|  | //===-- SparcV9InstrInfo.cpp ------------------------------------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file was developed by the LLVM research group and is distributed under | 
|  | // the University of Illinois Open Source License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Constants.h" | 
|  | #include "llvm/DerivedTypes.h" | 
|  | #include "llvm/Function.h" | 
|  | #include "llvm/iTerminators.h" | 
|  | #include "llvm/CodeGen/InstrSelection.h" | 
|  | #include "llvm/CodeGen/MachineConstantPool.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineFunctionInfo.h" | 
|  | #include "llvm/CodeGen/MachineCodeForInstruction.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "SparcV9Internals.h" | 
|  | #include "SparcV9InstrSelectionSupport.h" | 
|  | #include "SparcV9InstrInfo.h" | 
|  |  | 
|  | namespace llvm { | 
|  |  | 
|  | static const uint32_t MAXLO   = (1 << 10) - 1; // set bits set by %lo(*) | 
|  | static const uint32_t MAXSIMM = (1 << 12) - 1; // set bits in simm13 field of OR | 
|  |  | 
|  | //--------------------------------------------------------------------------- | 
|  | // Function ConvertConstantToIntType | 
|  | // | 
|  | // Function to get the value of an integral constant in the form | 
|  | // that must be put into the machine register.  The specified constant is | 
|  | // interpreted as (i.e., converted if necessary to) the specified destination | 
|  | // type.  The result is always returned as an uint64_t, since the representation | 
|  | // of int64_t and uint64_t are identical.  The argument can be any known const. | 
|  | // | 
|  | // isValidConstant is set to true if a valid constant was found. | 
|  | //--------------------------------------------------------------------------- | 
|  |  | 
|  | uint64_t | 
|  | SparcV9InstrInfo::ConvertConstantToIntType(const TargetMachine &target, | 
|  | const Value *V, | 
|  | const Type *destType, | 
|  | bool  &isValidConstant) const | 
|  | { | 
|  | isValidConstant = false; | 
|  | uint64_t C = 0; | 
|  |  | 
|  | if (! destType->isIntegral() && ! isa<PointerType>(destType)) | 
|  | return C; | 
|  |  | 
|  | if (! isa<Constant>(V)) | 
|  | return C; | 
|  |  | 
|  | // ConstantPointerRef: no conversions needed: get value and return it | 
|  | if (const ConstantPointerRef* CPR = dyn_cast<ConstantPointerRef>(V)) { | 
|  | // A ConstantPointerRef is just a reference to GlobalValue. | 
|  | isValidConstant = true;             // may be overwritten by recursive call | 
|  | return (CPR->isNullValue()? 0 | 
|  | : ConvertConstantToIntType(target, CPR->getValue(), destType, | 
|  | isValidConstant)); | 
|  | } | 
|  |  | 
|  | // ConstantBool: no conversions needed: get value and return it | 
|  | if (const ConstantBool *CB = dyn_cast<ConstantBool>(V)) { | 
|  | isValidConstant = true; | 
|  | return (uint64_t) CB->getValue(); | 
|  | } | 
|  |  | 
|  | // For other types of constants, some conversion may be needed. | 
|  | // First, extract the constant operand according to its own type | 
|  | if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) | 
|  | switch(CE->getOpcode()) { | 
|  | case Instruction::Cast:             // recursively get the value as cast | 
|  | C = ConvertConstantToIntType(target, CE->getOperand(0), CE->getType(), | 
|  | isValidConstant); | 
|  | break; | 
|  | default:                            // not simplifying other ConstantExprs | 
|  | break; | 
|  | } | 
|  | else if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { | 
|  | isValidConstant = true; | 
|  | C = CI->getRawValue(); | 
|  | } | 
|  | else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { | 
|  | isValidConstant = true; | 
|  | double fC = CFP->getValue(); | 
|  | C = (destType->isSigned()? (uint64_t) (int64_t) fC | 
|  | : (uint64_t)           fC); | 
|  | } | 
|  |  | 
|  | // Now if a valid value was found, convert it to destType. | 
|  | if (isValidConstant) { | 
|  | unsigned opSize   = target.getTargetData().getTypeSize(V->getType()); | 
|  | unsigned destSize = target.getTargetData().getTypeSize(destType); | 
|  | uint64_t maskHi   = (destSize < 8)? (1U << 8*destSize) - 1 : ~0; | 
|  | assert(opSize <= 8 && destSize <= 8 && ">8-byte int type unexpected"); | 
|  |  | 
|  | if (destType->isSigned()) { | 
|  | if (opSize > destSize)            // operand is larger than dest: | 
|  | C = C & maskHi;                 // mask high bits | 
|  |  | 
|  | if (opSize > destSize || | 
|  | (opSize == destSize && ! V->getType()->isSigned())) | 
|  | if (C & (1U << (8*destSize - 1))) | 
|  | C =  C | ~maskHi;             // sign-extend from destSize to 64 bits | 
|  | } | 
|  | else { | 
|  | if (opSize > destSize || (V->getType()->isSigned() && destSize < 8)) { | 
|  | // operand is larger than dest, | 
|  | //    OR both are equal but smaller than the full register size | 
|  | //       AND operand is signed, so it may have extra sign bits: | 
|  | // mask high bits | 
|  | C = C & maskHi; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return C; | 
|  | } | 
|  |  | 
|  |  | 
|  | //---------------------------------------------------------------------------- | 
|  | // Function: CreateSETUWConst | 
|  | // | 
|  | // Set a 32-bit unsigned constant in the register `dest', using | 
|  | // SETHI, OR in the worst case.  This function correctly emulates | 
|  | // the SETUW pseudo-op for SPARC v9 (if argument isSigned == false). | 
|  | // | 
|  | // The isSigned=true case is used to implement SETSW without duplicating code. | 
|  | // | 
|  | // Optimize some common cases: | 
|  | // (1) Small value that fits in simm13 field of OR: don't need SETHI. | 
|  | // (2) isSigned = true and C is a small negative signed value, i.e., | 
|  | //     high bits are 1, and the remaining bits fit in simm13(OR). | 
|  | //---------------------------------------------------------------------------- | 
|  |  | 
|  | static inline void | 
|  | CreateSETUWConst(const TargetMachine& target, uint32_t C, | 
|  | Instruction* dest, std::vector<MachineInstr*>& mvec, | 
|  | bool isSigned = false) | 
|  | { | 
|  | MachineInstr *miSETHI = NULL, *miOR = NULL; | 
|  |  | 
|  | // In order to get efficient code, we should not generate the SETHI if | 
|  | // all high bits are 1 (i.e., this is a small signed value that fits in | 
|  | // the simm13 field of OR).  So we check for and handle that case specially. | 
|  | // NOTE: The value C = 0x80000000 is bad: sC < 0 *and* -sC < 0. | 
|  | //       In fact, sC == -sC, so we have to check for this explicitly. | 
|  | int32_t sC = (int32_t) C; | 
|  | bool smallNegValue =isSigned && sC < 0 && sC != -sC && -sC < (int32_t)MAXSIMM; | 
|  |  | 
|  | // Set the high 22 bits in dest if non-zero and simm13 field of OR not enough | 
|  | if (!smallNegValue && (C & ~MAXLO) && C > MAXSIMM) { | 
|  | miSETHI = BuildMI(V9::SETHI, 2).addZImm(C).addRegDef(dest); | 
|  | miSETHI->setOperandHi32(0); | 
|  | mvec.push_back(miSETHI); | 
|  | } | 
|  |  | 
|  | // Set the low 10 or 12 bits in dest.  This is necessary if no SETHI | 
|  | // was generated, or if the low 10 bits are non-zero. | 
|  | if (miSETHI==NULL || C & MAXLO) { | 
|  | if (miSETHI) { | 
|  | // unsigned value with high-order bits set using SETHI | 
|  | miOR = BuildMI(V9::ORi,3).addReg(dest).addZImm(C).addRegDef(dest); | 
|  | miOR->setOperandLo32(1); | 
|  | } else { | 
|  | // unsigned or small signed value that fits in simm13 field of OR | 
|  | assert(smallNegValue || (C & ~MAXSIMM) == 0); | 
|  | miOR = BuildMI(V9::ORi, 3).addMReg(target.getRegInfo() | 
|  | .getZeroRegNum()) | 
|  | .addSImm(sC).addRegDef(dest); | 
|  | } | 
|  | mvec.push_back(miOR); | 
|  | } | 
|  |  | 
|  | assert((miSETHI || miOR) && "Oops, no code was generated!"); | 
|  | } | 
|  |  | 
|  |  | 
|  | //---------------------------------------------------------------------------- | 
|  | // Function: CreateSETSWConst | 
|  | // | 
|  | // Set a 32-bit signed constant in the register `dest', with sign-extension | 
|  | // to 64 bits.  This uses SETHI, OR, SRA in the worst case. | 
|  | // This function correctly emulates the SETSW pseudo-op for SPARC v9. | 
|  | // | 
|  | // Optimize the same cases as SETUWConst, plus: | 
|  | // (1) SRA is not needed for positive or small negative values. | 
|  | //---------------------------------------------------------------------------- | 
|  |  | 
|  | static inline void | 
|  | CreateSETSWConst(const TargetMachine& target, int32_t C, | 
|  | Instruction* dest, std::vector<MachineInstr*>& mvec) | 
|  | { | 
|  | // Set the low 32 bits of dest | 
|  | CreateSETUWConst(target, (uint32_t) C,  dest, mvec, /*isSigned*/true); | 
|  |  | 
|  | // Sign-extend to the high 32 bits if needed. | 
|  | // NOTE: The value C = 0x80000000 is bad: -C == C and so -C is < MAXSIMM | 
|  | if (C < 0 && (C == -C || -C > (int32_t) MAXSIMM)) | 
|  | mvec.push_back(BuildMI(V9::SRAi5,3).addReg(dest).addZImm(0).addRegDef(dest)); | 
|  | } | 
|  |  | 
|  |  | 
|  | //---------------------------------------------------------------------------- | 
|  | // Function: CreateSETXConst | 
|  | // | 
|  | // Set a 64-bit signed or unsigned constant in the register `dest'. | 
|  | // Use SETUWConst for each 32 bit word, plus a left-shift-by-32 in between. | 
|  | // This function correctly emulates the SETX pseudo-op for SPARC v9. | 
|  | // | 
|  | // Optimize the same cases as SETUWConst for each 32 bit word. | 
|  | //---------------------------------------------------------------------------- | 
|  |  | 
|  | static inline void | 
|  | CreateSETXConst(const TargetMachine& target, uint64_t C, | 
|  | Instruction* tmpReg, Instruction* dest, | 
|  | std::vector<MachineInstr*>& mvec) | 
|  | { | 
|  | assert(C > (unsigned int) ~0 && "Use SETUW/SETSW for 32-bit values!"); | 
|  |  | 
|  | MachineInstr* MI; | 
|  |  | 
|  | // Code to set the upper 32 bits of the value in register `tmpReg' | 
|  | CreateSETUWConst(target, (C >> 32), tmpReg, mvec); | 
|  |  | 
|  | // Shift tmpReg left by 32 bits | 
|  | mvec.push_back(BuildMI(V9::SLLXi6, 3).addReg(tmpReg).addZImm(32) | 
|  | .addRegDef(tmpReg)); | 
|  |  | 
|  | // Code to set the low 32 bits of the value in register `dest' | 
|  | CreateSETUWConst(target, C, dest, mvec); | 
|  |  | 
|  | // dest = OR(tmpReg, dest) | 
|  | mvec.push_back(BuildMI(V9::ORr,3).addReg(dest).addReg(tmpReg).addRegDef(dest)); | 
|  | } | 
|  |  | 
|  |  | 
|  | //---------------------------------------------------------------------------- | 
|  | // Function: CreateSETUWLabel | 
|  | // | 
|  | // Set a 32-bit constant (given by a symbolic label) in the register `dest'. | 
|  | //---------------------------------------------------------------------------- | 
|  |  | 
|  | static inline void | 
|  | CreateSETUWLabel(const TargetMachine& target, Value* val, | 
|  | Instruction* dest, std::vector<MachineInstr*>& mvec) | 
|  | { | 
|  | MachineInstr* MI; | 
|  |  | 
|  | // Set the high 22 bits in dest | 
|  | MI = BuildMI(V9::SETHI, 2).addReg(val).addRegDef(dest); | 
|  | MI->setOperandHi32(0); | 
|  | mvec.push_back(MI); | 
|  |  | 
|  | // Set the low 10 bits in dest | 
|  | MI = BuildMI(V9::ORr, 3).addReg(dest).addReg(val).addRegDef(dest); | 
|  | MI->setOperandLo32(1); | 
|  | mvec.push_back(MI); | 
|  | } | 
|  |  | 
|  |  | 
|  | //---------------------------------------------------------------------------- | 
|  | // Function: CreateSETXLabel | 
|  | // | 
|  | // Set a 64-bit constant (given by a symbolic label) in the register `dest'. | 
|  | //---------------------------------------------------------------------------- | 
|  |  | 
|  | static inline void | 
|  | CreateSETXLabel(const TargetMachine& target, | 
|  | Value* val, Instruction* tmpReg, Instruction* dest, | 
|  | std::vector<MachineInstr*>& mvec) | 
|  | { | 
|  | assert(isa<Constant>(val) || isa<GlobalValue>(val) && | 
|  | "I only know about constant values and global addresses"); | 
|  |  | 
|  | MachineInstr* MI; | 
|  |  | 
|  | MI = BuildMI(V9::SETHI, 2).addPCDisp(val).addRegDef(tmpReg); | 
|  | MI->setOperandHi64(0); | 
|  | mvec.push_back(MI); | 
|  |  | 
|  | MI = BuildMI(V9::ORi, 3).addReg(tmpReg).addPCDisp(val).addRegDef(tmpReg); | 
|  | MI->setOperandLo64(1); | 
|  | mvec.push_back(MI); | 
|  |  | 
|  | mvec.push_back(BuildMI(V9::SLLXi6, 3).addReg(tmpReg).addZImm(32) | 
|  | .addRegDef(tmpReg)); | 
|  | MI = BuildMI(V9::SETHI, 2).addPCDisp(val).addRegDef(dest); | 
|  | MI->setOperandHi32(0); | 
|  | mvec.push_back(MI); | 
|  |  | 
|  | MI = BuildMI(V9::ORr, 3).addReg(dest).addReg(tmpReg).addRegDef(dest); | 
|  | mvec.push_back(MI); | 
|  |  | 
|  | MI = BuildMI(V9::ORi, 3).addReg(dest).addPCDisp(val).addRegDef(dest); | 
|  | MI->setOperandLo32(1); | 
|  | mvec.push_back(MI); | 
|  | } | 
|  |  | 
|  |  | 
|  | //---------------------------------------------------------------------------- | 
|  | // Function: CreateUIntSetInstruction | 
|  | // | 
|  | // Create code to Set an unsigned constant in the register `dest'. | 
|  | // Uses CreateSETUWConst, CreateSETSWConst or CreateSETXConst as needed. | 
|  | // CreateSETSWConst is an optimization for the case that the unsigned value | 
|  | // has all ones in the 33 high bits (so that sign-extension sets them all). | 
|  | //---------------------------------------------------------------------------- | 
|  |  | 
|  | static inline void | 
|  | CreateUIntSetInstruction(const TargetMachine& target, | 
|  | uint64_t C, Instruction* dest, | 
|  | std::vector<MachineInstr*>& mvec, | 
|  | MachineCodeForInstruction& mcfi) | 
|  | { | 
|  | static const uint64_t lo32 = (uint32_t) ~0; | 
|  | if (C <= lo32)                        // High 32 bits are 0.  Set low 32 bits. | 
|  | CreateSETUWConst(target, (uint32_t) C, dest, mvec); | 
|  | else if ((C & ~lo32) == ~lo32 && (C & (1U << 31))) { | 
|  | // All high 33 (not 32) bits are 1s: sign-extension will take care | 
|  | // of high 32 bits, so use the sequence for signed int | 
|  | CreateSETSWConst(target, (int32_t) C, dest, mvec); | 
|  | } else if (C > lo32) { | 
|  | // C does not fit in 32 bits | 
|  | TmpInstruction* tmpReg = new TmpInstruction(mcfi, Type::IntTy); | 
|  | CreateSETXConst(target, C, tmpReg, dest, mvec); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | //---------------------------------------------------------------------------- | 
|  | // Function: CreateIntSetInstruction | 
|  | // | 
|  | // Create code to Set a signed constant in the register `dest'. | 
|  | // Really the same as CreateUIntSetInstruction. | 
|  | //---------------------------------------------------------------------------- | 
|  |  | 
|  | static inline void | 
|  | CreateIntSetInstruction(const TargetMachine& target, | 
|  | int64_t C, Instruction* dest, | 
|  | std::vector<MachineInstr*>& mvec, | 
|  | MachineCodeForInstruction& mcfi) | 
|  | { | 
|  | CreateUIntSetInstruction(target, (uint64_t) C, dest, mvec, mcfi); | 
|  | } | 
|  |  | 
|  |  | 
|  | //--------------------------------------------------------------------------- | 
|  | // Create a table of LLVM opcode -> max. immediate constant likely to | 
|  | // be usable for that operation. | 
|  | //--------------------------------------------------------------------------- | 
|  |  | 
|  | // Entry == 0 ==> no immediate constant field exists at all. | 
|  | // Entry >  0 ==> abs(immediate constant) <= Entry | 
|  | // | 
|  | std::vector<int> MaxConstantsTable(Instruction::OtherOpsEnd); | 
|  |  | 
|  | static int | 
|  | MaxConstantForInstr(unsigned llvmOpCode) | 
|  | { | 
|  | int modelOpCode = -1; | 
|  |  | 
|  | if (llvmOpCode >= Instruction::BinaryOpsBegin && | 
|  | llvmOpCode <  Instruction::BinaryOpsEnd) | 
|  | modelOpCode = V9::ADDi; | 
|  | else | 
|  | switch(llvmOpCode) { | 
|  | case Instruction::Ret:   modelOpCode = V9::JMPLCALLi; break; | 
|  |  | 
|  | case Instruction::Malloc: | 
|  | case Instruction::Alloca: | 
|  | case Instruction::GetElementPtr: | 
|  | case Instruction::PHI: | 
|  | case Instruction::Cast: | 
|  | case Instruction::Call:  modelOpCode = V9::ADDi; break; | 
|  |  | 
|  | case Instruction::Shl: | 
|  | case Instruction::Shr:   modelOpCode = V9::SLLXi6; break; | 
|  |  | 
|  | default: break; | 
|  | }; | 
|  |  | 
|  | return (modelOpCode < 0)? 0: SparcV9MachineInstrDesc[modelOpCode].maxImmedConst; | 
|  | } | 
|  |  | 
|  | static void | 
|  | InitializeMaxConstantsTable() | 
|  | { | 
|  | unsigned op; | 
|  | assert(MaxConstantsTable.size() == Instruction::OtherOpsEnd && | 
|  | "assignments below will be illegal!"); | 
|  | for (op = Instruction::TermOpsBegin; op < Instruction::TermOpsEnd; ++op) | 
|  | MaxConstantsTable[op] = MaxConstantForInstr(op); | 
|  | for (op = Instruction::BinaryOpsBegin; op < Instruction::BinaryOpsEnd; ++op) | 
|  | MaxConstantsTable[op] = MaxConstantForInstr(op); | 
|  | for (op = Instruction::MemoryOpsBegin; op < Instruction::MemoryOpsEnd; ++op) | 
|  | MaxConstantsTable[op] = MaxConstantForInstr(op); | 
|  | for (op = Instruction::OtherOpsBegin; op < Instruction::OtherOpsEnd; ++op) | 
|  | MaxConstantsTable[op] = MaxConstantForInstr(op); | 
|  | } | 
|  |  | 
|  |  | 
|  | //--------------------------------------------------------------------------- | 
|  | // class SparcV9InstrInfo | 
|  | // | 
|  | // Purpose: | 
|  | //   Information about individual instructions. | 
|  | //   Most information is stored in the SparcV9MachineInstrDesc array above. | 
|  | //   Other information is computed on demand, and most such functions | 
|  | //   default to member functions in base class TargetInstrInfo. | 
|  | //--------------------------------------------------------------------------- | 
|  |  | 
|  | SparcV9InstrInfo::SparcV9InstrInfo() | 
|  | : TargetInstrInfo(SparcV9MachineInstrDesc, V9::NUM_TOTAL_OPCODES) { | 
|  | InitializeMaxConstantsTable(); | 
|  | } | 
|  |  | 
|  | bool | 
|  | SparcV9InstrInfo::ConstantMayNotFitInImmedField(const Constant* CV, | 
|  | const Instruction* I) const | 
|  | { | 
|  | if (I->getOpcode() >= MaxConstantsTable.size()) // user-defined op (or bug!) | 
|  | return true; | 
|  |  | 
|  | if (isa<ConstantPointerNull>(CV))               // can always use %g0 | 
|  | return false; | 
|  |  | 
|  | if (isa<SwitchInst>(I)) // Switch instructions will be lowered! | 
|  | return false; | 
|  |  | 
|  | if (const ConstantInt* CI = dyn_cast<ConstantInt>(CV)) | 
|  | return labs((int64_t)CI->getRawValue()) > MaxConstantsTable[I->getOpcode()]; | 
|  |  | 
|  | if (isa<ConstantBool>(CV)) | 
|  | return 1 > MaxConstantsTable[I->getOpcode()]; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // | 
|  | // Create an instruction sequence to put the constant `val' into | 
|  | // the virtual register `dest'.  `val' may be a Constant or a | 
|  | // GlobalValue, viz., the constant address of a global variable or function. | 
|  | // The generated instructions are returned in `mvec'. | 
|  | // Any temp. registers (TmpInstruction) created are recorded in mcfi. | 
|  | // Any stack space required is allocated via MachineFunction. | 
|  | // | 
|  | void | 
|  | SparcV9InstrInfo::CreateCodeToLoadConst(const TargetMachine& target, | 
|  | Function* F, | 
|  | Value* val, | 
|  | Instruction* dest, | 
|  | std::vector<MachineInstr*>& mvec, | 
|  | MachineCodeForInstruction& mcfi) const | 
|  | { | 
|  | assert(isa<Constant>(val) || isa<GlobalValue>(val) && | 
|  | "I only know about constant values and global addresses"); | 
|  |  | 
|  | // Use a "set" instruction for known constants or symbolic constants (labels) | 
|  | // that can go in an integer reg. | 
|  | // We have to use a "load" instruction for all other constants, | 
|  | // in particular, floating point constants. | 
|  | // | 
|  | const Type* valType = val->getType(); | 
|  |  | 
|  | // A ConstantPointerRef is just a reference to GlobalValue. | 
|  | while (isa<ConstantPointerRef>(val)) | 
|  | val = cast<ConstantPointerRef>(val)->getValue(); | 
|  |  | 
|  | if (isa<GlobalValue>(val)) { | 
|  | TmpInstruction* tmpReg = | 
|  | new TmpInstruction(mcfi, PointerType::get(val->getType()), val); | 
|  | CreateSETXLabel(target, val, tmpReg, dest, mvec); | 
|  | return; | 
|  | } | 
|  |  | 
|  | bool isValid; | 
|  | uint64_t C = ConvertConstantToIntType(target, val, dest->getType(), isValid); | 
|  | if (isValid) { | 
|  | if (dest->getType()->isSigned()) | 
|  | CreateUIntSetInstruction(target, C, dest, mvec, mcfi); | 
|  | else | 
|  | CreateIntSetInstruction(target, (int64_t) C, dest, mvec, mcfi); | 
|  |  | 
|  | } else { | 
|  | // Make an instruction sequence to load the constant, viz: | 
|  | //            SETX <addr-of-constant>, tmpReg, addrReg | 
|  | //            LOAD  /*addr*/ addrReg, /*offset*/ 0, dest | 
|  |  | 
|  | // First, create a tmp register to be used by the SETX sequence. | 
|  | TmpInstruction* tmpReg = | 
|  | new TmpInstruction(mcfi, PointerType::get(val->getType())); | 
|  |  | 
|  | // Create another TmpInstruction for the address register | 
|  | TmpInstruction* addrReg = | 
|  | new TmpInstruction(mcfi, PointerType::get(val->getType())); | 
|  |  | 
|  | // Get the constant pool index for this constant | 
|  | MachineConstantPool *CP = MachineFunction::get(F).getConstantPool(); | 
|  | Constant *C = cast<Constant>(val); | 
|  | unsigned CPI = CP->getConstantPoolIndex(C); | 
|  |  | 
|  | // Put the address of the constant into a register | 
|  | MachineInstr* MI; | 
|  |  | 
|  | MI = BuildMI(V9::SETHI, 2).addConstantPoolIndex(CPI).addRegDef(tmpReg); | 
|  | MI->setOperandHi64(0); | 
|  | mvec.push_back(MI); | 
|  |  | 
|  | MI = BuildMI(V9::ORi, 3).addReg(tmpReg).addConstantPoolIndex(CPI) | 
|  | .addRegDef(tmpReg); | 
|  | MI->setOperandLo64(1); | 
|  | mvec.push_back(MI); | 
|  |  | 
|  | mvec.push_back(BuildMI(V9::SLLXi6, 3).addReg(tmpReg).addZImm(32) | 
|  | .addRegDef(tmpReg)); | 
|  | MI = BuildMI(V9::SETHI, 2).addConstantPoolIndex(CPI).addRegDef(addrReg); | 
|  | MI->setOperandHi32(0); | 
|  | mvec.push_back(MI); | 
|  |  | 
|  | MI = BuildMI(V9::ORr, 3).addReg(addrReg).addReg(tmpReg).addRegDef(addrReg); | 
|  | mvec.push_back(MI); | 
|  |  | 
|  | MI = BuildMI(V9::ORi, 3).addReg(addrReg).addConstantPoolIndex(CPI) | 
|  | .addRegDef(addrReg); | 
|  | MI->setOperandLo32(1); | 
|  | mvec.push_back(MI); | 
|  |  | 
|  | // Now load the constant from out ConstantPool label | 
|  | unsigned Opcode = ChooseLoadInstruction(val->getType()); | 
|  | Opcode = convertOpcodeFromRegToImm(Opcode); | 
|  | mvec.push_back(BuildMI(Opcode, 3) | 
|  | .addReg(addrReg).addSImm((int64_t)0).addRegDef(dest)); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | // Create an instruction sequence to copy an integer register `val' | 
|  | // to a floating point register `dest' by copying to memory and back. | 
|  | // val must be an integral type.  dest must be a Float or Double. | 
|  | // The generated instructions are returned in `mvec'. | 
|  | // Any temp. registers (TmpInstruction) created are recorded in mcfi. | 
|  | // Any stack space required is allocated via MachineFunction. | 
|  | // | 
|  | void | 
|  | SparcV9InstrInfo::CreateCodeToCopyIntToFloat(const TargetMachine& target, | 
|  | Function* F, | 
|  | Value* val, | 
|  | Instruction* dest, | 
|  | std::vector<MachineInstr*>& mvec, | 
|  | MachineCodeForInstruction& mcfi) const | 
|  | { | 
|  | assert((val->getType()->isIntegral() || isa<PointerType>(val->getType())) | 
|  | && "Source type must be integral (integer or bool) or pointer"); | 
|  | assert(dest->getType()->isFloatingPoint() | 
|  | && "Dest type must be float/double"); | 
|  |  | 
|  | // Get a stack slot to use for the copy | 
|  | int offset = MachineFunction::get(F).getInfo()->allocateLocalVar(val); | 
|  |  | 
|  | // Get the size of the source value being copied. | 
|  | size_t srcSize = target.getTargetData().getTypeSize(val->getType()); | 
|  |  | 
|  | // Store instruction stores `val' to [%fp+offset]. | 
|  | // The store and load opCodes are based on the size of the source value. | 
|  | // If the value is smaller than 32 bits, we must sign- or zero-extend it | 
|  | // to 32 bits since the load-float will load 32 bits. | 
|  | // Note that the store instruction is the same for signed and unsigned ints. | 
|  | const Type* storeType = (srcSize <= 4)? Type::IntTy : Type::LongTy; | 
|  | Value* storeVal = val; | 
|  | if (srcSize < target.getTargetData().getTypeSize(Type::FloatTy)) { | 
|  | // sign- or zero-extend respectively | 
|  | storeVal = new TmpInstruction(mcfi, storeType, val); | 
|  | if (val->getType()->isSigned()) | 
|  | CreateSignExtensionInstructions(target, F, val, storeVal, 8*srcSize, | 
|  | mvec, mcfi); | 
|  | else | 
|  | CreateZeroExtensionInstructions(target, F, val, storeVal, 8*srcSize, | 
|  | mvec, mcfi); | 
|  | } | 
|  |  | 
|  | unsigned FPReg = target.getRegInfo().getFramePointer(); | 
|  | unsigned StoreOpcode = ChooseStoreInstruction(storeType); | 
|  | StoreOpcode = convertOpcodeFromRegToImm(StoreOpcode); | 
|  | mvec.push_back(BuildMI(StoreOpcode, 3) | 
|  | .addReg(storeVal).addMReg(FPReg).addSImm(offset)); | 
|  |  | 
|  | // Load instruction loads [%fp+offset] to `dest'. | 
|  | // The type of the load opCode is the floating point type that matches the | 
|  | // stored type in size: | 
|  | // On SparcV9: float for int or smaller, double for long. | 
|  | // | 
|  | const Type* loadType = (srcSize <= 4)? Type::FloatTy : Type::DoubleTy; | 
|  | unsigned LoadOpcode = ChooseLoadInstruction(loadType); | 
|  | LoadOpcode = convertOpcodeFromRegToImm(LoadOpcode); | 
|  | mvec.push_back(BuildMI(LoadOpcode, 3) | 
|  | .addMReg(FPReg).addSImm(offset).addRegDef(dest)); | 
|  | } | 
|  |  | 
|  | // Similarly, create an instruction sequence to copy an FP register | 
|  | // `val' to an integer register `dest' by copying to memory and back. | 
|  | // The generated instructions are returned in `mvec'. | 
|  | // Any temp. virtual registers (TmpInstruction) created are recorded in mcfi. | 
|  | // Temporary stack space required is allocated via MachineFunction. | 
|  | // | 
|  | void | 
|  | SparcV9InstrInfo::CreateCodeToCopyFloatToInt(const TargetMachine& target, | 
|  | Function* F, | 
|  | Value* val, | 
|  | Instruction* dest, | 
|  | std::vector<MachineInstr*>& mvec, | 
|  | MachineCodeForInstruction& mcfi) const | 
|  | { | 
|  | const Type* opTy   = val->getType(); | 
|  | const Type* destTy = dest->getType(); | 
|  |  | 
|  | assert(opTy->isFloatingPoint() && "Source type must be float/double"); | 
|  | assert((destTy->isIntegral() || isa<PointerType>(destTy)) | 
|  | && "Dest type must be integer, bool or pointer"); | 
|  |  | 
|  | // FIXME: For now, we allocate permanent space because the stack frame | 
|  | // manager does not allow locals to be allocated (e.g., for alloca) after | 
|  | // a temp is allocated! | 
|  | // | 
|  | int offset = MachineFunction::get(F).getInfo()->allocateLocalVar(val); | 
|  |  | 
|  | unsigned FPReg = target.getRegInfo().getFramePointer(); | 
|  |  | 
|  | // Store instruction stores `val' to [%fp+offset]. | 
|  | // The store opCode is based only the source value being copied. | 
|  | // | 
|  | unsigned StoreOpcode = ChooseStoreInstruction(opTy); | 
|  | StoreOpcode = convertOpcodeFromRegToImm(StoreOpcode); | 
|  | mvec.push_back(BuildMI(StoreOpcode, 3) | 
|  | .addReg(val).addMReg(FPReg).addSImm(offset)); | 
|  |  | 
|  | // Load instruction loads [%fp+offset] to `dest'. | 
|  | // The type of the load opCode is the integer type that matches the | 
|  | // source type in size: | 
|  | // On SparcV9: int for float, long for double. | 
|  | // Note that we *must* use signed loads even for unsigned dest types, to | 
|  | // ensure correct sign-extension for UByte, UShort or UInt: | 
|  | // | 
|  | const Type* loadTy = (opTy == Type::FloatTy)? Type::IntTy : Type::LongTy; | 
|  | unsigned LoadOpcode = ChooseLoadInstruction(loadTy); | 
|  | LoadOpcode = convertOpcodeFromRegToImm(LoadOpcode); | 
|  | mvec.push_back(BuildMI(LoadOpcode, 3).addMReg(FPReg) | 
|  | .addSImm(offset).addRegDef(dest)); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Create instruction(s) to copy src to dest, for arbitrary types | 
|  | // The generated instructions are returned in `mvec'. | 
|  | // Any temp. registers (TmpInstruction) created are recorded in mcfi. | 
|  | // Any stack space required is allocated via MachineFunction. | 
|  | // | 
|  | void | 
|  | SparcV9InstrInfo::CreateCopyInstructionsByType(const TargetMachine& target, | 
|  | Function *F, | 
|  | Value* src, | 
|  | Instruction* dest, | 
|  | std::vector<MachineInstr*>& mvec, | 
|  | MachineCodeForInstruction& mcfi) const | 
|  | { | 
|  | bool loadConstantToReg = false; | 
|  |  | 
|  | const Type* resultType = dest->getType(); | 
|  |  | 
|  | MachineOpCode opCode = ChooseAddInstructionByType(resultType); | 
|  | if (opCode == V9::INVALID_OPCODE) { | 
|  | assert(0 && "Unsupported result type in CreateCopyInstructionsByType()"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // if `src' is a constant that doesn't fit in the immed field or if it is | 
|  | // a global variable (i.e., a constant address), generate a load | 
|  | // instruction instead of an add | 
|  | // | 
|  | if (isa<Constant>(src)) { | 
|  | unsigned int machineRegNum; | 
|  | int64_t immedValue; | 
|  | MachineOperand::MachineOperandType opType = | 
|  | ChooseRegOrImmed(src, opCode, target, /*canUseImmed*/ true, | 
|  | machineRegNum, immedValue); | 
|  |  | 
|  | if (opType == MachineOperand::MO_VirtualRegister) | 
|  | loadConstantToReg = true; | 
|  | } | 
|  | else if (isa<GlobalValue>(src)) | 
|  | loadConstantToReg = true; | 
|  |  | 
|  | if (loadConstantToReg) { | 
|  | // `src' is constant and cannot fit in immed field for the ADD | 
|  | // Insert instructions to "load" the constant into a register | 
|  | target.getInstrInfo().CreateCodeToLoadConst(target, F, src, dest, | 
|  | mvec, mcfi); | 
|  | } else { | 
|  | // Create a reg-to-reg copy instruction for the given type: | 
|  | // -- For FP values, create a FMOVS or FMOVD instruction | 
|  | // -- For non-FP values, create an add-with-0 instruction (opCode as above) | 
|  | // Make `src' the second operand, in case it is a small constant! | 
|  | // | 
|  | MachineInstr* MI; | 
|  | if (resultType->isFloatingPoint()) | 
|  | MI = (BuildMI(resultType == Type::FloatTy? V9::FMOVS : V9::FMOVD, 2) | 
|  | .addReg(src).addRegDef(dest)); | 
|  | else { | 
|  | const Type* Ty =isa<PointerType>(resultType)? Type::ULongTy :resultType; | 
|  | MI = (BuildMI(opCode, 3) | 
|  | .addSImm((int64_t) 0).addReg(src).addRegDef(dest)); | 
|  | } | 
|  | mvec.push_back(MI); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | // Helper function for sign-extension and zero-extension. | 
|  | // For SPARC v9, we sign-extend the given operand using SLL; SRA/SRL. | 
|  | inline void | 
|  | CreateBitExtensionInstructions(bool signExtend, | 
|  | const TargetMachine& target, | 
|  | Function* F, | 
|  | Value* srcVal, | 
|  | Value* destVal, | 
|  | unsigned int numLowBits, | 
|  | std::vector<MachineInstr*>& mvec, | 
|  | MachineCodeForInstruction& mcfi) | 
|  | { | 
|  | MachineInstr* M; | 
|  |  | 
|  | assert(numLowBits <= 32 && "Otherwise, nothing should be done here!"); | 
|  |  | 
|  | if (numLowBits < 32) { | 
|  | // SLL is needed since operand size is < 32 bits. | 
|  | TmpInstruction *tmpI = new TmpInstruction(mcfi, destVal->getType(), | 
|  | srcVal, destVal, "make32"); | 
|  | mvec.push_back(BuildMI(V9::SLLXi6, 3).addReg(srcVal) | 
|  | .addZImm(32-numLowBits).addRegDef(tmpI)); | 
|  | srcVal = tmpI; | 
|  | } | 
|  |  | 
|  | mvec.push_back(BuildMI(signExtend? V9::SRAi5 : V9::SRLi5, 3) | 
|  | .addReg(srcVal).addZImm(32-numLowBits).addRegDef(destVal)); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Create instruction sequence to produce a sign-extended register value | 
|  | // from an arbitrary-sized integer value (sized in bits, not bytes). | 
|  | // The generated instructions are returned in `mvec'. | 
|  | // Any temp. registers (TmpInstruction) created are recorded in mcfi. | 
|  | // Any stack space required is allocated via MachineFunction. | 
|  | // | 
|  | void | 
|  | SparcV9InstrInfo::CreateSignExtensionInstructions( | 
|  | const TargetMachine& target, | 
|  | Function* F, | 
|  | Value* srcVal, | 
|  | Value* destVal, | 
|  | unsigned int numLowBits, | 
|  | std::vector<MachineInstr*>& mvec, | 
|  | MachineCodeForInstruction& mcfi) const | 
|  | { | 
|  | CreateBitExtensionInstructions(/*signExtend*/ true, target, F, srcVal, | 
|  | destVal, numLowBits, mvec, mcfi); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Create instruction sequence to produce a zero-extended register value | 
|  | // from an arbitrary-sized integer value (sized in bits, not bytes). | 
|  | // For SPARC v9, we sign-extend the given operand using SLL; SRL. | 
|  | // The generated instructions are returned in `mvec'. | 
|  | // Any temp. registers (TmpInstruction) created are recorded in mcfi. | 
|  | // Any stack space required is allocated via MachineFunction. | 
|  | // | 
|  | void | 
|  | SparcV9InstrInfo::CreateZeroExtensionInstructions( | 
|  | const TargetMachine& target, | 
|  | Function* F, | 
|  | Value* srcVal, | 
|  | Value* destVal, | 
|  | unsigned int numLowBits, | 
|  | std::vector<MachineInstr*>& mvec, | 
|  | MachineCodeForInstruction& mcfi) const | 
|  | { | 
|  | CreateBitExtensionInstructions(/*signExtend*/ false, target, F, srcVal, | 
|  | destVal, numLowBits, mvec, mcfi); | 
|  | } | 
|  |  | 
|  | } // End llvm namespace |