessRelation = isl_map_apply_range(AccessRelation, MapOne); |
| } |
| return AccessRelation; |
| } |
| |
| void MemoryAccess::buildAccessRelation(const ScopArrayInfo *SAI) { |
| assert(!AccessRelation && "AccessReltation already built"); |
| |
| isl_ctx *Ctx = isl_id_get_ctx(Id); |
| isl_id *BaseAddrId = SAI->getBasePtrId(); |
| |
| if (!isAffine()) { |
| // We overapproximate non-affine accesses with a possible access to the |
| // whole array. For read accesses it does not make a difference, if an |
| // access must or may happen. However, for write accesses it is important to |
| // differentiate between writes that must happen and writes that may happen. |
| AccessRelation = isl_map_from_basic_map(createBasicAccessMap(Statement)); |
| AccessRelation = |
| isl_map_set_tuple_id(AccessRelation, isl_dim_out, BaseAddrId); |
| |
| computeBoundsOnAccessRelation(getElemSizeInBytes()); |
| return; |
| } |
| |
| isl_space *Space = isl_space_alloc(Ctx, 0, Statement->getNumIterators(), 0); |
| AccessRelation = isl_map_universe(Space); |
| |
| for (int i = 0, Size = Subscripts.size(); i < Size; ++i) { |
| isl_pw_aff *Affine = Statement->getPwAff(Subscripts[i]); |
| |
| if (Size == 1) { |
| // For the non delinearized arrays, divide the access function of the last |
| // subscript by the size of the elements in the array. |
| // |
| // A stride one array access in C expressed as A[i] is expressed in |
| // LLVM-IR as something like A[i * elementsize]. This hides the fact that |
| // two subsequent values of 'i' index two values that are stored next to |
| // each other in memory. By this division we make this characteristic |
| // obvious again. |
| isl_val *v = isl_val_int_from_si(Ctx, getElemSizeInBytes()); |
| Affine = isl_pw_aff_scale_down_val(Affine, v); |
| } |
| |
| isl_map *SubscriptMap = isl_map_from_pw_aff(Affine); |
| |
| AccessRelation = isl_map_flat_range_product(AccessRelation, SubscriptMap); |
| } |
| |
| if (Sizes.size() > 1 && !isa<SCEVConstant>(Sizes[0])) |
| AccessRelation = foldAccess(AccessRelation, Statement); |
| |
| Space = Statement->getDomainSpace(); |
| AccessRelation = isl_map_set_tuple_id( |
| AccessRelation, isl_dim_in, isl_space_get_tuple_id(Space, isl_dim_set)); |
| AccessRelation = |
| isl_map_set_tuple_id(AccessRelation, isl_dim_out, BaseAddrId); |
| |
| assumeNoOutOfBound(); |
| AccessRelation = isl_map_gist_domain(AccessRelation, Statement->getDomain()); |
| isl_space_free(Space); |
| } |
| |
| MemoryAccess::MemoryAccess(Instruction *AccessInst, __isl_take isl_id *Id, |
| AccessType Type, Value *BaseAddress, |
| const SCEV *Offset, unsigned ElemBytes, bool Affine, |
| ArrayRef<const SCEV *> Subscripts, |
| ArrayRef<const SCEV *> Sizes, Value *AccessValue, |
| bool IsPHI, StringRef BaseName) |
| : Id(Id), IsPHI(IsPHI), AccType(Type), RedType(RT_NONE), Statement(nullptr), |
| BaseAddr(BaseAddress), BaseName(BaseName), ElemBytes(ElemBytes), |
| Sizes(Sizes.begin(), Sizes.end()), AccessInstruction(AccessInst), |
| AccessValue(AccessValue), Offset(Offset), IsAffine(Affine), |
| Subscripts(Subscripts.begin(), Subscripts.end()), AccessRelation(nullptr), |
| NewAccessRelation(nullptr) {} |
| |
| void MemoryAccess::realignParams() { |
| isl_space *ParamSpace = Statement->getParent()->getParamSpace(); |
| AccessRelation = isl_map_align_params(AccessRelation, ParamSpace); |
| } |
| |
| const std::string MemoryAccess::getReductionOperatorStr() const { |
| return MemoryAccess::getReductionOperatorStr(getReductionType()); |
| } |
| |
| __isl_give isl_id *MemoryAccess::getId() const { return isl_id_copy(Id); } |
| |
| raw_ostream &polly::operator<<(raw_ostream &OS, |
| MemoryAccess::ReductionType RT) { |
| if (RT == MemoryAccess::RT_NONE) |
| OS << "NONE"; |
| else |
| OS << MemoryAccess::getReductionOperatorStr(RT); |
| return OS; |
| } |
| |
| void MemoryAccess::print(raw_ostream &OS) const { |
| switch (AccType) { |
| case READ: |
| OS.indent(12) << "ReadAccess :=\t"; |
| break; |
| case MUST_WRITE: |
| OS.indent(12) << "MustWriteAccess :=\t"; |
| break; |
| case MAY_WRITE: |
| OS.indent(12) << "MayWriteAccess :=\t"; |
| break; |
| } |
| OS << "[Reduction Type: " << getReductionType() << "] "; |
| OS << "[Scalar: " << isScalar() << "]\n"; |
| OS.indent(16) << getOriginalAccessRelationStr() << ";\n"; |
| if (hasNewAccessRelation()) |
| OS.indent(11) << "new: " << getNewAccessRelationStr() << ";\n"; |
| } |
| |
| void MemoryAccess::dump() const { print(errs()); } |
| |
| // Create a map in the size of the provided set domain, that maps from the |
| // one element of the provided set domain to another element of the provided |
| // set domain. |
| // The mapping is limited to all points that are equal in all but the last |
| // dimension and for which the last dimension of the input is strict smaller |
| // than the last dimension of the output. |
| // |
| // getEqualAndLarger(set[i0, i1, ..., iX]): |
| // |
| // set[i0, i1, ..., iX] -> set[o0, o1, ..., oX] |
| // : i0 = o0, i1 = o1, ..., i(X-1) = o(X-1), iX < oX |
| // |
| static isl_map *getEqualAndLarger(isl_space *setDomain) { |
| isl_space *Space = isl_space_map_from_set(setDomain); |
| isl_map *Map = isl_map_universe(Space); |
| unsigned lastDimension = isl_map_dim(Map, isl_dim_in) - 1; |
| |
| // Set all but the last dimension to be equal for the input and output |
| // |
| // input[i0, i1, ..., iX] -> output[o0, o1, ..., oX] |
| // : i0 = o0, i1 = o1, ..., i(X-1) = o(X-1) |
| for (unsigned i = 0; i < lastDimension; ++i) |
| Map = isl_map_equate(Map, isl_dim_in, i, isl_dim_out, i); |
| |
| // Set the last dimension of the input to be strict smaller than the |
| // last dimension of the output. |
| // |
| // input[?,?,?,...,iX] -> output[?,?,?,...,oX] : iX < oX |
| Map = isl_map_order_lt(Map, isl_dim_in, lastDimension, isl_dim_out, |
| lastDimension); |
| return Map; |
| } |
| |
| __isl_give isl_set * |
| MemoryAccess::getStride(__isl_take const isl_map *Schedule) const { |
| isl_map *S = const_cast<isl_map *>(Schedule); |
| isl_map *AccessRelation = getAccessRelation(); |
| isl_space *Space = isl_space_range(isl_map_get_space(S)); |
| isl_map *NextScatt = getEqualAndLarger(Space); |
| |
| S = isl_map_reverse(S); |
| NextScatt = isl_map_lexmin(NextScatt); |
| |
| NextScatt = isl_map_apply_range(NextScatt, isl_map_copy(S)); |
| NextScatt = isl_map_apply_range(NextScatt, isl_map_copy(AccessRelation)); |
| NextScatt = isl_map_apply_domain(NextScatt, S); |
| NextScatt = isl_map_apply_domain(NextScatt, AccessRelation); |
| |
| isl_set *Deltas = isl_map_deltas(NextScatt); |
| return Deltas; |
| } |
| |
| bool MemoryAccess::isStrideX(__isl_take const isl_map *Schedule, |
| int StrideWidth) const { |
| isl_set *Stride, *StrideX; |
| bool IsStrideX; |
| |
| Stride = getStride(Schedule); |
| StrideX = isl_set_universe(isl_set_get_space(Stride)); |
| for (unsigned i = 0; i < isl_set_dim(StrideX, isl_dim_set) - 1; i++) |
| StrideX = isl_set_fix_si(StrideX, isl_dim_set, i, 0); |
| StrideX = isl_set_fix_si(StrideX, isl_dim_set, |
| isl_set_dim(StrideX, isl_dim_set) - 1, StrideWidth); |
| IsStrideX = isl_set_is_subset(Stride, StrideX); |
| |
| isl_set_free(StrideX); |
| isl_set_free(Stride); |
| |
| return IsStrideX; |
| } |
| |
| bool MemoryAccess::isStrideZero(const isl_map *Schedule) const { |
| return isStrideX(Schedule, 0); |
| } |
| |
| bool MemoryAccess::isScalar() const { |
| return isl_map_n_out(AccessRelation) == 0; |
| } |
| |
| bool MemoryAccess::isStrideOne(const isl_map *Schedule) const { |
| return isStrideX(Schedule, 1); |
| } |
| |
| void MemoryAccess::setNewAccessRelation(isl_map *NewAccess) { |
| isl_map_free(NewAccessRelation); |
| NewAccessRelation = NewAccess; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| |
| isl_map *ScopStmt::getSchedule() const { |
| isl_set *Domain = getDomain(); |
| if (isl_set_is_empty(Domain)) { |
| isl_set_free(Domain); |
| return isl_map_from_aff( |
| isl_aff_zero_on_domain(isl_local_space_from_space(getDomainSpace()))); |
| } |
| auto *Schedule = getParent()->getSchedule(); |
| Schedule = isl_union_map_intersect_domain( |
| Schedule, isl_union_set_from_set(isl_set_copy(Domain))); |
| if (isl_union_map_is_empty(Schedule)) { |
| isl_set_free(Domain); |
| isl_union_map_free(Schedule); |
| return isl_map_from_aff( |
| isl_aff_zero_on_domain(isl_local_space_from_space(getDomainSpace()))); |
| } |
| auto *M = isl_map_from_union_map(Schedule); |
| M = isl_map_coalesce(M); |
| M = isl_map_gist_domain(M, Domain); |
| M = isl_map_coalesce(M); |
| return M; |
| } |
| |
| __isl_give isl_pw_aff *ScopStmt::getPwAff(const SCEV *E) { |
| return getParent()->getPwAff(E, isBlockStmt() ? getBasicBlock() |
| : getRegion()->getEntry()); |
| } |
| |
| void ScopStmt::restrictDomain(__isl_take isl_set *NewDomain) { |
| assert(isl_set_is_subset(NewDomain, Domain) && |
| "New domain is not a subset of old domain!"); |
| isl_set_free(Domain); |
| Domain = NewDomain; |
| } |
| |
| void ScopStmt::buildAccesses(BasicBlock *Block, bool isApproximated) { |
| AccFuncSetType *AFS = Parent.getAccessFunctions(Block); |
| if (!AFS) |
| return; |
| |
| for (auto &Access : *AFS) { |
| Instruction *AccessInst = Access.getAccessInstruction(); |
| Type *ElementType = Access.getAccessValue()->getType(); |
| |
| const ScopArrayInfo *SAI = getParent()->getOrCreateScopArrayInfo( |
| Access.getBaseAddr(), ElementType, Access.Sizes, Access.isPHI()); |
| |
| if (isApproximated && Access.isMustWrite()) |
| Access.AccType = MemoryAccess::MAY_WRITE; |
| |
| MemoryAccessList *&MAL = InstructionToAccess[AccessInst]; |
| if (!MAL) |
| MAL = new MemoryAccessList(); |
| Access.setStatement(this); |
| Access.buildAccessRelation(SAI); |
| MAL->emplace_front(&Access); |
| MemAccs.push_back(MAL->front()); |
| } |
| } |
| |
| void ScopStmt::realignParams() { |
| for (MemoryAccess *MA : *this) |
| MA->realignParams(); |
| |
| Domain = isl_set_align_params(Domain, Parent.getParamSpace()); |
| } |
| |
| /// @brief Add @p BSet to the set @p User if @p BSet is bounded. |
| static isl_stat collectBoundedParts(__isl_take isl_basic_set *BSet, |
| void *User) { |
| isl_set **BoundedParts = static_cast<isl_set **>(User); |
| if (isl_basic_set_is_bounded(BSet)) |
| *BoundedParts = isl_set_union(*BoundedParts, isl_set_from_basic_set(BSet)); |
| else |
| isl_basic_set_free(BSet); |
| return isl_stat_ok; |
| } |
| |
| /// @brief Return the bounded parts of @p S. |
| static __isl_give isl_set *collectBoundedParts(__isl_take isl_set *S) { |
| isl_set *BoundedParts = isl_set_empty(isl_set_get_space(S)); |
| isl_set_foreach_basic_set(S, collectBoundedParts, &BoundedParts); |
| isl_set_free(S); |
| return BoundedParts; |
| } |
| |
| /// @brief Compute the (un)bounded parts of @p S wrt. to dimension @p Dim. |
| /// |
| /// @returns A separation of @p S into first an unbounded then a bounded subset, |
| /// both with regards to the dimension @p Dim. |
| static std::pair<__isl_give isl_set *, __isl_give isl_set *> |
| partitionSetParts(__isl_take isl_set *S, unsigned Dim) { |
| |
| for (unsigned u = 0, e = isl_set_n_dim(S); u < e; u++) |
| S = isl_set_lower_bound_si(S, isl_dim_set, u, u == Dim ? -1 : 0); |
| |
| unsigned NumDimsS = isl_set_n_dim(S); |
| isl_set *OnlyDimS = S; |
| |
| // Remove dimensions that are greater than Dim as they are not interesting. |
| assert(NumDimsS >= Dim + 1); |
| OnlyDimS = |
| isl_set_project_out(OnlyDimS, isl_dim_set, Dim + 1, NumDimsS - Dim - 1); |
| |
| // Create artificial parametric upper bounds for dimensions smaller than Dim |
| // as we are not interested in them. |
| OnlyDimS = isl_set_insert_dims(OnlyDimS, isl_dim_param, 0, Dim); |
| for (unsigned u = 0; u < Dim; u++) { |
| isl_constraint *C = isl_inequality_alloc( |
| isl_local_space_from_space(isl_set_get_space(OnlyDimS))); |
| C = isl_constraint_set_coefficient_si(C, isl_dim_param, u, 1); |
| C = isl_constraint_set_coefficient_si(C, isl_dim_set, u, -1); |
| OnlyDimS = isl_set_add_constraint(OnlyDimS, C); |
| } |
| |
| // Collect all bounded parts of OnlyDimS. |
| isl_set *BoundedParts = collectBoundedParts(OnlyDimS); |
| |
| // Create the dimensions greater than Dim again. |
| BoundedParts = isl_set_insert_dims(BoundedParts, isl_dim_set, Dim + 1, |
| NumDimsS - Dim - 1); |
| |
| // Remove the artificial upper bound parameters again. |
| BoundedParts = isl_set_remove_dims(BoundedParts, isl_dim_param, 0, Dim); |
| |
| isl_set *UnboundedParts = isl_set_complement(isl_set_copy(BoundedParts)); |
| return std::make_pair(UnboundedParts, BoundedParts); |
| } |
| |
| static __isl_give isl_set *buildConditionSet(ICmpInst::Predicate Pred, |
| isl_pw_aff *L, isl_pw_aff *R) { |
| switch (Pred) { |
| case ICmpInst::ICMP_EQ: |
| return isl_pw_aff_eq_set(L, R); |
| case ICmpInst::ICMP_NE: |
| return isl_pw_aff_ne_set(L, R); |
| case ICmpInst::ICMP_SLT: |
| return isl_pw_aff_lt_set(L, R); |
| case ICmpInst::ICMP_SLE: |
| return isl_pw_aff_le_set(L, R); |
| case ICmpInst::ICMP_SGT: |
| return isl_pw_aff_gt_set(L, R); |
| case ICmpInst::ICMP_SGE: |
| return isl_pw_aff_ge_set(L, R); |
| case ICmpInst::ICMP_ULT: |
| return isl_pw_aff_lt_set(L, R); |
| case ICmpInst::ICMP_UGT: |
| return isl_pw_aff_gt_set(L, R); |
| case ICmpInst::ICMP_ULE: |
| return isl_pw_aff_le_set(L, R); |
| case ICmpInst::ICMP_UGE: |
| return isl_pw_aff_ge_set(L, R); |
| default: |
| llvm_unreachable("Non integer predicate not supported"); |
| } |
| } |
| |
| /// @brief Build the conditions sets for the branch @p BI in the @p Domain. |
| /// |
| /// This will fill @p ConditionSets with the conditions under which control |
| /// will be moved from @p BI to its successors. Hence, @p ConditionSets will |
| /// have as many elements as @p BI has successors. |
| static void |
| buildConditionSets(Scop &S, BranchInst *BI, Loop *L, __isl_keep isl_set *Domain, |
| SmallVectorImpl<__isl_give isl_set *> &ConditionSets) { |
| |
| if (BI->isUnconditional()) { |
| ConditionSets.push_back(isl_set_copy(Domain)); |
| return; |
| } |
| |
| Value *Condition = BI->getCondition(); |
| |
| isl_set *ConsequenceCondSet = nullptr; |
| if (auto *CCond = dyn_cast<ConstantInt>(Condition)) { |
| if (CCond->isZero()) |
| ConsequenceCondSet = isl_set_empty(isl_set_get_space(Domain)); |
| else |
| ConsequenceCondSet = isl_set_universe(isl_set_get_space(Domain)); |
| } else { |
| auto *ICond = dyn_cast<ICmpInst>(Condition); |
| assert(ICond && |
| "Condition of exiting branch was neither constant nor ICmp!"); |
| |
| ScalarEvolution &SE = *S.getSE(); |
| BasicBlock *BB = BI->getParent(); |
| isl_pw_aff *LHS, *RHS; |
| LHS = S.getPwAff(SE.getSCEVAtScope(ICond->getOperand(0), L), BB); |
| RHS = S.getPwAff(SE.getSCEVAtScope(ICond->getOperand(1), L), BB); |
| ConsequenceCondSet = buildConditionSet(ICond->getPredicate(), LHS, RHS); |
| |
| for (unsigned u = 0, e = isl_set_n_dim(Domain); u < e; u++) { |
| isl_id *DimId = isl_set_get_dim_id(Domain, isl_dim_set, u); |
| ConsequenceCondSet = |
| isl_set_set_dim_id(ConsequenceCondSet, isl_dim_set, u, DimId); |
| } |
| } |
| |
| assert(ConsequenceCondSet); |
| isl_set *AlternativeCondSet = |
| isl_set_complement(isl_set_copy(ConsequenceCondSet)); |
| |
| ConditionSets.push_back(isl_set_coalesce( |
| isl_set_intersect(ConsequenceCondSet, isl_set_copy(Domain)))); |
| ConditionSets.push_back(isl_set_coalesce( |
| isl_set_intersect(AlternativeCondSet, isl_set_copy(Domain)))); |
| } |
| |
| void ScopStmt::buildDomain() { |
| isl_id *Id; |
| |
| Id = isl_id_alloc(getIslCtx(), getBaseName(), this); |
| |
| Domain = getParent()->getDomainConditions(this); |
| Domain = isl_set_set_tuple_id(Domain, Id); |
| } |
| |
| void ScopStmt::deriveAssumptionsFromGEP(GetElementPtrInst *GEP) { |
| int Dimension = 0; |
| isl_ctx *Ctx = Parent.getIslCtx(); |
| isl_local_space *LSpace = isl_local_space_from_space(getDomainSpace()); |
| Type *Ty = GEP->getPointerOperandType(); |
| ScalarEvolution &SE = *Parent.getSE(); |
| |
| std::vector<const SCEV *> Subscripts; |
| std::vector<int> Sizes; |
| |
| std::tie(Subscripts, Sizes) = getIndexExpressionsFromGEP(GEP, SE); |
| |
| if (auto *PtrTy = dyn_cast<PointerType>(Ty)) { |
| Dimension = 1; |
| Ty = PtrTy->getElementType(); |
| } |
| |
| int IndexOffset = Subscripts.size() - Sizes.size(); |
| |
| assert(IndexOffset <= 1 && "Unexpected large index offset"); |
| |
| for (size_t i = 0; i < Sizes.size(); i++) { |
| auto Expr = Subscripts[i + IndexOffset]; |
| auto Size = Sizes[i]; |
| |
| if (!isAffineExpr(&Parent.getRegion(), Expr, SE)) |
| continue; |
| |
| isl_pw_aff *AccessOffset = getPwAff(Expr); |
| AccessOffset = |
| isl_pw_aff_set_tuple_id(AccessOffset, isl_dim_in, getDomainId()); |
| |
| isl_pw_aff *DimSize = isl_pw_aff_from_aff(isl_aff_val_on_domain( |
| isl_local_space_copy(LSpace), isl_val_int_from_si(Ctx, Size))); |
| |
| isl_set *OutOfBound = isl_pw_aff_ge_set(AccessOffset, DimSize); |
| OutOfBound = isl_set_intersect(getDomain(), OutOfBound); |
| OutOfBound = isl_set_params(OutOfBound); |
| isl_set *InBound = isl_set_complement(OutOfBound); |
| isl_set *Executed = isl_set_params(getDomain()); |
| |
| // A => B == !A or B |
| isl_set *InBoundIfExecuted = |
| isl_set_union(isl_set_complement(Executed), InBound); |
| |
| Parent.addAssumption(InBoundIfExecuted); |
| } |
| |
| isl_local_space_free(LSpace); |
| } |
| |
| void ScopStmt::deriveAssumptions(BasicBlock *Block) { |
| for (Instruction &Inst : *Block) |
| if (auto *GEP = dyn_cast<GetElementPtrInst>(&Inst)) |
| deriveAssumptionsFromGEP(GEP); |
| } |
| |
| void ScopStmt::collectSurroundingLoops() { |
| for (unsigned u = 0, e = isl_set_n_dim(Domain); u < e; u++) { |
| isl_id *DimId = isl_set_get_dim_id(Domain, isl_dim_set, u); |
| NestLoops.push_back(static_cast<Loop *>(isl_id_get_user(DimId))); |
| isl_id_free(DimId); |
| } |
| } |
| |
| ScopStmt::ScopStmt(Scop &parent, Region &R) |
| : Parent(parent), BB(nullptr), R(&R), Build(nullptr) { |
| |
| BaseName = getIslCompatibleName("Stmt_", R.getNameStr(), ""); |
| |
| buildDomain(); |
| collectSurroundingLoops(); |
| |
| BasicBlock *EntryBB = R.getEntry(); |
| for (BasicBlock *Block : R.blocks()) { |
| buildAccesses(Block, Block != EntryBB); |
| deriveAssumptions(Block); |
| } |
| if (DetectReductions) |
| checkForReductions(); |
| } |
| |
| ScopStmt::ScopStmt(Scop &parent, BasicBlock &bb) |
| : Parent(parent), BB(&bb), R(nullptr), Build(nullptr) { |
| |
| BaseName = getIslCompatibleName("Stmt_", &bb, ""); |
| |
| buildDomain(); |
| collectSurroundingLoops(); |
| buildAccesses(BB); |
| deriveAssumptions(BB); |
| if (DetectReductions) |
| checkForReductions(); |
| } |
| |
| /// @brief Collect loads which might form a reduction chain with @p StoreMA |
| /// |
| /// Check if the stored value for @p StoreMA is a binary operator with one or |
| /// two loads as operands. If the binary operand is commutative & associative, |
| /// used only once (by @p StoreMA) and its load operands are also used only |
| /// once, we have found a possible reduction chain. It starts at an operand |
| /// load and includes the binary operator and @p StoreMA. |
| /// |
| /// Note: We allow only one use to ensure the load and binary operator cannot |
| /// escape this block or into any other store except @p StoreMA. |
| void ScopStmt::collectCandiateReductionLoads( |
| MemoryAccess *StoreMA, SmallVectorImpl<MemoryAccess *> &Loads) { |
| auto *Store = dyn_cast<StoreInst>(StoreMA->getAccessInstruction()); |
| if (!Store) |
| return; |
| |
| // Skip if there is not one binary operator between the load and the store |
| auto *BinOp = dyn_cast<BinaryOperator>(Store->getValueOperand()); |
| if (!BinOp) |
| return; |
| |
| // Skip if the binary operators has multiple uses |
| if (BinOp->getNumUses() != 1) |
| return; |
| |
| // Skip if the opcode of the binary operator is not commutative/associative |
| if (!BinOp->isCommutative() || !BinOp->isAssociative()) |
| return; |
| |
| // Skip if the binary operator is outside the current SCoP |
| if (BinOp->getParent() != Store->getParent()) |
| return; |
| |
| // Skip if it is a multiplicative reduction and we disabled them |
| if (DisableMultiplicativeReductions && |
| (BinOp->getOpcode() == Instruction::Mul || |
| BinOp->getOpcode() == Instruction::FMul)) |
| return; |
| |
| // Check the binary operator operands for a candidate load |
| auto *PossibleLoad0 = dyn_cast<LoadInst>(BinOp->getOperand(0)); |
| auto *PossibleLoad1 = dyn_cast<LoadInst>(BinOp->getOperand(1)); |
| if (!PossibleLoad0 && !PossibleLoad1) |
| return; |
| |
| // A load is only a candidate if it cannot escape (thus has only this use) |
| if (PossibleLoad0 && PossibleLoad0->getNumUses() == 1) |
| if (PossibleLoad0->getParent() == Store->getParent()) |
| Loads.push_back(lookupAccessFor(PossibleLoad0)); |
| if (PossibleLoad1 && PossibleLoad1->getNumUses() == 1) |
| if (PossibleLoad1->getParent() == Store->getParent()) |
| Loads.push_back(lookupAccessFor(PossibleLoad1)); |
| } |
| |
| /// @brief Check for reductions in this ScopStmt |
| /// |
| /// Iterate over all store memory accesses and check for valid binary reduction |
| /// like chains. For all candidates we check if they have the same base address |
| /// and there are no other accesses which overlap with them. The base address |
| /// check rules out impossible reductions candidates early. The overlap check, |
| /// together with the "only one user" check in collectCandiateReductionLoads, |
| /// guarantees that none of the intermediate results will escape during |
| /// execution of the loop nest. We basically check here that no other memory |
| /// access can access the same memory as the potential reduction. |
| void ScopStmt::checkForReductions() { |
| SmallVector<MemoryAccess *, 2> Loads; |
| SmallVector<std::pair<MemoryAccess *, MemoryAccess *>, 4> Candidates; |
| |
| // First collect candidate load-store reduction chains by iterating over all |
| // stores and collecting possible reduction loads. |
| for (MemoryAccess *StoreMA : MemAccs) { |
| if (StoreMA->isRead()) |
| continue; |
| |
| Loads.clear(); |
| collectCandiateReductionLoads(StoreMA, Loads); |
| for (MemoryAccess *LoadMA : Loads) |
| Candidates.push_back(std::make_pair(LoadMA, StoreMA)); |
| } |
| |
| // Then check each possible candidate pair. |
| for (const auto &CandidatePair : Candidates) { |
| bool Valid = true; |
| isl_map *LoadAccs = CandidatePair.first->getAccessRelation(); |
| isl_map *StoreAccs = CandidatePair.second->getAccessRelation(); |
| |
| // Skip those with obviously unequal base addresses. |
| if (!isl_map_has_equal_space(LoadAccs, StoreAccs)) { |
| isl_map_free(LoadAccs); |
| isl_map_free(StoreAccs); |
| continue; |
| } |
| |
| // And check if the remaining for overlap with other memory accesses. |
| isl_map *AllAccsRel = isl_map_union(LoadAccs, StoreAccs); |
| AllAccsRel = isl_map_intersect_domain(AllAccsRel, getDomain()); |
| isl_set *AllAccs = isl_map_range(AllAccsRel); |
| |
| for (MemoryAccess *MA : MemAccs) { |
| if (MA == CandidatePair.first || MA == CandidatePair.second) |
| continue; |
| |
| isl_map *AccRel = |
| isl_map_intersect_domain(MA->getAccessRelation(), getDomain()); |
| isl_set *Accs = isl_map_range(AccRel); |
| |
| if (isl_set_has_equal_space(AllAccs, Accs) || isl_set_free(Accs)) { |
| isl_set *OverlapAccs = isl_set_intersect(Accs, isl_set_copy(AllAccs)); |
| Valid = Valid && isl_set_is_empty(OverlapAccs); |
| isl_set_free(OverlapAccs); |
| } |
| } |
| |
| isl_set_free(AllAccs); |
| if (!Valid) |
| continue; |
| |
| const LoadInst *Load = |
| dyn_cast<const LoadInst>(CandidatePair.first->getAccessInstruction()); |
| MemoryAccess::ReductionType RT = |
| getReductionType(dyn_cast<BinaryOperator>(Load->user_back()), Load); |
| |
| // If no overlapping access was found we mark the load and store as |
| // reduction like. |
| CandidatePair.first->markAsReductionLike(RT); |
| CandidatePair.second->markAsReductionLike(RT); |
| } |
| } |
| |
| std::string ScopStmt::getDomainStr() const { return stringFromIslObj(Domain); } |
| |
| std::string ScopStmt::getScheduleStr() const { |
| auto *S = getSchedule(); |
| auto Str = stringFromIslObj(S); |
| isl_map_free(S); |
| return Str; |
| } |
| |
| unsigned ScopStmt::getNumParams() const { return Parent.getNumParams(); } |
| |
| unsigned ScopStmt::getNumIterators() const { return NestLoops.size(); } |
| |
| const char *ScopStmt::getBaseName() const { return BaseName.c_str(); } |
| |
| const Loop *ScopStmt::getLoopForDimension(unsigned Dimension) const { |
| return NestLoops[Dimension]; |
| } |
| |
| isl_ctx *ScopStmt::getIslCtx() const { return Parent.getIslCtx(); } |
| |
| __isl_give isl_set *ScopStmt::getDomain() const { return isl_set_copy(Domain); } |
| |
| __isl_give isl_space *ScopStmt::getDomainSpace() const { |
| return isl_set_get_space(Domain); |
| } |
| |
| __isl_give isl_id *ScopStmt::getDomainId() const { |
| return isl_set_get_tuple_id(Domain); |
| } |
| |
| ScopStmt::~ScopStmt() { |
| DeleteContainerSeconds(InstructionToAccess); |
| isl_set_free(Domain); |
| } |
| |
| void ScopStmt::print(raw_ostream &OS) const { |
| OS << "\t" << getBaseName() << "\n"; |
| OS.indent(12) << "Domain :=\n"; |
| |
| if (Domain) { |
| OS.indent(16) << getDomainStr() << ";\n"; |
| } else |
| OS.indent(16) << "n/a\n"; |
| |
| OS.indent(12) << "Schedule :=\n"; |
| |
| if (Domain) { |
| OS.indent(16) << getScheduleStr() << ";\n"; |
| } else |
| OS.indent(16) << "n/a\n"; |
| |
| for (MemoryAccess *Access : MemAccs) |
| Access->print(OS); |
| } |
| |
| void ScopStmt::dump() const { print(dbgs()); } |
| |
| //===----------------------------------------------------------------------===// |
| /// Scop class implement |
| |
| void Scop::setContext(__isl_take isl_set *NewContext) { |
| NewContext = isl_set_align_params(NewContext, isl_set_get_space(Context)); |
| isl_set_free(Context); |
| Context = NewContext; |
| } |
| |
| void Scop::addParams(std::vector<const SCEV *> NewParameters) { |
| for (const SCEV *Parameter : NewParameters) { |
| Parameter = extractConstantFactor(Parameter, *SE).second; |
| if (ParameterIds.find(Parameter) != ParameterIds.end()) |
| continue; |
| |
| int dimension = Parameters.size(); |
| |
| Parameters.push_back(Parameter); |
| ParameterIds[Parameter] = dimension; |
| } |
| } |
| |
| __isl_give isl_id *Scop::getIdForParam(const SCEV *Parameter) const { |
| ParamIdType::const_iterator IdIter = ParameterIds.find(Parameter); |
| |
| if (IdIter == ParameterIds.end()) |
| return nullptr; |
| |
| std::string ParameterName; |
| |
| if (const SCEVUnknown *ValueParameter = dyn_cast<SCEVUnknown>(Parameter)) { |
| Value *Val = ValueParameter->getValue(); |
| ParameterName = Val->getName(); |
| } |
| |
| if (ParameterName == "" || ParameterName.substr(0, 2) == "p_") |
| ParameterName = "p_" + utostr_32(IdIter->second); |
| |
| return isl_id_alloc(getIslCtx(), ParameterName.c_str(), |
| const_cast<void *>((const void *)Parameter)); |
| } |
| |
| isl_set *Scop::addNonEmptyDomainConstraints(isl_set *C) const { |
| isl_set *DomainContext = isl_union_set_params(getDomains()); |
| return isl_set_intersect_params(C, DomainContext); |
| } |
| |
| void Scop::buildBoundaryContext() { |
| BoundaryContext = Affinator.getWrappingContext(); |
| BoundaryContext = isl_set_complement(BoundaryContext); |
| BoundaryContext = isl_set_gist_params(BoundaryContext, getContext()); |
| } |
| |
| void Scop::addUserContext() { |
| if (UserContextStr.empty()) |
| return; |
| |
| isl_set *UserContext = isl_set_read_from_str(IslCtx, UserContextStr.c_str()); |
| isl_space *Space = getParamSpace(); |
| if (isl_space_dim(Space, isl_dim_param) != |
| isl_set_dim(UserContext, isl_dim_param)) { |
| auto SpaceStr = isl_space_to_str(Space); |
| errs() << "Error: the context provided in -polly-context has not the same " |
| << "number of dimensions than the computed context. Due to this " |
| << "mismatch, the -polly-context option is ignored. Please provide " |
| << "the context in the parameter space: " << SpaceStr << ".\n"; |
| free(SpaceStr); |
| isl_set_free(UserContext); |
| isl_space_free(Space); |
| return; |
| } |
| |
| for (unsigned i = 0; i < isl_space_dim(Space, isl_dim_param); i++) { |
| auto NameContext = isl_set_get_dim_name(Context, isl_dim_param, i); |
| auto NameUserContext = isl_set_get_dim_name(UserContext, isl_dim_param, i); |
| |
| if (strcmp(NameContext, NameUserContext) != 0) { |
| auto SpaceStr = isl_space_to_str(Space); |
| errs() << "Error: the name of dimension " << i |
| << " provided in -polly-context " |
| << "is '" << NameUserContext << "', but the name in the computed " |
| << "context is '" << NameContext |
| << "'. Due to this name mismatch, " |
| << "the -polly-context option is ignored. Please provide " |
| << "the context in the parameter space: " << SpaceStr << ".\n"; |
| free(SpaceStr); |
| isl_set_free(UserContext); |
| isl_space_free(Space); |
| return; |
| } |
| |
| UserContext = |
| isl_set_set_dim_id(UserContext, isl_dim_param, i, |
| isl_space_get_dim_id(Space, isl_dim_param, i)); |
| } |
| |
| Context = isl_set_intersect(Context, UserContext); |
| isl_space_free(Space); |
| } |
| |
| void Scop::buildContext() { |
| isl_space *Space = isl_space_params_alloc(IslCtx, 0); |
| Context = isl_set_universe(isl_space_copy(Space)); |
| AssumedContext = isl_set_universe(Space); |
| } |
| |
| void Scop::addParameterBounds() { |
| for (const auto &ParamID : ParameterIds) { |
| int dim = ParamID.second; |
| |
| ConstantRange SRange = SE->getSignedRange(ParamID.first); |
| |
| Context = addRangeBoundsToSet(Context, SRange, dim, isl_dim_param); |
| } |
| } |
| |
| void Scop::realignParams() { |
| // Add all parameters into a common model. |
| isl_space *Space = isl_space_params_alloc(IslCtx, ParameterIds.size()); |
| |
| for (const auto &ParamID : ParameterIds) { |
| const SCEV *Parameter = ParamID.first; |
| isl_id *id = getIdForParam(Parameter); |
| Space = isl_space_set_dim_id(Space, isl_dim_param, ParamID.second, id); |
| } |
| |
| // Align the parameters of all data structures to the model. |
| Context = isl_set_align_params(Context, Space); |
| |
| for (ScopStmt &Stmt : *this) |
| Stmt.realignParams(); |
| } |
| |
| static __isl_give isl_set * |
| simplifyAssumptionContext(__isl_take isl_set *AssumptionContext, |
| const Scop &S) { |
| isl_set *DomainParameters = isl_union_set_params(S.getDomains()); |
| AssumptionContext = isl_set_gist_params(AssumptionContext, DomainParameters); |
| AssumptionContext = isl_set_gist_params(AssumptionContext, S.getContext()); |
| return AssumptionContext; |
| } |
| |
| void Scop::simplifyContexts() { |
| // The parameter constraints of the iteration domains give us a set of |
| // constraints that need to hold for all cases where at least a single |
| // statement iteration is executed in the whole scop. We now simplify the |
| // assumed context under the assumption that such constraints hold and at |
| // least a single statement iteration is executed. For cases where no |
| // statement instances are executed, the assumptions we have taken about |
| // the executed code do not matter and can be changed. |
| // |
| // WARNING: This only holds if the assumptions we have taken do not reduce |
| // the set of statement instances that are executed. Otherwise we |
| // may run into a case where the iteration domains suggest that |
| // for a certain set of parameter constraints no code is executed, |
| // but in the original program some computation would have been |
| // performed. In such a case, modifying the run-time conditions and |
| // possibly influencing the run-time check may cause certain scops |
| // to not be executed. |
| // |
| // Example: |
| // |
| // When delinearizing the following code: |
| // |
| // for (long i = 0; i < 100; i++) |
| // for (long j = 0; j < m; j++) |
| // A[i+p][j] = 1.0; |
| // |
| // we assume that the condition m <= 0 or (m >= 1 and p >= 0) holds as |
| // otherwise we would access out of bound data. Now, knowing that code is |
| // only executed for the case m >= 0, it is sufficient to assume p >= 0. |
| AssumedContext = simplifyAssumptionContext(AssumedContext, *this); |
| BoundaryContext = simplifyAssumptionContext(BoundaryContext, *this); |
| } |
| |
| /// @brief Add the minimal/maximal access in @p Set to @p User. |
| static isl_stat buildMinMaxAccess(__isl_take isl_set *Set, void *User) { |
| Scop::MinMaxVectorTy *MinMaxAccesses = (Scop::MinMaxVectorTy *)User; |
| isl_pw_multi_aff *MinPMA, *MaxPMA; |
| isl_pw_aff *LastDimAff; |
| isl_aff *OneAff; |
| unsigned Pos; |
| |
| // Restrict the number of parameters involved in the access as the lexmin/ |
| // lexmax computation will take too long if this number is high. |
| // |
| // Experiments with a simple test case using an i7 4800MQ: |
| // |
| // #Parameters involved | Time (in sec) |
| // 6 | 0.01 |
| // 7 | 0.04 |
| // 8 | 0.12 |
| // 9 | 0.40 |
| // 10 | 1.54 |
| // 11 | 6.78 |
| // 12 | 30.38 |
| // |
| if (isl_set_n_param(Set) > RunTimeChecksMaxParameters) { |
| unsigned InvolvedParams = 0; |
| for (unsigned u = 0, e = isl_set_n_param(Set); u < e; u++) |
| if (isl_set_involves_dims(Set, isl_dim_param, u, 1)) |
| InvolvedParams++; |
| |
| if (InvolvedParams > RunTimeChecksMaxParameters) { |
| isl_set_free(Set); |
| return isl_stat_error; |
| } |
| } |
| |
| Set = isl_set_remove_divs(Set); |
| |
| MinPMA = isl_set_lexmin_pw_multi_aff(isl_set_copy(Set)); |
| MaxPMA = isl_set_lexmax_pw_multi_aff(isl_set_copy(Set)); |
| |
| MinPMA = isl_pw_multi_aff_coalesce(MinPMA); |
| MaxPMA = isl_pw_multi_aff_coalesce(MaxPMA); |
| |
| // Adjust the last dimension of the maximal access by one as we want to |
| // enclose the accessed memory region by MinPMA and MaxPMA. The pointer |
| // we test during code generation might now point after the end of the |
| // allocated array but we will never dereference it anyway. |
| assert(isl_pw_multi_aff_dim(MaxPMA, isl_dim_out) && |
| "Assumed at least one output dimension"); |
| Pos = isl_pw_multi_aff_dim(MaxPMA, isl_dim_out) - 1; |
| LastDimAff = isl_pw_multi_aff_get_pw_aff(MaxPMA, Pos); |
| OneAff = isl_aff_zero_on_domain( |
| isl_local_space_from_space(isl_pw_aff_get_domain_space(LastDimAff))); |
| OneAff = isl_aff_add_constant_si(OneAff, 1); |
| LastDimAff = isl_pw_aff_add(LastDimAff, isl_pw_aff_from_aff(OneAff)); |
| MaxPMA = isl_pw_multi_aff_set_pw_aff(MaxPMA, Pos, LastDimAff); |
| |
| MinMaxAccesses->push_back(std::make_pair(MinPMA, MaxPMA)); |
| |
| isl_set_free(Set); |
| return isl_stat_ok; |
| } |
| |
| static __isl_give isl_set *getAccessDomain(MemoryAccess *MA) { |
| isl_set *Domain = MA->getStatement()->getDomain(); |
| Domain = isl_set_project_out(Domain, isl_dim_set, 0, isl_set_n_dim(Domain)); |
| return isl_set_reset_tuple_id(Domain); |
| } |
| |
| /// @brief Wrapper function to calculate minimal/maximal accesses to each array. |
| static bool calculateMinMaxAccess(__isl_take isl_union_map *Accesses, |
| __isl_take isl_union_set *Domains, |
| Scop::MinMaxVectorTy &MinMaxAccesses) { |
| |
| Accesses = isl_union_map_intersect_domain(Accesses, Domains); |
| isl_union_set *Locations = isl_union_map_range(Accesses); |
| Locations = isl_union_set_coalesce(Locations); |
| Locations = isl_union_set_detect_equalities(Locations); |
| bool Valid = (0 == isl_union_set_foreach_set(Locations, buildMinMaxAccess, |
| &MinMaxAccesses)); |
| isl_union_set_free(Locations); |
| return Valid; |
| } |
| |
| /// @brief Helper to treat non-affine regions and basic blocks the same. |
| /// |
| ///{ |
| |
| /// @brief Return the block that is the representing block for @p RN. |
| static inline BasicBlock *getRegionNodeBasicBlock(RegionNode *RN) { |
| return RN->isSubRegion() ? RN->getNodeAs<Region>()->getEntry() |
| : RN->getNodeAs<BasicBlock>(); |
| } |
| |
| /// @brief Return the @p idx'th block that is executed after @p RN. |
| static inline BasicBlock *getRegionNodeSuccessor(RegionNode *RN, BranchInst *BI, |
| unsigned idx) { |
| if (RN->isSubRegion()) { |
| assert(idx == 0); |
| return RN->getNodeAs<Region>()->getExit(); |
| } |
| return BI->getSuccessor(idx); |
| } |
| |
| /// @brief Return the smallest loop surrounding @p RN. |
| static inline Loop *getRegionNodeLoop(RegionNode *RN, LoopInfo &LI) { |
| if (!RN->isSubRegion()) |
| return LI.getLoopFor(RN->getNodeAs<BasicBlock>()); |
| |
| Region *NonAffineSubRegion = RN->getNodeAs<Region>(); |
| Loop *L = LI.getLoopFor(NonAffineSubRegion->getEntry()); |
| while (L && NonAffineSubRegion->contains(L)) |
| L = L->getParentLoop(); |
| return L; |
| } |
| |
| static inline unsigned getNumBlocksInRegionNode(RegionNode *RN) { |
| if (!RN->isSubRegion()) |
| return 1; |
| |
| unsigned NumBlocks = 0; |
| Region *R = RN->getNodeAs<Region>(); |
| for (auto BB : R->blocks()) { |
| (void)BB; |
| NumBlocks++; |
| } |
| return NumBlocks; |
| } |
| |
| ///} |
| |
| static inline __isl_give isl_set *addDomainDimId(__isl_take isl_set *Domain, |
| unsigned Dim, Loop *L) { |
| isl_id *DimId = |
| isl_id_alloc(isl_set_get_ctx(Domain), nullptr, static_cast<void *>(L)); |
| return isl_set_set_dim_id(Domain, isl_dim_set, Dim, DimId); |
| } |
| |
| isl_set *Scop::getDomainConditions(ScopStmt *Stmt) { |
| BasicBlock *BB = Stmt->isBlockStmt() ? Stmt->getBasicBlock() |
| : Stmt->getRegion()->getEntry(); |
| return getDomainConditions(BB); |
| } |
| |
| isl_set *Scop::getDomainConditions(BasicBlock *BB) { |
| assert(DomainMap.count(BB) && "Requested BB did not have a domain"); |
| return isl_set_copy(DomainMap[BB]); |
| } |
| |
| void Scop::buildDomains(Region *R, LoopInfo &LI, ScopDetection &SD, |
| DominatorTree &DT) { |
| |
| auto *EntryBB = R->getEntry(); |
| int LD = getRelativeLoopDepth(LI.getLoopFor(EntryBB)); |
| auto *S = isl_set_universe(isl_space_set_alloc(getIslCtx(), 0, LD + 1)); |
| |
| Loop *L = LI.getLoopFor(EntryBB); |
| while (LD-- >= 0) { |
| S = addDomainDimId(S, LD + 1, L); |
| L = L->getParentLoop(); |
| } |
| |
| DomainMap[EntryBB] = S; |
| |
| if (SD.isNonAffineSubRegion(R, R)) |
| return; |
| |
| buildDomainsWithBranchConstraints(R, LI, SD, DT); |
| addLoopBoundsToHeaderDomains(LI, SD, DT); |
| propagateDomainConstraints(R, LI, SD, DT); |
| } |
| |
| void Scop::buildDomainsWithBranchConstraints(Region *R, LoopInfo &LI, |
| ScopDetection &SD, |
| DominatorTree &DT) { |
| RegionInfo &RI = *R->getRegionInfo(); |
| |
| // To create the domain for each block in R we iterate over all blocks and |
| // subregions in R and propagate the conditions under which the current region |
| // element is executed. To this end we iterate in reverse post order over R as |
| // it ensures that we first visit all predecessors of a region node (either a |
| // basic block or a subregion) before we visit the region node itself. |
| // Initially, only the domain for the SCoP region entry block is set and from |
| // there we propagate the current domain to all successors, however we add the |
| // condition that the successor is actually executed next. |
| // As we are only interested in non-loop carried constraints here we can |
| // simply skip loop back edges. |
| |
| ReversePostOrderTraversal<Region *> RTraversal(R); |
| for (auto *RN : RTraversal) { |
| |
| // Recurse for affine subregions but go on for basic blocks and non-affine |
| // subregions. |
| if (RN->isSubRegion()) { |
| Region *SubRegion = RN->getNodeAs<Region>(); |
| if (!SD.isNonAffineSubRegion(SubRegion, &getRegion())) { |
| buildDomainsWithBranchConstraints(SubRegion, LI, SD, DT); |
| continue; |
| } |
| } |
| |
| BasicBlock *BB = getRegionNodeBasicBlock(RN); |
| TerminatorInst *TI = BB->getTerminator(); |
| |
| // Unreachable instructions do not have successors so we can skip them. |
| if (isa<UnreachableInst>(TI)) { |
| // Assume unreachables only in error blocks. |
| assert(isErrorBlock(*BB)); |
| continue; |
| } |
| |
| isl_set *Domain = DomainMap[BB]; |
| DEBUG(dbgs() << "\tVisit: " << BB->getName() << " : " << Domain << "\n"); |
| assert(Domain && "Due to reverse post order traversal of the region all " |
| "predecessor of the current region node should have been " |
| "visited and a domain for this region node should have " |
| "been set."); |
| |
| Loop *BBLoop = getRegionNodeLoop(RN, LI); |
| int BBLoopDepth = getRelativeLoopDepth(BBLoop); |
| |
| // Build the condition sets for the successor nodes of the current region |
| // node. If it is a non-affine subregion we will always execute the single |
| // exit node, hence the single entry node domain is the condition set. For |
| // basic blocks we use the helper function buildConditionSets. |
| SmallVector<isl_set *, 2> ConditionSets; |
| BranchInst *BI = cast<BranchInst>(TI); |
| if (RN->isSubRegion()) |
| ConditionSets.push_back(isl_set_copy(Domain)); |
| else |
| buildConditionSets(*this, BI, BBLoop, Domain, ConditionSets); |
| |
| // Now iterate over the successors and set their initial domain based on |
| // their condition set. We skip back edges here and have to be careful when |
| // we leave a loop not to keep constraints over a dimension that doesn't |
| // exist anymore. |
| for (unsigned u = 0, e = ConditionSets.size(); u < e; u++) { |
| BasicBlock *SuccBB = getRegionNodeSuccessor(RN, BI, u); |
| isl_set *CondSet = ConditionSets[u]; |
| |
| // Skip back edges. |
| if (DT.dominates(SuccBB, BB)) { |
| isl_set_free(CondSet); |
| continue; |
| } |
| |
| // Do not adjust the number of dimensions if we enter a boxed loop or are |
| // in a non-affine subregion or if the surrounding loop stays the same. |
| Loop *SuccBBLoop = LI.getLoopFor(SuccBB); |
| Region *SuccRegion = RI.getRegionFor(SuccBB); |
| if (BBLoop != SuccBBLoop && !RN->isSubRegion() && |
| !(SD.isNonAffineSubRegion(SuccRegion, &getRegion()) && |
| SuccRegion->contains(SuccBBLoop))) { |
| |
| // Check if the edge to SuccBB is a loop entry or exit edge. If so |
| // adjust the dimensionality accordingly. Lastly, if we leave a loop |
| // and enter a new one we need to drop the old constraints. |
| int SuccBBLoopDepth = getRelativeLoopDepth(SuccBBLoop); |
| unsigned LoopDepthDiff = std::abs(BBLoopDepth - SuccBBLoopDepth); |
| if (BBLoopDepth > SuccBBLoopDepth) { |
| CondSet = isl_set_project_out(CondSet, isl_dim_set, |
| isl_set_n_dim(CondSet) - LoopDepthDiff, |
| LoopDepthDiff); |
| } else if (SuccBBLoopDepth > BBLoopDepth) { |
| assert(LoopDepthDiff == 1); |
| CondSet = isl_set_add_dims(CondSet, isl_dim_set, 1); |
| CondSet = addDomainDimId(CondSet, SuccBBLoopDepth, SuccBBLoop); |
| } else if (BBLoopDepth >= 0) { |
| assert(LoopDepthDiff <= 1); |
| CondSet = isl_set_project_out(CondSet, isl_dim_set, BBLoopDepth, 1); |
| CondSet = isl_set_add_dims(CondSet, isl_dim_set, 1); |
| CondSet = addDomainDimId(CondSet, SuccBBLoopDepth, SuccBBLoop); |
| } |
| } |
| |
| // Set the domain for the successor or merge it with an existing domain in |
| // case there are multiple paths (without loop back edges) to the |
| // successor block. |
| isl_set *&SuccDomain = DomainMap[SuccBB]; |
| if (!SuccDomain) |
| SuccDomain = CondSet; |
| else |
| SuccDomain = isl_set_union(SuccDomain, CondSet); |
| |
| SuccDomain = isl_set_coalesce(SuccDomain); |
| DEBUG(dbgs() << "\tSet SuccBB: " << SuccBB->getName() << " : " << Domain |
| << "\n"); |
| } |
| } |
| } |
| |
| /// @brief Return the domain for @p BB wrt @p DomainMap. |
| /// |
| /// This helper function will lookup @p BB in @p DomainMap but also handle the |
| /// case where @p BB is contained in a non-affine subregion using the region |
| /// tree obtained by @p RI. |
| static __isl_give isl_set * |
| getDomainForBlock(BasicBlock *BB, DenseMap<BasicBlock *, isl_set *> &DomainMap, |
| RegionInfo &RI) { |
| auto DIt = DomainMap.find(BB); |
| if (DIt != DomainMap.end()) |
| return isl_set_copy(DIt->getSecond()); |
| |
| Region *R = RI.getRegionFor(BB); |
| while (R->getEntry() == BB) |
| R = R->getParent(); |
| return getDomainForBlock(R->getEntry(), DomainMap, RI); |
| } |
| |
| static bool containsErrorBlock(RegionNode *RN) { |
| if (!RN->isSubRegion()) |
| return isErrorBlock(*RN->getNodeAs<BasicBlock>()); |
| for (BasicBlock *BB : RN->getNodeAs<Region>()->blocks()) |
| if (isErrorBlock(*BB)) |
| return true; |
| return false; |
| } |
| |
| void Scop::propagateDomainConstraints(Region *R, LoopInfo &LI, |
| ScopDetection &SD, DominatorTree &DT) { |
| // Iterate over the region R and propagate the domain constrains from the |
| // predecessors to the current node. In contrast to the |
| // buildDomainsWithBranchConstraints function, this one will pull the domain |
| // information from the predecessors instead of pushing it to the successors. |
| // Additionally, we assume the domains to be already present in the domain |
| // map here. However, we iterate again in reverse post order so we know all |
| // predecessors have been visited before a block or non-affine subregion is |
| // visited. |
| |
| // The set of boxed loops (loops in non-affine subregions) for this SCoP. |
| auto &BoxedLoops = *SD.getBoxedLoops(&getRegion()); |
| |
| ReversePostOrderTraversal<Region *> RTraversal(R); |
| for (auto *RN : RTraversal) { |
| |
| // Recurse for affine subregions but go on for basic blocks and non-affine |
| // subregions. |
| if (RN->isSubRegion()) { |
| Region *SubRegion = RN->getNodeAs<Region>(); |
| if (!SD.isNonAffineSubRegion(SubRegion, &getRegion())) { |
| propagateDomainConstraints(SubRegion, LI, SD, DT); |
| continue; |
| } |
| } |
| |
| BasicBlock *BB = getRegionNodeBasicBlock(RN); |
| Loop *BBLoop = getRegionNodeLoop(RN, LI); |
| int BBLoopDepth = getRelativeLoopDepth(BBLoop); |
| |
| isl_set *&Domain = DomainMap[BB]; |
| assert(Domain && "Due to reverse post order traversal of the region all " |
| "predecessor of the current region node should have been " |
| "visited and a domain for this region node should have " |
| "been set."); |
| |
| isl_set *PredDom = isl_set_empty(isl_set_get_space(Domain)); |
| for (auto *PredBB : predecessors(BB)) { |
| |
| // Skip backedges |
| if (DT.dominates(BB, PredBB)) |
| continue; |
| |
| isl_set *PredBBDom = nullptr; |
| |
| // Handle the SCoP entry block with its outside predecessors. |
| if (!getRegion().contains(PredBB)) |
| PredBBDom = isl_set_universe(isl_set_get_space(PredDom)); |
| |
| if (!PredBBDom) { |
| // Determine the loop depth of the predecessor and adjust its domain to |
| // the domain of the current block. This can mean we have to: |
| // o) Drop a dimension if this block is the exit of a loop, not the |
| // header of a new loop and the predecessor was part of the loop. |
| // o) Add an unconstrainted new dimension if this block is the header |
| // of a loop and the predecessor is not part of it. |
| // o) Drop the information about the innermost loop dimension when the |
| // predecessor and the current block are surrounded by different |
| // loops in the same depth. |
| PredBBDom = getDomainForBlock(PredBB, DomainMap, *R->getRegionInfo()); |
| Loop *PredBBLoop = LI.getLoopFor(PredBB); |
| while (BoxedLoops.count(PredBBLoop)) |
| PredBBLoop = PredBBLoop->getParentLoop(); |
| |
| int PredBBLoopDepth = getRelativeLoopDepth(PredBBLoop); |
| unsigned LoopDepthDiff = std::abs(BBLoopDepth - PredBBLoopDepth); |
| if (BBLoopDepth < PredBBLoopDepth) |
| PredBBDom = isl_set_project_out( |
| PredBBDom, isl_dim_set, isl_set_n_dim(PredBBDom) - LoopDepthDiff, |
| LoopDepthDiff); |
| else if (PredBBLoopDepth < BBLoopDepth) { |
| assert(LoopDepthDiff == 1); |
| PredBBDom = isl_set_add_dims(PredBBDom, isl_dim_set, 1); |
| } else if (BBLoop != PredBBLoop && BBLoopDepth >= 0) { |
| assert(LoopDepthDiff <= 1); |
| PredBBDom = isl_set_drop_constraints_involving_dims( |
| PredBBDom, isl_dim_set, BBLoopDepth, 1); |
| } |
| } |
| |
| PredDom = isl_set_union(PredDom, PredBBDom); |
| } |
| |
| // Under the union of all predecessor conditions we can reach this block. |
| Domain = isl_set_coalesce(isl_set_intersect(Domain, PredDom)); |
| |
| // Add assumptions for error blocks. |
| if (containsErrorBlock(RN)) { |
| IsOptimized = true; |
| isl_set *DomPar = isl_set_params(isl_set_copy(Domain)); |
| addAssumption(isl_set_complement(DomPar)); |
| } |
| } |
| } |
| |
| /// @brief Create a map from SetSpace -> SetSpace where the dimensions @p Dim |
| /// is incremented by one and all other dimensions are equal, e.g., |
| /// [i0, i1, i2, i3] -> [i0, i1, i2 + 1, i3] |
| /// if @p Dim is 2 and @p SetSpace has 4 dimensions. |
| static __isl_give isl_map * |
| createNextIterationMap(__isl_take isl_space *SetSpace, unsigned Dim) { |
| auto *MapSpace = isl_space_map_from_set(SetSpace); |
| auto *NextIterationMap = isl_map_universe(isl_space_copy(MapSpace)); |
| for (unsigned u = 0; u < isl_map_n_in(NextIterationMap); u++) |
| if (u != Dim) |
| NextIterationMap = |
| isl_map_equate(NextIterationMap, isl_dim_in, u, isl_dim_out, u); |
| auto *C = isl_constraint_alloc_equality(isl_local_space_from_space(MapSpace)); |
| C = isl_constraint_set_constant_si(C, 1); |
| C = isl_constraint_set_coefficient_si(C, isl_dim_in, Dim, 1); |
| C = isl_constraint_set_coefficient_si(C, isl_dim_out, Dim, -1); |
| NextIterationMap = isl_map_add_constraint(NextIterationMap, C); |
| return NextIterationMap; |
| } |
| |
| /// @brief Add @p L & all children to @p Loops if they are not in @p BoxedLoops. |
| static inline void |
| addLoopAndSubloops(Loop *L, SmallVectorImpl<Loop *> &Loops, |
| const ScopDetection::BoxedLoopsSetTy &BoxedLoops) { |
| if (BoxedLoops.count(L)) |
| return; |
| |
| Loops.push_back(L); |
| for (Loop *Subloop : *L) |
| addLoopAndSubloops(Subloop, Loops, BoxedLoops); |
| } |
| |
| /// @brief Add loops in @p R to @p RegionLoops if they are not in @p BoxedLoops. |
| static inline void |
| collectLoopsInRegion(Region &R, LoopInfo &LI, |
| SmallVector<Loop *, 8> &RegionLoops, |
| const ScopDetection::BoxedLoopsSetTy &BoxedLoops) { |
| |
| SmallVector<Loop *, 8> Loops(LI.begin(), LI.end()); |
| while (!Loops.empty()) { |
| Loop *L = Loops.pop_back_val(); |
| |
| if (R.contains(L)) |
| addLoopAndSubloops(L, RegionLoops, BoxedLoops); |
| else if (L->contains(R.getEntry())) |
| Loops.append(L->begin(), L->end()); |
| } |
| } |
| |
| /// @brief Create a set from @p Space with @p Dim fixed to 0. |
| static __isl_give isl_set * |
| createFirstIterationDomain(__isl_take isl_space *Space, unsigned Dim) { |
| auto *Domain = isl_set_universe(Space); |
| Domain = isl_set_fix_si(Domain, isl_dim_set, Dim, 0); |
| return Domain; |
| } |
| |
| void Scop::addLoopBoundsToHeaderDomains(LoopInfo &LI, ScopDetection &SD, |
| DominatorTree &DT) { |
| // We iterate over all loops in the SCoP, create the condition set under which |
| // we will take the back edge, and then apply these restrictions to the |
| // header. |
| |
| Region &R = getRegion(); |
| SmallVector<Loop *, 8> RegionLoops; |
| collectLoopsInRegion(R, LI, RegionLoops, *SD.getBoxedLoops(&R)); |
| |
| while (!RegionLoops.empty()) { |
| Loop *L = RegionLoops.pop_back_val(); |
| int LoopDepth = getRelativeLoopDepth(L); |
| assert(LoopDepth >= 0 && "Loop in region should have at least depth one"); |
| |
| BasicBlock *LatchBB = L->getLoopLatch(); |
| assert(LatchBB && "TODO implement multiple exit loop handling"); |
| |
| isl_set *LatchBBDom = DomainMap[LatchBB]; |
| isl_set *BackedgeCondition = nullptr; |
| |
| BasicBlock *HeaderBB = L->getHeader(); |
| |
| BranchInst *BI = cast<BranchInst>(LatchBB->getTerminator()); |
| if (BI->isUnconditional()) |
| BackedgeCondition = isl_set_copy(LatchBBDom); |
| else { |
| SmallVector<isl_set *, 2> ConditionSets; |
| int idx = BI->getSuccessor(0) != HeaderBB; |
| buildConditionSets(*this, BI, L, LatchBBDom, ConditionSets); |
| |
| // Free the non back edge condition set as we do not need it. |
| isl_set_free(ConditionSets[1 - idx]); |
| |
| BackedgeCondition = ConditionSets[idx]; |
| } |
| |
| isl_set *&HeaderBBDom = DomainMap[HeaderBB]; |
| isl_set *FirstIteration = |
| createFirstIterationDomain(isl_set_get_space(HeaderBBDom), LoopDepth); |
| |
| isl_map *NextIterationMap = |
| createNextIterationMap(isl_set_get_space(HeaderBBDom), LoopDepth); |
| |
| int LatchLoopDepth = getRelativeLoopDepth(LI.getLoopFor(LatchBB)); |
| assert(LatchLoopDepth >= LoopDepth); |
| BackedgeCondition = |
| isl_set_project_out(BackedgeCondition, isl_dim_set, LoopDepth + 1, |
| LatchLoopDepth - LoopDepth); |
| |
| isl_map *ForwardMap = isl_map_lex_le(isl_set_get_space(HeaderBBDom)); |
| for (int i = 0; i < LoopDepth; i++) |
| ForwardMap = isl_map_equate(ForwardMap, isl_dim_in, i, isl_dim_out, i); |
| |
| isl_set *BackedgeConditionComplement = |
| isl_set_complement(BackedgeCondition); |
| BackedgeConditionComplement = isl_set_lower_bound_si( |
| BackedgeConditionComplement, isl_dim_set, LoopDepth, 0); |
| BackedgeConditionComplement = |
| isl_set_apply(BackedgeConditionComplement, ForwardMap); |
| HeaderBBDom = isl_set_subtract(HeaderBBDom, BackedgeConditionComplement); |
| |
| auto Parts = partitionSetParts(HeaderBBDom, LoopDepth); |
| |
| // If a loop has an unbounded back edge condition part (here Parts.first) |
| // we do not want to assume the header will even be executed for the first |
| // iteration of an execution that will lead to an infinite loop. While it |
| // would not be wrong to do so, it does not seem helpful. |
| // TODO: Use the unbounded part to build runtime assumptions. |
| FirstIteration = isl_set_subtract(FirstIteration, Parts.first); |
| |
| HeaderBBDom = isl_set_apply(Parts.second, NextIterationMap); |
| HeaderBBDom = isl_set_coalesce(isl_set_union(HeaderBBDom, FirstIteration)); |
| } |
| } |
| |
| void Scop::buildAliasChecks(AliasAnalysis &AA) { |
| if (!PollyUseRuntimeAliasChecks) |
| return; |
| |
| if (buildAliasGroups(AA)) |
| return; |
| |
| // If a problem occurs while building the alias groups we need to delete |
| // this SCoP and pretend it wasn't valid in the first place. To this end |
| // we make the assumed context infeasible. |
| addAssumption(isl_set_empty(getParamSpace())); |
| |
| DEBUG(dbgs() << "\n\nNOTE: Run time checks for " << getNameStr() |
| << " could not be created as the number of parameters involved " |
| "is too high. The SCoP will be " |
| "dismissed.\nUse:\n\t--polly-rtc-max-parameters=X\nto adjust " |
| "the maximal number of parameters but be advised that the " |
| "compile time might increase exponentially.\n\n"); |
| } |
| |
| bool Scop::buildAliasGroups(AliasAnalysis &AA) { |
| // To create sound alias checks we perform the following steps: |
| // o) Use the alias analysis and an alias set tracker to build alias sets |
| // for all memory accesses inside the SCoP. |
| // o) For each alias set we then map the aliasing pointers back to the |
| // memory accesses we know, thus obtain groups of memory accesses which |
| // might alias. |
| // o) We divide each group based on the domains of the minimal/maximal |
| // accesses. That means two minimal/maximal accesses are only in a group |
| // if their access domains intersect, otherwise they are in different |
| // ones. |
| // o) We partition each group into read only and non read only accesses. |
| // o) For each group with more than one base pointer we then compute minimal |
| // and maximal accesses to each array of a group in read only and non |
| // read only partitions separately. |
| using AliasGroupTy = SmallVector<MemoryAccess *, 4>; |
| |
| AliasSetTracker AST(AA); |
| |
| DenseMap<Value *, MemoryAccess *> PtrToAcc; |
| DenseSet<Value *> HasWriteAccess; |
| for (ScopStmt &Stmt : *this) { |
| |
| // Skip statements with an empty domain as they will never be executed. |
| isl_set *StmtDomain = Stmt.getDomain(); |
| bool StmtDomainEmpty = isl_set_is_empty(StmtDomain); |
| isl_set_free(StmtDomain); |
| if (StmtDomainEmpty) |
| continue; |
| |
| for (MemoryAccess *MA : Stmt) { |
| if (MA->isScalar()) |
| continue; |
| if (!MA->isRead()) |
| HasWriteAccess.insert(MA->getBaseAddr()); |
| Instruction *Acc = MA->getAccessInstruction(); |
| PtrToAcc[getPointerOperand(*Acc)] = MA; |
| AST.add(Acc); |
| } |
| } |
| |
| SmallVector<AliasGroupTy, 4> AliasGroups; |
| for (AliasSet &AS : AST) { |
| if (AS.isMustAlias() || AS.isForwardingAliasSet()) |
| continue; |
| AliasGroupTy AG; |
| for (auto PR : AS) |
| AG.push_back(PtrToAcc[PR.getValue()]); |
| assert(AG.size() > 1 && |
| "Alias groups should contain at least two accesses"); |
| AliasGroups.push_back(std::move(AG)); |
| } |
| |
| // Split the alias groups based on their domain. |
| for (unsigned u = 0; u < AliasGroups.size(); u++) { |
| AliasGroupTy NewAG; |
| AliasGroupTy &AG = AliasGroups[u]; |
| AliasGroupTy::iterator AGI = AG.begin(); |
| isl_set *AGDomain = getAccessDomain(*AGI); |
| while (AGI != AG.end()) { |
| MemoryAccess *MA = *AGI; |
| isl_set *MADomain = getAccessDomain(MA); |
| if (isl_set_is_disjoint(AGDomain, MADomain)) { |
| NewAG.push_back(MA); |
| AGI = AG.erase(AGI); |
| isl_set_free(MADomain); |
| } else { |
| AGDomain = isl_set_union(AGDomain, MADomain); |
| AGI++; |
| } |
| } |
| if (NewAG.size() > 1) |
| AliasGroups.push_back(std::move(NewAG)); |
| isl_set_free(AGDomain); |
| } |
| |
| MapVector<const Value *, SmallPtrSet<MemoryAccess *, 8>> ReadOnlyPairs; |
| SmallPtrSet<const Value *, 4> NonReadOnlyBaseValues; |
| for (AliasGroupTy &AG : AliasGroups) { |
| NonReadOnlyBaseValues.clear(); |
| ReadOnlyPairs.clear(); |
| |
| if (AG.size() < 2) { |
| AG.clear(); |
| continue; |
| } |
| |
| for (auto II = AG.begin(); II != AG.end();) { |
| Value *BaseAddr = (*II)->getBaseAddr(); |
| if (HasWriteAccess.count(BaseAddr)) { |
| NonReadOnlyBaseValues.insert(BaseAddr); |
| II++; |
| } else { |
| ReadOnlyPairs[BaseAddr].insert(*II); |
| II = AG.erase(II); |
| } |
| } |
| |
| // If we don't have read only pointers check if there are at least two |
| // non read only pointers, otherwise clear the alias group. |
| if (ReadOnlyPairs.empty() && NonReadOnlyBaseValues.size() <= 1) { |
| AG.clear(); |
| continue; |
| } |
| |
| // If we don't have non read only pointers clear the alias group. |
| if (NonReadOnlyBaseValues.empty()) { |
| AG.clear(); |
| continue; |
| } |
| |
| // Calculate minimal and maximal accesses for non read only accesses. |
| MinMaxAliasGroups.emplace_back(); |
| MinMaxVectorPairTy &pair = MinMaxAliasGroups.back(); |
| MinMaxVectorTy &MinMaxAccessesNonReadOnly = pair.first; |
| MinMaxVectorTy &MinMaxAccessesReadOnly = pair.second; |
| MinMaxAccessesNonReadOnly.reserve(AG.size()); |
| |
| isl_union_map *Accesses = isl_union_map_empty(getParamSpace()); |
| |
| // AG contains only non read only accesses. |
| for (MemoryAccess *MA : AG) |
| Accesses = isl_union_map_add_map(Accesses, MA->getAccessRelation()); |
| |
| bool Valid = calculateMinMaxAccess(Accesses, getDomains(), |
| MinMaxAccessesNonReadOnly); |
| |
| // Bail out if the number of values we need to compare is too large. |
| // This is important as the number of comparisions grows quadratically with |
| // the number of values we need to compare. |
| if (!Valid || (MinMaxAccessesNonReadOnly.size() + !ReadOnlyPairs.empty() > |
| RunTimeChecksMaxArraysPerGroup)) |
| return false; |
| |
| // Calculate minimal and maximal accesses for read only accesses. |
| MinMaxAccessesReadOnly.reserve(ReadOnlyPairs.size()); |
| Accesses = isl_union_map_empty(getParamSpace()); |
| |
| for (const auto &ReadOnlyPair : ReadOnlyPairs) |
| for (MemoryAccess *MA : ReadOnlyPair.second) |
| Accesses = isl_union_map_add_map(Accesses, MA->getAccessRelation()); |
| |
| Valid = |
| calculateMinMaxAccess(Accesses, getDomains(), MinMaxAccessesReadOnly); |
| |
| if (!Valid) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static Loop *getLoopSurroundingRegion(Region &R, LoopInfo &LI) { |
| Loop *L = LI.getLoopFor(R.getEntry()); |
| return L ? (R.contains(L) ? L->getParentLoop() : L) : nullptr; |
| } |
| |
| static unsigned getMaxLoopDepthInRegion(const Region &R, LoopInfo &LI, |
| ScopDetection &SD) { |
| |
| const ScopDetection::BoxedLoopsSetTy *BoxedLoops = SD.getBoxedLoops(&R); |
| |
| unsigned MinLD = INT_MAX, MaxLD = 0; |
| for (BasicBlock *BB : R.blocks()) { |
| if (Loop *L = LI.getLoopFor(BB)) { |
| if (!R.contains(L)) |
| continue; |
| if (BoxedLoops && BoxedLoops->count(L)) |
| continue; |
| unsigned LD = L->getLoopDepth(); |
| MinLD = std::min(MinLD, LD); |
| MaxLD = std::max(MaxLD, LD); |
| } |
| } |
| |
| // Handle the case that there is no loop in the SCoP first. |
| if (MaxLD == 0) |
| return 1; |
| |
| assert(MinLD >= 1 && "Minimal loop depth should be at least one"); |
| assert(MaxLD >= MinLD && |
| "Maximal loop depth was smaller than mininaml loop depth?"); |
| return MaxLD - MinLD + 1; |
| } |
| |
| Scop::Scop(Region &R, AccFuncMapType &AccFuncMap, |
| ScalarEvolution &ScalarEvolution, DominatorTree &DT, |
| isl_ctx *Context, unsigned MaxLoopDepth) |
| : DT(DT), SE(&ScalarEvolution), R(R), AccFuncMap(AccFuncMap), |
| IsOptimized(false), HasSingleExitEdge(R.getExitingBlock()), |
| MaxLoopDepth(MaxLoopDepth), IslCtx(Context), Affinator(this), |
| BoundaryContext(nullptr) {} |
| |
| void Scop::init(LoopInfo &LI, ScopDetection &SD, AliasAnalysis &AA) { |
| buildContext(); |
| |
| buildDomains(&R, LI, SD, DT); |
| |
| DenseMap<Loop *, std::pair<isl_schedule *, unsigned>> LoopSchedules; |
| |
| Loop *L = getLoopSurroundingRegion(R, LI); |
| LoopSchedules[L]; |
| buildSchedule(&R, LI, SD, LoopSchedules); |
| Schedule = LoopSchedules[L].first; |
| |
| realignParams(); |
| addParameterBounds(); |
| addUserContext(); |
| buildBoundaryContext(); |
| simplifyContexts(); |
| buildAliasChecks(AA); |
| } |
| |
| Scop::~Scop() { |
| isl_set_free(Context); |
| isl_set_free(AssumedContext); |
| isl_set_free(BoundaryContext); |
| isl_schedule_free(Schedule); |
| |
| for (auto It : DomainMap) |
| isl_set_free(It.second); |
| |
| // Free the alias groups |
| for (MinMaxVectorPairTy &MinMaxAccessPair : MinMaxAliasGroups) { |
| for (MinMaxAccessTy &MMA : MinMaxAccessPair.first) { |
| isl_pw_multi_aff_free(MMA.first); |
| isl_pw_multi_aff_free(MMA.second); |
| } |
| for (MinMaxAccessTy &MMA : MinMaxAccessPair.second) { |
| isl_pw_multi_aff_free(MMA.first); |
| isl_pw_multi_aff_free(MMA.second); |
| } |
| } |
| } |
| |
| const ScopArrayInfo * |
| Scop::getOrCreateScopArrayInfo(Value *BasePtr, Type *AccessType, |
| ArrayRef<const SCEV *> Sizes, bool IsPHI) { |
| auto &SAI = ScopArrayInfoMap[std::make_pair(BasePtr, IsPHI)]; |
| if (!SAI) |
| SAI.reset(new ScopArrayInfo(BasePtr, AccessType, getIslCtx(), Sizes, IsPHI, |
| this)); |
| return SAI.get(); |
| } |
| |
| const ScopArrayInfo *Scop::getScopArrayInfo(Value *BasePtr, bool IsPHI) { |
| auto *SAI = ScopArrayInfoMap[std::make_pair(BasePtr, IsPHI)].get(); |
| assert(SAI && "No ScopArrayInfo available for this base pointer"); |
| return SAI; |
| } |
| |
| std::string Scop::getContextStr() const { return stringFromIslObj(Context); } |
| std::string Scop::getAssumedContextStr() const { |
| return stringFromIslObj(AssumedContext); |
| } |
| std::string Scop::getBoundaryContextStr() const { |
| return stringFromIslObj(BoundaryContext); |
| } |
| |
| std::string Scop::getNameStr() const { |
| std::string ExitName, EntryName; |
| raw_string_ostream ExitStr(ExitName); |
| raw_string_ostream EntryStr(EntryName); |
| |
| R.getEntry()->printAsOperand(EntryStr, false); |
| EntryStr.str(); |
| |
| if (R.getExit()) { |
| R.getExit()->printAsOperand(ExitStr, false); |
| ExitStr.str(); |
| } else |
| ExitName = "FunctionExit"; |
| |
| return EntryName + "---" + ExitName; |
| } |
| |
| __isl_give isl_set *Scop::getContext() const { return isl_set_copy(Context); } |
| __isl_give isl_space *Scop::getParamSpace() const { |
| return isl_set_get_space(Context); |
| } |
| |
| __isl_give isl_set *Scop::getAssumedContext() const { |
| return isl_set_copy(AssumedContext); |
| } |
| |
| __isl_give isl_set *Scop::getRuntimeCheckContext() const { |
| isl_set *RuntimeCheckContext = getAssumedContext(); |
| RuntimeCheckContext = |
| isl_set_intersect(RuntimeCheckContext, getBoundaryContext()); |
| RuntimeCheckContext = simplifyAssumptionContext(RuntimeCheckContext, *this); |
| return RuntimeCheckContext; |
| } |
| |
| bool Scop::hasFeasibleRuntimeContext() const { |
| isl_set *RuntimeCheckContext = getRuntimeCheckContext(); |
| RuntimeCheckContext = addNonEmptyDomainConstraints(RuntimeCheckContext); |
| bool IsFeasible = !isl_set_is_empty(RuntimeCheckContext); |
| isl_set_free(RuntimeCheckContext); |
| return IsFeasible; |
| } |
| |
| void Scop::addAssumption(__isl_take isl_set *Set) { |
| AssumedContext = isl_set_intersect(AssumedContext, Set); |
| AssumedContext = isl_set_coalesce(AssumedContext); |
| } |
| |
| __isl_give isl_set *Scop::getBoundaryContext() const { |
| return isl_set_copy(BoundaryContext); |
| } |
| |
| void Scop::printContext(raw_ostream &OS) const { |
| OS << "Context:\n"; |
| |
| if (!Context) { |
| OS.indent(4) << "n/a\n\n"; |
| return; |
| } |
| |
| OS.indent(4) << getContextStr() << "\n"; |
| |
| OS.indent(4) << "Assumed Context:\n"; |
| if (!AssumedContext) { |
| OS.indent(4) << "n/a\n\n"; |
| return; |
| } |
| |
| OS.indent(4) << getAssumedContextStr() << "\n"; |
| |
| OS.indent(4) << "Boundary Context:\n"; |
| if (!BoundaryContext) { |
| OS.indent(4) << "n/a\n\n"; |
| return; |
| } |
| |
| OS.indent(4) << getBoundaryContextStr() << "\n"; |
| |
| for (const SCEV *Parameter : Parameters) { |
| int Dim = ParameterIds.find(Parameter)->second; |
| OS.indent(4) << "p" << Dim << ": " << *Parameter << "\n"; |
| } |
| } |
| |
| void Scop::printAliasAssumptions(raw_ostream &OS) const { |
| int noOfGroups = 0; |
| for (const MinMaxVectorPairTy &Pair : MinMaxAliasGroups) { |
| if (Pair.second.size() == 0) |
| noOfGroups += 1; |
| else |
| noOfGroups += Pair.second.size(); |
| } |
| |
| OS.indent(4) << "Alias Groups (" << noOfGroups << "):\n"; |
| if (MinMaxAliasGroups.empty()) { |
| OS.indent(8) << "n/a\n"; |
| return; |
| } |
| |
| for (const MinMaxVectorPairTy &Pair : MinMaxAliasGroups) { |
| |
| // If the group has no read only accesses print the write accesses. |
| if (Pair.second.empty()) { |
| OS.indent(8) << "[["; |
| for (const MinMaxAccessTy &MMANonReadOnly : Pair.first) { |
| OS << " <" << MMANonReadOnly.first << ", " << MMANonReadOnly.second |
| << ">"; |
| } |
| OS << " ]]\n"; |
| } |
| |
| for (const MinMaxAccessTy &MMAReadOnly : Pair.second) { |
| OS.indent(8) << "[["; |
| OS << " <" << MMAReadOnly.first << ", " << MMAReadOnly.second << ">"; |
| for (const MinMaxAccessTy &MMANonReadOnly : Pair.first) { |
| OS << " <" << MMANonReadOnly.first << ", " << MMANonReadOnly.second |
| << ">"; |
| } |
| OS << " ]]\n"; |
| } |
| } |
| } |
| |
| void Scop::printStatements(raw_ostream &OS) const { |
| OS << "Statements {\n"; |
| |
| for (const ScopStmt &Stmt : *this) |
| OS.indent(4) << Stmt; |
| |
| OS.indent(4) << "}\n"; |
| } |
| |
| void Scop::printArrayInfo(raw_ostream &OS) const { |
| OS << "Arrays {\n"; |
| |
| for (auto &Array : arrays()) |
| Array.second->print(OS); |
| |
| OS.indent(4) << "}\n"; |
| |
| OS.indent(4) << "Arrays (Bounds as pw_affs) {\n"; |
| |
| for (auto &Array : arrays()) |
| Array.second->print(OS, /* SizeAsPwAff */ true); |
| |
| OS.indent(4) << "}\n"; |
| } |
| |
| void Scop::print(raw_ostream &OS) const { |
| OS.indent(4) << "Function: " << getRegion().getEntry()->getParent()->getName() |
| << "\n"; |
| OS.indent(4) << "Region: " << getNameStr() << "\n"; |
| OS.indent(4) << "Max Loop Depth: " << getMaxLoopDepth() << "\n"; |
| printContext(OS.indent(4)); |
| printArrayInfo(OS.indent(4)); |
| printAliasAssumptions(OS); |
| printStatements(OS.indent(4)); |
| } |
| |
| void Scop::dump() const { print(dbgs()); } |
| |
| isl_ctx *Scop::getIslCtx() const { return IslCtx; } |
| |
| __isl_give isl_pw_aff *Scop::getPwAff(const SCEV *E, BasicBlock *BB) { |
| return Affinator.getPwAff(E, BB); |
| } |
| |
| __isl_give isl_union_set *Scop::getDomains() const { |
| isl_union_set *Domain = isl_union_set_empty(getParamSpace()); |
| |
| for (const ScopStmt &Stmt : *this) |
| Domain = isl_union_set_add_set(Domain, Stmt.getDomain()); |
| |
| return Domain; |
| } |
| |
| __isl_give isl_union_map *Scop::getMustWrites() { |
| isl_union_map *Write = isl_union_map_empty(getParamSpace()); |
| |
| for (ScopStmt &Stmt : *this) { |
| for (MemoryAccess *MA : Stmt) { |
| if (!MA->isMustWrite()) |
| continue; |
| |
| isl_set *Domain = Stmt.getDomain(); |
| isl_map *AccessDomain = MA->getAccessRelation(); |
| AccessDomain = isl_map_intersect_domain(AccessDomain, Domain); |
| Write = isl_union_map_add_map(Write, AccessDomain); |
| } |
| } |
| return isl_union_map_coalesce(Write); |
| } |
| |
| __isl_give isl_union_map *Scop::getMayWrites() { |
| isl_union_map *Write = isl_union_map_empty(getParamSpace()); |
| |
| for (ScopStmt &Stmt : *this) { |
| for (MemoryAccess *MA : Stmt) { |
| if (!MA->isMayWrite()) |
| continue; |
| |
| isl_set *Domain = Stmt.getDomain(); |
| isl_map *AccessDomain = MA->getAccessRelation(); |
| AccessDomain = isl_map_intersect_domain(AccessDomain, Domain); |
| Write = isl_union_map_add_map(Write, AccessDomain); |
| } |
| } |
| return isl_union_map_coalesce(Write); |
| } |
| |
| __isl_give isl_union_map *Scop::getWrites() { |
| isl_union_map *Write = isl_union_map_empty(getParamSpace()); |
| |
| for (ScopStmt &Stmt : *this) { |
| for (MemoryAccess *MA : Stmt) { |
| if (!MA->isWrite()) |
| continue; |
| |
| isl_set *Domain = Stmt.getDomain(); |
| isl_map *AccessDomain = MA->getAccessRelation(); |
| AccessDomain = isl_map_intersect_domain(AccessDomain, Domain); |
| Write = isl_union_map_add_map(Write, AccessDomain); |
| } |
| } |
| return isl_union_map_coalesce(Write); |
| } |
| |
| __isl_give isl_union_map *Scop::getReads() { |
| isl_union_map *Read = isl_union_map_empty(getParamSpace()); |
| |
| for (ScopStmt &Stmt : *this) { |
| for (MemoryAccess *MA : Stmt) { |
| if (!MA->isRead()) |
| continue; |
| |
| isl_set *Domain = Stmt.getDomain(); |
| isl_map *AccessDomain = MA->getAccessRelation(); |
| |
| AccessDomain = isl_map_intersect_domain(AccessDomain, Domain); |
| Read = isl_union_map_add_map(Read, AccessDomain); |
| } |
| } |
| return isl_union_map_coalesce(Read); |
| } |
| |
| __isl_give isl_union_map *Scop::getSchedule() const { |
| auto Tree = getScheduleTree(); |
| auto S = isl_schedule_get_map(Tree); |
| isl_schedule_free(Tree); |
| return S; |
| } |
| |
| __isl_give isl_schedule *Scop::getScheduleTree() const { |
| return isl_schedule_intersect_domain(isl_schedule_copy(Schedule), |
| getDomains()); |
| } |
| |
| void Scop::setSchedule(__isl_take isl_union_map *NewSchedule) { |
| auto *S = isl_schedule_from_domain(getDomains()); |
| S = isl_schedule_insert_partial_schedule( |
| S, isl_multi_union_pw_aff_from_union_map(NewSchedule)); |
| isl_schedule_free(Schedule); |
| Schedule = S; |
| } |
| |
| void Scop::setScheduleTree(__isl_take isl_schedule *NewSchedule) { |
| isl_schedule_free(Schedule); |
| Schedule = NewSchedule; |
| } |
| |
| bool Scop::restrictDomains(__isl_take isl_union_set *Domain) { |
| bool Changed = false; |
| for (ScopStmt &Stmt : *this) { |
| isl_union_set *StmtDomain = isl_union_set_from_set(Stmt.getDomain()); |
| isl_union_set *NewStmtDomain = isl_union_set_intersect( |
| isl_union_set_copy(StmtDomain), isl_union_set_copy(Domain)); |
| |
| if (isl_union_set_is_subset(StmtDomain, NewStmtDomain)) { |
| isl_union_set_free(StmtDomain); |
| isl_union_set_free(NewStmtDomain); |
| continue; |
| } |
| |
| Changed = true; |
| |
| isl_union_set_free(StmtDomain); |
| NewStmtDomain = isl_union_set_coalesce(NewStmtDomain); |
| |
| if (isl_union_set_is_empty(NewStmtDomain)) { |
| Stmt.restrictDomain(isl_set_empty(Stmt.getDomainSpace())); |
| isl_union_set_free(NewStmtDomain); |
| } else |
| Stmt.restrictDomain(isl_set_from_union_set(NewStmtDomain)); |
| } |
| isl_union_set_free(Domain); |
| return Changed; |
| } |
| |
| ScalarEvolution *Scop::getSE() const { return SE; } |
| |
| bool Scop::isTrivialBB(BasicBlock *BB) { |
| if (getAccessFunctions(BB) && !isErrorBlock(*BB)) |
| return false; |
| |
| return true; |
| } |
| |
| struct MapToDimensionDataTy { |
| int N; |
| isl_union_pw_multi_aff *Res; |
| }; |
| |
| // @brief Create a function that maps the elements of 'Set' to its N-th |
| // dimension. |
| // |
| // The result is added to 'User->Res'. |
| // |
| // @param Set The input set. |
| // @param N The dimension to map to. |
| // |
| // @returns Zero if no error occurred, non-zero otherwise. |
| static isl_stat mapToDimension_AddSet(__isl_take isl_set *Set, void *User) { |
| struct MapToDimensionDataTy *Data = (struct MapToDimensionDataTy *)User; |
| int Dim; |
| isl_space *Space; |
| isl_pw_multi_aff *PMA; |
| |
| Dim = isl_set_dim(Set, isl_dim_set); |
| Space = isl_set_get_space(Set); |
| PMA = isl_pw_multi_aff_project_out_map(Space, isl_dim_set, Data->N, |
| Dim - Data->N); |
| if (Data->N > 1) |
| PMA = isl_pw_multi_aff_drop_dims(PMA, isl_dim_out, 0, Data->N - 1); |
| Data->Res = isl_union_pw_multi_aff_add_pw_multi_aff(Data->Res, PMA); |
| |
| isl_set_free(Set); |
| |
| return isl_stat_ok; |
| } |
| |
| // @brief Create a function that maps the elements of Domain to their Nth |
| // dimension. |
| // |
| // @param Domain The set of elements to map. |
| // @param N The dimension to map to. |
| static __isl_give isl_multi_union_pw_aff * |
| mapToDimension(__isl_take isl_union_set *Domain, int N) { |
| if (N <= 0 || isl_union_set_is_empty(Domain)) { |
| isl_union_set_free(Domain); |
| return nullptr; |
| } |
| |
| struct MapToDimensionDataTy Data; |
| isl_space *Space; |
| |
| Space = isl_union_set_get_space(Domain); |
| Data.N = N; |
| Data.Res = isl_union_pw_multi_aff_empty(Space); |
| if (isl_union_set_foreach_set(Domain, &mapToDimension_AddSet, &Data) < 0) |
| Data.Res = isl_union_pw_multi_aff_free(Data.Res); |
| |
| isl_union_set_free(Domain); |
| return isl_multi_union_pw_aff_from_union_pw_multi_aff(Data.Res); |
| } |
| |
| ScopStmt *Scop::addScopStmt(BasicBlock *BB, Region *R) { |
| ScopStmt *Stmt; |
| if (BB) { |
| Stmts.emplace_back(*this, *BB); |
| Stmt = &Stmts.back(); |
| StmtMap[BB] = Stmt; |
| } else { |
| assert(R && "Either basic block or a region expected."); |
| Stmts.emplace_back(*this, *R); |
| Stmt = &Stmts.back(); |
| for (BasicBlock *BB : R->blocks()) |
| StmtMap[BB] = Stmt; |
| } |
| return Stmt; |
| } |
| |
| void Scop::buildSchedule( |
| Region *R, LoopInfo &LI, ScopDetection &SD, |
| DenseMap<Loop *, std::pair<isl_schedule *, unsigned>> &LoopSchedules) { |
| |
| if (SD.isNonAffineSubRegion(R, &getRegion())) { |
| auto *Stmt = addScopStmt(nullptr, R); |
| auto *UDomain = isl_union_set_from_set(Stmt->getDomain()); |
| auto *StmtSchedule = isl_schedule_from_domain(UDomain); |
| auto &LSchedulePair = LoopSchedules[nullptr]; |
| LSchedulePair.first = StmtSchedule; |
| return; |
| } |
| |
| ReversePostOrderTraversal<Region *> RTraversal(R); |
| for (auto *RN : RTraversal) { |
| |
| if (RN->isSubRegion()) { |
| Region *SubRegion = RN->getNodeAs<Region>(); |
| if (!SD.isNonAffineSubRegion(SubRegion, &getRegion())) { |
| buildSchedule(SubRegion, LI, SD, LoopSchedules); |
| continue; |
| } |
| } |
| |
| Loop *L = getRegionNodeLoop(RN, LI); |
| int LD = getRelativeLoopDepth(L); |
| auto &LSchedulePair = LoopSchedules[L]; |
| LSchedulePair.second += getNumBlocksInRegionNode(RN); |
| |
| BasicBlock *BB = getRegionNodeBasicBlock(RN); |
| if (RN->isSubRegion() || !isTrivialBB(BB)) { |
| |
| ScopStmt *Stmt; |
| if (RN->isSubRegion()) |
| Stmt = addScopStmt(nullptr, RN->getNodeAs<Region>()); |
| else |
| Stmt = addScopStmt(BB, nullptr); |
| |
| auto *UDomain = isl_union_set_from_set(Stmt->getDomain()); |
| auto *StmtSchedule = isl_schedule_from_domain(UDomain); |
| LSchedulePair.first = |
| combineInSequence(LSchedulePair.first, StmtSchedule); |
| } |
| |
| unsigned NumVisited = LSchedulePair.second; |
| while (L && NumVisited == L->getNumBlocks()) { |
| auto *LDomain = isl_schedule_get_domain(LSchedulePair.first); |
| if (auto *MUPA = mapToDimension(LDomain, LD + 1)) |
| LSchedulePair.first = |
| isl_schedule_insert_partial_schedule(LSchedulePair.first, MUPA); |
| |
| auto *PL = L->getParentLoop(); |
| assert(LoopSchedules.count(PL)); |
| auto &PSchedulePair = LoopSchedules[PL]; |
| PSchedulePair.first = |
| combineInSequence(PSchedulePair.first, LSchedulePair.first); |
| PSchedulePair.second += NumVisited; |
| |
| L = PL; |
| NumVisited = PSchedulePair.second; |
| } |
| } |
| } |
| |
| ScopStmt *Scop::getStmtForBasicBlock(BasicBlock *BB) const { |
| auto StmtMapIt = StmtMap.find(BB); |
| if (StmtMapIt == StmtMap.end()) |
| return nullptr; |
| return StmtMapIt->second; |
| } |
| |
| void Scop::printIRAccesses(raw_ostream &OS, ScalarEvolution *SE, |
| LoopInfo *LI) const { |
| OS << "Scop: " << R.getNameStr() << "\n"; |
| |
| printIRAccessesDetail(OS, SE, LI, &R, 0); |
| } |
| |
| void Scop::printIRAccessesDetail(raw_ostream &OS, ScalarEvolution *SE, |
| LoopInfo *LI, const Region *CurR, |
| unsigned ind) const { |
| // FIXME: Print other details rather than memory accesses. |
| for (const auto &CurBlock : CurR->blocks()) { |
| AccFuncMapType::const_iterator AccSetIt = AccFuncMap.find(CurBlock); |
| |
| // Ignore trivial blocks that do not contain any memory access. |
| if (AccSetIt == AccFuncMap.end()) |
| continue; |
| |
| OS.indent(ind) << "BB: " << CurBlock->getName() << '\n'; |
| typedef AccFuncSetType::const_iterator access_iterator; |
| const AccFuncSetType &AccFuncs = AccSetIt->second; |
| |
| for (access_iterator AI = AccFuncs.begin(), AE = AccFuncs.end(); AI != AE; |
| ++AI) |
| AI->printIR(OS.indent(ind + 2)); |
| } |
| } |
| |
| int Scop::getRelativeLoopDepth(const Loop *L) const { |
| Loop *OuterLoop = |
| L ? R.outermostLoopInRegion(const_cast<Loop *>(L)) : nullptr; |
| if (!OuterLoop) |
| return -1; |
| return L->getLoopDepth() - OuterLoop->getLoopDepth(); |
| } |
| |
| void ScopInfo::buildPHIAccesses(PHINode *PHI, Region &R, |
| Region *NonAffineSubRegion, bool IsExitBlock) { |
| |
| // PHI nodes that are in the exit block of the region, hence if IsExitBlock is |
| // true, are not modeled as ordinary PHI nodes as they are not part of the |
| // region. However, we model the operands in the predecessor blocks that are |
| // part of the region as regular scalar accesses. |
| |
| // If we can synthesize a PHI we can skip it, however only if it is in |
| // the region. If it is not it can only be in the exit block of the region. |
| // In this case we model the operands but not the PHI itself. |
| if (!IsExitBlock && canSynthesize(PHI, LI, SE, &R)) |
| return; |
| |
| // PHI nodes are modeled as if they had been demoted prior to the SCoP |
| // detection. Hence, the PHI is a load of a new memory location in which the |
| // incoming value was written at the end of the incoming basic block. |
| bool OnlyNonAffineSubRegionOperands = true; |
| for (unsigned u = 0; u < PHI->getNumIncomingValues(); u++) { |
| Value *Op = PHI->getIncomingValue(u); |
| BasicBlock *OpBB = PHI->getIncomingBlock(u); |
| |
| // Do not build scalar dependences inside a non-affine subregion. |
| if (NonAffineSubRegion && NonAffineSubRegion->contains(OpBB)) |
| continue; |
| |
| OnlyNonAffineSubRegionOperands = false; |
| |
| if (!R.contains(OpBB)) |
| continue; |
| |
| Instruction *OpI = dyn_cast<Instruction>(Op); |
| if (OpI) { |
| BasicBlock *OpIBB = OpI->getParent(); |
| // As we pretend there is a use (or more precise a write) of OpI in OpBB |
| // we have to insert a scalar dependence from the definition of OpI to |
| // OpBB if the definition is not in OpBB. |
| if (OpIBB != OpBB) { |
| addMemoryAccess(OpBB, PHI, MemoryAccess::READ, OpI, ZeroOffset, 1, true, |
| OpI); |
| addMemoryAccess(OpIBB, OpI, MemoryAccess::MUST_WRITE, OpI, ZeroOffset, |
| 1, true, OpI); |
| } |
| } |
| |
| // Always use the terminator of the incoming basic block as the access |
| // instruction. |
| OpI = OpBB->getTerminator(); |
| |
| addMemoryAccess(OpBB, OpI, MemoryAccess::MUST_WRITE, PHI, ZeroOffset, 1, |
| true, Op, /* IsPHI */ !IsExitBlock); |
| } |
| |
| if (!OnlyNonAffineSubRegionOperands) { |
| addMemoryAccess(PHI->getParent(), PHI, MemoryAccess::READ, PHI, ZeroOffset, |
| 1, true, PHI, |
| /* IsPHI */ !IsExitBlock); |
| } |
| } |
| |
| bool ScopInfo::buildScalarDependences(Instruction *Inst, Region *R, |
| Region *NonAffineSubRegion) { |
| bool canSynthesizeInst = canSynthesize(Inst, LI, SE, R); |
| if (isIgnoredIntrinsic(Inst)) |
| return false; |
| |
| bool AnyCrossStmtUse = false; |
| BasicBlock *ParentBB = Inst->getParent(); |
| |
| for (User *U : Inst->users()) { |
| Instruction *UI = dyn_cast<Instruction>(U); |
| |
| // Ignore the strange user |
| if (UI == 0) |
| continue; |
| |
| BasicBlock *UseParent = UI->getParent(); |
| |
| // Ignore the users in the same BB (statement) |
| if (UseParent == ParentBB) |
| continue; |
| |
| // Do not build scalar dependences inside a non-affine subregion. |
| if (NonAffineSubRegion && NonAffineSubRegion->contains(UseParent)) |
| continue; |
| |
| // Check whether or not the use is in the SCoP. |
| if (!R->contains(UseParent)) { |
| AnyCrossStmtUse = true; |
| continue; |
| } |
| |
| // If the instruction can be synthesized and the user is in the region |
| // we do not need to add scalar dependences. |
| if (canSynthesizeInst) |
| continue; |
| |
| // No need to translate these scalar dependences into polyhedral form, |
| // because synthesizable scalars can be generated by the code generator. |
| if (canSynthesize(UI, LI, SE, R)) |
| continue; |
| |
| // Skip PHI nodes in the region as they handle their operands on their own. |
| if (isa<PHINode>(UI)) |
| continue; |
| |
| // Now U is used in another statement. |
| AnyCrossStmtUse = true; |
| |
| // Do not build a read access that is not in the current SCoP |
| // Use the def instruction as base address of the MemoryAccess, so that it |
| // will become the name of the scalar access in the polyhedral form. |
| addMemoryAccess(UseParent, UI, MemoryAccess::READ, Inst, ZeroOffset, 1, |
| true, Inst); |
| } |
| |
| if (ModelReadOnlyScalars) { |
| for (Value *Op : Inst->operands()) { |
| if (canSynthesize(Op, LI, SE, R)) |
| continue; |
| |
| if (Instruction *OpInst = dyn_cast<Instruction>(Op)) |
| if (R->contains(OpInst)) |
| continue; |
| |
| if (isa<Constant>(Op)) |
| continue; |
| |
| addMemoryAccess(Inst->getParent(), Inst, MemoryAccess::READ, Op, |
| ZeroOffset, 1, true, Op); |
| } |
| } |
| |
| return AnyCrossStmtUse; |
| } |
| |
| extern MapInsnToMemAcc InsnToMemAcc; |
| |
| void ScopInfo::buildMemoryAccess( |
| Instruction *Inst, Loop *L, Region *R, |
| const ScopDetection::BoxedLoopsSetTy *BoxedLoops) { |
| unsigned Size; |
| Type *SizeType; |
| Value *Val; |
| enum MemoryAccess::AccessType Type; |
| |
| if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) { |
| SizeType = Load->getType(); |
| Size = TD->getTypeStoreSize(SizeType); |
| Type = MemoryAccess::READ; |
| Val = Load; |
| } else { |
| StoreInst *Store = cast<StoreInst>(Inst); |
| SizeType = Store->getValueOperand()->getType(); |
| Size = TD->getTypeStoreSize(SizeType); |
| Type = MemoryAccess::MUST_WRITE; |
| Val = Store->getValueOperand(); |
| } |
| |
| auto Address = getPointerOperand(*Inst); |
| |
| const SCEV *AccessFunction = SE->getSCEVAtScope(Address, L); |
| const SCEVUnknown *BasePointer = |
| dyn_cast<SCEVUnknown>(SE->getPointerBase(AccessFunction)); |
| |
| assert(BasePointer && "Could not find base pointer"); |
| AccessFunction = SE->getMinusSCEV(AccessFunction, BasePointer); |
| |
| if (isa<GetElementPtrInst>(Address) || isa<BitCastInst>(Address)) { |
| auto NewAddress = Address; |
| if (auto *BitCast = dyn_cast<BitCastInst>(Address)) { |
| auto Src = BitCast->getOperand(0); |
| auto SrcTy = Src->getType(); |
| auto DstTy = BitCast->getType(); |
| if (SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits()) |
| NewAddress = Src; |
| } |
| |
| if (auto *GEP = dyn_cast<GetElementPtrInst>(NewAddress)) { |
| std::vector<const SCEV *> Subscripts; |
| std::vector<int> Sizes; |
| std::tie(Subscripts, Sizes) = getIndexExpressionsFromGEP(GEP, *SE); |
| auto BasePtr = GEP->getOperand(0); |
| |
| std::vector<const SCEV *> SizesSCEV; |
| |
| bool AllAffineSubcripts = true; |
| for (auto Subscript : Subscripts) |
| if (!isAffineExpr(R, Subscript, *SE)) { |
| AllAffineSubcripts = false; |
| break; |
| } |
| |
| if (AllAffineSubcripts && Sizes.size() > 0) { |
| for (auto V : Sizes) |
| SizesSCEV.push_back(SE->getSCEV(ConstantInt::get( |
| IntegerType::getInt64Ty(BasePtr->getContext()), V))); |
| SizesSCEV.push_back(SE->getSCEV(ConstantInt::get( |
| IntegerType::getInt64Ty(BasePtr->getContext()), Size))); |
| |
| addMemoryAccess(Inst->getParent(), Inst, Type, BasePointer->getValue(), |
| AccessFunction, Size, true, Subscripts, SizesSCEV, Val); |
| } |
| } |
| } |
| |
| auto AccItr = InsnToMemAcc.find(Inst); |
| if (PollyDelinearize && AccItr != InsnToMemAcc.end()) { |
| addMemoryAccess(Inst->getParent(), Inst, Type, BasePointer->getValue(), |
| AccessFunction, Size, true, |
| AccItr->second.DelinearizedSubscripts, |
| AccItr->second.Shape->DelinearizedSizes, Val); |
| return; |
| } |
| |
| // Check if the access depends on a loop contained in a non-affine subregion. |
| bool isVariantInNonAffineLoop = false; |
| if (BoxedLoops) { |
| SetVector<const Loop *> Loops; |
| findLoops(AccessFunction, Loops); |
| for (const Loop *L : Loops) |
| if (BoxedLoops->count(L)) |
| isVariantInNonAffineLoop = true; |
| } |
| |
| bool IsAffine = !isVariantInNonAffineLoop && |
| isAffineExpr(R, AccessFunction, *SE, BasePointer->getValue()); |
| |
| SmallVector<const SCEV *, 4> Subscripts, Sizes; |
| Subscripts.push_back(AccessFunction); |
| Sizes.push_back(SE->getConstant(ZeroOffset->getType(), Size)); |
| |
| if (!IsAffine && Type == MemoryAccess::MUST_WRITE) |
| Type = MemoryAccess::MAY_WRITE; |
| |
| addMemoryAccess(Inst->getParent(), Inst, Type, BasePointer->getValue(), |
| AccessFunction, Size, IsAffine, Subscripts, Sizes, Val); |
| } |
| |
| void ScopInfo::buildAccessFunctions(Region &R, Region &SR) { |
| |
| if (SD->isNonAffineSubRegion(&SR, &R)) { |
| for (BasicBlock *BB : SR.blocks()) |
| buildAccessFunctions(R, *BB, &SR); |
| return; |
| } |
| |
| for (auto I = SR.element_begin(), E = SR.element_end(); I != E; ++I) |
| if (I->isSubRegion()) |
| buildAccessFunctions(R, *I->getNodeAs<Region>()); |
| else |
| buildAccessFunctions(R, *I->getNodeAs<BasicBlock>()); |
| } |
| |
| void ScopInfo::buildAccessFunctions(Region &R, BasicBlock &BB, |
| Region *NonAffineSubRegion, |
| bool IsExitBlock) { |
| Loop *L = LI->getLoopFor(&BB); |
| |
| // The set of loops contained in non-affine subregions that are part of R. |
| const ScopDetection::BoxedLoopsSetTy *BoxedLoops = SD->getBoxedLoops(&R); |
| |
| for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I) { |
| Instruction *Inst = I; |
| |
| PHINode *PHI = dyn_cast<PHINode>(Inst); |
| if (PHI) |
| buildPHIAccesses(PHI, R, NonAffineSubRegion, IsExitBlock); |
| |
| // For the exit block we stop modeling after the last PHI node. |
| if (!PHI && IsExitBlock) |
| break; |
| |
| if (isa<LoadInst>(Inst) || isa<StoreInst>(Inst)) |
| buildMemoryAccess(Inst, L, &R, BoxedLoops); |
| |
| if (isIgnoredIntrinsic(Inst)) |
| continue; |
| |
| if (buildScalarDependences(Inst, &R, NonAffineSubRegion)) { |
| if (!isa<StoreInst>(Inst)) |
| addMemoryAccess(&BB, Inst, MemoryAccess::MUST_WRITE, Inst, ZeroOffset, |
| 1, true, Inst); |
| } |
| } |
| } |
| |
| void ScopInfo::addMemoryAccess( |
| BasicBlock *BB, Instruction *Inst, MemoryAccess::AccessType Type, |
| Value *BaseAddress, const SCEV *Offset, unsigned ElemBytes, bool Affine, |
| Value *AccessValue, ArrayRef<const SCEV *> Subscripts, |
| ArrayRef<const SCEV *> Sizes, bool IsPHI = false) { |
| AccFuncSetType &AccList = AccFuncMap[BB]; |
| size_t Identifier = AccList.size(); |
| |
| Value *BaseAddr = BaseAddress; |
| std::string BaseName = getIslCompatibleName("MemRef_", BaseAddr, ""); |
| |
| std::string IdName = "__polly_array_ref_" + std::to_string(Identifier); |
| isl_id *Id = isl_id_alloc(ctx, IdName.c_str(), nullptr); |
| |
| AccList.emplace_back(Inst, Id, Type, BaseAddress, Offset, ElemBytes, Affine, |
| Subscripts, Sizes, AccessValue, IsPHI, BaseName); |
| } |
| |
| Scop *ScopInfo::buildScop(Region &R, DominatorTree &DT) { |
| unsigned MaxLoopDepth = getMaxLoopDepthInRegion(R, *LI, *SD); |
| Scop *S = new Scop(R, AccFuncMap, *SE, DT, ctx, MaxLoopDepth); |
| |
| buildAccessFunctions(R, R); |
| |
| // In case the region does not have an exiting block we will later (during |
| // code generation) split the exit block. This will move potential PHI nodes |
| // from the current exit block into the new region exiting block. Hence, PHI |
| // nodes that are at this point not part of the region will be. |
| // To handle these PHI nodes later we will now model their operands as scalar |
| // accesses. Note that we do not model anything in the exit block if we have |
| // an exiting block in the region, as there will not be any splitting later. |
| if (!R.getExitingBlock()) |
| buildAccessFunctions(R, *R.getExit(), nullptr, /* IsExitBlock */ true); |
| |
| S->init(*LI, *SD, *AA); |
| return S; |
| } |
| |
| void ScopInfo::print(raw_ostream &OS, const Module *) const { |
| if (!scop) { |
| OS << "Invalid Scop!\n"; |
| return; |
| } |
| |
| scop->printIRAccesses(OS, SE, LI); |
| scop->print(OS); |
| } |
| |
| void ScopInfo::clear() { |
| AccFuncMap.clear(); |
| if (scop) { |
| delete scop; |
| scop = 0; |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| ScopInfo::ScopInfo() : RegionPass(ID), scop(0) { |
| ctx = isl_ctx_alloc(); |
| isl_options_set_on_error(ctx, ISL_ON_ERROR_ABORT); |
| } |
| |
| ScopInfo::~ScopInfo() { |
| clear(); |
| isl_ctx_free(ctx); |
| } |
| |
| void ScopInfo::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.addRequiredID(IndependentBlocksID); |
| AU.addRequired<LoopInfoWrapperPass>(); |
| AU.addRequired<RegionInfoPass>(); |
| AU.addRequired<DominatorTreeWrapperPass>(); |
| AU.addRequiredTransitive<ScalarEvolutionWrapperPass>(); |
| AU.addRequiredTransitive<ScopDetection>(); |
| AU.addRequired<AAResultsWrapperPass>(); |
| AU.setPreservesAll(); |
| } |
| |
| bool ScopInfo::runOnRegion(Region *R, RGPassManager &RGM) { |
| SD = &getAnalysis<ScopDetection>(); |
| |
| if (!SD->isMaxRegionInScop(*R)) |
| return false; |
| |
| Function *F = R->getEntry()->getParent(); |
| SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); |
| LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); |
| AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); |
| TD = &F->getParent()->getDataLayout(); |
| DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
| ZeroOffset = SE->getConstant(TD->getIntPtrType(F->getContext()), 0); |
| |
| scop = buildScop(*R, DT); |
| |
| DEBUG(scop->print(dbgs())); |
| |
| if (!scop->hasFeasibleRuntimeContext()) { |
| delete scop; |
| scop = nullptr; |
| return false; |
| } |
| |
| // Statistics. |
| ++ScopFound; |
| if (scop->getMaxLoopDepth() > 0) |
| ++RichScopFound; |
| return false; |
| } |
| |
| char ScopInfo::ID = 0; |
| |
| Pass *polly::createScopInfoPass() { return new ScopInfo(); } |
| |
| INITIALIZE_PASS_BEGIN(ScopInfo, "polly-scops", |
| "Polly - Create polyhedral description of Scops", false, |
| false); |
| INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass); |
| INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass); |
| INITIALIZE_PASS_DEPENDENCY(RegionInfoPass); |
| INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass); |
| INITIALIZE_PASS_DEPENDENCY(ScopDetection); |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass); |
| INITIALIZE_PASS_END(ScopInfo, "polly-scops", |
| "Polly - Create polyhedral description of Scops", false, |
| false) |