|  | //===-- AddressSanitizer.cpp - memory error detector ------------*- C++ -*-===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file is a part of AddressSanitizer, an address sanity checker. | 
|  | // Details of the algorithm: | 
|  | //  http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerAlgorithm | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Transforms/Instrumentation.h" | 
|  | #include "llvm/ADT/ArrayRef.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/DenseSet.h" | 
|  | #include "llvm/ADT/DepthFirstIterator.h" | 
|  | #include "llvm/ADT/SmallSet.h" | 
|  | #include "llvm/ADT/SmallString.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/ADT/StringExtras.h" | 
|  | #include "llvm/ADT/Triple.h" | 
|  | #include "llvm/IR/CallSite.h" | 
|  | #include "llvm/IR/DIBuilder.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/IRBuilder.h" | 
|  | #include "llvm/IR/InlineAsm.h" | 
|  | #include "llvm/IR/InstVisitor.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/IR/MDBuilder.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/DataTypes.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/Endian.h" | 
|  | #include "llvm/Support/SwapByteOrder.h" | 
|  | #include "llvm/Transforms/Scalar.h" | 
|  | #include "llvm/Transforms/Utils/ASanStackFrameLayout.h" | 
|  | #include "llvm/Transforms/Utils/BasicBlockUtils.h" | 
|  | #include "llvm/Transforms/Utils/Cloning.h" | 
|  | #include "llvm/Transforms/Utils/Local.h" | 
|  | #include "llvm/Transforms/Utils/ModuleUtils.h" | 
|  | #include <algorithm> | 
|  | #include <string> | 
|  | #include <system_error> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "asan" | 
|  |  | 
|  | static const uint64_t kDefaultShadowScale = 3; | 
|  | static const uint64_t kDefaultShadowOffset32 = 1ULL << 29; | 
|  | static const uint64_t kIOSShadowOffset32 = 1ULL << 30; | 
|  | static const uint64_t kDefaultShadowOffset64 = 1ULL << 44; | 
|  | static const uint64_t kSmallX86_64ShadowOffset = 0x7FFF8000;  // < 2G. | 
|  | static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 41; | 
|  | static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000; | 
|  | static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 36; | 
|  | static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30; | 
|  | static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46; | 
|  |  | 
|  | static const size_t kMinStackMallocSize = 1 << 6;  // 64B | 
|  | static const size_t kMaxStackMallocSize = 1 << 16;  // 64K | 
|  | static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3; | 
|  | static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E; | 
|  |  | 
|  | static const char *const kAsanModuleCtorName = "asan.module_ctor"; | 
|  | static const char *const kAsanModuleDtorName = "asan.module_dtor"; | 
|  | static const uint64_t    kAsanCtorAndDtorPriority = 1; | 
|  | static const char *const kAsanReportErrorTemplate = "__asan_report_"; | 
|  | static const char *const kAsanReportLoadN = "__asan_report_load_n"; | 
|  | static const char *const kAsanReportStoreN = "__asan_report_store_n"; | 
|  | static const char *const kAsanRegisterGlobalsName = "__asan_register_globals"; | 
|  | static const char *const kAsanUnregisterGlobalsName = | 
|  | "__asan_unregister_globals"; | 
|  | static const char *const kAsanPoisonGlobalsName = "__asan_before_dynamic_init"; | 
|  | static const char *const kAsanUnpoisonGlobalsName = "__asan_after_dynamic_init"; | 
|  | static const char *const kAsanInitName = "__asan_init_v4"; | 
|  | static const char *const kAsanPtrCmp = "__sanitizer_ptr_cmp"; | 
|  | static const char *const kAsanPtrSub = "__sanitizer_ptr_sub"; | 
|  | static const char *const kAsanHandleNoReturnName = "__asan_handle_no_return"; | 
|  | static const int         kMaxAsanStackMallocSizeClass = 10; | 
|  | static const char *const kAsanStackMallocNameTemplate = "__asan_stack_malloc_"; | 
|  | static const char *const kAsanStackFreeNameTemplate = "__asan_stack_free_"; | 
|  | static const char *const kAsanGenPrefix = "__asan_gen_"; | 
|  | static const char *const kSanCovGenPrefix = "__sancov_gen_"; | 
|  | static const char *const kAsanPoisonStackMemoryName = | 
|  | "__asan_poison_stack_memory"; | 
|  | static const char *const kAsanUnpoisonStackMemoryName = | 
|  | "__asan_unpoison_stack_memory"; | 
|  |  | 
|  | static const char *const kAsanOptionDetectUAR = | 
|  | "__asan_option_detect_stack_use_after_return"; | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | static const int kAsanStackAfterReturnMagic = 0xf5; | 
|  | #endif | 
|  |  | 
|  | // Accesses sizes are powers of two: 1, 2, 4, 8, 16. | 
|  | static const size_t kNumberOfAccessSizes = 5; | 
|  |  | 
|  | static const unsigned kAllocaRzSize = 32; | 
|  | static const unsigned kAsanAllocaLeftMagic = 0xcacacacaU; | 
|  | static const unsigned kAsanAllocaRightMagic = 0xcbcbcbcbU; | 
|  | static const unsigned kAsanAllocaPartialVal1 = 0xcbcbcb00U; | 
|  | static const unsigned kAsanAllocaPartialVal2 = 0x000000cbU; | 
|  |  | 
|  | // Command-line flags. | 
|  |  | 
|  | // This flag may need to be replaced with -f[no-]asan-reads. | 
|  | static cl::opt<bool> ClInstrumentReads("asan-instrument-reads", | 
|  | cl::desc("instrument read instructions"), cl::Hidden, cl::init(true)); | 
|  | static cl::opt<bool> ClInstrumentWrites("asan-instrument-writes", | 
|  | cl::desc("instrument write instructions"), cl::Hidden, cl::init(true)); | 
|  | static cl::opt<bool> ClInstrumentAtomics("asan-instrument-atomics", | 
|  | cl::desc("instrument atomic instructions (rmw, cmpxchg)"), | 
|  | cl::Hidden, cl::init(true)); | 
|  | static cl::opt<bool> ClAlwaysSlowPath("asan-always-slow-path", | 
|  | cl::desc("use instrumentation with slow path for all accesses"), | 
|  | cl::Hidden, cl::init(false)); | 
|  | // This flag limits the number of instructions to be instrumented | 
|  | // in any given BB. Normally, this should be set to unlimited (INT_MAX), | 
|  | // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary | 
|  | // set it to 10000. | 
|  | static cl::opt<int> ClMaxInsnsToInstrumentPerBB("asan-max-ins-per-bb", | 
|  | cl::init(10000), | 
|  | cl::desc("maximal number of instructions to instrument in any given BB"), | 
|  | cl::Hidden); | 
|  | // This flag may need to be replaced with -f[no]asan-stack. | 
|  | static cl::opt<bool> ClStack("asan-stack", | 
|  | cl::desc("Handle stack memory"), cl::Hidden, cl::init(true)); | 
|  | static cl::opt<bool> ClUseAfterReturn("asan-use-after-return", | 
|  | cl::desc("Check return-after-free"), cl::Hidden, cl::init(true)); | 
|  | // This flag may need to be replaced with -f[no]asan-globals. | 
|  | static cl::opt<bool> ClGlobals("asan-globals", | 
|  | cl::desc("Handle global objects"), cl::Hidden, cl::init(true)); | 
|  | static cl::opt<bool> ClInitializers("asan-initialization-order", | 
|  | cl::desc("Handle C++ initializer order"), cl::Hidden, cl::init(true)); | 
|  | static cl::opt<bool> ClInvalidPointerPairs("asan-detect-invalid-pointer-pair", | 
|  | cl::desc("Instrument <, <=, >, >=, - with pointer operands"), | 
|  | cl::Hidden, cl::init(false)); | 
|  | static cl::opt<unsigned> ClRealignStack("asan-realign-stack", | 
|  | cl::desc("Realign stack to the value of this flag (power of two)"), | 
|  | cl::Hidden, cl::init(32)); | 
|  | static cl::opt<int> ClInstrumentationWithCallsThreshold( | 
|  | "asan-instrumentation-with-call-threshold", | 
|  | cl::desc("If the function being instrumented contains more than " | 
|  | "this number of memory accesses, use callbacks instead of " | 
|  | "inline checks (-1 means never use callbacks)."), | 
|  | cl::Hidden, cl::init(7000)); | 
|  | static cl::opt<std::string> ClMemoryAccessCallbackPrefix( | 
|  | "asan-memory-access-callback-prefix", | 
|  | cl::desc("Prefix for memory access callbacks"), cl::Hidden, | 
|  | cl::init("__asan_")); | 
|  | static cl::opt<bool> ClInstrumentAllocas("asan-instrument-allocas", | 
|  | cl::desc("instrument dynamic allocas"), cl::Hidden, cl::init(false)); | 
|  |  | 
|  | // This is an experimental feature that will allow to choose between | 
|  | // instrumented and non-instrumented code at link-time. | 
|  | // If this option is on, just before instrumenting a function we create its | 
|  | // clone; if the function is not changed by asan the clone is deleted. | 
|  | // If we end up with a clone, we put the instrumented function into a section | 
|  | // called "ASAN" and the uninstrumented function into a section called "NOASAN". | 
|  | // | 
|  | // This is still a prototype, we need to figure out a way to keep two copies of | 
|  | // a function so that the linker can easily choose one of them. | 
|  | static cl::opt<bool> ClKeepUninstrumented("asan-keep-uninstrumented-functions", | 
|  | cl::desc("Keep uninstrumented copies of functions"), | 
|  | cl::Hidden, cl::init(false)); | 
|  |  | 
|  | // These flags allow to change the shadow mapping. | 
|  | // The shadow mapping looks like | 
|  | //    Shadow = (Mem >> scale) + (1 << offset_log) | 
|  | static cl::opt<int> ClMappingScale("asan-mapping-scale", | 
|  | cl::desc("scale of asan shadow mapping"), cl::Hidden, cl::init(0)); | 
|  |  | 
|  | // Optimization flags. Not user visible, used mostly for testing | 
|  | // and benchmarking the tool. | 
|  | static cl::opt<bool> ClOpt("asan-opt", | 
|  | cl::desc("Optimize instrumentation"), cl::Hidden, cl::init(true)); | 
|  | static cl::opt<bool> ClOptSameTemp("asan-opt-same-temp", | 
|  | cl::desc("Instrument the same temp just once"), cl::Hidden, | 
|  | cl::init(true)); | 
|  | static cl::opt<bool> ClOptGlobals("asan-opt-globals", | 
|  | cl::desc("Don't instrument scalar globals"), cl::Hidden, cl::init(true)); | 
|  |  | 
|  | static cl::opt<bool> ClCheckLifetime("asan-check-lifetime", | 
|  | cl::desc("Use llvm.lifetime intrinsics to insert extra checks"), | 
|  | cl::Hidden, cl::init(false)); | 
|  |  | 
|  | // Debug flags. | 
|  | static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden, | 
|  | cl::init(0)); | 
|  | static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"), | 
|  | cl::Hidden, cl::init(0)); | 
|  | static cl::opt<std::string> ClDebugFunc("asan-debug-func", | 
|  | cl::Hidden, cl::desc("Debug func")); | 
|  | static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"), | 
|  | cl::Hidden, cl::init(-1)); | 
|  | static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug man inst"), | 
|  | cl::Hidden, cl::init(-1)); | 
|  |  | 
|  | STATISTIC(NumInstrumentedReads, "Number of instrumented reads"); | 
|  | STATISTIC(NumInstrumentedWrites, "Number of instrumented writes"); | 
|  | STATISTIC(NumOptimizedAccessesToGlobalArray, | 
|  | "Number of optimized accesses to global arrays"); | 
|  | STATISTIC(NumOptimizedAccessesToGlobalVar, | 
|  | "Number of optimized accesses to global vars"); | 
|  |  | 
|  | namespace { | 
|  | /// Frontend-provided metadata for source location. | 
|  | struct LocationMetadata { | 
|  | StringRef Filename; | 
|  | int LineNo; | 
|  | int ColumnNo; | 
|  |  | 
|  | LocationMetadata() : Filename(), LineNo(0), ColumnNo(0) {} | 
|  |  | 
|  | bool empty() const { return Filename.empty(); } | 
|  |  | 
|  | void parse(MDNode *MDN) { | 
|  | assert(MDN->getNumOperands() == 3); | 
|  | MDString *MDFilename = cast<MDString>(MDN->getOperand(0)); | 
|  | Filename = MDFilename->getString(); | 
|  | LineNo = cast<ConstantInt>(MDN->getOperand(1))->getLimitedValue(); | 
|  | ColumnNo = cast<ConstantInt>(MDN->getOperand(2))->getLimitedValue(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// Frontend-provided metadata for global variables. | 
|  | class GlobalsMetadata { | 
|  | public: | 
|  | struct Entry { | 
|  | Entry() | 
|  | : SourceLoc(), Name(), IsDynInit(false), | 
|  | IsBlacklisted(false) {} | 
|  | LocationMetadata SourceLoc; | 
|  | StringRef Name; | 
|  | bool IsDynInit; | 
|  | bool IsBlacklisted; | 
|  | }; | 
|  |  | 
|  | GlobalsMetadata() : inited_(false) {} | 
|  |  | 
|  | void init(Module& M) { | 
|  | assert(!inited_); | 
|  | inited_ = true; | 
|  | NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals"); | 
|  | if (!Globals) | 
|  | return; | 
|  | for (auto MDN : Globals->operands()) { | 
|  | // Metadata node contains the global and the fields of "Entry". | 
|  | assert(MDN->getNumOperands() == 5); | 
|  | Value *V = MDN->getOperand(0); | 
|  | // The optimizer may optimize away a global entirely. | 
|  | if (!V) | 
|  | continue; | 
|  | GlobalVariable *GV = cast<GlobalVariable>(V); | 
|  | // We can already have an entry for GV if it was merged with another | 
|  | // global. | 
|  | Entry &E = Entries[GV]; | 
|  | if (Value *Loc = MDN->getOperand(1)) | 
|  | E.SourceLoc.parse(cast<MDNode>(Loc)); | 
|  | if (Value *Name = MDN->getOperand(2)) { | 
|  | MDString *MDName = cast<MDString>(Name); | 
|  | E.Name = MDName->getString(); | 
|  | } | 
|  | ConstantInt *IsDynInit = cast<ConstantInt>(MDN->getOperand(3)); | 
|  | E.IsDynInit |= IsDynInit->isOne(); | 
|  | ConstantInt *IsBlacklisted = cast<ConstantInt>(MDN->getOperand(4)); | 
|  | E.IsBlacklisted |= IsBlacklisted->isOne(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Returns metadata entry for a given global. | 
|  | Entry get(GlobalVariable *G) const { | 
|  | auto Pos = Entries.find(G); | 
|  | return (Pos != Entries.end()) ? Pos->second : Entry(); | 
|  | } | 
|  |  | 
|  | private: | 
|  | bool inited_; | 
|  | DenseMap<GlobalVariable*, Entry> Entries; | 
|  | }; | 
|  |  | 
|  | /// This struct defines the shadow mapping using the rule: | 
|  | ///   shadow = (mem >> Scale) ADD-or-OR Offset. | 
|  | struct ShadowMapping { | 
|  | int Scale; | 
|  | uint64_t Offset; | 
|  | bool OrShadowOffset; | 
|  | }; | 
|  |  | 
|  | static ShadowMapping getShadowMapping(const Module &M, int LongSize) { | 
|  | llvm::Triple TargetTriple(M.getTargetTriple()); | 
|  | bool IsAndroid = TargetTriple.getEnvironment() == llvm::Triple::Android; | 
|  | bool IsIOS = TargetTriple.isiOS(); | 
|  | bool IsFreeBSD = TargetTriple.getOS() == llvm::Triple::FreeBSD; | 
|  | bool IsLinux = TargetTriple.getOS() == llvm::Triple::Linux; | 
|  | bool IsPPC64 = TargetTriple.getArch() == llvm::Triple::ppc64 || | 
|  | TargetTriple.getArch() == llvm::Triple::ppc64le; | 
|  | bool IsX86_64 = TargetTriple.getArch() == llvm::Triple::x86_64; | 
|  | bool IsMIPS32 = TargetTriple.getArch() == llvm::Triple::mips || | 
|  | TargetTriple.getArch() == llvm::Triple::mipsel; | 
|  | bool IsMIPS64 = TargetTriple.getArch() == llvm::Triple::mips64 || | 
|  | TargetTriple.getArch() == llvm::Triple::mips64el; | 
|  |  | 
|  | ShadowMapping Mapping; | 
|  |  | 
|  | if (LongSize == 32) { | 
|  | if (IsAndroid) | 
|  | Mapping.Offset = 0; | 
|  | else if (IsMIPS32) | 
|  | Mapping.Offset = kMIPS32_ShadowOffset32; | 
|  | else if (IsFreeBSD) | 
|  | Mapping.Offset = kFreeBSD_ShadowOffset32; | 
|  | else if (IsIOS) | 
|  | Mapping.Offset = kIOSShadowOffset32; | 
|  | else | 
|  | Mapping.Offset = kDefaultShadowOffset32; | 
|  | } else {  // LongSize == 64 | 
|  | if (IsPPC64) | 
|  | Mapping.Offset = kPPC64_ShadowOffset64; | 
|  | else if (IsFreeBSD) | 
|  | Mapping.Offset = kFreeBSD_ShadowOffset64; | 
|  | else if (IsLinux && IsX86_64) | 
|  | Mapping.Offset = kSmallX86_64ShadowOffset; | 
|  | else if (IsMIPS64) | 
|  | Mapping.Offset = kMIPS64_ShadowOffset64; | 
|  | else | 
|  | Mapping.Offset = kDefaultShadowOffset64; | 
|  | } | 
|  |  | 
|  | Mapping.Scale = kDefaultShadowScale; | 
|  | if (ClMappingScale) { | 
|  | Mapping.Scale = ClMappingScale; | 
|  | } | 
|  |  | 
|  | // OR-ing shadow offset if more efficient (at least on x86) if the offset | 
|  | // is a power of two, but on ppc64 we have to use add since the shadow | 
|  | // offset is not necessary 1/8-th of the address space. | 
|  | Mapping.OrShadowOffset = !IsPPC64 && !(Mapping.Offset & (Mapping.Offset - 1)); | 
|  |  | 
|  | return Mapping; | 
|  | } | 
|  |  | 
|  | static size_t RedzoneSizeForScale(int MappingScale) { | 
|  | // Redzone used for stack and globals is at least 32 bytes. | 
|  | // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively. | 
|  | return std::max(32U, 1U << MappingScale); | 
|  | } | 
|  |  | 
|  | /// AddressSanitizer: instrument the code in module to find memory bugs. | 
|  | struct AddressSanitizer : public FunctionPass { | 
|  | AddressSanitizer() : FunctionPass(ID) {} | 
|  | const char *getPassName() const override { | 
|  | return "AddressSanitizerFunctionPass"; | 
|  | } | 
|  | void instrumentMop(Instruction *I, bool UseCalls); | 
|  | void instrumentPointerComparisonOrSubtraction(Instruction *I); | 
|  | void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore, | 
|  | Value *Addr, uint32_t TypeSize, bool IsWrite, | 
|  | Value *SizeArgument, bool UseCalls); | 
|  | Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, | 
|  | Value *ShadowValue, uint32_t TypeSize); | 
|  | Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr, | 
|  | bool IsWrite, size_t AccessSizeIndex, | 
|  | Value *SizeArgument); | 
|  | void instrumentMemIntrinsic(MemIntrinsic *MI); | 
|  | Value *memToShadow(Value *Shadow, IRBuilder<> &IRB); | 
|  | bool runOnFunction(Function &F) override; | 
|  | bool maybeInsertAsanInitAtFunctionEntry(Function &F); | 
|  | bool doInitialization(Module &M) override; | 
|  | static char ID;  // Pass identification, replacement for typeid | 
|  |  | 
|  | private: | 
|  | void initializeCallbacks(Module &M); | 
|  |  | 
|  | bool LooksLikeCodeInBug11395(Instruction *I); | 
|  | bool GlobalIsLinkerInitialized(GlobalVariable *G); | 
|  |  | 
|  | LLVMContext *C; | 
|  | const DataLayout *DL; | 
|  | int LongSize; | 
|  | Type *IntptrTy; | 
|  | ShadowMapping Mapping; | 
|  | Function *AsanCtorFunction; | 
|  | Function *AsanInitFunction; | 
|  | Function *AsanHandleNoReturnFunc; | 
|  | Function *AsanPtrCmpFunction, *AsanPtrSubFunction; | 
|  | // This array is indexed by AccessIsWrite and log2(AccessSize). | 
|  | Function *AsanErrorCallback[2][kNumberOfAccessSizes]; | 
|  | Function *AsanMemoryAccessCallback[2][kNumberOfAccessSizes]; | 
|  | // This array is indexed by AccessIsWrite. | 
|  | Function *AsanErrorCallbackSized[2], | 
|  | *AsanMemoryAccessCallbackSized[2]; | 
|  | Function *AsanMemmove, *AsanMemcpy, *AsanMemset; | 
|  | InlineAsm *EmptyAsm; | 
|  | GlobalsMetadata GlobalsMD; | 
|  |  | 
|  | friend struct FunctionStackPoisoner; | 
|  | }; | 
|  |  | 
|  | class AddressSanitizerModule : public ModulePass { | 
|  | public: | 
|  | AddressSanitizerModule() : ModulePass(ID) {} | 
|  | bool runOnModule(Module &M) override; | 
|  | static char ID;  // Pass identification, replacement for typeid | 
|  | const char *getPassName() const override { | 
|  | return "AddressSanitizerModule"; | 
|  | } | 
|  |  | 
|  | private: | 
|  | void initializeCallbacks(Module &M); | 
|  |  | 
|  | bool InstrumentGlobals(IRBuilder<> &IRB, Module &M); | 
|  | bool ShouldInstrumentGlobal(GlobalVariable *G); | 
|  | void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName); | 
|  | void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName); | 
|  | size_t MinRedzoneSizeForGlobal() const { | 
|  | return RedzoneSizeForScale(Mapping.Scale); | 
|  | } | 
|  |  | 
|  | GlobalsMetadata GlobalsMD; | 
|  | Type *IntptrTy; | 
|  | LLVMContext *C; | 
|  | const DataLayout *DL; | 
|  | ShadowMapping Mapping; | 
|  | Function *AsanPoisonGlobals; | 
|  | Function *AsanUnpoisonGlobals; | 
|  | Function *AsanRegisterGlobals; | 
|  | Function *AsanUnregisterGlobals; | 
|  | }; | 
|  |  | 
|  | // Stack poisoning does not play well with exception handling. | 
|  | // When an exception is thrown, we essentially bypass the code | 
|  | // that unpoisones the stack. This is why the run-time library has | 
|  | // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire | 
|  | // stack in the interceptor. This however does not work inside the | 
|  | // actual function which catches the exception. Most likely because the | 
|  | // compiler hoists the load of the shadow value somewhere too high. | 
|  | // This causes asan to report a non-existing bug on 453.povray. | 
|  | // It sounds like an LLVM bug. | 
|  | struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> { | 
|  | Function &F; | 
|  | AddressSanitizer &ASan; | 
|  | DIBuilder DIB; | 
|  | LLVMContext *C; | 
|  | Type *IntptrTy; | 
|  | Type *IntptrPtrTy; | 
|  | ShadowMapping Mapping; | 
|  |  | 
|  | SmallVector<AllocaInst*, 16> AllocaVec; | 
|  | SmallVector<Instruction*, 8> RetVec; | 
|  | unsigned StackAlignment; | 
|  |  | 
|  | Function *AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1], | 
|  | *AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1]; | 
|  | Function *AsanPoisonStackMemoryFunc, *AsanUnpoisonStackMemoryFunc; | 
|  |  | 
|  | // Stores a place and arguments of poisoning/unpoisoning call for alloca. | 
|  | struct AllocaPoisonCall { | 
|  | IntrinsicInst *InsBefore; | 
|  | AllocaInst *AI; | 
|  | uint64_t Size; | 
|  | bool DoPoison; | 
|  | }; | 
|  | SmallVector<AllocaPoisonCall, 8> AllocaPoisonCallVec; | 
|  |  | 
|  | // Stores left and right redzone shadow addresses for dynamic alloca | 
|  | // and pointer to alloca instruction itself. | 
|  | // LeftRzAddr is a shadow address for alloca left redzone. | 
|  | // RightRzAddr is a shadow address for alloca right redzone. | 
|  | struct DynamicAllocaCall { | 
|  | AllocaInst *AI; | 
|  | Value *LeftRzAddr; | 
|  | Value *RightRzAddr; | 
|  | explicit DynamicAllocaCall(AllocaInst *AI, | 
|  | Value *LeftRzAddr = nullptr, | 
|  | Value *RightRzAddr = nullptr) | 
|  | : AI(AI), LeftRzAddr(LeftRzAddr), RightRzAddr(RightRzAddr) | 
|  | {} | 
|  | }; | 
|  | SmallVector<DynamicAllocaCall, 1> DynamicAllocaVec; | 
|  |  | 
|  | // Maps Value to an AllocaInst from which the Value is originated. | 
|  | typedef DenseMap<Value*, AllocaInst*> AllocaForValueMapTy; | 
|  | AllocaForValueMapTy AllocaForValue; | 
|  |  | 
|  | FunctionStackPoisoner(Function &F, AddressSanitizer &ASan) | 
|  | : F(F), ASan(ASan), DIB(*F.getParent()), C(ASan.C), | 
|  | IntptrTy(ASan.IntptrTy), IntptrPtrTy(PointerType::get(IntptrTy, 0)), | 
|  | Mapping(ASan.Mapping), | 
|  | StackAlignment(1 << Mapping.Scale) {} | 
|  |  | 
|  | bool runOnFunction() { | 
|  | if (!ClStack) return false; | 
|  | // Collect alloca, ret, lifetime instructions etc. | 
|  | for (BasicBlock *BB : depth_first(&F.getEntryBlock())) | 
|  | visit(*BB); | 
|  |  | 
|  | if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false; | 
|  |  | 
|  | initializeCallbacks(*F.getParent()); | 
|  |  | 
|  | poisonStack(); | 
|  |  | 
|  | if (ClDebugStack) { | 
|  | DEBUG(dbgs() << F); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Finds all Alloca instructions and puts | 
|  | // poisoned red zones around all of them. | 
|  | // Then unpoison everything back before the function returns. | 
|  | void poisonStack(); | 
|  |  | 
|  | // ----------------------- Visitors. | 
|  | /// \brief Collect all Ret instructions. | 
|  | void visitReturnInst(ReturnInst &RI) { | 
|  | RetVec.push_back(&RI); | 
|  | } | 
|  |  | 
|  | // Unpoison dynamic allocas redzones. | 
|  | void unpoisonDynamicAlloca(DynamicAllocaCall &AllocaCall) { | 
|  | for (auto Ret : RetVec) { | 
|  | IRBuilder<> IRBRet(Ret); | 
|  | PointerType *Int32PtrTy = PointerType::getUnqual(IRBRet.getInt32Ty()); | 
|  | Value *Zero = Constant::getNullValue(IRBRet.getInt32Ty()); | 
|  | Value *PartialRzAddr = IRBRet.CreateSub(AllocaCall.RightRzAddr, | 
|  | ConstantInt::get(IntptrTy, 4)); | 
|  | IRBRet.CreateStore(Zero, IRBRet.CreateIntToPtr(AllocaCall.LeftRzAddr, | 
|  | Int32PtrTy)); | 
|  | IRBRet.CreateStore(Zero, IRBRet.CreateIntToPtr(PartialRzAddr, | 
|  | Int32PtrTy)); | 
|  | IRBRet.CreateStore(Zero, IRBRet.CreateIntToPtr(AllocaCall.RightRzAddr, | 
|  | Int32PtrTy)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Right shift for BigEndian and left shift for LittleEndian. | 
|  | Value *shiftAllocaMagic(Value *Val, IRBuilder<> &IRB, Value *Shift) { | 
|  | return ASan.DL->isLittleEndian() ? IRB.CreateShl(Val, Shift) | 
|  | : IRB.CreateLShr(Val, Shift); | 
|  | } | 
|  |  | 
|  | // Compute PartialRzMagic for dynamic alloca call. Since we don't know the | 
|  | // size of requested memory until runtime, we should compute it dynamically. | 
|  | // If PartialSize is 0, PartialRzMagic would contain kAsanAllocaRightMagic, | 
|  | // otherwise it would contain the value that we will use to poison the | 
|  | // partial redzone for alloca call. | 
|  | Value *computePartialRzMagic(Value *PartialSize, IRBuilder<> &IRB); | 
|  |  | 
|  | // Deploy and poison redzones around dynamic alloca call. To do this, we | 
|  | // should replace this call with another one with changed parameters and | 
|  | // replace all its uses with new address, so | 
|  | //   addr = alloca type, old_size, align | 
|  | // is replaced by | 
|  | //   new_size = (old_size + additional_size) * sizeof(type) | 
|  | //   tmp = alloca i8, new_size, max(align, 32) | 
|  | //   addr = tmp + 32 (first 32 bytes are for the left redzone). | 
|  | // Additional_size is added to make new memory allocation contain not only | 
|  | // requested memory, but also left, partial and right redzones. | 
|  | // After that, we should poison redzones: | 
|  | // (1) Left redzone with kAsanAllocaLeftMagic. | 
|  | // (2) Partial redzone with the value, computed in runtime by | 
|  | //     computePartialRzMagic function. | 
|  | // (3) Right redzone with kAsanAllocaRightMagic. | 
|  | void handleDynamicAllocaCall(DynamicAllocaCall &AllocaCall); | 
|  |  | 
|  | /// \brief Collect Alloca instructions we want (and can) handle. | 
|  | void visitAllocaInst(AllocaInst &AI) { | 
|  | if (!isInterestingAlloca(AI)) return; | 
|  |  | 
|  | StackAlignment = std::max(StackAlignment, AI.getAlignment()); | 
|  | if (isDynamicAlloca(AI)) | 
|  | DynamicAllocaVec.push_back(DynamicAllocaCall(&AI)); | 
|  | else | 
|  | AllocaVec.push_back(&AI); | 
|  | } | 
|  |  | 
|  | /// \brief Collect lifetime intrinsic calls to check for use-after-scope | 
|  | /// errors. | 
|  | void visitIntrinsicInst(IntrinsicInst &II) { | 
|  | if (!ClCheckLifetime) return; | 
|  | Intrinsic::ID ID = II.getIntrinsicID(); | 
|  | if (ID != Intrinsic::lifetime_start && | 
|  | ID != Intrinsic::lifetime_end) | 
|  | return; | 
|  | // Found lifetime intrinsic, add ASan instrumentation if necessary. | 
|  | ConstantInt *Size = dyn_cast<ConstantInt>(II.getArgOperand(0)); | 
|  | // If size argument is undefined, don't do anything. | 
|  | if (Size->isMinusOne()) return; | 
|  | // Check that size doesn't saturate uint64_t and can | 
|  | // be stored in IntptrTy. | 
|  | const uint64_t SizeValue = Size->getValue().getLimitedValue(); | 
|  | if (SizeValue == ~0ULL || | 
|  | !ConstantInt::isValueValidForType(IntptrTy, SizeValue)) | 
|  | return; | 
|  | // Find alloca instruction that corresponds to llvm.lifetime argument. | 
|  | AllocaInst *AI = findAllocaForValue(II.getArgOperand(1)); | 
|  | if (!AI) return; | 
|  | bool DoPoison = (ID == Intrinsic::lifetime_end); | 
|  | AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison}; | 
|  | AllocaPoisonCallVec.push_back(APC); | 
|  | } | 
|  |  | 
|  | // ---------------------- Helpers. | 
|  | void initializeCallbacks(Module &M); | 
|  |  | 
|  | bool isDynamicAlloca(AllocaInst &AI) const { | 
|  | return AI.isArrayAllocation() || !AI.isStaticAlloca(); | 
|  | } | 
|  |  | 
|  | // Check if we want (and can) handle this alloca. | 
|  | bool isInterestingAlloca(AllocaInst &AI) const { | 
|  | return (AI.getAllocatedType()->isSized() && | 
|  | // alloca() may be called with 0 size, ignore it. | 
|  | getAllocaSizeInBytes(&AI) > 0); | 
|  | } | 
|  |  | 
|  | uint64_t getAllocaSizeInBytes(AllocaInst *AI) const { | 
|  | Type *Ty = AI->getAllocatedType(); | 
|  | uint64_t SizeInBytes = ASan.DL->getTypeAllocSize(Ty); | 
|  | return SizeInBytes; | 
|  | } | 
|  | /// Finds alloca where the value comes from. | 
|  | AllocaInst *findAllocaForValue(Value *V); | 
|  | void poisonRedZones(ArrayRef<uint8_t> ShadowBytes, IRBuilder<> &IRB, | 
|  | Value *ShadowBase, bool DoPoison); | 
|  | void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison); | 
|  |  | 
|  | void SetShadowToStackAfterReturnInlined(IRBuilder<> &IRB, Value *ShadowBase, | 
|  | int Size); | 
|  | }; | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | char AddressSanitizer::ID = 0; | 
|  | INITIALIZE_PASS(AddressSanitizer, "asan", | 
|  | "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", | 
|  | false, false) | 
|  | FunctionPass *llvm::createAddressSanitizerFunctionPass() { | 
|  | return new AddressSanitizer(); | 
|  | } | 
|  |  | 
|  | char AddressSanitizerModule::ID = 0; | 
|  | INITIALIZE_PASS(AddressSanitizerModule, "asan-module", | 
|  | "AddressSanitizer: detects use-after-free and out-of-bounds bugs." | 
|  | "ModulePass", false, false) | 
|  | ModulePass *llvm::createAddressSanitizerModulePass() { | 
|  | return new AddressSanitizerModule(); | 
|  | } | 
|  |  | 
|  | static size_t TypeSizeToSizeIndex(uint32_t TypeSize) { | 
|  | size_t Res = countTrailingZeros(TypeSize / 8); | 
|  | assert(Res < kNumberOfAccessSizes); | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | // \brief Create a constant for Str so that we can pass it to the run-time lib. | 
|  | static GlobalVariable *createPrivateGlobalForString( | 
|  | Module &M, StringRef Str, bool AllowMerging) { | 
|  | Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str); | 
|  | // We use private linkage for module-local strings. If they can be merged | 
|  | // with another one, we set the unnamed_addr attribute. | 
|  | GlobalVariable *GV = | 
|  | new GlobalVariable(M, StrConst->getType(), true, | 
|  | GlobalValue::PrivateLinkage, StrConst, kAsanGenPrefix); | 
|  | if (AllowMerging) | 
|  | GV->setUnnamedAddr(true); | 
|  | GV->setAlignment(1);  // Strings may not be merged w/o setting align 1. | 
|  | return GV; | 
|  | } | 
|  |  | 
|  | /// \brief Create a global describing a source location. | 
|  | static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M, | 
|  | LocationMetadata MD) { | 
|  | Constant *LocData[] = { | 
|  | createPrivateGlobalForString(M, MD.Filename, true), | 
|  | ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo), | 
|  | ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo), | 
|  | }; | 
|  | auto LocStruct = ConstantStruct::getAnon(LocData); | 
|  | auto GV = new GlobalVariable(M, LocStruct->getType(), true, | 
|  | GlobalValue::PrivateLinkage, LocStruct, | 
|  | kAsanGenPrefix); | 
|  | GV->setUnnamedAddr(true); | 
|  | return GV; | 
|  | } | 
|  |  | 
|  | static bool GlobalWasGeneratedByAsan(GlobalVariable *G) { | 
|  | return G->getName().find(kAsanGenPrefix) == 0 || | 
|  | G->getName().find(kSanCovGenPrefix) == 0; | 
|  | } | 
|  |  | 
|  | Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) { | 
|  | // Shadow >> scale | 
|  | Shadow = IRB.CreateLShr(Shadow, Mapping.Scale); | 
|  | if (Mapping.Offset == 0) | 
|  | return Shadow; | 
|  | // (Shadow >> scale) | offset | 
|  | if (Mapping.OrShadowOffset) | 
|  | return IRB.CreateOr(Shadow, ConstantInt::get(IntptrTy, Mapping.Offset)); | 
|  | else | 
|  | return IRB.CreateAdd(Shadow, ConstantInt::get(IntptrTy, Mapping.Offset)); | 
|  | } | 
|  |  | 
|  | // Instrument memset/memmove/memcpy | 
|  | void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) { | 
|  | IRBuilder<> IRB(MI); | 
|  | if (isa<MemTransferInst>(MI)) { | 
|  | IRB.CreateCall3( | 
|  | isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy, | 
|  | IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), | 
|  | IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()), | 
|  | IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)); | 
|  | } else if (isa<MemSetInst>(MI)) { | 
|  | IRB.CreateCall3( | 
|  | AsanMemset, | 
|  | IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), | 
|  | IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false), | 
|  | IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)); | 
|  | } | 
|  | MI->eraseFromParent(); | 
|  | } | 
|  |  | 
|  | // If I is an interesting memory access, return the PointerOperand | 
|  | // and set IsWrite/Alignment. Otherwise return nullptr. | 
|  | static Value *isInterestingMemoryAccess(Instruction *I, bool *IsWrite, | 
|  | unsigned *Alignment) { | 
|  | // Skip memory accesses inserted by another instrumentation. | 
|  | if (I->getMetadata("nosanitize")) | 
|  | return nullptr; | 
|  | if (LoadInst *LI = dyn_cast<LoadInst>(I)) { | 
|  | if (!ClInstrumentReads) return nullptr; | 
|  | *IsWrite = false; | 
|  | *Alignment = LI->getAlignment(); | 
|  | return LI->getPointerOperand(); | 
|  | } | 
|  | if (StoreInst *SI = dyn_cast<StoreInst>(I)) { | 
|  | if (!ClInstrumentWrites) return nullptr; | 
|  | *IsWrite = true; | 
|  | *Alignment = SI->getAlignment(); | 
|  | return SI->getPointerOperand(); | 
|  | } | 
|  | if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { | 
|  | if (!ClInstrumentAtomics) return nullptr; | 
|  | *IsWrite = true; | 
|  | *Alignment = 0; | 
|  | return RMW->getPointerOperand(); | 
|  | } | 
|  | if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) { | 
|  | if (!ClInstrumentAtomics) return nullptr; | 
|  | *IsWrite = true; | 
|  | *Alignment = 0; | 
|  | return XCHG->getPointerOperand(); | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | static bool isPointerOperand(Value *V) { | 
|  | return V->getType()->isPointerTy() || isa<PtrToIntInst>(V); | 
|  | } | 
|  |  | 
|  | // This is a rough heuristic; it may cause both false positives and | 
|  | // false negatives. The proper implementation requires cooperation with | 
|  | // the frontend. | 
|  | static bool isInterestingPointerComparisonOrSubtraction(Instruction *I) { | 
|  | if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) { | 
|  | if (!Cmp->isRelational()) | 
|  | return false; | 
|  | } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { | 
|  | if (BO->getOpcode() != Instruction::Sub) | 
|  | return false; | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  | if (!isPointerOperand(I->getOperand(0)) || | 
|  | !isPointerOperand(I->getOperand(1))) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) { | 
|  | // If a global variable does not have dynamic initialization we don't | 
|  | // have to instrument it.  However, if a global does not have initializer | 
|  | // at all, we assume it has dynamic initializer (in other TU). | 
|  | return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit; | 
|  | } | 
|  |  | 
|  | void | 
|  | AddressSanitizer::instrumentPointerComparisonOrSubtraction(Instruction *I) { | 
|  | IRBuilder<> IRB(I); | 
|  | Function *F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction; | 
|  | Value *Param[2] = {I->getOperand(0), I->getOperand(1)}; | 
|  | for (int i = 0; i < 2; i++) { | 
|  | if (Param[i]->getType()->isPointerTy()) | 
|  | Param[i] = IRB.CreatePointerCast(Param[i], IntptrTy); | 
|  | } | 
|  | IRB.CreateCall2(F, Param[0], Param[1]); | 
|  | } | 
|  |  | 
|  | void AddressSanitizer::instrumentMop(Instruction *I, bool UseCalls) { | 
|  | bool IsWrite = false; | 
|  | unsigned Alignment = 0; | 
|  | Value *Addr = isInterestingMemoryAccess(I, &IsWrite, &Alignment); | 
|  | assert(Addr); | 
|  | if (ClOpt && ClOptGlobals) { | 
|  | if (GlobalVariable *G = dyn_cast<GlobalVariable>(Addr)) { | 
|  | // If initialization order checking is disabled, a simple access to a | 
|  | // dynamically initialized global is always valid. | 
|  | if (!ClInitializers || GlobalIsLinkerInitialized(G)) { | 
|  | NumOptimizedAccessesToGlobalVar++; | 
|  | return; | 
|  | } | 
|  | } | 
|  | ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr); | 
|  | if (CE && CE->isGEPWithNoNotionalOverIndexing()) { | 
|  | if (GlobalVariable *G = dyn_cast<GlobalVariable>(CE->getOperand(0))) { | 
|  | if (CE->getOperand(1)->isNullValue() && GlobalIsLinkerInitialized(G)) { | 
|  | NumOptimizedAccessesToGlobalArray++; | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | Type *OrigPtrTy = Addr->getType(); | 
|  | Type *OrigTy = cast<PointerType>(OrigPtrTy)->getElementType(); | 
|  |  | 
|  | assert(OrigTy->isSized()); | 
|  | uint32_t TypeSize = DL->getTypeStoreSizeInBits(OrigTy); | 
|  |  | 
|  | assert((TypeSize % 8) == 0); | 
|  |  | 
|  | if (IsWrite) | 
|  | NumInstrumentedWrites++; | 
|  | else | 
|  | NumInstrumentedReads++; | 
|  |  | 
|  | unsigned Granularity = 1 << Mapping.Scale; | 
|  | // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check | 
|  | // if the data is properly aligned. | 
|  | if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 || | 
|  | TypeSize == 128) && | 
|  | (Alignment >= Granularity || Alignment == 0 || Alignment >= TypeSize / 8)) | 
|  | return instrumentAddress(I, I, Addr, TypeSize, IsWrite, nullptr, UseCalls); | 
|  | // Instrument unusual size or unusual alignment. | 
|  | // We can not do it with a single check, so we do 1-byte check for the first | 
|  | // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able | 
|  | // to report the actual access size. | 
|  | IRBuilder<> IRB(I); | 
|  | Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8); | 
|  | Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); | 
|  | if (UseCalls) { | 
|  | IRB.CreateCall2(AsanMemoryAccessCallbackSized[IsWrite], AddrLong, Size); | 
|  | } else { | 
|  | Value *LastByte = IRB.CreateIntToPtr( | 
|  | IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)), | 
|  | OrigPtrTy); | 
|  | instrumentAddress(I, I, Addr, 8, IsWrite, Size, false); | 
|  | instrumentAddress(I, I, LastByte, 8, IsWrite, Size, false); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Validate the result of Module::getOrInsertFunction called for an interface | 
|  | // function of AddressSanitizer. If the instrumented module defines a function | 
|  | // with the same name, their prototypes must match, otherwise | 
|  | // getOrInsertFunction returns a bitcast. | 
|  | static Function *checkInterfaceFunction(Constant *FuncOrBitcast) { | 
|  | if (isa<Function>(FuncOrBitcast)) return cast<Function>(FuncOrBitcast); | 
|  | FuncOrBitcast->dump(); | 
|  | report_fatal_error("trying to redefine an AddressSanitizer " | 
|  | "interface function"); | 
|  | } | 
|  |  | 
|  | Instruction *AddressSanitizer::generateCrashCode( | 
|  | Instruction *InsertBefore, Value *Addr, | 
|  | bool IsWrite, size_t AccessSizeIndex, Value *SizeArgument) { | 
|  | IRBuilder<> IRB(InsertBefore); | 
|  | CallInst *Call = SizeArgument | 
|  | ? IRB.CreateCall2(AsanErrorCallbackSized[IsWrite], Addr, SizeArgument) | 
|  | : IRB.CreateCall(AsanErrorCallback[IsWrite][AccessSizeIndex], Addr); | 
|  |  | 
|  | // We don't do Call->setDoesNotReturn() because the BB already has | 
|  | // UnreachableInst at the end. | 
|  | // This EmptyAsm is required to avoid callback merge. | 
|  | IRB.CreateCall(EmptyAsm); | 
|  | return Call; | 
|  | } | 
|  |  | 
|  | Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, | 
|  | Value *ShadowValue, | 
|  | uint32_t TypeSize) { | 
|  | size_t Granularity = 1 << Mapping.Scale; | 
|  | // Addr & (Granularity - 1) | 
|  | Value *LastAccessedByte = IRB.CreateAnd( | 
|  | AddrLong, ConstantInt::get(IntptrTy, Granularity - 1)); | 
|  | // (Addr & (Granularity - 1)) + size - 1 | 
|  | if (TypeSize / 8 > 1) | 
|  | LastAccessedByte = IRB.CreateAdd( | 
|  | LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)); | 
|  | // (uint8_t) ((Addr & (Granularity-1)) + size - 1) | 
|  | LastAccessedByte = IRB.CreateIntCast( | 
|  | LastAccessedByte, ShadowValue->getType(), false); | 
|  | // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue | 
|  | return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue); | 
|  | } | 
|  |  | 
|  | void AddressSanitizer::instrumentAddress(Instruction *OrigIns, | 
|  | Instruction *InsertBefore, Value *Addr, | 
|  | uint32_t TypeSize, bool IsWrite, | 
|  | Value *SizeArgument, bool UseCalls) { | 
|  | IRBuilder<> IRB(InsertBefore); | 
|  | Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); | 
|  | size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize); | 
|  |  | 
|  | if (UseCalls) { | 
|  | IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][AccessSizeIndex], | 
|  | AddrLong); | 
|  | return; | 
|  | } | 
|  |  | 
|  | Type *ShadowTy  = IntegerType::get( | 
|  | *C, std::max(8U, TypeSize >> Mapping.Scale)); | 
|  | Type *ShadowPtrTy = PointerType::get(ShadowTy, 0); | 
|  | Value *ShadowPtr = memToShadow(AddrLong, IRB); | 
|  | Value *CmpVal = Constant::getNullValue(ShadowTy); | 
|  | Value *ShadowValue = IRB.CreateLoad( | 
|  | IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy)); | 
|  |  | 
|  | Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal); | 
|  | size_t Granularity = 1 << Mapping.Scale; | 
|  | TerminatorInst *CrashTerm = nullptr; | 
|  |  | 
|  | if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) { | 
|  | // We use branch weights for the slow path check, to indicate that the slow | 
|  | // path is rarely taken. This seems to be the case for SPEC benchmarks. | 
|  | TerminatorInst *CheckTerm = | 
|  | SplitBlockAndInsertIfThen(Cmp, InsertBefore, false, | 
|  | MDBuilder(*C).createBranchWeights(1, 100000)); | 
|  | assert(dyn_cast<BranchInst>(CheckTerm)->isUnconditional()); | 
|  | BasicBlock *NextBB = CheckTerm->getSuccessor(0); | 
|  | IRB.SetInsertPoint(CheckTerm); | 
|  | Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize); | 
|  | BasicBlock *CrashBlock = | 
|  | BasicBlock::Create(*C, "", NextBB->getParent(), NextBB); | 
|  | CrashTerm = new UnreachableInst(*C, CrashBlock); | 
|  | BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2); | 
|  | ReplaceInstWithInst(CheckTerm, NewTerm); | 
|  | } else { | 
|  | CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, true); | 
|  | } | 
|  |  | 
|  | Instruction *Crash = generateCrashCode( | 
|  | CrashTerm, AddrLong, IsWrite, AccessSizeIndex, SizeArgument); | 
|  | Crash->setDebugLoc(OrigIns->getDebugLoc()); | 
|  | } | 
|  |  | 
|  | void AddressSanitizerModule::poisonOneInitializer(Function &GlobalInit, | 
|  | GlobalValue *ModuleName) { | 
|  | // Set up the arguments to our poison/unpoison functions. | 
|  | IRBuilder<> IRB(GlobalInit.begin()->getFirstInsertionPt()); | 
|  |  | 
|  | // Add a call to poison all external globals before the given function starts. | 
|  | Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy); | 
|  | IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr); | 
|  |  | 
|  | // Add calls to unpoison all globals before each return instruction. | 
|  | for (auto &BB : GlobalInit.getBasicBlockList()) | 
|  | if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) | 
|  | CallInst::Create(AsanUnpoisonGlobals, "", RI); | 
|  | } | 
|  |  | 
|  | void AddressSanitizerModule::createInitializerPoisonCalls( | 
|  | Module &M, GlobalValue *ModuleName) { | 
|  | GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors"); | 
|  |  | 
|  | ConstantArray *CA = cast<ConstantArray>(GV->getInitializer()); | 
|  | for (Use &OP : CA->operands()) { | 
|  | if (isa<ConstantAggregateZero>(OP)) | 
|  | continue; | 
|  | ConstantStruct *CS = cast<ConstantStruct>(OP); | 
|  |  | 
|  | // Must have a function or null ptr. | 
|  | if (Function* F = dyn_cast<Function>(CS->getOperand(1))) { | 
|  | if (F->getName() == kAsanModuleCtorName) continue; | 
|  | ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); | 
|  | // Don't instrument CTORs that will run before asan.module_ctor. | 
|  | if (Priority->getLimitedValue() <= kAsanCtorAndDtorPriority) continue; | 
|  | poisonOneInitializer(*F, ModuleName); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool AddressSanitizerModule::ShouldInstrumentGlobal(GlobalVariable *G) { | 
|  | Type *Ty = cast<PointerType>(G->getType())->getElementType(); | 
|  | DEBUG(dbgs() << "GLOBAL: " << *G << "\n"); | 
|  |  | 
|  | if (GlobalsMD.get(G).IsBlacklisted) return false; | 
|  | if (!Ty->isSized()) return false; | 
|  | if (!G->hasInitializer()) return false; | 
|  | if (GlobalWasGeneratedByAsan(G)) return false;  // Our own global. | 
|  | // Touch only those globals that will not be defined in other modules. | 
|  | // Don't handle ODR linkage types and COMDATs since other modules may be built | 
|  | // without ASan. | 
|  | if (G->getLinkage() != GlobalVariable::ExternalLinkage && | 
|  | G->getLinkage() != GlobalVariable::PrivateLinkage && | 
|  | G->getLinkage() != GlobalVariable::InternalLinkage) | 
|  | return false; | 
|  | if (G->hasComdat()) | 
|  | return false; | 
|  | // Two problems with thread-locals: | 
|  | //   - The address of the main thread's copy can't be computed at link-time. | 
|  | //   - Need to poison all copies, not just the main thread's one. | 
|  | if (G->isThreadLocal()) | 
|  | return false; | 
|  | // For now, just ignore this Global if the alignment is large. | 
|  | if (G->getAlignment() > MinRedzoneSizeForGlobal()) return false; | 
|  |  | 
|  | if (G->hasSection()) { | 
|  | StringRef Section(G->getSection()); | 
|  | // Ignore the globals from the __OBJC section. The ObjC runtime assumes | 
|  | // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to | 
|  | // them. | 
|  | if (Section.startswith("__OBJC,") || | 
|  | Section.startswith("__DATA, __objc_")) { | 
|  | DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n"); | 
|  | return false; | 
|  | } | 
|  | // See http://code.google.com/p/address-sanitizer/issues/detail?id=32 | 
|  | // Constant CFString instances are compiled in the following way: | 
|  | //  -- the string buffer is emitted into | 
|  | //     __TEXT,__cstring,cstring_literals | 
|  | //  -- the constant NSConstantString structure referencing that buffer | 
|  | //     is placed into __DATA,__cfstring | 
|  | // Therefore there's no point in placing redzones into __DATA,__cfstring. | 
|  | // Moreover, it causes the linker to crash on OS X 10.7 | 
|  | if (Section.startswith("__DATA,__cfstring")) { | 
|  | DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n"); | 
|  | return false; | 
|  | } | 
|  | // The linker merges the contents of cstring_literals and removes the | 
|  | // trailing zeroes. | 
|  | if (Section.startswith("__TEXT,__cstring,cstring_literals")) { | 
|  | DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n"); | 
|  | return false; | 
|  | } | 
|  | if (Section.startswith("__TEXT,__objc_methname,cstring_literals")) { | 
|  | DEBUG(dbgs() << "Ignoring objc_methname cstring global: " << *G << "\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Callbacks put into the CRT initializer/terminator sections | 
|  | // should not be instrumented. | 
|  | // See https://code.google.com/p/address-sanitizer/issues/detail?id=305 | 
|  | // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx | 
|  | if (Section.startswith(".CRT")) { | 
|  | DEBUG(dbgs() << "Ignoring a global initializer callback: " << *G << "\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Globals from llvm.metadata aren't emitted, do not instrument them. | 
|  | if (Section == "llvm.metadata") return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void AddressSanitizerModule::initializeCallbacks(Module &M) { | 
|  | IRBuilder<> IRB(*C); | 
|  | // Declare our poisoning and unpoisoning functions. | 
|  | AsanPoisonGlobals = checkInterfaceFunction(M.getOrInsertFunction( | 
|  | kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy, nullptr)); | 
|  | AsanPoisonGlobals->setLinkage(Function::ExternalLinkage); | 
|  | AsanUnpoisonGlobals = checkInterfaceFunction(M.getOrInsertFunction( | 
|  | kAsanUnpoisonGlobalsName, IRB.getVoidTy(), nullptr)); | 
|  | AsanUnpoisonGlobals->setLinkage(Function::ExternalLinkage); | 
|  | // Declare functions that register/unregister globals. | 
|  | AsanRegisterGlobals = checkInterfaceFunction(M.getOrInsertFunction( | 
|  | kAsanRegisterGlobalsName, IRB.getVoidTy(), | 
|  | IntptrTy, IntptrTy, nullptr)); | 
|  | AsanRegisterGlobals->setLinkage(Function::ExternalLinkage); | 
|  | AsanUnregisterGlobals = checkInterfaceFunction(M.getOrInsertFunction( | 
|  | kAsanUnregisterGlobalsName, | 
|  | IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr)); | 
|  | AsanUnregisterGlobals->setLinkage(Function::ExternalLinkage); | 
|  | } | 
|  |  | 
|  | // This function replaces all global variables with new variables that have | 
|  | // trailing redzones. It also creates a function that poisons | 
|  | // redzones and inserts this function into llvm.global_ctors. | 
|  | bool AddressSanitizerModule::InstrumentGlobals(IRBuilder<> &IRB, Module &M) { | 
|  | GlobalsMD.init(M); | 
|  |  | 
|  | SmallVector<GlobalVariable *, 16> GlobalsToChange; | 
|  |  | 
|  | for (auto &G : M.globals()) { | 
|  | if (ShouldInstrumentGlobal(&G)) | 
|  | GlobalsToChange.push_back(&G); | 
|  | } | 
|  |  | 
|  | size_t n = GlobalsToChange.size(); | 
|  | if (n == 0) return false; | 
|  |  | 
|  | // A global is described by a structure | 
|  | //   size_t beg; | 
|  | //   size_t size; | 
|  | //   size_t size_with_redzone; | 
|  | //   const char *name; | 
|  | //   const char *module_name; | 
|  | //   size_t has_dynamic_init; | 
|  | //   void *source_location; | 
|  | // We initialize an array of such structures and pass it to a run-time call. | 
|  | StructType *GlobalStructTy = | 
|  | StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy, | 
|  | IntptrTy, IntptrTy, nullptr); | 
|  | SmallVector<Constant *, 16> Initializers(n); | 
|  |  | 
|  | bool HasDynamicallyInitializedGlobals = false; | 
|  |  | 
|  | // We shouldn't merge same module names, as this string serves as unique | 
|  | // module ID in runtime. | 
|  | GlobalVariable *ModuleName = createPrivateGlobalForString( | 
|  | M, M.getModuleIdentifier(), /*AllowMerging*/false); | 
|  |  | 
|  | for (size_t i = 0; i < n; i++) { | 
|  | static const uint64_t kMaxGlobalRedzone = 1 << 18; | 
|  | GlobalVariable *G = GlobalsToChange[i]; | 
|  |  | 
|  | auto MD = GlobalsMD.get(G); | 
|  | // Create string holding the global name (use global name from metadata | 
|  | // if it's available, otherwise just write the name of global variable). | 
|  | GlobalVariable *Name = createPrivateGlobalForString( | 
|  | M, MD.Name.empty() ? G->getName() : MD.Name, | 
|  | /*AllowMerging*/ true); | 
|  |  | 
|  | PointerType *PtrTy = cast<PointerType>(G->getType()); | 
|  | Type *Ty = PtrTy->getElementType(); | 
|  | uint64_t SizeInBytes = DL->getTypeAllocSize(Ty); | 
|  | uint64_t MinRZ = MinRedzoneSizeForGlobal(); | 
|  | // MinRZ <= RZ <= kMaxGlobalRedzone | 
|  | // and trying to make RZ to be ~ 1/4 of SizeInBytes. | 
|  | uint64_t RZ = std::max(MinRZ, | 
|  | std::min(kMaxGlobalRedzone, | 
|  | (SizeInBytes / MinRZ / 4) * MinRZ)); | 
|  | uint64_t RightRedzoneSize = RZ; | 
|  | // Round up to MinRZ | 
|  | if (SizeInBytes % MinRZ) | 
|  | RightRedzoneSize += MinRZ - (SizeInBytes % MinRZ); | 
|  | assert(((RightRedzoneSize + SizeInBytes) % MinRZ) == 0); | 
|  | Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize); | 
|  |  | 
|  | StructType *NewTy = StructType::get(Ty, RightRedZoneTy, nullptr); | 
|  | Constant *NewInitializer = ConstantStruct::get( | 
|  | NewTy, G->getInitializer(), | 
|  | Constant::getNullValue(RightRedZoneTy), nullptr); | 
|  |  | 
|  | // Create a new global variable with enough space for a redzone. | 
|  | GlobalValue::LinkageTypes Linkage = G->getLinkage(); | 
|  | if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage) | 
|  | Linkage = GlobalValue::InternalLinkage; | 
|  | GlobalVariable *NewGlobal = new GlobalVariable( | 
|  | M, NewTy, G->isConstant(), Linkage, | 
|  | NewInitializer, "", G, G->getThreadLocalMode()); | 
|  | NewGlobal->copyAttributesFrom(G); | 
|  | NewGlobal->setAlignment(MinRZ); | 
|  |  | 
|  | Value *Indices2[2]; | 
|  | Indices2[0] = IRB.getInt32(0); | 
|  | Indices2[1] = IRB.getInt32(0); | 
|  |  | 
|  | G->replaceAllUsesWith( | 
|  | ConstantExpr::getGetElementPtr(NewGlobal, Indices2, true)); | 
|  | NewGlobal->takeName(G); | 
|  | G->eraseFromParent(); | 
|  |  | 
|  | Constant *SourceLoc; | 
|  | if (!MD.SourceLoc.empty()) { | 
|  | auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc); | 
|  | SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy); | 
|  | } else { | 
|  | SourceLoc = ConstantInt::get(IntptrTy, 0); | 
|  | } | 
|  |  | 
|  | Initializers[i] = ConstantStruct::get( | 
|  | GlobalStructTy, ConstantExpr::getPointerCast(NewGlobal, IntptrTy), | 
|  | ConstantInt::get(IntptrTy, SizeInBytes), | 
|  | ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize), | 
|  | ConstantExpr::getPointerCast(Name, IntptrTy), | 
|  | ConstantExpr::getPointerCast(ModuleName, IntptrTy), | 
|  | ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc, nullptr); | 
|  |  | 
|  | if (ClInitializers && MD.IsDynInit) | 
|  | HasDynamicallyInitializedGlobals = true; | 
|  |  | 
|  | DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n"); | 
|  | } | 
|  |  | 
|  | ArrayType *ArrayOfGlobalStructTy = ArrayType::get(GlobalStructTy, n); | 
|  | GlobalVariable *AllGlobals = new GlobalVariable( | 
|  | M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage, | 
|  | ConstantArray::get(ArrayOfGlobalStructTy, Initializers), ""); | 
|  |  | 
|  | // Create calls for poisoning before initializers run and unpoisoning after. | 
|  | if (HasDynamicallyInitializedGlobals) | 
|  | createInitializerPoisonCalls(M, ModuleName); | 
|  | IRB.CreateCall2(AsanRegisterGlobals, | 
|  | IRB.CreatePointerCast(AllGlobals, IntptrTy), | 
|  | ConstantInt::get(IntptrTy, n)); | 
|  |  | 
|  | // We also need to unregister globals at the end, e.g. when a shared library | 
|  | // gets closed. | 
|  | Function *AsanDtorFunction = Function::Create( | 
|  | FunctionType::get(Type::getVoidTy(*C), false), | 
|  | GlobalValue::InternalLinkage, kAsanModuleDtorName, &M); | 
|  | BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction); | 
|  | IRBuilder<> IRB_Dtor(ReturnInst::Create(*C, AsanDtorBB)); | 
|  | IRB_Dtor.CreateCall2(AsanUnregisterGlobals, | 
|  | IRB.CreatePointerCast(AllGlobals, IntptrTy), | 
|  | ConstantInt::get(IntptrTy, n)); | 
|  | appendToGlobalDtors(M, AsanDtorFunction, kAsanCtorAndDtorPriority); | 
|  |  | 
|  | DEBUG(dbgs() << M); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool AddressSanitizerModule::runOnModule(Module &M) { | 
|  | DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); | 
|  | if (!DLP) | 
|  | return false; | 
|  | DL = &DLP->getDataLayout(); | 
|  | C = &(M.getContext()); | 
|  | int LongSize = DL->getPointerSizeInBits(); | 
|  | IntptrTy = Type::getIntNTy(*C, LongSize); | 
|  | Mapping = getShadowMapping(M, LongSize); | 
|  | initializeCallbacks(M); | 
|  |  | 
|  | bool Changed = false; | 
|  |  | 
|  | Function *CtorFunc = M.getFunction(kAsanModuleCtorName); | 
|  | assert(CtorFunc); | 
|  | IRBuilder<> IRB(CtorFunc->getEntryBlock().getTerminator()); | 
|  |  | 
|  | if (ClGlobals) | 
|  | Changed |= InstrumentGlobals(IRB, M); | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | void AddressSanitizer::initializeCallbacks(Module &M) { | 
|  | IRBuilder<> IRB(*C); | 
|  | // Create __asan_report* callbacks. | 
|  | for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) { | 
|  | for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; | 
|  | AccessSizeIndex++) { | 
|  | // IsWrite and TypeSize are encoded in the function name. | 
|  | std::string Suffix = | 
|  | (AccessIsWrite ? "store" : "load") + itostr(1 << AccessSizeIndex); | 
|  | AsanErrorCallback[AccessIsWrite][AccessSizeIndex] = | 
|  | checkInterfaceFunction( | 
|  | M.getOrInsertFunction(kAsanReportErrorTemplate + Suffix, | 
|  | IRB.getVoidTy(), IntptrTy, nullptr)); | 
|  | AsanMemoryAccessCallback[AccessIsWrite][AccessSizeIndex] = | 
|  | checkInterfaceFunction( | 
|  | M.getOrInsertFunction(ClMemoryAccessCallbackPrefix + Suffix, | 
|  | IRB.getVoidTy(), IntptrTy, nullptr)); | 
|  | } | 
|  | } | 
|  | AsanErrorCallbackSized[0] = checkInterfaceFunction(M.getOrInsertFunction( | 
|  | kAsanReportLoadN, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr)); | 
|  | AsanErrorCallbackSized[1] = checkInterfaceFunction(M.getOrInsertFunction( | 
|  | kAsanReportStoreN, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr)); | 
|  |  | 
|  | AsanMemoryAccessCallbackSized[0] = checkInterfaceFunction( | 
|  | M.getOrInsertFunction(ClMemoryAccessCallbackPrefix + "loadN", | 
|  | IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr)); | 
|  | AsanMemoryAccessCallbackSized[1] = checkInterfaceFunction( | 
|  | M.getOrInsertFunction(ClMemoryAccessCallbackPrefix + "storeN", | 
|  | IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr)); | 
|  |  | 
|  | AsanMemmove = checkInterfaceFunction(M.getOrInsertFunction( | 
|  | ClMemoryAccessCallbackPrefix + "memmove", IRB.getInt8PtrTy(), | 
|  | IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy, nullptr)); | 
|  | AsanMemcpy = checkInterfaceFunction(M.getOrInsertFunction( | 
|  | ClMemoryAccessCallbackPrefix + "memcpy", IRB.getInt8PtrTy(), | 
|  | IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy, nullptr)); | 
|  | AsanMemset = checkInterfaceFunction(M.getOrInsertFunction( | 
|  | ClMemoryAccessCallbackPrefix + "memset", IRB.getInt8PtrTy(), | 
|  | IRB.getInt8PtrTy(), IRB.getInt32Ty(), IntptrTy, nullptr)); | 
|  |  | 
|  | AsanHandleNoReturnFunc = checkInterfaceFunction( | 
|  | M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy(), nullptr)); | 
|  |  | 
|  | AsanPtrCmpFunction = checkInterfaceFunction(M.getOrInsertFunction( | 
|  | kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr)); | 
|  | AsanPtrSubFunction = checkInterfaceFunction(M.getOrInsertFunction( | 
|  | kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr)); | 
|  | // We insert an empty inline asm after __asan_report* to avoid callback merge. | 
|  | EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false), | 
|  | StringRef(""), StringRef(""), | 
|  | /*hasSideEffects=*/true); | 
|  | } | 
|  |  | 
|  | // virtual | 
|  | bool AddressSanitizer::doInitialization(Module &M) { | 
|  | // Initialize the private fields. No one has accessed them before. | 
|  | DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); | 
|  | if (!DLP) | 
|  | report_fatal_error("data layout missing"); | 
|  | DL = &DLP->getDataLayout(); | 
|  |  | 
|  | GlobalsMD.init(M); | 
|  |  | 
|  | C = &(M.getContext()); | 
|  | LongSize = DL->getPointerSizeInBits(); | 
|  | IntptrTy = Type::getIntNTy(*C, LongSize); | 
|  |  | 
|  | AsanCtorFunction = Function::Create( | 
|  | FunctionType::get(Type::getVoidTy(*C), false), | 
|  | GlobalValue::InternalLinkage, kAsanModuleCtorName, &M); | 
|  | BasicBlock *AsanCtorBB = BasicBlock::Create(*C, "", AsanCtorFunction); | 
|  | // call __asan_init in the module ctor. | 
|  | IRBuilder<> IRB(ReturnInst::Create(*C, AsanCtorBB)); | 
|  | AsanInitFunction = checkInterfaceFunction( | 
|  | M.getOrInsertFunction(kAsanInitName, IRB.getVoidTy(), nullptr)); | 
|  | AsanInitFunction->setLinkage(Function::ExternalLinkage); | 
|  | IRB.CreateCall(AsanInitFunction); | 
|  |  | 
|  | Mapping = getShadowMapping(M, LongSize); | 
|  |  | 
|  | appendToGlobalCtors(M, AsanCtorFunction, kAsanCtorAndDtorPriority); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) { | 
|  | // For each NSObject descendant having a +load method, this method is invoked | 
|  | // by the ObjC runtime before any of the static constructors is called. | 
|  | // Therefore we need to instrument such methods with a call to __asan_init | 
|  | // at the beginning in order to initialize our runtime before any access to | 
|  | // the shadow memory. | 
|  | // We cannot just ignore these methods, because they may call other | 
|  | // instrumented functions. | 
|  | if (F.getName().find(" load]") != std::string::npos) { | 
|  | IRBuilder<> IRB(F.begin()->begin()); | 
|  | IRB.CreateCall(AsanInitFunction); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool AddressSanitizer::runOnFunction(Function &F) { | 
|  | if (&F == AsanCtorFunction) return false; | 
|  | if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false; | 
|  | DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n"); | 
|  | initializeCallbacks(*F.getParent()); | 
|  |  | 
|  | // If needed, insert __asan_init before checking for SanitizeAddress attr. | 
|  | maybeInsertAsanInitAtFunctionEntry(F); | 
|  |  | 
|  | if (!F.hasFnAttribute(Attribute::SanitizeAddress)) | 
|  | return false; | 
|  |  | 
|  | if (!ClDebugFunc.empty() && ClDebugFunc != F.getName()) | 
|  | return false; | 
|  |  | 
|  | // We want to instrument every address only once per basic block (unless there | 
|  | // are calls between uses). | 
|  | SmallSet<Value*, 16> TempsToInstrument; | 
|  | SmallVector<Instruction*, 16> ToInstrument; | 
|  | SmallVector<Instruction*, 8> NoReturnCalls; | 
|  | SmallVector<BasicBlock*, 16> AllBlocks; | 
|  | SmallVector<Instruction*, 16> PointerComparisonsOrSubtracts; | 
|  | int NumAllocas = 0; | 
|  | bool IsWrite; | 
|  | unsigned Alignment; | 
|  |  | 
|  | // Fill the set of memory operations to instrument. | 
|  | for (auto &BB : F) { | 
|  | AllBlocks.push_back(&BB); | 
|  | TempsToInstrument.clear(); | 
|  | int NumInsnsPerBB = 0; | 
|  | for (auto &Inst : BB) { | 
|  | if (LooksLikeCodeInBug11395(&Inst)) return false; | 
|  | if (Value *Addr = | 
|  | isInterestingMemoryAccess(&Inst, &IsWrite, &Alignment)) { | 
|  | if (ClOpt && ClOptSameTemp) { | 
|  | if (!TempsToInstrument.insert(Addr).second) | 
|  | continue;  // We've seen this temp in the current BB. | 
|  | } | 
|  | } else if (ClInvalidPointerPairs && | 
|  | isInterestingPointerComparisonOrSubtraction(&Inst)) { | 
|  | PointerComparisonsOrSubtracts.push_back(&Inst); | 
|  | continue; | 
|  | } else if (isa<MemIntrinsic>(Inst)) { | 
|  | // ok, take it. | 
|  | } else { | 
|  | if (isa<AllocaInst>(Inst)) | 
|  | NumAllocas++; | 
|  | CallSite CS(&Inst); | 
|  | if (CS) { | 
|  | // A call inside BB. | 
|  | TempsToInstrument.clear(); | 
|  | if (CS.doesNotReturn()) | 
|  | NoReturnCalls.push_back(CS.getInstruction()); | 
|  | } | 
|  | continue; | 
|  | } | 
|  | ToInstrument.push_back(&Inst); | 
|  | NumInsnsPerBB++; | 
|  | if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | Function *UninstrumentedDuplicate = nullptr; | 
|  | bool LikelyToInstrument = | 
|  | !NoReturnCalls.empty() || !ToInstrument.empty() || (NumAllocas > 0); | 
|  | if (ClKeepUninstrumented && LikelyToInstrument) { | 
|  | ValueToValueMapTy VMap; | 
|  | UninstrumentedDuplicate = CloneFunction(&F, VMap, false); | 
|  | UninstrumentedDuplicate->removeFnAttr(Attribute::SanitizeAddress); | 
|  | UninstrumentedDuplicate->setName("NOASAN_" + F.getName()); | 
|  | F.getParent()->getFunctionList().push_back(UninstrumentedDuplicate); | 
|  | } | 
|  |  | 
|  | bool UseCalls = false; | 
|  | if (ClInstrumentationWithCallsThreshold >= 0 && | 
|  | ToInstrument.size() > (unsigned)ClInstrumentationWithCallsThreshold) | 
|  | UseCalls = true; | 
|  |  | 
|  | // Instrument. | 
|  | int NumInstrumented = 0; | 
|  | for (auto Inst : ToInstrument) { | 
|  | if (ClDebugMin < 0 || ClDebugMax < 0 || | 
|  | (NumInstrumented >= ClDebugMin && NumInstrumented <= ClDebugMax)) { | 
|  | if (isInterestingMemoryAccess(Inst, &IsWrite, &Alignment)) | 
|  | instrumentMop(Inst, UseCalls); | 
|  | else | 
|  | instrumentMemIntrinsic(cast<MemIntrinsic>(Inst)); | 
|  | } | 
|  | NumInstrumented++; | 
|  | } | 
|  |  | 
|  | FunctionStackPoisoner FSP(F, *this); | 
|  | bool ChangedStack = FSP.runOnFunction(); | 
|  |  | 
|  | // We must unpoison the stack before every NoReturn call (throw, _exit, etc). | 
|  | // See e.g. http://code.google.com/p/address-sanitizer/issues/detail?id=37 | 
|  | for (auto CI : NoReturnCalls) { | 
|  | IRBuilder<> IRB(CI); | 
|  | IRB.CreateCall(AsanHandleNoReturnFunc); | 
|  | } | 
|  |  | 
|  | for (auto Inst : PointerComparisonsOrSubtracts) { | 
|  | instrumentPointerComparisonOrSubtraction(Inst); | 
|  | NumInstrumented++; | 
|  | } | 
|  |  | 
|  | bool res = NumInstrumented > 0 || ChangedStack || !NoReturnCalls.empty(); | 
|  |  | 
|  | DEBUG(dbgs() << "ASAN done instrumenting: " << res << " " << F << "\n"); | 
|  |  | 
|  | if (ClKeepUninstrumented) { | 
|  | if (!res) { | 
|  | // No instrumentation is done, no need for the duplicate. | 
|  | if (UninstrumentedDuplicate) | 
|  | UninstrumentedDuplicate->eraseFromParent(); | 
|  | } else { | 
|  | // The function was instrumented. We must have the duplicate. | 
|  | assert(UninstrumentedDuplicate); | 
|  | UninstrumentedDuplicate->setSection("NOASAN"); | 
|  | assert(!F.hasSection()); | 
|  | F.setSection("ASAN"); | 
|  | } | 
|  | } | 
|  |  | 
|  | return res; | 
|  | } | 
|  |  | 
|  | // Workaround for bug 11395: we don't want to instrument stack in functions | 
|  | // with large assembly blobs (32-bit only), otherwise reg alloc may crash. | 
|  | // FIXME: remove once the bug 11395 is fixed. | 
|  | bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) { | 
|  | if (LongSize != 32) return false; | 
|  | CallInst *CI = dyn_cast<CallInst>(I); | 
|  | if (!CI || !CI->isInlineAsm()) return false; | 
|  | if (CI->getNumArgOperands() <= 5) return false; | 
|  | // We have inline assembly with quite a few arguments. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void FunctionStackPoisoner::initializeCallbacks(Module &M) { | 
|  | IRBuilder<> IRB(*C); | 
|  | for (int i = 0; i <= kMaxAsanStackMallocSizeClass; i++) { | 
|  | std::string Suffix = itostr(i); | 
|  | AsanStackMallocFunc[i] = checkInterfaceFunction( | 
|  | M.getOrInsertFunction(kAsanStackMallocNameTemplate + Suffix, IntptrTy, | 
|  | IntptrTy, IntptrTy, nullptr)); | 
|  | AsanStackFreeFunc[i] = checkInterfaceFunction(M.getOrInsertFunction( | 
|  | kAsanStackFreeNameTemplate + Suffix, IRB.getVoidTy(), IntptrTy, | 
|  | IntptrTy, IntptrTy, nullptr)); | 
|  | } | 
|  | AsanPoisonStackMemoryFunc = checkInterfaceFunction( | 
|  | M.getOrInsertFunction(kAsanPoisonStackMemoryName, IRB.getVoidTy(), | 
|  | IntptrTy, IntptrTy, nullptr)); | 
|  | AsanUnpoisonStackMemoryFunc = checkInterfaceFunction( | 
|  | M.getOrInsertFunction(kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), | 
|  | IntptrTy, IntptrTy, nullptr)); | 
|  | } | 
|  |  | 
|  | void | 
|  | FunctionStackPoisoner::poisonRedZones(ArrayRef<uint8_t> ShadowBytes, | 
|  | IRBuilder<> &IRB, Value *ShadowBase, | 
|  | bool DoPoison) { | 
|  | size_t n = ShadowBytes.size(); | 
|  | size_t i = 0; | 
|  | // We need to (un)poison n bytes of stack shadow. Poison as many as we can | 
|  | // using 64-bit stores (if we are on 64-bit arch), then poison the rest | 
|  | // with 32-bit stores, then with 16-byte stores, then with 8-byte stores. | 
|  | for (size_t LargeStoreSizeInBytes = ASan.LongSize / 8; | 
|  | LargeStoreSizeInBytes != 0; LargeStoreSizeInBytes /= 2) { | 
|  | for (; i + LargeStoreSizeInBytes - 1 < n; i += LargeStoreSizeInBytes) { | 
|  | uint64_t Val = 0; | 
|  | for (size_t j = 0; j < LargeStoreSizeInBytes; j++) { | 
|  | if (ASan.DL->isLittleEndian()) | 
|  | Val |= (uint64_t)ShadowBytes[i + j] << (8 * j); | 
|  | else | 
|  | Val = (Val << 8) | ShadowBytes[i + j]; | 
|  | } | 
|  | if (!Val) continue; | 
|  | Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)); | 
|  | Type *StoreTy = Type::getIntNTy(*C, LargeStoreSizeInBytes * 8); | 
|  | Value *Poison = ConstantInt::get(StoreTy, DoPoison ? Val : 0); | 
|  | IRB.CreateStore(Poison, IRB.CreateIntToPtr(Ptr, StoreTy->getPointerTo())); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Fake stack allocator (asan_fake_stack.h) has 11 size classes | 
|  | // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass | 
|  | static int StackMallocSizeClass(uint64_t LocalStackSize) { | 
|  | assert(LocalStackSize <= kMaxStackMallocSize); | 
|  | uint64_t MaxSize = kMinStackMallocSize; | 
|  | for (int i = 0; ; i++, MaxSize *= 2) | 
|  | if (LocalStackSize <= MaxSize) | 
|  | return i; | 
|  | llvm_unreachable("impossible LocalStackSize"); | 
|  | } | 
|  |  | 
|  | // Set Size bytes starting from ShadowBase to kAsanStackAfterReturnMagic. | 
|  | // We can not use MemSet intrinsic because it may end up calling the actual | 
|  | // memset. Size is a multiple of 8. | 
|  | // Currently this generates 8-byte stores on x86_64; it may be better to | 
|  | // generate wider stores. | 
|  | void FunctionStackPoisoner::SetShadowToStackAfterReturnInlined( | 
|  | IRBuilder<> &IRB, Value *ShadowBase, int Size) { | 
|  | assert(!(Size % 8)); | 
|  | assert(kAsanStackAfterReturnMagic == 0xf5); | 
|  | for (int i = 0; i < Size; i += 8) { | 
|  | Value *p = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)); | 
|  | IRB.CreateStore(ConstantInt::get(IRB.getInt64Ty(), 0xf5f5f5f5f5f5f5f5ULL), | 
|  | IRB.CreateIntToPtr(p, IRB.getInt64Ty()->getPointerTo())); | 
|  | } | 
|  | } | 
|  |  | 
|  | static DebugLoc getFunctionEntryDebugLocation(Function &F) { | 
|  | for (const auto &Inst : F.getEntryBlock()) | 
|  | if (!isa<AllocaInst>(Inst)) | 
|  | return Inst.getDebugLoc(); | 
|  | return DebugLoc(); | 
|  | } | 
|  |  | 
|  | void FunctionStackPoisoner::poisonStack() { | 
|  | assert(AllocaVec.size() > 0 || DynamicAllocaVec.size() > 0); | 
|  |  | 
|  | if (ClInstrumentAllocas) | 
|  | // Handle dynamic allocas. | 
|  | for (auto &AllocaCall : DynamicAllocaVec) | 
|  | handleDynamicAllocaCall(AllocaCall); | 
|  |  | 
|  | if (AllocaVec.size() == 0) return; | 
|  |  | 
|  | int StackMallocIdx = -1; | 
|  | DebugLoc EntryDebugLocation = getFunctionEntryDebugLocation(F); | 
|  |  | 
|  | Instruction *InsBefore = AllocaVec[0]; | 
|  | IRBuilder<> IRB(InsBefore); | 
|  | IRB.SetCurrentDebugLocation(EntryDebugLocation); | 
|  |  | 
|  | SmallVector<ASanStackVariableDescription, 16> SVD; | 
|  | SVD.reserve(AllocaVec.size()); | 
|  | for (AllocaInst *AI : AllocaVec) { | 
|  | ASanStackVariableDescription D = { AI->getName().data(), | 
|  | getAllocaSizeInBytes(AI), | 
|  | AI->getAlignment(), AI, 0}; | 
|  | SVD.push_back(D); | 
|  | } | 
|  | // Minimal header size (left redzone) is 4 pointers, | 
|  | // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms. | 
|  | size_t MinHeaderSize = ASan.LongSize / 2; | 
|  | ASanStackFrameLayout L; | 
|  | ComputeASanStackFrameLayout(SVD, 1UL << Mapping.Scale, MinHeaderSize, &L); | 
|  | DEBUG(dbgs() << L.DescriptionString << " --- " << L.FrameSize << "\n"); | 
|  | uint64_t LocalStackSize = L.FrameSize; | 
|  | bool DoStackMalloc = | 
|  | ClUseAfterReturn && LocalStackSize <= kMaxStackMallocSize; | 
|  |  | 
|  | Type *ByteArrayTy = ArrayType::get(IRB.getInt8Ty(), LocalStackSize); | 
|  | AllocaInst *MyAlloca = | 
|  | new AllocaInst(ByteArrayTy, "MyAlloca", InsBefore); | 
|  | MyAlloca->setDebugLoc(EntryDebugLocation); | 
|  | assert((ClRealignStack & (ClRealignStack - 1)) == 0); | 
|  | size_t FrameAlignment = std::max(L.FrameAlignment, (size_t)ClRealignStack); | 
|  | MyAlloca->setAlignment(FrameAlignment); | 
|  | assert(MyAlloca->isStaticAlloca()); | 
|  | Value *OrigStackBase = IRB.CreatePointerCast(MyAlloca, IntptrTy); | 
|  | Value *LocalStackBase = OrigStackBase; | 
|  |  | 
|  | if (DoStackMalloc) { | 
|  | // LocalStackBase = OrigStackBase | 
|  | // if (__asan_option_detect_stack_use_after_return) | 
|  | //   LocalStackBase = __asan_stack_malloc_N(LocalStackBase, OrigStackBase); | 
|  | StackMallocIdx = StackMallocSizeClass(LocalStackSize); | 
|  | assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass); | 
|  | Constant *OptionDetectUAR = F.getParent()->getOrInsertGlobal( | 
|  | kAsanOptionDetectUAR, IRB.getInt32Ty()); | 
|  | Value *Cmp = IRB.CreateICmpNE(IRB.CreateLoad(OptionDetectUAR), | 
|  | Constant::getNullValue(IRB.getInt32Ty())); | 
|  | Instruction *Term = SplitBlockAndInsertIfThen(Cmp, InsBefore, false); | 
|  | BasicBlock *CmpBlock = cast<Instruction>(Cmp)->getParent(); | 
|  | IRBuilder<> IRBIf(Term); | 
|  | IRBIf.SetCurrentDebugLocation(EntryDebugLocation); | 
|  | LocalStackBase = IRBIf.CreateCall2( | 
|  | AsanStackMallocFunc[StackMallocIdx], | 
|  | ConstantInt::get(IntptrTy, LocalStackSize), OrigStackBase); | 
|  | BasicBlock *SetBlock = cast<Instruction>(LocalStackBase)->getParent(); | 
|  | IRB.SetInsertPoint(InsBefore); | 
|  | IRB.SetCurrentDebugLocation(EntryDebugLocation); | 
|  | PHINode *Phi = IRB.CreatePHI(IntptrTy, 2); | 
|  | Phi->addIncoming(OrigStackBase, CmpBlock); | 
|  | Phi->addIncoming(LocalStackBase, SetBlock); | 
|  | LocalStackBase = Phi; | 
|  | } | 
|  |  | 
|  | // Insert poison calls for lifetime intrinsics for alloca. | 
|  | bool HavePoisonedAllocas = false; | 
|  | for (const auto &APC : AllocaPoisonCallVec) { | 
|  | assert(APC.InsBefore); | 
|  | assert(APC.AI); | 
|  | IRBuilder<> IRB(APC.InsBefore); | 
|  | poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison); | 
|  | HavePoisonedAllocas |= APC.DoPoison; | 
|  | } | 
|  |  | 
|  | // Replace Alloca instructions with base+offset. | 
|  | for (const auto &Desc : SVD) { | 
|  | AllocaInst *AI = Desc.AI; | 
|  | Value *NewAllocaPtr = IRB.CreateIntToPtr( | 
|  | IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)), | 
|  | AI->getType()); | 
|  | replaceDbgDeclareForAlloca(AI, NewAllocaPtr, DIB); | 
|  | AI->replaceAllUsesWith(NewAllocaPtr); | 
|  | } | 
|  |  | 
|  | // The left-most redzone has enough space for at least 4 pointers. | 
|  | // Write the Magic value to redzone[0]. | 
|  | Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy); | 
|  | IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic), | 
|  | BasePlus0); | 
|  | // Write the frame description constant to redzone[1]. | 
|  | Value *BasePlus1 = IRB.CreateIntToPtr( | 
|  | IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, ASan.LongSize/8)), | 
|  | IntptrPtrTy); | 
|  | GlobalVariable *StackDescriptionGlobal = | 
|  | createPrivateGlobalForString(*F.getParent(), L.DescriptionString, | 
|  | /*AllowMerging*/true); | 
|  | Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, | 
|  | IntptrTy); | 
|  | IRB.CreateStore(Description, BasePlus1); | 
|  | // Write the PC to redzone[2]. | 
|  | Value *BasePlus2 = IRB.CreateIntToPtr( | 
|  | IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, | 
|  | 2 * ASan.LongSize/8)), | 
|  | IntptrPtrTy); | 
|  | IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2); | 
|  |  | 
|  | // Poison the stack redzones at the entry. | 
|  | Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB); | 
|  | poisonRedZones(L.ShadowBytes, IRB, ShadowBase, true); | 
|  |  | 
|  | // (Un)poison the stack before all ret instructions. | 
|  | for (auto Ret : RetVec) { | 
|  | IRBuilder<> IRBRet(Ret); | 
|  | // Mark the current frame as retired. | 
|  | IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic), | 
|  | BasePlus0); | 
|  | if (DoStackMalloc) { | 
|  | assert(StackMallocIdx >= 0); | 
|  | // if LocalStackBase != OrigStackBase: | 
|  | //     // In use-after-return mode, poison the whole stack frame. | 
|  | //     if StackMallocIdx <= 4 | 
|  | //         // For small sizes inline the whole thing: | 
|  | //         memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize); | 
|  | //         **SavedFlagPtr(LocalStackBase) = 0 | 
|  | //     else | 
|  | //         __asan_stack_free_N(LocalStackBase, OrigStackBase) | 
|  | // else | 
|  | //     <This is not a fake stack; unpoison the redzones> | 
|  | Value *Cmp = IRBRet.CreateICmpNE(LocalStackBase, OrigStackBase); | 
|  | TerminatorInst *ThenTerm, *ElseTerm; | 
|  | SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm); | 
|  |  | 
|  | IRBuilder<> IRBPoison(ThenTerm); | 
|  | if (StackMallocIdx <= 4) { | 
|  | int ClassSize = kMinStackMallocSize << StackMallocIdx; | 
|  | SetShadowToStackAfterReturnInlined(IRBPoison, ShadowBase, | 
|  | ClassSize >> Mapping.Scale); | 
|  | Value *SavedFlagPtrPtr = IRBPoison.CreateAdd( | 
|  | LocalStackBase, | 
|  | ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8)); | 
|  | Value *SavedFlagPtr = IRBPoison.CreateLoad( | 
|  | IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy)); | 
|  | IRBPoison.CreateStore( | 
|  | Constant::getNullValue(IRBPoison.getInt8Ty()), | 
|  | IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy())); | 
|  | } else { | 
|  | // For larger frames call __asan_stack_free_*. | 
|  | IRBPoison.CreateCall3(AsanStackFreeFunc[StackMallocIdx], LocalStackBase, | 
|  | ConstantInt::get(IntptrTy, LocalStackSize), | 
|  | OrigStackBase); | 
|  | } | 
|  |  | 
|  | IRBuilder<> IRBElse(ElseTerm); | 
|  | poisonRedZones(L.ShadowBytes, IRBElse, ShadowBase, false); | 
|  | } else if (HavePoisonedAllocas) { | 
|  | // If we poisoned some allocas in llvm.lifetime analysis, | 
|  | // unpoison whole stack frame now. | 
|  | assert(LocalStackBase == OrigStackBase); | 
|  | poisonAlloca(LocalStackBase, LocalStackSize, IRBRet, false); | 
|  | } else { | 
|  | poisonRedZones(L.ShadowBytes, IRBRet, ShadowBase, false); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ClInstrumentAllocas) | 
|  | // Unpoison dynamic allocas. | 
|  | for (auto &AllocaCall : DynamicAllocaVec) | 
|  | unpoisonDynamicAlloca(AllocaCall); | 
|  |  | 
|  | // We are done. Remove the old unused alloca instructions. | 
|  | for (auto AI : AllocaVec) | 
|  | AI->eraseFromParent(); | 
|  | } | 
|  |  | 
|  | void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size, | 
|  | IRBuilder<> &IRB, bool DoPoison) { | 
|  | // For now just insert the call to ASan runtime. | 
|  | Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy); | 
|  | Value *SizeArg = ConstantInt::get(IntptrTy, Size); | 
|  | IRB.CreateCall2(DoPoison ? AsanPoisonStackMemoryFunc | 
|  | : AsanUnpoisonStackMemoryFunc, | 
|  | AddrArg, SizeArg); | 
|  | } | 
|  |  | 
|  | // Handling llvm.lifetime intrinsics for a given %alloca: | 
|  | // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca. | 
|  | // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect | 
|  | //     invalid accesses) and unpoison it for llvm.lifetime.start (the memory | 
|  | //     could be poisoned by previous llvm.lifetime.end instruction, as the | 
|  | //     variable may go in and out of scope several times, e.g. in loops). | 
|  | // (3) if we poisoned at least one %alloca in a function, | 
|  | //     unpoison the whole stack frame at function exit. | 
|  |  | 
|  | AllocaInst *FunctionStackPoisoner::findAllocaForValue(Value *V) { | 
|  | if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) | 
|  | // We're intested only in allocas we can handle. | 
|  | return isInterestingAlloca(*AI) ? AI : nullptr; | 
|  | // See if we've already calculated (or started to calculate) alloca for a | 
|  | // given value. | 
|  | AllocaForValueMapTy::iterator I = AllocaForValue.find(V); | 
|  | if (I != AllocaForValue.end()) | 
|  | return I->second; | 
|  | // Store 0 while we're calculating alloca for value V to avoid | 
|  | // infinite recursion if the value references itself. | 
|  | AllocaForValue[V] = nullptr; | 
|  | AllocaInst *Res = nullptr; | 
|  | if (CastInst *CI = dyn_cast<CastInst>(V)) | 
|  | Res = findAllocaForValue(CI->getOperand(0)); | 
|  | else if (PHINode *PN = dyn_cast<PHINode>(V)) { | 
|  | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { | 
|  | Value *IncValue = PN->getIncomingValue(i); | 
|  | // Allow self-referencing phi-nodes. | 
|  | if (IncValue == PN) continue; | 
|  | AllocaInst *IncValueAI = findAllocaForValue(IncValue); | 
|  | // AI for incoming values should exist and should all be equal. | 
|  | if (IncValueAI == nullptr || (Res != nullptr && IncValueAI != Res)) | 
|  | return nullptr; | 
|  | Res = IncValueAI; | 
|  | } | 
|  | } | 
|  | if (Res) | 
|  | AllocaForValue[V] = Res; | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | // Compute PartialRzMagic for dynamic alloca call. PartialRzMagic is | 
|  | // constructed from two separate 32-bit numbers: PartialRzMagic = Val1 | Val2. | 
|  | // (1) Val1 is resposible for forming base value for PartialRzMagic, containing | 
|  | //     only 00 for fully addressable and 0xcb for fully poisoned bytes for each | 
|  | //     8-byte chunk of user memory respectively. | 
|  | // (2) Val2 forms the value for marking first poisoned byte in shadow memory | 
|  | //     with appropriate value (0x01 - 0x07 or 0xcb if Padding % 8 == 0). | 
|  |  | 
|  | // Shift = Padding & ~7; // the number of bits we need to shift to access first | 
|  | //                          chunk in shadow memory, containing nonzero bytes. | 
|  | // Example: | 
|  | // Padding = 21                       Padding = 16 | 
|  | // Shadow:  |00|00|05|cb|          Shadow:  |00|00|cb|cb| | 
|  | //                ^                               ^ | 
|  | //                |                               | | 
|  | // Shift = 21 & ~7 = 16            Shift = 16 & ~7 = 16 | 
|  | // | 
|  | // Val1 = 0xcbcbcbcb << Shift; | 
|  | // PartialBits = Padding ? Padding & 7 : 0xcb; | 
|  | // Val2 = PartialBits << Shift; | 
|  | // Result = Val1 | Val2; | 
|  | Value *FunctionStackPoisoner::computePartialRzMagic(Value *PartialSize, | 
|  | IRBuilder<> &IRB) { | 
|  | PartialSize = IRB.CreateIntCast(PartialSize, IRB.getInt32Ty(), false); | 
|  | Value *Shift = IRB.CreateAnd(PartialSize, IRB.getInt32(~7)); | 
|  | unsigned Val1Int = kAsanAllocaPartialVal1; | 
|  | unsigned Val2Int = kAsanAllocaPartialVal2; | 
|  | if (!ASan.DL->isLittleEndian()) { | 
|  | Val1Int = sys::getSwappedBytes(Val1Int); | 
|  | Val2Int = sys::getSwappedBytes(Val2Int); | 
|  | } | 
|  | Value *Val1 = shiftAllocaMagic(IRB.getInt32(Val1Int), IRB, Shift); | 
|  | Value *PartialBits = IRB.CreateAnd(PartialSize, IRB.getInt32(7)); | 
|  | // For BigEndian get 0x000000YZ -> 0xYZ000000. | 
|  | if (ASan.DL->isBigEndian()) | 
|  | PartialBits = IRB.CreateShl(PartialBits, IRB.getInt32(24)); | 
|  | Value *Val2 = IRB.getInt32(Val2Int); | 
|  | Value *Cond = | 
|  | IRB.CreateICmpNE(PartialBits, Constant::getNullValue(IRB.getInt32Ty())); | 
|  | Val2 = IRB.CreateSelect(Cond, shiftAllocaMagic(PartialBits, IRB, Shift), | 
|  | shiftAllocaMagic(Val2, IRB, Shift)); | 
|  | return IRB.CreateOr(Val1, Val2); | 
|  | } | 
|  |  | 
|  | void FunctionStackPoisoner::handleDynamicAllocaCall( | 
|  | DynamicAllocaCall &AllocaCall) { | 
|  | AllocaInst *AI = AllocaCall.AI; | 
|  | IRBuilder<> IRB(AI); | 
|  |  | 
|  | PointerType *Int32PtrTy = PointerType::getUnqual(IRB.getInt32Ty()); | 
|  | const unsigned Align = std::max(kAllocaRzSize, AI->getAlignment()); | 
|  | const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1; | 
|  |  | 
|  | Value *Zero = Constant::getNullValue(IntptrTy); | 
|  | Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize); | 
|  | Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask); | 
|  | Value *NotAllocaRzMask = ConstantInt::get(IntptrTy, ~AllocaRedzoneMask); | 
|  |  | 
|  | // Since we need to extend alloca with additional memory to locate | 
|  | // redzones, and OldSize is number of allocated blocks with | 
|  | // ElementSize size, get allocated memory size in bytes by | 
|  | // OldSize * ElementSize. | 
|  | unsigned ElementSize = ASan.DL->getTypeAllocSize(AI->getAllocatedType()); | 
|  | Value *OldSize = IRB.CreateMul(AI->getArraySize(), | 
|  | ConstantInt::get(IntptrTy, ElementSize)); | 
|  |  | 
|  | // PartialSize = OldSize % 32 | 
|  | Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask); | 
|  |  | 
|  | // Misalign = kAllocaRzSize - PartialSize; | 
|  | Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize); | 
|  |  | 
|  | // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0; | 
|  | Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize); | 
|  | Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero); | 
|  |  | 
|  | // AdditionalChunkSize = Align + PartialPadding + kAllocaRzSize | 
|  | // Align is added to locate left redzone, PartialPadding for possible | 
|  | // partial redzone and kAllocaRzSize for right redzone respectively. | 
|  | Value *AdditionalChunkSize = IRB.CreateAdd( | 
|  | ConstantInt::get(IntptrTy, Align + kAllocaRzSize), PartialPadding); | 
|  |  | 
|  | Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize); | 
|  |  | 
|  | // Insert new alloca with new NewSize and Align params. | 
|  | AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize); | 
|  | NewAlloca->setAlignment(Align); | 
|  |  | 
|  | // NewAddress = Address + Align | 
|  | Value *NewAddress = IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy), | 
|  | ConstantInt::get(IntptrTy, Align)); | 
|  |  | 
|  | Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType()); | 
|  |  | 
|  | // LeftRzAddress = NewAddress - kAllocaRzSize | 
|  | Value *LeftRzAddress = IRB.CreateSub(NewAddress, AllocaRzSize); | 
|  |  | 
|  | // Poisoning left redzone. | 
|  | AllocaCall.LeftRzAddr = ASan.memToShadow(LeftRzAddress, IRB); | 
|  | IRB.CreateStore(ConstantInt::get(IRB.getInt32Ty(), kAsanAllocaLeftMagic), | 
|  | IRB.CreateIntToPtr(AllocaCall.LeftRzAddr, Int32PtrTy)); | 
|  |  | 
|  | // PartialRzAligned = PartialRzAddr & ~AllocaRzMask | 
|  | Value *PartialRzAddr = IRB.CreateAdd(NewAddress, OldSize); | 
|  | Value *PartialRzAligned = IRB.CreateAnd(PartialRzAddr, NotAllocaRzMask); | 
|  |  | 
|  | // Poisoning partial redzone. | 
|  | Value *PartialRzMagic = computePartialRzMagic(PartialSize, IRB); | 
|  | Value *PartialRzShadowAddr = ASan.memToShadow(PartialRzAligned, IRB); | 
|  | IRB.CreateStore(PartialRzMagic, | 
|  | IRB.CreateIntToPtr(PartialRzShadowAddr, Int32PtrTy)); | 
|  |  | 
|  | // RightRzAddress | 
|  | //   =  (PartialRzAddr + AllocaRzMask) & ~AllocaRzMask | 
|  | Value *RightRzAddress = IRB.CreateAnd( | 
|  | IRB.CreateAdd(PartialRzAddr, AllocaRzMask), NotAllocaRzMask); | 
|  |  | 
|  | // Poisoning right redzone. | 
|  | AllocaCall.RightRzAddr = ASan.memToShadow(RightRzAddress, IRB); | 
|  | IRB.CreateStore(ConstantInt::get(IRB.getInt32Ty(), kAsanAllocaRightMagic), | 
|  | IRB.CreateIntToPtr(AllocaCall.RightRzAddr, Int32PtrTy)); | 
|  |  | 
|  | // Replace all uses of AddessReturnedByAlloca with NewAddress. | 
|  | AI->replaceAllUsesWith(NewAddressPtr); | 
|  |  | 
|  | // We are done. Erase old alloca and store left, partial and right redzones | 
|  | // shadow addresses for future unpoisoning. | 
|  | AI->eraseFromParent(); | 
|  | } |